ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.159 by root, Sat Dec 1 19:48:36 2007 UTC vs.
Revision 1.222 by root, Sun Apr 6 12:45:58 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 241
197#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
200#endif 245#endif
202#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
205#endif 250#endif
206 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
207#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 268# include <winsock.h>
209#endif 269#endif
210 270
211#if !EV_STAT_ENABLE 271#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
213#endif 276# endif
214 277int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 278# ifdef __cplusplus
216# include <sys/inotify.h> 279}
280# endif
217#endif 281#endif
218 282
219/**/ 283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 294
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 298
225#if __GNUC__ >= 3 299#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 301# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 302#else
236# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 304# define noinline
305# if __STDC_VERSION__ < 199901L
306# define inline
307# endif
240#endif 308#endif
241 309
242#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
244 319
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 322
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 323#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 324#define EMPTY2(a,b) /* used to suppress some warnings */
250 325
251typedef ev_watcher *W; 326typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
254 329
330#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
334#endif
256 335
257#ifdef _WIN32 336#ifdef _WIN32
258# include "ev_win32.c" 337# include "ev_win32.c"
259#endif 338#endif
260 339
396{ 475{
397 return ev_rt_now; 476 return ev_rt_now;
398} 477}
399#endif 478#endif
400 479
401#define array_roundsize(type,n) (((n) | 4) & ~3) 480void
481ev_sleep (ev_tstamp delay)
482{
483 if (delay > 0.)
484 {
485#if EV_USE_NANOSLEEP
486 struct timespec ts;
487
488 ts.tv_sec = (time_t)delay;
489 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
490
491 nanosleep (&ts, 0);
492#elif defined(_WIN32)
493 Sleep ((unsigned long)(delay * 1e3));
494#else
495 struct timeval tv;
496
497 tv.tv_sec = (time_t)delay;
498 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
499
500 select (0, 0, 0, 0, &tv);
501#endif
502 }
503}
504
505/*****************************************************************************/
506
507int inline_size
508array_nextsize (int elem, int cur, int cnt)
509{
510 int ncur = cur + 1;
511
512 do
513 ncur <<= 1;
514 while (cnt > ncur);
515
516 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
517 if (elem * ncur > 4096)
518 {
519 ncur *= elem;
520 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
521 ncur = ncur - sizeof (void *) * 4;
522 ncur /= elem;
523 }
524
525 return ncur;
526}
527
528static noinline void *
529array_realloc (int elem, void *base, int *cur, int cnt)
530{
531 *cur = array_nextsize (elem, *cur, cnt);
532 return ev_realloc (base, elem * *cur);
533}
402 534
403#define array_needsize(type,base,cur,cnt,init) \ 535#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 536 if (expect_false ((cnt) > (cur))) \
405 { \ 537 { \
406 int newcnt = cur; \ 538 int ocur_ = (cur); \
407 do \ 539 (base) = (type *)array_realloc \
408 { \ 540 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 541 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 542 }
417 543
544#if 0
418#define array_slim(type,stem) \ 545#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 546 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 547 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 548 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 549 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 550 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 551 }
552#endif
425 553
426#define array_free(stem, idx) \ 554#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 555 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 556
429/*****************************************************************************/ 557/*****************************************************************************/
430 558
431void noinline 559void noinline
432ev_feed_event (EV_P_ void *w, int revents) 560ev_feed_event (EV_P_ void *w, int revents)
433{ 561{
434 W w_ = (W)w; 562 W w_ = (W)w;
563 int pri = ABSPRI (w_);
435 564
436 if (expect_false (w_->pending)) 565 if (expect_false (w_->pending))
566 pendings [pri][w_->pending - 1].events |= revents;
567 else
437 { 568 {
569 w_->pending = ++pendingcnt [pri];
570 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
571 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 572 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 573 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 574}
447 575
448void inline_size 576void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 577queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 578{
451 int i; 579 int i;
452 580
453 for (i = 0; i < eventcnt; ++i) 581 for (i = 0; i < eventcnt; ++i)
485} 613}
486 614
487void 615void
488ev_feed_fd_event (EV_P_ int fd, int revents) 616ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 617{
618 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 619 fd_event (EV_A_ fd, revents);
491} 620}
492 621
493void inline_size 622void inline_size
494fd_reify (EV_P) 623fd_reify (EV_P)
495{ 624{
499 { 628 {
500 int fd = fdchanges [i]; 629 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 630 ANFD *anfd = anfds + fd;
502 ev_io *w; 631 ev_io *w;
503 632
504 int events = 0; 633 unsigned char events = 0;
505 634
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 635 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 636 events |= (unsigned char)w->events;
508 637
509#if EV_SELECT_IS_WINSOCKET 638#if EV_SELECT_IS_WINSOCKET
510 if (events) 639 if (events)
511 { 640 {
512 unsigned long argp; 641 unsigned long argp;
642 #ifdef EV_FD_TO_WIN32_HANDLE
643 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
644 #else
513 anfd->handle = _get_osfhandle (fd); 645 anfd->handle = _get_osfhandle (fd);
646 #endif
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 647 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
515 } 648 }
516#endif 649#endif
517 650
651 {
652 unsigned char o_events = anfd->events;
653 unsigned char o_reify = anfd->reify;
654
518 anfd->reify = 0; 655 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 656 anfd->events = events;
657
658 if (o_events != events || o_reify & EV_IOFDSET)
659 backend_modify (EV_A_ fd, o_events, events);
660 }
522 } 661 }
523 662
524 fdchangecnt = 0; 663 fdchangecnt = 0;
525} 664}
526 665
527void inline_size 666void inline_size
528fd_change (EV_P_ int fd) 667fd_change (EV_P_ int fd, int flags)
529{ 668{
530 if (expect_false (anfds [fd].reify)) 669 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 670 anfds [fd].reify |= flags;
534 671
672 if (expect_true (!reify))
673 {
535 ++fdchangecnt; 674 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 675 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 676 fdchanges [fdchangecnt - 1] = fd;
677 }
538} 678}
539 679
540void inline_speed 680void inline_speed
541fd_kill (EV_P_ int fd) 681fd_kill (EV_P_ int fd)
542{ 682{
593 733
594 for (fd = 0; fd < anfdmax; ++fd) 734 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 735 if (anfds [fd].events)
596 { 736 {
597 anfds [fd].events = 0; 737 anfds [fd].events = 0;
598 fd_change (EV_A_ fd); 738 fd_change (EV_A_ fd, EV_IOFDSET | 1);
599 } 739 }
600} 740}
601 741
602/*****************************************************************************/ 742/*****************************************************************************/
603 743
604void inline_speed 744void inline_speed
605upheap (WT *heap, int k) 745upheap (WT *heap, int k)
606{ 746{
607 WT w = heap [k]; 747 WT w = heap [k];
608 748
609 while (k && heap [k >> 1]->at > w->at) 749 while (k)
610 { 750 {
751 int p = (k - 1) >> 1;
752
753 if (heap [p]->at <= w->at)
754 break;
755
611 heap [k] = heap [k >> 1]; 756 heap [k] = heap [p];
612 ((W)heap [k])->active = k + 1; 757 ((W)heap [k])->active = k + 1;
613 k >>= 1; 758 k = p;
614 } 759 }
615 760
616 heap [k] = w; 761 heap [k] = w;
617 ((W)heap [k])->active = k + 1; 762 ((W)heap [k])->active = k + 1;
618
619} 763}
620 764
621void inline_speed 765void inline_speed
622downheap (WT *heap, int N, int k) 766downheap (WT *heap, int N, int k)
623{ 767{
624 WT w = heap [k]; 768 WT w = heap [k];
625 769
626 while (k < (N >> 1)) 770 for (;;)
627 { 771 {
628 int j = k << 1; 772 int c = (k << 1) + 1;
629 773
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 774 if (c >= N)
631 ++j;
632
633 if (w->at <= heap [j]->at)
634 break; 775 break;
635 776
777 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
778 ? 1 : 0;
779
780 if (w->at <= heap [c]->at)
781 break;
782
636 heap [k] = heap [j]; 783 heap [k] = heap [c];
637 ((W)heap [k])->active = k + 1; 784 ((W)heap [k])->active = k + 1;
785
638 k = j; 786 k = c;
639 } 787 }
640 788
641 heap [k] = w; 789 heap [k] = w;
642 ((W)heap [k])->active = k + 1; 790 ((W)heap [k])->active = k + 1;
643} 791}
652/*****************************************************************************/ 800/*****************************************************************************/
653 801
654typedef struct 802typedef struct
655{ 803{
656 WL head; 804 WL head;
657 sig_atomic_t volatile gotsig; 805 EV_ATOMIC_T gotsig;
658} ANSIG; 806} ANSIG;
659 807
660static ANSIG *signals; 808static ANSIG *signals;
661static int signalmax; 809static int signalmax;
662 810
663static int sigpipe [2]; 811static EV_ATOMIC_T gotsig;
664static sig_atomic_t volatile gotsig;
665static ev_io sigev;
666 812
667void inline_size 813void inline_size
668signals_init (ANSIG *base, int count) 814signals_init (ANSIG *base, int count)
669{ 815{
670 while (count--) 816 while (count--)
674 820
675 ++base; 821 ++base;
676 } 822 }
677} 823}
678 824
679static void 825/*****************************************************************************/
680sighandler (int signum)
681{
682#if _WIN32
683 signal (signum, sighandler);
684#endif
685 826
686 signals [signum - 1].gotsig = 1;
687
688 if (!gotsig)
689 {
690 int old_errno = errno;
691 gotsig = 1;
692 write (sigpipe [1], &signum, 1);
693 errno = old_errno;
694 }
695}
696
697void noinline
698ev_feed_signal_event (EV_P_ int signum)
699{
700 WL w;
701
702#if EV_MULTIPLICITY
703 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
704#endif
705
706 --signum;
707
708 if (signum < 0 || signum >= signalmax)
709 return;
710
711 signals [signum].gotsig = 0;
712
713 for (w = signals [signum].head; w; w = w->next)
714 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
715}
716
717static void
718sigcb (EV_P_ ev_io *iow, int revents)
719{
720 int signum;
721
722 read (sigpipe [0], &revents, 1);
723 gotsig = 0;
724
725 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1);
728}
729
730void inline_size 827void inline_speed
731fd_intern (int fd) 828fd_intern (int fd)
732{ 829{
733#ifdef _WIN32 830#ifdef _WIN32
734 int arg = 1; 831 int arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 832 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
738 fcntl (fd, F_SETFL, O_NONBLOCK); 835 fcntl (fd, F_SETFL, O_NONBLOCK);
739#endif 836#endif
740} 837}
741 838
742static void noinline 839static void noinline
743siginit (EV_P) 840evpipe_init (EV_P)
744{ 841{
842 if (!ev_is_active (&pipeev))
843 {
844#if EV_USE_EVENTFD
845 if ((evfd = eventfd (0, 0)) >= 0)
846 {
847 evpipe [0] = -1;
848 fd_intern (evfd);
849 ev_io_set (&pipeev, evfd, EV_READ);
850 }
851 else
852#endif
853 {
854 while (pipe (evpipe))
855 syserr ("(libev) error creating signal/async pipe");
856
745 fd_intern (sigpipe [0]); 857 fd_intern (evpipe [0]);
746 fd_intern (sigpipe [1]); 858 fd_intern (evpipe [1]);
859 ev_io_set (&pipeev, evpipe [0], EV_READ);
860 }
747 861
748 ev_io_set (&sigev, sigpipe [0], EV_READ);
749 ev_io_start (EV_A_ &sigev); 862 ev_io_start (EV_A_ &pipeev);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 863 ev_unref (EV_A); /* watcher should not keep loop alive */
864 }
865}
866
867void inline_size
868evpipe_write (EV_P_ EV_ATOMIC_T *flag)
869{
870 if (!*flag)
871 {
872 int old_errno = errno; /* save errno because write might clobber it */
873
874 *flag = 1;
875
876#if EV_USE_EVENTFD
877 if (evfd >= 0)
878 {
879 uint64_t counter = 1;
880 write (evfd, &counter, sizeof (uint64_t));
881 }
882 else
883#endif
884 write (evpipe [1], &old_errno, 1);
885
886 errno = old_errno;
887 }
888}
889
890static void
891pipecb (EV_P_ ev_io *iow, int revents)
892{
893#if EV_USE_EVENTFD
894 if (evfd >= 0)
895 {
896 uint64_t counter = 1;
897 read (evfd, &counter, sizeof (uint64_t));
898 }
899 else
900#endif
901 {
902 char dummy;
903 read (evpipe [0], &dummy, 1);
904 }
905
906 if (gotsig && ev_is_default_loop (EV_A))
907 {
908 int signum;
909 gotsig = 0;
910
911 for (signum = signalmax; signum--; )
912 if (signals [signum].gotsig)
913 ev_feed_signal_event (EV_A_ signum + 1);
914 }
915
916#if EV_ASYNC_ENABLE
917 if (gotasync)
918 {
919 int i;
920 gotasync = 0;
921
922 for (i = asynccnt; i--; )
923 if (asyncs [i]->sent)
924 {
925 asyncs [i]->sent = 0;
926 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
927 }
928 }
929#endif
751} 930}
752 931
753/*****************************************************************************/ 932/*****************************************************************************/
754 933
934static void
935ev_sighandler (int signum)
936{
937#if EV_MULTIPLICITY
938 struct ev_loop *loop = &default_loop_struct;
939#endif
940
941#if _WIN32
942 signal (signum, ev_sighandler);
943#endif
944
945 signals [signum - 1].gotsig = 1;
946 evpipe_write (EV_A_ &gotsig);
947}
948
949void noinline
950ev_feed_signal_event (EV_P_ int signum)
951{
952 WL w;
953
954#if EV_MULTIPLICITY
955 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
956#endif
957
958 --signum;
959
960 if (signum < 0 || signum >= signalmax)
961 return;
962
963 signals [signum].gotsig = 0;
964
965 for (w = signals [signum].head; w; w = w->next)
966 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
967}
968
969/*****************************************************************************/
970
755static ev_child *childs [EV_PID_HASHSIZE]; 971static WL childs [EV_PID_HASHSIZE];
756 972
757#ifndef _WIN32 973#ifndef _WIN32
758 974
759static ev_signal childev; 975static ev_signal childev;
760 976
977#ifndef WIFCONTINUED
978# define WIFCONTINUED(status) 0
979#endif
980
761void inline_speed 981void inline_speed
762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 982child_reap (EV_P_ int chain, int pid, int status)
763{ 983{
764 ev_child *w; 984 ev_child *w;
985 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
765 986
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 987 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
988 {
767 if (w->pid == pid || !w->pid) 989 if ((w->pid == pid || !w->pid)
990 && (!traced || (w->flags & 1)))
768 { 991 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 992 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
770 w->rpid = pid; 993 w->rpid = pid;
771 w->rstatus = status; 994 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 995 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 996 }
997 }
774} 998}
775 999
776#ifndef WCONTINUED 1000#ifndef WCONTINUED
777# define WCONTINUED 0 1001# define WCONTINUED 0
778#endif 1002#endif
787 if (!WCONTINUED 1011 if (!WCONTINUED
788 || errno != EINVAL 1012 || errno != EINVAL
789 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1013 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
790 return; 1014 return;
791 1015
792 /* make sure we are called again until all childs have been reaped */ 1016 /* make sure we are called again until all children have been reaped */
793 /* we need to do it this way so that the callback gets called before we continue */ 1017 /* we need to do it this way so that the callback gets called before we continue */
794 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1018 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
795 1019
796 child_reap (EV_A_ sw, pid, pid, status); 1020 child_reap (EV_A_ pid, pid, status);
797 if (EV_PID_HASHSIZE > 1) 1021 if (EV_PID_HASHSIZE > 1)
798 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1022 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
799} 1023}
800 1024
801#endif 1025#endif
802 1026
803/*****************************************************************************/ 1027/*****************************************************************************/
875} 1099}
876 1100
877unsigned int 1101unsigned int
878ev_embeddable_backends (void) 1102ev_embeddable_backends (void)
879{ 1103{
880 return EVBACKEND_EPOLL 1104 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 1105
882 | EVBACKEND_PORT; 1106 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1107 /* please fix it and tell me how to detect the fix */
1108 flags &= ~EVBACKEND_EPOLL;
1109
1110 return flags;
883} 1111}
884 1112
885unsigned int 1113unsigned int
886ev_backend (EV_P) 1114ev_backend (EV_P)
887{ 1115{
888 return backend; 1116 return backend;
1117}
1118
1119unsigned int
1120ev_loop_count (EV_P)
1121{
1122 return loop_count;
1123}
1124
1125void
1126ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1127{
1128 io_blocktime = interval;
1129}
1130
1131void
1132ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1133{
1134 timeout_blocktime = interval;
889} 1135}
890 1136
891static void noinline 1137static void noinline
892loop_init (EV_P_ unsigned int flags) 1138loop_init (EV_P_ unsigned int flags)
893{ 1139{
899 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1145 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
900 have_monotonic = 1; 1146 have_monotonic = 1;
901 } 1147 }
902#endif 1148#endif
903 1149
904 ev_rt_now = ev_time (); 1150 ev_rt_now = ev_time ();
905 mn_now = get_clock (); 1151 mn_now = get_clock ();
906 now_floor = mn_now; 1152 now_floor = mn_now;
907 rtmn_diff = ev_rt_now - mn_now; 1153 rtmn_diff = ev_rt_now - mn_now;
1154
1155 io_blocktime = 0.;
1156 timeout_blocktime = 0.;
1157 backend = 0;
1158 backend_fd = -1;
1159 gotasync = 0;
1160#if EV_USE_INOTIFY
1161 fs_fd = -2;
1162#endif
908 1163
909 /* pid check not overridable via env */ 1164 /* pid check not overridable via env */
910#ifndef _WIN32 1165#ifndef _WIN32
911 if (flags & EVFLAG_FORKCHECK) 1166 if (flags & EVFLAG_FORKCHECK)
912 curpid = getpid (); 1167 curpid = getpid ();
918 flags = atoi (getenv ("LIBEV_FLAGS")); 1173 flags = atoi (getenv ("LIBEV_FLAGS"));
919 1174
920 if (!(flags & 0x0000ffffUL)) 1175 if (!(flags & 0x0000ffffUL))
921 flags |= ev_recommended_backends (); 1176 flags |= ev_recommended_backends ();
922 1177
923 backend = 0;
924 backend_fd = -1;
925#if EV_USE_INOTIFY
926 fs_fd = -2;
927#endif
928
929#if EV_USE_PORT 1178#if EV_USE_PORT
930 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1179 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
931#endif 1180#endif
932#if EV_USE_KQUEUE 1181#if EV_USE_KQUEUE
933 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1182 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
940#endif 1189#endif
941#if EV_USE_SELECT 1190#if EV_USE_SELECT
942 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1191 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
943#endif 1192#endif
944 1193
945 ev_init (&sigev, sigcb); 1194 ev_init (&pipeev, pipecb);
946 ev_set_priority (&sigev, EV_MAXPRI); 1195 ev_set_priority (&pipeev, EV_MAXPRI);
947 } 1196 }
948} 1197}
949 1198
950static void noinline 1199static void noinline
951loop_destroy (EV_P) 1200loop_destroy (EV_P)
952{ 1201{
953 int i; 1202 int i;
1203
1204 if (ev_is_active (&pipeev))
1205 {
1206 ev_ref (EV_A); /* signal watcher */
1207 ev_io_stop (EV_A_ &pipeev);
1208
1209#if EV_USE_EVENTFD
1210 if (evfd >= 0)
1211 close (evfd);
1212#endif
1213
1214 if (evpipe [0] >= 0)
1215 {
1216 close (evpipe [0]);
1217 close (evpipe [1]);
1218 }
1219 }
954 1220
955#if EV_USE_INOTIFY 1221#if EV_USE_INOTIFY
956 if (fs_fd >= 0) 1222 if (fs_fd >= 0)
957 close (fs_fd); 1223 close (fs_fd);
958#endif 1224#endif
975#if EV_USE_SELECT 1241#if EV_USE_SELECT
976 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1242 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
977#endif 1243#endif
978 1244
979 for (i = NUMPRI; i--; ) 1245 for (i = NUMPRI; i--; )
1246 {
980 array_free (pending, [i]); 1247 array_free (pending, [i]);
1248#if EV_IDLE_ENABLE
1249 array_free (idle, [i]);
1250#endif
1251 }
1252
1253 ev_free (anfds); anfdmax = 0;
981 1254
982 /* have to use the microsoft-never-gets-it-right macro */ 1255 /* have to use the microsoft-never-gets-it-right macro */
983 array_free (fdchange, EMPTY0); 1256 array_free (fdchange, EMPTY);
984 array_free (timer, EMPTY0); 1257 array_free (timer, EMPTY);
985#if EV_PERIODIC_ENABLE 1258#if EV_PERIODIC_ENABLE
986 array_free (periodic, EMPTY0); 1259 array_free (periodic, EMPTY);
987#endif 1260#endif
1261#if EV_FORK_ENABLE
988 array_free (idle, EMPTY0); 1262 array_free (fork, EMPTY);
1263#endif
989 array_free (prepare, EMPTY0); 1264 array_free (prepare, EMPTY);
990 array_free (check, EMPTY0); 1265 array_free (check, EMPTY);
1266#if EV_ASYNC_ENABLE
1267 array_free (async, EMPTY);
1268#endif
991 1269
992 backend = 0; 1270 backend = 0;
993} 1271}
994 1272
995void inline_size infy_fork (EV_P); 1273void inline_size infy_fork (EV_P);
1008#endif 1286#endif
1009#if EV_USE_INOTIFY 1287#if EV_USE_INOTIFY
1010 infy_fork (EV_A); 1288 infy_fork (EV_A);
1011#endif 1289#endif
1012 1290
1013 if (ev_is_active (&sigev)) 1291 if (ev_is_active (&pipeev))
1014 { 1292 {
1015 /* default loop */ 1293 /* this "locks" the handlers against writing to the pipe */
1294 /* while we modify the fd vars */
1295 gotsig = 1;
1296#if EV_ASYNC_ENABLE
1297 gotasync = 1;
1298#endif
1016 1299
1017 ev_ref (EV_A); 1300 ev_ref (EV_A);
1018 ev_io_stop (EV_A_ &sigev); 1301 ev_io_stop (EV_A_ &pipeev);
1302
1303#if EV_USE_EVENTFD
1304 if (evfd >= 0)
1305 close (evfd);
1306#endif
1307
1308 if (evpipe [0] >= 0)
1309 {
1019 close (sigpipe [0]); 1310 close (evpipe [0]);
1020 close (sigpipe [1]); 1311 close (evpipe [1]);
1312 }
1021 1313
1022 while (pipe (sigpipe))
1023 syserr ("(libev) error creating pipe");
1024
1025 siginit (EV_A); 1314 evpipe_init (EV_A);
1315 /* now iterate over everything, in case we missed something */
1316 pipecb (EV_A_ &pipeev, EV_READ);
1026 } 1317 }
1027 1318
1028 postfork = 0; 1319 postfork = 0;
1029} 1320}
1030 1321
1052} 1343}
1053 1344
1054void 1345void
1055ev_loop_fork (EV_P) 1346ev_loop_fork (EV_P)
1056{ 1347{
1057 postfork = 1; 1348 postfork = 1; /* must be in line with ev_default_fork */
1058} 1349}
1059 1350
1060#endif 1351#endif
1061 1352
1062#if EV_MULTIPLICITY 1353#if EV_MULTIPLICITY
1065#else 1356#else
1066int 1357int
1067ev_default_loop (unsigned int flags) 1358ev_default_loop (unsigned int flags)
1068#endif 1359#endif
1069{ 1360{
1070 if (sigpipe [0] == sigpipe [1])
1071 if (pipe (sigpipe))
1072 return 0;
1073
1074 if (!ev_default_loop_ptr) 1361 if (!ev_default_loop_ptr)
1075 { 1362 {
1076#if EV_MULTIPLICITY 1363#if EV_MULTIPLICITY
1077 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1364 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1078#else 1365#else
1081 1368
1082 loop_init (EV_A_ flags); 1369 loop_init (EV_A_ flags);
1083 1370
1084 if (ev_backend (EV_A)) 1371 if (ev_backend (EV_A))
1085 { 1372 {
1086 siginit (EV_A);
1087
1088#ifndef _WIN32 1373#ifndef _WIN32
1089 ev_signal_init (&childev, childcb, SIGCHLD); 1374 ev_signal_init (&childev, childcb, SIGCHLD);
1090 ev_set_priority (&childev, EV_MAXPRI); 1375 ev_set_priority (&childev, EV_MAXPRI);
1091 ev_signal_start (EV_A_ &childev); 1376 ev_signal_start (EV_A_ &childev);
1092 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1377 ev_unref (EV_A); /* child watcher should not keep loop alive */
1109#ifndef _WIN32 1394#ifndef _WIN32
1110 ev_ref (EV_A); /* child watcher */ 1395 ev_ref (EV_A); /* child watcher */
1111 ev_signal_stop (EV_A_ &childev); 1396 ev_signal_stop (EV_A_ &childev);
1112#endif 1397#endif
1113 1398
1114 ev_ref (EV_A); /* signal watcher */
1115 ev_io_stop (EV_A_ &sigev);
1116
1117 close (sigpipe [0]); sigpipe [0] = 0;
1118 close (sigpipe [1]); sigpipe [1] = 0;
1119
1120 loop_destroy (EV_A); 1399 loop_destroy (EV_A);
1121} 1400}
1122 1401
1123void 1402void
1124ev_default_fork (void) 1403ev_default_fork (void)
1126#if EV_MULTIPLICITY 1405#if EV_MULTIPLICITY
1127 struct ev_loop *loop = ev_default_loop_ptr; 1406 struct ev_loop *loop = ev_default_loop_ptr;
1128#endif 1407#endif
1129 1408
1130 if (backend) 1409 if (backend)
1131 postfork = 1; 1410 postfork = 1; /* must be in line with ev_loop_fork */
1132} 1411}
1133 1412
1134/*****************************************************************************/ 1413/*****************************************************************************/
1135 1414
1136int inline_size 1415void
1137any_pending (EV_P) 1416ev_invoke (EV_P_ void *w, int revents)
1138{ 1417{
1139 int pri; 1418 EV_CB_INVOKE ((W)w, revents);
1140
1141 for (pri = NUMPRI; pri--; )
1142 if (pendingcnt [pri])
1143 return 1;
1144
1145 return 0;
1146} 1419}
1147 1420
1148void inline_speed 1421void inline_speed
1149call_pending (EV_P) 1422call_pending (EV_P)
1150{ 1423{
1168void inline_size 1441void inline_size
1169timers_reify (EV_P) 1442timers_reify (EV_P)
1170{ 1443{
1171 while (timercnt && ((WT)timers [0])->at <= mn_now) 1444 while (timercnt && ((WT)timers [0])->at <= mn_now)
1172 { 1445 {
1173 ev_timer *w = timers [0]; 1446 ev_timer *w = (ev_timer *)timers [0];
1174 1447
1175 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1448 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1176 1449
1177 /* first reschedule or stop timer */ 1450 /* first reschedule or stop timer */
1178 if (w->repeat) 1451 if (w->repeat)
1181 1454
1182 ((WT)w)->at += w->repeat; 1455 ((WT)w)->at += w->repeat;
1183 if (((WT)w)->at < mn_now) 1456 if (((WT)w)->at < mn_now)
1184 ((WT)w)->at = mn_now; 1457 ((WT)w)->at = mn_now;
1185 1458
1186 downheap ((WT *)timers, timercnt, 0); 1459 downheap (timers, timercnt, 0);
1187 } 1460 }
1188 else 1461 else
1189 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1462 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1190 1463
1191 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1464 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1196void inline_size 1469void inline_size
1197periodics_reify (EV_P) 1470periodics_reify (EV_P)
1198{ 1471{
1199 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1472 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1200 { 1473 {
1201 ev_periodic *w = periodics [0]; 1474 ev_periodic *w = (ev_periodic *)periodics [0];
1202 1475
1203 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1476 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1204 1477
1205 /* first reschedule or stop timer */ 1478 /* first reschedule or stop timer */
1206 if (w->reschedule_cb) 1479 if (w->reschedule_cb)
1207 { 1480 {
1208 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1481 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1209 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1482 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1210 downheap ((WT *)periodics, periodiccnt, 0); 1483 downheap (periodics, periodiccnt, 0);
1211 } 1484 }
1212 else if (w->interval) 1485 else if (w->interval)
1213 { 1486 {
1214 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1487 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1488 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1215 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1489 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1216 downheap ((WT *)periodics, periodiccnt, 0); 1490 downheap (periodics, periodiccnt, 0);
1217 } 1491 }
1218 else 1492 else
1219 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1493 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1220 1494
1221 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1495 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1228 int i; 1502 int i;
1229 1503
1230 /* adjust periodics after time jump */ 1504 /* adjust periodics after time jump */
1231 for (i = 0; i < periodiccnt; ++i) 1505 for (i = 0; i < periodiccnt; ++i)
1232 { 1506 {
1233 ev_periodic *w = periodics [i]; 1507 ev_periodic *w = (ev_periodic *)periodics [i];
1234 1508
1235 if (w->reschedule_cb) 1509 if (w->reschedule_cb)
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1510 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1237 else if (w->interval) 1511 else if (w->interval)
1238 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1512 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1239 } 1513 }
1240 1514
1241 /* now rebuild the heap */ 1515 /* now rebuild the heap */
1242 for (i = periodiccnt >> 1; i--; ) 1516 for (i = periodiccnt >> 1; i--; )
1243 downheap ((WT *)periodics, periodiccnt, i); 1517 downheap (periodics, periodiccnt, i);
1244} 1518}
1245#endif 1519#endif
1246 1520
1521#if EV_IDLE_ENABLE
1247int inline_size 1522void inline_size
1248time_update_monotonic (EV_P) 1523idle_reify (EV_P)
1249{ 1524{
1525 if (expect_false (idleall))
1526 {
1527 int pri;
1528
1529 for (pri = NUMPRI; pri--; )
1530 {
1531 if (pendingcnt [pri])
1532 break;
1533
1534 if (idlecnt [pri])
1535 {
1536 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1537 break;
1538 }
1539 }
1540 }
1541}
1542#endif
1543
1544void inline_speed
1545time_update (EV_P_ ev_tstamp max_block)
1546{
1547 int i;
1548
1549#if EV_USE_MONOTONIC
1550 if (expect_true (have_monotonic))
1551 {
1552 ev_tstamp odiff = rtmn_diff;
1553
1250 mn_now = get_clock (); 1554 mn_now = get_clock ();
1251 1555
1556 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1557 /* interpolate in the meantime */
1252 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1558 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1253 { 1559 {
1254 ev_rt_now = rtmn_diff + mn_now; 1560 ev_rt_now = rtmn_diff + mn_now;
1255 return 0; 1561 return;
1256 } 1562 }
1257 else 1563
1258 {
1259 now_floor = mn_now; 1564 now_floor = mn_now;
1260 ev_rt_now = ev_time (); 1565 ev_rt_now = ev_time ();
1261 return 1;
1262 }
1263}
1264 1566
1265void inline_size 1567 /* loop a few times, before making important decisions.
1266time_update (EV_P) 1568 * on the choice of "4": one iteration isn't enough,
1267{ 1569 * in case we get preempted during the calls to
1268 int i; 1570 * ev_time and get_clock. a second call is almost guaranteed
1269 1571 * to succeed in that case, though. and looping a few more times
1270#if EV_USE_MONOTONIC 1572 * doesn't hurt either as we only do this on time-jumps or
1271 if (expect_true (have_monotonic)) 1573 * in the unlikely event of having been preempted here.
1272 { 1574 */
1273 if (time_update_monotonic (EV_A)) 1575 for (i = 4; --i; )
1274 { 1576 {
1275 ev_tstamp odiff = rtmn_diff;
1276
1277 /* loop a few times, before making important decisions.
1278 * on the choice of "4": one iteration isn't enough,
1279 * in case we get preempted during the calls to
1280 * ev_time and get_clock. a second call is almost guaranteed
1281 * to succeed in that case, though. and looping a few more times
1282 * doesn't hurt either as we only do this on time-jumps or
1283 * in the unlikely event of having been preempted here.
1284 */
1285 for (i = 4; --i; )
1286 {
1287 rtmn_diff = ev_rt_now - mn_now; 1577 rtmn_diff = ev_rt_now - mn_now;
1288 1578
1289 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1579 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1290 return; /* all is well */ 1580 return; /* all is well */
1291 1581
1292 ev_rt_now = ev_time (); 1582 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 1583 mn_now = get_clock ();
1294 now_floor = mn_now; 1584 now_floor = mn_now;
1295 } 1585 }
1296 1586
1297# if EV_PERIODIC_ENABLE 1587# if EV_PERIODIC_ENABLE
1298 periodics_reschedule (EV_A); 1588 periodics_reschedule (EV_A);
1299# endif 1589# endif
1300 /* no timer adjustment, as the monotonic clock doesn't jump */ 1590 /* no timer adjustment, as the monotonic clock doesn't jump */
1301 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1591 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1302 }
1303 } 1592 }
1304 else 1593 else
1305#endif 1594#endif
1306 { 1595 {
1307 ev_rt_now = ev_time (); 1596 ev_rt_now = ev_time ();
1308 1597
1309 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1598 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1310 { 1599 {
1311#if EV_PERIODIC_ENABLE 1600#if EV_PERIODIC_ENABLE
1312 periodics_reschedule (EV_A); 1601 periodics_reschedule (EV_A);
1313#endif 1602#endif
1314
1315 /* adjust timers. this is easy, as the offset is the same for all of them */ 1603 /* adjust timers. this is easy, as the offset is the same for all of them */
1316 for (i = 0; i < timercnt; ++i) 1604 for (i = 0; i < timercnt; ++i)
1317 ((WT)timers [i])->at += ev_rt_now - mn_now; 1605 ((WT)timers [i])->at += ev_rt_now - mn_now;
1318 } 1606 }
1319 1607
1336static int loop_done; 1624static int loop_done;
1337 1625
1338void 1626void
1339ev_loop (EV_P_ int flags) 1627ev_loop (EV_P_ int flags)
1340{ 1628{
1341 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1629 loop_done = EVUNLOOP_CANCEL;
1342 ? EVUNLOOP_ONE
1343 : EVUNLOOP_CANCEL;
1344 1630
1345 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1631 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1346 1632
1347 for (;;) 1633 do
1348 { 1634 {
1349#ifndef _WIN32 1635#ifndef _WIN32
1350 if (expect_false (curpid)) /* penalise the forking check even more */ 1636 if (expect_false (curpid)) /* penalise the forking check even more */
1351 if (expect_false (getpid () != curpid)) 1637 if (expect_false (getpid () != curpid))
1352 { 1638 {
1363 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1649 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1364 call_pending (EV_A); 1650 call_pending (EV_A);
1365 } 1651 }
1366#endif 1652#endif
1367 1653
1368 /* queue check watchers (and execute them) */ 1654 /* queue prepare watchers (and execute them) */
1369 if (expect_false (preparecnt)) 1655 if (expect_false (preparecnt))
1370 { 1656 {
1371 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1657 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1372 call_pending (EV_A); 1658 call_pending (EV_A);
1373 } 1659 }
1382 /* update fd-related kernel structures */ 1668 /* update fd-related kernel structures */
1383 fd_reify (EV_A); 1669 fd_reify (EV_A);
1384 1670
1385 /* calculate blocking time */ 1671 /* calculate blocking time */
1386 { 1672 {
1387 ev_tstamp block; 1673 ev_tstamp waittime = 0.;
1674 ev_tstamp sleeptime = 0.;
1388 1675
1389 if (flags & EVLOOP_NONBLOCK || idlecnt) 1676 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1390 block = 0.; /* do not block at all */
1391 else
1392 { 1677 {
1393 /* update time to cancel out callback processing overhead */ 1678 /* update time to cancel out callback processing overhead */
1394#if EV_USE_MONOTONIC
1395 if (expect_true (have_monotonic))
1396 time_update_monotonic (EV_A); 1679 time_update (EV_A_ 1e100);
1397 else
1398#endif
1399 {
1400 ev_rt_now = ev_time ();
1401 mn_now = ev_rt_now;
1402 }
1403 1680
1404 block = MAX_BLOCKTIME; 1681 waittime = MAX_BLOCKTIME;
1405 1682
1406 if (timercnt) 1683 if (timercnt)
1407 { 1684 {
1408 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1685 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1409 if (block > to) block = to; 1686 if (waittime > to) waittime = to;
1410 } 1687 }
1411 1688
1412#if EV_PERIODIC_ENABLE 1689#if EV_PERIODIC_ENABLE
1413 if (periodiccnt) 1690 if (periodiccnt)
1414 { 1691 {
1415 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1692 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1416 if (block > to) block = to; 1693 if (waittime > to) waittime = to;
1417 } 1694 }
1418#endif 1695#endif
1419 1696
1420 if (expect_false (block < 0.)) block = 0.; 1697 if (expect_false (waittime < timeout_blocktime))
1698 waittime = timeout_blocktime;
1699
1700 sleeptime = waittime - backend_fudge;
1701
1702 if (expect_true (sleeptime > io_blocktime))
1703 sleeptime = io_blocktime;
1704
1705 if (sleeptime)
1706 {
1707 ev_sleep (sleeptime);
1708 waittime -= sleeptime;
1709 }
1421 } 1710 }
1422 1711
1712 ++loop_count;
1423 backend_poll (EV_A_ block); 1713 backend_poll (EV_A_ waittime);
1714
1715 /* update ev_rt_now, do magic */
1716 time_update (EV_A_ waittime + sleeptime);
1424 } 1717 }
1425
1426 /* update ev_rt_now, do magic */
1427 time_update (EV_A);
1428 1718
1429 /* queue pending timers and reschedule them */ 1719 /* queue pending timers and reschedule them */
1430 timers_reify (EV_A); /* relative timers called last */ 1720 timers_reify (EV_A); /* relative timers called last */
1431#if EV_PERIODIC_ENABLE 1721#if EV_PERIODIC_ENABLE
1432 periodics_reify (EV_A); /* absolute timers called first */ 1722 periodics_reify (EV_A); /* absolute timers called first */
1433#endif 1723#endif
1434 1724
1725#if EV_IDLE_ENABLE
1435 /* queue idle watchers unless other events are pending */ 1726 /* queue idle watchers unless other events are pending */
1436 if (idlecnt && !any_pending (EV_A)) 1727 idle_reify (EV_A);
1437 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1728#endif
1438 1729
1439 /* queue check watchers, to be executed first */ 1730 /* queue check watchers, to be executed first */
1440 if (expect_false (checkcnt)) 1731 if (expect_false (checkcnt))
1441 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1732 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1442 1733
1443 call_pending (EV_A); 1734 call_pending (EV_A);
1444
1445 if (expect_false (loop_done))
1446 break;
1447 } 1735 }
1736 while (expect_true (
1737 activecnt
1738 && !loop_done
1739 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1740 ));
1448 1741
1449 if (loop_done == EVUNLOOP_ONE) 1742 if (loop_done == EVUNLOOP_ONE)
1450 loop_done = EVUNLOOP_CANCEL; 1743 loop_done = EVUNLOOP_CANCEL;
1451} 1744}
1452 1745
1479 head = &(*head)->next; 1772 head = &(*head)->next;
1480 } 1773 }
1481} 1774}
1482 1775
1483void inline_speed 1776void inline_speed
1484ev_clear_pending (EV_P_ W w) 1777clear_pending (EV_P_ W w)
1485{ 1778{
1486 if (w->pending) 1779 if (w->pending)
1487 { 1780 {
1488 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1781 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1489 w->pending = 0; 1782 w->pending = 0;
1490 } 1783 }
1491} 1784}
1492 1785
1786int
1787ev_clear_pending (EV_P_ void *w)
1788{
1789 W w_ = (W)w;
1790 int pending = w_->pending;
1791
1792 if (expect_true (pending))
1793 {
1794 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1795 w_->pending = 0;
1796 p->w = 0;
1797 return p->events;
1798 }
1799 else
1800 return 0;
1801}
1802
1803void inline_size
1804pri_adjust (EV_P_ W w)
1805{
1806 int pri = w->priority;
1807 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1808 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1809 w->priority = pri;
1810}
1811
1493void inline_speed 1812void inline_speed
1494ev_start (EV_P_ W w, int active) 1813ev_start (EV_P_ W w, int active)
1495{ 1814{
1496 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1815 pri_adjust (EV_A_ w);
1497 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1498
1499 w->active = active; 1816 w->active = active;
1500 ev_ref (EV_A); 1817 ev_ref (EV_A);
1501} 1818}
1502 1819
1503void inline_size 1820void inline_size
1507 w->active = 0; 1824 w->active = 0;
1508} 1825}
1509 1826
1510/*****************************************************************************/ 1827/*****************************************************************************/
1511 1828
1512void 1829void noinline
1513ev_io_start (EV_P_ ev_io *w) 1830ev_io_start (EV_P_ ev_io *w)
1514{ 1831{
1515 int fd = w->fd; 1832 int fd = w->fd;
1516 1833
1517 if (expect_false (ev_is_active (w))) 1834 if (expect_false (ev_is_active (w)))
1519 1836
1520 assert (("ev_io_start called with negative fd", fd >= 0)); 1837 assert (("ev_io_start called with negative fd", fd >= 0));
1521 1838
1522 ev_start (EV_A_ (W)w, 1); 1839 ev_start (EV_A_ (W)w, 1);
1523 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1840 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1524 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1841 wlist_add (&anfds[fd].head, (WL)w);
1525 1842
1526 fd_change (EV_A_ fd); 1843 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1844 w->events &= ~EV_IOFDSET;
1527} 1845}
1528 1846
1529void 1847void noinline
1530ev_io_stop (EV_P_ ev_io *w) 1848ev_io_stop (EV_P_ ev_io *w)
1531{ 1849{
1532 ev_clear_pending (EV_A_ (W)w); 1850 clear_pending (EV_A_ (W)w);
1533 if (expect_false (!ev_is_active (w))) 1851 if (expect_false (!ev_is_active (w)))
1534 return; 1852 return;
1535 1853
1536 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1854 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1537 1855
1538 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1856 wlist_del (&anfds[w->fd].head, (WL)w);
1539 ev_stop (EV_A_ (W)w); 1857 ev_stop (EV_A_ (W)w);
1540 1858
1541 fd_change (EV_A_ w->fd); 1859 fd_change (EV_A_ w->fd, 1);
1542} 1860}
1543 1861
1544void 1862void noinline
1545ev_timer_start (EV_P_ ev_timer *w) 1863ev_timer_start (EV_P_ ev_timer *w)
1546{ 1864{
1547 if (expect_false (ev_is_active (w))) 1865 if (expect_false (ev_is_active (w)))
1548 return; 1866 return;
1549 1867
1550 ((WT)w)->at += mn_now; 1868 ((WT)w)->at += mn_now;
1551 1869
1552 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1870 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1553 1871
1554 ev_start (EV_A_ (W)w, ++timercnt); 1872 ev_start (EV_A_ (W)w, ++timercnt);
1555 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1873 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1556 timers [timercnt - 1] = w; 1874 timers [timercnt - 1] = (WT)w;
1557 upheap ((WT *)timers, timercnt - 1); 1875 upheap (timers, timercnt - 1);
1558 1876
1559 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1877 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1560} 1878}
1561 1879
1562void 1880void noinline
1563ev_timer_stop (EV_P_ ev_timer *w) 1881ev_timer_stop (EV_P_ ev_timer *w)
1564{ 1882{
1565 ev_clear_pending (EV_A_ (W)w); 1883 clear_pending (EV_A_ (W)w);
1566 if (expect_false (!ev_is_active (w))) 1884 if (expect_false (!ev_is_active (w)))
1567 return; 1885 return;
1568 1886
1569 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1887 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1570 1888
1571 { 1889 {
1572 int active = ((W)w)->active; 1890 int active = ((W)w)->active;
1573 1891
1574 if (expect_true (--active < --timercnt)) 1892 if (expect_true (--active < --timercnt))
1575 { 1893 {
1576 timers [active] = timers [timercnt]; 1894 timers [active] = timers [timercnt];
1577 adjustheap ((WT *)timers, timercnt, active); 1895 adjustheap (timers, timercnt, active);
1578 } 1896 }
1579 } 1897 }
1580 1898
1581 ((WT)w)->at -= mn_now; 1899 ((WT)w)->at -= mn_now;
1582 1900
1583 ev_stop (EV_A_ (W)w); 1901 ev_stop (EV_A_ (W)w);
1584} 1902}
1585 1903
1586void 1904void noinline
1587ev_timer_again (EV_P_ ev_timer *w) 1905ev_timer_again (EV_P_ ev_timer *w)
1588{ 1906{
1589 if (ev_is_active (w)) 1907 if (ev_is_active (w))
1590 { 1908 {
1591 if (w->repeat) 1909 if (w->repeat)
1592 { 1910 {
1593 ((WT)w)->at = mn_now + w->repeat; 1911 ((WT)w)->at = mn_now + w->repeat;
1594 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1912 adjustheap (timers, timercnt, ((W)w)->active - 1);
1595 } 1913 }
1596 else 1914 else
1597 ev_timer_stop (EV_A_ w); 1915 ev_timer_stop (EV_A_ w);
1598 } 1916 }
1599 else if (w->repeat) 1917 else if (w->repeat)
1602 ev_timer_start (EV_A_ w); 1920 ev_timer_start (EV_A_ w);
1603 } 1921 }
1604} 1922}
1605 1923
1606#if EV_PERIODIC_ENABLE 1924#if EV_PERIODIC_ENABLE
1607void 1925void noinline
1608ev_periodic_start (EV_P_ ev_periodic *w) 1926ev_periodic_start (EV_P_ ev_periodic *w)
1609{ 1927{
1610 if (expect_false (ev_is_active (w))) 1928 if (expect_false (ev_is_active (w)))
1611 return; 1929 return;
1612 1930
1614 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1932 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1615 else if (w->interval) 1933 else if (w->interval)
1616 { 1934 {
1617 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1935 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1618 /* this formula differs from the one in periodic_reify because we do not always round up */ 1936 /* this formula differs from the one in periodic_reify because we do not always round up */
1619 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1937 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1620 } 1938 }
1939 else
1940 ((WT)w)->at = w->offset;
1621 1941
1622 ev_start (EV_A_ (W)w, ++periodiccnt); 1942 ev_start (EV_A_ (W)w, ++periodiccnt);
1623 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1943 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1624 periodics [periodiccnt - 1] = w; 1944 periodics [periodiccnt - 1] = (WT)w;
1625 upheap ((WT *)periodics, periodiccnt - 1); 1945 upheap (periodics, periodiccnt - 1);
1626 1946
1627 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1947 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1628} 1948}
1629 1949
1630void 1950void noinline
1631ev_periodic_stop (EV_P_ ev_periodic *w) 1951ev_periodic_stop (EV_P_ ev_periodic *w)
1632{ 1952{
1633 ev_clear_pending (EV_A_ (W)w); 1953 clear_pending (EV_A_ (W)w);
1634 if (expect_false (!ev_is_active (w))) 1954 if (expect_false (!ev_is_active (w)))
1635 return; 1955 return;
1636 1956
1637 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1957 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1638 1958
1639 { 1959 {
1640 int active = ((W)w)->active; 1960 int active = ((W)w)->active;
1641 1961
1642 if (expect_true (--active < --periodiccnt)) 1962 if (expect_true (--active < --periodiccnt))
1643 { 1963 {
1644 periodics [active] = periodics [periodiccnt]; 1964 periodics [active] = periodics [periodiccnt];
1645 adjustheap ((WT *)periodics, periodiccnt, active); 1965 adjustheap (periodics, periodiccnt, active);
1646 } 1966 }
1647 } 1967 }
1648 1968
1649 ev_stop (EV_A_ (W)w); 1969 ev_stop (EV_A_ (W)w);
1650} 1970}
1651 1971
1652void 1972void noinline
1653ev_periodic_again (EV_P_ ev_periodic *w) 1973ev_periodic_again (EV_P_ ev_periodic *w)
1654{ 1974{
1655 /* TODO: use adjustheap and recalculation */ 1975 /* TODO: use adjustheap and recalculation */
1656 ev_periodic_stop (EV_A_ w); 1976 ev_periodic_stop (EV_A_ w);
1657 ev_periodic_start (EV_A_ w); 1977 ev_periodic_start (EV_A_ w);
1660 1980
1661#ifndef SA_RESTART 1981#ifndef SA_RESTART
1662# define SA_RESTART 0 1982# define SA_RESTART 0
1663#endif 1983#endif
1664 1984
1665void 1985void noinline
1666ev_signal_start (EV_P_ ev_signal *w) 1986ev_signal_start (EV_P_ ev_signal *w)
1667{ 1987{
1668#if EV_MULTIPLICITY 1988#if EV_MULTIPLICITY
1669 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1989 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1670#endif 1990#endif
1671 if (expect_false (ev_is_active (w))) 1991 if (expect_false (ev_is_active (w)))
1672 return; 1992 return;
1673 1993
1674 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1994 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1675 1995
1996 evpipe_init (EV_A);
1997
1998 {
1999#ifndef _WIN32
2000 sigset_t full, prev;
2001 sigfillset (&full);
2002 sigprocmask (SIG_SETMASK, &full, &prev);
2003#endif
2004
2005 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2006
2007#ifndef _WIN32
2008 sigprocmask (SIG_SETMASK, &prev, 0);
2009#endif
2010 }
2011
1676 ev_start (EV_A_ (W)w, 1); 2012 ev_start (EV_A_ (W)w, 1);
1677 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1678 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2013 wlist_add (&signals [w->signum - 1].head, (WL)w);
1679 2014
1680 if (!((WL)w)->next) 2015 if (!((WL)w)->next)
1681 { 2016 {
1682#if _WIN32 2017#if _WIN32
1683 signal (w->signum, sighandler); 2018 signal (w->signum, ev_sighandler);
1684#else 2019#else
1685 struct sigaction sa; 2020 struct sigaction sa;
1686 sa.sa_handler = sighandler; 2021 sa.sa_handler = ev_sighandler;
1687 sigfillset (&sa.sa_mask); 2022 sigfillset (&sa.sa_mask);
1688 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2023 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1689 sigaction (w->signum, &sa, 0); 2024 sigaction (w->signum, &sa, 0);
1690#endif 2025#endif
1691 } 2026 }
1692} 2027}
1693 2028
1694void 2029void noinline
1695ev_signal_stop (EV_P_ ev_signal *w) 2030ev_signal_stop (EV_P_ ev_signal *w)
1696{ 2031{
1697 ev_clear_pending (EV_A_ (W)w); 2032 clear_pending (EV_A_ (W)w);
1698 if (expect_false (!ev_is_active (w))) 2033 if (expect_false (!ev_is_active (w)))
1699 return; 2034 return;
1700 2035
1701 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2036 wlist_del (&signals [w->signum - 1].head, (WL)w);
1702 ev_stop (EV_A_ (W)w); 2037 ev_stop (EV_A_ (W)w);
1703 2038
1704 if (!signals [w->signum - 1].head) 2039 if (!signals [w->signum - 1].head)
1705 signal (w->signum, SIG_DFL); 2040 signal (w->signum, SIG_DFL);
1706} 2041}
1713#endif 2048#endif
1714 if (expect_false (ev_is_active (w))) 2049 if (expect_false (ev_is_active (w)))
1715 return; 2050 return;
1716 2051
1717 ev_start (EV_A_ (W)w, 1); 2052 ev_start (EV_A_ (W)w, 1);
1718 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2053 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1719} 2054}
1720 2055
1721void 2056void
1722ev_child_stop (EV_P_ ev_child *w) 2057ev_child_stop (EV_P_ ev_child *w)
1723{ 2058{
1724 ev_clear_pending (EV_A_ (W)w); 2059 clear_pending (EV_A_ (W)w);
1725 if (expect_false (!ev_is_active (w))) 2060 if (expect_false (!ev_is_active (w)))
1726 return; 2061 return;
1727 2062
1728 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2063 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1729 ev_stop (EV_A_ (W)w); 2064 ev_stop (EV_A_ (W)w);
1730} 2065}
1731 2066
1732#if EV_STAT_ENABLE 2067#if EV_STAT_ENABLE
1733 2068
1965} 2300}
1966 2301
1967void 2302void
1968ev_stat_stop (EV_P_ ev_stat *w) 2303ev_stat_stop (EV_P_ ev_stat *w)
1969{ 2304{
1970 ev_clear_pending (EV_A_ (W)w); 2305 clear_pending (EV_A_ (W)w);
1971 if (expect_false (!ev_is_active (w))) 2306 if (expect_false (!ev_is_active (w)))
1972 return; 2307 return;
1973 2308
1974#if EV_USE_INOTIFY 2309#if EV_USE_INOTIFY
1975 infy_del (EV_A_ w); 2310 infy_del (EV_A_ w);
1978 2313
1979 ev_stop (EV_A_ (W)w); 2314 ev_stop (EV_A_ (W)w);
1980} 2315}
1981#endif 2316#endif
1982 2317
2318#if EV_IDLE_ENABLE
1983void 2319void
1984ev_idle_start (EV_P_ ev_idle *w) 2320ev_idle_start (EV_P_ ev_idle *w)
1985{ 2321{
1986 if (expect_false (ev_is_active (w))) 2322 if (expect_false (ev_is_active (w)))
1987 return; 2323 return;
1988 2324
2325 pri_adjust (EV_A_ (W)w);
2326
2327 {
2328 int active = ++idlecnt [ABSPRI (w)];
2329
2330 ++idleall;
1989 ev_start (EV_A_ (W)w, ++idlecnt); 2331 ev_start (EV_A_ (W)w, active);
2332
1990 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2333 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1991 idles [idlecnt - 1] = w; 2334 idles [ABSPRI (w)][active - 1] = w;
2335 }
1992} 2336}
1993 2337
1994void 2338void
1995ev_idle_stop (EV_P_ ev_idle *w) 2339ev_idle_stop (EV_P_ ev_idle *w)
1996{ 2340{
1997 ev_clear_pending (EV_A_ (W)w); 2341 clear_pending (EV_A_ (W)w);
1998 if (expect_false (!ev_is_active (w))) 2342 if (expect_false (!ev_is_active (w)))
1999 return; 2343 return;
2000 2344
2001 { 2345 {
2002 int active = ((W)w)->active; 2346 int active = ((W)w)->active;
2003 idles [active - 1] = idles [--idlecnt]; 2347
2348 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2004 ((W)idles [active - 1])->active = active; 2349 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2350
2351 ev_stop (EV_A_ (W)w);
2352 --idleall;
2005 } 2353 }
2006
2007 ev_stop (EV_A_ (W)w);
2008} 2354}
2355#endif
2009 2356
2010void 2357void
2011ev_prepare_start (EV_P_ ev_prepare *w) 2358ev_prepare_start (EV_P_ ev_prepare *w)
2012{ 2359{
2013 if (expect_false (ev_is_active (w))) 2360 if (expect_false (ev_is_active (w)))
2019} 2366}
2020 2367
2021void 2368void
2022ev_prepare_stop (EV_P_ ev_prepare *w) 2369ev_prepare_stop (EV_P_ ev_prepare *w)
2023{ 2370{
2024 ev_clear_pending (EV_A_ (W)w); 2371 clear_pending (EV_A_ (W)w);
2025 if (expect_false (!ev_is_active (w))) 2372 if (expect_false (!ev_is_active (w)))
2026 return; 2373 return;
2027 2374
2028 { 2375 {
2029 int active = ((W)w)->active; 2376 int active = ((W)w)->active;
2046} 2393}
2047 2394
2048void 2395void
2049ev_check_stop (EV_P_ ev_check *w) 2396ev_check_stop (EV_P_ ev_check *w)
2050{ 2397{
2051 ev_clear_pending (EV_A_ (W)w); 2398 clear_pending (EV_A_ (W)w);
2052 if (expect_false (!ev_is_active (w))) 2399 if (expect_false (!ev_is_active (w)))
2053 return; 2400 return;
2054 2401
2055 { 2402 {
2056 int active = ((W)w)->active; 2403 int active = ((W)w)->active;
2063 2410
2064#if EV_EMBED_ENABLE 2411#if EV_EMBED_ENABLE
2065void noinline 2412void noinline
2066ev_embed_sweep (EV_P_ ev_embed *w) 2413ev_embed_sweep (EV_P_ ev_embed *w)
2067{ 2414{
2068 ev_loop (w->loop, EVLOOP_NONBLOCK); 2415 ev_loop (w->other, EVLOOP_NONBLOCK);
2069} 2416}
2070 2417
2071static void 2418static void
2072embed_cb (EV_P_ ev_io *io, int revents) 2419embed_io_cb (EV_P_ ev_io *io, int revents)
2073{ 2420{
2074 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2421 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2075 2422
2076 if (ev_cb (w)) 2423 if (ev_cb (w))
2077 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2424 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2078 else 2425 else
2079 ev_embed_sweep (loop, w); 2426 ev_loop (w->other, EVLOOP_NONBLOCK);
2080} 2427}
2428
2429static void
2430embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2431{
2432 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2433
2434 {
2435 struct ev_loop *loop = w->other;
2436
2437 while (fdchangecnt)
2438 {
2439 fd_reify (EV_A);
2440 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2441 }
2442 }
2443}
2444
2445#if 0
2446static void
2447embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2448{
2449 ev_idle_stop (EV_A_ idle);
2450}
2451#endif
2081 2452
2082void 2453void
2083ev_embed_start (EV_P_ ev_embed *w) 2454ev_embed_start (EV_P_ ev_embed *w)
2084{ 2455{
2085 if (expect_false (ev_is_active (w))) 2456 if (expect_false (ev_is_active (w)))
2086 return; 2457 return;
2087 2458
2088 { 2459 {
2089 struct ev_loop *loop = w->loop; 2460 struct ev_loop *loop = w->other;
2090 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2461 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2091 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2462 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2092 } 2463 }
2093 2464
2094 ev_set_priority (&w->io, ev_priority (w)); 2465 ev_set_priority (&w->io, ev_priority (w));
2095 ev_io_start (EV_A_ &w->io); 2466 ev_io_start (EV_A_ &w->io);
2096 2467
2468 ev_prepare_init (&w->prepare, embed_prepare_cb);
2469 ev_set_priority (&w->prepare, EV_MINPRI);
2470 ev_prepare_start (EV_A_ &w->prepare);
2471
2472 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2473
2097 ev_start (EV_A_ (W)w, 1); 2474 ev_start (EV_A_ (W)w, 1);
2098} 2475}
2099 2476
2100void 2477void
2101ev_embed_stop (EV_P_ ev_embed *w) 2478ev_embed_stop (EV_P_ ev_embed *w)
2102{ 2479{
2103 ev_clear_pending (EV_A_ (W)w); 2480 clear_pending (EV_A_ (W)w);
2104 if (expect_false (!ev_is_active (w))) 2481 if (expect_false (!ev_is_active (w)))
2105 return; 2482 return;
2106 2483
2107 ev_io_stop (EV_A_ &w->io); 2484 ev_io_stop (EV_A_ &w->io);
2485 ev_prepare_stop (EV_A_ &w->prepare);
2108 2486
2109 ev_stop (EV_A_ (W)w); 2487 ev_stop (EV_A_ (W)w);
2110} 2488}
2111#endif 2489#endif
2112 2490
2123} 2501}
2124 2502
2125void 2503void
2126ev_fork_stop (EV_P_ ev_fork *w) 2504ev_fork_stop (EV_P_ ev_fork *w)
2127{ 2505{
2128 ev_clear_pending (EV_A_ (W)w); 2506 clear_pending (EV_A_ (W)w);
2129 if (expect_false (!ev_is_active (w))) 2507 if (expect_false (!ev_is_active (w)))
2130 return; 2508 return;
2131 2509
2132 { 2510 {
2133 int active = ((W)w)->active; 2511 int active = ((W)w)->active;
2137 2515
2138 ev_stop (EV_A_ (W)w); 2516 ev_stop (EV_A_ (W)w);
2139} 2517}
2140#endif 2518#endif
2141 2519
2520#if EV_ASYNC_ENABLE
2521void
2522ev_async_start (EV_P_ ev_async *w)
2523{
2524 if (expect_false (ev_is_active (w)))
2525 return;
2526
2527 evpipe_init (EV_A);
2528
2529 ev_start (EV_A_ (W)w, ++asynccnt);
2530 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2531 asyncs [asynccnt - 1] = w;
2532}
2533
2534void
2535ev_async_stop (EV_P_ ev_async *w)
2536{
2537 clear_pending (EV_A_ (W)w);
2538 if (expect_false (!ev_is_active (w)))
2539 return;
2540
2541 {
2542 int active = ((W)w)->active;
2543 asyncs [active - 1] = asyncs [--asynccnt];
2544 ((W)asyncs [active - 1])->active = active;
2545 }
2546
2547 ev_stop (EV_A_ (W)w);
2548}
2549
2550void
2551ev_async_send (EV_P_ ev_async *w)
2552{
2553 w->sent = 1;
2554 evpipe_write (EV_A_ &gotasync);
2555}
2556#endif
2557
2142/*****************************************************************************/ 2558/*****************************************************************************/
2143 2559
2144struct ev_once 2560struct ev_once
2145{ 2561{
2146 ev_io io; 2562 ev_io io;
2201 ev_timer_set (&once->to, timeout, 0.); 2617 ev_timer_set (&once->to, timeout, 0.);
2202 ev_timer_start (EV_A_ &once->to); 2618 ev_timer_start (EV_A_ &once->to);
2203 } 2619 }
2204} 2620}
2205 2621
2622#if EV_MULTIPLICITY
2623 #include "ev_wrap.h"
2624#endif
2625
2206#ifdef __cplusplus 2626#ifdef __cplusplus
2207} 2627}
2208#endif 2628#endif
2209 2629

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines