ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.16 by root, Wed Oct 31 13:57:34 2007 UTC vs.
Revision 1.250 by root, Thu May 22 02:44:57 2008 UTC

1/*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
74# endif
75
76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
90# endif
91
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
132#endif
133
1#include <math.h> 134#include <math.h>
2#include <stdlib.h> 135#include <stdlib.h>
3#include <unistd.h>
4#include <fcntl.h> 136#include <fcntl.h>
5#include <signal.h>
6#include <stddef.h> 137#include <stddef.h>
7 138
8#include <stdio.h> 139#include <stdio.h>
9 140
10#include <assert.h> 141#include <assert.h>
11#include <errno.h> 142#include <errno.h>
12#include <sys/time.h> 143#include <sys/types.h>
13#include <time.h> 144#include <time.h>
14 145
15#define HAVE_EPOLL 1 146#include <signal.h>
16 147
17#ifndef HAVE_MONOTONIC 148#ifdef EV_H
18# ifdef CLOCK_MONOTONIC 149# include EV_H
19# define HAVE_MONOTONIC 1 150#else
151# include "ev.h"
152#endif
153
154#ifndef _WIN32
155# include <sys/time.h>
156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# define WIN32_LEAN_AND_MEAN
160# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1
20# endif 163# endif
21#endif 164#endif
22 165
166/* this block tries to deduce configuration from header-defined symbols and defaults */
167
168#ifndef EV_USE_MONOTONIC
169# define EV_USE_MONOTONIC 0
170#endif
171
172#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
178#endif
179
23#ifndef HAVE_SELECT 180#ifndef EV_USE_SELECT
24# define HAVE_SELECT 1 181# define EV_USE_SELECT 1
182#endif
183
184#ifndef EV_USE_POLL
185# ifdef _WIN32
186# define EV_USE_POLL 0
187# else
188# define EV_USE_POLL 1
25#endif 189# endif
190#endif
26 191
27#ifndef HAVE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
28# define HAVE_EPOLL 0 196# define EV_USE_EPOLL 0
29#endif 197# endif
198#endif
30 199
31#ifndef HAVE_REALTIME 200#ifndef EV_USE_KQUEUE
32# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 201# define EV_USE_KQUEUE 0
202#endif
203
204#ifndef EV_USE_PORT
205# define EV_USE_PORT 0
206#endif
207
208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
33#endif 213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
250#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL
252#endif
253
254#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif
257
258/* this block fixes any misconfiguration where we know we run into trouble otherwise */
259
260#ifndef CLOCK_MONOTONIC
261# undef EV_USE_MONOTONIC
262# define EV_USE_MONOTONIC 0
263#endif
264
265#ifndef CLOCK_REALTIME
266# undef EV_USE_REALTIME
267# define EV_USE_REALTIME 0
268#endif
269
270#if !EV_STAT_ENABLE
271# undef EV_USE_INOTIFY
272# define EV_USE_INOTIFY 0
273#endif
274
275#if !EV_USE_NANOSLEEP
276# ifndef _WIN32
277# include <sys/select.h>
278# endif
279#endif
280
281#if EV_USE_INOTIFY
282# include <sys/inotify.h>
283#endif
284
285#if EV_SELECT_IS_WINSOCKET
286# include <winsock.h>
287#endif
288
289#if EV_USE_EVENTFD
290/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
291# include <stdint.h>
292# ifdef __cplusplus
293extern "C" {
294# endif
295int eventfd (unsigned int initval, int flags);
296# ifdef __cplusplus
297}
298# endif
299#endif
300
301/**/
302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
308
309/*
310 * This is used to avoid floating point rounding problems.
311 * It is added to ev_rt_now when scheduling periodics
312 * to ensure progress, time-wise, even when rounding
313 * errors are against us.
314 * This value is good at least till the year 4000.
315 * Better solutions welcome.
316 */
317#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
34 318
35#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 319#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
36#define MAX_BLOCKTIME 60. 320#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
321/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
37 322
38#include "ev.h" 323#if __GNUC__ >= 4
324# define expect(expr,value) __builtin_expect ((expr),(value))
325# define noinline __attribute__ ((noinline))
326#else
327# define expect(expr,value) (expr)
328# define noinline
329# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
330# define inline
331# endif
332#endif
39 333
334#define expect_false(expr) expect ((expr) != 0, 0)
335#define expect_true(expr) expect ((expr) != 0, 1)
336#define inline_size static inline
337
338#if EV_MINIMAL
339# define inline_speed static noinline
340#else
341# define inline_speed static inline
342#endif
343
344#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
345#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
346
347#define EMPTY /* required for microsofts broken pseudo-c compiler */
348#define EMPTY2(a,b) /* used to suppress some warnings */
349
40typedef struct ev_watcher *W; 350typedef ev_watcher *W;
41typedef struct ev_watcher_list *WL; 351typedef ev_watcher_list *WL;
42typedef struct ev_watcher_time *WT; 352typedef ev_watcher_time *WT;
43 353
44static ev_tstamp now, diff; /* monotonic clock */ 354#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at
356
357#if EV_USE_MONOTONIC
358/* sig_atomic_t is used to avoid per-thread variables or locking but still */
359/* giving it a reasonably high chance of working on typical architetcures */
360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
361#endif
362
363#ifdef _WIN32
364# include "ev_win32.c"
365#endif
366
367/*****************************************************************************/
368
369static void (*syserr_cb)(const char *msg);
370
371void
372ev_set_syserr_cb (void (*cb)(const char *msg))
373{
374 syserr_cb = cb;
375}
376
377static void noinline
378syserr (const char *msg)
379{
380 if (!msg)
381 msg = "(libev) system error";
382
383 if (syserr_cb)
384 syserr_cb (msg);
385 else
386 {
387 perror (msg);
388 abort ();
389 }
390}
391
392static void *
393ev_realloc_emul (void *ptr, long size)
394{
395 /* some systems, notably openbsd and darwin, fail to properly
396 * implement realloc (x, 0) (as required by both ansi c-98 and
397 * the single unix specification, so work around them here.
398 */
399
400 if (size)
401 return realloc (ptr, size);
402
403 free (ptr);
404 return 0;
405}
406
407static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
408
409void
410ev_set_allocator (void *(*cb)(void *ptr, long size))
411{
412 alloc = cb;
413}
414
415inline_speed void *
416ev_realloc (void *ptr, long size)
417{
418 ptr = alloc (ptr, size);
419
420 if (!ptr && size)
421 {
422 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
423 abort ();
424 }
425
426 return ptr;
427}
428
429#define ev_malloc(size) ev_realloc (0, (size))
430#define ev_free(ptr) ev_realloc ((ptr), 0)
431
432/*****************************************************************************/
433
434typedef struct
435{
436 WL head;
437 unsigned char events;
438 unsigned char reify;
439#if EV_SELECT_IS_WINSOCKET
440 SOCKET handle;
441#endif
442} ANFD;
443
444typedef struct
445{
446 W w;
447 int events;
448} ANPENDING;
449
450#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */
452typedef struct
453{
454 WL head;
455} ANFS;
456#endif
457
458/* Heap Entry */
459#if EV_HEAP_CACHE_AT
460 typedef struct {
461 ev_tstamp at;
462 WT w;
463 } ANHE;
464
465 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else
469 typedef WT ANHE;
470
471 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he)
474#endif
475
476#if EV_MULTIPLICITY
477
478 struct ev_loop
479 {
480 ev_tstamp ev_rt_now;
481 #define ev_rt_now ((loop)->ev_rt_now)
482 #define VAR(name,decl) decl;
483 #include "ev_vars.h"
484 #undef VAR
485 };
486 #include "ev_wrap.h"
487
488 static struct ev_loop default_loop_struct;
489 struct ev_loop *ev_default_loop_ptr;
490
491#else
492
45ev_tstamp ev_now; 493 ev_tstamp ev_rt_now;
46int ev_method; 494 #define VAR(name,decl) static decl;
495 #include "ev_vars.h"
496 #undef VAR
47 497
48static int have_monotonic; /* runtime */ 498 static int ev_default_loop_ptr;
49 499
50static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 500#endif
51static void (*method_modify)(int fd, int oev, int nev);
52static void (*method_poll)(ev_tstamp timeout);
53 501
54/*****************************************************************************/ 502/*****************************************************************************/
55 503
56ev_tstamp 504ev_tstamp
57ev_time (void) 505ev_time (void)
58{ 506{
59#if HAVE_REALTIME 507#if EV_USE_REALTIME
60 struct timespec ts; 508 struct timespec ts;
61 clock_gettime (CLOCK_REALTIME, &ts); 509 clock_gettime (CLOCK_REALTIME, &ts);
62 return ts.tv_sec + ts.tv_nsec * 1e-9; 510 return ts.tv_sec + ts.tv_nsec * 1e-9;
63#else 511#else
64 struct timeval tv; 512 struct timeval tv;
65 gettimeofday (&tv, 0); 513 gettimeofday (&tv, 0);
66 return tv.tv_sec + tv.tv_usec * 1e-6; 514 return tv.tv_sec + tv.tv_usec * 1e-6;
67#endif 515#endif
68} 516}
69 517
70static ev_tstamp 518ev_tstamp inline_size
71get_clock (void) 519get_clock (void)
72{ 520{
73#if HAVE_MONOTONIC 521#if EV_USE_MONOTONIC
74 if (have_monotonic) 522 if (expect_true (have_monotonic))
75 { 523 {
76 struct timespec ts; 524 struct timespec ts;
77 clock_gettime (CLOCK_MONOTONIC, &ts); 525 clock_gettime (CLOCK_MONOTONIC, &ts);
78 return ts.tv_sec + ts.tv_nsec * 1e-9; 526 return ts.tv_sec + ts.tv_nsec * 1e-9;
79 } 527 }
80#endif 528#endif
81 529
82 return ev_time (); 530 return ev_time ();
83} 531}
84 532
85#define array_needsize(base,cur,cnt,init) \ 533#if EV_MULTIPLICITY
86 if ((cnt) > cur) \ 534ev_tstamp
87 { \ 535ev_now (EV_P)
88 int newcnt = cur ? cur << 1 : 16; \ 536{
89 base = realloc (base, sizeof (*base) * (newcnt)); \ 537 return ev_rt_now;
90 init (base + cur, newcnt - cur); \ 538}
91 cur = newcnt; \ 539#endif
540
541void
542ev_sleep (ev_tstamp delay)
543{
544 if (delay > 0.)
92 } 545 {
546#if EV_USE_NANOSLEEP
547 struct timespec ts;
548
549 ts.tv_sec = (time_t)delay;
550 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
551
552 nanosleep (&ts, 0);
553#elif defined(_WIN32)
554 Sleep ((unsigned long)(delay * 1e3));
555#else
556 struct timeval tv;
557
558 tv.tv_sec = (time_t)delay;
559 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
560
561 select (0, 0, 0, 0, &tv);
562#endif
563 }
564}
93 565
94/*****************************************************************************/ 566/*****************************************************************************/
95 567
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
569
570int inline_size
571array_nextsize (int elem, int cur, int cnt)
572{
573 int ncur = cur + 1;
574
575 do
576 ncur <<= 1;
577 while (cnt > ncur);
578
579 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
580 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
581 {
582 ncur *= elem;
583 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
584 ncur = ncur - sizeof (void *) * 4;
585 ncur /= elem;
586 }
587
588 return ncur;
589}
590
591static noinline void *
592array_realloc (int elem, void *base, int *cur, int cnt)
593{
594 *cur = array_nextsize (elem, *cur, cnt);
595 return ev_realloc (base, elem * *cur);
596}
597
598#define array_needsize(type,base,cur,cnt,init) \
599 if (expect_false ((cnt) > (cur))) \
600 { \
601 int ocur_ = (cur); \
602 (base) = (type *)array_realloc \
603 (sizeof (type), (base), &(cur), (cnt)); \
604 init ((base) + (ocur_), (cur) - ocur_); \
605 }
606
607#if 0
608#define array_slim(type,stem) \
609 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
610 { \
611 stem ## max = array_roundsize (stem ## cnt >> 1); \
612 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
613 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
614 }
615#endif
616
617#define array_free(stem, idx) \
618 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
619
620/*****************************************************************************/
621
622void noinline
623ev_feed_event (EV_P_ void *w, int revents)
624{
625 W w_ = (W)w;
626 int pri = ABSPRI (w_);
627
628 if (expect_false (w_->pending))
629 pendings [pri][w_->pending - 1].events |= revents;
630 else
631 {
632 w_->pending = ++pendingcnt [pri];
633 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
634 pendings [pri][w_->pending - 1].w = w_;
635 pendings [pri][w_->pending - 1].events = revents;
636 }
637}
638
639void inline_speed
640queue_events (EV_P_ W *events, int eventcnt, int type)
641{
642 int i;
643
644 for (i = 0; i < eventcnt; ++i)
645 ev_feed_event (EV_A_ events [i], type);
646}
647
648/*****************************************************************************/
649
650void inline_size
651anfds_init (ANFD *base, int count)
652{
653 while (count--)
654 {
655 base->head = 0;
656 base->events = EV_NONE;
657 base->reify = 0;
658
659 ++base;
660 }
661}
662
663void inline_speed
664fd_event (EV_P_ int fd, int revents)
665{
666 ANFD *anfd = anfds + fd;
667 ev_io *w;
668
669 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
670 {
671 int ev = w->events & revents;
672
673 if (ev)
674 ev_feed_event (EV_A_ (W)w, ev);
675 }
676}
677
678void
679ev_feed_fd_event (EV_P_ int fd, int revents)
680{
681 if (fd >= 0 && fd < anfdmax)
682 fd_event (EV_A_ fd, revents);
683}
684
685void inline_size
686fd_reify (EV_P)
687{
688 int i;
689
690 for (i = 0; i < fdchangecnt; ++i)
691 {
692 int fd = fdchanges [i];
693 ANFD *anfd = anfds + fd;
694 ev_io *w;
695
696 unsigned char events = 0;
697
698 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
699 events |= (unsigned char)w->events;
700
701#if EV_SELECT_IS_WINSOCKET
702 if (events)
703 {
704 unsigned long argp;
705 #ifdef EV_FD_TO_WIN32_HANDLE
706 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
707 #else
708 anfd->handle = _get_osfhandle (fd);
709 #endif
710 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
711 }
712#endif
713
714 {
715 unsigned char o_events = anfd->events;
716 unsigned char o_reify = anfd->reify;
717
718 anfd->reify = 0;
719 anfd->events = events;
720
721 if (o_events != events || o_reify & EV_IOFDSET)
722 backend_modify (EV_A_ fd, o_events, events);
723 }
724 }
725
726 fdchangecnt = 0;
727}
728
729void inline_size
730fd_change (EV_P_ int fd, int flags)
731{
732 unsigned char reify = anfds [fd].reify;
733 anfds [fd].reify |= flags;
734
735 if (expect_true (!reify))
736 {
737 ++fdchangecnt;
738 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
739 fdchanges [fdchangecnt - 1] = fd;
740 }
741}
742
743void inline_speed
744fd_kill (EV_P_ int fd)
745{
746 ev_io *w;
747
748 while ((w = (ev_io *)anfds [fd].head))
749 {
750 ev_io_stop (EV_A_ w);
751 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
752 }
753}
754
755int inline_size
756fd_valid (int fd)
757{
758#ifdef _WIN32
759 return _get_osfhandle (fd) != -1;
760#else
761 return fcntl (fd, F_GETFD) != -1;
762#endif
763}
764
765/* called on EBADF to verify fds */
766static void noinline
767fd_ebadf (EV_P)
768{
769 int fd;
770
771 for (fd = 0; fd < anfdmax; ++fd)
772 if (anfds [fd].events)
773 if (!fd_valid (fd) == -1 && errno == EBADF)
774 fd_kill (EV_A_ fd);
775}
776
777/* called on ENOMEM in select/poll to kill some fds and retry */
778static void noinline
779fd_enomem (EV_P)
780{
781 int fd;
782
783 for (fd = anfdmax; fd--; )
784 if (anfds [fd].events)
785 {
786 fd_kill (EV_A_ fd);
787 return;
788 }
789}
790
791/* usually called after fork if backend needs to re-arm all fds from scratch */
792static void noinline
793fd_rearm_all (EV_P)
794{
795 int fd;
796
797 for (fd = 0; fd < anfdmax; ++fd)
798 if (anfds [fd].events)
799 {
800 anfds [fd].events = 0;
801 fd_change (EV_A_ fd, EV_IOFDSET | 1);
802 }
803}
804
805/*****************************************************************************/
806
807/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree.
811 */
812
813/*
814 * at the moment we allow libev the luxury of two heaps,
815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
816 * which is more cache-efficient.
817 * the difference is about 5% with 50000+ watchers.
818 */
819#if EV_USE_4HEAP
820
821#define DHEAP 4
822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k))
825
826/* away from the root */
827void inline_speed
828downheap (ANHE *heap, int N, int k)
829{
830 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0;
832
833 for (;;)
834 {
835 ev_tstamp minat;
836 ANHE *minpos;
837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
838
839 /* find minimum child */
840 if (expect_true (pos + DHEAP - 1 < E))
841 {
842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
846 }
847 else if (pos < E)
848 {
849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
851 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
852 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
853 }
854 else
855 break;
856
857 if (ANHE_at (he) <= minat)
858 break;
859
860 heap [k] = *minpos;
861 ev_active (ANHE_w (*minpos)) = k;
862
863 k = minpos - heap;
864 }
865
866 heap [k] = he;
867 ev_active (ANHE_w (he)) = k;
868}
869
870#else /* 4HEAP */
871
872#define HEAP0 1
873#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p))
875
876/* away from the root */
877void inline_speed
878downheap (ANHE *heap, int N, int k)
879{
880 ANHE he = heap [k];
881
882 for (;;)
883 {
884 int c = k << 1;
885
886 if (c > N + HEAP0 - 1)
887 break;
888
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0;
891
892 if (ANHE_at (he) <= ANHE_at (heap [c]))
893 break;
894
895 heap [k] = heap [c];
896 ev_active (ANHE_w (heap [k])) = k;
897
898 k = c;
899 }
900
901 heap [k] = he;
902 ev_active (ANHE_w (he)) = k;
903}
904#endif
905
906/* towards the root */
907void inline_speed
908upheap (ANHE *heap, int k)
909{
910 ANHE he = heap [k];
911
912 for (;;)
913 {
914 int p = HPARENT (k);
915
916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
917 break;
918
919 heap [k] = heap [p];
920 ev_active (ANHE_w (heap [k])) = k;
921 k = p;
922 }
923
924 heap [k] = he;
925 ev_active (ANHE_w (he)) = k;
926}
927
928void inline_size
929adjustheap (ANHE *heap, int N, int k)
930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
932 upheap (heap, k);
933 else
934 downheap (heap, N, k);
935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
943 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
944 for (i = 0; i < N; ++i)
945 upheap (heap, i + HEAP0);
946}
947
948#if EV_VERIFY
949static void
950checkheap (ANHE *heap, int N)
951{
952 int i;
953
954 for (i = HEAP0; i < N + HEAP0; ++i)
955 {
956 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
957 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
958 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
959 }
960}
961#endif
962
963/*****************************************************************************/
964
96typedef struct 965typedef struct
97{ 966{
98 struct ev_io *head; 967 WL head;
99 unsigned char wev, rev; /* want, received event set */ 968 EV_ATOMIC_T gotsig;
100} ANFD;
101
102static ANFD *anfds;
103static int anfdmax;
104
105static int *fdchanges;
106static int fdchangemax, fdchangecnt;
107
108static void
109anfds_init (ANFD *base, int count)
110{
111 while (count--)
112 {
113 base->head = 0;
114 base->wev = base->rev = EV_NONE;
115 ++base;
116 }
117}
118
119typedef struct
120{
121 W w;
122 int events;
123} ANPENDING;
124
125static ANPENDING *pendings;
126static int pendingmax, pendingcnt;
127
128static void
129event (W w, int events)
130{
131 if (w->active)
132 {
133 w->pending = ++pendingcnt;
134 array_needsize (pendings, pendingmax, pendingcnt, );
135 pendings [pendingcnt - 1].w = w;
136 pendings [pendingcnt - 1].events = events;
137 }
138}
139
140static void
141fd_event (int fd, int events)
142{
143 ANFD *anfd = anfds + fd;
144 struct ev_io *w;
145
146 for (w = anfd->head; w; w = w->next)
147 {
148 int ev = w->events & events;
149
150 if (ev)
151 event ((W)w, ev);
152 }
153}
154
155static void
156queue_events (W *events, int eventcnt, int type)
157{
158 int i;
159
160 for (i = 0; i < eventcnt; ++i)
161 event (events [i], type);
162}
163
164/*****************************************************************************/
165
166static struct ev_timer **timers;
167static int timermax, timercnt;
168
169static struct ev_periodic **periodics;
170static int periodicmax, periodiccnt;
171
172static void
173upheap (WT *timers, int k)
174{
175 WT w = timers [k];
176
177 while (k && timers [k >> 1]->at > w->at)
178 {
179 timers [k] = timers [k >> 1];
180 timers [k]->active = k + 1;
181 k >>= 1;
182 }
183
184 timers [k] = w;
185 timers [k]->active = k + 1;
186
187}
188
189static void
190downheap (WT *timers, int N, int k)
191{
192 WT w = timers [k];
193
194 while (k < (N >> 1))
195 {
196 int j = k << 1;
197
198 if (j + 1 < N && timers [j]->at > timers [j + 1]->at)
199 ++j;
200
201 if (w->at <= timers [j]->at)
202 break;
203
204 timers [k] = timers [j];
205 timers [k]->active = k + 1;
206 k = j;
207 }
208
209 timers [k] = w;
210 timers [k]->active = k + 1;
211}
212
213/*****************************************************************************/
214
215typedef struct
216{
217 struct ev_signal *head;
218 sig_atomic_t gotsig;
219} ANSIG; 969} ANSIG;
220 970
221static ANSIG *signals; 971static ANSIG *signals;
222static int signalmax; 972static int signalmax;
223 973
224static int sigpipe [2]; 974static EV_ATOMIC_T gotsig;
225static sig_atomic_t gotsig;
226static struct ev_io sigev;
227 975
228static void 976void inline_size
229signals_init (ANSIG *base, int count) 977signals_init (ANSIG *base, int count)
230{ 978{
231 while (count--) 979 while (count--)
232 { 980 {
233 base->head = 0; 981 base->head = 0;
234 base->gotsig = 0; 982 base->gotsig = 0;
983
235 ++base; 984 ++base;
236 } 985 }
237} 986}
238 987
988/*****************************************************************************/
989
990void inline_speed
991fd_intern (int fd)
992{
993#ifdef _WIN32
994 int arg = 1;
995 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
996#else
997 fcntl (fd, F_SETFD, FD_CLOEXEC);
998 fcntl (fd, F_SETFL, O_NONBLOCK);
999#endif
1000}
1001
1002static void noinline
1003evpipe_init (EV_P)
1004{
1005 if (!ev_is_active (&pipeev))
1006 {
1007#if EV_USE_EVENTFD
1008 if ((evfd = eventfd (0, 0)) >= 0)
1009 {
1010 evpipe [0] = -1;
1011 fd_intern (evfd);
1012 ev_io_set (&pipeev, evfd, EV_READ);
1013 }
1014 else
1015#endif
1016 {
1017 while (pipe (evpipe))
1018 syserr ("(libev) error creating signal/async pipe");
1019
1020 fd_intern (evpipe [0]);
1021 fd_intern (evpipe [1]);
1022 ev_io_set (&pipeev, evpipe [0], EV_READ);
1023 }
1024
1025 ev_io_start (EV_A_ &pipeev);
1026 ev_unref (EV_A); /* watcher should not keep loop alive */
1027 }
1028}
1029
1030void inline_size
1031evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1032{
1033 if (!*flag)
1034 {
1035 int old_errno = errno; /* save errno because write might clobber it */
1036
1037 *flag = 1;
1038
1039#if EV_USE_EVENTFD
1040 if (evfd >= 0)
1041 {
1042 uint64_t counter = 1;
1043 write (evfd, &counter, sizeof (uint64_t));
1044 }
1045 else
1046#endif
1047 write (evpipe [1], &old_errno, 1);
1048
1049 errno = old_errno;
1050 }
1051}
1052
239static void 1053static void
1054pipecb (EV_P_ ev_io *iow, int revents)
1055{
1056#if EV_USE_EVENTFD
1057 if (evfd >= 0)
1058 {
1059 uint64_t counter;
1060 read (evfd, &counter, sizeof (uint64_t));
1061 }
1062 else
1063#endif
1064 {
1065 char dummy;
1066 read (evpipe [0], &dummy, 1);
1067 }
1068
1069 if (gotsig && ev_is_default_loop (EV_A))
1070 {
1071 int signum;
1072 gotsig = 0;
1073
1074 for (signum = signalmax; signum--; )
1075 if (signals [signum].gotsig)
1076 ev_feed_signal_event (EV_A_ signum + 1);
1077 }
1078
1079#if EV_ASYNC_ENABLE
1080 if (gotasync)
1081 {
1082 int i;
1083 gotasync = 0;
1084
1085 for (i = asynccnt; i--; )
1086 if (asyncs [i]->sent)
1087 {
1088 asyncs [i]->sent = 0;
1089 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1090 }
1091 }
1092#endif
1093}
1094
1095/*****************************************************************************/
1096
1097static void
240sighandler (int signum) 1098ev_sighandler (int signum)
241{ 1099{
1100#if EV_MULTIPLICITY
1101 struct ev_loop *loop = &default_loop_struct;
1102#endif
1103
1104#if _WIN32
1105 signal (signum, ev_sighandler);
1106#endif
1107
242 signals [signum - 1].gotsig = 1; 1108 signals [signum - 1].gotsig = 1;
1109 evpipe_write (EV_A_ &gotsig);
1110}
243 1111
244 if (!gotsig) 1112void noinline
1113ev_feed_signal_event (EV_P_ int signum)
1114{
1115 WL w;
1116
1117#if EV_MULTIPLICITY
1118 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1119#endif
1120
1121 --signum;
1122
1123 if (signum < 0 || signum >= signalmax)
1124 return;
1125
1126 signals [signum].gotsig = 0;
1127
1128 for (w = signals [signum].head; w; w = w->next)
1129 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1130}
1131
1132/*****************************************************************************/
1133
1134static WL childs [EV_PID_HASHSIZE];
1135
1136#ifndef _WIN32
1137
1138static ev_signal childev;
1139
1140#ifndef WIFCONTINUED
1141# define WIFCONTINUED(status) 0
1142#endif
1143
1144void inline_speed
1145child_reap (EV_P_ int chain, int pid, int status)
1146{
1147 ev_child *w;
1148 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1149
1150 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1151 {
1152 if ((w->pid == pid || !w->pid)
1153 && (!traced || (w->flags & 1)))
1154 {
1155 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1156 w->rpid = pid;
1157 w->rstatus = status;
1158 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1159 }
1160 }
1161}
1162
1163#ifndef WCONTINUED
1164# define WCONTINUED 0
1165#endif
1166
1167static void
1168childcb (EV_P_ ev_signal *sw, int revents)
1169{
1170 int pid, status;
1171
1172 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1173 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1174 if (!WCONTINUED
1175 || errno != EINVAL
1176 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1177 return;
1178
1179 /* make sure we are called again until all children have been reaped */
1180 /* we need to do it this way so that the callback gets called before we continue */
1181 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1182
1183 child_reap (EV_A_ pid, pid, status);
1184 if (EV_PID_HASHSIZE > 1)
1185 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1186}
1187
1188#endif
1189
1190/*****************************************************************************/
1191
1192#if EV_USE_PORT
1193# include "ev_port.c"
1194#endif
1195#if EV_USE_KQUEUE
1196# include "ev_kqueue.c"
1197#endif
1198#if EV_USE_EPOLL
1199# include "ev_epoll.c"
1200#endif
1201#if EV_USE_POLL
1202# include "ev_poll.c"
1203#endif
1204#if EV_USE_SELECT
1205# include "ev_select.c"
1206#endif
1207
1208int
1209ev_version_major (void)
1210{
1211 return EV_VERSION_MAJOR;
1212}
1213
1214int
1215ev_version_minor (void)
1216{
1217 return EV_VERSION_MINOR;
1218}
1219
1220/* return true if we are running with elevated privileges and should ignore env variables */
1221int inline_size
1222enable_secure (void)
1223{
1224#ifdef _WIN32
1225 return 0;
1226#else
1227 return getuid () != geteuid ()
1228 || getgid () != getegid ();
1229#endif
1230}
1231
1232unsigned int
1233ev_supported_backends (void)
1234{
1235 unsigned int flags = 0;
1236
1237 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1238 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1239 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1240 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1241 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1242
1243 return flags;
1244}
1245
1246unsigned int
1247ev_recommended_backends (void)
1248{
1249 unsigned int flags = ev_supported_backends ();
1250
1251#ifndef __NetBSD__
1252 /* kqueue is borked on everything but netbsd apparently */
1253 /* it usually doesn't work correctly on anything but sockets and pipes */
1254 flags &= ~EVBACKEND_KQUEUE;
1255#endif
1256#ifdef __APPLE__
1257 // flags &= ~EVBACKEND_KQUEUE; for documentation
1258 flags &= ~EVBACKEND_POLL;
1259#endif
1260
1261 return flags;
1262}
1263
1264unsigned int
1265ev_embeddable_backends (void)
1266{
1267 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1268
1269 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1270 /* please fix it and tell me how to detect the fix */
1271 flags &= ~EVBACKEND_EPOLL;
1272
1273 return flags;
1274}
1275
1276unsigned int
1277ev_backend (EV_P)
1278{
1279 return backend;
1280}
1281
1282unsigned int
1283ev_loop_count (EV_P)
1284{
1285 return loop_count;
1286}
1287
1288void
1289ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1290{
1291 io_blocktime = interval;
1292}
1293
1294void
1295ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1296{
1297 timeout_blocktime = interval;
1298}
1299
1300static void noinline
1301loop_init (EV_P_ unsigned int flags)
1302{
1303 if (!backend)
1304 {
1305#if EV_USE_MONOTONIC
245 { 1306 {
1307 struct timespec ts;
1308 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1309 have_monotonic = 1;
1310 }
1311#endif
1312
1313 ev_rt_now = ev_time ();
1314 mn_now = get_clock ();
1315 now_floor = mn_now;
1316 rtmn_diff = ev_rt_now - mn_now;
1317
1318 io_blocktime = 0.;
1319 timeout_blocktime = 0.;
1320 backend = 0;
1321 backend_fd = -1;
1322 gotasync = 0;
1323#if EV_USE_INOTIFY
1324 fs_fd = -2;
1325#endif
1326
1327 /* pid check not overridable via env */
1328#ifndef _WIN32
1329 if (flags & EVFLAG_FORKCHECK)
1330 curpid = getpid ();
1331#endif
1332
1333 if (!(flags & EVFLAG_NOENV)
1334 && !enable_secure ()
1335 && getenv ("LIBEV_FLAGS"))
1336 flags = atoi (getenv ("LIBEV_FLAGS"));
1337
1338 if (!(flags & 0x0000ffffU))
1339 flags |= ev_recommended_backends ();
1340
1341#if EV_USE_PORT
1342 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1343#endif
1344#if EV_USE_KQUEUE
1345 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1346#endif
1347#if EV_USE_EPOLL
1348 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1349#endif
1350#if EV_USE_POLL
1351 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1352#endif
1353#if EV_USE_SELECT
1354 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1355#endif
1356
1357 ev_init (&pipeev, pipecb);
1358 ev_set_priority (&pipeev, EV_MAXPRI);
1359 }
1360}
1361
1362static void noinline
1363loop_destroy (EV_P)
1364{
1365 int i;
1366
1367 if (ev_is_active (&pipeev))
1368 {
1369 ev_ref (EV_A); /* signal watcher */
1370 ev_io_stop (EV_A_ &pipeev);
1371
1372#if EV_USE_EVENTFD
1373 if (evfd >= 0)
1374 close (evfd);
1375#endif
1376
1377 if (evpipe [0] >= 0)
1378 {
1379 close (evpipe [0]);
1380 close (evpipe [1]);
1381 }
1382 }
1383
1384#if EV_USE_INOTIFY
1385 if (fs_fd >= 0)
1386 close (fs_fd);
1387#endif
1388
1389 if (backend_fd >= 0)
1390 close (backend_fd);
1391
1392#if EV_USE_PORT
1393 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1394#endif
1395#if EV_USE_KQUEUE
1396 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1397#endif
1398#if EV_USE_EPOLL
1399 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1400#endif
1401#if EV_USE_POLL
1402 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1403#endif
1404#if EV_USE_SELECT
1405 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1406#endif
1407
1408 for (i = NUMPRI; i--; )
1409 {
1410 array_free (pending, [i]);
1411#if EV_IDLE_ENABLE
1412 array_free (idle, [i]);
1413#endif
1414 }
1415
1416 ev_free (anfds); anfdmax = 0;
1417
1418 /* have to use the microsoft-never-gets-it-right macro */
1419 array_free (fdchange, EMPTY);
1420 array_free (timer, EMPTY);
1421#if EV_PERIODIC_ENABLE
1422 array_free (periodic, EMPTY);
1423#endif
1424#if EV_FORK_ENABLE
1425 array_free (fork, EMPTY);
1426#endif
1427 array_free (prepare, EMPTY);
1428 array_free (check, EMPTY);
1429#if EV_ASYNC_ENABLE
1430 array_free (async, EMPTY);
1431#endif
1432
1433 backend = 0;
1434}
1435
1436#if EV_USE_INOTIFY
1437void inline_size infy_fork (EV_P);
1438#endif
1439
1440void inline_size
1441loop_fork (EV_P)
1442{
1443#if EV_USE_PORT
1444 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1445#endif
1446#if EV_USE_KQUEUE
1447 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1448#endif
1449#if EV_USE_EPOLL
1450 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1451#endif
1452#if EV_USE_INOTIFY
1453 infy_fork (EV_A);
1454#endif
1455
1456 if (ev_is_active (&pipeev))
1457 {
1458 /* this "locks" the handlers against writing to the pipe */
1459 /* while we modify the fd vars */
246 gotsig = 1; 1460 gotsig = 1;
247 write (sigpipe [1], &gotsig, 1); 1461#if EV_ASYNC_ENABLE
248 } 1462 gotasync = 1;
249} 1463#endif
250 1464
1465 ev_ref (EV_A);
1466 ev_io_stop (EV_A_ &pipeev);
1467
1468#if EV_USE_EVENTFD
1469 if (evfd >= 0)
1470 close (evfd);
1471#endif
1472
1473 if (evpipe [0] >= 0)
1474 {
1475 close (evpipe [0]);
1476 close (evpipe [1]);
1477 }
1478
1479 evpipe_init (EV_A);
1480 /* now iterate over everything, in case we missed something */
1481 pipecb (EV_A_ &pipeev, EV_READ);
1482 }
1483
1484 postfork = 0;
1485}
1486
1487#if EV_MULTIPLICITY
1488
1489struct ev_loop *
1490ev_loop_new (unsigned int flags)
1491{
1492 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1493
1494 memset (loop, 0, sizeof (struct ev_loop));
1495
1496 loop_init (EV_A_ flags);
1497
1498 if (ev_backend (EV_A))
1499 return loop;
1500
1501 return 0;
1502}
1503
1504void
1505ev_loop_destroy (EV_P)
1506{
1507 loop_destroy (EV_A);
1508 ev_free (loop);
1509}
1510
1511void
1512ev_loop_fork (EV_P)
1513{
1514 postfork = 1; /* must be in line with ev_default_fork */
1515}
1516
1517#if EV_VERIFY
251static void 1518static void
252sigcb (struct ev_io *iow, int revents) 1519array_check (W **ws, int cnt)
253{ 1520{
254 struct ev_signal *w; 1521 while (cnt--)
1522 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1523}
1524#endif
1525
1526void
1527ev_loop_verify (EV_P)
1528{
1529#if EV_VERIFY
255 int sig; 1530 int i;
256 1531
257 gotsig = 0; 1532 checkheap (timers, timercnt);
258 read (sigpipe [0], &revents, 1); 1533#if EV_PERIODIC_ENABLE
1534 checkheap (periodics, periodiccnt);
1535#endif
259 1536
260 for (sig = signalmax; sig--; ) 1537#if EV_IDLE_ENABLE
261 if (signals [sig].gotsig) 1538 for (i = NUMPRI; i--; )
1539 array_check ((W **)idles [i], idlecnt [i]);
1540#endif
1541#if EV_FORK_ENABLE
1542 array_check ((W **)forks, forkcnt);
1543#endif
1544#if EV_ASYNC_ENABLE
1545 array_check ((W **)asyncs, asynccnt);
1546#endif
1547 array_check ((W **)prepares, preparecnt);
1548 array_check ((W **)checks, checkcnt);
1549#endif
1550}
1551
1552#endif /* multiplicity */
1553
1554#if EV_MULTIPLICITY
1555struct ev_loop *
1556ev_default_loop_init (unsigned int flags)
1557#else
1558int
1559ev_default_loop (unsigned int flags)
1560#endif
1561{
1562 if (!ev_default_loop_ptr)
1563 {
1564#if EV_MULTIPLICITY
1565 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1566#else
1567 ev_default_loop_ptr = 1;
1568#endif
1569
1570 loop_init (EV_A_ flags);
1571
1572 if (ev_backend (EV_A))
1573 {
1574#ifndef _WIN32
1575 ev_signal_init (&childev, childcb, SIGCHLD);
1576 ev_set_priority (&childev, EV_MAXPRI);
1577 ev_signal_start (EV_A_ &childev);
1578 ev_unref (EV_A); /* child watcher should not keep loop alive */
1579#endif
1580 }
1581 else
1582 ev_default_loop_ptr = 0;
1583 }
1584
1585 return ev_default_loop_ptr;
1586}
1587
1588void
1589ev_default_destroy (void)
1590{
1591#if EV_MULTIPLICITY
1592 struct ev_loop *loop = ev_default_loop_ptr;
1593#endif
1594
1595#ifndef _WIN32
1596 ev_ref (EV_A); /* child watcher */
1597 ev_signal_stop (EV_A_ &childev);
1598#endif
1599
1600 loop_destroy (EV_A);
1601}
1602
1603void
1604ev_default_fork (void)
1605{
1606#if EV_MULTIPLICITY
1607 struct ev_loop *loop = ev_default_loop_ptr;
1608#endif
1609
1610 if (backend)
1611 postfork = 1; /* must be in line with ev_loop_fork */
1612}
1613
1614/*****************************************************************************/
1615
1616void
1617ev_invoke (EV_P_ void *w, int revents)
1618{
1619 EV_CB_INVOKE ((W)w, revents);
1620}
1621
1622void inline_speed
1623call_pending (EV_P)
1624{
1625 int pri;
1626
1627 for (pri = NUMPRI; pri--; )
1628 while (pendingcnt [pri])
262 { 1629 {
263 signals [sig].gotsig = 0; 1630 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
264 1631
265 for (w = signals [sig].head; w; w = w->next) 1632 if (expect_true (p->w))
266 event ((W)w, EV_SIGNAL); 1633 {
1634 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1635
1636 p->w->pending = 0;
1637 EV_CB_INVOKE (p->w, p->events);
1638 EV_FREQUENT_CHECK;
1639 }
267 } 1640 }
268} 1641}
269 1642
270static void 1643#if EV_IDLE_ENABLE
271siginit (void) 1644void inline_size
1645idle_reify (EV_P)
272{ 1646{
273 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 1647 if (expect_false (idleall))
274 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
275
276 /* rather than sort out wether we really need nb, set it */
277 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
278 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
279
280 evio_set (&sigev, sigpipe [0], EV_READ);
281 evio_start (&sigev);
282}
283
284/*****************************************************************************/
285
286static struct ev_idle **idles;
287static int idlemax, idlecnt;
288
289static struct ev_check **checks;
290static int checkmax, checkcnt;
291
292/*****************************************************************************/
293
294#if HAVE_EPOLL
295# include "ev_epoll.c"
296#endif
297#if HAVE_SELECT
298# include "ev_select.c"
299#endif
300
301int ev_init (int flags)
302{
303#if HAVE_MONOTONIC
304 {
305 struct timespec ts;
306 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
307 have_monotonic = 1;
308 }
309#endif
310
311 ev_now = ev_time ();
312 now = get_clock ();
313 diff = ev_now - now;
314
315 if (pipe (sigpipe))
316 return 0;
317
318 ev_method = EVMETHOD_NONE;
319#if HAVE_EPOLL
320 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
321#endif
322#if HAVE_SELECT
323 if (ev_method == EVMETHOD_NONE) select_init (flags);
324#endif
325
326 if (ev_method)
327 {
328 evw_init (&sigev, sigcb);
329 siginit ();
330 } 1648 {
1649 int pri;
331 1650
332 return ev_method; 1651 for (pri = NUMPRI; pri--; )
333}
334
335/*****************************************************************************/
336
337void ev_prefork (void)
338{
339 /* nop */
340}
341
342void ev_postfork_parent (void)
343{
344 /* nop */
345}
346
347void ev_postfork_child (void)
348{
349#if HAVE_EPOLL
350 if (ev_method == EVMETHOD_EPOLL)
351 epoll_postfork_child ();
352#endif
353
354 evio_stop (&sigev);
355 close (sigpipe [0]);
356 close (sigpipe [1]);
357 pipe (sigpipe);
358 siginit ();
359}
360
361/*****************************************************************************/
362
363static void
364fd_reify (void)
365{
366 int i;
367
368 for (i = 0; i < fdchangecnt; ++i)
369 {
370 int fd = fdchanges [i];
371 ANFD *anfd = anfds + fd;
372 struct ev_io *w;
373
374 int wev = 0;
375
376 for (w = anfd->head; w; w = w->next)
377 wev |= w->events;
378
379 if (anfd->wev != wev)
380 { 1652 {
381 method_modify (fd, anfd->wev, wev); 1653 if (pendingcnt [pri])
382 anfd->wev = wev; 1654 break;
1655
1656 if (idlecnt [pri])
1657 {
1658 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1659 break;
1660 }
383 } 1661 }
384 } 1662 }
385
386 fdchangecnt = 0;
387} 1663}
1664#endif
388 1665
389static void 1666void inline_size
390call_pending ()
391{
392 int i;
393
394 for (i = 0; i < pendingcnt; ++i)
395 {
396 ANPENDING *p = pendings + i;
397
398 if (p->w)
399 {
400 p->w->pending = 0;
401 p->w->cb (p->w, p->events);
402 }
403 }
404
405 pendingcnt = 0;
406}
407
408static void
409timers_reify () 1667timers_reify (EV_P)
410{ 1668{
1669 EV_FREQUENT_CHECK;
1670
411 while (timercnt && timers [0]->at <= now) 1671 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
412 { 1672 {
413 struct ev_timer *w = timers [0]; 1673 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
414 1674
415 event ((W)w, EV_TIMEOUT); 1675 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
416 1676
417 /* first reschedule or stop timer */ 1677 /* first reschedule or stop timer */
418 if (w->repeat) 1678 if (w->repeat)
419 { 1679 {
420 w->at = now + w->repeat; 1680 ev_at (w) += w->repeat;
421 assert (("timer timeout in the past, negative repeat?", w->at > now)); 1681 if (ev_at (w) < mn_now)
1682 ev_at (w) = mn_now;
1683
1684 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1685
1686 ANHE_at_cache (timers [HEAP0]);
422 downheap ((WT *)timers, timercnt, 0); 1687 downheap (timers, timercnt, HEAP0);
423 } 1688 }
424 else 1689 else
425 evtimer_stop (w); /* nonrepeating: stop timer */ 1690 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
426 }
427}
428 1691
429static void 1692 EV_FREQUENT_CHECK;
1693 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1694 }
1695}
1696
1697#if EV_PERIODIC_ENABLE
1698void inline_size
430periodics_reify () 1699periodics_reify (EV_P)
431{ 1700{
1701 EV_FREQUENT_CHECK;
1702
432 while (periodiccnt && periodics [0]->at <= ev_now) 1703 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
433 { 1704 {
434 struct ev_periodic *w = periodics [0]; 1705 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1706
1707 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
435 1708
436 /* first reschedule or stop timer */ 1709 /* first reschedule or stop timer */
437 if (w->interval) 1710 if (w->reschedule_cb)
438 { 1711 {
439 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 1712 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
440 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 1713
1714 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1715
1716 ANHE_at_cache (periodics [HEAP0]);
441 downheap ((WT *)periodics, periodiccnt, 0); 1717 downheap (periodics, periodiccnt, HEAP0);
1718 }
1719 else if (w->interval)
1720 {
1721 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1722 /* if next trigger time is not sufficiently in the future, put it there */
1723 /* this might happen because of floating point inexactness */
1724 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1725 {
1726 ev_at (w) += w->interval;
1727
1728 /* if interval is unreasonably low we might still have a time in the past */
1729 /* so correct this. this will make the periodic very inexact, but the user */
1730 /* has effectively asked to get triggered more often than possible */
1731 if (ev_at (w) < ev_rt_now)
1732 ev_at (w) = ev_rt_now;
1733 }
1734
1735 ANHE_at_cache (periodics [HEAP0]);
1736 downheap (periodics, periodiccnt, HEAP0);
442 } 1737 }
443 else 1738 else
444 evperiodic_stop (w); /* nonrepeating: stop timer */ 1739 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
445 1740
446 event ((W)w, EV_TIMEOUT); 1741 EV_FREQUENT_CHECK;
1742 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
447 } 1743 }
448} 1744}
449 1745
450static void 1746static void noinline
451periodics_reschedule (ev_tstamp diff) 1747periodics_reschedule (EV_P)
452{ 1748{
453 int i; 1749 int i;
454 1750
455 /* adjust periodics after time jump */ 1751 /* adjust periodics after time jump */
456 for (i = 0; i < periodiccnt; ++i) 1752 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
457 { 1753 {
458 struct ev_periodic *w = periodics [i]; 1754 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
459 1755
1756 if (w->reschedule_cb)
1757 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
460 if (w->interval) 1758 else if (w->interval)
1759 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1760
1761 ANHE_at_cache (periodics [i]);
1762 }
1763
1764 reheap (periodics, periodiccnt);
1765}
1766#endif
1767
1768void inline_speed
1769time_update (EV_P_ ev_tstamp max_block)
1770{
1771 int i;
1772
1773#if EV_USE_MONOTONIC
1774 if (expect_true (have_monotonic))
1775 {
1776 ev_tstamp odiff = rtmn_diff;
1777
1778 mn_now = get_clock ();
1779
1780 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1781 /* interpolate in the meantime */
1782 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
461 { 1783 {
462 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 1784 ev_rt_now = rtmn_diff + mn_now;
1785 return;
1786 }
463 1787
464 if (fabs (diff) >= 1e-4) 1788 now_floor = mn_now;
1789 ev_rt_now = ev_time ();
1790
1791 /* loop a few times, before making important decisions.
1792 * on the choice of "4": one iteration isn't enough,
1793 * in case we get preempted during the calls to
1794 * ev_time and get_clock. a second call is almost guaranteed
1795 * to succeed in that case, though. and looping a few more times
1796 * doesn't hurt either as we only do this on time-jumps or
1797 * in the unlikely event of having been preempted here.
1798 */
1799 for (i = 4; --i; )
1800 {
1801 rtmn_diff = ev_rt_now - mn_now;
1802
1803 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1804 return; /* all is well */
1805
1806 ev_rt_now = ev_time ();
1807 mn_now = get_clock ();
1808 now_floor = mn_now;
1809 }
1810
1811# if EV_PERIODIC_ENABLE
1812 periodics_reschedule (EV_A);
1813# endif
1814 /* no timer adjustment, as the monotonic clock doesn't jump */
1815 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1816 }
1817 else
1818#endif
1819 {
1820 ev_rt_now = ev_time ();
1821
1822 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1823 {
1824#if EV_PERIODIC_ENABLE
1825 periodics_reschedule (EV_A);
1826#endif
1827 /* adjust timers. this is easy, as the offset is the same for all of them */
1828 for (i = 0; i < timercnt; ++i)
465 { 1829 {
466 evperiodic_stop (w); 1830 ANHE *he = timers + i + HEAP0;
467 evperiodic_start (w); 1831 ANHE_w (*he)->at += ev_rt_now - mn_now;
468 1832 ANHE_at_cache (*he);
469 i = 0; /* restart loop, inefficient, but time jumps should be rare */
470 } 1833 }
471 } 1834 }
472 }
473}
474 1835
475static void 1836 mn_now = ev_rt_now;
476time_update ()
477{
478 int i;
479
480 ev_now = ev_time ();
481
482 if (have_monotonic)
483 { 1837 }
484 ev_tstamp odiff = diff; 1838}
485 1839
486 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1840void
1841ev_ref (EV_P)
1842{
1843 ++activecnt;
1844}
1845
1846void
1847ev_unref (EV_P)
1848{
1849 --activecnt;
1850}
1851
1852static int loop_done;
1853
1854void
1855ev_loop (EV_P_ int flags)
1856{
1857 loop_done = EVUNLOOP_CANCEL;
1858
1859 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1860
1861 do
1862 {
1863#if EV_VERIFY >= 2
1864 ev_loop_verify (EV_A);
1865#endif
1866
1867#ifndef _WIN32
1868 if (expect_false (curpid)) /* penalise the forking check even more */
1869 if (expect_false (getpid () != curpid))
1870 {
1871 curpid = getpid ();
1872 postfork = 1;
1873 }
1874#endif
1875
1876#if EV_FORK_ENABLE
1877 /* we might have forked, so queue fork handlers */
1878 if (expect_false (postfork))
1879 if (forkcnt)
1880 {
1881 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1882 call_pending (EV_A);
1883 }
1884#endif
1885
1886 /* queue prepare watchers (and execute them) */
1887 if (expect_false (preparecnt))
487 { 1888 {
488 now = get_clock (); 1889 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
489 diff = ev_now - now; 1890 call_pending (EV_A);
490
491 if (fabs (odiff - diff) < MIN_TIMEJUMP)
492 return; /* all is well */
493
494 ev_now = ev_time ();
495 } 1891 }
496 1892
497 periodics_reschedule (diff - odiff); 1893 if (expect_false (!activecnt))
498 /* no timer adjustment, as the monotonic clock doesn't jump */ 1894 break;
499 }
500 else
501 {
502 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)
503 {
504 periodics_reschedule (ev_now - now);
505 1895
506 /* adjust timers. this is easy, as the offset is the same for all */ 1896 /* we might have forked, so reify kernel state if necessary */
507 for (i = 0; i < timercnt; ++i) 1897 if (expect_false (postfork))
508 timers [i]->at += diff; 1898 loop_fork (EV_A);
509 }
510 1899
511 now = ev_now;
512 }
513}
514
515int ev_loop_done;
516
517void ev_loop (int flags)
518{
519 double block;
520 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0;
521
522 if (checkcnt)
523 {
524 queue_events ((W *)checks, checkcnt, EV_CHECK);
525 call_pending ();
526 }
527
528 do
529 {
530 /* update fd-related kernel structures */ 1900 /* update fd-related kernel structures */
531 fd_reify (); 1901 fd_reify (EV_A);
532 1902
533 /* calculate blocking time */ 1903 /* calculate blocking time */
1904 {
1905 ev_tstamp waittime = 0.;
1906 ev_tstamp sleeptime = 0.;
534 1907
535 /* we only need this for !monotonic clock, but as we always have timers, we just calculate it every time */ 1908 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
536 ev_now = ev_time ();
537
538 if (flags & EVLOOP_NONBLOCK || idlecnt)
539 block = 0.;
540 else
541 { 1909 {
1910 /* update time to cancel out callback processing overhead */
1911 time_update (EV_A_ 1e100);
1912
542 block = MAX_BLOCKTIME; 1913 waittime = MAX_BLOCKTIME;
543 1914
544 if (timercnt) 1915 if (timercnt)
545 { 1916 {
546 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1917 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
547 if (block > to) block = to; 1918 if (waittime > to) waittime = to;
548 } 1919 }
549 1920
1921#if EV_PERIODIC_ENABLE
550 if (periodiccnt) 1922 if (periodiccnt)
551 { 1923 {
552 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1924 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
553 if (block > to) block = to; 1925 if (waittime > to) waittime = to;
554 } 1926 }
1927#endif
555 1928
556 if (block < 0.) block = 0.; 1929 if (expect_false (waittime < timeout_blocktime))
1930 waittime = timeout_blocktime;
1931
1932 sleeptime = waittime - backend_fudge;
1933
1934 if (expect_true (sleeptime > io_blocktime))
1935 sleeptime = io_blocktime;
1936
1937 if (sleeptime)
1938 {
1939 ev_sleep (sleeptime);
1940 waittime -= sleeptime;
1941 }
557 } 1942 }
558 1943
559 method_poll (block); 1944 ++loop_count;
1945 backend_poll (EV_A_ waittime);
560 1946
561 /* update ev_now, do magic */ 1947 /* update ev_rt_now, do magic */
562 time_update (); 1948 time_update (EV_A_ waittime + sleeptime);
1949 }
563 1950
564 /* queue pending timers and reschedule them */ 1951 /* queue pending timers and reschedule them */
1952 timers_reify (EV_A); /* relative timers called last */
1953#if EV_PERIODIC_ENABLE
565 periodics_reify (); /* absolute timers first */ 1954 periodics_reify (EV_A); /* absolute timers called first */
566 timers_reify (); /* relative timers second */ 1955#endif
567 1956
1957#if EV_IDLE_ENABLE
568 /* queue idle watchers unless io or timers are pending */ 1958 /* queue idle watchers unless other events are pending */
569 if (!pendingcnt) 1959 idle_reify (EV_A);
570 queue_events ((W *)idles, idlecnt, EV_IDLE); 1960#endif
571 1961
572 /* queue check and possibly idle watchers */ 1962 /* queue check watchers, to be executed first */
1963 if (expect_false (checkcnt))
573 queue_events ((W *)checks, checkcnt, EV_CHECK); 1964 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
574 1965
575 call_pending (); 1966 call_pending (EV_A);
576 } 1967 }
577 while (!ev_loop_done); 1968 while (expect_true (
1969 activecnt
1970 && !loop_done
1971 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1972 ));
578 1973
579 if (ev_loop_done != 2) 1974 if (loop_done == EVUNLOOP_ONE)
1975 loop_done = EVUNLOOP_CANCEL;
1976}
1977
1978void
1979ev_unloop (EV_P_ int how)
1980{
580 ev_loop_done = 0; 1981 loop_done = how;
581} 1982}
582 1983
583/*****************************************************************************/ 1984/*****************************************************************************/
584 1985
585static void 1986void inline_size
586wlist_add (WL *head, WL elem) 1987wlist_add (WL *head, WL elem)
587{ 1988{
588 elem->next = *head; 1989 elem->next = *head;
589 *head = elem; 1990 *head = elem;
590} 1991}
591 1992
592static void 1993void inline_size
593wlist_del (WL *head, WL elem) 1994wlist_del (WL *head, WL elem)
594{ 1995{
595 while (*head) 1996 while (*head)
596 { 1997 {
597 if (*head == elem) 1998 if (*head == elem)
602 2003
603 head = &(*head)->next; 2004 head = &(*head)->next;
604 } 2005 }
605} 2006}
606 2007
607static void 2008void inline_speed
608ev_clear (W w) 2009clear_pending (EV_P_ W w)
609{ 2010{
610 if (w->pending) 2011 if (w->pending)
611 { 2012 {
612 pendings [w->pending - 1].w = 0; 2013 pendings [ABSPRI (w)][w->pending - 1].w = 0;
613 w->pending = 0; 2014 w->pending = 0;
614 } 2015 }
615} 2016}
616 2017
617static void 2018int
2019ev_clear_pending (EV_P_ void *w)
2020{
2021 W w_ = (W)w;
2022 int pending = w_->pending;
2023
2024 if (expect_true (pending))
2025 {
2026 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2027 w_->pending = 0;
2028 p->w = 0;
2029 return p->events;
2030 }
2031 else
2032 return 0;
2033}
2034
2035void inline_size
2036pri_adjust (EV_P_ W w)
2037{
2038 int pri = w->priority;
2039 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2040 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2041 w->priority = pri;
2042}
2043
2044void inline_speed
618ev_start (W w, int active) 2045ev_start (EV_P_ W w, int active)
619{ 2046{
2047 pri_adjust (EV_A_ w);
620 w->active = active; 2048 w->active = active;
2049 ev_ref (EV_A);
621} 2050}
622 2051
623static void 2052void inline_size
624ev_stop (W w) 2053ev_stop (EV_P_ W w)
625{ 2054{
2055 ev_unref (EV_A);
626 w->active = 0; 2056 w->active = 0;
627} 2057}
628 2058
629/*****************************************************************************/ 2059/*****************************************************************************/
630 2060
631void 2061void noinline
632evio_start (struct ev_io *w) 2062ev_io_start (EV_P_ ev_io *w)
633{ 2063{
2064 int fd = w->fd;
2065
634 if (ev_is_active (w)) 2066 if (expect_false (ev_is_active (w)))
635 return; 2067 return;
636 2068
637 int fd = w->fd; 2069 assert (("ev_io_start called with negative fd", fd >= 0));
638 2070
2071 EV_FREQUENT_CHECK;
2072
639 ev_start ((W)w, 1); 2073 ev_start (EV_A_ (W)w, 1);
640 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2074 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
641 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2075 wlist_add (&anfds[fd].head, (WL)w);
642 2076
643 ++fdchangecnt; 2077 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
644 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 2078 w->events &= ~EV_IOFDSET;
645 fdchanges [fdchangecnt - 1] = fd;
646}
647 2079
648void 2080 EV_FREQUENT_CHECK;
2081}
2082
2083void noinline
649evio_stop (struct ev_io *w) 2084ev_io_stop (EV_P_ ev_io *w)
650{ 2085{
651 ev_clear ((W)w); 2086 clear_pending (EV_A_ (W)w);
652 if (!ev_is_active (w)) 2087 if (expect_false (!ev_is_active (w)))
653 return; 2088 return;
654 2089
2090 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2091
2092 EV_FREQUENT_CHECK;
2093
655 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2094 wlist_del (&anfds[w->fd].head, (WL)w);
656 ev_stop ((W)w); 2095 ev_stop (EV_A_ (W)w);
657 2096
658 ++fdchangecnt; 2097 fd_change (EV_A_ w->fd, 1);
659 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
660 fdchanges [fdchangecnt - 1] = w->fd;
661}
662 2098
663void 2099 EV_FREQUENT_CHECK;
2100}
2101
2102void noinline
664evtimer_start (struct ev_timer *w) 2103ev_timer_start (EV_P_ ev_timer *w)
665{ 2104{
666 if (ev_is_active (w)) 2105 if (expect_false (ev_is_active (w)))
667 return; 2106 return;
668 2107
669 w->at += now; 2108 ev_at (w) += mn_now;
670 2109
671 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 2110 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
672 2111
673 ev_start ((W)w, ++timercnt); 2112 EV_FREQUENT_CHECK;
674 array_needsize (timers, timermax, timercnt, );
675 timers [timercnt - 1] = w;
676 upheap ((WT *)timers, timercnt - 1);
677}
678 2113
679void 2114 ++timercnt;
2115 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2116 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2117 ANHE_w (timers [ev_active (w)]) = (WT)w;
2118 ANHE_at_cache (timers [ev_active (w)]);
2119 upheap (timers, ev_active (w));
2120
2121 EV_FREQUENT_CHECK;
2122
2123 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2124}
2125
2126void noinline
680evtimer_stop (struct ev_timer *w) 2127ev_timer_stop (EV_P_ ev_timer *w)
681{ 2128{
682 ev_clear ((W)w); 2129 clear_pending (EV_A_ (W)w);
683 if (!ev_is_active (w)) 2130 if (expect_false (!ev_is_active (w)))
684 return; 2131 return;
685 2132
686 if (w->active < timercnt--) 2133 EV_FREQUENT_CHECK;
2134
2135 {
2136 int active = ev_active (w);
2137
2138 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2139
2140 --timercnt;
2141
2142 if (expect_true (active < timercnt + HEAP0))
687 { 2143 {
688 timers [w->active - 1] = timers [timercnt]; 2144 timers [active] = timers [timercnt + HEAP0];
689 downheap ((WT *)timers, timercnt, w->active - 1); 2145 adjustheap (timers, timercnt, active);
690 } 2146 }
2147 }
691 2148
692 w->at = w->repeat; 2149 EV_FREQUENT_CHECK;
693 2150
2151 ev_at (w) -= mn_now;
2152
694 ev_stop ((W)w); 2153 ev_stop (EV_A_ (W)w);
695} 2154}
696 2155
697void 2156void noinline
698evtimer_again (struct ev_timer *w) 2157ev_timer_again (EV_P_ ev_timer *w)
699{ 2158{
2159 EV_FREQUENT_CHECK;
2160
700 if (ev_is_active (w)) 2161 if (ev_is_active (w))
701 { 2162 {
702 if (w->repeat) 2163 if (w->repeat)
703 { 2164 {
704 w->at = now + w->repeat; 2165 ev_at (w) = mn_now + w->repeat;
2166 ANHE_at_cache (timers [ev_active (w)]);
705 downheap ((WT *)timers, timercnt, w->active - 1); 2167 adjustheap (timers, timercnt, ev_active (w));
706 } 2168 }
707 else 2169 else
708 evtimer_stop (w); 2170 ev_timer_stop (EV_A_ w);
709 } 2171 }
710 else if (w->repeat) 2172 else if (w->repeat)
2173 {
2174 ev_at (w) = w->repeat;
711 evtimer_start (w); 2175 ev_timer_start (EV_A_ w);
712} 2176 }
713 2177
714void 2178 EV_FREQUENT_CHECK;
2179}
2180
2181#if EV_PERIODIC_ENABLE
2182void noinline
715evperiodic_start (struct ev_periodic *w) 2183ev_periodic_start (EV_P_ ev_periodic *w)
716{ 2184{
717 if (ev_is_active (w)) 2185 if (expect_false (ev_is_active (w)))
718 return; 2186 return;
719 2187
720 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 2188 if (w->reschedule_cb)
721 2189 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2190 else if (w->interval)
2191 {
2192 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
722 /* this formula differs from the one in periodic_reify because we do not always round up */ 2193 /* this formula differs from the one in periodic_reify because we do not always round up */
723 if (w->interval)
724 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 2194 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2195 }
2196 else
2197 ev_at (w) = w->offset;
725 2198
2199 EV_FREQUENT_CHECK;
2200
2201 ++periodiccnt;
726 ev_start ((W)w, ++periodiccnt); 2202 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
727 array_needsize (periodics, periodicmax, periodiccnt, ); 2203 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
728 periodics [periodiccnt - 1] = w; 2204 ANHE_w (periodics [ev_active (w)]) = (WT)w;
729 upheap ((WT *)periodics, periodiccnt - 1); 2205 ANHE_at_cache (periodics [ev_active (w)]);
730} 2206 upheap (periodics, ev_active (w));
731 2207
732void 2208 EV_FREQUENT_CHECK;
2209
2210 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2211}
2212
2213void noinline
733evperiodic_stop (struct ev_periodic *w) 2214ev_periodic_stop (EV_P_ ev_periodic *w)
734{ 2215{
735 ev_clear ((W)w); 2216 clear_pending (EV_A_ (W)w);
736 if (!ev_is_active (w)) 2217 if (expect_false (!ev_is_active (w)))
737 return; 2218 return;
738 2219
739 if (w->active < periodiccnt--) 2220 EV_FREQUENT_CHECK;
2221
2222 {
2223 int active = ev_active (w);
2224
2225 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2226
2227 --periodiccnt;
2228
2229 if (expect_true (active < periodiccnt + HEAP0))
740 { 2230 {
741 periodics [w->active - 1] = periodics [periodiccnt]; 2231 periodics [active] = periodics [periodiccnt + HEAP0];
742 downheap ((WT *)periodics, periodiccnt, w->active - 1); 2232 adjustheap (periodics, periodiccnt, active);
743 } 2233 }
2234 }
744 2235
2236 EV_FREQUENT_CHECK;
2237
745 ev_stop ((W)w); 2238 ev_stop (EV_A_ (W)w);
746} 2239}
747 2240
748void 2241void noinline
2242ev_periodic_again (EV_P_ ev_periodic *w)
2243{
2244 /* TODO: use adjustheap and recalculation */
2245 ev_periodic_stop (EV_A_ w);
2246 ev_periodic_start (EV_A_ w);
2247}
2248#endif
2249
2250#ifndef SA_RESTART
2251# define SA_RESTART 0
2252#endif
2253
2254void noinline
749evsignal_start (struct ev_signal *w) 2255ev_signal_start (EV_P_ ev_signal *w)
750{ 2256{
2257#if EV_MULTIPLICITY
2258 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2259#endif
751 if (ev_is_active (w)) 2260 if (expect_false (ev_is_active (w)))
752 return; 2261 return;
753 2262
754 ev_start ((W)w, 1); 2263 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2264
2265 evpipe_init (EV_A);
2266
2267 EV_FREQUENT_CHECK;
2268
2269 {
2270#ifndef _WIN32
2271 sigset_t full, prev;
2272 sigfillset (&full);
2273 sigprocmask (SIG_SETMASK, &full, &prev);
2274#endif
2275
755 array_needsize (signals, signalmax, w->signum, signals_init); 2276 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2277
2278#ifndef _WIN32
2279 sigprocmask (SIG_SETMASK, &prev, 0);
2280#endif
2281 }
2282
2283 ev_start (EV_A_ (W)w, 1);
756 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2284 wlist_add (&signals [w->signum - 1].head, (WL)w);
757 2285
758 if (!w->next) 2286 if (!((WL)w)->next)
759 { 2287 {
2288#if _WIN32
2289 signal (w->signum, ev_sighandler);
2290#else
760 struct sigaction sa; 2291 struct sigaction sa;
761 sa.sa_handler = sighandler; 2292 sa.sa_handler = ev_sighandler;
762 sigfillset (&sa.sa_mask); 2293 sigfillset (&sa.sa_mask);
763 sa.sa_flags = 0; 2294 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
764 sigaction (w->signum, &sa, 0); 2295 sigaction (w->signum, &sa, 0);
2296#endif
765 } 2297 }
766}
767 2298
768void 2299 EV_FREQUENT_CHECK;
2300}
2301
2302void noinline
769evsignal_stop (struct ev_signal *w) 2303ev_signal_stop (EV_P_ ev_signal *w)
770{ 2304{
771 ev_clear ((W)w); 2305 clear_pending (EV_A_ (W)w);
772 if (!ev_is_active (w)) 2306 if (expect_false (!ev_is_active (w)))
773 return; 2307 return;
774 2308
2309 EV_FREQUENT_CHECK;
2310
775 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2311 wlist_del (&signals [w->signum - 1].head, (WL)w);
776 ev_stop ((W)w); 2312 ev_stop (EV_A_ (W)w);
777 2313
778 if (!signals [w->signum - 1].head) 2314 if (!signals [w->signum - 1].head)
779 signal (w->signum, SIG_DFL); 2315 signal (w->signum, SIG_DFL);
780}
781 2316
782void evidle_start (struct ev_idle *w) 2317 EV_FREQUENT_CHECK;
2318}
2319
2320void
2321ev_child_start (EV_P_ ev_child *w)
783{ 2322{
2323#if EV_MULTIPLICITY
2324 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2325#endif
784 if (ev_is_active (w)) 2326 if (expect_false (ev_is_active (w)))
785 return; 2327 return;
786 2328
787 ev_start ((W)w, ++idlecnt); 2329 EV_FREQUENT_CHECK;
788 array_needsize (idles, idlemax, idlecnt, );
789 idles [idlecnt - 1] = w;
790}
791 2330
792void evidle_stop (struct ev_idle *w) 2331 ev_start (EV_A_ (W)w, 1);
2332 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2333
2334 EV_FREQUENT_CHECK;
2335}
2336
2337void
2338ev_child_stop (EV_P_ ev_child *w)
793{ 2339{
794 ev_clear ((W)w); 2340 clear_pending (EV_A_ (W)w);
795 if (ev_is_active (w)) 2341 if (expect_false (!ev_is_active (w)))
796 return; 2342 return;
797 2343
798 idles [w->active - 1] = idles [--idlecnt]; 2344 EV_FREQUENT_CHECK;
2345
2346 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
799 ev_stop ((W)w); 2347 ev_stop (EV_A_ (W)w);
800}
801 2348
802void evcheck_start (struct ev_check *w) 2349 EV_FREQUENT_CHECK;
2350}
2351
2352#if EV_STAT_ENABLE
2353
2354# ifdef _WIN32
2355# undef lstat
2356# define lstat(a,b) _stati64 (a,b)
2357# endif
2358
2359#define DEF_STAT_INTERVAL 5.0074891
2360#define MIN_STAT_INTERVAL 0.1074891
2361
2362static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2363
2364#if EV_USE_INOTIFY
2365# define EV_INOTIFY_BUFSIZE 8192
2366
2367static void noinline
2368infy_add (EV_P_ ev_stat *w)
803{ 2369{
804 if (ev_is_active (w)) 2370 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2371
2372 if (w->wd < 0)
2373 {
2374 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2375
2376 /* monitor some parent directory for speedup hints */
2377 /* note that exceeding the hardcoded limit is not a correctness issue, */
2378 /* but an efficiency issue only */
2379 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2380 {
2381 char path [4096];
2382 strcpy (path, w->path);
2383
2384 do
2385 {
2386 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2387 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2388
2389 char *pend = strrchr (path, '/');
2390
2391 if (!pend)
2392 break; /* whoops, no '/', complain to your admin */
2393
2394 *pend = 0;
2395 w->wd = inotify_add_watch (fs_fd, path, mask);
2396 }
2397 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2398 }
2399 }
2400 else
2401 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2402
2403 if (w->wd >= 0)
2404 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2405}
2406
2407static void noinline
2408infy_del (EV_P_ ev_stat *w)
2409{
2410 int slot;
2411 int wd = w->wd;
2412
2413 if (wd < 0)
805 return; 2414 return;
806 2415
2416 w->wd = -2;
2417 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2418 wlist_del (&fs_hash [slot].head, (WL)w);
2419
2420 /* remove this watcher, if others are watching it, they will rearm */
2421 inotify_rm_watch (fs_fd, wd);
2422}
2423
2424static void noinline
2425infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2426{
2427 if (slot < 0)
2428 /* overflow, need to check for all hahs slots */
2429 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2430 infy_wd (EV_A_ slot, wd, ev);
2431 else
2432 {
2433 WL w_;
2434
2435 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2436 {
2437 ev_stat *w = (ev_stat *)w_;
2438 w_ = w_->next; /* lets us remove this watcher and all before it */
2439
2440 if (w->wd == wd || wd == -1)
2441 {
2442 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2443 {
2444 w->wd = -1;
2445 infy_add (EV_A_ w); /* re-add, no matter what */
2446 }
2447
2448 stat_timer_cb (EV_A_ &w->timer, 0);
2449 }
2450 }
2451 }
2452}
2453
2454static void
2455infy_cb (EV_P_ ev_io *w, int revents)
2456{
2457 char buf [EV_INOTIFY_BUFSIZE];
2458 struct inotify_event *ev = (struct inotify_event *)buf;
2459 int ofs;
2460 int len = read (fs_fd, buf, sizeof (buf));
2461
2462 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2463 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2464}
2465
2466void inline_size
2467infy_init (EV_P)
2468{
2469 if (fs_fd != -2)
2470 return;
2471
2472 fs_fd = inotify_init ();
2473
2474 if (fs_fd >= 0)
2475 {
2476 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2477 ev_set_priority (&fs_w, EV_MAXPRI);
2478 ev_io_start (EV_A_ &fs_w);
2479 }
2480}
2481
2482void inline_size
2483infy_fork (EV_P)
2484{
2485 int slot;
2486
2487 if (fs_fd < 0)
2488 return;
2489
2490 close (fs_fd);
2491 fs_fd = inotify_init ();
2492
2493 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2494 {
2495 WL w_ = fs_hash [slot].head;
2496 fs_hash [slot].head = 0;
2497
2498 while (w_)
2499 {
2500 ev_stat *w = (ev_stat *)w_;
2501 w_ = w_->next; /* lets us add this watcher */
2502
2503 w->wd = -1;
2504
2505 if (fs_fd >= 0)
2506 infy_add (EV_A_ w); /* re-add, no matter what */
2507 else
2508 ev_timer_start (EV_A_ &w->timer);
2509 }
2510
2511 }
2512}
2513
2514#endif
2515
2516void
2517ev_stat_stat (EV_P_ ev_stat *w)
2518{
2519 if (lstat (w->path, &w->attr) < 0)
2520 w->attr.st_nlink = 0;
2521 else if (!w->attr.st_nlink)
2522 w->attr.st_nlink = 1;
2523}
2524
2525static void noinline
2526stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2527{
2528 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2529
2530 /* we copy this here each the time so that */
2531 /* prev has the old value when the callback gets invoked */
2532 w->prev = w->attr;
2533 ev_stat_stat (EV_A_ w);
2534
2535 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2536 if (
2537 w->prev.st_dev != w->attr.st_dev
2538 || w->prev.st_ino != w->attr.st_ino
2539 || w->prev.st_mode != w->attr.st_mode
2540 || w->prev.st_nlink != w->attr.st_nlink
2541 || w->prev.st_uid != w->attr.st_uid
2542 || w->prev.st_gid != w->attr.st_gid
2543 || w->prev.st_rdev != w->attr.st_rdev
2544 || w->prev.st_size != w->attr.st_size
2545 || w->prev.st_atime != w->attr.st_atime
2546 || w->prev.st_mtime != w->attr.st_mtime
2547 || w->prev.st_ctime != w->attr.st_ctime
2548 ) {
2549 #if EV_USE_INOTIFY
2550 infy_del (EV_A_ w);
2551 infy_add (EV_A_ w);
2552 ev_stat_stat (EV_A_ w); /* avoid race... */
2553 #endif
2554
2555 ev_feed_event (EV_A_ w, EV_STAT);
2556 }
2557}
2558
2559void
2560ev_stat_start (EV_P_ ev_stat *w)
2561{
2562 if (expect_false (ev_is_active (w)))
2563 return;
2564
2565 /* since we use memcmp, we need to clear any padding data etc. */
2566 memset (&w->prev, 0, sizeof (ev_statdata));
2567 memset (&w->attr, 0, sizeof (ev_statdata));
2568
2569 ev_stat_stat (EV_A_ w);
2570
2571 if (w->interval < MIN_STAT_INTERVAL)
2572 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2573
2574 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2575 ev_set_priority (&w->timer, ev_priority (w));
2576
2577#if EV_USE_INOTIFY
2578 infy_init (EV_A);
2579
2580 if (fs_fd >= 0)
2581 infy_add (EV_A_ w);
2582 else
2583#endif
2584 ev_timer_start (EV_A_ &w->timer);
2585
2586 ev_start (EV_A_ (W)w, 1);
2587
2588 EV_FREQUENT_CHECK;
2589}
2590
2591void
2592ev_stat_stop (EV_P_ ev_stat *w)
2593{
2594 clear_pending (EV_A_ (W)w);
2595 if (expect_false (!ev_is_active (w)))
2596 return;
2597
2598 EV_FREQUENT_CHECK;
2599
2600#if EV_USE_INOTIFY
2601 infy_del (EV_A_ w);
2602#endif
2603 ev_timer_stop (EV_A_ &w->timer);
2604
2605 ev_stop (EV_A_ (W)w);
2606
2607 EV_FREQUENT_CHECK;
2608}
2609#endif
2610
2611#if EV_IDLE_ENABLE
2612void
2613ev_idle_start (EV_P_ ev_idle *w)
2614{
2615 if (expect_false (ev_is_active (w)))
2616 return;
2617
2618 pri_adjust (EV_A_ (W)w);
2619
2620 EV_FREQUENT_CHECK;
2621
2622 {
2623 int active = ++idlecnt [ABSPRI (w)];
2624
2625 ++idleall;
2626 ev_start (EV_A_ (W)w, active);
2627
2628 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2629 idles [ABSPRI (w)][active - 1] = w;
2630 }
2631
2632 EV_FREQUENT_CHECK;
2633}
2634
2635void
2636ev_idle_stop (EV_P_ ev_idle *w)
2637{
2638 clear_pending (EV_A_ (W)w);
2639 if (expect_false (!ev_is_active (w)))
2640 return;
2641
2642 EV_FREQUENT_CHECK;
2643
2644 {
2645 int active = ev_active (w);
2646
2647 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2648 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2649
2650 ev_stop (EV_A_ (W)w);
2651 --idleall;
2652 }
2653
2654 EV_FREQUENT_CHECK;
2655}
2656#endif
2657
2658void
2659ev_prepare_start (EV_P_ ev_prepare *w)
2660{
2661 if (expect_false (ev_is_active (w)))
2662 return;
2663
2664 EV_FREQUENT_CHECK;
2665
2666 ev_start (EV_A_ (W)w, ++preparecnt);
2667 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2668 prepares [preparecnt - 1] = w;
2669
2670 EV_FREQUENT_CHECK;
2671}
2672
2673void
2674ev_prepare_stop (EV_P_ ev_prepare *w)
2675{
2676 clear_pending (EV_A_ (W)w);
2677 if (expect_false (!ev_is_active (w)))
2678 return;
2679
2680 EV_FREQUENT_CHECK;
2681
2682 {
2683 int active = ev_active (w);
2684
2685 prepares [active - 1] = prepares [--preparecnt];
2686 ev_active (prepares [active - 1]) = active;
2687 }
2688
2689 ev_stop (EV_A_ (W)w);
2690
2691 EV_FREQUENT_CHECK;
2692}
2693
2694void
2695ev_check_start (EV_P_ ev_check *w)
2696{
2697 if (expect_false (ev_is_active (w)))
2698 return;
2699
2700 EV_FREQUENT_CHECK;
2701
807 ev_start ((W)w, ++checkcnt); 2702 ev_start (EV_A_ (W)w, ++checkcnt);
808 array_needsize (checks, checkmax, checkcnt, ); 2703 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
809 checks [checkcnt - 1] = w; 2704 checks [checkcnt - 1] = w;
810}
811 2705
2706 EV_FREQUENT_CHECK;
2707}
2708
2709void
812void evcheck_stop (struct ev_check *w) 2710ev_check_stop (EV_P_ ev_check *w)
813{ 2711{
814 ev_clear ((W)w); 2712 clear_pending (EV_A_ (W)w);
815 if (ev_is_active (w)) 2713 if (expect_false (!ev_is_active (w)))
816 return; 2714 return;
817 2715
2716 EV_FREQUENT_CHECK;
2717
2718 {
2719 int active = ev_active (w);
2720
818 checks [w->active - 1] = checks [--checkcnt]; 2721 checks [active - 1] = checks [--checkcnt];
2722 ev_active (checks [active - 1]) = active;
2723 }
2724
819 ev_stop ((W)w); 2725 ev_stop (EV_A_ (W)w);
2726
2727 EV_FREQUENT_CHECK;
820} 2728}
2729
2730#if EV_EMBED_ENABLE
2731void noinline
2732ev_embed_sweep (EV_P_ ev_embed *w)
2733{
2734 ev_loop (w->other, EVLOOP_NONBLOCK);
2735}
2736
2737static void
2738embed_io_cb (EV_P_ ev_io *io, int revents)
2739{
2740 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2741
2742 if (ev_cb (w))
2743 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2744 else
2745 ev_loop (w->other, EVLOOP_NONBLOCK);
2746}
2747
2748static void
2749embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2750{
2751 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2752
2753 {
2754 struct ev_loop *loop = w->other;
2755
2756 while (fdchangecnt)
2757 {
2758 fd_reify (EV_A);
2759 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2760 }
2761 }
2762}
2763
2764#if 0
2765static void
2766embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2767{
2768 ev_idle_stop (EV_A_ idle);
2769}
2770#endif
2771
2772void
2773ev_embed_start (EV_P_ ev_embed *w)
2774{
2775 if (expect_false (ev_is_active (w)))
2776 return;
2777
2778 {
2779 struct ev_loop *loop = w->other;
2780 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2781 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2782 }
2783
2784 EV_FREQUENT_CHECK;
2785
2786 ev_set_priority (&w->io, ev_priority (w));
2787 ev_io_start (EV_A_ &w->io);
2788
2789 ev_prepare_init (&w->prepare, embed_prepare_cb);
2790 ev_set_priority (&w->prepare, EV_MINPRI);
2791 ev_prepare_start (EV_A_ &w->prepare);
2792
2793 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2794
2795 ev_start (EV_A_ (W)w, 1);
2796
2797 EV_FREQUENT_CHECK;
2798}
2799
2800void
2801ev_embed_stop (EV_P_ ev_embed *w)
2802{
2803 clear_pending (EV_A_ (W)w);
2804 if (expect_false (!ev_is_active (w)))
2805 return;
2806
2807 EV_FREQUENT_CHECK;
2808
2809 ev_io_stop (EV_A_ &w->io);
2810 ev_prepare_stop (EV_A_ &w->prepare);
2811
2812 ev_stop (EV_A_ (W)w);
2813
2814 EV_FREQUENT_CHECK;
2815}
2816#endif
2817
2818#if EV_FORK_ENABLE
2819void
2820ev_fork_start (EV_P_ ev_fork *w)
2821{
2822 if (expect_false (ev_is_active (w)))
2823 return;
2824
2825 EV_FREQUENT_CHECK;
2826
2827 ev_start (EV_A_ (W)w, ++forkcnt);
2828 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2829 forks [forkcnt - 1] = w;
2830
2831 EV_FREQUENT_CHECK;
2832}
2833
2834void
2835ev_fork_stop (EV_P_ ev_fork *w)
2836{
2837 clear_pending (EV_A_ (W)w);
2838 if (expect_false (!ev_is_active (w)))
2839 return;
2840
2841 EV_FREQUENT_CHECK;
2842
2843 {
2844 int active = ev_active (w);
2845
2846 forks [active - 1] = forks [--forkcnt];
2847 ev_active (forks [active - 1]) = active;
2848 }
2849
2850 ev_stop (EV_A_ (W)w);
2851
2852 EV_FREQUENT_CHECK;
2853}
2854#endif
2855
2856#if EV_ASYNC_ENABLE
2857void
2858ev_async_start (EV_P_ ev_async *w)
2859{
2860 if (expect_false (ev_is_active (w)))
2861 return;
2862
2863 evpipe_init (EV_A);
2864
2865 EV_FREQUENT_CHECK;
2866
2867 ev_start (EV_A_ (W)w, ++asynccnt);
2868 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2869 asyncs [asynccnt - 1] = w;
2870
2871 EV_FREQUENT_CHECK;
2872}
2873
2874void
2875ev_async_stop (EV_P_ ev_async *w)
2876{
2877 clear_pending (EV_A_ (W)w);
2878 if (expect_false (!ev_is_active (w)))
2879 return;
2880
2881 EV_FREQUENT_CHECK;
2882
2883 {
2884 int active = ev_active (w);
2885
2886 asyncs [active - 1] = asyncs [--asynccnt];
2887 ev_active (asyncs [active - 1]) = active;
2888 }
2889
2890 ev_stop (EV_A_ (W)w);
2891
2892 EV_FREQUENT_CHECK;
2893}
2894
2895void
2896ev_async_send (EV_P_ ev_async *w)
2897{
2898 w->sent = 1;
2899 evpipe_write (EV_A_ &gotasync);
2900}
2901#endif
821 2902
822/*****************************************************************************/ 2903/*****************************************************************************/
823 2904
824struct ev_once 2905struct ev_once
825{ 2906{
826 struct ev_io io; 2907 ev_io io;
827 struct ev_timer to; 2908 ev_timer to;
828 void (*cb)(int revents, void *arg); 2909 void (*cb)(int revents, void *arg);
829 void *arg; 2910 void *arg;
830}; 2911};
831 2912
832static void 2913static void
833once_cb (struct ev_once *once, int revents) 2914once_cb (EV_P_ struct ev_once *once, int revents)
834{ 2915{
835 void (*cb)(int revents, void *arg) = once->cb; 2916 void (*cb)(int revents, void *arg) = once->cb;
836 void *arg = once->arg; 2917 void *arg = once->arg;
837 2918
838 evio_stop (&once->io); 2919 ev_io_stop (EV_A_ &once->io);
839 evtimer_stop (&once->to); 2920 ev_timer_stop (EV_A_ &once->to);
840 free (once); 2921 ev_free (once);
841 2922
842 cb (revents, arg); 2923 cb (revents, arg);
843} 2924}
844 2925
845static void 2926static void
846once_cb_io (struct ev_io *w, int revents) 2927once_cb_io (EV_P_ ev_io *w, int revents)
847{ 2928{
848 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2929 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
849} 2930}
850 2931
851static void 2932static void
852once_cb_to (struct ev_timer *w, int revents) 2933once_cb_to (EV_P_ ev_timer *w, int revents)
853{ 2934{
854 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2935 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
855} 2936}
856 2937
857void 2938void
858ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2939ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
859{ 2940{
860 struct ev_once *once = malloc (sizeof (struct ev_once)); 2941 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
861 2942
862 if (!once) 2943 if (expect_false (!once))
863 cb (EV_ERROR, arg); 2944 {
864 else 2945 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
2946 return;
865 { 2947 }
2948
866 once->cb = cb; 2949 once->cb = cb;
867 once->arg = arg; 2950 once->arg = arg;
868 2951
869 evw_init (&once->io, once_cb_io); 2952 ev_init (&once->io, once_cb_io);
870
871 if (fd >= 0) 2953 if (fd >= 0)
872 { 2954 {
873 evio_set (&once->io, fd, events); 2955 ev_io_set (&once->io, fd, events);
874 evio_start (&once->io); 2956 ev_io_start (EV_A_ &once->io);
875 } 2957 }
876 2958
877 evw_init (&once->to, once_cb_to); 2959 ev_init (&once->to, once_cb_to);
878
879 if (timeout >= 0.) 2960 if (timeout >= 0.)
880 { 2961 {
881 evtimer_set (&once->to, timeout, 0.); 2962 ev_timer_set (&once->to, timeout, 0.);
882 evtimer_start (&once->to); 2963 ev_timer_start (EV_A_ &once->to);
883 }
884 }
885}
886
887/*****************************************************************************/
888
889#if 0
890
891struct ev_io wio;
892
893static void
894sin_cb (struct ev_io *w, int revents)
895{
896 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
897}
898
899static void
900ocb (struct ev_timer *w, int revents)
901{
902 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
903 evtimer_stop (w);
904 evtimer_start (w);
905}
906
907static void
908scb (struct ev_signal *w, int revents)
909{
910 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
911 evio_stop (&wio);
912 evio_start (&wio);
913}
914
915static void
916gcb (struct ev_signal *w, int revents)
917{
918 fprintf (stderr, "generic %x\n", revents);
919
920}
921
922int main (void)
923{
924 ev_init (0);
925
926 evio_init (&wio, sin_cb, 0, EV_READ);
927 evio_start (&wio);
928
929 struct ev_timer t[10000];
930
931#if 0
932 int i;
933 for (i = 0; i < 10000; ++i)
934 { 2964 }
935 struct ev_timer *w = t + i;
936 evw_init (w, ocb, i);
937 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
938 evtimer_start (w);
939 if (drand48 () < 0.5)
940 evtimer_stop (w);
941 }
942#endif
943
944 struct ev_timer t1;
945 evtimer_init (&t1, ocb, 5, 10);
946 evtimer_start (&t1);
947
948 struct ev_signal sig;
949 evsignal_init (&sig, scb, SIGQUIT);
950 evsignal_start (&sig);
951
952 struct ev_check cw;
953 evcheck_init (&cw, gcb);
954 evcheck_start (&cw);
955
956 struct ev_idle iw;
957 evidle_init (&iw, gcb);
958 evidle_start (&iw);
959
960 ev_loop (0);
961
962 return 0;
963} 2965}
964 2966
2967#if EV_MULTIPLICITY
2968 #include "ev_wrap.h"
965#endif 2969#endif
966 2970
2971#ifdef __cplusplus
2972}
2973#endif
967 2974
968
969

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines