ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.159 by root, Sat Dec 1 19:48:36 2007 UTC vs.
Revision 1.189 by root, Thu Dec 20 10:12:22 2007 UTC

202#ifndef CLOCK_REALTIME 202#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 203# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 204# define EV_USE_REALTIME 0
205#endif 205#endif
206 206
207#if !EV_STAT_ENABLE
208# undef EV_USE_INOTIFY
209# define EV_USE_INOTIFY 0
210#endif
211
212#if EV_USE_INOTIFY
213# include <sys/inotify.h>
214#endif
215
207#if EV_SELECT_IS_WINSOCKET 216#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 217# include <winsock.h>
209#endif 218#endif
210 219
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
219/**/ 220/**/
221
222/*
223 * This is used to avoid floating point rounding problems.
224 * It is added to ev_rt_now when scheduling periodics
225 * to ensure progress, time-wise, even when rounding
226 * errors are against us.
227 * This value is good at least till the year 4000.
228 * Better solutions welcome.
229 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 231
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 235
225#if __GNUC__ >= 3 236#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 237# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 238# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 239#else
236# define expect(expr,value) (expr) 240# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 241# define noinline
242# if __STDC_VERSION__ < 199901L
243# define inline
244# endif
240#endif 245#endif
241 246
242#define expect_false(expr) expect ((expr) != 0, 0) 247#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 248#define expect_true(expr) expect ((expr) != 0, 1)
249#define inline_size static inline
250
251#if EV_MINIMAL
252# define inline_speed static noinline
253#else
254# define inline_speed static inline
255#endif
244 256
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 257#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 258#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 259
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 260#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 261#define EMPTY2(a,b) /* used to suppress some warnings */
250 262
251typedef ev_watcher *W; 263typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 264typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 265typedef ev_watcher_time *WT;
396{ 408{
397 return ev_rt_now; 409 return ev_rt_now;
398} 410}
399#endif 411#endif
400 412
401#define array_roundsize(type,n) (((n) | 4) & ~3) 413int inline_size
414array_nextsize (int elem, int cur, int cnt)
415{
416 int ncur = cur + 1;
417
418 do
419 ncur <<= 1;
420 while (cnt > ncur);
421
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
423 if (elem * ncur > 4096)
424 {
425 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
427 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem;
429 }
430
431 return ncur;
432}
433
434static noinline void *
435array_realloc (int elem, void *base, int *cur, int cnt)
436{
437 *cur = array_nextsize (elem, *cur, cnt);
438 return ev_realloc (base, elem * *cur);
439}
402 440
403#define array_needsize(type,base,cur,cnt,init) \ 441#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 442 if (expect_false ((cnt) > (cur))) \
405 { \ 443 { \
406 int newcnt = cur; \ 444 int ocur_ = (cur); \
407 do \ 445 (base) = (type *)array_realloc \
408 { \ 446 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 447 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 448 }
417 449
450#if 0
418#define array_slim(type,stem) \ 451#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 452 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 453 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 454 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 455 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 456 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 457 }
458#endif
425 459
426#define array_free(stem, idx) \ 460#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 462
429/*****************************************************************************/ 463/*****************************************************************************/
430 464
431void noinline 465void noinline
432ev_feed_event (EV_P_ void *w, int revents) 466ev_feed_event (EV_P_ void *w, int revents)
433{ 467{
434 W w_ = (W)w; 468 W w_ = (W)w;
469 int pri = ABSPRI (w_);
435 470
436 if (expect_false (w_->pending)) 471 if (expect_false (w_->pending))
472 pendings [pri][w_->pending - 1].events |= revents;
473 else
437 { 474 {
475 w_->pending = ++pendingcnt [pri];
476 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
477 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 478 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 479 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 480}
447 481
448void inline_size 482void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 483queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 484{
451 int i; 485 int i;
452 486
453 for (i = 0; i < eventcnt; ++i) 487 for (i = 0; i < eventcnt; ++i)
485} 519}
486 520
487void 521void
488ev_feed_fd_event (EV_P_ int fd, int revents) 522ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 523{
524 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 525 fd_event (EV_A_ fd, revents);
491} 526}
492 527
493void inline_size 528void inline_size
494fd_reify (EV_P) 529fd_reify (EV_P)
495{ 530{
499 { 534 {
500 int fd = fdchanges [i]; 535 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 536 ANFD *anfd = anfds + fd;
502 ev_io *w; 537 ev_io *w;
503 538
504 int events = 0; 539 unsigned char events = 0;
505 540
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 542 events |= (unsigned char)w->events;
508 543
509#if EV_SELECT_IS_WINSOCKET 544#if EV_SELECT_IS_WINSOCKET
510 if (events) 545 if (events)
511 { 546 {
512 unsigned long argp; 547 unsigned long argp;
513 anfd->handle = _get_osfhandle (fd); 548 anfd->handle = _get_osfhandle (fd);
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
515 } 550 }
516#endif 551#endif
517 552
553 {
554 unsigned char o_events = anfd->events;
555 unsigned char o_reify = anfd->reify;
556
518 anfd->reify = 0; 557 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 558 anfd->events = events;
559
560 if (o_events != events || o_reify & EV_IOFDSET)
561 backend_modify (EV_A_ fd, o_events, events);
562 }
522 } 563 }
523 564
524 fdchangecnt = 0; 565 fdchangecnt = 0;
525} 566}
526 567
527void inline_size 568void inline_size
528fd_change (EV_P_ int fd) 569fd_change (EV_P_ int fd, int flags)
529{ 570{
530 if (expect_false (anfds [fd].reify)) 571 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 572 anfds [fd].reify |= flags;
534 573
574 if (expect_true (!reify))
575 {
535 ++fdchangecnt; 576 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 577 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 578 fdchanges [fdchangecnt - 1] = fd;
579 }
538} 580}
539 581
540void inline_speed 582void inline_speed
541fd_kill (EV_P_ int fd) 583fd_kill (EV_P_ int fd)
542{ 584{
593 635
594 for (fd = 0; fd < anfdmax; ++fd) 636 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 637 if (anfds [fd].events)
596 { 638 {
597 anfds [fd].events = 0; 639 anfds [fd].events = 0;
598 fd_change (EV_A_ fd); 640 fd_change (EV_A_ fd, EV_IOFDSET | 1);
599 } 641 }
600} 642}
601 643
602/*****************************************************************************/ 644/*****************************************************************************/
603 645
604void inline_speed 646void inline_speed
605upheap (WT *heap, int k) 647upheap (WT *heap, int k)
606{ 648{
607 WT w = heap [k]; 649 WT w = heap [k];
608 650
609 while (k && heap [k >> 1]->at > w->at) 651 while (k)
610 { 652 {
653 int p = (k - 1) >> 1;
654
655 if (heap [p]->at <= w->at)
656 break;
657
611 heap [k] = heap [k >> 1]; 658 heap [k] = heap [p];
612 ((W)heap [k])->active = k + 1; 659 ((W)heap [k])->active = k + 1;
613 k >>= 1; 660 k = p;
614 } 661 }
615 662
616 heap [k] = w; 663 heap [k] = w;
617 ((W)heap [k])->active = k + 1; 664 ((W)heap [k])->active = k + 1;
618
619} 665}
620 666
621void inline_speed 667void inline_speed
622downheap (WT *heap, int N, int k) 668downheap (WT *heap, int N, int k)
623{ 669{
624 WT w = heap [k]; 670 WT w = heap [k];
625 671
626 while (k < (N >> 1)) 672 for (;;)
627 { 673 {
628 int j = k << 1; 674 int c = (k << 1) + 1;
629 675
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 676 if (c >= N)
631 ++j;
632
633 if (w->at <= heap [j]->at)
634 break; 677 break;
635 678
679 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
680 ? 1 : 0;
681
682 if (w->at <= heap [c]->at)
683 break;
684
636 heap [k] = heap [j]; 685 heap [k] = heap [c];
637 ((W)heap [k])->active = k + 1; 686 ((W)heap [k])->active = k + 1;
687
638 k = j; 688 k = c;
639 } 689 }
640 690
641 heap [k] = w; 691 heap [k] = w;
642 ((W)heap [k])->active = k + 1; 692 ((W)heap [k])->active = k + 1;
643} 693}
725 for (signum = signalmax; signum--; ) 775 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig) 776 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1); 777 ev_feed_signal_event (EV_A_ signum + 1);
728} 778}
729 779
730void inline_size 780void inline_speed
731fd_intern (int fd) 781fd_intern (int fd)
732{ 782{
733#ifdef _WIN32 783#ifdef _WIN32
734 int arg = 1; 784 int arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 785 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 800 ev_unref (EV_A); /* child watcher should not keep loop alive */
751} 801}
752 802
753/*****************************************************************************/ 803/*****************************************************************************/
754 804
755static ev_child *childs [EV_PID_HASHSIZE]; 805static WL childs [EV_PID_HASHSIZE];
756 806
757#ifndef _WIN32 807#ifndef _WIN32
758 808
759static ev_signal childev; 809static ev_signal childev;
760 810
764 ev_child *w; 814 ev_child *w;
765 815
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 816 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
767 if (w->pid == pid || !w->pid) 817 if (w->pid == pid || !w->pid)
768 { 818 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 819 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
770 w->rpid = pid; 820 w->rpid = pid;
771 w->rstatus = status; 821 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 822 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 823 }
774} 824}
775 825
776#ifndef WCONTINUED 826#ifndef WCONTINUED
886ev_backend (EV_P) 936ev_backend (EV_P)
887{ 937{
888 return backend; 938 return backend;
889} 939}
890 940
941unsigned int
942ev_loop_count (EV_P)
943{
944 return loop_count;
945}
946
891static void noinline 947static void noinline
892loop_init (EV_P_ unsigned int flags) 948loop_init (EV_P_ unsigned int flags)
893{ 949{
894 if (!backend) 950 if (!backend)
895 { 951 {
975#if EV_USE_SELECT 1031#if EV_USE_SELECT
976 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1032 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
977#endif 1033#endif
978 1034
979 for (i = NUMPRI; i--; ) 1035 for (i = NUMPRI; i--; )
1036 {
980 array_free (pending, [i]); 1037 array_free (pending, [i]);
1038#if EV_IDLE_ENABLE
1039 array_free (idle, [i]);
1040#endif
1041 }
1042
1043 ev_free (anfds); anfdmax = 0;
981 1044
982 /* have to use the microsoft-never-gets-it-right macro */ 1045 /* have to use the microsoft-never-gets-it-right macro */
983 array_free (fdchange, EMPTY0); 1046 array_free (fdchange, EMPTY);
984 array_free (timer, EMPTY0); 1047 array_free (timer, EMPTY);
985#if EV_PERIODIC_ENABLE 1048#if EV_PERIODIC_ENABLE
986 array_free (periodic, EMPTY0); 1049 array_free (periodic, EMPTY);
987#endif 1050#endif
1051#if EV_FORK_ENABLE
988 array_free (idle, EMPTY0); 1052 array_free (fork, EMPTY);
1053#endif
989 array_free (prepare, EMPTY0); 1054 array_free (prepare, EMPTY);
990 array_free (check, EMPTY0); 1055 array_free (check, EMPTY);
991 1056
992 backend = 0; 1057 backend = 0;
993} 1058}
994 1059
995void inline_size infy_fork (EV_P); 1060void inline_size infy_fork (EV_P);
1131 postfork = 1; 1196 postfork = 1;
1132} 1197}
1133 1198
1134/*****************************************************************************/ 1199/*****************************************************************************/
1135 1200
1136int inline_size 1201void
1137any_pending (EV_P) 1202ev_invoke (EV_P_ void *w, int revents)
1138{ 1203{
1139 int pri; 1204 EV_CB_INVOKE ((W)w, revents);
1140
1141 for (pri = NUMPRI; pri--; )
1142 if (pendingcnt [pri])
1143 return 1;
1144
1145 return 0;
1146} 1205}
1147 1206
1148void inline_speed 1207void inline_speed
1149call_pending (EV_P) 1208call_pending (EV_P)
1150{ 1209{
1168void inline_size 1227void inline_size
1169timers_reify (EV_P) 1228timers_reify (EV_P)
1170{ 1229{
1171 while (timercnt && ((WT)timers [0])->at <= mn_now) 1230 while (timercnt && ((WT)timers [0])->at <= mn_now)
1172 { 1231 {
1173 ev_timer *w = timers [0]; 1232 ev_timer *w = (ev_timer *)timers [0];
1174 1233
1175 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1234 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1176 1235
1177 /* first reschedule or stop timer */ 1236 /* first reschedule or stop timer */
1178 if (w->repeat) 1237 if (w->repeat)
1181 1240
1182 ((WT)w)->at += w->repeat; 1241 ((WT)w)->at += w->repeat;
1183 if (((WT)w)->at < mn_now) 1242 if (((WT)w)->at < mn_now)
1184 ((WT)w)->at = mn_now; 1243 ((WT)w)->at = mn_now;
1185 1244
1186 downheap ((WT *)timers, timercnt, 0); 1245 downheap (timers, timercnt, 0);
1187 } 1246 }
1188 else 1247 else
1189 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1248 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1190 1249
1191 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1250 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1196void inline_size 1255void inline_size
1197periodics_reify (EV_P) 1256periodics_reify (EV_P)
1198{ 1257{
1199 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1258 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1200 { 1259 {
1201 ev_periodic *w = periodics [0]; 1260 ev_periodic *w = (ev_periodic *)periodics [0];
1202 1261
1203 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1262 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1204 1263
1205 /* first reschedule or stop timer */ 1264 /* first reschedule or stop timer */
1206 if (w->reschedule_cb) 1265 if (w->reschedule_cb)
1207 { 1266 {
1208 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1267 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1209 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1268 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1210 downheap ((WT *)periodics, periodiccnt, 0); 1269 downheap (periodics, periodiccnt, 0);
1211 } 1270 }
1212 else if (w->interval) 1271 else if (w->interval)
1213 { 1272 {
1214 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1273 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1274 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1215 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1275 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1216 downheap ((WT *)periodics, periodiccnt, 0); 1276 downheap (periodics, periodiccnt, 0);
1217 } 1277 }
1218 else 1278 else
1219 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1279 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1220 1280
1221 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1281 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1228 int i; 1288 int i;
1229 1289
1230 /* adjust periodics after time jump */ 1290 /* adjust periodics after time jump */
1231 for (i = 0; i < periodiccnt; ++i) 1291 for (i = 0; i < periodiccnt; ++i)
1232 { 1292 {
1233 ev_periodic *w = periodics [i]; 1293 ev_periodic *w = (ev_periodic *)periodics [i];
1234 1294
1235 if (w->reschedule_cb) 1295 if (w->reschedule_cb)
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1296 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1237 else if (w->interval) 1297 else if (w->interval)
1238 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1298 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1239 } 1299 }
1240 1300
1241 /* now rebuild the heap */ 1301 /* now rebuild the heap */
1242 for (i = periodiccnt >> 1; i--; ) 1302 for (i = periodiccnt >> 1; i--; )
1243 downheap ((WT *)periodics, periodiccnt, i); 1303 downheap (periodics, periodiccnt, i);
1244} 1304}
1245#endif 1305#endif
1246 1306
1307#if EV_IDLE_ENABLE
1247int inline_size 1308void inline_size
1248time_update_monotonic (EV_P) 1309idle_reify (EV_P)
1249{ 1310{
1311 if (expect_false (idleall))
1312 {
1313 int pri;
1314
1315 for (pri = NUMPRI; pri--; )
1316 {
1317 if (pendingcnt [pri])
1318 break;
1319
1320 if (idlecnt [pri])
1321 {
1322 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1323 break;
1324 }
1325 }
1326 }
1327}
1328#endif
1329
1330void inline_speed
1331time_update (EV_P_ ev_tstamp max_block)
1332{
1333 int i;
1334
1335#if EV_USE_MONOTONIC
1336 if (expect_true (have_monotonic))
1337 {
1338 ev_tstamp odiff = rtmn_diff;
1339
1250 mn_now = get_clock (); 1340 mn_now = get_clock ();
1251 1341
1342 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1343 /* interpolate in the meantime */
1252 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1344 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1253 { 1345 {
1254 ev_rt_now = rtmn_diff + mn_now; 1346 ev_rt_now = rtmn_diff + mn_now;
1255 return 0; 1347 return;
1256 } 1348 }
1257 else 1349
1258 {
1259 now_floor = mn_now; 1350 now_floor = mn_now;
1260 ev_rt_now = ev_time (); 1351 ev_rt_now = ev_time ();
1261 return 1;
1262 }
1263}
1264 1352
1265void inline_size 1353 /* loop a few times, before making important decisions.
1266time_update (EV_P) 1354 * on the choice of "4": one iteration isn't enough,
1267{ 1355 * in case we get preempted during the calls to
1268 int i; 1356 * ev_time and get_clock. a second call is almost guaranteed
1269 1357 * to succeed in that case, though. and looping a few more times
1270#if EV_USE_MONOTONIC 1358 * doesn't hurt either as we only do this on time-jumps or
1271 if (expect_true (have_monotonic)) 1359 * in the unlikely event of having been preempted here.
1272 { 1360 */
1273 if (time_update_monotonic (EV_A)) 1361 for (i = 4; --i; )
1274 { 1362 {
1275 ev_tstamp odiff = rtmn_diff;
1276
1277 /* loop a few times, before making important decisions.
1278 * on the choice of "4": one iteration isn't enough,
1279 * in case we get preempted during the calls to
1280 * ev_time and get_clock. a second call is almost guaranteed
1281 * to succeed in that case, though. and looping a few more times
1282 * doesn't hurt either as we only do this on time-jumps or
1283 * in the unlikely event of having been preempted here.
1284 */
1285 for (i = 4; --i; )
1286 {
1287 rtmn_diff = ev_rt_now - mn_now; 1363 rtmn_diff = ev_rt_now - mn_now;
1288 1364
1289 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1365 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1290 return; /* all is well */ 1366 return; /* all is well */
1291 1367
1292 ev_rt_now = ev_time (); 1368 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 1369 mn_now = get_clock ();
1294 now_floor = mn_now; 1370 now_floor = mn_now;
1295 } 1371 }
1296 1372
1297# if EV_PERIODIC_ENABLE 1373# if EV_PERIODIC_ENABLE
1298 periodics_reschedule (EV_A); 1374 periodics_reschedule (EV_A);
1299# endif 1375# endif
1300 /* no timer adjustment, as the monotonic clock doesn't jump */ 1376 /* no timer adjustment, as the monotonic clock doesn't jump */
1301 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1377 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1302 }
1303 } 1378 }
1304 else 1379 else
1305#endif 1380#endif
1306 { 1381 {
1307 ev_rt_now = ev_time (); 1382 ev_rt_now = ev_time ();
1308 1383
1309 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1384 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1310 { 1385 {
1311#if EV_PERIODIC_ENABLE 1386#if EV_PERIODIC_ENABLE
1312 periodics_reschedule (EV_A); 1387 periodics_reschedule (EV_A);
1313#endif 1388#endif
1314
1315 /* adjust timers. this is easy, as the offset is the same for all of them */ 1389 /* adjust timers. this is easy, as the offset is the same for all of them */
1316 for (i = 0; i < timercnt; ++i) 1390 for (i = 0; i < timercnt; ++i)
1317 ((WT)timers [i])->at += ev_rt_now - mn_now; 1391 ((WT)timers [i])->at += ev_rt_now - mn_now;
1318 } 1392 }
1319 1393
1342 ? EVUNLOOP_ONE 1416 ? EVUNLOOP_ONE
1343 : EVUNLOOP_CANCEL; 1417 : EVUNLOOP_CANCEL;
1344 1418
1345 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1419 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1346 1420
1347 for (;;) 1421 do
1348 { 1422 {
1349#ifndef _WIN32 1423#ifndef _WIN32
1350 if (expect_false (curpid)) /* penalise the forking check even more */ 1424 if (expect_false (curpid)) /* penalise the forking check even more */
1351 if (expect_false (getpid () != curpid)) 1425 if (expect_false (getpid () != curpid))
1352 { 1426 {
1363 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1437 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1364 call_pending (EV_A); 1438 call_pending (EV_A);
1365 } 1439 }
1366#endif 1440#endif
1367 1441
1368 /* queue check watchers (and execute them) */ 1442 /* queue prepare watchers (and execute them) */
1369 if (expect_false (preparecnt)) 1443 if (expect_false (preparecnt))
1370 { 1444 {
1371 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1445 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1372 call_pending (EV_A); 1446 call_pending (EV_A);
1373 } 1447 }
1384 1458
1385 /* calculate blocking time */ 1459 /* calculate blocking time */
1386 { 1460 {
1387 ev_tstamp block; 1461 ev_tstamp block;
1388 1462
1389 if (flags & EVLOOP_NONBLOCK || idlecnt) 1463 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1390 block = 0.; /* do not block at all */ 1464 block = 0.; /* do not block at all */
1391 else 1465 else
1392 { 1466 {
1393 /* update time to cancel out callback processing overhead */ 1467 /* update time to cancel out callback processing overhead */
1394#if EV_USE_MONOTONIC
1395 if (expect_true (have_monotonic))
1396 time_update_monotonic (EV_A); 1468 time_update (EV_A_ 1e100);
1397 else
1398#endif
1399 {
1400 ev_rt_now = ev_time ();
1401 mn_now = ev_rt_now;
1402 }
1403 1469
1404 block = MAX_BLOCKTIME; 1470 block = MAX_BLOCKTIME;
1405 1471
1406 if (timercnt) 1472 if (timercnt)
1407 { 1473 {
1418#endif 1484#endif
1419 1485
1420 if (expect_false (block < 0.)) block = 0.; 1486 if (expect_false (block < 0.)) block = 0.;
1421 } 1487 }
1422 1488
1489 ++loop_count;
1423 backend_poll (EV_A_ block); 1490 backend_poll (EV_A_ block);
1491
1492 /* update ev_rt_now, do magic */
1493 time_update (EV_A_ block);
1424 } 1494 }
1425
1426 /* update ev_rt_now, do magic */
1427 time_update (EV_A);
1428 1495
1429 /* queue pending timers and reschedule them */ 1496 /* queue pending timers and reschedule them */
1430 timers_reify (EV_A); /* relative timers called last */ 1497 timers_reify (EV_A); /* relative timers called last */
1431#if EV_PERIODIC_ENABLE 1498#if EV_PERIODIC_ENABLE
1432 periodics_reify (EV_A); /* absolute timers called first */ 1499 periodics_reify (EV_A); /* absolute timers called first */
1433#endif 1500#endif
1434 1501
1502#if EV_IDLE_ENABLE
1435 /* queue idle watchers unless other events are pending */ 1503 /* queue idle watchers unless other events are pending */
1436 if (idlecnt && !any_pending (EV_A)) 1504 idle_reify (EV_A);
1437 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1505#endif
1438 1506
1439 /* queue check watchers, to be executed first */ 1507 /* queue check watchers, to be executed first */
1440 if (expect_false (checkcnt)) 1508 if (expect_false (checkcnt))
1441 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1509 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1442 1510
1443 call_pending (EV_A); 1511 call_pending (EV_A);
1444 1512
1445 if (expect_false (loop_done))
1446 break;
1447 } 1513 }
1514 while (expect_true (activecnt && !loop_done));
1448 1515
1449 if (loop_done == EVUNLOOP_ONE) 1516 if (loop_done == EVUNLOOP_ONE)
1450 loop_done = EVUNLOOP_CANCEL; 1517 loop_done = EVUNLOOP_CANCEL;
1451} 1518}
1452 1519
1479 head = &(*head)->next; 1546 head = &(*head)->next;
1480 } 1547 }
1481} 1548}
1482 1549
1483void inline_speed 1550void inline_speed
1484ev_clear_pending (EV_P_ W w) 1551clear_pending (EV_P_ W w)
1485{ 1552{
1486 if (w->pending) 1553 if (w->pending)
1487 { 1554 {
1488 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1555 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1489 w->pending = 0; 1556 w->pending = 0;
1490 } 1557 }
1491} 1558}
1492 1559
1560int
1561ev_clear_pending (EV_P_ void *w)
1562{
1563 W w_ = (W)w;
1564 int pending = w_->pending;
1565
1566 if (expect_true (pending))
1567 {
1568 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1569 w_->pending = 0;
1570 p->w = 0;
1571 return p->events;
1572 }
1573 else
1574 return 0;
1575}
1576
1577void inline_size
1578pri_adjust (EV_P_ W w)
1579{
1580 int pri = w->priority;
1581 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1582 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1583 w->priority = pri;
1584}
1585
1493void inline_speed 1586void inline_speed
1494ev_start (EV_P_ W w, int active) 1587ev_start (EV_P_ W w, int active)
1495{ 1588{
1496 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1589 pri_adjust (EV_A_ w);
1497 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1498
1499 w->active = active; 1590 w->active = active;
1500 ev_ref (EV_A); 1591 ev_ref (EV_A);
1501} 1592}
1502 1593
1503void inline_size 1594void inline_size
1507 w->active = 0; 1598 w->active = 0;
1508} 1599}
1509 1600
1510/*****************************************************************************/ 1601/*****************************************************************************/
1511 1602
1512void 1603void noinline
1513ev_io_start (EV_P_ ev_io *w) 1604ev_io_start (EV_P_ ev_io *w)
1514{ 1605{
1515 int fd = w->fd; 1606 int fd = w->fd;
1516 1607
1517 if (expect_false (ev_is_active (w))) 1608 if (expect_false (ev_is_active (w)))
1519 1610
1520 assert (("ev_io_start called with negative fd", fd >= 0)); 1611 assert (("ev_io_start called with negative fd", fd >= 0));
1521 1612
1522 ev_start (EV_A_ (W)w, 1); 1613 ev_start (EV_A_ (W)w, 1);
1523 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1614 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1524 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1615 wlist_add (&anfds[fd].head, (WL)w);
1525 1616
1526 fd_change (EV_A_ fd); 1617 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1618 w->events &= ~EV_IOFDSET;
1527} 1619}
1528 1620
1529void 1621void noinline
1530ev_io_stop (EV_P_ ev_io *w) 1622ev_io_stop (EV_P_ ev_io *w)
1531{ 1623{
1532 ev_clear_pending (EV_A_ (W)w); 1624 clear_pending (EV_A_ (W)w);
1533 if (expect_false (!ev_is_active (w))) 1625 if (expect_false (!ev_is_active (w)))
1534 return; 1626 return;
1535 1627
1536 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1628 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1537 1629
1538 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1630 wlist_del (&anfds[w->fd].head, (WL)w);
1539 ev_stop (EV_A_ (W)w); 1631 ev_stop (EV_A_ (W)w);
1540 1632
1541 fd_change (EV_A_ w->fd); 1633 fd_change (EV_A_ w->fd, 1);
1542} 1634}
1543 1635
1544void 1636void noinline
1545ev_timer_start (EV_P_ ev_timer *w) 1637ev_timer_start (EV_P_ ev_timer *w)
1546{ 1638{
1547 if (expect_false (ev_is_active (w))) 1639 if (expect_false (ev_is_active (w)))
1548 return; 1640 return;
1549 1641
1550 ((WT)w)->at += mn_now; 1642 ((WT)w)->at += mn_now;
1551 1643
1552 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1644 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1553 1645
1554 ev_start (EV_A_ (W)w, ++timercnt); 1646 ev_start (EV_A_ (W)w, ++timercnt);
1555 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1647 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1556 timers [timercnt - 1] = w; 1648 timers [timercnt - 1] = (WT)w;
1557 upheap ((WT *)timers, timercnt - 1); 1649 upheap (timers, timercnt - 1);
1558 1650
1559 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1651 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1560} 1652}
1561 1653
1562void 1654void noinline
1563ev_timer_stop (EV_P_ ev_timer *w) 1655ev_timer_stop (EV_P_ ev_timer *w)
1564{ 1656{
1565 ev_clear_pending (EV_A_ (W)w); 1657 clear_pending (EV_A_ (W)w);
1566 if (expect_false (!ev_is_active (w))) 1658 if (expect_false (!ev_is_active (w)))
1567 return; 1659 return;
1568 1660
1569 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1661 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1570 1662
1571 { 1663 {
1572 int active = ((W)w)->active; 1664 int active = ((W)w)->active;
1573 1665
1574 if (expect_true (--active < --timercnt)) 1666 if (expect_true (--active < --timercnt))
1575 { 1667 {
1576 timers [active] = timers [timercnt]; 1668 timers [active] = timers [timercnt];
1577 adjustheap ((WT *)timers, timercnt, active); 1669 adjustheap (timers, timercnt, active);
1578 } 1670 }
1579 } 1671 }
1580 1672
1581 ((WT)w)->at -= mn_now; 1673 ((WT)w)->at -= mn_now;
1582 1674
1583 ev_stop (EV_A_ (W)w); 1675 ev_stop (EV_A_ (W)w);
1584} 1676}
1585 1677
1586void 1678void noinline
1587ev_timer_again (EV_P_ ev_timer *w) 1679ev_timer_again (EV_P_ ev_timer *w)
1588{ 1680{
1589 if (ev_is_active (w)) 1681 if (ev_is_active (w))
1590 { 1682 {
1591 if (w->repeat) 1683 if (w->repeat)
1592 { 1684 {
1593 ((WT)w)->at = mn_now + w->repeat; 1685 ((WT)w)->at = mn_now + w->repeat;
1594 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1686 adjustheap (timers, timercnt, ((W)w)->active - 1);
1595 } 1687 }
1596 else 1688 else
1597 ev_timer_stop (EV_A_ w); 1689 ev_timer_stop (EV_A_ w);
1598 } 1690 }
1599 else if (w->repeat) 1691 else if (w->repeat)
1602 ev_timer_start (EV_A_ w); 1694 ev_timer_start (EV_A_ w);
1603 } 1695 }
1604} 1696}
1605 1697
1606#if EV_PERIODIC_ENABLE 1698#if EV_PERIODIC_ENABLE
1607void 1699void noinline
1608ev_periodic_start (EV_P_ ev_periodic *w) 1700ev_periodic_start (EV_P_ ev_periodic *w)
1609{ 1701{
1610 if (expect_false (ev_is_active (w))) 1702 if (expect_false (ev_is_active (w)))
1611 return; 1703 return;
1612 1704
1614 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1706 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1615 else if (w->interval) 1707 else if (w->interval)
1616 { 1708 {
1617 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1709 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1618 /* this formula differs from the one in periodic_reify because we do not always round up */ 1710 /* this formula differs from the one in periodic_reify because we do not always round up */
1619 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1711 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1620 } 1712 }
1713 else
1714 ((WT)w)->at = w->offset;
1621 1715
1622 ev_start (EV_A_ (W)w, ++periodiccnt); 1716 ev_start (EV_A_ (W)w, ++periodiccnt);
1623 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1717 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1624 periodics [periodiccnt - 1] = w; 1718 periodics [periodiccnt - 1] = (WT)w;
1625 upheap ((WT *)periodics, periodiccnt - 1); 1719 upheap (periodics, periodiccnt - 1);
1626 1720
1627 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1721 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1628} 1722}
1629 1723
1630void 1724void noinline
1631ev_periodic_stop (EV_P_ ev_periodic *w) 1725ev_periodic_stop (EV_P_ ev_periodic *w)
1632{ 1726{
1633 ev_clear_pending (EV_A_ (W)w); 1727 clear_pending (EV_A_ (W)w);
1634 if (expect_false (!ev_is_active (w))) 1728 if (expect_false (!ev_is_active (w)))
1635 return; 1729 return;
1636 1730
1637 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1731 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1638 1732
1639 { 1733 {
1640 int active = ((W)w)->active; 1734 int active = ((W)w)->active;
1641 1735
1642 if (expect_true (--active < --periodiccnt)) 1736 if (expect_true (--active < --periodiccnt))
1643 { 1737 {
1644 periodics [active] = periodics [periodiccnt]; 1738 periodics [active] = periodics [periodiccnt];
1645 adjustheap ((WT *)periodics, periodiccnt, active); 1739 adjustheap (periodics, periodiccnt, active);
1646 } 1740 }
1647 } 1741 }
1648 1742
1649 ev_stop (EV_A_ (W)w); 1743 ev_stop (EV_A_ (W)w);
1650} 1744}
1651 1745
1652void 1746void noinline
1653ev_periodic_again (EV_P_ ev_periodic *w) 1747ev_periodic_again (EV_P_ ev_periodic *w)
1654{ 1748{
1655 /* TODO: use adjustheap and recalculation */ 1749 /* TODO: use adjustheap and recalculation */
1656 ev_periodic_stop (EV_A_ w); 1750 ev_periodic_stop (EV_A_ w);
1657 ev_periodic_start (EV_A_ w); 1751 ev_periodic_start (EV_A_ w);
1660 1754
1661#ifndef SA_RESTART 1755#ifndef SA_RESTART
1662# define SA_RESTART 0 1756# define SA_RESTART 0
1663#endif 1757#endif
1664 1758
1665void 1759void noinline
1666ev_signal_start (EV_P_ ev_signal *w) 1760ev_signal_start (EV_P_ ev_signal *w)
1667{ 1761{
1668#if EV_MULTIPLICITY 1762#if EV_MULTIPLICITY
1669 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1763 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1670#endif 1764#endif
1671 if (expect_false (ev_is_active (w))) 1765 if (expect_false (ev_is_active (w)))
1672 return; 1766 return;
1673 1767
1674 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1768 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1675 1769
1770 {
1771#ifndef _WIN32
1772 sigset_t full, prev;
1773 sigfillset (&full);
1774 sigprocmask (SIG_SETMASK, &full, &prev);
1775#endif
1776
1777 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1778
1779#ifndef _WIN32
1780 sigprocmask (SIG_SETMASK, &prev, 0);
1781#endif
1782 }
1783
1676 ev_start (EV_A_ (W)w, 1); 1784 ev_start (EV_A_ (W)w, 1);
1677 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1678 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1785 wlist_add (&signals [w->signum - 1].head, (WL)w);
1679 1786
1680 if (!((WL)w)->next) 1787 if (!((WL)w)->next)
1681 { 1788 {
1682#if _WIN32 1789#if _WIN32
1683 signal (w->signum, sighandler); 1790 signal (w->signum, sighandler);
1689 sigaction (w->signum, &sa, 0); 1796 sigaction (w->signum, &sa, 0);
1690#endif 1797#endif
1691 } 1798 }
1692} 1799}
1693 1800
1694void 1801void noinline
1695ev_signal_stop (EV_P_ ev_signal *w) 1802ev_signal_stop (EV_P_ ev_signal *w)
1696{ 1803{
1697 ev_clear_pending (EV_A_ (W)w); 1804 clear_pending (EV_A_ (W)w);
1698 if (expect_false (!ev_is_active (w))) 1805 if (expect_false (!ev_is_active (w)))
1699 return; 1806 return;
1700 1807
1701 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1808 wlist_del (&signals [w->signum - 1].head, (WL)w);
1702 ev_stop (EV_A_ (W)w); 1809 ev_stop (EV_A_ (W)w);
1703 1810
1704 if (!signals [w->signum - 1].head) 1811 if (!signals [w->signum - 1].head)
1705 signal (w->signum, SIG_DFL); 1812 signal (w->signum, SIG_DFL);
1706} 1813}
1713#endif 1820#endif
1714 if (expect_false (ev_is_active (w))) 1821 if (expect_false (ev_is_active (w)))
1715 return; 1822 return;
1716 1823
1717 ev_start (EV_A_ (W)w, 1); 1824 ev_start (EV_A_ (W)w, 1);
1718 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1825 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1719} 1826}
1720 1827
1721void 1828void
1722ev_child_stop (EV_P_ ev_child *w) 1829ev_child_stop (EV_P_ ev_child *w)
1723{ 1830{
1724 ev_clear_pending (EV_A_ (W)w); 1831 clear_pending (EV_A_ (W)w);
1725 if (expect_false (!ev_is_active (w))) 1832 if (expect_false (!ev_is_active (w)))
1726 return; 1833 return;
1727 1834
1728 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1835 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1729 ev_stop (EV_A_ (W)w); 1836 ev_stop (EV_A_ (W)w);
1730} 1837}
1731 1838
1732#if EV_STAT_ENABLE 1839#if EV_STAT_ENABLE
1733 1840
1965} 2072}
1966 2073
1967void 2074void
1968ev_stat_stop (EV_P_ ev_stat *w) 2075ev_stat_stop (EV_P_ ev_stat *w)
1969{ 2076{
1970 ev_clear_pending (EV_A_ (W)w); 2077 clear_pending (EV_A_ (W)w);
1971 if (expect_false (!ev_is_active (w))) 2078 if (expect_false (!ev_is_active (w)))
1972 return; 2079 return;
1973 2080
1974#if EV_USE_INOTIFY 2081#if EV_USE_INOTIFY
1975 infy_del (EV_A_ w); 2082 infy_del (EV_A_ w);
1978 2085
1979 ev_stop (EV_A_ (W)w); 2086 ev_stop (EV_A_ (W)w);
1980} 2087}
1981#endif 2088#endif
1982 2089
2090#if EV_IDLE_ENABLE
1983void 2091void
1984ev_idle_start (EV_P_ ev_idle *w) 2092ev_idle_start (EV_P_ ev_idle *w)
1985{ 2093{
1986 if (expect_false (ev_is_active (w))) 2094 if (expect_false (ev_is_active (w)))
1987 return; 2095 return;
1988 2096
2097 pri_adjust (EV_A_ (W)w);
2098
2099 {
2100 int active = ++idlecnt [ABSPRI (w)];
2101
2102 ++idleall;
1989 ev_start (EV_A_ (W)w, ++idlecnt); 2103 ev_start (EV_A_ (W)w, active);
2104
1990 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2105 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1991 idles [idlecnt - 1] = w; 2106 idles [ABSPRI (w)][active - 1] = w;
2107 }
1992} 2108}
1993 2109
1994void 2110void
1995ev_idle_stop (EV_P_ ev_idle *w) 2111ev_idle_stop (EV_P_ ev_idle *w)
1996{ 2112{
1997 ev_clear_pending (EV_A_ (W)w); 2113 clear_pending (EV_A_ (W)w);
1998 if (expect_false (!ev_is_active (w))) 2114 if (expect_false (!ev_is_active (w)))
1999 return; 2115 return;
2000 2116
2001 { 2117 {
2002 int active = ((W)w)->active; 2118 int active = ((W)w)->active;
2003 idles [active - 1] = idles [--idlecnt]; 2119
2120 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2004 ((W)idles [active - 1])->active = active; 2121 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2122
2123 ev_stop (EV_A_ (W)w);
2124 --idleall;
2005 } 2125 }
2006
2007 ev_stop (EV_A_ (W)w);
2008} 2126}
2127#endif
2009 2128
2010void 2129void
2011ev_prepare_start (EV_P_ ev_prepare *w) 2130ev_prepare_start (EV_P_ ev_prepare *w)
2012{ 2131{
2013 if (expect_false (ev_is_active (w))) 2132 if (expect_false (ev_is_active (w)))
2019} 2138}
2020 2139
2021void 2140void
2022ev_prepare_stop (EV_P_ ev_prepare *w) 2141ev_prepare_stop (EV_P_ ev_prepare *w)
2023{ 2142{
2024 ev_clear_pending (EV_A_ (W)w); 2143 clear_pending (EV_A_ (W)w);
2025 if (expect_false (!ev_is_active (w))) 2144 if (expect_false (!ev_is_active (w)))
2026 return; 2145 return;
2027 2146
2028 { 2147 {
2029 int active = ((W)w)->active; 2148 int active = ((W)w)->active;
2046} 2165}
2047 2166
2048void 2167void
2049ev_check_stop (EV_P_ ev_check *w) 2168ev_check_stop (EV_P_ ev_check *w)
2050{ 2169{
2051 ev_clear_pending (EV_A_ (W)w); 2170 clear_pending (EV_A_ (W)w);
2052 if (expect_false (!ev_is_active (w))) 2171 if (expect_false (!ev_is_active (w)))
2053 return; 2172 return;
2054 2173
2055 { 2174 {
2056 int active = ((W)w)->active; 2175 int active = ((W)w)->active;
2063 2182
2064#if EV_EMBED_ENABLE 2183#if EV_EMBED_ENABLE
2065void noinline 2184void noinline
2066ev_embed_sweep (EV_P_ ev_embed *w) 2185ev_embed_sweep (EV_P_ ev_embed *w)
2067{ 2186{
2068 ev_loop (w->loop, EVLOOP_NONBLOCK); 2187 ev_loop (w->other, EVLOOP_NONBLOCK);
2069} 2188}
2070 2189
2071static void 2190static void
2072embed_cb (EV_P_ ev_io *io, int revents) 2191embed_io_cb (EV_P_ ev_io *io, int revents)
2073{ 2192{
2074 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2193 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2075 2194
2076 if (ev_cb (w)) 2195 if (ev_cb (w))
2077 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2196 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2078 else 2197 else
2079 ev_embed_sweep (loop, w); 2198 ev_embed_sweep (loop, w);
2080} 2199}
2081 2200
2201static void
2202embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2203{
2204 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2205
2206 fd_reify (w->other);
2207}
2208
2082void 2209void
2083ev_embed_start (EV_P_ ev_embed *w) 2210ev_embed_start (EV_P_ ev_embed *w)
2084{ 2211{
2085 if (expect_false (ev_is_active (w))) 2212 if (expect_false (ev_is_active (w)))
2086 return; 2213 return;
2087 2214
2088 { 2215 {
2089 struct ev_loop *loop = w->loop; 2216 struct ev_loop *loop = w->other;
2090 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2217 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2091 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2218 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2092 } 2219 }
2093 2220
2094 ev_set_priority (&w->io, ev_priority (w)); 2221 ev_set_priority (&w->io, ev_priority (w));
2095 ev_io_start (EV_A_ &w->io); 2222 ev_io_start (EV_A_ &w->io);
2096 2223
2224 ev_prepare_init (&w->prepare, embed_prepare_cb);
2225 ev_set_priority (&w->prepare, EV_MINPRI);
2226 ev_prepare_start (EV_A_ &w->prepare);
2227
2097 ev_start (EV_A_ (W)w, 1); 2228 ev_start (EV_A_ (W)w, 1);
2098} 2229}
2099 2230
2100void 2231void
2101ev_embed_stop (EV_P_ ev_embed *w) 2232ev_embed_stop (EV_P_ ev_embed *w)
2102{ 2233{
2103 ev_clear_pending (EV_A_ (W)w); 2234 clear_pending (EV_A_ (W)w);
2104 if (expect_false (!ev_is_active (w))) 2235 if (expect_false (!ev_is_active (w)))
2105 return; 2236 return;
2106 2237
2107 ev_io_stop (EV_A_ &w->io); 2238 ev_io_stop (EV_A_ &w->io);
2239 ev_prepare_stop (EV_A_ &w->prepare);
2108 2240
2109 ev_stop (EV_A_ (W)w); 2241 ev_stop (EV_A_ (W)w);
2110} 2242}
2111#endif 2243#endif
2112 2244
2123} 2255}
2124 2256
2125void 2257void
2126ev_fork_stop (EV_P_ ev_fork *w) 2258ev_fork_stop (EV_P_ ev_fork *w)
2127{ 2259{
2128 ev_clear_pending (EV_A_ (W)w); 2260 clear_pending (EV_A_ (W)w);
2129 if (expect_false (!ev_is_active (w))) 2261 if (expect_false (!ev_is_active (w)))
2130 return; 2262 return;
2131 2263
2132 { 2264 {
2133 int active = ((W)w)->active; 2265 int active = ((W)w)->active;
2201 ev_timer_set (&once->to, timeout, 0.); 2333 ev_timer_set (&once->to, timeout, 0.);
2202 ev_timer_start (EV_A_ &once->to); 2334 ev_timer_start (EV_A_ &once->to);
2203 } 2335 }
2204} 2336}
2205 2337
2338#if EV_MULTIPLICITY
2339 #include "ev_wrap.h"
2340#endif
2341
2206#ifdef __cplusplus 2342#ifdef __cplusplus
2207} 2343}
2208#endif 2344#endif
2209 2345

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines