ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.159 by root, Sat Dec 1 19:48:36 2007 UTC vs.
Revision 1.358 by root, Sun Oct 24 14:44:40 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
43# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
46# endif 65# endif
47# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
49# endif 68# endif
50# else 69# else
51# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
53# endif 72# endif
54# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
56# endif 75# endif
57# endif 76# endif
58 77
78# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 79# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 81# endif
82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0
65# endif 85# endif
66 86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 88# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 89# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
94# endif
95
96# if HAVE_POLL && HAVE_POLL_H
97# ifndef EV_USE_POLL
98# define EV_USE_POLL EV_FEATURE_BACKENDS
99# endif
100# else
101# undef EV_USE_POLL
102# define EV_USE_POLL 0
73# endif 103# endif
74 104
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
78# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
81# endif 112# endif
82 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
89# endif 121# endif
90 122
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
94# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
97# endif 130# endif
98 131
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
102# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
104# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
105# endif 139# endif
106 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
107#endif 159#endif
108 160
109#include <math.h> 161#include <math.h>
110#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
111#include <fcntl.h> 164#include <fcntl.h>
112#include <stddef.h> 165#include <stddef.h>
113 166
114#include <stdio.h> 167#include <stdio.h>
115 168
116#include <assert.h> 169#include <assert.h>
117#include <errno.h> 170#include <errno.h>
118#include <sys/types.h> 171#include <sys/types.h>
119#include <time.h> 172#include <time.h>
173#include <limits.h>
120 174
121#include <signal.h> 175#include <signal.h>
122 176
123#ifdef EV_H 177#ifdef EV_H
124# include EV_H 178# include EV_H
125#else 179#else
126# include "ev.h" 180# include "ev.h"
127#endif 181#endif
182
183EV_CPP(extern "C" {)
128 184
129#ifndef _WIN32 185#ifndef _WIN32
130# include <sys/time.h> 186# include <sys/time.h>
131# include <sys/wait.h> 187# include <sys/wait.h>
132# include <unistd.h> 188# include <unistd.h>
133#else 189#else
190# include <io.h>
134# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 192# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
138# endif 195# endif
196# undef EV_AVOID_STDIO
197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
139#endif 242# endif
140 243#endif
141/**/
142 244
143#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
144# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
145#endif 251#endif
146 252
147#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255#endif
256
257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
261# define EV_USE_NANOSLEEP 0
262# endif
149#endif 263#endif
150 264
151#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 267#endif
154 268
155#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
156# ifdef _WIN32 270# ifdef _WIN32
157# define EV_USE_POLL 0 271# define EV_USE_POLL 0
158# else 272# else
159# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 274# endif
161#endif 275#endif
162 276
163#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
164# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
282# endif
165#endif 283#endif
166 284
167#ifndef EV_USE_KQUEUE 285#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 286# define EV_USE_KQUEUE 0
169#endif 287#endif
171#ifndef EV_USE_PORT 289#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 290# define EV_USE_PORT 0
173#endif 291#endif
174 292
175#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_INOTIFY EV_FEATURE_OS
296# else
176# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
298# endif
177#endif 299#endif
178 300
179#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
309#ifndef EV_USE_EVENTFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 312# else
183# define EV_PID_HASHSIZE 16 313# define EV_USE_EVENTFD 0
184# endif 314# endif
185#endif 315#endif
186 316
187#ifndef EV_INOTIFY_HASHSIZE 317#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 319# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 320# else
191# define EV_INOTIFY_HASHSIZE 16 321# define EV_USE_SIGNALFD 0
192# endif 322# endif
193#endif 323#endif
194 324
195/**/ 325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
196 364
197#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
200#endif 368#endif
202#ifndef CLOCK_REALTIME 370#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 371# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 372# define EV_USE_REALTIME 0
205#endif 373#endif
206 374
375#if !EV_STAT_ENABLE
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378#endif
379
380#if !EV_USE_NANOSLEEP
381# ifndef _WIN32
382# include <sys/select.h>
383# endif
384#endif
385
386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
394#endif
395
207#if EV_SELECT_IS_WINSOCKET 396#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 397# include <winsock.h>
209#endif 398#endif
210 399
211#if !EV_STAT_ENABLE 400#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
402# include <stdint.h>
403# ifndef EFD_NONBLOCK
404# define EFD_NONBLOCK O_NONBLOCK
213#endif 405# endif
406# ifndef EFD_CLOEXEC
407# ifdef O_CLOEXEC
408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
214 415
215#if EV_USE_INOTIFY 416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
216# include <sys/inotify.h> 418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
217#endif 436#endif
218 437
219/**/ 438/**/
439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
445
446/*
447 * This is used to avoid floating point rounding problems.
448 * It is added to ev_rt_now when scheduling periodics
449 * to ensure progress, time-wise, even when rounding
450 * errors are against us.
451 * This value is good at least till the year 4000.
452 * Better solutions welcome.
453 */
454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 455
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 458
459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
461
225#if __GNUC__ >= 3 462#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 464# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 465#else
236# define expect(expr,value) (expr) 466# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 467# define noinline
468# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
469# define inline
470# endif
240#endif 471#endif
241 472
242#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
475#define inline_size static inline
244 476
477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
480# define inline_speed static noinline
481#endif
482
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
487#else
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
247 490
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 491#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 492#define EMPTY2(a,b) /* used to suppress some warnings */
250 493
251typedef ev_watcher *W; 494typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 495typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
254 497
498#define ev_active(w) ((W)(w))->active
499#define ev_at(w) ((WT)(w))->at
500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
507#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
519#endif
256 520
257#ifdef _WIN32 521#ifdef _WIN32
258# include "ev_win32.c" 522# include "ev_win32.c"
259#endif 523#endif
260 524
261/*****************************************************************************/ 525/*****************************************************************************/
262 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 struct utsname buf;
536 unsigned int v;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
263static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
264 578
265void 579void
266ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
267{ 581{
268 syserr_cb = cb; 582 syserr_cb = cb;
269} 583}
270 584
271static void noinline 585static void noinline
272syserr (const char *msg) 586ev_syserr (const char *msg)
273{ 587{
274 if (!msg) 588 if (!msg)
275 msg = "(libev) system error"; 589 msg = "(libev) system error";
276 590
277 if (syserr_cb) 591 if (syserr_cb)
278 syserr_cb (msg); 592 syserr_cb (msg);
279 else 593 else
280 { 594 {
595#if EV_AVOID_STDIO
596 const char *err = strerror (errno);
597
598 ev_printerr (msg);
599 ev_printerr (": ");
600 ev_printerr (err);
601 ev_printerr ("\n");
602#else
281 perror (msg); 603 perror (msg);
604#endif
282 abort (); 605 abort ();
283 } 606 }
284} 607}
285 608
609static void *
610ev_realloc_emul (void *ptr, long size)
611{
612#if __GLIBC__
613 return realloc (ptr, size);
614#else
615 /* some systems, notably openbsd and darwin, fail to properly
616 * implement realloc (x, 0) (as required by both ansi c-89 and
617 * the single unix specification, so work around them here.
618 */
619
620 if (size)
621 return realloc (ptr, size);
622
623 free (ptr);
624 return 0;
625#endif
626}
627
286static void *(*alloc)(void *ptr, long size); 628static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 629
288void 630void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 631ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 632{
291 alloc = cb; 633 alloc = cb;
292} 634}
293 635
294inline_speed void * 636inline_speed void *
295ev_realloc (void *ptr, long size) 637ev_realloc (void *ptr, long size)
296{ 638{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 639 ptr = alloc (ptr, size);
298 640
299 if (!ptr && size) 641 if (!ptr && size)
300 { 642 {
643#if EV_AVOID_STDIO
644 ev_printerr ("libev: memory allocation failed, aborting.\n");
645#else
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 646 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
647#endif
302 abort (); 648 abort ();
303 } 649 }
304 650
305 return ptr; 651 return ptr;
306} 652}
308#define ev_malloc(size) ev_realloc (0, (size)) 654#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 655#define ev_free(ptr) ev_realloc ((ptr), 0)
310 656
311/*****************************************************************************/ 657/*****************************************************************************/
312 658
659/* set in reify when reification needed */
660#define EV_ANFD_REIFY 1
661
662/* file descriptor info structure */
313typedef struct 663typedef struct
314{ 664{
315 WL head; 665 WL head;
316 unsigned char events; 666 unsigned char events; /* the events watched for */
667 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
668 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 669 unsigned char unused;
670#if EV_USE_EPOLL
671 unsigned int egen; /* generation counter to counter epoll bugs */
672#endif
318#if EV_SELECT_IS_WINSOCKET 673#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
319 SOCKET handle; 674 SOCKET handle;
320#endif 675#endif
676#if EV_USE_IOCP
677 OVERLAPPED or, ow;
678#endif
321} ANFD; 679} ANFD;
322 680
681/* stores the pending event set for a given watcher */
323typedef struct 682typedef struct
324{ 683{
325 W w; 684 W w;
326 int events; 685 int events; /* the pending event set for the given watcher */
327} ANPENDING; 686} ANPENDING;
328 687
329#if EV_USE_INOTIFY 688#if EV_USE_INOTIFY
689/* hash table entry per inotify-id */
330typedef struct 690typedef struct
331{ 691{
332 WL head; 692 WL head;
333} ANFS; 693} ANFS;
694#endif
695
696/* Heap Entry */
697#if EV_HEAP_CACHE_AT
698 /* a heap element */
699 typedef struct {
700 ev_tstamp at;
701 WT w;
702 } ANHE;
703
704 #define ANHE_w(he) (he).w /* access watcher, read-write */
705 #define ANHE_at(he) (he).at /* access cached at, read-only */
706 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
707#else
708 /* a heap element */
709 typedef WT ANHE;
710
711 #define ANHE_w(he) (he)
712 #define ANHE_at(he) (he)->at
713 #define ANHE_at_cache(he)
334#endif 714#endif
335 715
336#if EV_MULTIPLICITY 716#if EV_MULTIPLICITY
337 717
338 struct ev_loop 718 struct ev_loop
357 737
358 static int ev_default_loop_ptr; 738 static int ev_default_loop_ptr;
359 739
360#endif 740#endif
361 741
742#if EV_FEATURE_API
743# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
744# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
745# define EV_INVOKE_PENDING invoke_cb (EV_A)
746#else
747# define EV_RELEASE_CB (void)0
748# define EV_ACQUIRE_CB (void)0
749# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
750#endif
751
752#define EVBREAK_RECURSE 0x80
753
362/*****************************************************************************/ 754/*****************************************************************************/
363 755
756#ifndef EV_HAVE_EV_TIME
364ev_tstamp 757ev_tstamp
365ev_time (void) 758ev_time (void)
366{ 759{
367#if EV_USE_REALTIME 760#if EV_USE_REALTIME
761 if (expect_true (have_realtime))
762 {
368 struct timespec ts; 763 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 764 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 765 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 766 }
767#endif
768
372 struct timeval tv; 769 struct timeval tv;
373 gettimeofday (&tv, 0); 770 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 771 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 772}
773#endif
377 774
378ev_tstamp inline_size 775inline_size ev_tstamp
379get_clock (void) 776get_clock (void)
380{ 777{
381#if EV_USE_MONOTONIC 778#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 779 if (expect_true (have_monotonic))
383 { 780 {
396{ 793{
397 return ev_rt_now; 794 return ev_rt_now;
398} 795}
399#endif 796#endif
400 797
401#define array_roundsize(type,n) (((n) | 4) & ~3) 798void
799ev_sleep (ev_tstamp delay)
800{
801 if (delay > 0.)
802 {
803#if EV_USE_NANOSLEEP
804 struct timespec ts;
805
806 EV_TS_SET (ts, delay);
807 nanosleep (&ts, 0);
808#elif defined(_WIN32)
809 Sleep ((unsigned long)(delay * 1e3));
810#else
811 struct timeval tv;
812
813 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
814 /* something not guaranteed by newer posix versions, but guaranteed */
815 /* by older ones */
816 EV_TV_SET (tv, delay);
817 select (0, 0, 0, 0, &tv);
818#endif
819 }
820}
821
822/*****************************************************************************/
823
824#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
825
826/* find a suitable new size for the given array, */
827/* hopefully by rounding to a nice-to-malloc size */
828inline_size int
829array_nextsize (int elem, int cur, int cnt)
830{
831 int ncur = cur + 1;
832
833 do
834 ncur <<= 1;
835 while (cnt > ncur);
836
837 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
838 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
839 {
840 ncur *= elem;
841 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
842 ncur = ncur - sizeof (void *) * 4;
843 ncur /= elem;
844 }
845
846 return ncur;
847}
848
849static noinline void *
850array_realloc (int elem, void *base, int *cur, int cnt)
851{
852 *cur = array_nextsize (elem, *cur, cnt);
853 return ev_realloc (base, elem * *cur);
854}
855
856#define array_init_zero(base,count) \
857 memset ((void *)(base), 0, sizeof (*(base)) * (count))
402 858
403#define array_needsize(type,base,cur,cnt,init) \ 859#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 860 if (expect_false ((cnt) > (cur))) \
405 { \ 861 { \
406 int newcnt = cur; \ 862 int ocur_ = (cur); \
407 do \ 863 (base) = (type *)array_realloc \
408 { \ 864 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 865 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 866 }
417 867
868#if 0
418#define array_slim(type,stem) \ 869#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 870 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 871 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 872 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 873 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 874 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 875 }
876#endif
425 877
426#define array_free(stem, idx) \ 878#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 879 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
428 880
429/*****************************************************************************/ 881/*****************************************************************************/
882
883/* dummy callback for pending events */
884static void noinline
885pendingcb (EV_P_ ev_prepare *w, int revents)
886{
887}
430 888
431void noinline 889void noinline
432ev_feed_event (EV_P_ void *w, int revents) 890ev_feed_event (EV_P_ void *w, int revents)
433{ 891{
434 W w_ = (W)w; 892 W w_ = (W)w;
893 int pri = ABSPRI (w_);
435 894
436 if (expect_false (w_->pending)) 895 if (expect_false (w_->pending))
896 pendings [pri][w_->pending - 1].events |= revents;
897 else
437 { 898 {
899 w_->pending = ++pendingcnt [pri];
900 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
901 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 902 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 903 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 904}
447 905
448void inline_size 906inline_speed void
907feed_reverse (EV_P_ W w)
908{
909 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
910 rfeeds [rfeedcnt++] = w;
911}
912
913inline_size void
914feed_reverse_done (EV_P_ int revents)
915{
916 do
917 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
918 while (rfeedcnt);
919}
920
921inline_speed void
449queue_events (EV_P_ W *events, int eventcnt, int type) 922queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 923{
451 int i; 924 int i;
452 925
453 for (i = 0; i < eventcnt; ++i) 926 for (i = 0; i < eventcnt; ++i)
454 ev_feed_event (EV_A_ events [i], type); 927 ev_feed_event (EV_A_ events [i], type);
455} 928}
456 929
457/*****************************************************************************/ 930/*****************************************************************************/
458 931
459void inline_size 932inline_speed void
460anfds_init (ANFD *base, int count)
461{
462 while (count--)
463 {
464 base->head = 0;
465 base->events = EV_NONE;
466 base->reify = 0;
467
468 ++base;
469 }
470}
471
472void inline_speed
473fd_event (EV_P_ int fd, int revents) 933fd_event_nocheck (EV_P_ int fd, int revents)
474{ 934{
475 ANFD *anfd = anfds + fd; 935 ANFD *anfd = anfds + fd;
476 ev_io *w; 936 ev_io *w;
477 937
478 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 938 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
482 if (ev) 942 if (ev)
483 ev_feed_event (EV_A_ (W)w, ev); 943 ev_feed_event (EV_A_ (W)w, ev);
484 } 944 }
485} 945}
486 946
947/* do not submit kernel events for fds that have reify set */
948/* because that means they changed while we were polling for new events */
949inline_speed void
950fd_event (EV_P_ int fd, int revents)
951{
952 ANFD *anfd = anfds + fd;
953
954 if (expect_true (!anfd->reify))
955 fd_event_nocheck (EV_A_ fd, revents);
956}
957
487void 958void
488ev_feed_fd_event (EV_P_ int fd, int revents) 959ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 960{
961 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 962 fd_event_nocheck (EV_A_ fd, revents);
491} 963}
492 964
493void inline_size 965/* make sure the external fd watch events are in-sync */
966/* with the kernel/libev internal state */
967inline_size void
494fd_reify (EV_P) 968fd_reify (EV_P)
495{ 969{
496 int i; 970 int i;
497 971
498 for (i = 0; i < fdchangecnt; ++i) 972 for (i = 0; i < fdchangecnt; ++i)
499 { 973 {
500 int fd = fdchanges [i]; 974 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 975 ANFD *anfd = anfds + fd;
502 ev_io *w; 976 ev_io *w;
503 977
504 int events = 0; 978 unsigned char o_events = anfd->events;
979 unsigned char o_reify = anfd->reify;
505 980
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 981 anfd->reify = 0;
507 events |= w->events;
508 982
509#if EV_SELECT_IS_WINSOCKET 983#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
510 if (events) 984 if (o_reify & EV__IOFDSET)
511 { 985 {
512 unsigned long argp; 986 unsigned long arg;
513 anfd->handle = _get_osfhandle (fd); 987 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 988 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
989 printf ("oi %d %x\n", fd, anfd->handle);//D
515 } 990 }
516#endif 991#endif
517 992
518 anfd->reify = 0; 993 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
994 {
995 anfd->events = 0;
519 996
997 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
998 anfd->events |= (unsigned char)w->events;
999
1000 if (o_events != anfd->events)
1001 o_reify = EV__IOFDSET; /* actually |= */
1002 }
1003
1004 if (o_reify & EV__IOFDSET)
520 backend_modify (EV_A_ fd, anfd->events, events); 1005 backend_modify (EV_A_ fd, o_events, anfd->events);
521 anfd->events = events;
522 } 1006 }
523 1007
524 fdchangecnt = 0; 1008 fdchangecnt = 0;
525} 1009}
526 1010
527void inline_size 1011/* something about the given fd changed */
1012inline_size void
528fd_change (EV_P_ int fd) 1013fd_change (EV_P_ int fd, int flags)
529{ 1014{
530 if (expect_false (anfds [fd].reify)) 1015 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 1016 anfds [fd].reify |= flags;
534 1017
1018 if (expect_true (!reify))
1019 {
535 ++fdchangecnt; 1020 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1021 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 1022 fdchanges [fdchangecnt - 1] = fd;
1023 }
538} 1024}
539 1025
540void inline_speed 1026/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1027inline_speed void
541fd_kill (EV_P_ int fd) 1028fd_kill (EV_P_ int fd)
542{ 1029{
543 ev_io *w; 1030 ev_io *w;
544 1031
545 while ((w = (ev_io *)anfds [fd].head)) 1032 while ((w = (ev_io *)anfds [fd].head))
547 ev_io_stop (EV_A_ w); 1034 ev_io_stop (EV_A_ w);
548 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1035 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
549 } 1036 }
550} 1037}
551 1038
552int inline_size 1039/* check whether the given fd is actually valid, for error recovery */
1040inline_size int
553fd_valid (int fd) 1041fd_valid (int fd)
554{ 1042{
555#ifdef _WIN32 1043#ifdef _WIN32
556 return _get_osfhandle (fd) != -1; 1044 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
557#else 1045#else
558 return fcntl (fd, F_GETFD) != -1; 1046 return fcntl (fd, F_GETFD) != -1;
559#endif 1047#endif
560} 1048}
561 1049
565{ 1053{
566 int fd; 1054 int fd;
567 1055
568 for (fd = 0; fd < anfdmax; ++fd) 1056 for (fd = 0; fd < anfdmax; ++fd)
569 if (anfds [fd].events) 1057 if (anfds [fd].events)
570 if (!fd_valid (fd) == -1 && errno == EBADF) 1058 if (!fd_valid (fd) && errno == EBADF)
571 fd_kill (EV_A_ fd); 1059 fd_kill (EV_A_ fd);
572} 1060}
573 1061
574/* called on ENOMEM in select/poll to kill some fds and retry */ 1062/* called on ENOMEM in select/poll to kill some fds and retry */
575static void noinline 1063static void noinline
579 1067
580 for (fd = anfdmax; fd--; ) 1068 for (fd = anfdmax; fd--; )
581 if (anfds [fd].events) 1069 if (anfds [fd].events)
582 { 1070 {
583 fd_kill (EV_A_ fd); 1071 fd_kill (EV_A_ fd);
584 return; 1072 break;
585 } 1073 }
586} 1074}
587 1075
588/* usually called after fork if backend needs to re-arm all fds from scratch */ 1076/* usually called after fork if backend needs to re-arm all fds from scratch */
589static void noinline 1077static void noinline
593 1081
594 for (fd = 0; fd < anfdmax; ++fd) 1082 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 1083 if (anfds [fd].events)
596 { 1084 {
597 anfds [fd].events = 0; 1085 anfds [fd].events = 0;
598 fd_change (EV_A_ fd); 1086 anfds [fd].emask = 0;
1087 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
599 } 1088 }
600} 1089}
601 1090
602/*****************************************************************************/ 1091/* used to prepare libev internal fd's */
603 1092/* this is not fork-safe */
604void inline_speed 1093inline_speed void
605upheap (WT *heap, int k)
606{
607 WT w = heap [k];
608
609 while (k && heap [k >> 1]->at > w->at)
610 {
611 heap [k] = heap [k >> 1];
612 ((W)heap [k])->active = k + 1;
613 k >>= 1;
614 }
615
616 heap [k] = w;
617 ((W)heap [k])->active = k + 1;
618
619}
620
621void inline_speed
622downheap (WT *heap, int N, int k)
623{
624 WT w = heap [k];
625
626 while (k < (N >> 1))
627 {
628 int j = k << 1;
629
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
631 ++j;
632
633 if (w->at <= heap [j]->at)
634 break;
635
636 heap [k] = heap [j];
637 ((W)heap [k])->active = k + 1;
638 k = j;
639 }
640
641 heap [k] = w;
642 ((W)heap [k])->active = k + 1;
643}
644
645void inline_size
646adjustheap (WT *heap, int N, int k)
647{
648 upheap (heap, k);
649 downheap (heap, N, k);
650}
651
652/*****************************************************************************/
653
654typedef struct
655{
656 WL head;
657 sig_atomic_t volatile gotsig;
658} ANSIG;
659
660static ANSIG *signals;
661static int signalmax;
662
663static int sigpipe [2];
664static sig_atomic_t volatile gotsig;
665static ev_io sigev;
666
667void inline_size
668signals_init (ANSIG *base, int count)
669{
670 while (count--)
671 {
672 base->head = 0;
673 base->gotsig = 0;
674
675 ++base;
676 }
677}
678
679static void
680sighandler (int signum)
681{
682#if _WIN32
683 signal (signum, sighandler);
684#endif
685
686 signals [signum - 1].gotsig = 1;
687
688 if (!gotsig)
689 {
690 int old_errno = errno;
691 gotsig = 1;
692 write (sigpipe [1], &signum, 1);
693 errno = old_errno;
694 }
695}
696
697void noinline
698ev_feed_signal_event (EV_P_ int signum)
699{
700 WL w;
701
702#if EV_MULTIPLICITY
703 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
704#endif
705
706 --signum;
707
708 if (signum < 0 || signum >= signalmax)
709 return;
710
711 signals [signum].gotsig = 0;
712
713 for (w = signals [signum].head; w; w = w->next)
714 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
715}
716
717static void
718sigcb (EV_P_ ev_io *iow, int revents)
719{
720 int signum;
721
722 read (sigpipe [0], &revents, 1);
723 gotsig = 0;
724
725 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1);
728}
729
730void inline_size
731fd_intern (int fd) 1094fd_intern (int fd)
732{ 1095{
733#ifdef _WIN32 1096#ifdef _WIN32
734 int arg = 1; 1097 unsigned long arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1098 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
736#else 1099#else
737 fcntl (fd, F_SETFD, FD_CLOEXEC); 1100 fcntl (fd, F_SETFD, FD_CLOEXEC);
738 fcntl (fd, F_SETFL, O_NONBLOCK); 1101 fcntl (fd, F_SETFL, O_NONBLOCK);
739#endif 1102#endif
740} 1103}
741 1104
1105/*****************************************************************************/
1106
1107/*
1108 * the heap functions want a real array index. array index 0 is guaranteed to not
1109 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1110 * the branching factor of the d-tree.
1111 */
1112
1113/*
1114 * at the moment we allow libev the luxury of two heaps,
1115 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1116 * which is more cache-efficient.
1117 * the difference is about 5% with 50000+ watchers.
1118 */
1119#if EV_USE_4HEAP
1120
1121#define DHEAP 4
1122#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1123#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1124#define UPHEAP_DONE(p,k) ((p) == (k))
1125
1126/* away from the root */
1127inline_speed void
1128downheap (ANHE *heap, int N, int k)
1129{
1130 ANHE he = heap [k];
1131 ANHE *E = heap + N + HEAP0;
1132
1133 for (;;)
1134 {
1135 ev_tstamp minat;
1136 ANHE *minpos;
1137 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1138
1139 /* find minimum child */
1140 if (expect_true (pos + DHEAP - 1 < E))
1141 {
1142 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1143 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1144 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1145 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1146 }
1147 else if (pos < E)
1148 {
1149 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1150 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1151 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1152 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1153 }
1154 else
1155 break;
1156
1157 if (ANHE_at (he) <= minat)
1158 break;
1159
1160 heap [k] = *minpos;
1161 ev_active (ANHE_w (*minpos)) = k;
1162
1163 k = minpos - heap;
1164 }
1165
1166 heap [k] = he;
1167 ev_active (ANHE_w (he)) = k;
1168}
1169
1170#else /* 4HEAP */
1171
1172#define HEAP0 1
1173#define HPARENT(k) ((k) >> 1)
1174#define UPHEAP_DONE(p,k) (!(p))
1175
1176/* away from the root */
1177inline_speed void
1178downheap (ANHE *heap, int N, int k)
1179{
1180 ANHE he = heap [k];
1181
1182 for (;;)
1183 {
1184 int c = k << 1;
1185
1186 if (c >= N + HEAP0)
1187 break;
1188
1189 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1190 ? 1 : 0;
1191
1192 if (ANHE_at (he) <= ANHE_at (heap [c]))
1193 break;
1194
1195 heap [k] = heap [c];
1196 ev_active (ANHE_w (heap [k])) = k;
1197
1198 k = c;
1199 }
1200
1201 heap [k] = he;
1202 ev_active (ANHE_w (he)) = k;
1203}
1204#endif
1205
1206/* towards the root */
1207inline_speed void
1208upheap (ANHE *heap, int k)
1209{
1210 ANHE he = heap [k];
1211
1212 for (;;)
1213 {
1214 int p = HPARENT (k);
1215
1216 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1217 break;
1218
1219 heap [k] = heap [p];
1220 ev_active (ANHE_w (heap [k])) = k;
1221 k = p;
1222 }
1223
1224 heap [k] = he;
1225 ev_active (ANHE_w (he)) = k;
1226}
1227
1228/* move an element suitably so it is in a correct place */
1229inline_size void
1230adjustheap (ANHE *heap, int N, int k)
1231{
1232 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1233 upheap (heap, k);
1234 else
1235 downheap (heap, N, k);
1236}
1237
1238/* rebuild the heap: this function is used only once and executed rarely */
1239inline_size void
1240reheap (ANHE *heap, int N)
1241{
1242 int i;
1243
1244 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1245 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1246 for (i = 0; i < N; ++i)
1247 upheap (heap, i + HEAP0);
1248}
1249
1250/*****************************************************************************/
1251
1252/* associate signal watchers to a signal signal */
1253typedef struct
1254{
1255 EV_ATOMIC_T pending;
1256#if EV_MULTIPLICITY
1257 EV_P;
1258#endif
1259 WL head;
1260} ANSIG;
1261
1262static ANSIG signals [EV_NSIG - 1];
1263
1264/*****************************************************************************/
1265
1266#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1267
742static void noinline 1268static void noinline
743siginit (EV_P) 1269evpipe_init (EV_P)
744{ 1270{
1271 if (!ev_is_active (&pipe_w))
1272 {
1273# if EV_USE_EVENTFD
1274 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1275 if (evfd < 0 && errno == EINVAL)
1276 evfd = eventfd (0, 0);
1277
1278 if (evfd >= 0)
1279 {
1280 evpipe [0] = -1;
1281 fd_intern (evfd); /* doing it twice doesn't hurt */
1282 ev_io_set (&pipe_w, evfd, EV_READ);
1283 }
1284 else
1285# endif
1286 {
1287 while (pipe (evpipe))
1288 ev_syserr ("(libev) error creating signal/async pipe");
1289
745 fd_intern (sigpipe [0]); 1290 fd_intern (evpipe [0]);
746 fd_intern (sigpipe [1]); 1291 fd_intern (evpipe [1]);
1292 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1293 }
747 1294
748 ev_io_set (&sigev, sigpipe [0], EV_READ);
749 ev_io_start (EV_A_ &sigev); 1295 ev_io_start (EV_A_ &pipe_w);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1296 ev_unref (EV_A); /* watcher should not keep loop alive */
1297 }
1298}
1299
1300inline_size void
1301evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1302{
1303 if (!*flag)
1304 {
1305 int old_errno = errno; /* save errno because write might clobber it */
1306 char dummy;
1307
1308 *flag = 1;
1309
1310#if EV_USE_EVENTFD
1311 if (evfd >= 0)
1312 {
1313 uint64_t counter = 1;
1314 write (evfd, &counter, sizeof (uint64_t));
1315 }
1316 else
1317#endif
1318 /* win32 people keep sending patches that change this write() to send() */
1319 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1320 /* so when you think this write should be a send instead, please find out */
1321 /* where your send() is from - it's definitely not the microsoft send, and */
1322 /* tell me. thank you. */
1323 write (evpipe [1], &dummy, 1);
1324
1325 errno = old_errno;
1326 }
1327}
1328
1329/* called whenever the libev signal pipe */
1330/* got some events (signal, async) */
1331static void
1332pipecb (EV_P_ ev_io *iow, int revents)
1333{
1334 int i;
1335
1336#if EV_USE_EVENTFD
1337 if (evfd >= 0)
1338 {
1339 uint64_t counter;
1340 read (evfd, &counter, sizeof (uint64_t));
1341 }
1342 else
1343#endif
1344 {
1345 char dummy;
1346 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1347 read (evpipe [0], &dummy, 1);
1348 }
1349
1350 if (sig_pending)
1351 {
1352 sig_pending = 0;
1353
1354 for (i = EV_NSIG - 1; i--; )
1355 if (expect_false (signals [i].pending))
1356 ev_feed_signal_event (EV_A_ i + 1);
1357 }
1358
1359#if EV_ASYNC_ENABLE
1360 if (async_pending)
1361 {
1362 async_pending = 0;
1363
1364 for (i = asynccnt; i--; )
1365 if (asyncs [i]->sent)
1366 {
1367 asyncs [i]->sent = 0;
1368 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1369 }
1370 }
1371#endif
751} 1372}
752 1373
753/*****************************************************************************/ 1374/*****************************************************************************/
754 1375
755static ev_child *childs [EV_PID_HASHSIZE]; 1376static void
1377ev_sighandler (int signum)
1378{
1379#if EV_MULTIPLICITY
1380 EV_P = signals [signum - 1].loop;
1381#endif
756 1382
757#ifndef _WIN32 1383#ifdef _WIN32
1384 signal (signum, ev_sighandler);
1385#endif
1386
1387 signals [signum - 1].pending = 1;
1388 evpipe_write (EV_A_ &sig_pending);
1389}
1390
1391void noinline
1392ev_feed_signal_event (EV_P_ int signum)
1393{
1394 WL w;
1395
1396 if (expect_false (signum <= 0 || signum > EV_NSIG))
1397 return;
1398
1399 --signum;
1400
1401#if EV_MULTIPLICITY
1402 /* it is permissible to try to feed a signal to the wrong loop */
1403 /* or, likely more useful, feeding a signal nobody is waiting for */
1404
1405 if (expect_false (signals [signum].loop != EV_A))
1406 return;
1407#endif
1408
1409 signals [signum].pending = 0;
1410
1411 for (w = signals [signum].head; w; w = w->next)
1412 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1413}
1414
1415#if EV_USE_SIGNALFD
1416static void
1417sigfdcb (EV_P_ ev_io *iow, int revents)
1418{
1419 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1420
1421 for (;;)
1422 {
1423 ssize_t res = read (sigfd, si, sizeof (si));
1424
1425 /* not ISO-C, as res might be -1, but works with SuS */
1426 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1427 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1428
1429 if (res < (ssize_t)sizeof (si))
1430 break;
1431 }
1432}
1433#endif
1434
1435#endif
1436
1437/*****************************************************************************/
1438
1439#if EV_CHILD_ENABLE
1440static WL childs [EV_PID_HASHSIZE];
758 1441
759static ev_signal childev; 1442static ev_signal childev;
760 1443
761void inline_speed 1444#ifndef WIFCONTINUED
1445# define WIFCONTINUED(status) 0
1446#endif
1447
1448/* handle a single child status event */
1449inline_speed void
762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1450child_reap (EV_P_ int chain, int pid, int status)
763{ 1451{
764 ev_child *w; 1452 ev_child *w;
1453 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
765 1454
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1455 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1456 {
767 if (w->pid == pid || !w->pid) 1457 if ((w->pid == pid || !w->pid)
1458 && (!traced || (w->flags & 1)))
768 { 1459 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1460 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
770 w->rpid = pid; 1461 w->rpid = pid;
771 w->rstatus = status; 1462 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1463 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 1464 }
1465 }
774} 1466}
775 1467
776#ifndef WCONTINUED 1468#ifndef WCONTINUED
777# define WCONTINUED 0 1469# define WCONTINUED 0
778#endif 1470#endif
779 1471
1472/* called on sigchld etc., calls waitpid */
780static void 1473static void
781childcb (EV_P_ ev_signal *sw, int revents) 1474childcb (EV_P_ ev_signal *sw, int revents)
782{ 1475{
783 int pid, status; 1476 int pid, status;
784 1477
787 if (!WCONTINUED 1480 if (!WCONTINUED
788 || errno != EINVAL 1481 || errno != EINVAL
789 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1482 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
790 return; 1483 return;
791 1484
792 /* make sure we are called again until all childs have been reaped */ 1485 /* make sure we are called again until all children have been reaped */
793 /* we need to do it this way so that the callback gets called before we continue */ 1486 /* we need to do it this way so that the callback gets called before we continue */
794 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1487 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
795 1488
796 child_reap (EV_A_ sw, pid, pid, status); 1489 child_reap (EV_A_ pid, pid, status);
797 if (EV_PID_HASHSIZE > 1) 1490 if ((EV_PID_HASHSIZE) > 1)
798 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1491 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
799} 1492}
800 1493
801#endif 1494#endif
802 1495
803/*****************************************************************************/ 1496/*****************************************************************************/
804 1497
1498#if EV_USE_IOCP
1499# include "ev_iocp.c"
1500#endif
805#if EV_USE_PORT 1501#if EV_USE_PORT
806# include "ev_port.c" 1502# include "ev_port.c"
807#endif 1503#endif
808#if EV_USE_KQUEUE 1504#if EV_USE_KQUEUE
809# include "ev_kqueue.c" 1505# include "ev_kqueue.c"
865 /* kqueue is borked on everything but netbsd apparently */ 1561 /* kqueue is borked on everything but netbsd apparently */
866 /* it usually doesn't work correctly on anything but sockets and pipes */ 1562 /* it usually doesn't work correctly on anything but sockets and pipes */
867 flags &= ~EVBACKEND_KQUEUE; 1563 flags &= ~EVBACKEND_KQUEUE;
868#endif 1564#endif
869#ifdef __APPLE__ 1565#ifdef __APPLE__
870 // flags &= ~EVBACKEND_KQUEUE; for documentation 1566 /* only select works correctly on that "unix-certified" platform */
871 flags &= ~EVBACKEND_POLL; 1567 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1568 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1569#endif
1570#ifdef __FreeBSD__
1571 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
872#endif 1572#endif
873 1573
874 return flags; 1574 return flags;
875} 1575}
876 1576
877unsigned int 1577unsigned int
878ev_embeddable_backends (void) 1578ev_embeddable_backends (void)
879{ 1579{
880 return EVBACKEND_EPOLL 1580 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 1581
882 | EVBACKEND_PORT; 1582 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1583 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1584 flags &= ~EVBACKEND_EPOLL;
1585
1586 return flags;
883} 1587}
884 1588
885unsigned int 1589unsigned int
886ev_backend (EV_P) 1590ev_backend (EV_P)
887{ 1591{
888 return backend; 1592 return backend;
889} 1593}
890 1594
1595#if EV_FEATURE_API
1596unsigned int
1597ev_iteration (EV_P)
1598{
1599 return loop_count;
1600}
1601
1602unsigned int
1603ev_depth (EV_P)
1604{
1605 return loop_depth;
1606}
1607
1608void
1609ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1610{
1611 io_blocktime = interval;
1612}
1613
1614void
1615ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1616{
1617 timeout_blocktime = interval;
1618}
1619
1620void
1621ev_set_userdata (EV_P_ void *data)
1622{
1623 userdata = data;
1624}
1625
1626void *
1627ev_userdata (EV_P)
1628{
1629 return userdata;
1630}
1631
1632void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1633{
1634 invoke_cb = invoke_pending_cb;
1635}
1636
1637void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1638{
1639 release_cb = release;
1640 acquire_cb = acquire;
1641}
1642#endif
1643
1644/* initialise a loop structure, must be zero-initialised */
891static void noinline 1645static void noinline
892loop_init (EV_P_ unsigned int flags) 1646loop_init (EV_P_ unsigned int flags)
893{ 1647{
894 if (!backend) 1648 if (!backend)
895 { 1649 {
1650#if EV_USE_REALTIME
1651 if (!have_realtime)
1652 {
1653 struct timespec ts;
1654
1655 if (!clock_gettime (CLOCK_REALTIME, &ts))
1656 have_realtime = 1;
1657 }
1658#endif
1659
896#if EV_USE_MONOTONIC 1660#if EV_USE_MONOTONIC
1661 if (!have_monotonic)
897 { 1662 {
898 struct timespec ts; 1663 struct timespec ts;
1664
899 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1665 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
900 have_monotonic = 1; 1666 have_monotonic = 1;
901 } 1667 }
902#endif 1668#endif
903
904 ev_rt_now = ev_time ();
905 mn_now = get_clock ();
906 now_floor = mn_now;
907 rtmn_diff = ev_rt_now - mn_now;
908 1669
909 /* pid check not overridable via env */ 1670 /* pid check not overridable via env */
910#ifndef _WIN32 1671#ifndef _WIN32
911 if (flags & EVFLAG_FORKCHECK) 1672 if (flags & EVFLAG_FORKCHECK)
912 curpid = getpid (); 1673 curpid = getpid ();
915 if (!(flags & EVFLAG_NOENV) 1676 if (!(flags & EVFLAG_NOENV)
916 && !enable_secure () 1677 && !enable_secure ()
917 && getenv ("LIBEV_FLAGS")) 1678 && getenv ("LIBEV_FLAGS"))
918 flags = atoi (getenv ("LIBEV_FLAGS")); 1679 flags = atoi (getenv ("LIBEV_FLAGS"));
919 1680
1681 ev_rt_now = ev_time ();
1682 mn_now = get_clock ();
1683 now_floor = mn_now;
1684 rtmn_diff = ev_rt_now - mn_now;
1685#if EV_FEATURE_API
1686 invoke_cb = ev_invoke_pending;
1687#endif
1688
1689 io_blocktime = 0.;
1690 timeout_blocktime = 0.;
1691 backend = 0;
1692 backend_fd = -1;
1693 sig_pending = 0;
1694#if EV_ASYNC_ENABLE
1695 async_pending = 0;
1696#endif
1697#if EV_USE_INOTIFY
1698 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1699#endif
1700#if EV_USE_SIGNALFD
1701 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1702#endif
1703
920 if (!(flags & 0x0000ffffUL)) 1704 if (!(flags & 0x0000ffffU))
921 flags |= ev_recommended_backends (); 1705 flags |= ev_recommended_backends ();
922 1706
923 backend = 0;
924 backend_fd = -1;
925#if EV_USE_INOTIFY 1707#if EV_USE_IOCP
926 fs_fd = -2; 1708 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
927#endif 1709#endif
928
929#if EV_USE_PORT 1710#if EV_USE_PORT
930 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1711 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
931#endif 1712#endif
932#if EV_USE_KQUEUE 1713#if EV_USE_KQUEUE
933 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1714 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
940#endif 1721#endif
941#if EV_USE_SELECT 1722#if EV_USE_SELECT
942 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1723 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
943#endif 1724#endif
944 1725
1726 ev_prepare_init (&pending_w, pendingcb);
1727
1728#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
945 ev_init (&sigev, sigcb); 1729 ev_init (&pipe_w, pipecb);
946 ev_set_priority (&sigev, EV_MAXPRI); 1730 ev_set_priority (&pipe_w, EV_MAXPRI);
1731#endif
947 } 1732 }
948} 1733}
949 1734
1735/* free up a loop structure */
950static void noinline 1736static void noinline
951loop_destroy (EV_P) 1737loop_destroy (EV_P)
952{ 1738{
953 int i; 1739 int i;
1740
1741 if (ev_is_active (&pipe_w))
1742 {
1743 /*ev_ref (EV_A);*/
1744 /*ev_io_stop (EV_A_ &pipe_w);*/
1745
1746#if EV_USE_EVENTFD
1747 if (evfd >= 0)
1748 close (evfd);
1749#endif
1750
1751 if (evpipe [0] >= 0)
1752 {
1753 EV_WIN32_CLOSE_FD (evpipe [0]);
1754 EV_WIN32_CLOSE_FD (evpipe [1]);
1755 }
1756 }
1757
1758#if EV_USE_SIGNALFD
1759 if (ev_is_active (&sigfd_w))
1760 close (sigfd);
1761#endif
954 1762
955#if EV_USE_INOTIFY 1763#if EV_USE_INOTIFY
956 if (fs_fd >= 0) 1764 if (fs_fd >= 0)
957 close (fs_fd); 1765 close (fs_fd);
958#endif 1766#endif
959 1767
960 if (backend_fd >= 0) 1768 if (backend_fd >= 0)
961 close (backend_fd); 1769 close (backend_fd);
962 1770
1771#if EV_USE_IOCP
1772 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1773#endif
963#if EV_USE_PORT 1774#if EV_USE_PORT
964 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1775 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
965#endif 1776#endif
966#if EV_USE_KQUEUE 1777#if EV_USE_KQUEUE
967 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1778 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
975#if EV_USE_SELECT 1786#if EV_USE_SELECT
976 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1787 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
977#endif 1788#endif
978 1789
979 for (i = NUMPRI; i--; ) 1790 for (i = NUMPRI; i--; )
1791 {
980 array_free (pending, [i]); 1792 array_free (pending, [i]);
1793#if EV_IDLE_ENABLE
1794 array_free (idle, [i]);
1795#endif
1796 }
1797
1798 ev_free (anfds); anfds = 0; anfdmax = 0;
981 1799
982 /* have to use the microsoft-never-gets-it-right macro */ 1800 /* have to use the microsoft-never-gets-it-right macro */
1801 array_free (rfeed, EMPTY);
983 array_free (fdchange, EMPTY0); 1802 array_free (fdchange, EMPTY);
984 array_free (timer, EMPTY0); 1803 array_free (timer, EMPTY);
985#if EV_PERIODIC_ENABLE 1804#if EV_PERIODIC_ENABLE
986 array_free (periodic, EMPTY0); 1805 array_free (periodic, EMPTY);
987#endif 1806#endif
1807#if EV_FORK_ENABLE
988 array_free (idle, EMPTY0); 1808 array_free (fork, EMPTY);
1809#endif
989 array_free (prepare, EMPTY0); 1810 array_free (prepare, EMPTY);
990 array_free (check, EMPTY0); 1811 array_free (check, EMPTY);
1812#if EV_ASYNC_ENABLE
1813 array_free (async, EMPTY);
1814#endif
991 1815
992 backend = 0; 1816 backend = 0;
993} 1817}
994 1818
1819#if EV_USE_INOTIFY
995void inline_size infy_fork (EV_P); 1820inline_size void infy_fork (EV_P);
1821#endif
996 1822
997void inline_size 1823inline_size void
998loop_fork (EV_P) 1824loop_fork (EV_P)
999{ 1825{
1000#if EV_USE_PORT 1826#if EV_USE_PORT
1001 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1827 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1002#endif 1828#endif
1008#endif 1834#endif
1009#if EV_USE_INOTIFY 1835#if EV_USE_INOTIFY
1010 infy_fork (EV_A); 1836 infy_fork (EV_A);
1011#endif 1837#endif
1012 1838
1013 if (ev_is_active (&sigev)) 1839 if (ev_is_active (&pipe_w))
1014 { 1840 {
1015 /* default loop */ 1841 /* this "locks" the handlers against writing to the pipe */
1842 /* while we modify the fd vars */
1843 sig_pending = 1;
1844#if EV_ASYNC_ENABLE
1845 async_pending = 1;
1846#endif
1016 1847
1017 ev_ref (EV_A); 1848 ev_ref (EV_A);
1018 ev_io_stop (EV_A_ &sigev); 1849 ev_io_stop (EV_A_ &pipe_w);
1019 close (sigpipe [0]);
1020 close (sigpipe [1]);
1021 1850
1022 while (pipe (sigpipe)) 1851#if EV_USE_EVENTFD
1023 syserr ("(libev) error creating pipe"); 1852 if (evfd >= 0)
1853 close (evfd);
1854#endif
1024 1855
1856 if (evpipe [0] >= 0)
1857 {
1858 EV_WIN32_CLOSE_FD (evpipe [0]);
1859 EV_WIN32_CLOSE_FD (evpipe [1]);
1860 }
1861
1862#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1025 siginit (EV_A); 1863 evpipe_init (EV_A);
1864 /* now iterate over everything, in case we missed something */
1865 pipecb (EV_A_ &pipe_w, EV_READ);
1866#endif
1026 } 1867 }
1027 1868
1028 postfork = 0; 1869 postfork = 0;
1029} 1870}
1871
1872#if EV_MULTIPLICITY
1873
1874struct ev_loop *
1875ev_loop_new (unsigned int flags)
1876{
1877 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1878
1879 memset (EV_A, 0, sizeof (struct ev_loop));
1880 loop_init (EV_A_ flags);
1881
1882 if (ev_backend (EV_A))
1883 return EV_A;
1884
1885 return 0;
1886}
1887
1888void
1889ev_loop_destroy (EV_P)
1890{
1891 loop_destroy (EV_A);
1892 ev_free (loop);
1893}
1894
1895void
1896ev_loop_fork (EV_P)
1897{
1898 postfork = 1; /* must be in line with ev_default_fork */
1899}
1900#endif /* multiplicity */
1901
1902#if EV_VERIFY
1903static void noinline
1904verify_watcher (EV_P_ W w)
1905{
1906 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1907
1908 if (w->pending)
1909 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1910}
1911
1912static void noinline
1913verify_heap (EV_P_ ANHE *heap, int N)
1914{
1915 int i;
1916
1917 for (i = HEAP0; i < N + HEAP0; ++i)
1918 {
1919 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1920 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1921 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1922
1923 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1924 }
1925}
1926
1927static void noinline
1928array_verify (EV_P_ W *ws, int cnt)
1929{
1930 while (cnt--)
1931 {
1932 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1933 verify_watcher (EV_A_ ws [cnt]);
1934 }
1935}
1936#endif
1937
1938#if EV_FEATURE_API
1939void
1940ev_verify (EV_P)
1941{
1942#if EV_VERIFY
1943 int i;
1944 WL w;
1945
1946 assert (activecnt >= -1);
1947
1948 assert (fdchangemax >= fdchangecnt);
1949 for (i = 0; i < fdchangecnt; ++i)
1950 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1951
1952 assert (anfdmax >= 0);
1953 for (i = 0; i < anfdmax; ++i)
1954 for (w = anfds [i].head; w; w = w->next)
1955 {
1956 verify_watcher (EV_A_ (W)w);
1957 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1958 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1959 }
1960
1961 assert (timermax >= timercnt);
1962 verify_heap (EV_A_ timers, timercnt);
1963
1964#if EV_PERIODIC_ENABLE
1965 assert (periodicmax >= periodiccnt);
1966 verify_heap (EV_A_ periodics, periodiccnt);
1967#endif
1968
1969 for (i = NUMPRI; i--; )
1970 {
1971 assert (pendingmax [i] >= pendingcnt [i]);
1972#if EV_IDLE_ENABLE
1973 assert (idleall >= 0);
1974 assert (idlemax [i] >= idlecnt [i]);
1975 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1976#endif
1977 }
1978
1979#if EV_FORK_ENABLE
1980 assert (forkmax >= forkcnt);
1981 array_verify (EV_A_ (W *)forks, forkcnt);
1982#endif
1983
1984#if EV_ASYNC_ENABLE
1985 assert (asyncmax >= asynccnt);
1986 array_verify (EV_A_ (W *)asyncs, asynccnt);
1987#endif
1988
1989#if EV_PREPARE_ENABLE
1990 assert (preparemax >= preparecnt);
1991 array_verify (EV_A_ (W *)prepares, preparecnt);
1992#endif
1993
1994#if EV_CHECK_ENABLE
1995 assert (checkmax >= checkcnt);
1996 array_verify (EV_A_ (W *)checks, checkcnt);
1997#endif
1998
1999# if 0
2000#if EV_CHILD_ENABLE
2001 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2002 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2003#endif
2004# endif
2005#endif
2006}
2007#endif
1030 2008
1031#if EV_MULTIPLICITY 2009#if EV_MULTIPLICITY
1032struct ev_loop * 2010struct ev_loop *
1033ev_loop_new (unsigned int flags)
1034{
1035 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1036
1037 memset (loop, 0, sizeof (struct ev_loop));
1038
1039 loop_init (EV_A_ flags);
1040
1041 if (ev_backend (EV_A))
1042 return loop;
1043
1044 return 0;
1045}
1046
1047void
1048ev_loop_destroy (EV_P)
1049{
1050 loop_destroy (EV_A);
1051 ev_free (loop);
1052}
1053
1054void
1055ev_loop_fork (EV_P)
1056{
1057 postfork = 1;
1058}
1059
1060#endif
1061
1062#if EV_MULTIPLICITY
1063struct ev_loop *
1064ev_default_loop_init (unsigned int flags)
1065#else 2011#else
1066int 2012int
2013#endif
1067ev_default_loop (unsigned int flags) 2014ev_default_loop (unsigned int flags)
1068#endif
1069{ 2015{
1070 if (sigpipe [0] == sigpipe [1])
1071 if (pipe (sigpipe))
1072 return 0;
1073
1074 if (!ev_default_loop_ptr) 2016 if (!ev_default_loop_ptr)
1075 { 2017 {
1076#if EV_MULTIPLICITY 2018#if EV_MULTIPLICITY
1077 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2019 EV_P = ev_default_loop_ptr = &default_loop_struct;
1078#else 2020#else
1079 ev_default_loop_ptr = 1; 2021 ev_default_loop_ptr = 1;
1080#endif 2022#endif
1081 2023
1082 loop_init (EV_A_ flags); 2024 loop_init (EV_A_ flags);
1083 2025
1084 if (ev_backend (EV_A)) 2026 if (ev_backend (EV_A))
1085 { 2027 {
1086 siginit (EV_A); 2028#if EV_CHILD_ENABLE
1087
1088#ifndef _WIN32
1089 ev_signal_init (&childev, childcb, SIGCHLD); 2029 ev_signal_init (&childev, childcb, SIGCHLD);
1090 ev_set_priority (&childev, EV_MAXPRI); 2030 ev_set_priority (&childev, EV_MAXPRI);
1091 ev_signal_start (EV_A_ &childev); 2031 ev_signal_start (EV_A_ &childev);
1092 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2032 ev_unref (EV_A); /* child watcher should not keep loop alive */
1093#endif 2033#endif
1101 2041
1102void 2042void
1103ev_default_destroy (void) 2043ev_default_destroy (void)
1104{ 2044{
1105#if EV_MULTIPLICITY 2045#if EV_MULTIPLICITY
1106 struct ev_loop *loop = ev_default_loop_ptr; 2046 EV_P = ev_default_loop_ptr;
1107#endif 2047#endif
1108 2048
1109#ifndef _WIN32 2049 ev_default_loop_ptr = 0;
2050
2051#if EV_CHILD_ENABLE
1110 ev_ref (EV_A); /* child watcher */ 2052 ev_ref (EV_A); /* child watcher */
1111 ev_signal_stop (EV_A_ &childev); 2053 ev_signal_stop (EV_A_ &childev);
1112#endif 2054#endif
1113 2055
1114 ev_ref (EV_A); /* signal watcher */
1115 ev_io_stop (EV_A_ &sigev);
1116
1117 close (sigpipe [0]); sigpipe [0] = 0;
1118 close (sigpipe [1]); sigpipe [1] = 0;
1119
1120 loop_destroy (EV_A); 2056 loop_destroy (EV_A);
1121} 2057}
1122 2058
1123void 2059void
1124ev_default_fork (void) 2060ev_default_fork (void)
1125{ 2061{
1126#if EV_MULTIPLICITY 2062#if EV_MULTIPLICITY
1127 struct ev_loop *loop = ev_default_loop_ptr; 2063 EV_P = ev_default_loop_ptr;
1128#endif 2064#endif
1129 2065
1130 if (backend) 2066 postfork = 1; /* must be in line with ev_loop_fork */
1131 postfork = 1;
1132} 2067}
1133 2068
1134/*****************************************************************************/ 2069/*****************************************************************************/
1135 2070
1136int inline_size 2071void
1137any_pending (EV_P) 2072ev_invoke (EV_P_ void *w, int revents)
2073{
2074 EV_CB_INVOKE ((W)w, revents);
2075}
2076
2077unsigned int
2078ev_pending_count (EV_P)
1138{ 2079{
1139 int pri; 2080 int pri;
2081 unsigned int count = 0;
1140 2082
1141 for (pri = NUMPRI; pri--; ) 2083 for (pri = NUMPRI; pri--; )
1142 if (pendingcnt [pri]) 2084 count += pendingcnt [pri];
1143 return 1;
1144 2085
1145 return 0; 2086 return count;
1146} 2087}
1147 2088
1148void inline_speed 2089void noinline
1149call_pending (EV_P) 2090ev_invoke_pending (EV_P)
1150{ 2091{
1151 int pri; 2092 int pri;
1152 2093
1153 for (pri = NUMPRI; pri--; ) 2094 for (pri = NUMPRI; pri--; )
1154 while (pendingcnt [pri]) 2095 while (pendingcnt [pri])
1155 { 2096 {
1156 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2097 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1157 2098
1158 if (expect_true (p->w))
1159 {
1160 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2099 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2100 /* ^ this is no longer true, as pending_w could be here */
1161 2101
1162 p->w->pending = 0; 2102 p->w->pending = 0;
1163 EV_CB_INVOKE (p->w, p->events); 2103 EV_CB_INVOKE (p->w, p->events);
1164 } 2104 EV_FREQUENT_CHECK;
1165 } 2105 }
1166} 2106}
1167 2107
1168void inline_size 2108#if EV_IDLE_ENABLE
2109/* make idle watchers pending. this handles the "call-idle */
2110/* only when higher priorities are idle" logic */
2111inline_size void
2112idle_reify (EV_P)
2113{
2114 if (expect_false (idleall))
2115 {
2116 int pri;
2117
2118 for (pri = NUMPRI; pri--; )
2119 {
2120 if (pendingcnt [pri])
2121 break;
2122
2123 if (idlecnt [pri])
2124 {
2125 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2126 break;
2127 }
2128 }
2129 }
2130}
2131#endif
2132
2133/* make timers pending */
2134inline_size void
1169timers_reify (EV_P) 2135timers_reify (EV_P)
1170{ 2136{
2137 EV_FREQUENT_CHECK;
2138
1171 while (timercnt && ((WT)timers [0])->at <= mn_now) 2139 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1172 { 2140 {
1173 ev_timer *w = timers [0]; 2141 do
1174
1175 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1176
1177 /* first reschedule or stop timer */
1178 if (w->repeat)
1179 { 2142 {
2143 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2144
2145 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2146
2147 /* first reschedule or stop timer */
2148 if (w->repeat)
2149 {
2150 ev_at (w) += w->repeat;
2151 if (ev_at (w) < mn_now)
2152 ev_at (w) = mn_now;
2153
1180 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2154 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1181 2155
1182 ((WT)w)->at += w->repeat; 2156 ANHE_at_cache (timers [HEAP0]);
1183 if (((WT)w)->at < mn_now)
1184 ((WT)w)->at = mn_now;
1185
1186 downheap ((WT *)timers, timercnt, 0); 2157 downheap (timers, timercnt, HEAP0);
2158 }
2159 else
2160 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2161
2162 EV_FREQUENT_CHECK;
2163 feed_reverse (EV_A_ (W)w);
1187 } 2164 }
1188 else 2165 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1189 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1190 2166
1191 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2167 feed_reverse_done (EV_A_ EV_TIMER);
1192 } 2168 }
1193} 2169}
1194 2170
1195#if EV_PERIODIC_ENABLE 2171#if EV_PERIODIC_ENABLE
1196void inline_size 2172/* make periodics pending */
2173inline_size void
1197periodics_reify (EV_P) 2174periodics_reify (EV_P)
1198{ 2175{
2176 EV_FREQUENT_CHECK;
2177
1199 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2178 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1200 { 2179 {
1201 ev_periodic *w = periodics [0]; 2180 int feed_count = 0;
1202 2181
1203 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2182 do
1204
1205 /* first reschedule or stop timer */
1206 if (w->reschedule_cb)
1207 { 2183 {
2184 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2185
2186 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2187
2188 /* first reschedule or stop timer */
2189 if (w->reschedule_cb)
2190 {
1208 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2191 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2192
1209 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2193 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2194
2195 ANHE_at_cache (periodics [HEAP0]);
1210 downheap ((WT *)periodics, periodiccnt, 0); 2196 downheap (periodics, periodiccnt, HEAP0);
2197 }
2198 else if (w->interval)
2199 {
2200 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2201 /* if next trigger time is not sufficiently in the future, put it there */
2202 /* this might happen because of floating point inexactness */
2203 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2204 {
2205 ev_at (w) += w->interval;
2206
2207 /* if interval is unreasonably low we might still have a time in the past */
2208 /* so correct this. this will make the periodic very inexact, but the user */
2209 /* has effectively asked to get triggered more often than possible */
2210 if (ev_at (w) < ev_rt_now)
2211 ev_at (w) = ev_rt_now;
2212 }
2213
2214 ANHE_at_cache (periodics [HEAP0]);
2215 downheap (periodics, periodiccnt, HEAP0);
2216 }
2217 else
2218 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2219
2220 EV_FREQUENT_CHECK;
2221 feed_reverse (EV_A_ (W)w);
1211 } 2222 }
1212 else if (w->interval) 2223 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1213 {
1214 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1215 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1216 downheap ((WT *)periodics, periodiccnt, 0);
1217 }
1218 else
1219 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1220 2224
1221 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2225 feed_reverse_done (EV_A_ EV_PERIODIC);
1222 } 2226 }
1223} 2227}
1224 2228
2229/* simply recalculate all periodics */
2230/* TODO: maybe ensure that at least one event happens when jumping forward? */
1225static void noinline 2231static void noinline
1226periodics_reschedule (EV_P) 2232periodics_reschedule (EV_P)
1227{ 2233{
1228 int i; 2234 int i;
1229 2235
1230 /* adjust periodics after time jump */ 2236 /* adjust periodics after time jump */
1231 for (i = 0; i < periodiccnt; ++i) 2237 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1232 { 2238 {
1233 ev_periodic *w = periodics [i]; 2239 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1234 2240
1235 if (w->reschedule_cb) 2241 if (w->reschedule_cb)
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2242 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1237 else if (w->interval) 2243 else if (w->interval)
1238 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2244 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2245
2246 ANHE_at_cache (periodics [i]);
2247 }
2248
2249 reheap (periodics, periodiccnt);
2250}
2251#endif
2252
2253/* adjust all timers by a given offset */
2254static void noinline
2255timers_reschedule (EV_P_ ev_tstamp adjust)
2256{
2257 int i;
2258
2259 for (i = 0; i < timercnt; ++i)
1239 } 2260 {
1240 2261 ANHE *he = timers + i + HEAP0;
1241 /* now rebuild the heap */ 2262 ANHE_w (*he)->at += adjust;
1242 for (i = periodiccnt >> 1; i--; ) 2263 ANHE_at_cache (*he);
1243 downheap ((WT *)periodics, periodiccnt, i); 2264 }
1244} 2265}
1245#endif
1246 2266
1247int inline_size 2267/* fetch new monotonic and realtime times from the kernel */
1248time_update_monotonic (EV_P) 2268/* also detect if there was a timejump, and act accordingly */
2269inline_speed void
2270time_update (EV_P_ ev_tstamp max_block)
1249{ 2271{
2272#if EV_USE_MONOTONIC
2273 if (expect_true (have_monotonic))
2274 {
2275 int i;
2276 ev_tstamp odiff = rtmn_diff;
2277
1250 mn_now = get_clock (); 2278 mn_now = get_clock ();
1251 2279
2280 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2281 /* interpolate in the meantime */
1252 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2282 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1253 { 2283 {
1254 ev_rt_now = rtmn_diff + mn_now; 2284 ev_rt_now = rtmn_diff + mn_now;
1255 return 0; 2285 return;
1256 } 2286 }
1257 else 2287
1258 {
1259 now_floor = mn_now; 2288 now_floor = mn_now;
1260 ev_rt_now = ev_time (); 2289 ev_rt_now = ev_time ();
1261 return 1;
1262 }
1263}
1264 2290
1265void inline_size 2291 /* loop a few times, before making important decisions.
1266time_update (EV_P) 2292 * on the choice of "4": one iteration isn't enough,
1267{ 2293 * in case we get preempted during the calls to
1268 int i; 2294 * ev_time and get_clock. a second call is almost guaranteed
1269 2295 * to succeed in that case, though. and looping a few more times
1270#if EV_USE_MONOTONIC 2296 * doesn't hurt either as we only do this on time-jumps or
1271 if (expect_true (have_monotonic)) 2297 * in the unlikely event of having been preempted here.
1272 { 2298 */
1273 if (time_update_monotonic (EV_A)) 2299 for (i = 4; --i; )
1274 { 2300 {
1275 ev_tstamp odiff = rtmn_diff;
1276
1277 /* loop a few times, before making important decisions.
1278 * on the choice of "4": one iteration isn't enough,
1279 * in case we get preempted during the calls to
1280 * ev_time and get_clock. a second call is almost guaranteed
1281 * to succeed in that case, though. and looping a few more times
1282 * doesn't hurt either as we only do this on time-jumps or
1283 * in the unlikely event of having been preempted here.
1284 */
1285 for (i = 4; --i; )
1286 {
1287 rtmn_diff = ev_rt_now - mn_now; 2301 rtmn_diff = ev_rt_now - mn_now;
1288 2302
1289 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2303 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1290 return; /* all is well */ 2304 return; /* all is well */
1291 2305
1292 ev_rt_now = ev_time (); 2306 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 2307 mn_now = get_clock ();
1294 now_floor = mn_now; 2308 now_floor = mn_now;
1295 } 2309 }
1296 2310
2311 /* no timer adjustment, as the monotonic clock doesn't jump */
2312 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1297# if EV_PERIODIC_ENABLE 2313# if EV_PERIODIC_ENABLE
1298 periodics_reschedule (EV_A); 2314 periodics_reschedule (EV_A);
1299# endif 2315# endif
1300 /* no timer adjustment, as the monotonic clock doesn't jump */
1301 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1302 }
1303 } 2316 }
1304 else 2317 else
1305#endif 2318#endif
1306 { 2319 {
1307 ev_rt_now = ev_time (); 2320 ev_rt_now = ev_time ();
1308 2321
1309 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2322 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1310 { 2323 {
2324 /* adjust timers. this is easy, as the offset is the same for all of them */
2325 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1311#if EV_PERIODIC_ENABLE 2326#if EV_PERIODIC_ENABLE
1312 periodics_reschedule (EV_A); 2327 periodics_reschedule (EV_A);
1313#endif 2328#endif
1314
1315 /* adjust timers. this is easy, as the offset is the same for all of them */
1316 for (i = 0; i < timercnt; ++i)
1317 ((WT)timers [i])->at += ev_rt_now - mn_now;
1318 } 2329 }
1319 2330
1320 mn_now = ev_rt_now; 2331 mn_now = ev_rt_now;
1321 } 2332 }
1322} 2333}
1323 2334
1324void 2335void
1325ev_ref (EV_P)
1326{
1327 ++activecnt;
1328}
1329
1330void
1331ev_unref (EV_P)
1332{
1333 --activecnt;
1334}
1335
1336static int loop_done;
1337
1338void
1339ev_loop (EV_P_ int flags) 2336ev_run (EV_P_ int flags)
1340{ 2337{
1341 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2338#if EV_FEATURE_API
1342 ? EVUNLOOP_ONE 2339 ++loop_depth;
1343 : EVUNLOOP_CANCEL; 2340#endif
1344 2341
2342 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2343
2344 loop_done = EVBREAK_CANCEL;
2345
1345 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2346 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1346 2347
1347 for (;;) 2348 do
1348 { 2349 {
2350#if EV_VERIFY >= 2
2351 ev_verify (EV_A);
2352#endif
2353
1349#ifndef _WIN32 2354#ifndef _WIN32
1350 if (expect_false (curpid)) /* penalise the forking check even more */ 2355 if (expect_false (curpid)) /* penalise the forking check even more */
1351 if (expect_false (getpid () != curpid)) 2356 if (expect_false (getpid () != curpid))
1352 { 2357 {
1353 curpid = getpid (); 2358 curpid = getpid ();
1359 /* we might have forked, so queue fork handlers */ 2364 /* we might have forked, so queue fork handlers */
1360 if (expect_false (postfork)) 2365 if (expect_false (postfork))
1361 if (forkcnt) 2366 if (forkcnt)
1362 { 2367 {
1363 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2368 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1364 call_pending (EV_A); 2369 EV_INVOKE_PENDING;
1365 } 2370 }
1366#endif 2371#endif
1367 2372
2373#if EV_PREPARE_ENABLE
1368 /* queue check watchers (and execute them) */ 2374 /* queue prepare watchers (and execute them) */
1369 if (expect_false (preparecnt)) 2375 if (expect_false (preparecnt))
1370 { 2376 {
1371 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2377 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1372 call_pending (EV_A); 2378 EV_INVOKE_PENDING;
1373 } 2379 }
2380#endif
1374 2381
1375 if (expect_false (!activecnt)) 2382 if (expect_false (loop_done))
1376 break; 2383 break;
1377 2384
1378 /* we might have forked, so reify kernel state if necessary */ 2385 /* we might have forked, so reify kernel state if necessary */
1379 if (expect_false (postfork)) 2386 if (expect_false (postfork))
1380 loop_fork (EV_A); 2387 loop_fork (EV_A);
1382 /* update fd-related kernel structures */ 2389 /* update fd-related kernel structures */
1383 fd_reify (EV_A); 2390 fd_reify (EV_A);
1384 2391
1385 /* calculate blocking time */ 2392 /* calculate blocking time */
1386 { 2393 {
1387 ev_tstamp block; 2394 ev_tstamp waittime = 0.;
2395 ev_tstamp sleeptime = 0.;
1388 2396
1389 if (flags & EVLOOP_NONBLOCK || idlecnt) 2397 /* remember old timestamp for io_blocktime calculation */
1390 block = 0.; /* do not block at all */ 2398 ev_tstamp prev_mn_now = mn_now;
1391 else 2399
2400 /* update time to cancel out callback processing overhead */
2401 time_update (EV_A_ 1e100);
2402
2403 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1392 { 2404 {
1393 /* update time to cancel out callback processing overhead */
1394#if EV_USE_MONOTONIC
1395 if (expect_true (have_monotonic))
1396 time_update_monotonic (EV_A);
1397 else
1398#endif
1399 {
1400 ev_rt_now = ev_time ();
1401 mn_now = ev_rt_now;
1402 }
1403
1404 block = MAX_BLOCKTIME; 2405 waittime = MAX_BLOCKTIME;
1405 2406
1406 if (timercnt) 2407 if (timercnt)
1407 { 2408 {
1408 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2409 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1409 if (block > to) block = to; 2410 if (waittime > to) waittime = to;
1410 } 2411 }
1411 2412
1412#if EV_PERIODIC_ENABLE 2413#if EV_PERIODIC_ENABLE
1413 if (periodiccnt) 2414 if (periodiccnt)
1414 { 2415 {
1415 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2416 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1416 if (block > to) block = to; 2417 if (waittime > to) waittime = to;
1417 } 2418 }
1418#endif 2419#endif
1419 2420
2421 /* don't let timeouts decrease the waittime below timeout_blocktime */
2422 if (expect_false (waittime < timeout_blocktime))
2423 waittime = timeout_blocktime;
2424
2425 /* extra check because io_blocktime is commonly 0 */
1420 if (expect_false (block < 0.)) block = 0.; 2426 if (expect_false (io_blocktime))
2427 {
2428 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2429
2430 if (sleeptime > waittime - backend_fudge)
2431 sleeptime = waittime - backend_fudge;
2432
2433 if (expect_true (sleeptime > 0.))
2434 {
2435 ev_sleep (sleeptime);
2436 waittime -= sleeptime;
2437 }
2438 }
1421 } 2439 }
1422 2440
2441#if EV_FEATURE_API
2442 ++loop_count;
2443#endif
2444 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1423 backend_poll (EV_A_ block); 2445 backend_poll (EV_A_ waittime);
2446 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2447
2448 /* update ev_rt_now, do magic */
2449 time_update (EV_A_ waittime + sleeptime);
1424 } 2450 }
1425
1426 /* update ev_rt_now, do magic */
1427 time_update (EV_A);
1428 2451
1429 /* queue pending timers and reschedule them */ 2452 /* queue pending timers and reschedule them */
1430 timers_reify (EV_A); /* relative timers called last */ 2453 timers_reify (EV_A); /* relative timers called last */
1431#if EV_PERIODIC_ENABLE 2454#if EV_PERIODIC_ENABLE
1432 periodics_reify (EV_A); /* absolute timers called first */ 2455 periodics_reify (EV_A); /* absolute timers called first */
1433#endif 2456#endif
1434 2457
2458#if EV_IDLE_ENABLE
1435 /* queue idle watchers unless other events are pending */ 2459 /* queue idle watchers unless other events are pending */
1436 if (idlecnt && !any_pending (EV_A)) 2460 idle_reify (EV_A);
1437 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2461#endif
1438 2462
2463#if EV_CHECK_ENABLE
1439 /* queue check watchers, to be executed first */ 2464 /* queue check watchers, to be executed first */
1440 if (expect_false (checkcnt)) 2465 if (expect_false (checkcnt))
1441 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2466 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2467#endif
1442 2468
1443 call_pending (EV_A); 2469 EV_INVOKE_PENDING;
1444
1445 if (expect_false (loop_done))
1446 break;
1447 } 2470 }
2471 while (expect_true (
2472 activecnt
2473 && !loop_done
2474 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2475 ));
1448 2476
1449 if (loop_done == EVUNLOOP_ONE) 2477 if (loop_done == EVBREAK_ONE)
1450 loop_done = EVUNLOOP_CANCEL; 2478 loop_done = EVBREAK_CANCEL;
1451}
1452 2479
2480#if EV_FEATURE_API
2481 --loop_depth;
2482#endif
2483}
2484
1453void 2485void
1454ev_unloop (EV_P_ int how) 2486ev_break (EV_P_ int how)
1455{ 2487{
1456 loop_done = how; 2488 loop_done = how;
1457} 2489}
1458 2490
2491void
2492ev_ref (EV_P)
2493{
2494 ++activecnt;
2495}
2496
2497void
2498ev_unref (EV_P)
2499{
2500 --activecnt;
2501}
2502
2503void
2504ev_now_update (EV_P)
2505{
2506 time_update (EV_A_ 1e100);
2507}
2508
2509void
2510ev_suspend (EV_P)
2511{
2512 ev_now_update (EV_A);
2513}
2514
2515void
2516ev_resume (EV_P)
2517{
2518 ev_tstamp mn_prev = mn_now;
2519
2520 ev_now_update (EV_A);
2521 timers_reschedule (EV_A_ mn_now - mn_prev);
2522#if EV_PERIODIC_ENABLE
2523 /* TODO: really do this? */
2524 periodics_reschedule (EV_A);
2525#endif
2526}
2527
1459/*****************************************************************************/ 2528/*****************************************************************************/
2529/* singly-linked list management, used when the expected list length is short */
1460 2530
1461void inline_size 2531inline_size void
1462wlist_add (WL *head, WL elem) 2532wlist_add (WL *head, WL elem)
1463{ 2533{
1464 elem->next = *head; 2534 elem->next = *head;
1465 *head = elem; 2535 *head = elem;
1466} 2536}
1467 2537
1468void inline_size 2538inline_size void
1469wlist_del (WL *head, WL elem) 2539wlist_del (WL *head, WL elem)
1470{ 2540{
1471 while (*head) 2541 while (*head)
1472 { 2542 {
1473 if (*head == elem) 2543 if (expect_true (*head == elem))
1474 { 2544 {
1475 *head = elem->next; 2545 *head = elem->next;
1476 return; 2546 break;
1477 } 2547 }
1478 2548
1479 head = &(*head)->next; 2549 head = &(*head)->next;
1480 } 2550 }
1481} 2551}
1482 2552
1483void inline_speed 2553/* internal, faster, version of ev_clear_pending */
2554inline_speed void
1484ev_clear_pending (EV_P_ W w) 2555clear_pending (EV_P_ W w)
1485{ 2556{
1486 if (w->pending) 2557 if (w->pending)
1487 { 2558 {
1488 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2559 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1489 w->pending = 0; 2560 w->pending = 0;
1490 } 2561 }
1491} 2562}
1492 2563
1493void inline_speed 2564int
2565ev_clear_pending (EV_P_ void *w)
2566{
2567 W w_ = (W)w;
2568 int pending = w_->pending;
2569
2570 if (expect_true (pending))
2571 {
2572 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2573 p->w = (W)&pending_w;
2574 w_->pending = 0;
2575 return p->events;
2576 }
2577 else
2578 return 0;
2579}
2580
2581inline_size void
2582pri_adjust (EV_P_ W w)
2583{
2584 int pri = ev_priority (w);
2585 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2586 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2587 ev_set_priority (w, pri);
2588}
2589
2590inline_speed void
1494ev_start (EV_P_ W w, int active) 2591ev_start (EV_P_ W w, int active)
1495{ 2592{
1496 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2593 pri_adjust (EV_A_ w);
1497 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1498
1499 w->active = active; 2594 w->active = active;
1500 ev_ref (EV_A); 2595 ev_ref (EV_A);
1501} 2596}
1502 2597
1503void inline_size 2598inline_size void
1504ev_stop (EV_P_ W w) 2599ev_stop (EV_P_ W w)
1505{ 2600{
1506 ev_unref (EV_A); 2601 ev_unref (EV_A);
1507 w->active = 0; 2602 w->active = 0;
1508} 2603}
1509 2604
1510/*****************************************************************************/ 2605/*****************************************************************************/
1511 2606
1512void 2607void noinline
1513ev_io_start (EV_P_ ev_io *w) 2608ev_io_start (EV_P_ ev_io *w)
1514{ 2609{
1515 int fd = w->fd; 2610 int fd = w->fd;
1516 2611
1517 if (expect_false (ev_is_active (w))) 2612 if (expect_false (ev_is_active (w)))
1518 return; 2613 return;
1519 2614
1520 assert (("ev_io_start called with negative fd", fd >= 0)); 2615 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2616 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2617
2618 EV_FREQUENT_CHECK;
1521 2619
1522 ev_start (EV_A_ (W)w, 1); 2620 ev_start (EV_A_ (W)w, 1);
1523 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2621 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1524 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2622 wlist_add (&anfds[fd].head, (WL)w);
1525 2623
1526 fd_change (EV_A_ fd); 2624 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1527} 2625 w->events &= ~EV__IOFDSET;
1528 2626
1529void 2627 EV_FREQUENT_CHECK;
2628}
2629
2630void noinline
1530ev_io_stop (EV_P_ ev_io *w) 2631ev_io_stop (EV_P_ ev_io *w)
1531{ 2632{
1532 ev_clear_pending (EV_A_ (W)w); 2633 clear_pending (EV_A_ (W)w);
1533 if (expect_false (!ev_is_active (w))) 2634 if (expect_false (!ev_is_active (w)))
1534 return; 2635 return;
1535 2636
1536 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2637 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1537 2638
2639 EV_FREQUENT_CHECK;
2640
1538 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2641 wlist_del (&anfds[w->fd].head, (WL)w);
1539 ev_stop (EV_A_ (W)w); 2642 ev_stop (EV_A_ (W)w);
1540 2643
1541 fd_change (EV_A_ w->fd); 2644 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1542}
1543 2645
1544void 2646 EV_FREQUENT_CHECK;
2647}
2648
2649void noinline
1545ev_timer_start (EV_P_ ev_timer *w) 2650ev_timer_start (EV_P_ ev_timer *w)
1546{ 2651{
1547 if (expect_false (ev_is_active (w))) 2652 if (expect_false (ev_is_active (w)))
1548 return; 2653 return;
1549 2654
1550 ((WT)w)->at += mn_now; 2655 ev_at (w) += mn_now;
1551 2656
1552 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2657 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1553 2658
2659 EV_FREQUENT_CHECK;
2660
2661 ++timercnt;
1554 ev_start (EV_A_ (W)w, ++timercnt); 2662 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1555 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2663 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1556 timers [timercnt - 1] = w; 2664 ANHE_w (timers [ev_active (w)]) = (WT)w;
1557 upheap ((WT *)timers, timercnt - 1); 2665 ANHE_at_cache (timers [ev_active (w)]);
2666 upheap (timers, ev_active (w));
1558 2667
2668 EV_FREQUENT_CHECK;
2669
1559 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2670 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1560} 2671}
1561 2672
1562void 2673void noinline
1563ev_timer_stop (EV_P_ ev_timer *w) 2674ev_timer_stop (EV_P_ ev_timer *w)
1564{ 2675{
1565 ev_clear_pending (EV_A_ (W)w); 2676 clear_pending (EV_A_ (W)w);
1566 if (expect_false (!ev_is_active (w))) 2677 if (expect_false (!ev_is_active (w)))
1567 return; 2678 return;
1568 2679
1569 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2680 EV_FREQUENT_CHECK;
1570 2681
1571 { 2682 {
1572 int active = ((W)w)->active; 2683 int active = ev_active (w);
1573 2684
2685 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2686
2687 --timercnt;
2688
1574 if (expect_true (--active < --timercnt)) 2689 if (expect_true (active < timercnt + HEAP0))
1575 { 2690 {
1576 timers [active] = timers [timercnt]; 2691 timers [active] = timers [timercnt + HEAP0];
1577 adjustheap ((WT *)timers, timercnt, active); 2692 adjustheap (timers, timercnt, active);
1578 } 2693 }
1579 } 2694 }
1580 2695
1581 ((WT)w)->at -= mn_now; 2696 ev_at (w) -= mn_now;
1582 2697
1583 ev_stop (EV_A_ (W)w); 2698 ev_stop (EV_A_ (W)w);
1584}
1585 2699
1586void 2700 EV_FREQUENT_CHECK;
2701}
2702
2703void noinline
1587ev_timer_again (EV_P_ ev_timer *w) 2704ev_timer_again (EV_P_ ev_timer *w)
1588{ 2705{
2706 EV_FREQUENT_CHECK;
2707
1589 if (ev_is_active (w)) 2708 if (ev_is_active (w))
1590 { 2709 {
1591 if (w->repeat) 2710 if (w->repeat)
1592 { 2711 {
1593 ((WT)w)->at = mn_now + w->repeat; 2712 ev_at (w) = mn_now + w->repeat;
2713 ANHE_at_cache (timers [ev_active (w)]);
1594 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2714 adjustheap (timers, timercnt, ev_active (w));
1595 } 2715 }
1596 else 2716 else
1597 ev_timer_stop (EV_A_ w); 2717 ev_timer_stop (EV_A_ w);
1598 } 2718 }
1599 else if (w->repeat) 2719 else if (w->repeat)
1600 { 2720 {
1601 w->at = w->repeat; 2721 ev_at (w) = w->repeat;
1602 ev_timer_start (EV_A_ w); 2722 ev_timer_start (EV_A_ w);
1603 } 2723 }
2724
2725 EV_FREQUENT_CHECK;
2726}
2727
2728ev_tstamp
2729ev_timer_remaining (EV_P_ ev_timer *w)
2730{
2731 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1604} 2732}
1605 2733
1606#if EV_PERIODIC_ENABLE 2734#if EV_PERIODIC_ENABLE
1607void 2735void noinline
1608ev_periodic_start (EV_P_ ev_periodic *w) 2736ev_periodic_start (EV_P_ ev_periodic *w)
1609{ 2737{
1610 if (expect_false (ev_is_active (w))) 2738 if (expect_false (ev_is_active (w)))
1611 return; 2739 return;
1612 2740
1613 if (w->reschedule_cb) 2741 if (w->reschedule_cb)
1614 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2742 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1615 else if (w->interval) 2743 else if (w->interval)
1616 { 2744 {
1617 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2745 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1618 /* this formula differs from the one in periodic_reify because we do not always round up */ 2746 /* this formula differs from the one in periodic_reify because we do not always round up */
1619 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2747 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1620 } 2748 }
2749 else
2750 ev_at (w) = w->offset;
1621 2751
2752 EV_FREQUENT_CHECK;
2753
2754 ++periodiccnt;
1622 ev_start (EV_A_ (W)w, ++periodiccnt); 2755 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1623 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2756 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1624 periodics [periodiccnt - 1] = w; 2757 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1625 upheap ((WT *)periodics, periodiccnt - 1); 2758 ANHE_at_cache (periodics [ev_active (w)]);
2759 upheap (periodics, ev_active (w));
1626 2760
2761 EV_FREQUENT_CHECK;
2762
1627 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2763 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1628} 2764}
1629 2765
1630void 2766void noinline
1631ev_periodic_stop (EV_P_ ev_periodic *w) 2767ev_periodic_stop (EV_P_ ev_periodic *w)
1632{ 2768{
1633 ev_clear_pending (EV_A_ (W)w); 2769 clear_pending (EV_A_ (W)w);
1634 if (expect_false (!ev_is_active (w))) 2770 if (expect_false (!ev_is_active (w)))
1635 return; 2771 return;
1636 2772
1637 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2773 EV_FREQUENT_CHECK;
1638 2774
1639 { 2775 {
1640 int active = ((W)w)->active; 2776 int active = ev_active (w);
1641 2777
2778 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2779
2780 --periodiccnt;
2781
1642 if (expect_true (--active < --periodiccnt)) 2782 if (expect_true (active < periodiccnt + HEAP0))
1643 { 2783 {
1644 periodics [active] = periodics [periodiccnt]; 2784 periodics [active] = periodics [periodiccnt + HEAP0];
1645 adjustheap ((WT *)periodics, periodiccnt, active); 2785 adjustheap (periodics, periodiccnt, active);
1646 } 2786 }
1647 } 2787 }
1648 2788
1649 ev_stop (EV_A_ (W)w); 2789 ev_stop (EV_A_ (W)w);
1650}
1651 2790
1652void 2791 EV_FREQUENT_CHECK;
2792}
2793
2794void noinline
1653ev_periodic_again (EV_P_ ev_periodic *w) 2795ev_periodic_again (EV_P_ ev_periodic *w)
1654{ 2796{
1655 /* TODO: use adjustheap and recalculation */ 2797 /* TODO: use adjustheap and recalculation */
1656 ev_periodic_stop (EV_A_ w); 2798 ev_periodic_stop (EV_A_ w);
1657 ev_periodic_start (EV_A_ w); 2799 ev_periodic_start (EV_A_ w);
1660 2802
1661#ifndef SA_RESTART 2803#ifndef SA_RESTART
1662# define SA_RESTART 0 2804# define SA_RESTART 0
1663#endif 2805#endif
1664 2806
1665void 2807#if EV_SIGNAL_ENABLE
2808
2809void noinline
1666ev_signal_start (EV_P_ ev_signal *w) 2810ev_signal_start (EV_P_ ev_signal *w)
1667{ 2811{
1668#if EV_MULTIPLICITY
1669 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1670#endif
1671 if (expect_false (ev_is_active (w))) 2812 if (expect_false (ev_is_active (w)))
1672 return; 2813 return;
1673 2814
1674 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2815 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2816
2817#if EV_MULTIPLICITY
2818 assert (("libev: a signal must not be attached to two different loops",
2819 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2820
2821 signals [w->signum - 1].loop = EV_A;
2822#endif
2823
2824 EV_FREQUENT_CHECK;
2825
2826#if EV_USE_SIGNALFD
2827 if (sigfd == -2)
2828 {
2829 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2830 if (sigfd < 0 && errno == EINVAL)
2831 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2832
2833 if (sigfd >= 0)
2834 {
2835 fd_intern (sigfd); /* doing it twice will not hurt */
2836
2837 sigemptyset (&sigfd_set);
2838
2839 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2840 ev_set_priority (&sigfd_w, EV_MAXPRI);
2841 ev_io_start (EV_A_ &sigfd_w);
2842 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2843 }
2844 }
2845
2846 if (sigfd >= 0)
2847 {
2848 /* TODO: check .head */
2849 sigaddset (&sigfd_set, w->signum);
2850 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2851
2852 signalfd (sigfd, &sigfd_set, 0);
2853 }
2854#endif
1675 2855
1676 ev_start (EV_A_ (W)w, 1); 2856 ev_start (EV_A_ (W)w, 1);
1677 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1678 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2857 wlist_add (&signals [w->signum - 1].head, (WL)w);
1679 2858
1680 if (!((WL)w)->next) 2859 if (!((WL)w)->next)
2860# if EV_USE_SIGNALFD
2861 if (sigfd < 0) /*TODO*/
2862# endif
1681 { 2863 {
1682#if _WIN32 2864# ifdef _WIN32
2865 evpipe_init (EV_A);
2866
1683 signal (w->signum, sighandler); 2867 signal (w->signum, ev_sighandler);
1684#else 2868# else
1685 struct sigaction sa; 2869 struct sigaction sa;
2870
2871 evpipe_init (EV_A);
2872
1686 sa.sa_handler = sighandler; 2873 sa.sa_handler = ev_sighandler;
1687 sigfillset (&sa.sa_mask); 2874 sigfillset (&sa.sa_mask);
1688 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2875 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1689 sigaction (w->signum, &sa, 0); 2876 sigaction (w->signum, &sa, 0);
2877
2878 sigemptyset (&sa.sa_mask);
2879 sigaddset (&sa.sa_mask, w->signum);
2880 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1690#endif 2881#endif
1691 } 2882 }
1692}
1693 2883
1694void 2884 EV_FREQUENT_CHECK;
2885}
2886
2887void noinline
1695ev_signal_stop (EV_P_ ev_signal *w) 2888ev_signal_stop (EV_P_ ev_signal *w)
1696{ 2889{
1697 ev_clear_pending (EV_A_ (W)w); 2890 clear_pending (EV_A_ (W)w);
1698 if (expect_false (!ev_is_active (w))) 2891 if (expect_false (!ev_is_active (w)))
1699 return; 2892 return;
1700 2893
2894 EV_FREQUENT_CHECK;
2895
1701 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2896 wlist_del (&signals [w->signum - 1].head, (WL)w);
1702 ev_stop (EV_A_ (W)w); 2897 ev_stop (EV_A_ (W)w);
1703 2898
1704 if (!signals [w->signum - 1].head) 2899 if (!signals [w->signum - 1].head)
2900 {
2901#if EV_MULTIPLICITY
2902 signals [w->signum - 1].loop = 0; /* unattach from signal */
2903#endif
2904#if EV_USE_SIGNALFD
2905 if (sigfd >= 0)
2906 {
2907 sigset_t ss;
2908
2909 sigemptyset (&ss);
2910 sigaddset (&ss, w->signum);
2911 sigdelset (&sigfd_set, w->signum);
2912
2913 signalfd (sigfd, &sigfd_set, 0);
2914 sigprocmask (SIG_UNBLOCK, &ss, 0);
2915 }
2916 else
2917#endif
1705 signal (w->signum, SIG_DFL); 2918 signal (w->signum, SIG_DFL);
2919 }
2920
2921 EV_FREQUENT_CHECK;
1706} 2922}
2923
2924#endif
2925
2926#if EV_CHILD_ENABLE
1707 2927
1708void 2928void
1709ev_child_start (EV_P_ ev_child *w) 2929ev_child_start (EV_P_ ev_child *w)
1710{ 2930{
1711#if EV_MULTIPLICITY 2931#if EV_MULTIPLICITY
1712 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2932 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1713#endif 2933#endif
1714 if (expect_false (ev_is_active (w))) 2934 if (expect_false (ev_is_active (w)))
1715 return; 2935 return;
1716 2936
2937 EV_FREQUENT_CHECK;
2938
1717 ev_start (EV_A_ (W)w, 1); 2939 ev_start (EV_A_ (W)w, 1);
1718 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2940 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2941
2942 EV_FREQUENT_CHECK;
1719} 2943}
1720 2944
1721void 2945void
1722ev_child_stop (EV_P_ ev_child *w) 2946ev_child_stop (EV_P_ ev_child *w)
1723{ 2947{
1724 ev_clear_pending (EV_A_ (W)w); 2948 clear_pending (EV_A_ (W)w);
1725 if (expect_false (!ev_is_active (w))) 2949 if (expect_false (!ev_is_active (w)))
1726 return; 2950 return;
1727 2951
2952 EV_FREQUENT_CHECK;
2953
1728 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2954 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1729 ev_stop (EV_A_ (W)w); 2955 ev_stop (EV_A_ (W)w);
2956
2957 EV_FREQUENT_CHECK;
1730} 2958}
2959
2960#endif
1731 2961
1732#if EV_STAT_ENABLE 2962#if EV_STAT_ENABLE
1733 2963
1734# ifdef _WIN32 2964# ifdef _WIN32
1735# undef lstat 2965# undef lstat
1736# define lstat(a,b) _stati64 (a,b) 2966# define lstat(a,b) _stati64 (a,b)
1737# endif 2967# endif
1738 2968
1739#define DEF_STAT_INTERVAL 5.0074891 2969#define DEF_STAT_INTERVAL 5.0074891
2970#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1740#define MIN_STAT_INTERVAL 0.1074891 2971#define MIN_STAT_INTERVAL 0.1074891
1741 2972
1742static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2973static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1743 2974
1744#if EV_USE_INOTIFY 2975#if EV_USE_INOTIFY
1745# define EV_INOTIFY_BUFSIZE 8192 2976
2977/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2978# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1746 2979
1747static void noinline 2980static void noinline
1748infy_add (EV_P_ ev_stat *w) 2981infy_add (EV_P_ ev_stat *w)
1749{ 2982{
1750 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2983 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1751 2984
1752 if (w->wd < 0) 2985 if (w->wd >= 0)
2986 {
2987 struct statfs sfs;
2988
2989 /* now local changes will be tracked by inotify, but remote changes won't */
2990 /* unless the filesystem is known to be local, we therefore still poll */
2991 /* also do poll on <2.6.25, but with normal frequency */
2992
2993 if (!fs_2625)
2994 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2995 else if (!statfs (w->path, &sfs)
2996 && (sfs.f_type == 0x1373 /* devfs */
2997 || sfs.f_type == 0xEF53 /* ext2/3 */
2998 || sfs.f_type == 0x3153464a /* jfs */
2999 || sfs.f_type == 0x52654973 /* reiser3 */
3000 || sfs.f_type == 0x01021994 /* tempfs */
3001 || sfs.f_type == 0x58465342 /* xfs */))
3002 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3003 else
3004 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1753 { 3005 }
1754 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3006 else
3007 {
3008 /* can't use inotify, continue to stat */
3009 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1755 3010
1756 /* monitor some parent directory for speedup hints */ 3011 /* if path is not there, monitor some parent directory for speedup hints */
3012 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3013 /* but an efficiency issue only */
1757 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3014 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1758 { 3015 {
1759 char path [4096]; 3016 char path [4096];
1760 strcpy (path, w->path); 3017 strcpy (path, w->path);
1761 3018
1764 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3021 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1765 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3022 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1766 3023
1767 char *pend = strrchr (path, '/'); 3024 char *pend = strrchr (path, '/');
1768 3025
1769 if (!pend) 3026 if (!pend || pend == path)
1770 break; /* whoops, no '/', complain to your admin */ 3027 break;
1771 3028
1772 *pend = 0; 3029 *pend = 0;
1773 w->wd = inotify_add_watch (fs_fd, path, mask); 3030 w->wd = inotify_add_watch (fs_fd, path, mask);
1774 } 3031 }
1775 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3032 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1776 } 3033 }
1777 } 3034 }
1778 else
1779 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1780 3035
1781 if (w->wd >= 0) 3036 if (w->wd >= 0)
1782 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3037 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3038
3039 /* now re-arm timer, if required */
3040 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3041 ev_timer_again (EV_A_ &w->timer);
3042 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1783} 3043}
1784 3044
1785static void noinline 3045static void noinline
1786infy_del (EV_P_ ev_stat *w) 3046infy_del (EV_P_ ev_stat *w)
1787{ 3047{
1790 3050
1791 if (wd < 0) 3051 if (wd < 0)
1792 return; 3052 return;
1793 3053
1794 w->wd = -2; 3054 w->wd = -2;
1795 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3055 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1796 wlist_del (&fs_hash [slot].head, (WL)w); 3056 wlist_del (&fs_hash [slot].head, (WL)w);
1797 3057
1798 /* remove this watcher, if others are watching it, they will rearm */ 3058 /* remove this watcher, if others are watching it, they will rearm */
1799 inotify_rm_watch (fs_fd, wd); 3059 inotify_rm_watch (fs_fd, wd);
1800} 3060}
1801 3061
1802static void noinline 3062static void noinline
1803infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3063infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1804{ 3064{
1805 if (slot < 0) 3065 if (slot < 0)
1806 /* overflow, need to check for all hahs slots */ 3066 /* overflow, need to check for all hash slots */
1807 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3067 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1808 infy_wd (EV_A_ slot, wd, ev); 3068 infy_wd (EV_A_ slot, wd, ev);
1809 else 3069 else
1810 { 3070 {
1811 WL w_; 3071 WL w_;
1812 3072
1813 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3073 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1814 { 3074 {
1815 ev_stat *w = (ev_stat *)w_; 3075 ev_stat *w = (ev_stat *)w_;
1816 w_ = w_->next; /* lets us remove this watcher and all before it */ 3076 w_ = w_->next; /* lets us remove this watcher and all before it */
1817 3077
1818 if (w->wd == wd || wd == -1) 3078 if (w->wd == wd || wd == -1)
1819 { 3079 {
1820 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3080 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1821 { 3081 {
3082 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1822 w->wd = -1; 3083 w->wd = -1;
1823 infy_add (EV_A_ w); /* re-add, no matter what */ 3084 infy_add (EV_A_ w); /* re-add, no matter what */
1824 } 3085 }
1825 3086
1826 stat_timer_cb (EV_A_ &w->timer, 0); 3087 stat_timer_cb (EV_A_ &w->timer, 0);
1831 3092
1832static void 3093static void
1833infy_cb (EV_P_ ev_io *w, int revents) 3094infy_cb (EV_P_ ev_io *w, int revents)
1834{ 3095{
1835 char buf [EV_INOTIFY_BUFSIZE]; 3096 char buf [EV_INOTIFY_BUFSIZE];
1836 struct inotify_event *ev = (struct inotify_event *)buf;
1837 int ofs; 3097 int ofs;
1838 int len = read (fs_fd, buf, sizeof (buf)); 3098 int len = read (fs_fd, buf, sizeof (buf));
1839 3099
1840 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3100 for (ofs = 0; ofs < len; )
3101 {
3102 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1841 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3103 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3104 ofs += sizeof (struct inotify_event) + ev->len;
3105 }
1842} 3106}
1843 3107
1844void inline_size 3108inline_size void
3109ev_check_2625 (EV_P)
3110{
3111 /* kernels < 2.6.25 are borked
3112 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3113 */
3114 if (ev_linux_version () < 0x020619)
3115 return;
3116
3117 fs_2625 = 1;
3118}
3119
3120inline_size int
3121infy_newfd (void)
3122{
3123#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3124 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3125 if (fd >= 0)
3126 return fd;
3127#endif
3128 return inotify_init ();
3129}
3130
3131inline_size void
1845infy_init (EV_P) 3132infy_init (EV_P)
1846{ 3133{
1847 if (fs_fd != -2) 3134 if (fs_fd != -2)
1848 return; 3135 return;
1849 3136
3137 fs_fd = -1;
3138
3139 ev_check_2625 (EV_A);
3140
1850 fs_fd = inotify_init (); 3141 fs_fd = infy_newfd ();
1851 3142
1852 if (fs_fd >= 0) 3143 if (fs_fd >= 0)
1853 { 3144 {
3145 fd_intern (fs_fd);
1854 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3146 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1855 ev_set_priority (&fs_w, EV_MAXPRI); 3147 ev_set_priority (&fs_w, EV_MAXPRI);
1856 ev_io_start (EV_A_ &fs_w); 3148 ev_io_start (EV_A_ &fs_w);
3149 ev_unref (EV_A);
1857 } 3150 }
1858} 3151}
1859 3152
1860void inline_size 3153inline_size void
1861infy_fork (EV_P) 3154infy_fork (EV_P)
1862{ 3155{
1863 int slot; 3156 int slot;
1864 3157
1865 if (fs_fd < 0) 3158 if (fs_fd < 0)
1866 return; 3159 return;
1867 3160
3161 ev_ref (EV_A);
3162 ev_io_stop (EV_A_ &fs_w);
1868 close (fs_fd); 3163 close (fs_fd);
1869 fs_fd = inotify_init (); 3164 fs_fd = infy_newfd ();
1870 3165
3166 if (fs_fd >= 0)
3167 {
3168 fd_intern (fs_fd);
3169 ev_io_set (&fs_w, fs_fd, EV_READ);
3170 ev_io_start (EV_A_ &fs_w);
3171 ev_unref (EV_A);
3172 }
3173
1871 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3174 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1872 { 3175 {
1873 WL w_ = fs_hash [slot].head; 3176 WL w_ = fs_hash [slot].head;
1874 fs_hash [slot].head = 0; 3177 fs_hash [slot].head = 0;
1875 3178
1876 while (w_) 3179 while (w_)
1881 w->wd = -1; 3184 w->wd = -1;
1882 3185
1883 if (fs_fd >= 0) 3186 if (fs_fd >= 0)
1884 infy_add (EV_A_ w); /* re-add, no matter what */ 3187 infy_add (EV_A_ w); /* re-add, no matter what */
1885 else 3188 else
3189 {
3190 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3191 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1886 ev_timer_start (EV_A_ &w->timer); 3192 ev_timer_again (EV_A_ &w->timer);
3193 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3194 }
1887 } 3195 }
1888
1889 } 3196 }
1890} 3197}
1891 3198
3199#endif
3200
3201#ifdef _WIN32
3202# define EV_LSTAT(p,b) _stati64 (p, b)
3203#else
3204# define EV_LSTAT(p,b) lstat (p, b)
1892#endif 3205#endif
1893 3206
1894void 3207void
1895ev_stat_stat (EV_P_ ev_stat *w) 3208ev_stat_stat (EV_P_ ev_stat *w)
1896{ 3209{
1903static void noinline 3216static void noinline
1904stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3217stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1905{ 3218{
1906 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3219 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1907 3220
1908 /* we copy this here each the time so that */ 3221 ev_statdata prev = w->attr;
1909 /* prev has the old value when the callback gets invoked */
1910 w->prev = w->attr;
1911 ev_stat_stat (EV_A_ w); 3222 ev_stat_stat (EV_A_ w);
1912 3223
1913 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3224 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1914 if ( 3225 if (
1915 w->prev.st_dev != w->attr.st_dev 3226 prev.st_dev != w->attr.st_dev
1916 || w->prev.st_ino != w->attr.st_ino 3227 || prev.st_ino != w->attr.st_ino
1917 || w->prev.st_mode != w->attr.st_mode 3228 || prev.st_mode != w->attr.st_mode
1918 || w->prev.st_nlink != w->attr.st_nlink 3229 || prev.st_nlink != w->attr.st_nlink
1919 || w->prev.st_uid != w->attr.st_uid 3230 || prev.st_uid != w->attr.st_uid
1920 || w->prev.st_gid != w->attr.st_gid 3231 || prev.st_gid != w->attr.st_gid
1921 || w->prev.st_rdev != w->attr.st_rdev 3232 || prev.st_rdev != w->attr.st_rdev
1922 || w->prev.st_size != w->attr.st_size 3233 || prev.st_size != w->attr.st_size
1923 || w->prev.st_atime != w->attr.st_atime 3234 || prev.st_atime != w->attr.st_atime
1924 || w->prev.st_mtime != w->attr.st_mtime 3235 || prev.st_mtime != w->attr.st_mtime
1925 || w->prev.st_ctime != w->attr.st_ctime 3236 || prev.st_ctime != w->attr.st_ctime
1926 ) { 3237 ) {
3238 /* we only update w->prev on actual differences */
3239 /* in case we test more often than invoke the callback, */
3240 /* to ensure that prev is always different to attr */
3241 w->prev = prev;
3242
1927 #if EV_USE_INOTIFY 3243 #if EV_USE_INOTIFY
3244 if (fs_fd >= 0)
3245 {
1928 infy_del (EV_A_ w); 3246 infy_del (EV_A_ w);
1929 infy_add (EV_A_ w); 3247 infy_add (EV_A_ w);
1930 ev_stat_stat (EV_A_ w); /* avoid race... */ 3248 ev_stat_stat (EV_A_ w); /* avoid race... */
3249 }
1931 #endif 3250 #endif
1932 3251
1933 ev_feed_event (EV_A_ w, EV_STAT); 3252 ev_feed_event (EV_A_ w, EV_STAT);
1934 } 3253 }
1935} 3254}
1938ev_stat_start (EV_P_ ev_stat *w) 3257ev_stat_start (EV_P_ ev_stat *w)
1939{ 3258{
1940 if (expect_false (ev_is_active (w))) 3259 if (expect_false (ev_is_active (w)))
1941 return; 3260 return;
1942 3261
1943 /* since we use memcmp, we need to clear any padding data etc. */
1944 memset (&w->prev, 0, sizeof (ev_statdata));
1945 memset (&w->attr, 0, sizeof (ev_statdata));
1946
1947 ev_stat_stat (EV_A_ w); 3262 ev_stat_stat (EV_A_ w);
1948 3263
3264 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1949 if (w->interval < MIN_STAT_INTERVAL) 3265 w->interval = MIN_STAT_INTERVAL;
1950 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1951 3266
1952 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3267 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1953 ev_set_priority (&w->timer, ev_priority (w)); 3268 ev_set_priority (&w->timer, ev_priority (w));
1954 3269
1955#if EV_USE_INOTIFY 3270#if EV_USE_INOTIFY
1956 infy_init (EV_A); 3271 infy_init (EV_A);
1957 3272
1958 if (fs_fd >= 0) 3273 if (fs_fd >= 0)
1959 infy_add (EV_A_ w); 3274 infy_add (EV_A_ w);
1960 else 3275 else
1961#endif 3276#endif
3277 {
1962 ev_timer_start (EV_A_ &w->timer); 3278 ev_timer_again (EV_A_ &w->timer);
3279 ev_unref (EV_A);
3280 }
1963 3281
1964 ev_start (EV_A_ (W)w, 1); 3282 ev_start (EV_A_ (W)w, 1);
3283
3284 EV_FREQUENT_CHECK;
1965} 3285}
1966 3286
1967void 3287void
1968ev_stat_stop (EV_P_ ev_stat *w) 3288ev_stat_stop (EV_P_ ev_stat *w)
1969{ 3289{
1970 ev_clear_pending (EV_A_ (W)w); 3290 clear_pending (EV_A_ (W)w);
1971 if (expect_false (!ev_is_active (w))) 3291 if (expect_false (!ev_is_active (w)))
1972 return; 3292 return;
1973 3293
3294 EV_FREQUENT_CHECK;
3295
1974#if EV_USE_INOTIFY 3296#if EV_USE_INOTIFY
1975 infy_del (EV_A_ w); 3297 infy_del (EV_A_ w);
1976#endif 3298#endif
3299
3300 if (ev_is_active (&w->timer))
3301 {
3302 ev_ref (EV_A);
1977 ev_timer_stop (EV_A_ &w->timer); 3303 ev_timer_stop (EV_A_ &w->timer);
3304 }
1978 3305
1979 ev_stop (EV_A_ (W)w); 3306 ev_stop (EV_A_ (W)w);
1980}
1981#endif
1982 3307
3308 EV_FREQUENT_CHECK;
3309}
3310#endif
3311
3312#if EV_IDLE_ENABLE
1983void 3313void
1984ev_idle_start (EV_P_ ev_idle *w) 3314ev_idle_start (EV_P_ ev_idle *w)
1985{ 3315{
1986 if (expect_false (ev_is_active (w))) 3316 if (expect_false (ev_is_active (w)))
1987 return; 3317 return;
1988 3318
3319 pri_adjust (EV_A_ (W)w);
3320
3321 EV_FREQUENT_CHECK;
3322
3323 {
3324 int active = ++idlecnt [ABSPRI (w)];
3325
3326 ++idleall;
1989 ev_start (EV_A_ (W)w, ++idlecnt); 3327 ev_start (EV_A_ (W)w, active);
3328
1990 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3329 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1991 idles [idlecnt - 1] = w; 3330 idles [ABSPRI (w)][active - 1] = w;
3331 }
3332
3333 EV_FREQUENT_CHECK;
1992} 3334}
1993 3335
1994void 3336void
1995ev_idle_stop (EV_P_ ev_idle *w) 3337ev_idle_stop (EV_P_ ev_idle *w)
1996{ 3338{
1997 ev_clear_pending (EV_A_ (W)w); 3339 clear_pending (EV_A_ (W)w);
1998 if (expect_false (!ev_is_active (w))) 3340 if (expect_false (!ev_is_active (w)))
1999 return; 3341 return;
2000 3342
3343 EV_FREQUENT_CHECK;
3344
2001 { 3345 {
2002 int active = ((W)w)->active; 3346 int active = ev_active (w);
2003 idles [active - 1] = idles [--idlecnt]; 3347
2004 ((W)idles [active - 1])->active = active; 3348 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3349 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3350
3351 ev_stop (EV_A_ (W)w);
3352 --idleall;
2005 } 3353 }
2006 3354
2007 ev_stop (EV_A_ (W)w); 3355 EV_FREQUENT_CHECK;
2008} 3356}
3357#endif
2009 3358
3359#if EV_PREPARE_ENABLE
2010void 3360void
2011ev_prepare_start (EV_P_ ev_prepare *w) 3361ev_prepare_start (EV_P_ ev_prepare *w)
2012{ 3362{
2013 if (expect_false (ev_is_active (w))) 3363 if (expect_false (ev_is_active (w)))
2014 return; 3364 return;
3365
3366 EV_FREQUENT_CHECK;
2015 3367
2016 ev_start (EV_A_ (W)w, ++preparecnt); 3368 ev_start (EV_A_ (W)w, ++preparecnt);
2017 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3369 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2018 prepares [preparecnt - 1] = w; 3370 prepares [preparecnt - 1] = w;
3371
3372 EV_FREQUENT_CHECK;
2019} 3373}
2020 3374
2021void 3375void
2022ev_prepare_stop (EV_P_ ev_prepare *w) 3376ev_prepare_stop (EV_P_ ev_prepare *w)
2023{ 3377{
2024 ev_clear_pending (EV_A_ (W)w); 3378 clear_pending (EV_A_ (W)w);
2025 if (expect_false (!ev_is_active (w))) 3379 if (expect_false (!ev_is_active (w)))
2026 return; 3380 return;
2027 3381
3382 EV_FREQUENT_CHECK;
3383
2028 { 3384 {
2029 int active = ((W)w)->active; 3385 int active = ev_active (w);
3386
2030 prepares [active - 1] = prepares [--preparecnt]; 3387 prepares [active - 1] = prepares [--preparecnt];
2031 ((W)prepares [active - 1])->active = active; 3388 ev_active (prepares [active - 1]) = active;
2032 } 3389 }
2033 3390
2034 ev_stop (EV_A_ (W)w); 3391 ev_stop (EV_A_ (W)w);
2035}
2036 3392
3393 EV_FREQUENT_CHECK;
3394}
3395#endif
3396
3397#if EV_CHECK_ENABLE
2037void 3398void
2038ev_check_start (EV_P_ ev_check *w) 3399ev_check_start (EV_P_ ev_check *w)
2039{ 3400{
2040 if (expect_false (ev_is_active (w))) 3401 if (expect_false (ev_is_active (w)))
2041 return; 3402 return;
3403
3404 EV_FREQUENT_CHECK;
2042 3405
2043 ev_start (EV_A_ (W)w, ++checkcnt); 3406 ev_start (EV_A_ (W)w, ++checkcnt);
2044 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3407 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2045 checks [checkcnt - 1] = w; 3408 checks [checkcnt - 1] = w;
3409
3410 EV_FREQUENT_CHECK;
2046} 3411}
2047 3412
2048void 3413void
2049ev_check_stop (EV_P_ ev_check *w) 3414ev_check_stop (EV_P_ ev_check *w)
2050{ 3415{
2051 ev_clear_pending (EV_A_ (W)w); 3416 clear_pending (EV_A_ (W)w);
2052 if (expect_false (!ev_is_active (w))) 3417 if (expect_false (!ev_is_active (w)))
2053 return; 3418 return;
2054 3419
3420 EV_FREQUENT_CHECK;
3421
2055 { 3422 {
2056 int active = ((W)w)->active; 3423 int active = ev_active (w);
3424
2057 checks [active - 1] = checks [--checkcnt]; 3425 checks [active - 1] = checks [--checkcnt];
2058 ((W)checks [active - 1])->active = active; 3426 ev_active (checks [active - 1]) = active;
2059 } 3427 }
2060 3428
2061 ev_stop (EV_A_ (W)w); 3429 ev_stop (EV_A_ (W)w);
3430
3431 EV_FREQUENT_CHECK;
2062} 3432}
3433#endif
2063 3434
2064#if EV_EMBED_ENABLE 3435#if EV_EMBED_ENABLE
2065void noinline 3436void noinline
2066ev_embed_sweep (EV_P_ ev_embed *w) 3437ev_embed_sweep (EV_P_ ev_embed *w)
2067{ 3438{
2068 ev_loop (w->loop, EVLOOP_NONBLOCK); 3439 ev_run (w->other, EVRUN_NOWAIT);
2069} 3440}
2070 3441
2071static void 3442static void
2072embed_cb (EV_P_ ev_io *io, int revents) 3443embed_io_cb (EV_P_ ev_io *io, int revents)
2073{ 3444{
2074 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3445 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2075 3446
2076 if (ev_cb (w)) 3447 if (ev_cb (w))
2077 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3448 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2078 else 3449 else
2079 ev_embed_sweep (loop, w); 3450 ev_run (w->other, EVRUN_NOWAIT);
2080} 3451}
3452
3453static void
3454embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3455{
3456 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3457
3458 {
3459 EV_P = w->other;
3460
3461 while (fdchangecnt)
3462 {
3463 fd_reify (EV_A);
3464 ev_run (EV_A_ EVRUN_NOWAIT);
3465 }
3466 }
3467}
3468
3469static void
3470embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3471{
3472 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3473
3474 ev_embed_stop (EV_A_ w);
3475
3476 {
3477 EV_P = w->other;
3478
3479 ev_loop_fork (EV_A);
3480 ev_run (EV_A_ EVRUN_NOWAIT);
3481 }
3482
3483 ev_embed_start (EV_A_ w);
3484}
3485
3486#if 0
3487static void
3488embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3489{
3490 ev_idle_stop (EV_A_ idle);
3491}
3492#endif
2081 3493
2082void 3494void
2083ev_embed_start (EV_P_ ev_embed *w) 3495ev_embed_start (EV_P_ ev_embed *w)
2084{ 3496{
2085 if (expect_false (ev_is_active (w))) 3497 if (expect_false (ev_is_active (w)))
2086 return; 3498 return;
2087 3499
2088 { 3500 {
2089 struct ev_loop *loop = w->loop; 3501 EV_P = w->other;
2090 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3502 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2091 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3503 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2092 } 3504 }
3505
3506 EV_FREQUENT_CHECK;
2093 3507
2094 ev_set_priority (&w->io, ev_priority (w)); 3508 ev_set_priority (&w->io, ev_priority (w));
2095 ev_io_start (EV_A_ &w->io); 3509 ev_io_start (EV_A_ &w->io);
2096 3510
3511 ev_prepare_init (&w->prepare, embed_prepare_cb);
3512 ev_set_priority (&w->prepare, EV_MINPRI);
3513 ev_prepare_start (EV_A_ &w->prepare);
3514
3515 ev_fork_init (&w->fork, embed_fork_cb);
3516 ev_fork_start (EV_A_ &w->fork);
3517
3518 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3519
2097 ev_start (EV_A_ (W)w, 1); 3520 ev_start (EV_A_ (W)w, 1);
3521
3522 EV_FREQUENT_CHECK;
2098} 3523}
2099 3524
2100void 3525void
2101ev_embed_stop (EV_P_ ev_embed *w) 3526ev_embed_stop (EV_P_ ev_embed *w)
2102{ 3527{
2103 ev_clear_pending (EV_A_ (W)w); 3528 clear_pending (EV_A_ (W)w);
2104 if (expect_false (!ev_is_active (w))) 3529 if (expect_false (!ev_is_active (w)))
2105 return; 3530 return;
2106 3531
3532 EV_FREQUENT_CHECK;
3533
2107 ev_io_stop (EV_A_ &w->io); 3534 ev_io_stop (EV_A_ &w->io);
3535 ev_prepare_stop (EV_A_ &w->prepare);
3536 ev_fork_stop (EV_A_ &w->fork);
2108 3537
2109 ev_stop (EV_A_ (W)w); 3538 ev_stop (EV_A_ (W)w);
3539
3540 EV_FREQUENT_CHECK;
2110} 3541}
2111#endif 3542#endif
2112 3543
2113#if EV_FORK_ENABLE 3544#if EV_FORK_ENABLE
2114void 3545void
2115ev_fork_start (EV_P_ ev_fork *w) 3546ev_fork_start (EV_P_ ev_fork *w)
2116{ 3547{
2117 if (expect_false (ev_is_active (w))) 3548 if (expect_false (ev_is_active (w)))
2118 return; 3549 return;
3550
3551 EV_FREQUENT_CHECK;
2119 3552
2120 ev_start (EV_A_ (W)w, ++forkcnt); 3553 ev_start (EV_A_ (W)w, ++forkcnt);
2121 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3554 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2122 forks [forkcnt - 1] = w; 3555 forks [forkcnt - 1] = w;
3556
3557 EV_FREQUENT_CHECK;
2123} 3558}
2124 3559
2125void 3560void
2126ev_fork_stop (EV_P_ ev_fork *w) 3561ev_fork_stop (EV_P_ ev_fork *w)
2127{ 3562{
2128 ev_clear_pending (EV_A_ (W)w); 3563 clear_pending (EV_A_ (W)w);
2129 if (expect_false (!ev_is_active (w))) 3564 if (expect_false (!ev_is_active (w)))
2130 return; 3565 return;
2131 3566
3567 EV_FREQUENT_CHECK;
3568
2132 { 3569 {
2133 int active = ((W)w)->active; 3570 int active = ev_active (w);
3571
2134 forks [active - 1] = forks [--forkcnt]; 3572 forks [active - 1] = forks [--forkcnt];
2135 ((W)forks [active - 1])->active = active; 3573 ev_active (forks [active - 1]) = active;
2136 } 3574 }
2137 3575
2138 ev_stop (EV_A_ (W)w); 3576 ev_stop (EV_A_ (W)w);
3577
3578 EV_FREQUENT_CHECK;
3579}
3580#endif
3581
3582#if EV_ASYNC_ENABLE
3583void
3584ev_async_start (EV_P_ ev_async *w)
3585{
3586 if (expect_false (ev_is_active (w)))
3587 return;
3588
3589 w->sent = 0;
3590
3591 evpipe_init (EV_A);
3592
3593 EV_FREQUENT_CHECK;
3594
3595 ev_start (EV_A_ (W)w, ++asynccnt);
3596 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3597 asyncs [asynccnt - 1] = w;
3598
3599 EV_FREQUENT_CHECK;
3600}
3601
3602void
3603ev_async_stop (EV_P_ ev_async *w)
3604{
3605 clear_pending (EV_A_ (W)w);
3606 if (expect_false (!ev_is_active (w)))
3607 return;
3608
3609 EV_FREQUENT_CHECK;
3610
3611 {
3612 int active = ev_active (w);
3613
3614 asyncs [active - 1] = asyncs [--asynccnt];
3615 ev_active (asyncs [active - 1]) = active;
3616 }
3617
3618 ev_stop (EV_A_ (W)w);
3619
3620 EV_FREQUENT_CHECK;
3621}
3622
3623void
3624ev_async_send (EV_P_ ev_async *w)
3625{
3626 w->sent = 1;
3627 evpipe_write (EV_A_ &async_pending);
2139} 3628}
2140#endif 3629#endif
2141 3630
2142/*****************************************************************************/ 3631/*****************************************************************************/
2143 3632
2153once_cb (EV_P_ struct ev_once *once, int revents) 3642once_cb (EV_P_ struct ev_once *once, int revents)
2154{ 3643{
2155 void (*cb)(int revents, void *arg) = once->cb; 3644 void (*cb)(int revents, void *arg) = once->cb;
2156 void *arg = once->arg; 3645 void *arg = once->arg;
2157 3646
2158 ev_io_stop (EV_A_ &once->io); 3647 ev_io_stop (EV_A_ &once->io);
2159 ev_timer_stop (EV_A_ &once->to); 3648 ev_timer_stop (EV_A_ &once->to);
2160 ev_free (once); 3649 ev_free (once);
2161 3650
2162 cb (revents, arg); 3651 cb (revents, arg);
2163} 3652}
2164 3653
2165static void 3654static void
2166once_cb_io (EV_P_ ev_io *w, int revents) 3655once_cb_io (EV_P_ ev_io *w, int revents)
2167{ 3656{
2168 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3657 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3658
3659 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2169} 3660}
2170 3661
2171static void 3662static void
2172once_cb_to (EV_P_ ev_timer *w, int revents) 3663once_cb_to (EV_P_ ev_timer *w, int revents)
2173{ 3664{
2174 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3665 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3666
3667 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2175} 3668}
2176 3669
2177void 3670void
2178ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3671ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2179{ 3672{
2180 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3673 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2181 3674
2182 if (expect_false (!once)) 3675 if (expect_false (!once))
2183 { 3676 {
2184 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3677 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2185 return; 3678 return;
2186 } 3679 }
2187 3680
2188 once->cb = cb; 3681 once->cb = cb;
2189 once->arg = arg; 3682 once->arg = arg;
2201 ev_timer_set (&once->to, timeout, 0.); 3694 ev_timer_set (&once->to, timeout, 0.);
2202 ev_timer_start (EV_A_ &once->to); 3695 ev_timer_start (EV_A_ &once->to);
2203 } 3696 }
2204} 3697}
2205 3698
2206#ifdef __cplusplus 3699/*****************************************************************************/
2207} 3700
3701#if EV_WALK_ENABLE
3702void
3703ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3704{
3705 int i, j;
3706 ev_watcher_list *wl, *wn;
3707
3708 if (types & (EV_IO | EV_EMBED))
3709 for (i = 0; i < anfdmax; ++i)
3710 for (wl = anfds [i].head; wl; )
3711 {
3712 wn = wl->next;
3713
3714#if EV_EMBED_ENABLE
3715 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3716 {
3717 if (types & EV_EMBED)
3718 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3719 }
3720 else
3721#endif
3722#if EV_USE_INOTIFY
3723 if (ev_cb ((ev_io *)wl) == infy_cb)
3724 ;
3725 else
3726#endif
3727 if ((ev_io *)wl != &pipe_w)
3728 if (types & EV_IO)
3729 cb (EV_A_ EV_IO, wl);
3730
3731 wl = wn;
3732 }
3733
3734 if (types & (EV_TIMER | EV_STAT))
3735 for (i = timercnt + HEAP0; i-- > HEAP0; )
3736#if EV_STAT_ENABLE
3737 /*TODO: timer is not always active*/
3738 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3739 {
3740 if (types & EV_STAT)
3741 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3742 }
3743 else
3744#endif
3745 if (types & EV_TIMER)
3746 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3747
3748#if EV_PERIODIC_ENABLE
3749 if (types & EV_PERIODIC)
3750 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3751 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3752#endif
3753
3754#if EV_IDLE_ENABLE
3755 if (types & EV_IDLE)
3756 for (j = NUMPRI; i--; )
3757 for (i = idlecnt [j]; i--; )
3758 cb (EV_A_ EV_IDLE, idles [j][i]);
3759#endif
3760
3761#if EV_FORK_ENABLE
3762 if (types & EV_FORK)
3763 for (i = forkcnt; i--; )
3764 if (ev_cb (forks [i]) != embed_fork_cb)
3765 cb (EV_A_ EV_FORK, forks [i]);
3766#endif
3767
3768#if EV_ASYNC_ENABLE
3769 if (types & EV_ASYNC)
3770 for (i = asynccnt; i--; )
3771 cb (EV_A_ EV_ASYNC, asyncs [i]);
3772#endif
3773
3774#if EV_PREPARE_ENABLE
3775 if (types & EV_PREPARE)
3776 for (i = preparecnt; i--; )
3777# if EV_EMBED_ENABLE
3778 if (ev_cb (prepares [i]) != embed_prepare_cb)
2208#endif 3779# endif
3780 cb (EV_A_ EV_PREPARE, prepares [i]);
3781#endif
2209 3782
3783#if EV_CHECK_ENABLE
3784 if (types & EV_CHECK)
3785 for (i = checkcnt; i--; )
3786 cb (EV_A_ EV_CHECK, checks [i]);
3787#endif
3788
3789#if EV_SIGNAL_ENABLE
3790 if (types & EV_SIGNAL)
3791 for (i = 0; i < EV_NSIG - 1; ++i)
3792 for (wl = signals [i].head; wl; )
3793 {
3794 wn = wl->next;
3795 cb (EV_A_ EV_SIGNAL, wl);
3796 wl = wn;
3797 }
3798#endif
3799
3800#if EV_CHILD_ENABLE
3801 if (types & EV_CHILD)
3802 for (i = (EV_PID_HASHSIZE); i--; )
3803 for (wl = childs [i]; wl; )
3804 {
3805 wn = wl->next;
3806 cb (EV_A_ EV_CHILD, wl);
3807 wl = wn;
3808 }
3809#endif
3810/* EV_STAT 0x00001000 /* stat data changed */
3811/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3812}
3813#endif
3814
3815#if EV_MULTIPLICITY
3816 #include "ev_wrap.h"
3817#endif
3818
3819EV_CPP(})
3820

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines