ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.158 by root, Thu Nov 29 17:28:13 2007 UTC vs.
Revision 1.377 by root, Wed Jun 8 13:11:55 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
65# endif 91# endif
66 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
73# endif 109# endif
74 110
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
78# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
81# endif 118# endif
82 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
89# endif 127# endif
90 128
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
94# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
97# endif 136# endif
98 137
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
102# else
103# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
104# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
105# endif 145# endif
106 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
107#endif 154# endif
108 155
109#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
110#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
111#include <fcntl.h> 169#include <fcntl.h>
112#include <stddef.h> 170#include <stddef.h>
113 171
114#include <stdio.h> 172#include <stdio.h>
115 173
116#include <assert.h> 174#include <assert.h>
117#include <errno.h> 175#include <errno.h>
118#include <sys/types.h> 176#include <sys/types.h>
119#include <time.h> 177#include <time.h>
178#include <limits.h>
120 179
121#include <signal.h> 180#include <signal.h>
122 181
123#ifdef EV_H 182#ifdef EV_H
124# include EV_H 183# include EV_H
125#else 184#else
126# include "ev.h" 185# include "ev.h"
127#endif 186#endif
187
188EV_CPP(extern "C" {)
128 189
129#ifndef _WIN32 190#ifndef _WIN32
130# include <sys/time.h> 191# include <sys/time.h>
131# include <sys/wait.h> 192# include <sys/wait.h>
132# include <unistd.h> 193# include <unistd.h>
133#else 194#else
195# include <io.h>
134# define WIN32_LEAN_AND_MEAN 196# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 197# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 198# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 199# define EV_SELECT_IS_WINSOCKET 1
138# endif 200# endif
201# undef EV_AVOID_STDIO
202#endif
203
204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
211
212/* this block tries to deduce configuration from header-defined symbols and defaults */
213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
245
246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
139#endif 251# endif
140 252#endif
141/**/
142 253
143#ifndef EV_USE_MONOTONIC 254#ifndef EV_USE_MONOTONIC
255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256# define EV_USE_MONOTONIC EV_FEATURE_OS
257# else
144# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
259# endif
145#endif 260#endif
146 261
147#ifndef EV_USE_REALTIME 262#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
264#endif
265
266#ifndef EV_USE_NANOSLEEP
267# if _POSIX_C_SOURCE >= 199309L
268# define EV_USE_NANOSLEEP EV_FEATURE_OS
269# else
270# define EV_USE_NANOSLEEP 0
271# endif
149#endif 272#endif
150 273
151#ifndef EV_USE_SELECT 274#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 275# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 276#endif
154 277
155#ifndef EV_USE_POLL 278#ifndef EV_USE_POLL
156# ifdef _WIN32 279# ifdef _WIN32
157# define EV_USE_POLL 0 280# define EV_USE_POLL 0
158# else 281# else
159# define EV_USE_POLL 1 282# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 283# endif
161#endif 284#endif
162 285
163#ifndef EV_USE_EPOLL 286#ifndef EV_USE_EPOLL
287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
289# else
164# define EV_USE_EPOLL 0 290# define EV_USE_EPOLL 0
291# endif
165#endif 292#endif
166 293
167#ifndef EV_USE_KQUEUE 294#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 295# define EV_USE_KQUEUE 0
169#endif 296#endif
171#ifndef EV_USE_PORT 298#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 299# define EV_USE_PORT 0
173#endif 300#endif
174 301
175#ifndef EV_USE_INOTIFY 302#ifndef EV_USE_INOTIFY
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304# define EV_USE_INOTIFY EV_FEATURE_OS
305# else
176# define EV_USE_INOTIFY 0 306# define EV_USE_INOTIFY 0
307# endif
177#endif 308#endif
178 309
179#ifndef EV_PID_HASHSIZE 310#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 312#endif
313
314#ifndef EV_INOTIFY_HASHSIZE
315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
316#endif
317
318#ifndef EV_USE_EVENTFD
319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
320# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 321# else
183# define EV_PID_HASHSIZE 16 322# define EV_USE_EVENTFD 0
184# endif 323# endif
185#endif 324#endif
186 325
187#ifndef EV_INOTIFY_HASHSIZE 326#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 328# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 329# else
191# define EV_INOTIFY_HASHSIZE 16 330# define EV_USE_SIGNALFD 0
192# endif 331# endif
193#endif 332#endif
194 333
195/**/ 334#if 0 /* debugging */
335# define EV_VERIFY 3
336# define EV_USE_4HEAP 1
337# define EV_HEAP_CACHE_AT 1
338#endif
339
340#ifndef EV_VERIFY
341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342#endif
343
344#ifndef EV_USE_4HEAP
345# define EV_USE_4HEAP EV_FEATURE_DATA
346#endif
347
348#ifndef EV_HEAP_CACHE_AT
349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
364#endif
365
366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
370# undef EV_USE_POLL
371# define EV_USE_POLL 0
372#endif
196 373
197#ifndef CLOCK_MONOTONIC 374#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 375# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 376# define EV_USE_MONOTONIC 0
200#endif 377#endif
202#ifndef CLOCK_REALTIME 379#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 380# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 381# define EV_USE_REALTIME 0
205#endif 382#endif
206 383
384#if !EV_STAT_ENABLE
385# undef EV_USE_INOTIFY
386# define EV_USE_INOTIFY 0
387#endif
388
389#if !EV_USE_NANOSLEEP
390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
392# include <sys/select.h>
393# endif
394#endif
395
396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
404#endif
405
207#if EV_SELECT_IS_WINSOCKET 406#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 407# include <winsock.h>
209#endif 408#endif
210 409
211#if !EV_STAT_ENABLE 410#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
412# include <stdint.h>
413# ifndef EFD_NONBLOCK
414# define EFD_NONBLOCK O_NONBLOCK
213#endif 415# endif
416# ifndef EFD_CLOEXEC
417# ifdef O_CLOEXEC
418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
422# endif
423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
214 425
215#if EV_USE_INOTIFY 426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
216# include <sys/inotify.h> 428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
217#endif 446#endif
218 447
219/**/ 448/**/
449
450#if EV_VERIFY >= 3
451# define EV_FREQUENT_CHECK ev_verify (EV_A)
452#else
453# define EV_FREQUENT_CHECK do { } while (0)
454#endif
455
456/*
457 * This is used to work around floating point rounding problems.
458 * This value is good at least till the year 4000.
459 */
460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
220 462
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 465
466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
468
225#if __GNUC__ >= 3 469#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 470# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 471# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 472#else
236# define expect(expr,value) (expr) 473# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 474# define noinline
475# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
476# define inline
477# endif
240#endif 478#endif
241 479
242#define expect_false(expr) expect ((expr) != 0, 0) 480#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 481#define expect_true(expr) expect ((expr) != 0, 1)
482#define inline_size static inline
244 483
484#if EV_FEATURE_CODE
485# define inline_speed static inline
486#else
487# define inline_speed static noinline
488#endif
489
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 490#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
491
492#if EV_MINPRI == EV_MAXPRI
493# define ABSPRI(w) (((W)w), 0)
494#else
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 495# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
496#endif
247 497
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 498#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 499#define EMPTY2(a,b) /* used to suppress some warnings */
250 500
251typedef ev_watcher *W; 501typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 502typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 503typedef ev_watcher_time *WT;
254 504
505#define ev_active(w) ((W)(w))->active
506#define ev_at(w) ((WT)(w))->at
507
508#if EV_USE_REALTIME
509/* sig_atomic_t is used to avoid per-thread variables or locking but still */
510/* giving it a reasonably high chance of working on typical architectures */
511static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
512#endif
513
514#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 515static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
516#endif
517
518#ifndef EV_FD_TO_WIN32_HANDLE
519# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
520#endif
521#ifndef EV_WIN32_HANDLE_TO_FD
522# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
523#endif
524#ifndef EV_WIN32_CLOSE_FD
525# define EV_WIN32_CLOSE_FD(fd) close (fd)
526#endif
256 527
257#ifdef _WIN32 528#ifdef _WIN32
258# include "ev_win32.c" 529# include "ev_win32.c"
259#endif 530#endif
260 531
261/*****************************************************************************/ 532/*****************************************************************************/
262 533
534/* define a suitable floor function (only used by periodics atm) */
535
536#if EV_USE_FLOOR
537# include <math.h>
538# define ev_floor(v) floor (v)
539#else
540
541#include <float.h>
542
543/* a floor() replacement function, should be independent of ev_tstamp type */
544static ev_tstamp noinline
545ev_floor (ev_tstamp v)
546{
547 /* the choice of shift factor is not terribly important */
548#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
549 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
550#else
551 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
552#endif
553
554 /* argument too large for an unsigned long? */
555 if (expect_false (v >= shift))
556 {
557 ev_tstamp f;
558
559 if (v == v - 1.)
560 return v; /* very large number */
561
562 f = shift * ev_floor (v * (1. / shift));
563 return f + ev_floor (v - f);
564 }
565
566 /* special treatment for negative args? */
567 if (expect_false (v < 0.))
568 {
569 ev_tstamp f = -ev_floor (-v);
570
571 return f - (f == v ? 0 : 1);
572 }
573
574 /* fits into an unsigned long */
575 return (unsigned long)v;
576}
577
578#endif
579
580/*****************************************************************************/
581
582#ifdef __linux
583# include <sys/utsname.h>
584#endif
585
586static unsigned int noinline
587ev_linux_version (void)
588{
589#ifdef __linux
590 unsigned int v = 0;
591 struct utsname buf;
592 int i;
593 char *p = buf.release;
594
595 if (uname (&buf))
596 return 0;
597
598 for (i = 3+1; --i; )
599 {
600 unsigned int c = 0;
601
602 for (;;)
603 {
604 if (*p >= '0' && *p <= '9')
605 c = c * 10 + *p++ - '0';
606 else
607 {
608 p += *p == '.';
609 break;
610 }
611 }
612
613 v = (v << 8) | c;
614 }
615
616 return v;
617#else
618 return 0;
619#endif
620}
621
622/*****************************************************************************/
623
624#if EV_AVOID_STDIO
625static void noinline
626ev_printerr (const char *msg)
627{
628 write (STDERR_FILENO, msg, strlen (msg));
629}
630#endif
631
263static void (*syserr_cb)(const char *msg); 632static void (*syserr_cb)(const char *msg);
264 633
265void 634void
266ev_set_syserr_cb (void (*cb)(const char *msg)) 635ev_set_syserr_cb (void (*cb)(const char *msg))
267{ 636{
268 syserr_cb = cb; 637 syserr_cb = cb;
269} 638}
270 639
271static void noinline 640static void noinline
272syserr (const char *msg) 641ev_syserr (const char *msg)
273{ 642{
274 if (!msg) 643 if (!msg)
275 msg = "(libev) system error"; 644 msg = "(libev) system error";
276 645
277 if (syserr_cb) 646 if (syserr_cb)
278 syserr_cb (msg); 647 syserr_cb (msg);
279 else 648 else
280 { 649 {
650#if EV_AVOID_STDIO
651 ev_printerr (msg);
652 ev_printerr (": ");
653 ev_printerr (strerror (errno));
654 ev_printerr ("\n");
655#else
281 perror (msg); 656 perror (msg);
657#endif
282 abort (); 658 abort ();
283 } 659 }
284} 660}
285 661
662static void *
663ev_realloc_emul (void *ptr, long size)
664{
665#if __GLIBC__
666 return realloc (ptr, size);
667#else
668 /* some systems, notably openbsd and darwin, fail to properly
669 * implement realloc (x, 0) (as required by both ansi c-89 and
670 * the single unix specification, so work around them here.
671 */
672
673 if (size)
674 return realloc (ptr, size);
675
676 free (ptr);
677 return 0;
678#endif
679}
680
286static void *(*alloc)(void *ptr, long size); 681static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 682
288void 683void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 684ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 685{
291 alloc = cb; 686 alloc = cb;
292} 687}
293 688
294inline_speed void * 689inline_speed void *
295ev_realloc (void *ptr, long size) 690ev_realloc (void *ptr, long size)
296{ 691{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 692 ptr = alloc (ptr, size);
298 693
299 if (!ptr && size) 694 if (!ptr && size)
300 { 695 {
696#if EV_AVOID_STDIO
697 ev_printerr ("(libev) memory allocation failed, aborting.\n");
698#else
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 699 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
700#endif
302 abort (); 701 abort ();
303 } 702 }
304 703
305 return ptr; 704 return ptr;
306} 705}
308#define ev_malloc(size) ev_realloc (0, (size)) 707#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 708#define ev_free(ptr) ev_realloc ((ptr), 0)
310 709
311/*****************************************************************************/ 710/*****************************************************************************/
312 711
712/* set in reify when reification needed */
713#define EV_ANFD_REIFY 1
714
715/* file descriptor info structure */
313typedef struct 716typedef struct
314{ 717{
315 WL head; 718 WL head;
316 unsigned char events; 719 unsigned char events; /* the events watched for */
720 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
721 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 722 unsigned char unused;
723#if EV_USE_EPOLL
724 unsigned int egen; /* generation counter to counter epoll bugs */
725#endif
318#if EV_SELECT_IS_WINSOCKET 726#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
319 SOCKET handle; 727 SOCKET handle;
320#endif 728#endif
729#if EV_USE_IOCP
730 OVERLAPPED or, ow;
731#endif
321} ANFD; 732} ANFD;
322 733
734/* stores the pending event set for a given watcher */
323typedef struct 735typedef struct
324{ 736{
325 W w; 737 W w;
326 int events; 738 int events; /* the pending event set for the given watcher */
327} ANPENDING; 739} ANPENDING;
328 740
329#if EV_USE_INOTIFY 741#if EV_USE_INOTIFY
742/* hash table entry per inotify-id */
330typedef struct 743typedef struct
331{ 744{
332 WL head; 745 WL head;
333} ANFS; 746} ANFS;
747#endif
748
749/* Heap Entry */
750#if EV_HEAP_CACHE_AT
751 /* a heap element */
752 typedef struct {
753 ev_tstamp at;
754 WT w;
755 } ANHE;
756
757 #define ANHE_w(he) (he).w /* access watcher, read-write */
758 #define ANHE_at(he) (he).at /* access cached at, read-only */
759 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
760#else
761 /* a heap element */
762 typedef WT ANHE;
763
764 #define ANHE_w(he) (he)
765 #define ANHE_at(he) (he)->at
766 #define ANHE_at_cache(he)
334#endif 767#endif
335 768
336#if EV_MULTIPLICITY 769#if EV_MULTIPLICITY
337 770
338 struct ev_loop 771 struct ev_loop
357 790
358 static int ev_default_loop_ptr; 791 static int ev_default_loop_ptr;
359 792
360#endif 793#endif
361 794
795#if EV_FEATURE_API
796# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
797# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
798# define EV_INVOKE_PENDING invoke_cb (EV_A)
799#else
800# define EV_RELEASE_CB (void)0
801# define EV_ACQUIRE_CB (void)0
802# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
803#endif
804
805#define EVBREAK_RECURSE 0x80
806
362/*****************************************************************************/ 807/*****************************************************************************/
363 808
809#ifndef EV_HAVE_EV_TIME
364ev_tstamp 810ev_tstamp
365ev_time (void) 811ev_time (void)
366{ 812{
367#if EV_USE_REALTIME 813#if EV_USE_REALTIME
814 if (expect_true (have_realtime))
815 {
368 struct timespec ts; 816 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 817 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 818 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 819 }
820#endif
821
372 struct timeval tv; 822 struct timeval tv;
373 gettimeofday (&tv, 0); 823 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 824 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 825}
826#endif
377 827
378ev_tstamp inline_size 828inline_size ev_tstamp
379get_clock (void) 829get_clock (void)
380{ 830{
381#if EV_USE_MONOTONIC 831#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 832 if (expect_true (have_monotonic))
383 { 833 {
396{ 846{
397 return ev_rt_now; 847 return ev_rt_now;
398} 848}
399#endif 849#endif
400 850
401#define array_roundsize(type,n) (((n) | 4) & ~3) 851void
852ev_sleep (ev_tstamp delay)
853{
854 if (delay > 0.)
855 {
856#if EV_USE_NANOSLEEP
857 struct timespec ts;
858
859 EV_TS_SET (ts, delay);
860 nanosleep (&ts, 0);
861#elif defined(_WIN32)
862 Sleep ((unsigned long)(delay * 1e3));
863#else
864 struct timeval tv;
865
866 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
867 /* something not guaranteed by newer posix versions, but guaranteed */
868 /* by older ones */
869 EV_TV_SET (tv, delay);
870 select (0, 0, 0, 0, &tv);
871#endif
872 }
873}
874
875/*****************************************************************************/
876
877#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
878
879/* find a suitable new size for the given array, */
880/* hopefully by rounding to a nice-to-malloc size */
881inline_size int
882array_nextsize (int elem, int cur, int cnt)
883{
884 int ncur = cur + 1;
885
886 do
887 ncur <<= 1;
888 while (cnt > ncur);
889
890 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
891 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
892 {
893 ncur *= elem;
894 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
895 ncur = ncur - sizeof (void *) * 4;
896 ncur /= elem;
897 }
898
899 return ncur;
900}
901
902static noinline void *
903array_realloc (int elem, void *base, int *cur, int cnt)
904{
905 *cur = array_nextsize (elem, *cur, cnt);
906 return ev_realloc (base, elem * *cur);
907}
908
909#define array_init_zero(base,count) \
910 memset ((void *)(base), 0, sizeof (*(base)) * (count))
402 911
403#define array_needsize(type,base,cur,cnt,init) \ 912#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 913 if (expect_false ((cnt) > (cur))) \
405 { \ 914 { \
406 int newcnt = cur; \ 915 int ocur_ = (cur); \
407 do \ 916 (base) = (type *)array_realloc \
408 { \ 917 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 918 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 919 }
417 920
921#if 0
418#define array_slim(type,stem) \ 922#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 923 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 924 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 925 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 926 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 927 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 928 }
929#endif
425 930
426#define array_free(stem, idx) \ 931#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 932 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
428 933
429/*****************************************************************************/ 934/*****************************************************************************/
935
936/* dummy callback for pending events */
937static void noinline
938pendingcb (EV_P_ ev_prepare *w, int revents)
939{
940}
430 941
431void noinline 942void noinline
432ev_feed_event (EV_P_ void *w, int revents) 943ev_feed_event (EV_P_ void *w, int revents)
433{ 944{
434 W w_ = (W)w; 945 W w_ = (W)w;
946 int pri = ABSPRI (w_);
435 947
436 if (expect_false (w_->pending)) 948 if (expect_false (w_->pending))
949 pendings [pri][w_->pending - 1].events |= revents;
950 else
437 { 951 {
952 w_->pending = ++pendingcnt [pri];
953 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
954 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 955 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 956 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 957}
447 958
448void inline_size 959inline_speed void
960feed_reverse (EV_P_ W w)
961{
962 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
963 rfeeds [rfeedcnt++] = w;
964}
965
966inline_size void
967feed_reverse_done (EV_P_ int revents)
968{
969 do
970 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
971 while (rfeedcnt);
972}
973
974inline_speed void
449queue_events (EV_P_ W *events, int eventcnt, int type) 975queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 976{
451 int i; 977 int i;
452 978
453 for (i = 0; i < eventcnt; ++i) 979 for (i = 0; i < eventcnt; ++i)
454 ev_feed_event (EV_A_ events [i], type); 980 ev_feed_event (EV_A_ events [i], type);
455} 981}
456 982
457/*****************************************************************************/ 983/*****************************************************************************/
458 984
459void inline_size 985inline_speed void
460anfds_init (ANFD *base, int count)
461{
462 while (count--)
463 {
464 base->head = 0;
465 base->events = EV_NONE;
466 base->reify = 0;
467
468 ++base;
469 }
470}
471
472void inline_speed
473fd_event (EV_P_ int fd, int revents) 986fd_event_nocheck (EV_P_ int fd, int revents)
474{ 987{
475 ANFD *anfd = anfds + fd; 988 ANFD *anfd = anfds + fd;
476 ev_io *w; 989 ev_io *w;
477 990
478 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 991 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
482 if (ev) 995 if (ev)
483 ev_feed_event (EV_A_ (W)w, ev); 996 ev_feed_event (EV_A_ (W)w, ev);
484 } 997 }
485} 998}
486 999
1000/* do not submit kernel events for fds that have reify set */
1001/* because that means they changed while we were polling for new events */
1002inline_speed void
1003fd_event (EV_P_ int fd, int revents)
1004{
1005 ANFD *anfd = anfds + fd;
1006
1007 if (expect_true (!anfd->reify))
1008 fd_event_nocheck (EV_A_ fd, revents);
1009}
1010
487void 1011void
488ev_feed_fd_event (EV_P_ int fd, int revents) 1012ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 1013{
1014 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 1015 fd_event_nocheck (EV_A_ fd, revents);
491} 1016}
492 1017
493void inline_size 1018/* make sure the external fd watch events are in-sync */
1019/* with the kernel/libev internal state */
1020inline_size void
494fd_reify (EV_P) 1021fd_reify (EV_P)
495{ 1022{
496 int i; 1023 int i;
1024
1025#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1026 for (i = 0; i < fdchangecnt; ++i)
1027 {
1028 int fd = fdchanges [i];
1029 ANFD *anfd = anfds + fd;
1030
1031 if (anfd->reify & EV__IOFDSET && anfd->head)
1032 {
1033 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1034
1035 if (handle != anfd->handle)
1036 {
1037 unsigned long arg;
1038
1039 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1040
1041 /* handle changed, but fd didn't - we need to do it in two steps */
1042 backend_modify (EV_A_ fd, anfd->events, 0);
1043 anfd->events = 0;
1044 anfd->handle = handle;
1045 }
1046 }
1047 }
1048#endif
497 1049
498 for (i = 0; i < fdchangecnt; ++i) 1050 for (i = 0; i < fdchangecnt; ++i)
499 { 1051 {
500 int fd = fdchanges [i]; 1052 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 1053 ANFD *anfd = anfds + fd;
502 ev_io *w; 1054 ev_io *w;
503 1055
504 int events = 0; 1056 unsigned char o_events = anfd->events;
1057 unsigned char o_reify = anfd->reify;
505 1058
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1059 anfd->reify = 0;
507 events |= w->events;
508 1060
509#if EV_SELECT_IS_WINSOCKET 1061 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
510 if (events)
511 { 1062 {
512 unsigned long argp; 1063 anfd->events = 0;
513 anfd->handle = _get_osfhandle (fd); 1064
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1065 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1066 anfd->events |= (unsigned char)w->events;
1067
1068 if (o_events != anfd->events)
1069 o_reify = EV__IOFDSET; /* actually |= */
515 } 1070 }
516#endif
517 1071
518 anfd->reify = 0; 1072 if (o_reify & EV__IOFDSET)
519
520 backend_modify (EV_A_ fd, anfd->events, events); 1073 backend_modify (EV_A_ fd, o_events, anfd->events);
521 anfd->events = events;
522 } 1074 }
523 1075
524 fdchangecnt = 0; 1076 fdchangecnt = 0;
525} 1077}
526 1078
527void inline_size 1079/* something about the given fd changed */
1080inline_size void
528fd_change (EV_P_ int fd) 1081fd_change (EV_P_ int fd, int flags)
529{ 1082{
530 if (expect_false (anfds [fd].reify)) 1083 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 1084 anfds [fd].reify |= flags;
534 1085
1086 if (expect_true (!reify))
1087 {
535 ++fdchangecnt; 1088 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1089 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 1090 fdchanges [fdchangecnt - 1] = fd;
1091 }
538} 1092}
539 1093
540void inline_speed 1094/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1095inline_speed void
541fd_kill (EV_P_ int fd) 1096fd_kill (EV_P_ int fd)
542{ 1097{
543 ev_io *w; 1098 ev_io *w;
544 1099
545 while ((w = (ev_io *)anfds [fd].head)) 1100 while ((w = (ev_io *)anfds [fd].head))
547 ev_io_stop (EV_A_ w); 1102 ev_io_stop (EV_A_ w);
548 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1103 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
549 } 1104 }
550} 1105}
551 1106
552int inline_size 1107/* check whether the given fd is actually valid, for error recovery */
1108inline_size int
553fd_valid (int fd) 1109fd_valid (int fd)
554{ 1110{
555#ifdef _WIN32 1111#ifdef _WIN32
556 return _get_osfhandle (fd) != -1; 1112 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
557#else 1113#else
558 return fcntl (fd, F_GETFD) != -1; 1114 return fcntl (fd, F_GETFD) != -1;
559#endif 1115#endif
560} 1116}
561 1117
565{ 1121{
566 int fd; 1122 int fd;
567 1123
568 for (fd = 0; fd < anfdmax; ++fd) 1124 for (fd = 0; fd < anfdmax; ++fd)
569 if (anfds [fd].events) 1125 if (anfds [fd].events)
570 if (!fd_valid (fd) == -1 && errno == EBADF) 1126 if (!fd_valid (fd) && errno == EBADF)
571 fd_kill (EV_A_ fd); 1127 fd_kill (EV_A_ fd);
572} 1128}
573 1129
574/* called on ENOMEM in select/poll to kill some fds and retry */ 1130/* called on ENOMEM in select/poll to kill some fds and retry */
575static void noinline 1131static void noinline
579 1135
580 for (fd = anfdmax; fd--; ) 1136 for (fd = anfdmax; fd--; )
581 if (anfds [fd].events) 1137 if (anfds [fd].events)
582 { 1138 {
583 fd_kill (EV_A_ fd); 1139 fd_kill (EV_A_ fd);
584 return; 1140 break;
585 } 1141 }
586} 1142}
587 1143
588/* usually called after fork if backend needs to re-arm all fds from scratch */ 1144/* usually called after fork if backend needs to re-arm all fds from scratch */
589static void noinline 1145static void noinline
593 1149
594 for (fd = 0; fd < anfdmax; ++fd) 1150 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 1151 if (anfds [fd].events)
596 { 1152 {
597 anfds [fd].events = 0; 1153 anfds [fd].events = 0;
598 fd_change (EV_A_ fd); 1154 anfds [fd].emask = 0;
1155 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
599 } 1156 }
600} 1157}
601 1158
602/*****************************************************************************/ 1159/* used to prepare libev internal fd's */
603 1160/* this is not fork-safe */
604void inline_speed 1161inline_speed void
605upheap (WT *heap, int k)
606{
607 WT w = heap [k];
608
609 while (k && heap [k >> 1]->at > w->at)
610 {
611 heap [k] = heap [k >> 1];
612 ((W)heap [k])->active = k + 1;
613 k >>= 1;
614 }
615
616 heap [k] = w;
617 ((W)heap [k])->active = k + 1;
618
619}
620
621void inline_speed
622downheap (WT *heap, int N, int k)
623{
624 WT w = heap [k];
625
626 while (k < (N >> 1))
627 {
628 int j = k << 1;
629
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
631 ++j;
632
633 if (w->at <= heap [j]->at)
634 break;
635
636 heap [k] = heap [j];
637 ((W)heap [k])->active = k + 1;
638 k = j;
639 }
640
641 heap [k] = w;
642 ((W)heap [k])->active = k + 1;
643}
644
645void inline_size
646adjustheap (WT *heap, int N, int k)
647{
648 upheap (heap, k);
649 downheap (heap, N, k);
650}
651
652/*****************************************************************************/
653
654typedef struct
655{
656 WL head;
657 sig_atomic_t volatile gotsig;
658} ANSIG;
659
660static ANSIG *signals;
661static int signalmax;
662
663static int sigpipe [2];
664static sig_atomic_t volatile gotsig;
665static ev_io sigev;
666
667void inline_size
668signals_init (ANSIG *base, int count)
669{
670 while (count--)
671 {
672 base->head = 0;
673 base->gotsig = 0;
674
675 ++base;
676 }
677}
678
679static void
680sighandler (int signum)
681{
682#if _WIN32
683 signal (signum, sighandler);
684#endif
685
686 signals [signum - 1].gotsig = 1;
687
688 if (!gotsig)
689 {
690 int old_errno = errno;
691 gotsig = 1;
692 write (sigpipe [1], &signum, 1);
693 errno = old_errno;
694 }
695}
696
697void noinline
698ev_feed_signal_event (EV_P_ int signum)
699{
700 WL w;
701
702#if EV_MULTIPLICITY
703 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
704#endif
705
706 --signum;
707
708 if (signum < 0 || signum >= signalmax)
709 return;
710
711 signals [signum].gotsig = 0;
712
713 for (w = signals [signum].head; w; w = w->next)
714 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
715}
716
717static void
718sigcb (EV_P_ ev_io *iow, int revents)
719{
720 int signum;
721
722 read (sigpipe [0], &revents, 1);
723 gotsig = 0;
724
725 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1);
728}
729
730void inline_size
731fd_intern (int fd) 1162fd_intern (int fd)
732{ 1163{
733#ifdef _WIN32 1164#ifdef _WIN32
734 int arg = 1; 1165 unsigned long arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1166 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
736#else 1167#else
737 fcntl (fd, F_SETFD, FD_CLOEXEC); 1168 fcntl (fd, F_SETFD, FD_CLOEXEC);
738 fcntl (fd, F_SETFL, O_NONBLOCK); 1169 fcntl (fd, F_SETFL, O_NONBLOCK);
739#endif 1170#endif
740} 1171}
741 1172
1173/*****************************************************************************/
1174
1175/*
1176 * the heap functions want a real array index. array index 0 is guaranteed to not
1177 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1178 * the branching factor of the d-tree.
1179 */
1180
1181/*
1182 * at the moment we allow libev the luxury of two heaps,
1183 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1184 * which is more cache-efficient.
1185 * the difference is about 5% with 50000+ watchers.
1186 */
1187#if EV_USE_4HEAP
1188
1189#define DHEAP 4
1190#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1191#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1192#define UPHEAP_DONE(p,k) ((p) == (k))
1193
1194/* away from the root */
1195inline_speed void
1196downheap (ANHE *heap, int N, int k)
1197{
1198 ANHE he = heap [k];
1199 ANHE *E = heap + N + HEAP0;
1200
1201 for (;;)
1202 {
1203 ev_tstamp minat;
1204 ANHE *minpos;
1205 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1206
1207 /* find minimum child */
1208 if (expect_true (pos + DHEAP - 1 < E))
1209 {
1210 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1211 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1212 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1213 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1214 }
1215 else if (pos < E)
1216 {
1217 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1218 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1219 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1220 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1221 }
1222 else
1223 break;
1224
1225 if (ANHE_at (he) <= minat)
1226 break;
1227
1228 heap [k] = *minpos;
1229 ev_active (ANHE_w (*minpos)) = k;
1230
1231 k = minpos - heap;
1232 }
1233
1234 heap [k] = he;
1235 ev_active (ANHE_w (he)) = k;
1236}
1237
1238#else /* 4HEAP */
1239
1240#define HEAP0 1
1241#define HPARENT(k) ((k) >> 1)
1242#define UPHEAP_DONE(p,k) (!(p))
1243
1244/* away from the root */
1245inline_speed void
1246downheap (ANHE *heap, int N, int k)
1247{
1248 ANHE he = heap [k];
1249
1250 for (;;)
1251 {
1252 int c = k << 1;
1253
1254 if (c >= N + HEAP0)
1255 break;
1256
1257 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1258 ? 1 : 0;
1259
1260 if (ANHE_at (he) <= ANHE_at (heap [c]))
1261 break;
1262
1263 heap [k] = heap [c];
1264 ev_active (ANHE_w (heap [k])) = k;
1265
1266 k = c;
1267 }
1268
1269 heap [k] = he;
1270 ev_active (ANHE_w (he)) = k;
1271}
1272#endif
1273
1274/* towards the root */
1275inline_speed void
1276upheap (ANHE *heap, int k)
1277{
1278 ANHE he = heap [k];
1279
1280 for (;;)
1281 {
1282 int p = HPARENT (k);
1283
1284 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1285 break;
1286
1287 heap [k] = heap [p];
1288 ev_active (ANHE_w (heap [k])) = k;
1289 k = p;
1290 }
1291
1292 heap [k] = he;
1293 ev_active (ANHE_w (he)) = k;
1294}
1295
1296/* move an element suitably so it is in a correct place */
1297inline_size void
1298adjustheap (ANHE *heap, int N, int k)
1299{
1300 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1301 upheap (heap, k);
1302 else
1303 downheap (heap, N, k);
1304}
1305
1306/* rebuild the heap: this function is used only once and executed rarely */
1307inline_size void
1308reheap (ANHE *heap, int N)
1309{
1310 int i;
1311
1312 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1313 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1314 for (i = 0; i < N; ++i)
1315 upheap (heap, i + HEAP0);
1316}
1317
1318/*****************************************************************************/
1319
1320/* associate signal watchers to a signal signal */
1321typedef struct
1322{
1323 EV_ATOMIC_T pending;
1324#if EV_MULTIPLICITY
1325 EV_P;
1326#endif
1327 WL head;
1328} ANSIG;
1329
1330static ANSIG signals [EV_NSIG - 1];
1331
1332/*****************************************************************************/
1333
1334#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1335
742static void noinline 1336static void noinline
743siginit (EV_P) 1337evpipe_init (EV_P)
744{ 1338{
1339 if (!ev_is_active (&pipe_w))
1340 {
1341# if EV_USE_EVENTFD
1342 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1343 if (evfd < 0 && errno == EINVAL)
1344 evfd = eventfd (0, 0);
1345
1346 if (evfd >= 0)
1347 {
1348 evpipe [0] = -1;
1349 fd_intern (evfd); /* doing it twice doesn't hurt */
1350 ev_io_set (&pipe_w, evfd, EV_READ);
1351 }
1352 else
1353# endif
1354 {
1355 while (pipe (evpipe))
1356 ev_syserr ("(libev) error creating signal/async pipe");
1357
745 fd_intern (sigpipe [0]); 1358 fd_intern (evpipe [0]);
746 fd_intern (sigpipe [1]); 1359 fd_intern (evpipe [1]);
1360 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1361 }
747 1362
748 ev_io_set (&sigev, sigpipe [0], EV_READ);
749 ev_io_start (EV_A_ &sigev); 1363 ev_io_start (EV_A_ &pipe_w);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1364 ev_unref (EV_A); /* watcher should not keep loop alive */
1365 }
1366}
1367
1368inline_size void
1369evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1370{
1371 if (!*flag)
1372 {
1373 int old_errno = errno; /* save errno because write might clobber it */
1374 char dummy;
1375
1376 *flag = 1;
1377
1378#if EV_USE_EVENTFD
1379 if (evfd >= 0)
1380 {
1381 uint64_t counter = 1;
1382 write (evfd, &counter, sizeof (uint64_t));
1383 }
1384 else
1385#endif
1386 /* win32 people keep sending patches that change this write() to send() */
1387 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1388 /* so when you think this write should be a send instead, please find out */
1389 /* where your send() is from - it's definitely not the microsoft send, and */
1390 /* tell me. thank you. */
1391 write (evpipe [1], &dummy, 1);
1392
1393 errno = old_errno;
1394 }
1395}
1396
1397/* called whenever the libev signal pipe */
1398/* got some events (signal, async) */
1399static void
1400pipecb (EV_P_ ev_io *iow, int revents)
1401{
1402 int i;
1403
1404#if EV_USE_EVENTFD
1405 if (evfd >= 0)
1406 {
1407 uint64_t counter;
1408 read (evfd, &counter, sizeof (uint64_t));
1409 }
1410 else
1411#endif
1412 {
1413 char dummy;
1414 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1415 read (evpipe [0], &dummy, 1);
1416 }
1417
1418#if EV_SIGNAL_ENABLE
1419 if (sig_pending)
1420 {
1421 sig_pending = 0;
1422
1423 for (i = EV_NSIG - 1; i--; )
1424 if (expect_false (signals [i].pending))
1425 ev_feed_signal_event (EV_A_ i + 1);
1426 }
1427#endif
1428
1429#if EV_ASYNC_ENABLE
1430 if (async_pending)
1431 {
1432 async_pending = 0;
1433
1434 for (i = asynccnt; i--; )
1435 if (asyncs [i]->sent)
1436 {
1437 asyncs [i]->sent = 0;
1438 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1439 }
1440 }
1441#endif
751} 1442}
752 1443
753/*****************************************************************************/ 1444/*****************************************************************************/
754 1445
755static ev_child *childs [EV_PID_HASHSIZE]; 1446void
1447ev_feed_signal (int signum)
1448{
1449#if EV_MULTIPLICITY
1450 EV_P = signals [signum - 1].loop;
756 1451
1452 if (!EV_A)
1453 return;
1454#endif
1455
1456 signals [signum - 1].pending = 1;
1457 evpipe_write (EV_A_ &sig_pending);
1458}
1459
1460static void
1461ev_sighandler (int signum)
1462{
757#ifndef _WIN32 1463#ifdef _WIN32
1464 signal (signum, ev_sighandler);
1465#endif
1466
1467 ev_feed_signal (signum);
1468}
1469
1470void noinline
1471ev_feed_signal_event (EV_P_ int signum)
1472{
1473 WL w;
1474
1475 if (expect_false (signum <= 0 || signum > EV_NSIG))
1476 return;
1477
1478 --signum;
1479
1480#if EV_MULTIPLICITY
1481 /* it is permissible to try to feed a signal to the wrong loop */
1482 /* or, likely more useful, feeding a signal nobody is waiting for */
1483
1484 if (expect_false (signals [signum].loop != EV_A))
1485 return;
1486#endif
1487
1488 signals [signum].pending = 0;
1489
1490 for (w = signals [signum].head; w; w = w->next)
1491 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1492}
1493
1494#if EV_USE_SIGNALFD
1495static void
1496sigfdcb (EV_P_ ev_io *iow, int revents)
1497{
1498 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1499
1500 for (;;)
1501 {
1502 ssize_t res = read (sigfd, si, sizeof (si));
1503
1504 /* not ISO-C, as res might be -1, but works with SuS */
1505 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1506 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1507
1508 if (res < (ssize_t)sizeof (si))
1509 break;
1510 }
1511}
1512#endif
1513
1514#endif
1515
1516/*****************************************************************************/
1517
1518#if EV_CHILD_ENABLE
1519static WL childs [EV_PID_HASHSIZE];
758 1520
759static ev_signal childev; 1521static ev_signal childev;
760 1522
761void inline_speed 1523#ifndef WIFCONTINUED
1524# define WIFCONTINUED(status) 0
1525#endif
1526
1527/* handle a single child status event */
1528inline_speed void
762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1529child_reap (EV_P_ int chain, int pid, int status)
763{ 1530{
764 ev_child *w; 1531 ev_child *w;
1532 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
765 1533
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1534 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1535 {
767 if (w->pid == pid || !w->pid) 1536 if ((w->pid == pid || !w->pid)
1537 && (!traced || (w->flags & 1)))
768 { 1538 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1539 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
770 w->rpid = pid; 1540 w->rpid = pid;
771 w->rstatus = status; 1541 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1542 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 1543 }
1544 }
774} 1545}
775 1546
776#ifndef WCONTINUED 1547#ifndef WCONTINUED
777# define WCONTINUED 0 1548# define WCONTINUED 0
778#endif 1549#endif
779 1550
1551/* called on sigchld etc., calls waitpid */
780static void 1552static void
781childcb (EV_P_ ev_signal *sw, int revents) 1553childcb (EV_P_ ev_signal *sw, int revents)
782{ 1554{
783 int pid, status; 1555 int pid, status;
784 1556
787 if (!WCONTINUED 1559 if (!WCONTINUED
788 || errno != EINVAL 1560 || errno != EINVAL
789 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1561 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
790 return; 1562 return;
791 1563
792 /* make sure we are called again until all childs have been reaped */ 1564 /* make sure we are called again until all children have been reaped */
793 /* we need to do it this way so that the callback gets called before we continue */ 1565 /* we need to do it this way so that the callback gets called before we continue */
794 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1566 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
795 1567
796 child_reap (EV_A_ sw, pid, pid, status); 1568 child_reap (EV_A_ pid, pid, status);
797 if (EV_PID_HASHSIZE > 1) 1569 if ((EV_PID_HASHSIZE) > 1)
798 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1570 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
799} 1571}
800 1572
801#endif 1573#endif
802 1574
803/*****************************************************************************/ 1575/*****************************************************************************/
804 1576
1577#if EV_USE_IOCP
1578# include "ev_iocp.c"
1579#endif
805#if EV_USE_PORT 1580#if EV_USE_PORT
806# include "ev_port.c" 1581# include "ev_port.c"
807#endif 1582#endif
808#if EV_USE_KQUEUE 1583#if EV_USE_KQUEUE
809# include "ev_kqueue.c" 1584# include "ev_kqueue.c"
865 /* kqueue is borked on everything but netbsd apparently */ 1640 /* kqueue is borked on everything but netbsd apparently */
866 /* it usually doesn't work correctly on anything but sockets and pipes */ 1641 /* it usually doesn't work correctly on anything but sockets and pipes */
867 flags &= ~EVBACKEND_KQUEUE; 1642 flags &= ~EVBACKEND_KQUEUE;
868#endif 1643#endif
869#ifdef __APPLE__ 1644#ifdef __APPLE__
870 // flags &= ~EVBACKEND_KQUEUE; for documentation 1645 /* only select works correctly on that "unix-certified" platform */
871 flags &= ~EVBACKEND_POLL; 1646 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1647 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1648#endif
1649#ifdef __FreeBSD__
1650 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
872#endif 1651#endif
873 1652
874 return flags; 1653 return flags;
875} 1654}
876 1655
877unsigned int 1656unsigned int
878ev_embeddable_backends (void) 1657ev_embeddable_backends (void)
879{ 1658{
880 return EVBACKEND_EPOLL 1659 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 1660
882 | EVBACKEND_PORT; 1661 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1662 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1663 flags &= ~EVBACKEND_EPOLL;
1664
1665 return flags;
883} 1666}
884 1667
885unsigned int 1668unsigned int
886ev_backend (EV_P) 1669ev_backend (EV_P)
887{ 1670{
888 return backend; 1671 return backend;
889} 1672}
890 1673
1674#if EV_FEATURE_API
1675unsigned int
1676ev_iteration (EV_P)
1677{
1678 return loop_count;
1679}
1680
1681unsigned int
1682ev_depth (EV_P)
1683{
1684 return loop_depth;
1685}
1686
1687void
1688ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1689{
1690 io_blocktime = interval;
1691}
1692
1693void
1694ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1695{
1696 timeout_blocktime = interval;
1697}
1698
1699void
1700ev_set_userdata (EV_P_ void *data)
1701{
1702 userdata = data;
1703}
1704
1705void *
1706ev_userdata (EV_P)
1707{
1708 return userdata;
1709}
1710
1711void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1712{
1713 invoke_cb = invoke_pending_cb;
1714}
1715
1716void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1717{
1718 release_cb = release;
1719 acquire_cb = acquire;
1720}
1721#endif
1722
1723/* initialise a loop structure, must be zero-initialised */
891static void noinline 1724static void noinline
892loop_init (EV_P_ unsigned int flags) 1725loop_init (EV_P_ unsigned int flags)
893{ 1726{
894 if (!backend) 1727 if (!backend)
895 { 1728 {
1729 origflags = flags;
1730
1731#if EV_USE_REALTIME
1732 if (!have_realtime)
1733 {
1734 struct timespec ts;
1735
1736 if (!clock_gettime (CLOCK_REALTIME, &ts))
1737 have_realtime = 1;
1738 }
1739#endif
1740
896#if EV_USE_MONOTONIC 1741#if EV_USE_MONOTONIC
1742 if (!have_monotonic)
897 { 1743 {
898 struct timespec ts; 1744 struct timespec ts;
1745
899 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1746 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
900 have_monotonic = 1; 1747 have_monotonic = 1;
901 } 1748 }
902#endif 1749#endif
903
904 ev_rt_now = ev_time ();
905 mn_now = get_clock ();
906 now_floor = mn_now;
907 rtmn_diff = ev_rt_now - mn_now;
908 1750
909 /* pid check not overridable via env */ 1751 /* pid check not overridable via env */
910#ifndef _WIN32 1752#ifndef _WIN32
911 if (flags & EVFLAG_FORKCHECK) 1753 if (flags & EVFLAG_FORKCHECK)
912 curpid = getpid (); 1754 curpid = getpid ();
915 if (!(flags & EVFLAG_NOENV) 1757 if (!(flags & EVFLAG_NOENV)
916 && !enable_secure () 1758 && !enable_secure ()
917 && getenv ("LIBEV_FLAGS")) 1759 && getenv ("LIBEV_FLAGS"))
918 flags = atoi (getenv ("LIBEV_FLAGS")); 1760 flags = atoi (getenv ("LIBEV_FLAGS"));
919 1761
920 if (!(flags & 0x0000ffffUL)) 1762 ev_rt_now = ev_time ();
1763 mn_now = get_clock ();
1764 now_floor = mn_now;
1765 rtmn_diff = ev_rt_now - mn_now;
1766#if EV_FEATURE_API
1767 invoke_cb = ev_invoke_pending;
1768#endif
1769
1770 io_blocktime = 0.;
1771 timeout_blocktime = 0.;
1772 backend = 0;
1773 backend_fd = -1;
1774 sig_pending = 0;
1775#if EV_ASYNC_ENABLE
1776 async_pending = 0;
1777#endif
1778#if EV_USE_INOTIFY
1779 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1780#endif
1781#if EV_USE_SIGNALFD
1782 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1783#endif
1784
1785 if (!(flags & EVBACKEND_MASK))
921 flags |= ev_recommended_backends (); 1786 flags |= ev_recommended_backends ();
922 1787
923 backend = 0;
924 backend_fd = -1;
925#if EV_USE_INOTIFY 1788#if EV_USE_IOCP
926 fs_fd = -2; 1789 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
927#endif 1790#endif
928
929#if EV_USE_PORT 1791#if EV_USE_PORT
930 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1792 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
931#endif 1793#endif
932#if EV_USE_KQUEUE 1794#if EV_USE_KQUEUE
933 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1795 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
940#endif 1802#endif
941#if EV_USE_SELECT 1803#if EV_USE_SELECT
942 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1804 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
943#endif 1805#endif
944 1806
1807 ev_prepare_init (&pending_w, pendingcb);
1808
1809#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
945 ev_init (&sigev, sigcb); 1810 ev_init (&pipe_w, pipecb);
946 ev_set_priority (&sigev, EV_MAXPRI); 1811 ev_set_priority (&pipe_w, EV_MAXPRI);
1812#endif
947 } 1813 }
948} 1814}
949 1815
950static void noinline 1816/* free up a loop structure */
1817void
951loop_destroy (EV_P) 1818ev_loop_destroy (EV_P)
952{ 1819{
953 int i; 1820 int i;
1821
1822#if EV_MULTIPLICITY
1823 /* mimic free (0) */
1824 if (!EV_A)
1825 return;
1826#endif
1827
1828#if EV_CLEANUP_ENABLE
1829 /* queue cleanup watchers (and execute them) */
1830 if (expect_false (cleanupcnt))
1831 {
1832 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1833 EV_INVOKE_PENDING;
1834 }
1835#endif
1836
1837#if EV_CHILD_ENABLE
1838 if (ev_is_active (&childev))
1839 {
1840 ev_ref (EV_A); /* child watcher */
1841 ev_signal_stop (EV_A_ &childev);
1842 }
1843#endif
1844
1845 if (ev_is_active (&pipe_w))
1846 {
1847 /*ev_ref (EV_A);*/
1848 /*ev_io_stop (EV_A_ &pipe_w);*/
1849
1850#if EV_USE_EVENTFD
1851 if (evfd >= 0)
1852 close (evfd);
1853#endif
1854
1855 if (evpipe [0] >= 0)
1856 {
1857 EV_WIN32_CLOSE_FD (evpipe [0]);
1858 EV_WIN32_CLOSE_FD (evpipe [1]);
1859 }
1860 }
1861
1862#if EV_USE_SIGNALFD
1863 if (ev_is_active (&sigfd_w))
1864 close (sigfd);
1865#endif
954 1866
955#if EV_USE_INOTIFY 1867#if EV_USE_INOTIFY
956 if (fs_fd >= 0) 1868 if (fs_fd >= 0)
957 close (fs_fd); 1869 close (fs_fd);
958#endif 1870#endif
959 1871
960 if (backend_fd >= 0) 1872 if (backend_fd >= 0)
961 close (backend_fd); 1873 close (backend_fd);
962 1874
1875#if EV_USE_IOCP
1876 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1877#endif
963#if EV_USE_PORT 1878#if EV_USE_PORT
964 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1879 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
965#endif 1880#endif
966#if EV_USE_KQUEUE 1881#if EV_USE_KQUEUE
967 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1882 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
975#if EV_USE_SELECT 1890#if EV_USE_SELECT
976 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1891 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
977#endif 1892#endif
978 1893
979 for (i = NUMPRI; i--; ) 1894 for (i = NUMPRI; i--; )
1895 {
980 array_free (pending, [i]); 1896 array_free (pending, [i]);
1897#if EV_IDLE_ENABLE
1898 array_free (idle, [i]);
1899#endif
1900 }
1901
1902 ev_free (anfds); anfds = 0; anfdmax = 0;
981 1903
982 /* have to use the microsoft-never-gets-it-right macro */ 1904 /* have to use the microsoft-never-gets-it-right macro */
1905 array_free (rfeed, EMPTY);
983 array_free (fdchange, EMPTY0); 1906 array_free (fdchange, EMPTY);
984 array_free (timer, EMPTY0); 1907 array_free (timer, EMPTY);
985#if EV_PERIODIC_ENABLE 1908#if EV_PERIODIC_ENABLE
986 array_free (periodic, EMPTY0); 1909 array_free (periodic, EMPTY);
987#endif 1910#endif
1911#if EV_FORK_ENABLE
1912 array_free (fork, EMPTY);
1913#endif
1914#if EV_CLEANUP_ENABLE
988 array_free (idle, EMPTY0); 1915 array_free (cleanup, EMPTY);
1916#endif
989 array_free (prepare, EMPTY0); 1917 array_free (prepare, EMPTY);
990 array_free (check, EMPTY0); 1918 array_free (check, EMPTY);
1919#if EV_ASYNC_ENABLE
1920 array_free (async, EMPTY);
1921#endif
991 1922
992 backend = 0; 1923 backend = 0;
993}
994 1924
1925#if EV_MULTIPLICITY
1926 if (ev_is_default_loop (EV_A))
1927#endif
1928 ev_default_loop_ptr = 0;
1929#if EV_MULTIPLICITY
1930 else
1931 ev_free (EV_A);
1932#endif
1933}
1934
1935#if EV_USE_INOTIFY
995void inline_size infy_fork (EV_P); 1936inline_size void infy_fork (EV_P);
1937#endif
996 1938
997void inline_size 1939inline_size void
998loop_fork (EV_P) 1940loop_fork (EV_P)
999{ 1941{
1000#if EV_USE_PORT 1942#if EV_USE_PORT
1001 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1943 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1002#endif 1944#endif
1008#endif 1950#endif
1009#if EV_USE_INOTIFY 1951#if EV_USE_INOTIFY
1010 infy_fork (EV_A); 1952 infy_fork (EV_A);
1011#endif 1953#endif
1012 1954
1013 if (ev_is_active (&sigev)) 1955 if (ev_is_active (&pipe_w))
1014 { 1956 {
1015 /* default loop */ 1957 /* this "locks" the handlers against writing to the pipe */
1958 /* while we modify the fd vars */
1959 sig_pending = 1;
1960#if EV_ASYNC_ENABLE
1961 async_pending = 1;
1962#endif
1016 1963
1017 ev_ref (EV_A); 1964 ev_ref (EV_A);
1018 ev_io_stop (EV_A_ &sigev); 1965 ev_io_stop (EV_A_ &pipe_w);
1019 close (sigpipe [0]);
1020 close (sigpipe [1]);
1021 1966
1022 while (pipe (sigpipe)) 1967#if EV_USE_EVENTFD
1023 syserr ("(libev) error creating pipe"); 1968 if (evfd >= 0)
1969 close (evfd);
1970#endif
1024 1971
1972 if (evpipe [0] >= 0)
1973 {
1974 EV_WIN32_CLOSE_FD (evpipe [0]);
1975 EV_WIN32_CLOSE_FD (evpipe [1]);
1976 }
1977
1978#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1025 siginit (EV_A); 1979 evpipe_init (EV_A);
1980 /* now iterate over everything, in case we missed something */
1981 pipecb (EV_A_ &pipe_w, EV_READ);
1982#endif
1026 } 1983 }
1027 1984
1028 postfork = 0; 1985 postfork = 0;
1029} 1986}
1987
1988#if EV_MULTIPLICITY
1989
1990struct ev_loop *
1991ev_loop_new (unsigned int flags)
1992{
1993 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1994
1995 memset (EV_A, 0, sizeof (struct ev_loop));
1996 loop_init (EV_A_ flags);
1997
1998 if (ev_backend (EV_A))
1999 return EV_A;
2000
2001 ev_free (EV_A);
2002 return 0;
2003}
2004
2005#endif /* multiplicity */
2006
2007#if EV_VERIFY
2008static void noinline
2009verify_watcher (EV_P_ W w)
2010{
2011 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2012
2013 if (w->pending)
2014 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2015}
2016
2017static void noinline
2018verify_heap (EV_P_ ANHE *heap, int N)
2019{
2020 int i;
2021
2022 for (i = HEAP0; i < N + HEAP0; ++i)
2023 {
2024 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2025 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2026 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2027
2028 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2029 }
2030}
2031
2032static void noinline
2033array_verify (EV_P_ W *ws, int cnt)
2034{
2035 while (cnt--)
2036 {
2037 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2038 verify_watcher (EV_A_ ws [cnt]);
2039 }
2040}
2041#endif
2042
2043#if EV_FEATURE_API
2044void
2045ev_verify (EV_P)
2046{
2047#if EV_VERIFY
2048 int i;
2049 WL w;
2050
2051 assert (activecnt >= -1);
2052
2053 assert (fdchangemax >= fdchangecnt);
2054 for (i = 0; i < fdchangecnt; ++i)
2055 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2056
2057 assert (anfdmax >= 0);
2058 for (i = 0; i < anfdmax; ++i)
2059 for (w = anfds [i].head; w; w = w->next)
2060 {
2061 verify_watcher (EV_A_ (W)w);
2062 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2063 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2064 }
2065
2066 assert (timermax >= timercnt);
2067 verify_heap (EV_A_ timers, timercnt);
2068
2069#if EV_PERIODIC_ENABLE
2070 assert (periodicmax >= periodiccnt);
2071 verify_heap (EV_A_ periodics, periodiccnt);
2072#endif
2073
2074 for (i = NUMPRI; i--; )
2075 {
2076 assert (pendingmax [i] >= pendingcnt [i]);
2077#if EV_IDLE_ENABLE
2078 assert (idleall >= 0);
2079 assert (idlemax [i] >= idlecnt [i]);
2080 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2081#endif
2082 }
2083
2084#if EV_FORK_ENABLE
2085 assert (forkmax >= forkcnt);
2086 array_verify (EV_A_ (W *)forks, forkcnt);
2087#endif
2088
2089#if EV_CLEANUP_ENABLE
2090 assert (cleanupmax >= cleanupcnt);
2091 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2092#endif
2093
2094#if EV_ASYNC_ENABLE
2095 assert (asyncmax >= asynccnt);
2096 array_verify (EV_A_ (W *)asyncs, asynccnt);
2097#endif
2098
2099#if EV_PREPARE_ENABLE
2100 assert (preparemax >= preparecnt);
2101 array_verify (EV_A_ (W *)prepares, preparecnt);
2102#endif
2103
2104#if EV_CHECK_ENABLE
2105 assert (checkmax >= checkcnt);
2106 array_verify (EV_A_ (W *)checks, checkcnt);
2107#endif
2108
2109# if 0
2110#if EV_CHILD_ENABLE
2111 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2112 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2113#endif
2114# endif
2115#endif
2116}
2117#endif
1030 2118
1031#if EV_MULTIPLICITY 2119#if EV_MULTIPLICITY
1032struct ev_loop * 2120struct ev_loop *
1033ev_loop_new (unsigned int flags)
1034{
1035 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1036
1037 memset (loop, 0, sizeof (struct ev_loop));
1038
1039 loop_init (EV_A_ flags);
1040
1041 if (ev_backend (EV_A))
1042 return loop;
1043
1044 return 0;
1045}
1046
1047void
1048ev_loop_destroy (EV_P)
1049{
1050 loop_destroy (EV_A);
1051 ev_free (loop);
1052}
1053
1054void
1055ev_loop_fork (EV_P)
1056{
1057 postfork = 1;
1058}
1059
1060#endif
1061
1062#if EV_MULTIPLICITY
1063struct ev_loop *
1064ev_default_loop_init (unsigned int flags)
1065#else 2121#else
1066int 2122int
2123#endif
1067ev_default_loop (unsigned int flags) 2124ev_default_loop (unsigned int flags)
1068#endif
1069{ 2125{
1070 if (sigpipe [0] == sigpipe [1])
1071 if (pipe (sigpipe))
1072 return 0;
1073
1074 if (!ev_default_loop_ptr) 2126 if (!ev_default_loop_ptr)
1075 { 2127 {
1076#if EV_MULTIPLICITY 2128#if EV_MULTIPLICITY
1077 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2129 EV_P = ev_default_loop_ptr = &default_loop_struct;
1078#else 2130#else
1079 ev_default_loop_ptr = 1; 2131 ev_default_loop_ptr = 1;
1080#endif 2132#endif
1081 2133
1082 loop_init (EV_A_ flags); 2134 loop_init (EV_A_ flags);
1083 2135
1084 if (ev_backend (EV_A)) 2136 if (ev_backend (EV_A))
1085 { 2137 {
1086 siginit (EV_A); 2138#if EV_CHILD_ENABLE
1087
1088#ifndef _WIN32
1089 ev_signal_init (&childev, childcb, SIGCHLD); 2139 ev_signal_init (&childev, childcb, SIGCHLD);
1090 ev_set_priority (&childev, EV_MAXPRI); 2140 ev_set_priority (&childev, EV_MAXPRI);
1091 ev_signal_start (EV_A_ &childev); 2141 ev_signal_start (EV_A_ &childev);
1092 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2142 ev_unref (EV_A); /* child watcher should not keep loop alive */
1093#endif 2143#endif
1098 2148
1099 return ev_default_loop_ptr; 2149 return ev_default_loop_ptr;
1100} 2150}
1101 2151
1102void 2152void
1103ev_default_destroy (void) 2153ev_loop_fork (EV_P)
1104{ 2154{
1105#if EV_MULTIPLICITY 2155 postfork = 1; /* must be in line with ev_default_fork */
1106 struct ev_loop *loop = ev_default_loop_ptr;
1107#endif
1108
1109#ifndef _WIN32
1110 ev_ref (EV_A); /* child watcher */
1111 ev_signal_stop (EV_A_ &childev);
1112#endif
1113
1114 ev_ref (EV_A); /* signal watcher */
1115 ev_io_stop (EV_A_ &sigev);
1116
1117 close (sigpipe [0]); sigpipe [0] = 0;
1118 close (sigpipe [1]); sigpipe [1] = 0;
1119
1120 loop_destroy (EV_A);
1121}
1122
1123void
1124ev_default_fork (void)
1125{
1126#if EV_MULTIPLICITY
1127 struct ev_loop *loop = ev_default_loop_ptr;
1128#endif
1129
1130 if (backend)
1131 postfork = 1;
1132} 2156}
1133 2157
1134/*****************************************************************************/ 2158/*****************************************************************************/
1135 2159
1136int inline_size 2160void
1137any_pending (EV_P) 2161ev_invoke (EV_P_ void *w, int revents)
2162{
2163 EV_CB_INVOKE ((W)w, revents);
2164}
2165
2166unsigned int
2167ev_pending_count (EV_P)
1138{ 2168{
1139 int pri; 2169 int pri;
2170 unsigned int count = 0;
1140 2171
1141 for (pri = NUMPRI; pri--; ) 2172 for (pri = NUMPRI; pri--; )
1142 if (pendingcnt [pri]) 2173 count += pendingcnt [pri];
1143 return 1;
1144 2174
1145 return 0; 2175 return count;
1146} 2176}
1147 2177
1148void inline_speed 2178void noinline
1149call_pending (EV_P) 2179ev_invoke_pending (EV_P)
1150{ 2180{
1151 int pri; 2181 int pri;
1152 2182
1153 for (pri = NUMPRI; pri--; ) 2183 for (pri = NUMPRI; pri--; )
1154 while (pendingcnt [pri]) 2184 while (pendingcnt [pri])
1155 { 2185 {
1156 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2186 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1157 2187
1158 if (expect_true (p->w))
1159 {
1160 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1161
1162 p->w->pending = 0; 2188 p->w->pending = 0;
1163 EV_CB_INVOKE (p->w, p->events); 2189 EV_CB_INVOKE (p->w, p->events);
1164 } 2190 EV_FREQUENT_CHECK;
1165 } 2191 }
1166} 2192}
1167 2193
1168void inline_size 2194#if EV_IDLE_ENABLE
2195/* make idle watchers pending. this handles the "call-idle */
2196/* only when higher priorities are idle" logic */
2197inline_size void
2198idle_reify (EV_P)
2199{
2200 if (expect_false (idleall))
2201 {
2202 int pri;
2203
2204 for (pri = NUMPRI; pri--; )
2205 {
2206 if (pendingcnt [pri])
2207 break;
2208
2209 if (idlecnt [pri])
2210 {
2211 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2212 break;
2213 }
2214 }
2215 }
2216}
2217#endif
2218
2219/* make timers pending */
2220inline_size void
1169timers_reify (EV_P) 2221timers_reify (EV_P)
1170{ 2222{
2223 EV_FREQUENT_CHECK;
2224
1171 while (timercnt && ((WT)timers [0])->at <= mn_now) 2225 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1172 { 2226 {
1173 ev_timer *w = timers [0]; 2227 do
1174
1175 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1176
1177 /* first reschedule or stop timer */
1178 if (w->repeat)
1179 { 2228 {
2229 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2230
2231 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2232
2233 /* first reschedule or stop timer */
2234 if (w->repeat)
2235 {
2236 ev_at (w) += w->repeat;
2237 if (ev_at (w) < mn_now)
2238 ev_at (w) = mn_now;
2239
1180 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2240 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1181 2241
1182 ((WT)w)->at += w->repeat; 2242 ANHE_at_cache (timers [HEAP0]);
1183 if (((WT)w)->at < mn_now)
1184 ((WT)w)->at = mn_now;
1185
1186 downheap ((WT *)timers, timercnt, 0); 2243 downheap (timers, timercnt, HEAP0);
2244 }
2245 else
2246 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2247
2248 EV_FREQUENT_CHECK;
2249 feed_reverse (EV_A_ (W)w);
1187 } 2250 }
1188 else 2251 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1189 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1190 2252
1191 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2253 feed_reverse_done (EV_A_ EV_TIMER);
1192 } 2254 }
1193} 2255}
1194 2256
1195#if EV_PERIODIC_ENABLE 2257#if EV_PERIODIC_ENABLE
1196void inline_size 2258
2259static void noinline
2260periodic_recalc (EV_P_ ev_periodic *w)
2261{
2262 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2263 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2264
2265 /* the above almost always errs on the low side */
2266 while (at <= ev_rt_now)
2267 {
2268 ev_tstamp nat = at + w->interval;
2269
2270 /* when resolution fails us, we use ev_rt_now */
2271 if (expect_false (nat == at))
2272 {
2273 at = ev_rt_now;
2274 break;
2275 }
2276
2277 at = nat;
2278 }
2279
2280 ev_at (w) = at;
2281}
2282
2283/* make periodics pending */
2284inline_size void
1197periodics_reify (EV_P) 2285periodics_reify (EV_P)
1198{ 2286{
2287 EV_FREQUENT_CHECK;
2288
1199 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2289 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1200 { 2290 {
1201 ev_periodic *w = periodics [0]; 2291 int feed_count = 0;
1202 2292
1203 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2293 do
1204
1205 /* first reschedule or stop timer */
1206 if (w->reschedule_cb)
1207 { 2294 {
2295 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2296
2297 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2298
2299 /* first reschedule or stop timer */
2300 if (w->reschedule_cb)
2301 {
1208 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2302 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2303
1209 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2304 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2305
2306 ANHE_at_cache (periodics [HEAP0]);
1210 downheap ((WT *)periodics, periodiccnt, 0); 2307 downheap (periodics, periodiccnt, HEAP0);
2308 }
2309 else if (w->interval)
2310 {
2311 periodic_recalc (EV_A_ w);
2312 ANHE_at_cache (periodics [HEAP0]);
2313 downheap (periodics, periodiccnt, HEAP0);
2314 }
2315 else
2316 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2317
2318 EV_FREQUENT_CHECK;
2319 feed_reverse (EV_A_ (W)w);
1211 } 2320 }
1212 else if (w->interval) 2321 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1213 {
1214 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1215 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1216 downheap ((WT *)periodics, periodiccnt, 0);
1217 }
1218 else
1219 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1220 2322
1221 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2323 feed_reverse_done (EV_A_ EV_PERIODIC);
1222 } 2324 }
1223} 2325}
1224 2326
2327/* simply recalculate all periodics */
2328/* TODO: maybe ensure that at least one event happens when jumping forward? */
1225static void noinline 2329static void noinline
1226periodics_reschedule (EV_P) 2330periodics_reschedule (EV_P)
1227{ 2331{
1228 int i; 2332 int i;
1229 2333
1230 /* adjust periodics after time jump */ 2334 /* adjust periodics after time jump */
1231 for (i = 0; i < periodiccnt; ++i) 2335 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1232 { 2336 {
1233 ev_periodic *w = periodics [i]; 2337 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1234 2338
1235 if (w->reschedule_cb) 2339 if (w->reschedule_cb)
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2340 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1237 else if (w->interval) 2341 else if (w->interval)
1238 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2342 periodic_recalc (EV_A_ w);
2343
2344 ANHE_at_cache (periodics [i]);
2345 }
2346
2347 reheap (periodics, periodiccnt);
2348}
2349#endif
2350
2351/* adjust all timers by a given offset */
2352static void noinline
2353timers_reschedule (EV_P_ ev_tstamp adjust)
2354{
2355 int i;
2356
2357 for (i = 0; i < timercnt; ++i)
1239 } 2358 {
1240 2359 ANHE *he = timers + i + HEAP0;
1241 /* now rebuild the heap */ 2360 ANHE_w (*he)->at += adjust;
1242 for (i = periodiccnt >> 1; i--; ) 2361 ANHE_at_cache (*he);
1243 downheap ((WT *)periodics, periodiccnt, i); 2362 }
1244} 2363}
1245#endif
1246 2364
1247int inline_size 2365/* fetch new monotonic and realtime times from the kernel */
1248time_update_monotonic (EV_P) 2366/* also detect if there was a timejump, and act accordingly */
2367inline_speed void
2368time_update (EV_P_ ev_tstamp max_block)
1249{ 2369{
2370#if EV_USE_MONOTONIC
2371 if (expect_true (have_monotonic))
2372 {
2373 int i;
2374 ev_tstamp odiff = rtmn_diff;
2375
1250 mn_now = get_clock (); 2376 mn_now = get_clock ();
1251 2377
2378 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2379 /* interpolate in the meantime */
1252 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2380 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1253 { 2381 {
1254 ev_rt_now = rtmn_diff + mn_now; 2382 ev_rt_now = rtmn_diff + mn_now;
1255 return 0; 2383 return;
1256 } 2384 }
1257 else 2385
1258 {
1259 now_floor = mn_now; 2386 now_floor = mn_now;
1260 ev_rt_now = ev_time (); 2387 ev_rt_now = ev_time ();
1261 return 1;
1262 }
1263}
1264 2388
1265void inline_size 2389 /* loop a few times, before making important decisions.
1266time_update (EV_P) 2390 * on the choice of "4": one iteration isn't enough,
1267{ 2391 * in case we get preempted during the calls to
1268 int i; 2392 * ev_time and get_clock. a second call is almost guaranteed
1269 2393 * to succeed in that case, though. and looping a few more times
1270#if EV_USE_MONOTONIC 2394 * doesn't hurt either as we only do this on time-jumps or
1271 if (expect_true (have_monotonic)) 2395 * in the unlikely event of having been preempted here.
1272 { 2396 */
1273 if (time_update_monotonic (EV_A)) 2397 for (i = 4; --i; )
1274 { 2398 {
1275 ev_tstamp odiff = rtmn_diff; 2399 ev_tstamp diff;
1276
1277 /* loop a few times, before making important decisions.
1278 * on the choice of "4": one iteration isn't enough,
1279 * in case we get preempted during the calls to
1280 * ev_time and get_clock. a second call is almost guaranteed
1281 * to succeed in that case, though. and looping a few more times
1282 * doesn't hurt either as we only do this on time-jumps or
1283 * in the unlikely event of having been preempted here.
1284 */
1285 for (i = 4; --i; )
1286 {
1287 rtmn_diff = ev_rt_now - mn_now; 2400 rtmn_diff = ev_rt_now - mn_now;
1288 2401
1289 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2402 diff = odiff - rtmn_diff;
2403
2404 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1290 return; /* all is well */ 2405 return; /* all is well */
1291 2406
1292 ev_rt_now = ev_time (); 2407 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 2408 mn_now = get_clock ();
1294 now_floor = mn_now; 2409 now_floor = mn_now;
1295 } 2410 }
1296 2411
2412 /* no timer adjustment, as the monotonic clock doesn't jump */
2413 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1297# if EV_PERIODIC_ENABLE 2414# if EV_PERIODIC_ENABLE
1298 periodics_reschedule (EV_A); 2415 periodics_reschedule (EV_A);
1299# endif 2416# endif
1300 /* no timer adjustment, as the monotonic clock doesn't jump */
1301 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1302 }
1303 } 2417 }
1304 else 2418 else
1305#endif 2419#endif
1306 { 2420 {
1307 ev_rt_now = ev_time (); 2421 ev_rt_now = ev_time ();
1308 2422
1309 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2423 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1310 { 2424 {
2425 /* adjust timers. this is easy, as the offset is the same for all of them */
2426 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1311#if EV_PERIODIC_ENABLE 2427#if EV_PERIODIC_ENABLE
1312 periodics_reschedule (EV_A); 2428 periodics_reschedule (EV_A);
1313#endif 2429#endif
1314
1315 /* adjust timers. this is easy, as the offset is the same for all of them */
1316 for (i = 0; i < timercnt; ++i)
1317 ((WT)timers [i])->at += ev_rt_now - mn_now;
1318 } 2430 }
1319 2431
1320 mn_now = ev_rt_now; 2432 mn_now = ev_rt_now;
1321 } 2433 }
1322} 2434}
1323 2435
1324void 2436void
1325ev_ref (EV_P)
1326{
1327 ++activecnt;
1328}
1329
1330void
1331ev_unref (EV_P)
1332{
1333 --activecnt;
1334}
1335
1336static int loop_done;
1337
1338void
1339ev_loop (EV_P_ int flags) 2437ev_run (EV_P_ int flags)
1340{ 2438{
1341 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2439#if EV_FEATURE_API
1342 ? EVUNLOOP_ONE 2440 ++loop_depth;
1343 : EVUNLOOP_CANCEL; 2441#endif
1344 2442
2443 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2444
2445 loop_done = EVBREAK_CANCEL;
2446
1345 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2447 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1346 2448
1347 while (activecnt) 2449 do
1348 { 2450 {
2451#if EV_VERIFY >= 2
2452 ev_verify (EV_A);
2453#endif
2454
1349#ifndef _WIN32 2455#ifndef _WIN32
1350 if (expect_false (curpid)) /* penalise the forking check even more */ 2456 if (expect_false (curpid)) /* penalise the forking check even more */
1351 if (expect_false (getpid () != curpid)) 2457 if (expect_false (getpid () != curpid))
1352 { 2458 {
1353 curpid = getpid (); 2459 curpid = getpid ();
1359 /* we might have forked, so queue fork handlers */ 2465 /* we might have forked, so queue fork handlers */
1360 if (expect_false (postfork)) 2466 if (expect_false (postfork))
1361 if (forkcnt) 2467 if (forkcnt)
1362 { 2468 {
1363 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2469 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1364 call_pending (EV_A); 2470 EV_INVOKE_PENDING;
1365 } 2471 }
1366#endif 2472#endif
1367 2473
2474#if EV_PREPARE_ENABLE
1368 /* queue check watchers (and execute them) */ 2475 /* queue prepare watchers (and execute them) */
1369 if (expect_false (preparecnt)) 2476 if (expect_false (preparecnt))
1370 { 2477 {
1371 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2478 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1372 call_pending (EV_A); 2479 EV_INVOKE_PENDING;
1373 } 2480 }
2481#endif
2482
2483 if (expect_false (loop_done))
2484 break;
1374 2485
1375 /* we might have forked, so reify kernel state if necessary */ 2486 /* we might have forked, so reify kernel state if necessary */
1376 if (expect_false (postfork)) 2487 if (expect_false (postfork))
1377 loop_fork (EV_A); 2488 loop_fork (EV_A);
1378 2489
1379 /* update fd-related kernel structures */ 2490 /* update fd-related kernel structures */
1380 fd_reify (EV_A); 2491 fd_reify (EV_A);
1381 2492
1382 /* calculate blocking time */ 2493 /* calculate blocking time */
1383 { 2494 {
1384 ev_tstamp block; 2495 ev_tstamp waittime = 0.;
2496 ev_tstamp sleeptime = 0.;
1385 2497
1386 if (flags & EVLOOP_NONBLOCK || idlecnt) 2498 /* remember old timestamp for io_blocktime calculation */
1387 block = 0.; /* do not block at all */ 2499 ev_tstamp prev_mn_now = mn_now;
1388 else 2500
2501 /* update time to cancel out callback processing overhead */
2502 time_update (EV_A_ 1e100);
2503
2504 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1389 { 2505 {
1390 /* update time to cancel out callback processing overhead */
1391#if EV_USE_MONOTONIC
1392 if (expect_true (have_monotonic))
1393 time_update_monotonic (EV_A);
1394 else
1395#endif
1396 {
1397 ev_rt_now = ev_time ();
1398 mn_now = ev_rt_now;
1399 }
1400
1401 block = MAX_BLOCKTIME; 2506 waittime = MAX_BLOCKTIME;
1402 2507
1403 if (timercnt) 2508 if (timercnt)
1404 { 2509 {
1405 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2510 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1406 if (block > to) block = to; 2511 if (waittime > to) waittime = to;
1407 } 2512 }
1408 2513
1409#if EV_PERIODIC_ENABLE 2514#if EV_PERIODIC_ENABLE
1410 if (periodiccnt) 2515 if (periodiccnt)
1411 { 2516 {
1412 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2517 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1413 if (block > to) block = to; 2518 if (waittime > to) waittime = to;
1414 } 2519 }
1415#endif 2520#endif
1416 2521
2522 /* don't let timeouts decrease the waittime below timeout_blocktime */
2523 if (expect_false (waittime < timeout_blocktime))
2524 waittime = timeout_blocktime;
2525
2526 /* at this point, we NEED to wait, so we have to ensure */
2527 /* to pass a minimum nonzero value to the backend */
2528 if (expect_false (waittime < backend_mintime))
2529 waittime = backend_mintime;
2530
2531 /* extra check because io_blocktime is commonly 0 */
1417 if (expect_false (block < 0.)) block = 0.; 2532 if (expect_false (io_blocktime))
2533 {
2534 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2535
2536 if (sleeptime > waittime - backend_mintime)
2537 sleeptime = waittime - backend_mintime;
2538
2539 if (expect_true (sleeptime > 0.))
2540 {
2541 ev_sleep (sleeptime);
2542 waittime -= sleeptime;
2543 }
2544 }
1418 } 2545 }
1419 2546
2547#if EV_FEATURE_API
2548 ++loop_count;
2549#endif
2550 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1420 backend_poll (EV_A_ block); 2551 backend_poll (EV_A_ waittime);
2552 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2553
2554 /* update ev_rt_now, do magic */
2555 time_update (EV_A_ waittime + sleeptime);
1421 } 2556 }
1422
1423 /* update ev_rt_now, do magic */
1424 time_update (EV_A);
1425 2557
1426 /* queue pending timers and reschedule them */ 2558 /* queue pending timers and reschedule them */
1427 timers_reify (EV_A); /* relative timers called last */ 2559 timers_reify (EV_A); /* relative timers called last */
1428#if EV_PERIODIC_ENABLE 2560#if EV_PERIODIC_ENABLE
1429 periodics_reify (EV_A); /* absolute timers called first */ 2561 periodics_reify (EV_A); /* absolute timers called first */
1430#endif 2562#endif
1431 2563
2564#if EV_IDLE_ENABLE
1432 /* queue idle watchers unless other events are pending */ 2565 /* queue idle watchers unless other events are pending */
1433 if (idlecnt && !any_pending (EV_A)) 2566 idle_reify (EV_A);
1434 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2567#endif
1435 2568
2569#if EV_CHECK_ENABLE
1436 /* queue check watchers, to be executed first */ 2570 /* queue check watchers, to be executed first */
1437 if (expect_false (checkcnt)) 2571 if (expect_false (checkcnt))
1438 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2572 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2573#endif
1439 2574
1440 call_pending (EV_A); 2575 EV_INVOKE_PENDING;
1441
1442 if (expect_false (loop_done))
1443 break;
1444 } 2576 }
2577 while (expect_true (
2578 activecnt
2579 && !loop_done
2580 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2581 ));
1445 2582
1446 if (loop_done == EVUNLOOP_ONE) 2583 if (loop_done == EVBREAK_ONE)
1447 loop_done = EVUNLOOP_CANCEL; 2584 loop_done = EVBREAK_CANCEL;
1448}
1449 2585
2586#if EV_FEATURE_API
2587 --loop_depth;
2588#endif
2589}
2590
1450void 2591void
1451ev_unloop (EV_P_ int how) 2592ev_break (EV_P_ int how)
1452{ 2593{
1453 loop_done = how; 2594 loop_done = how;
1454} 2595}
1455 2596
2597void
2598ev_ref (EV_P)
2599{
2600 ++activecnt;
2601}
2602
2603void
2604ev_unref (EV_P)
2605{
2606 --activecnt;
2607}
2608
2609void
2610ev_now_update (EV_P)
2611{
2612 time_update (EV_A_ 1e100);
2613}
2614
2615void
2616ev_suspend (EV_P)
2617{
2618 ev_now_update (EV_A);
2619}
2620
2621void
2622ev_resume (EV_P)
2623{
2624 ev_tstamp mn_prev = mn_now;
2625
2626 ev_now_update (EV_A);
2627 timers_reschedule (EV_A_ mn_now - mn_prev);
2628#if EV_PERIODIC_ENABLE
2629 /* TODO: really do this? */
2630 periodics_reschedule (EV_A);
2631#endif
2632}
2633
1456/*****************************************************************************/ 2634/*****************************************************************************/
2635/* singly-linked list management, used when the expected list length is short */
1457 2636
1458void inline_size 2637inline_size void
1459wlist_add (WL *head, WL elem) 2638wlist_add (WL *head, WL elem)
1460{ 2639{
1461 elem->next = *head; 2640 elem->next = *head;
1462 *head = elem; 2641 *head = elem;
1463} 2642}
1464 2643
1465void inline_size 2644inline_size void
1466wlist_del (WL *head, WL elem) 2645wlist_del (WL *head, WL elem)
1467{ 2646{
1468 while (*head) 2647 while (*head)
1469 { 2648 {
1470 if (*head == elem) 2649 if (expect_true (*head == elem))
1471 { 2650 {
1472 *head = elem->next; 2651 *head = elem->next;
1473 return; 2652 break;
1474 } 2653 }
1475 2654
1476 head = &(*head)->next; 2655 head = &(*head)->next;
1477 } 2656 }
1478} 2657}
1479 2658
1480void inline_speed 2659/* internal, faster, version of ev_clear_pending */
2660inline_speed void
1481ev_clear_pending (EV_P_ W w) 2661clear_pending (EV_P_ W w)
1482{ 2662{
1483 if (w->pending) 2663 if (w->pending)
1484 { 2664 {
1485 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2665 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1486 w->pending = 0; 2666 w->pending = 0;
1487 } 2667 }
1488} 2668}
1489 2669
1490void inline_speed 2670int
2671ev_clear_pending (EV_P_ void *w)
2672{
2673 W w_ = (W)w;
2674 int pending = w_->pending;
2675
2676 if (expect_true (pending))
2677 {
2678 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2679 p->w = (W)&pending_w;
2680 w_->pending = 0;
2681 return p->events;
2682 }
2683 else
2684 return 0;
2685}
2686
2687inline_size void
2688pri_adjust (EV_P_ W w)
2689{
2690 int pri = ev_priority (w);
2691 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2692 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2693 ev_set_priority (w, pri);
2694}
2695
2696inline_speed void
1491ev_start (EV_P_ W w, int active) 2697ev_start (EV_P_ W w, int active)
1492{ 2698{
1493 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2699 pri_adjust (EV_A_ w);
1494 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1495
1496 w->active = active; 2700 w->active = active;
1497 ev_ref (EV_A); 2701 ev_ref (EV_A);
1498} 2702}
1499 2703
1500void inline_size 2704inline_size void
1501ev_stop (EV_P_ W w) 2705ev_stop (EV_P_ W w)
1502{ 2706{
1503 ev_unref (EV_A); 2707 ev_unref (EV_A);
1504 w->active = 0; 2708 w->active = 0;
1505} 2709}
1506 2710
1507/*****************************************************************************/ 2711/*****************************************************************************/
1508 2712
1509void 2713void noinline
1510ev_io_start (EV_P_ ev_io *w) 2714ev_io_start (EV_P_ ev_io *w)
1511{ 2715{
1512 int fd = w->fd; 2716 int fd = w->fd;
1513 2717
1514 if (expect_false (ev_is_active (w))) 2718 if (expect_false (ev_is_active (w)))
1515 return; 2719 return;
1516 2720
1517 assert (("ev_io_start called with negative fd", fd >= 0)); 2721 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2722 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2723
2724 EV_FREQUENT_CHECK;
1518 2725
1519 ev_start (EV_A_ (W)w, 1); 2726 ev_start (EV_A_ (W)w, 1);
1520 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2727 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1521 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2728 wlist_add (&anfds[fd].head, (WL)w);
1522 2729
1523 fd_change (EV_A_ fd); 2730 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1524} 2731 w->events &= ~EV__IOFDSET;
1525 2732
1526void 2733 EV_FREQUENT_CHECK;
2734}
2735
2736void noinline
1527ev_io_stop (EV_P_ ev_io *w) 2737ev_io_stop (EV_P_ ev_io *w)
1528{ 2738{
1529 ev_clear_pending (EV_A_ (W)w); 2739 clear_pending (EV_A_ (W)w);
1530 if (expect_false (!ev_is_active (w))) 2740 if (expect_false (!ev_is_active (w)))
1531 return; 2741 return;
1532 2742
1533 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2743 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1534 2744
2745 EV_FREQUENT_CHECK;
2746
1535 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2747 wlist_del (&anfds[w->fd].head, (WL)w);
1536 ev_stop (EV_A_ (W)w); 2748 ev_stop (EV_A_ (W)w);
1537 2749
1538 fd_change (EV_A_ w->fd); 2750 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1539}
1540 2751
1541void 2752 EV_FREQUENT_CHECK;
2753}
2754
2755void noinline
1542ev_timer_start (EV_P_ ev_timer *w) 2756ev_timer_start (EV_P_ ev_timer *w)
1543{ 2757{
1544 if (expect_false (ev_is_active (w))) 2758 if (expect_false (ev_is_active (w)))
1545 return; 2759 return;
1546 2760
1547 ((WT)w)->at += mn_now; 2761 ev_at (w) += mn_now;
1548 2762
1549 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2763 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1550 2764
2765 EV_FREQUENT_CHECK;
2766
2767 ++timercnt;
1551 ev_start (EV_A_ (W)w, ++timercnt); 2768 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1552 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2769 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1553 timers [timercnt - 1] = w; 2770 ANHE_w (timers [ev_active (w)]) = (WT)w;
1554 upheap ((WT *)timers, timercnt - 1); 2771 ANHE_at_cache (timers [ev_active (w)]);
2772 upheap (timers, ev_active (w));
1555 2773
2774 EV_FREQUENT_CHECK;
2775
1556 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2776 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1557} 2777}
1558 2778
1559void 2779void noinline
1560ev_timer_stop (EV_P_ ev_timer *w) 2780ev_timer_stop (EV_P_ ev_timer *w)
1561{ 2781{
1562 ev_clear_pending (EV_A_ (W)w); 2782 clear_pending (EV_A_ (W)w);
1563 if (expect_false (!ev_is_active (w))) 2783 if (expect_false (!ev_is_active (w)))
1564 return; 2784 return;
1565 2785
1566 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2786 EV_FREQUENT_CHECK;
1567 2787
1568 { 2788 {
1569 int active = ((W)w)->active; 2789 int active = ev_active (w);
1570 2790
2791 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2792
2793 --timercnt;
2794
1571 if (expect_true (--active < --timercnt)) 2795 if (expect_true (active < timercnt + HEAP0))
1572 { 2796 {
1573 timers [active] = timers [timercnt]; 2797 timers [active] = timers [timercnt + HEAP0];
1574 adjustheap ((WT *)timers, timercnt, active); 2798 adjustheap (timers, timercnt, active);
1575 } 2799 }
1576 } 2800 }
1577 2801
1578 ((WT)w)->at -= mn_now; 2802 ev_at (w) -= mn_now;
1579 2803
1580 ev_stop (EV_A_ (W)w); 2804 ev_stop (EV_A_ (W)w);
1581}
1582 2805
1583void 2806 EV_FREQUENT_CHECK;
2807}
2808
2809void noinline
1584ev_timer_again (EV_P_ ev_timer *w) 2810ev_timer_again (EV_P_ ev_timer *w)
1585{ 2811{
2812 EV_FREQUENT_CHECK;
2813
1586 if (ev_is_active (w)) 2814 if (ev_is_active (w))
1587 { 2815 {
1588 if (w->repeat) 2816 if (w->repeat)
1589 { 2817 {
1590 ((WT)w)->at = mn_now + w->repeat; 2818 ev_at (w) = mn_now + w->repeat;
2819 ANHE_at_cache (timers [ev_active (w)]);
1591 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2820 adjustheap (timers, timercnt, ev_active (w));
1592 } 2821 }
1593 else 2822 else
1594 ev_timer_stop (EV_A_ w); 2823 ev_timer_stop (EV_A_ w);
1595 } 2824 }
1596 else if (w->repeat) 2825 else if (w->repeat)
1597 { 2826 {
1598 w->at = w->repeat; 2827 ev_at (w) = w->repeat;
1599 ev_timer_start (EV_A_ w); 2828 ev_timer_start (EV_A_ w);
1600 } 2829 }
2830
2831 EV_FREQUENT_CHECK;
2832}
2833
2834ev_tstamp
2835ev_timer_remaining (EV_P_ ev_timer *w)
2836{
2837 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1601} 2838}
1602 2839
1603#if EV_PERIODIC_ENABLE 2840#if EV_PERIODIC_ENABLE
1604void 2841void noinline
1605ev_periodic_start (EV_P_ ev_periodic *w) 2842ev_periodic_start (EV_P_ ev_periodic *w)
1606{ 2843{
1607 if (expect_false (ev_is_active (w))) 2844 if (expect_false (ev_is_active (w)))
1608 return; 2845 return;
1609 2846
1610 if (w->reschedule_cb) 2847 if (w->reschedule_cb)
1611 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2848 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1612 else if (w->interval) 2849 else if (w->interval)
1613 { 2850 {
1614 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2851 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1615 /* this formula differs from the one in periodic_reify because we do not always round up */ 2852 periodic_recalc (EV_A_ w);
1616 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1617 } 2853 }
2854 else
2855 ev_at (w) = w->offset;
1618 2856
2857 EV_FREQUENT_CHECK;
2858
2859 ++periodiccnt;
1619 ev_start (EV_A_ (W)w, ++periodiccnt); 2860 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1620 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2861 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1621 periodics [periodiccnt - 1] = w; 2862 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1622 upheap ((WT *)periodics, periodiccnt - 1); 2863 ANHE_at_cache (periodics [ev_active (w)]);
2864 upheap (periodics, ev_active (w));
1623 2865
2866 EV_FREQUENT_CHECK;
2867
1624 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2868 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1625} 2869}
1626 2870
1627void 2871void noinline
1628ev_periodic_stop (EV_P_ ev_periodic *w) 2872ev_periodic_stop (EV_P_ ev_periodic *w)
1629{ 2873{
1630 ev_clear_pending (EV_A_ (W)w); 2874 clear_pending (EV_A_ (W)w);
1631 if (expect_false (!ev_is_active (w))) 2875 if (expect_false (!ev_is_active (w)))
1632 return; 2876 return;
1633 2877
1634 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2878 EV_FREQUENT_CHECK;
1635 2879
1636 { 2880 {
1637 int active = ((W)w)->active; 2881 int active = ev_active (w);
1638 2882
2883 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2884
2885 --periodiccnt;
2886
1639 if (expect_true (--active < --periodiccnt)) 2887 if (expect_true (active < periodiccnt + HEAP0))
1640 { 2888 {
1641 periodics [active] = periodics [periodiccnt]; 2889 periodics [active] = periodics [periodiccnt + HEAP0];
1642 adjustheap ((WT *)periodics, periodiccnt, active); 2890 adjustheap (periodics, periodiccnt, active);
1643 } 2891 }
1644 } 2892 }
1645 2893
1646 ev_stop (EV_A_ (W)w); 2894 ev_stop (EV_A_ (W)w);
1647}
1648 2895
1649void 2896 EV_FREQUENT_CHECK;
2897}
2898
2899void noinline
1650ev_periodic_again (EV_P_ ev_periodic *w) 2900ev_periodic_again (EV_P_ ev_periodic *w)
1651{ 2901{
1652 /* TODO: use adjustheap and recalculation */ 2902 /* TODO: use adjustheap and recalculation */
1653 ev_periodic_stop (EV_A_ w); 2903 ev_periodic_stop (EV_A_ w);
1654 ev_periodic_start (EV_A_ w); 2904 ev_periodic_start (EV_A_ w);
1657 2907
1658#ifndef SA_RESTART 2908#ifndef SA_RESTART
1659# define SA_RESTART 0 2909# define SA_RESTART 0
1660#endif 2910#endif
1661 2911
1662void 2912#if EV_SIGNAL_ENABLE
2913
2914void noinline
1663ev_signal_start (EV_P_ ev_signal *w) 2915ev_signal_start (EV_P_ ev_signal *w)
1664{ 2916{
1665#if EV_MULTIPLICITY
1666 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1667#endif
1668 if (expect_false (ev_is_active (w))) 2917 if (expect_false (ev_is_active (w)))
1669 return; 2918 return;
1670 2919
1671 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2920 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2921
2922#if EV_MULTIPLICITY
2923 assert (("libev: a signal must not be attached to two different loops",
2924 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2925
2926 signals [w->signum - 1].loop = EV_A;
2927#endif
2928
2929 EV_FREQUENT_CHECK;
2930
2931#if EV_USE_SIGNALFD
2932 if (sigfd == -2)
2933 {
2934 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2935 if (sigfd < 0 && errno == EINVAL)
2936 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2937
2938 if (sigfd >= 0)
2939 {
2940 fd_intern (sigfd); /* doing it twice will not hurt */
2941
2942 sigemptyset (&sigfd_set);
2943
2944 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2945 ev_set_priority (&sigfd_w, EV_MAXPRI);
2946 ev_io_start (EV_A_ &sigfd_w);
2947 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2948 }
2949 }
2950
2951 if (sigfd >= 0)
2952 {
2953 /* TODO: check .head */
2954 sigaddset (&sigfd_set, w->signum);
2955 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2956
2957 signalfd (sigfd, &sigfd_set, 0);
2958 }
2959#endif
1672 2960
1673 ev_start (EV_A_ (W)w, 1); 2961 ev_start (EV_A_ (W)w, 1);
1674 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1675 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2962 wlist_add (&signals [w->signum - 1].head, (WL)w);
1676 2963
1677 if (!((WL)w)->next) 2964 if (!((WL)w)->next)
2965# if EV_USE_SIGNALFD
2966 if (sigfd < 0) /*TODO*/
2967# endif
1678 { 2968 {
1679#if _WIN32 2969# ifdef _WIN32
2970 evpipe_init (EV_A);
2971
1680 signal (w->signum, sighandler); 2972 signal (w->signum, ev_sighandler);
1681#else 2973# else
1682 struct sigaction sa; 2974 struct sigaction sa;
2975
2976 evpipe_init (EV_A);
2977
1683 sa.sa_handler = sighandler; 2978 sa.sa_handler = ev_sighandler;
1684 sigfillset (&sa.sa_mask); 2979 sigfillset (&sa.sa_mask);
1685 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2980 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1686 sigaction (w->signum, &sa, 0); 2981 sigaction (w->signum, &sa, 0);
2982
2983 if (origflags & EVFLAG_NOSIGMASK)
2984 {
2985 sigemptyset (&sa.sa_mask);
2986 sigaddset (&sa.sa_mask, w->signum);
2987 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2988 }
1687#endif 2989#endif
1688 } 2990 }
1689}
1690 2991
1691void 2992 EV_FREQUENT_CHECK;
2993}
2994
2995void noinline
1692ev_signal_stop (EV_P_ ev_signal *w) 2996ev_signal_stop (EV_P_ ev_signal *w)
1693{ 2997{
1694 ev_clear_pending (EV_A_ (W)w); 2998 clear_pending (EV_A_ (W)w);
1695 if (expect_false (!ev_is_active (w))) 2999 if (expect_false (!ev_is_active (w)))
1696 return; 3000 return;
1697 3001
3002 EV_FREQUENT_CHECK;
3003
1698 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3004 wlist_del (&signals [w->signum - 1].head, (WL)w);
1699 ev_stop (EV_A_ (W)w); 3005 ev_stop (EV_A_ (W)w);
1700 3006
1701 if (!signals [w->signum - 1].head) 3007 if (!signals [w->signum - 1].head)
3008 {
3009#if EV_MULTIPLICITY
3010 signals [w->signum - 1].loop = 0; /* unattach from signal */
3011#endif
3012#if EV_USE_SIGNALFD
3013 if (sigfd >= 0)
3014 {
3015 sigset_t ss;
3016
3017 sigemptyset (&ss);
3018 sigaddset (&ss, w->signum);
3019 sigdelset (&sigfd_set, w->signum);
3020
3021 signalfd (sigfd, &sigfd_set, 0);
3022 sigprocmask (SIG_UNBLOCK, &ss, 0);
3023 }
3024 else
3025#endif
1702 signal (w->signum, SIG_DFL); 3026 signal (w->signum, SIG_DFL);
3027 }
3028
3029 EV_FREQUENT_CHECK;
1703} 3030}
3031
3032#endif
3033
3034#if EV_CHILD_ENABLE
1704 3035
1705void 3036void
1706ev_child_start (EV_P_ ev_child *w) 3037ev_child_start (EV_P_ ev_child *w)
1707{ 3038{
1708#if EV_MULTIPLICITY 3039#if EV_MULTIPLICITY
1709 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3040 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1710#endif 3041#endif
1711 if (expect_false (ev_is_active (w))) 3042 if (expect_false (ev_is_active (w)))
1712 return; 3043 return;
1713 3044
3045 EV_FREQUENT_CHECK;
3046
1714 ev_start (EV_A_ (W)w, 1); 3047 ev_start (EV_A_ (W)w, 1);
1715 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3048 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3049
3050 EV_FREQUENT_CHECK;
1716} 3051}
1717 3052
1718void 3053void
1719ev_child_stop (EV_P_ ev_child *w) 3054ev_child_stop (EV_P_ ev_child *w)
1720{ 3055{
1721 ev_clear_pending (EV_A_ (W)w); 3056 clear_pending (EV_A_ (W)w);
1722 if (expect_false (!ev_is_active (w))) 3057 if (expect_false (!ev_is_active (w)))
1723 return; 3058 return;
1724 3059
3060 EV_FREQUENT_CHECK;
3061
1725 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3062 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1726 ev_stop (EV_A_ (W)w); 3063 ev_stop (EV_A_ (W)w);
3064
3065 EV_FREQUENT_CHECK;
1727} 3066}
3067
3068#endif
1728 3069
1729#if EV_STAT_ENABLE 3070#if EV_STAT_ENABLE
1730 3071
1731# ifdef _WIN32 3072# ifdef _WIN32
1732# undef lstat 3073# undef lstat
1733# define lstat(a,b) _stati64 (a,b) 3074# define lstat(a,b) _stati64 (a,b)
1734# endif 3075# endif
1735 3076
1736#define DEF_STAT_INTERVAL 5.0074891 3077#define DEF_STAT_INTERVAL 5.0074891
3078#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1737#define MIN_STAT_INTERVAL 0.1074891 3079#define MIN_STAT_INTERVAL 0.1074891
1738 3080
1739static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3081static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1740 3082
1741#if EV_USE_INOTIFY 3083#if EV_USE_INOTIFY
1742# define EV_INOTIFY_BUFSIZE 8192 3084
3085/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3086# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1743 3087
1744static void noinline 3088static void noinline
1745infy_add (EV_P_ ev_stat *w) 3089infy_add (EV_P_ ev_stat *w)
1746{ 3090{
1747 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3091 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1748 3092
1749 if (w->wd < 0) 3093 if (w->wd >= 0)
3094 {
3095 struct statfs sfs;
3096
3097 /* now local changes will be tracked by inotify, but remote changes won't */
3098 /* unless the filesystem is known to be local, we therefore still poll */
3099 /* also do poll on <2.6.25, but with normal frequency */
3100
3101 if (!fs_2625)
3102 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3103 else if (!statfs (w->path, &sfs)
3104 && (sfs.f_type == 0x1373 /* devfs */
3105 || sfs.f_type == 0xEF53 /* ext2/3 */
3106 || sfs.f_type == 0x3153464a /* jfs */
3107 || sfs.f_type == 0x52654973 /* reiser3 */
3108 || sfs.f_type == 0x01021994 /* tempfs */
3109 || sfs.f_type == 0x58465342 /* xfs */))
3110 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3111 else
3112 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1750 { 3113 }
1751 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3114 else
3115 {
3116 /* can't use inotify, continue to stat */
3117 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1752 3118
1753 /* monitor some parent directory for speedup hints */ 3119 /* if path is not there, monitor some parent directory for speedup hints */
3120 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3121 /* but an efficiency issue only */
1754 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3122 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1755 { 3123 {
1756 char path [4096]; 3124 char path [4096];
1757 strcpy (path, w->path); 3125 strcpy (path, w->path);
1758 3126
1761 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3129 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1762 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3130 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1763 3131
1764 char *pend = strrchr (path, '/'); 3132 char *pend = strrchr (path, '/');
1765 3133
1766 if (!pend) 3134 if (!pend || pend == path)
1767 break; /* whoops, no '/', complain to your admin */ 3135 break;
1768 3136
1769 *pend = 0; 3137 *pend = 0;
1770 w->wd = inotify_add_watch (fs_fd, path, mask); 3138 w->wd = inotify_add_watch (fs_fd, path, mask);
1771 } 3139 }
1772 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3140 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1773 } 3141 }
1774 } 3142 }
1775 else
1776 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1777 3143
1778 if (w->wd >= 0) 3144 if (w->wd >= 0)
1779 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3145 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3146
3147 /* now re-arm timer, if required */
3148 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3149 ev_timer_again (EV_A_ &w->timer);
3150 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1780} 3151}
1781 3152
1782static void noinline 3153static void noinline
1783infy_del (EV_P_ ev_stat *w) 3154infy_del (EV_P_ ev_stat *w)
1784{ 3155{
1787 3158
1788 if (wd < 0) 3159 if (wd < 0)
1789 return; 3160 return;
1790 3161
1791 w->wd = -2; 3162 w->wd = -2;
1792 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3163 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1793 wlist_del (&fs_hash [slot].head, (WL)w); 3164 wlist_del (&fs_hash [slot].head, (WL)w);
1794 3165
1795 /* remove this watcher, if others are watching it, they will rearm */ 3166 /* remove this watcher, if others are watching it, they will rearm */
1796 inotify_rm_watch (fs_fd, wd); 3167 inotify_rm_watch (fs_fd, wd);
1797} 3168}
1798 3169
1799static void noinline 3170static void noinline
1800infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3171infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1801{ 3172{
1802 if (slot < 0) 3173 if (slot < 0)
1803 /* overflow, need to check for all hahs slots */ 3174 /* overflow, need to check for all hash slots */
1804 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3175 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1805 infy_wd (EV_A_ slot, wd, ev); 3176 infy_wd (EV_A_ slot, wd, ev);
1806 else 3177 else
1807 { 3178 {
1808 WL w_; 3179 WL w_;
1809 3180
1810 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3181 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1811 { 3182 {
1812 ev_stat *w = (ev_stat *)w_; 3183 ev_stat *w = (ev_stat *)w_;
1813 w_ = w_->next; /* lets us remove this watcher and all before it */ 3184 w_ = w_->next; /* lets us remove this watcher and all before it */
1814 3185
1815 if (w->wd == wd || wd == -1) 3186 if (w->wd == wd || wd == -1)
1816 { 3187 {
1817 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3188 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1818 { 3189 {
3190 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1819 w->wd = -1; 3191 w->wd = -1;
1820 infy_add (EV_A_ w); /* re-add, no matter what */ 3192 infy_add (EV_A_ w); /* re-add, no matter what */
1821 } 3193 }
1822 3194
1823 stat_timer_cb (EV_A_ &w->timer, 0); 3195 stat_timer_cb (EV_A_ &w->timer, 0);
1828 3200
1829static void 3201static void
1830infy_cb (EV_P_ ev_io *w, int revents) 3202infy_cb (EV_P_ ev_io *w, int revents)
1831{ 3203{
1832 char buf [EV_INOTIFY_BUFSIZE]; 3204 char buf [EV_INOTIFY_BUFSIZE];
1833 struct inotify_event *ev = (struct inotify_event *)buf;
1834 int ofs; 3205 int ofs;
1835 int len = read (fs_fd, buf, sizeof (buf)); 3206 int len = read (fs_fd, buf, sizeof (buf));
1836 3207
1837 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3208 for (ofs = 0; ofs < len; )
3209 {
3210 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1838 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3211 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3212 ofs += sizeof (struct inotify_event) + ev->len;
3213 }
1839} 3214}
1840 3215
1841void inline_size 3216inline_size void
3217ev_check_2625 (EV_P)
3218{
3219 /* kernels < 2.6.25 are borked
3220 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3221 */
3222 if (ev_linux_version () < 0x020619)
3223 return;
3224
3225 fs_2625 = 1;
3226}
3227
3228inline_size int
3229infy_newfd (void)
3230{
3231#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3232 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3233 if (fd >= 0)
3234 return fd;
3235#endif
3236 return inotify_init ();
3237}
3238
3239inline_size void
1842infy_init (EV_P) 3240infy_init (EV_P)
1843{ 3241{
1844 if (fs_fd != -2) 3242 if (fs_fd != -2)
1845 return; 3243 return;
1846 3244
3245 fs_fd = -1;
3246
3247 ev_check_2625 (EV_A);
3248
1847 fs_fd = inotify_init (); 3249 fs_fd = infy_newfd ();
1848 3250
1849 if (fs_fd >= 0) 3251 if (fs_fd >= 0)
1850 { 3252 {
3253 fd_intern (fs_fd);
1851 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3254 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1852 ev_set_priority (&fs_w, EV_MAXPRI); 3255 ev_set_priority (&fs_w, EV_MAXPRI);
1853 ev_io_start (EV_A_ &fs_w); 3256 ev_io_start (EV_A_ &fs_w);
3257 ev_unref (EV_A);
1854 } 3258 }
1855} 3259}
1856 3260
1857void inline_size 3261inline_size void
1858infy_fork (EV_P) 3262infy_fork (EV_P)
1859{ 3263{
1860 int slot; 3264 int slot;
1861 3265
1862 if (fs_fd < 0) 3266 if (fs_fd < 0)
1863 return; 3267 return;
1864 3268
3269 ev_ref (EV_A);
3270 ev_io_stop (EV_A_ &fs_w);
1865 close (fs_fd); 3271 close (fs_fd);
1866 fs_fd = inotify_init (); 3272 fs_fd = infy_newfd ();
1867 3273
3274 if (fs_fd >= 0)
3275 {
3276 fd_intern (fs_fd);
3277 ev_io_set (&fs_w, fs_fd, EV_READ);
3278 ev_io_start (EV_A_ &fs_w);
3279 ev_unref (EV_A);
3280 }
3281
1868 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3282 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1869 { 3283 {
1870 WL w_ = fs_hash [slot].head; 3284 WL w_ = fs_hash [slot].head;
1871 fs_hash [slot].head = 0; 3285 fs_hash [slot].head = 0;
1872 3286
1873 while (w_) 3287 while (w_)
1878 w->wd = -1; 3292 w->wd = -1;
1879 3293
1880 if (fs_fd >= 0) 3294 if (fs_fd >= 0)
1881 infy_add (EV_A_ w); /* re-add, no matter what */ 3295 infy_add (EV_A_ w); /* re-add, no matter what */
1882 else 3296 else
3297 {
3298 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3299 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1883 ev_timer_start (EV_A_ &w->timer); 3300 ev_timer_again (EV_A_ &w->timer);
3301 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3302 }
1884 } 3303 }
1885
1886 } 3304 }
1887} 3305}
1888 3306
3307#endif
3308
3309#ifdef _WIN32
3310# define EV_LSTAT(p,b) _stati64 (p, b)
3311#else
3312# define EV_LSTAT(p,b) lstat (p, b)
1889#endif 3313#endif
1890 3314
1891void 3315void
1892ev_stat_stat (EV_P_ ev_stat *w) 3316ev_stat_stat (EV_P_ ev_stat *w)
1893{ 3317{
1900static void noinline 3324static void noinline
1901stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3325stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1902{ 3326{
1903 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3327 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1904 3328
1905 /* we copy this here each the time so that */ 3329 ev_statdata prev = w->attr;
1906 /* prev has the old value when the callback gets invoked */
1907 w->prev = w->attr;
1908 ev_stat_stat (EV_A_ w); 3330 ev_stat_stat (EV_A_ w);
1909 3331
1910 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3332 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1911 if ( 3333 if (
1912 w->prev.st_dev != w->attr.st_dev 3334 prev.st_dev != w->attr.st_dev
1913 || w->prev.st_ino != w->attr.st_ino 3335 || prev.st_ino != w->attr.st_ino
1914 || w->prev.st_mode != w->attr.st_mode 3336 || prev.st_mode != w->attr.st_mode
1915 || w->prev.st_nlink != w->attr.st_nlink 3337 || prev.st_nlink != w->attr.st_nlink
1916 || w->prev.st_uid != w->attr.st_uid 3338 || prev.st_uid != w->attr.st_uid
1917 || w->prev.st_gid != w->attr.st_gid 3339 || prev.st_gid != w->attr.st_gid
1918 || w->prev.st_rdev != w->attr.st_rdev 3340 || prev.st_rdev != w->attr.st_rdev
1919 || w->prev.st_size != w->attr.st_size 3341 || prev.st_size != w->attr.st_size
1920 || w->prev.st_atime != w->attr.st_atime 3342 || prev.st_atime != w->attr.st_atime
1921 || w->prev.st_mtime != w->attr.st_mtime 3343 || prev.st_mtime != w->attr.st_mtime
1922 || w->prev.st_ctime != w->attr.st_ctime 3344 || prev.st_ctime != w->attr.st_ctime
1923 ) { 3345 ) {
3346 /* we only update w->prev on actual differences */
3347 /* in case we test more often than invoke the callback, */
3348 /* to ensure that prev is always different to attr */
3349 w->prev = prev;
3350
1924 #if EV_USE_INOTIFY 3351 #if EV_USE_INOTIFY
3352 if (fs_fd >= 0)
3353 {
1925 infy_del (EV_A_ w); 3354 infy_del (EV_A_ w);
1926 infy_add (EV_A_ w); 3355 infy_add (EV_A_ w);
1927 ev_stat_stat (EV_A_ w); /* avoid race... */ 3356 ev_stat_stat (EV_A_ w); /* avoid race... */
3357 }
1928 #endif 3358 #endif
1929 3359
1930 ev_feed_event (EV_A_ w, EV_STAT); 3360 ev_feed_event (EV_A_ w, EV_STAT);
1931 } 3361 }
1932} 3362}
1935ev_stat_start (EV_P_ ev_stat *w) 3365ev_stat_start (EV_P_ ev_stat *w)
1936{ 3366{
1937 if (expect_false (ev_is_active (w))) 3367 if (expect_false (ev_is_active (w)))
1938 return; 3368 return;
1939 3369
1940 /* since we use memcmp, we need to clear any padding data etc. */
1941 memset (&w->prev, 0, sizeof (ev_statdata));
1942 memset (&w->attr, 0, sizeof (ev_statdata));
1943
1944 ev_stat_stat (EV_A_ w); 3370 ev_stat_stat (EV_A_ w);
1945 3371
3372 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1946 if (w->interval < MIN_STAT_INTERVAL) 3373 w->interval = MIN_STAT_INTERVAL;
1947 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1948 3374
1949 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3375 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1950 ev_set_priority (&w->timer, ev_priority (w)); 3376 ev_set_priority (&w->timer, ev_priority (w));
1951 3377
1952#if EV_USE_INOTIFY 3378#if EV_USE_INOTIFY
1953 infy_init (EV_A); 3379 infy_init (EV_A);
1954 3380
1955 if (fs_fd >= 0) 3381 if (fs_fd >= 0)
1956 infy_add (EV_A_ w); 3382 infy_add (EV_A_ w);
1957 else 3383 else
1958#endif 3384#endif
3385 {
1959 ev_timer_start (EV_A_ &w->timer); 3386 ev_timer_again (EV_A_ &w->timer);
3387 ev_unref (EV_A);
3388 }
1960 3389
1961 ev_start (EV_A_ (W)w, 1); 3390 ev_start (EV_A_ (W)w, 1);
3391
3392 EV_FREQUENT_CHECK;
1962} 3393}
1963 3394
1964void 3395void
1965ev_stat_stop (EV_P_ ev_stat *w) 3396ev_stat_stop (EV_P_ ev_stat *w)
1966{ 3397{
1967 ev_clear_pending (EV_A_ (W)w); 3398 clear_pending (EV_A_ (W)w);
1968 if (expect_false (!ev_is_active (w))) 3399 if (expect_false (!ev_is_active (w)))
1969 return; 3400 return;
1970 3401
3402 EV_FREQUENT_CHECK;
3403
1971#if EV_USE_INOTIFY 3404#if EV_USE_INOTIFY
1972 infy_del (EV_A_ w); 3405 infy_del (EV_A_ w);
1973#endif 3406#endif
3407
3408 if (ev_is_active (&w->timer))
3409 {
3410 ev_ref (EV_A);
1974 ev_timer_stop (EV_A_ &w->timer); 3411 ev_timer_stop (EV_A_ &w->timer);
3412 }
1975 3413
1976 ev_stop (EV_A_ (W)w); 3414 ev_stop (EV_A_ (W)w);
1977}
1978#endif
1979 3415
3416 EV_FREQUENT_CHECK;
3417}
3418#endif
3419
3420#if EV_IDLE_ENABLE
1980void 3421void
1981ev_idle_start (EV_P_ ev_idle *w) 3422ev_idle_start (EV_P_ ev_idle *w)
1982{ 3423{
1983 if (expect_false (ev_is_active (w))) 3424 if (expect_false (ev_is_active (w)))
1984 return; 3425 return;
1985 3426
3427 pri_adjust (EV_A_ (W)w);
3428
3429 EV_FREQUENT_CHECK;
3430
3431 {
3432 int active = ++idlecnt [ABSPRI (w)];
3433
3434 ++idleall;
1986 ev_start (EV_A_ (W)w, ++idlecnt); 3435 ev_start (EV_A_ (W)w, active);
3436
1987 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3437 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1988 idles [idlecnt - 1] = w; 3438 idles [ABSPRI (w)][active - 1] = w;
3439 }
3440
3441 EV_FREQUENT_CHECK;
1989} 3442}
1990 3443
1991void 3444void
1992ev_idle_stop (EV_P_ ev_idle *w) 3445ev_idle_stop (EV_P_ ev_idle *w)
1993{ 3446{
1994 ev_clear_pending (EV_A_ (W)w); 3447 clear_pending (EV_A_ (W)w);
1995 if (expect_false (!ev_is_active (w))) 3448 if (expect_false (!ev_is_active (w)))
1996 return; 3449 return;
1997 3450
3451 EV_FREQUENT_CHECK;
3452
1998 { 3453 {
1999 int active = ((W)w)->active; 3454 int active = ev_active (w);
2000 idles [active - 1] = idles [--idlecnt]; 3455
2001 ((W)idles [active - 1])->active = active; 3456 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3457 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3458
3459 ev_stop (EV_A_ (W)w);
3460 --idleall;
2002 } 3461 }
2003 3462
2004 ev_stop (EV_A_ (W)w); 3463 EV_FREQUENT_CHECK;
2005} 3464}
3465#endif
2006 3466
3467#if EV_PREPARE_ENABLE
2007void 3468void
2008ev_prepare_start (EV_P_ ev_prepare *w) 3469ev_prepare_start (EV_P_ ev_prepare *w)
2009{ 3470{
2010 if (expect_false (ev_is_active (w))) 3471 if (expect_false (ev_is_active (w)))
2011 return; 3472 return;
3473
3474 EV_FREQUENT_CHECK;
2012 3475
2013 ev_start (EV_A_ (W)w, ++preparecnt); 3476 ev_start (EV_A_ (W)w, ++preparecnt);
2014 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3477 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2015 prepares [preparecnt - 1] = w; 3478 prepares [preparecnt - 1] = w;
3479
3480 EV_FREQUENT_CHECK;
2016} 3481}
2017 3482
2018void 3483void
2019ev_prepare_stop (EV_P_ ev_prepare *w) 3484ev_prepare_stop (EV_P_ ev_prepare *w)
2020{ 3485{
2021 ev_clear_pending (EV_A_ (W)w); 3486 clear_pending (EV_A_ (W)w);
2022 if (expect_false (!ev_is_active (w))) 3487 if (expect_false (!ev_is_active (w)))
2023 return; 3488 return;
2024 3489
3490 EV_FREQUENT_CHECK;
3491
2025 { 3492 {
2026 int active = ((W)w)->active; 3493 int active = ev_active (w);
3494
2027 prepares [active - 1] = prepares [--preparecnt]; 3495 prepares [active - 1] = prepares [--preparecnt];
2028 ((W)prepares [active - 1])->active = active; 3496 ev_active (prepares [active - 1]) = active;
2029 } 3497 }
2030 3498
2031 ev_stop (EV_A_ (W)w); 3499 ev_stop (EV_A_ (W)w);
2032}
2033 3500
3501 EV_FREQUENT_CHECK;
3502}
3503#endif
3504
3505#if EV_CHECK_ENABLE
2034void 3506void
2035ev_check_start (EV_P_ ev_check *w) 3507ev_check_start (EV_P_ ev_check *w)
2036{ 3508{
2037 if (expect_false (ev_is_active (w))) 3509 if (expect_false (ev_is_active (w)))
2038 return; 3510 return;
3511
3512 EV_FREQUENT_CHECK;
2039 3513
2040 ev_start (EV_A_ (W)w, ++checkcnt); 3514 ev_start (EV_A_ (W)w, ++checkcnt);
2041 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3515 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2042 checks [checkcnt - 1] = w; 3516 checks [checkcnt - 1] = w;
3517
3518 EV_FREQUENT_CHECK;
2043} 3519}
2044 3520
2045void 3521void
2046ev_check_stop (EV_P_ ev_check *w) 3522ev_check_stop (EV_P_ ev_check *w)
2047{ 3523{
2048 ev_clear_pending (EV_A_ (W)w); 3524 clear_pending (EV_A_ (W)w);
2049 if (expect_false (!ev_is_active (w))) 3525 if (expect_false (!ev_is_active (w)))
2050 return; 3526 return;
2051 3527
3528 EV_FREQUENT_CHECK;
3529
2052 { 3530 {
2053 int active = ((W)w)->active; 3531 int active = ev_active (w);
3532
2054 checks [active - 1] = checks [--checkcnt]; 3533 checks [active - 1] = checks [--checkcnt];
2055 ((W)checks [active - 1])->active = active; 3534 ev_active (checks [active - 1]) = active;
2056 } 3535 }
2057 3536
2058 ev_stop (EV_A_ (W)w); 3537 ev_stop (EV_A_ (W)w);
3538
3539 EV_FREQUENT_CHECK;
2059} 3540}
3541#endif
2060 3542
2061#if EV_EMBED_ENABLE 3543#if EV_EMBED_ENABLE
2062void noinline 3544void noinline
2063ev_embed_sweep (EV_P_ ev_embed *w) 3545ev_embed_sweep (EV_P_ ev_embed *w)
2064{ 3546{
2065 ev_loop (w->loop, EVLOOP_NONBLOCK); 3547 ev_run (w->other, EVRUN_NOWAIT);
2066} 3548}
2067 3549
2068static void 3550static void
2069embed_cb (EV_P_ ev_io *io, int revents) 3551embed_io_cb (EV_P_ ev_io *io, int revents)
2070{ 3552{
2071 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3553 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2072 3554
2073 if (ev_cb (w)) 3555 if (ev_cb (w))
2074 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3556 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2075 else 3557 else
2076 ev_embed_sweep (loop, w); 3558 ev_run (w->other, EVRUN_NOWAIT);
2077} 3559}
3560
3561static void
3562embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3563{
3564 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3565
3566 {
3567 EV_P = w->other;
3568
3569 while (fdchangecnt)
3570 {
3571 fd_reify (EV_A);
3572 ev_run (EV_A_ EVRUN_NOWAIT);
3573 }
3574 }
3575}
3576
3577static void
3578embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3579{
3580 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3581
3582 ev_embed_stop (EV_A_ w);
3583
3584 {
3585 EV_P = w->other;
3586
3587 ev_loop_fork (EV_A);
3588 ev_run (EV_A_ EVRUN_NOWAIT);
3589 }
3590
3591 ev_embed_start (EV_A_ w);
3592}
3593
3594#if 0
3595static void
3596embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3597{
3598 ev_idle_stop (EV_A_ idle);
3599}
3600#endif
2078 3601
2079void 3602void
2080ev_embed_start (EV_P_ ev_embed *w) 3603ev_embed_start (EV_P_ ev_embed *w)
2081{ 3604{
2082 if (expect_false (ev_is_active (w))) 3605 if (expect_false (ev_is_active (w)))
2083 return; 3606 return;
2084 3607
2085 { 3608 {
2086 struct ev_loop *loop = w->loop; 3609 EV_P = w->other;
2087 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3610 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2088 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3611 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2089 } 3612 }
3613
3614 EV_FREQUENT_CHECK;
2090 3615
2091 ev_set_priority (&w->io, ev_priority (w)); 3616 ev_set_priority (&w->io, ev_priority (w));
2092 ev_io_start (EV_A_ &w->io); 3617 ev_io_start (EV_A_ &w->io);
2093 3618
3619 ev_prepare_init (&w->prepare, embed_prepare_cb);
3620 ev_set_priority (&w->prepare, EV_MINPRI);
3621 ev_prepare_start (EV_A_ &w->prepare);
3622
3623 ev_fork_init (&w->fork, embed_fork_cb);
3624 ev_fork_start (EV_A_ &w->fork);
3625
3626 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3627
2094 ev_start (EV_A_ (W)w, 1); 3628 ev_start (EV_A_ (W)w, 1);
3629
3630 EV_FREQUENT_CHECK;
2095} 3631}
2096 3632
2097void 3633void
2098ev_embed_stop (EV_P_ ev_embed *w) 3634ev_embed_stop (EV_P_ ev_embed *w)
2099{ 3635{
2100 ev_clear_pending (EV_A_ (W)w); 3636 clear_pending (EV_A_ (W)w);
2101 if (expect_false (!ev_is_active (w))) 3637 if (expect_false (!ev_is_active (w)))
2102 return; 3638 return;
2103 3639
3640 EV_FREQUENT_CHECK;
3641
2104 ev_io_stop (EV_A_ &w->io); 3642 ev_io_stop (EV_A_ &w->io);
3643 ev_prepare_stop (EV_A_ &w->prepare);
3644 ev_fork_stop (EV_A_ &w->fork);
2105 3645
2106 ev_stop (EV_A_ (W)w); 3646 ev_stop (EV_A_ (W)w);
3647
3648 EV_FREQUENT_CHECK;
2107} 3649}
2108#endif 3650#endif
2109 3651
2110#if EV_FORK_ENABLE 3652#if EV_FORK_ENABLE
2111void 3653void
2112ev_fork_start (EV_P_ ev_fork *w) 3654ev_fork_start (EV_P_ ev_fork *w)
2113{ 3655{
2114 if (expect_false (ev_is_active (w))) 3656 if (expect_false (ev_is_active (w)))
2115 return; 3657 return;
3658
3659 EV_FREQUENT_CHECK;
2116 3660
2117 ev_start (EV_A_ (W)w, ++forkcnt); 3661 ev_start (EV_A_ (W)w, ++forkcnt);
2118 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3662 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2119 forks [forkcnt - 1] = w; 3663 forks [forkcnt - 1] = w;
3664
3665 EV_FREQUENT_CHECK;
2120} 3666}
2121 3667
2122void 3668void
2123ev_fork_stop (EV_P_ ev_fork *w) 3669ev_fork_stop (EV_P_ ev_fork *w)
2124{ 3670{
2125 ev_clear_pending (EV_A_ (W)w); 3671 clear_pending (EV_A_ (W)w);
2126 if (expect_false (!ev_is_active (w))) 3672 if (expect_false (!ev_is_active (w)))
2127 return; 3673 return;
2128 3674
3675 EV_FREQUENT_CHECK;
3676
2129 { 3677 {
2130 int active = ((W)w)->active; 3678 int active = ev_active (w);
3679
2131 forks [active - 1] = forks [--forkcnt]; 3680 forks [active - 1] = forks [--forkcnt];
2132 ((W)forks [active - 1])->active = active; 3681 ev_active (forks [active - 1]) = active;
2133 } 3682 }
2134 3683
2135 ev_stop (EV_A_ (W)w); 3684 ev_stop (EV_A_ (W)w);
3685
3686 EV_FREQUENT_CHECK;
3687}
3688#endif
3689
3690#if EV_CLEANUP_ENABLE
3691void
3692ev_cleanup_start (EV_P_ ev_cleanup *w)
3693{
3694 if (expect_false (ev_is_active (w)))
3695 return;
3696
3697 EV_FREQUENT_CHECK;
3698
3699 ev_start (EV_A_ (W)w, ++cleanupcnt);
3700 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3701 cleanups [cleanupcnt - 1] = w;
3702
3703 /* cleanup watchers should never keep a refcount on the loop */
3704 ev_unref (EV_A);
3705 EV_FREQUENT_CHECK;
3706}
3707
3708void
3709ev_cleanup_stop (EV_P_ ev_cleanup *w)
3710{
3711 clear_pending (EV_A_ (W)w);
3712 if (expect_false (!ev_is_active (w)))
3713 return;
3714
3715 EV_FREQUENT_CHECK;
3716 ev_ref (EV_A);
3717
3718 {
3719 int active = ev_active (w);
3720
3721 cleanups [active - 1] = cleanups [--cleanupcnt];
3722 ev_active (cleanups [active - 1]) = active;
3723 }
3724
3725 ev_stop (EV_A_ (W)w);
3726
3727 EV_FREQUENT_CHECK;
3728}
3729#endif
3730
3731#if EV_ASYNC_ENABLE
3732void
3733ev_async_start (EV_P_ ev_async *w)
3734{
3735 if (expect_false (ev_is_active (w)))
3736 return;
3737
3738 w->sent = 0;
3739
3740 evpipe_init (EV_A);
3741
3742 EV_FREQUENT_CHECK;
3743
3744 ev_start (EV_A_ (W)w, ++asynccnt);
3745 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3746 asyncs [asynccnt - 1] = w;
3747
3748 EV_FREQUENT_CHECK;
3749}
3750
3751void
3752ev_async_stop (EV_P_ ev_async *w)
3753{
3754 clear_pending (EV_A_ (W)w);
3755 if (expect_false (!ev_is_active (w)))
3756 return;
3757
3758 EV_FREQUENT_CHECK;
3759
3760 {
3761 int active = ev_active (w);
3762
3763 asyncs [active - 1] = asyncs [--asynccnt];
3764 ev_active (asyncs [active - 1]) = active;
3765 }
3766
3767 ev_stop (EV_A_ (W)w);
3768
3769 EV_FREQUENT_CHECK;
3770}
3771
3772void
3773ev_async_send (EV_P_ ev_async *w)
3774{
3775 w->sent = 1;
3776 evpipe_write (EV_A_ &async_pending);
2136} 3777}
2137#endif 3778#endif
2138 3779
2139/*****************************************************************************/ 3780/*****************************************************************************/
2140 3781
2150once_cb (EV_P_ struct ev_once *once, int revents) 3791once_cb (EV_P_ struct ev_once *once, int revents)
2151{ 3792{
2152 void (*cb)(int revents, void *arg) = once->cb; 3793 void (*cb)(int revents, void *arg) = once->cb;
2153 void *arg = once->arg; 3794 void *arg = once->arg;
2154 3795
2155 ev_io_stop (EV_A_ &once->io); 3796 ev_io_stop (EV_A_ &once->io);
2156 ev_timer_stop (EV_A_ &once->to); 3797 ev_timer_stop (EV_A_ &once->to);
2157 ev_free (once); 3798 ev_free (once);
2158 3799
2159 cb (revents, arg); 3800 cb (revents, arg);
2160} 3801}
2161 3802
2162static void 3803static void
2163once_cb_io (EV_P_ ev_io *w, int revents) 3804once_cb_io (EV_P_ ev_io *w, int revents)
2164{ 3805{
2165 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3806 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3807
3808 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2166} 3809}
2167 3810
2168static void 3811static void
2169once_cb_to (EV_P_ ev_timer *w, int revents) 3812once_cb_to (EV_P_ ev_timer *w, int revents)
2170{ 3813{
2171 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3814 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3815
3816 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2172} 3817}
2173 3818
2174void 3819void
2175ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3820ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2176{ 3821{
2177 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3822 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2178 3823
2179 if (expect_false (!once)) 3824 if (expect_false (!once))
2180 { 3825 {
2181 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3826 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2182 return; 3827 return;
2183 } 3828 }
2184 3829
2185 once->cb = cb; 3830 once->cb = cb;
2186 once->arg = arg; 3831 once->arg = arg;
2198 ev_timer_set (&once->to, timeout, 0.); 3843 ev_timer_set (&once->to, timeout, 0.);
2199 ev_timer_start (EV_A_ &once->to); 3844 ev_timer_start (EV_A_ &once->to);
2200 } 3845 }
2201} 3846}
2202 3847
2203#ifdef __cplusplus 3848/*****************************************************************************/
2204} 3849
3850#if EV_WALK_ENABLE
3851void
3852ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3853{
3854 int i, j;
3855 ev_watcher_list *wl, *wn;
3856
3857 if (types & (EV_IO | EV_EMBED))
3858 for (i = 0; i < anfdmax; ++i)
3859 for (wl = anfds [i].head; wl; )
3860 {
3861 wn = wl->next;
3862
3863#if EV_EMBED_ENABLE
3864 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3865 {
3866 if (types & EV_EMBED)
3867 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3868 }
3869 else
3870#endif
3871#if EV_USE_INOTIFY
3872 if (ev_cb ((ev_io *)wl) == infy_cb)
3873 ;
3874 else
3875#endif
3876 if ((ev_io *)wl != &pipe_w)
3877 if (types & EV_IO)
3878 cb (EV_A_ EV_IO, wl);
3879
3880 wl = wn;
3881 }
3882
3883 if (types & (EV_TIMER | EV_STAT))
3884 for (i = timercnt + HEAP0; i-- > HEAP0; )
3885#if EV_STAT_ENABLE
3886 /*TODO: timer is not always active*/
3887 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3888 {
3889 if (types & EV_STAT)
3890 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3891 }
3892 else
3893#endif
3894 if (types & EV_TIMER)
3895 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3896
3897#if EV_PERIODIC_ENABLE
3898 if (types & EV_PERIODIC)
3899 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3900 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3901#endif
3902
3903#if EV_IDLE_ENABLE
3904 if (types & EV_IDLE)
3905 for (j = NUMPRI; i--; )
3906 for (i = idlecnt [j]; i--; )
3907 cb (EV_A_ EV_IDLE, idles [j][i]);
3908#endif
3909
3910#if EV_FORK_ENABLE
3911 if (types & EV_FORK)
3912 for (i = forkcnt; i--; )
3913 if (ev_cb (forks [i]) != embed_fork_cb)
3914 cb (EV_A_ EV_FORK, forks [i]);
3915#endif
3916
3917#if EV_ASYNC_ENABLE
3918 if (types & EV_ASYNC)
3919 for (i = asynccnt; i--; )
3920 cb (EV_A_ EV_ASYNC, asyncs [i]);
3921#endif
3922
3923#if EV_PREPARE_ENABLE
3924 if (types & EV_PREPARE)
3925 for (i = preparecnt; i--; )
3926# if EV_EMBED_ENABLE
3927 if (ev_cb (prepares [i]) != embed_prepare_cb)
2205#endif 3928# endif
3929 cb (EV_A_ EV_PREPARE, prepares [i]);
3930#endif
2206 3931
3932#if EV_CHECK_ENABLE
3933 if (types & EV_CHECK)
3934 for (i = checkcnt; i--; )
3935 cb (EV_A_ EV_CHECK, checks [i]);
3936#endif
3937
3938#if EV_SIGNAL_ENABLE
3939 if (types & EV_SIGNAL)
3940 for (i = 0; i < EV_NSIG - 1; ++i)
3941 for (wl = signals [i].head; wl; )
3942 {
3943 wn = wl->next;
3944 cb (EV_A_ EV_SIGNAL, wl);
3945 wl = wn;
3946 }
3947#endif
3948
3949#if EV_CHILD_ENABLE
3950 if (types & EV_CHILD)
3951 for (i = (EV_PID_HASHSIZE); i--; )
3952 for (wl = childs [i]; wl; )
3953 {
3954 wn = wl->next;
3955 cb (EV_A_ EV_CHILD, wl);
3956 wl = wn;
3957 }
3958#endif
3959/* EV_STAT 0x00001000 /* stat data changed */
3960/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3961}
3962#endif
3963
3964#if EV_MULTIPLICITY
3965 #include "ev_wrap.h"
3966#endif
3967
3968EV_CPP(})
3969

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines