ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.16 by root, Wed Oct 31 13:57:34 2007 UTC vs.
Revision 1.478 by root, Sun Oct 11 13:38:44 2015 UTC

1#include <math.h> 1/*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40/* this big block deduces configuration from config.h */
41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
45# include "config.h"
46# endif
47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
68# if HAVE_CLOCK_GETTIME
69# ifndef EV_USE_MONOTONIC
70# define EV_USE_MONOTONIC 1
71# endif
72# ifndef EV_USE_REALTIME
73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
81# endif
82# endif
83
84# if HAVE_NANOSLEEP
85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
109# endif
110
111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
118# endif
119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
127# endif
128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
136# endif
137
138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
2#include <stdlib.h> 167#include <stdlib.h>
3#include <unistd.h> 168#include <string.h>
4#include <fcntl.h> 169#include <fcntl.h>
5#include <signal.h>
6#include <stddef.h> 170#include <stddef.h>
7 171
8#include <stdio.h> 172#include <stdio.h>
9 173
10#include <assert.h> 174#include <assert.h>
11#include <errno.h> 175#include <errno.h>
12#include <sys/time.h> 176#include <sys/types.h>
13#include <time.h> 177#include <time.h>
178#include <limits.h>
14 179
15#define HAVE_EPOLL 1 180#include <signal.h>
16 181
17#ifndef HAVE_MONOTONIC 182#ifdef EV_H
18# ifdef CLOCK_MONOTONIC 183# include EV_H
19# define HAVE_MONOTONIC 1 184#else
185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
198
199#ifndef _WIN32
200# include <sys/time.h>
201# include <sys/wait.h>
202# include <unistd.h>
203#else
204# include <io.h>
205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
207# include <windows.h>
208# ifndef EV_SELECT_IS_WINSOCKET
209# define EV_SELECT_IS_WINSOCKET 1
20# endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
253#ifndef EV_USE_CLOCK_SYSCALL
254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256# else
257# define EV_USE_CLOCK_SYSCALL 0
21#endif 258# endif
259#endif
22 260
23#ifndef HAVE_SELECT 261#if !(_POSIX_TIMERS > 0)
24# define HAVE_SELECT 1 262# ifndef EV_USE_MONOTONIC
263# define EV_USE_MONOTONIC 0
25#endif 264# endif
26 265# ifndef EV_USE_REALTIME
27#ifndef HAVE_EPOLL 266# define EV_USE_REALTIME 0
28# define HAVE_EPOLL 0
29#endif 267# endif
268#endif
30 269
31#ifndef HAVE_REALTIME 270#ifndef EV_USE_MONOTONIC
32# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 271# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
272# define EV_USE_MONOTONIC EV_FEATURE_OS
273# else
274# define EV_USE_MONOTONIC 0
33#endif 275# endif
276#endif
277
278#ifndef EV_USE_REALTIME
279# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
280#endif
281
282#ifndef EV_USE_NANOSLEEP
283# if _POSIX_C_SOURCE >= 199309L
284# define EV_USE_NANOSLEEP EV_FEATURE_OS
285# else
286# define EV_USE_NANOSLEEP 0
287# endif
288#endif
289
290#ifndef EV_USE_SELECT
291# define EV_USE_SELECT EV_FEATURE_BACKENDS
292#endif
293
294#ifndef EV_USE_POLL
295# ifdef _WIN32
296# define EV_USE_POLL 0
297# else
298# define EV_USE_POLL EV_FEATURE_BACKENDS
299# endif
300#endif
301
302#ifndef EV_USE_EPOLL
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304# define EV_USE_EPOLL EV_FEATURE_BACKENDS
305# else
306# define EV_USE_EPOLL 0
307# endif
308#endif
309
310#ifndef EV_USE_KQUEUE
311# define EV_USE_KQUEUE 0
312#endif
313
314#ifndef EV_USE_PORT
315# define EV_USE_PORT 0
316#endif
317
318#ifndef EV_USE_INOTIFY
319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
320# define EV_USE_INOTIFY EV_FEATURE_OS
321# else
322# define EV_USE_INOTIFY 0
323# endif
324#endif
325
326#ifndef EV_PID_HASHSIZE
327# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
328#endif
329
330#ifndef EV_INOTIFY_HASHSIZE
331# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
332#endif
333
334#ifndef EV_USE_EVENTFD
335# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
336# define EV_USE_EVENTFD EV_FEATURE_OS
337# else
338# define EV_USE_EVENTFD 0
339# endif
340#endif
341
342#ifndef EV_USE_SIGNALFD
343# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
344# define EV_USE_SIGNALFD EV_FEATURE_OS
345# else
346# define EV_USE_SIGNALFD 0
347# endif
348#endif
349
350#if 0 /* debugging */
351# define EV_VERIFY 3
352# define EV_USE_4HEAP 1
353# define EV_HEAP_CACHE_AT 1
354#endif
355
356#ifndef EV_VERIFY
357# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
358#endif
359
360#ifndef EV_USE_4HEAP
361# define EV_USE_4HEAP EV_FEATURE_DATA
362#endif
363
364#ifndef EV_HEAP_CACHE_AT
365# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
366#endif
367
368#ifdef ANDROID
369/* supposedly, android doesn't typedef fd_mask */
370# undef EV_USE_SELECT
371# define EV_USE_SELECT 0
372/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
373# undef EV_USE_CLOCK_SYSCALL
374# define EV_USE_CLOCK_SYSCALL 0
375#endif
376
377/* aix's poll.h seems to cause lots of trouble */
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
383
384/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
385/* which makes programs even slower. might work on other unices, too. */
386#if EV_USE_CLOCK_SYSCALL
387# include <sys/syscall.h>
388# ifdef SYS_clock_gettime
389# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
390# undef EV_USE_MONOTONIC
391# define EV_USE_MONOTONIC 1
392# else
393# undef EV_USE_CLOCK_SYSCALL
394# define EV_USE_CLOCK_SYSCALL 0
395# endif
396#endif
397
398/* this block fixes any misconfiguration where we know we run into trouble otherwise */
399
400#ifndef CLOCK_MONOTONIC
401# undef EV_USE_MONOTONIC
402# define EV_USE_MONOTONIC 0
403#endif
404
405#ifndef CLOCK_REALTIME
406# undef EV_USE_REALTIME
407# define EV_USE_REALTIME 0
408#endif
409
410#if !EV_STAT_ENABLE
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
413#endif
414
415#if !EV_USE_NANOSLEEP
416/* hp-ux has it in sys/time.h, which we unconditionally include above */
417# if !defined _WIN32 && !defined __hpux
418# include <sys/select.h>
419# endif
420#endif
421
422#if EV_USE_INOTIFY
423# include <sys/statfs.h>
424# include <sys/inotify.h>
425/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
426# ifndef IN_DONT_FOLLOW
427# undef EV_USE_INOTIFY
428# define EV_USE_INOTIFY 0
429# endif
430#endif
431
432#if EV_USE_EVENTFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef EFD_NONBLOCK
436# define EFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef EFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define EFD_CLOEXEC O_CLOEXEC
441# else
442# define EFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
446#endif
447
448#if EV_USE_SIGNALFD
449/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
450# include <stdint.h>
451# ifndef SFD_NONBLOCK
452# define SFD_NONBLOCK O_NONBLOCK
453# endif
454# ifndef SFD_CLOEXEC
455# ifdef O_CLOEXEC
456# define SFD_CLOEXEC O_CLOEXEC
457# else
458# define SFD_CLOEXEC 02000000
459# endif
460# endif
461EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
462
463struct signalfd_siginfo
464{
465 uint32_t ssi_signo;
466 char pad[128 - sizeof (uint32_t)];
467};
468#endif
469
470/**/
471
472#if EV_VERIFY >= 3
473# define EV_FREQUENT_CHECK ev_verify (EV_A)
474#else
475# define EV_FREQUENT_CHECK do { } while (0)
476#endif
477
478/*
479 * This is used to work around floating point rounding problems.
480 * This value is good at least till the year 4000.
481 */
482#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
483/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
34 484
35#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 485#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
36#define MAX_BLOCKTIME 60. 486#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
37 487
38#include "ev.h" 488#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
489#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
39 490
40typedef struct ev_watcher *W; 491/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
41typedef struct ev_watcher_list *WL; 492/* ECB.H BEGIN */
42typedef struct ev_watcher_time *WT; 493/*
494 * libecb - http://software.schmorp.de/pkg/libecb
495 *
496 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
497 * Copyright (©) 2011 Emanuele Giaquinta
498 * All rights reserved.
499 *
500 * Redistribution and use in source and binary forms, with or without modifica-
501 * tion, are permitted provided that the following conditions are met:
502 *
503 * 1. Redistributions of source code must retain the above copyright notice,
504 * this list of conditions and the following disclaimer.
505 *
506 * 2. Redistributions in binary form must reproduce the above copyright
507 * notice, this list of conditions and the following disclaimer in the
508 * documentation and/or other materials provided with the distribution.
509 *
510 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
511 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
512 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
513 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
514 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
515 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
516 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
517 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
518 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
519 * OF THE POSSIBILITY OF SUCH DAMAGE.
520 *
521 * Alternatively, the contents of this file may be used under the terms of
522 * the GNU General Public License ("GPL") version 2 or any later version,
523 * in which case the provisions of the GPL are applicable instead of
524 * the above. If you wish to allow the use of your version of this file
525 * only under the terms of the GPL and not to allow others to use your
526 * version of this file under the BSD license, indicate your decision
527 * by deleting the provisions above and replace them with the notice
528 * and other provisions required by the GPL. If you do not delete the
529 * provisions above, a recipient may use your version of this file under
530 * either the BSD or the GPL.
531 */
43 532
44static ev_tstamp now, diff; /* monotonic clock */ 533#ifndef ECB_H
45ev_tstamp ev_now; 534#define ECB_H
46int ev_method;
47 535
48static int have_monotonic; /* runtime */ 536/* 16 bits major, 16 bits minor */
537#define ECB_VERSION 0x00010004
49 538
50static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 539#ifdef _WIN32
51static void (*method_modify)(int fd, int oev, int nev); 540 typedef signed char int8_t;
52static void (*method_poll)(ev_tstamp timeout); 541 typedef unsigned char uint8_t;
542 typedef signed short int16_t;
543 typedef unsigned short uint16_t;
544 typedef signed int int32_t;
545 typedef unsigned int uint32_t;
546 #if __GNUC__
547 typedef signed long long int64_t;
548 typedef unsigned long long uint64_t;
549 #else /* _MSC_VER || __BORLANDC__ */
550 typedef signed __int64 int64_t;
551 typedef unsigned __int64 uint64_t;
552 #endif
553 #ifdef _WIN64
554 #define ECB_PTRSIZE 8
555 typedef uint64_t uintptr_t;
556 typedef int64_t intptr_t;
557 #else
558 #define ECB_PTRSIZE 4
559 typedef uint32_t uintptr_t;
560 typedef int32_t intptr_t;
561 #endif
562#else
563 #include <inttypes.h>
564 #if UINTMAX_MAX > 0xffffffffU
565 #define ECB_PTRSIZE 8
566 #else
567 #define ECB_PTRSIZE 4
568 #endif
569#endif
570
571#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
572#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
573
574/* work around x32 idiocy by defining proper macros */
575#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
576 #if _ILP32
577 #define ECB_AMD64_X32 1
578 #else
579 #define ECB_AMD64 1
580 #endif
581#endif
582
583/* many compilers define _GNUC_ to some versions but then only implement
584 * what their idiot authors think are the "more important" extensions,
585 * causing enormous grief in return for some better fake benchmark numbers.
586 * or so.
587 * we try to detect these and simply assume they are not gcc - if they have
588 * an issue with that they should have done it right in the first place.
589 */
590#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
591 #define ECB_GCC_VERSION(major,minor) 0
592#else
593 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
594#endif
595
596#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
597
598#if __clang__ && defined __has_builtin
599 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
600#else
601 #define ECB_CLANG_BUILTIN(x) 0
602#endif
603
604#if __clang__ && defined __has_extension
605 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
606#else
607 #define ECB_CLANG_EXTENSION(x) 0
608#endif
609
610#define ECB_CPP (__cplusplus+0)
611#define ECB_CPP11 (__cplusplus >= 201103L)
612
613#if ECB_CPP
614 #define ECB_C 0
615 #define ECB_STDC_VERSION 0
616#else
617 #define ECB_C 1
618 #define ECB_STDC_VERSION __STDC_VERSION__
619#endif
620
621#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
622#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
623
624#if ECB_CPP
625 #define ECB_EXTERN_C extern "C"
626 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
627 #define ECB_EXTERN_C_END }
628#else
629 #define ECB_EXTERN_C extern
630 #define ECB_EXTERN_C_BEG
631 #define ECB_EXTERN_C_END
632#endif
53 633
54/*****************************************************************************/ 634/*****************************************************************************/
55 635
636/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
637/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
638
639#if ECB_NO_THREADS
640 #define ECB_NO_SMP 1
641#endif
642
643#if ECB_NO_SMP
644 #define ECB_MEMORY_FENCE do { } while (0)
645#endif
646
647/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
648#if __xlC__ && ECB_CPP
649 #include <builtins.h>
650#endif
651
652#ifndef ECB_MEMORY_FENCE
653 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
654 #if __i386 || __i386__
655 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
656 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
657 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
658 #elif ECB_GCC_AMD64
659 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
660 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
661 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
662 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
663 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
664 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
665 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
666 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
667 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
668 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
669 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
670 #elif __aarch64__
671 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
672 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
673 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
674 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
675 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
676 #elif defined __s390__ || defined __s390x__
677 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
678 #elif defined __mips__
679 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
680 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
681 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
682 #elif defined __alpha__
683 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
684 #elif defined __hppa__
685 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
686 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
687 #elif defined __ia64__
688 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
689 #elif defined __m68k__
690 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
691 #elif defined __m88k__
692 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
693 #elif defined __sh__
694 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
695 #endif
696 #endif
697#endif
698
699#ifndef ECB_MEMORY_FENCE
700 #if ECB_GCC_VERSION(4,7)
701 /* see comment below (stdatomic.h) about the C11 memory model. */
702 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
703 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
704 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
705
706 #elif ECB_CLANG_EXTENSION(c_atomic)
707 /* see comment below (stdatomic.h) about the C11 memory model. */
708 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
709 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
710 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
711
712 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
713 #define ECB_MEMORY_FENCE __sync_synchronize ()
714 #elif _MSC_VER >= 1500 /* VC++ 2008 */
715 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
716 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
717 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
718 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
719 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
720 #elif _MSC_VER >= 1400 /* VC++ 2005 */
721 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
722 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
723 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
724 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
725 #elif defined _WIN32
726 #include <WinNT.h>
727 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
728 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
729 #include <mbarrier.h>
730 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
731 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
732 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
733 #elif __xlC__
734 #define ECB_MEMORY_FENCE __sync ()
735 #endif
736#endif
737
738#ifndef ECB_MEMORY_FENCE
739 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
740 /* we assume that these memory fences work on all variables/all memory accesses, */
741 /* not just C11 atomics and atomic accesses */
742 #include <stdatomic.h>
743 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
744 /* any fence other than seq_cst, which isn't very efficient for us. */
745 /* Why that is, we don't know - either the C11 memory model is quite useless */
746 /* for most usages, or gcc and clang have a bug */
747 /* I *currently* lean towards the latter, and inefficiently implement */
748 /* all three of ecb's fences as a seq_cst fence */
749 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
750 /* for all __atomic_thread_fence's except seq_cst */
751 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
752 #endif
753#endif
754
755#ifndef ECB_MEMORY_FENCE
756 #if !ECB_AVOID_PTHREADS
757 /*
758 * if you get undefined symbol references to pthread_mutex_lock,
759 * or failure to find pthread.h, then you should implement
760 * the ECB_MEMORY_FENCE operations for your cpu/compiler
761 * OR provide pthread.h and link against the posix thread library
762 * of your system.
763 */
764 #include <pthread.h>
765 #define ECB_NEEDS_PTHREADS 1
766 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
767
768 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
769 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
770 #endif
771#endif
772
773#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
774 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
775#endif
776
777#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
778 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
779#endif
780
781/*****************************************************************************/
782
783#if ECB_CPP
784 #define ecb_inline static inline
785#elif ECB_GCC_VERSION(2,5)
786 #define ecb_inline static __inline__
787#elif ECB_C99
788 #define ecb_inline static inline
789#else
790 #define ecb_inline static
791#endif
792
793#if ECB_GCC_VERSION(3,3)
794 #define ecb_restrict __restrict__
795#elif ECB_C99
796 #define ecb_restrict restrict
797#else
798 #define ecb_restrict
799#endif
800
801typedef int ecb_bool;
802
803#define ECB_CONCAT_(a, b) a ## b
804#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
805#define ECB_STRINGIFY_(a) # a
806#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
807#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
808
809#define ecb_function_ ecb_inline
810
811#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
812 #define ecb_attribute(attrlist) __attribute__ (attrlist)
813#else
814 #define ecb_attribute(attrlist)
815#endif
816
817#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
818 #define ecb_is_constant(expr) __builtin_constant_p (expr)
819#else
820 /* possible C11 impl for integral types
821 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
822 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
823
824 #define ecb_is_constant(expr) 0
825#endif
826
827#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
828 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
829#else
830 #define ecb_expect(expr,value) (expr)
831#endif
832
833#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
834 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
835#else
836 #define ecb_prefetch(addr,rw,locality)
837#endif
838
839/* no emulation for ecb_decltype */
840#if ECB_CPP11
841 // older implementations might have problems with decltype(x)::type, work around it
842 template<class T> struct ecb_decltype_t { typedef T type; };
843 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
844#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
845 #define ecb_decltype(x) __typeof__ (x)
846#endif
847
848#if _MSC_VER >= 1300
849 #define ecb_deprecated __declspec (deprecated)
850#else
851 #define ecb_deprecated ecb_attribute ((__deprecated__))
852#endif
853
854#if _MSC_VER >= 1500
855 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
856#elif ECB_GCC_VERSION(4,5)
857 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
858#else
859 #define ecb_deprecated_message(msg) ecb_deprecated
860#endif
861
862#if _MSC_VER >= 1400
863 #define ecb_noinline __declspec (noinline)
864#else
865 #define ecb_noinline ecb_attribute ((__noinline__))
866#endif
867
868#define ecb_unused ecb_attribute ((__unused__))
869#define ecb_const ecb_attribute ((__const__))
870#define ecb_pure ecb_attribute ((__pure__))
871
872#if ECB_C11 || __IBMC_NORETURN
873 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
874 #define ecb_noreturn _Noreturn
875#elif ECB_CPP11
876 #define ecb_noreturn [[noreturn]]
877#elif _MSC_VER >= 1200
878 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
879 #define ecb_noreturn __declspec (noreturn)
880#else
881 #define ecb_noreturn ecb_attribute ((__noreturn__))
882#endif
883
884#if ECB_GCC_VERSION(4,3)
885 #define ecb_artificial ecb_attribute ((__artificial__))
886 #define ecb_hot ecb_attribute ((__hot__))
887 #define ecb_cold ecb_attribute ((__cold__))
888#else
889 #define ecb_artificial
890 #define ecb_hot
891 #define ecb_cold
892#endif
893
894/* put around conditional expressions if you are very sure that the */
895/* expression is mostly true or mostly false. note that these return */
896/* booleans, not the expression. */
897#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
898#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
899/* for compatibility to the rest of the world */
900#define ecb_likely(expr) ecb_expect_true (expr)
901#define ecb_unlikely(expr) ecb_expect_false (expr)
902
903/* count trailing zero bits and count # of one bits */
904#if ECB_GCC_VERSION(3,4) \
905 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
906 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
907 && ECB_CLANG_BUILTIN(__builtin_popcount))
908 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
909 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
910 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
911 #define ecb_ctz32(x) __builtin_ctz (x)
912 #define ecb_ctz64(x) __builtin_ctzll (x)
913 #define ecb_popcount32(x) __builtin_popcount (x)
914 /* no popcountll */
915#else
916 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
917 ecb_function_ ecb_const int
918 ecb_ctz32 (uint32_t x)
919 {
920 int r = 0;
921
922 x &= ~x + 1; /* this isolates the lowest bit */
923
924#if ECB_branchless_on_i386
925 r += !!(x & 0xaaaaaaaa) << 0;
926 r += !!(x & 0xcccccccc) << 1;
927 r += !!(x & 0xf0f0f0f0) << 2;
928 r += !!(x & 0xff00ff00) << 3;
929 r += !!(x & 0xffff0000) << 4;
930#else
931 if (x & 0xaaaaaaaa) r += 1;
932 if (x & 0xcccccccc) r += 2;
933 if (x & 0xf0f0f0f0) r += 4;
934 if (x & 0xff00ff00) r += 8;
935 if (x & 0xffff0000) r += 16;
936#endif
937
938 return r;
939 }
940
941 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
942 ecb_function_ ecb_const int
943 ecb_ctz64 (uint64_t x)
944 {
945 int shift = x & 0xffffffffU ? 0 : 32;
946 return ecb_ctz32 (x >> shift) + shift;
947 }
948
949 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
950 ecb_function_ ecb_const int
951 ecb_popcount32 (uint32_t x)
952 {
953 x -= (x >> 1) & 0x55555555;
954 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
955 x = ((x >> 4) + x) & 0x0f0f0f0f;
956 x *= 0x01010101;
957
958 return x >> 24;
959 }
960
961 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
962 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
963 {
964 int r = 0;
965
966 if (x >> 16) { x >>= 16; r += 16; }
967 if (x >> 8) { x >>= 8; r += 8; }
968 if (x >> 4) { x >>= 4; r += 4; }
969 if (x >> 2) { x >>= 2; r += 2; }
970 if (x >> 1) { r += 1; }
971
972 return r;
973 }
974
975 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
976 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
977 {
978 int r = 0;
979
980 if (x >> 32) { x >>= 32; r += 32; }
981
982 return r + ecb_ld32 (x);
983 }
984#endif
985
986ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
987ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
988ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
989ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
990
991ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
992ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
993{
994 return ( (x * 0x0802U & 0x22110U)
995 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
996}
997
998ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
999ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1000{
1001 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1002 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1003 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1004 x = ( x >> 8 ) | ( x << 8);
1005
1006 return x;
1007}
1008
1009ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1010ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1011{
1012 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1013 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1014 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1015 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1016 x = ( x >> 16 ) | ( x << 16);
1017
1018 return x;
1019}
1020
1021/* popcount64 is only available on 64 bit cpus as gcc builtin */
1022/* so for this version we are lazy */
1023ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1024ecb_function_ ecb_const int
1025ecb_popcount64 (uint64_t x)
1026{
1027 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1028}
1029
1030ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1031ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1032ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1033ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1034ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1035ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1036ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1037ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1038
1039ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1040ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1041ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1042ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1043ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1044ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1045ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1046ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1047
1048#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1049 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1050 #define ecb_bswap16(x) __builtin_bswap16 (x)
1051 #else
1052 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1053 #endif
1054 #define ecb_bswap32(x) __builtin_bswap32 (x)
1055 #define ecb_bswap64(x) __builtin_bswap64 (x)
1056#elif _MSC_VER
1057 #include <stdlib.h>
1058 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1059 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1060 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1061#else
1062 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1063 ecb_function_ ecb_const uint16_t
1064 ecb_bswap16 (uint16_t x)
1065 {
1066 return ecb_rotl16 (x, 8);
1067 }
1068
1069 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1070 ecb_function_ ecb_const uint32_t
1071 ecb_bswap32 (uint32_t x)
1072 {
1073 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1074 }
1075
1076 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1077 ecb_function_ ecb_const uint64_t
1078 ecb_bswap64 (uint64_t x)
1079 {
1080 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1081 }
1082#endif
1083
1084#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1085 #define ecb_unreachable() __builtin_unreachable ()
1086#else
1087 /* this seems to work fine, but gcc always emits a warning for it :/ */
1088 ecb_inline ecb_noreturn void ecb_unreachable (void);
1089 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1090#endif
1091
1092/* try to tell the compiler that some condition is definitely true */
1093#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1094
1095ecb_inline ecb_const unsigned char ecb_byteorder_helper (void);
1096ecb_inline ecb_const unsigned char
1097ecb_byteorder_helper (void)
1098{
1099 /* the union code still generates code under pressure in gcc, */
1100 /* but less than using pointers, and always seems to */
1101 /* successfully return a constant. */
1102 /* the reason why we have this horrible preprocessor mess */
1103 /* is to avoid it in all cases, at least on common architectures */
1104 /* or when using a recent enough gcc version (>= 4.6) */
1105#if ((__i386 || __i386__) && !__VOS__) || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64
1106 return 0x44;
1107#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1108 return 0x44;
1109#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1110 return 0x11;
1111#else
1112 union
1113 {
1114 uint32_t i;
1115 uint8_t c;
1116 } u = { 0x11223344 };
1117 return u.c;
1118#endif
1119}
1120
1121ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1122ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1123ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1124ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1125
1126#if ECB_GCC_VERSION(3,0) || ECB_C99
1127 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1128#else
1129 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1130#endif
1131
1132#if ECB_CPP
1133 template<typename T>
1134 static inline T ecb_div_rd (T val, T div)
1135 {
1136 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1137 }
1138 template<typename T>
1139 static inline T ecb_div_ru (T val, T div)
1140 {
1141 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1142 }
1143#else
1144 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1145 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1146#endif
1147
1148#if ecb_cplusplus_does_not_suck
1149 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1150 template<typename T, int N>
1151 static inline int ecb_array_length (const T (&arr)[N])
1152 {
1153 return N;
1154 }
1155#else
1156 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1157#endif
1158
1159/*******************************************************************************/
1160/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1161
1162/* basically, everything uses "ieee pure-endian" floating point numbers */
1163/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1164#if 0 \
1165 || __i386 || __i386__ \
1166 || ECB_GCC_AMD64 \
1167 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1168 || defined __s390__ || defined __s390x__ \
1169 || defined __mips__ \
1170 || defined __alpha__ \
1171 || defined __hppa__ \
1172 || defined __ia64__ \
1173 || defined __m68k__ \
1174 || defined __m88k__ \
1175 || defined __sh__ \
1176 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1177 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1178 || defined __aarch64__
1179 #define ECB_STDFP 1
1180 #include <string.h> /* for memcpy */
1181#else
1182 #define ECB_STDFP 0
1183#endif
1184
1185#ifndef ECB_NO_LIBM
1186
1187 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1188
1189 /* only the oldest of old doesn't have this one. solaris. */
1190 #ifdef INFINITY
1191 #define ECB_INFINITY INFINITY
1192 #else
1193 #define ECB_INFINITY HUGE_VAL
1194 #endif
1195
1196 #ifdef NAN
1197 #define ECB_NAN NAN
1198 #else
1199 #define ECB_NAN ECB_INFINITY
1200 #endif
1201
1202 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1203 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1204 #define ecb_frexpf(x,e) frexpf ((x), (e))
1205 #else
1206 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1207 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1208 #endif
1209
1210 /* converts an ieee half/binary16 to a float */
1211 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1212 ecb_function_ ecb_const float
1213 ecb_binary16_to_float (uint16_t x)
1214 {
1215 int e = (x >> 10) & 0x1f;
1216 int m = x & 0x3ff;
1217 float r;
1218
1219 if (!e ) r = ecb_ldexpf (m , -24);
1220 else if (e != 31) r = ecb_ldexpf (m + 0x400, e - 25);
1221 else if (m ) r = ECB_NAN;
1222 else r = ECB_INFINITY;
1223
1224 return x & 0x8000 ? -r : r;
1225 }
1226
1227 /* convert a float to ieee single/binary32 */
1228 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1229 ecb_function_ ecb_const uint32_t
1230 ecb_float_to_binary32 (float x)
1231 {
1232 uint32_t r;
1233
1234 #if ECB_STDFP
1235 memcpy (&r, &x, 4);
1236 #else
1237 /* slow emulation, works for anything but -0 */
1238 uint32_t m;
1239 int e;
1240
1241 if (x == 0e0f ) return 0x00000000U;
1242 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1243 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1244 if (x != x ) return 0x7fbfffffU;
1245
1246 m = ecb_frexpf (x, &e) * 0x1000000U;
1247
1248 r = m & 0x80000000U;
1249
1250 if (r)
1251 m = -m;
1252
1253 if (e <= -126)
1254 {
1255 m &= 0xffffffU;
1256 m >>= (-125 - e);
1257 e = -126;
1258 }
1259
1260 r |= (e + 126) << 23;
1261 r |= m & 0x7fffffU;
1262 #endif
1263
1264 return r;
1265 }
1266
1267 /* converts an ieee single/binary32 to a float */
1268 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1269 ecb_function_ ecb_const float
1270 ecb_binary32_to_float (uint32_t x)
1271 {
1272 float r;
1273
1274 #if ECB_STDFP
1275 memcpy (&r, &x, 4);
1276 #else
1277 /* emulation, only works for normals and subnormals and +0 */
1278 int neg = x >> 31;
1279 int e = (x >> 23) & 0xffU;
1280
1281 x &= 0x7fffffU;
1282
1283 if (e)
1284 x |= 0x800000U;
1285 else
1286 e = 1;
1287
1288 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1289 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1290
1291 r = neg ? -r : r;
1292 #endif
1293
1294 return r;
1295 }
1296
1297 /* convert a double to ieee double/binary64 */
1298 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1299 ecb_function_ ecb_const uint64_t
1300 ecb_double_to_binary64 (double x)
1301 {
1302 uint64_t r;
1303
1304 #if ECB_STDFP
1305 memcpy (&r, &x, 8);
1306 #else
1307 /* slow emulation, works for anything but -0 */
1308 uint64_t m;
1309 int e;
1310
1311 if (x == 0e0 ) return 0x0000000000000000U;
1312 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1313 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1314 if (x != x ) return 0X7ff7ffffffffffffU;
1315
1316 m = frexp (x, &e) * 0x20000000000000U;
1317
1318 r = m & 0x8000000000000000;;
1319
1320 if (r)
1321 m = -m;
1322
1323 if (e <= -1022)
1324 {
1325 m &= 0x1fffffffffffffU;
1326 m >>= (-1021 - e);
1327 e = -1022;
1328 }
1329
1330 r |= ((uint64_t)(e + 1022)) << 52;
1331 r |= m & 0xfffffffffffffU;
1332 #endif
1333
1334 return r;
1335 }
1336
1337 /* converts an ieee double/binary64 to a double */
1338 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1339 ecb_function_ ecb_const double
1340 ecb_binary64_to_double (uint64_t x)
1341 {
1342 double r;
1343
1344 #if ECB_STDFP
1345 memcpy (&r, &x, 8);
1346 #else
1347 /* emulation, only works for normals and subnormals and +0 */
1348 int neg = x >> 63;
1349 int e = (x >> 52) & 0x7ffU;
1350
1351 x &= 0xfffffffffffffU;
1352
1353 if (e)
1354 x |= 0x10000000000000U;
1355 else
1356 e = 1;
1357
1358 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1359 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1360
1361 r = neg ? -r : r;
1362 #endif
1363
1364 return r;
1365 }
1366
1367#endif
1368
1369#endif
1370
1371/* ECB.H END */
1372
1373#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1374/* if your architecture doesn't need memory fences, e.g. because it is
1375 * single-cpu/core, or if you use libev in a project that doesn't use libev
1376 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1377 * libev, in which cases the memory fences become nops.
1378 * alternatively, you can remove this #error and link against libpthread,
1379 * which will then provide the memory fences.
1380 */
1381# error "memory fences not defined for your architecture, please report"
1382#endif
1383
1384#ifndef ECB_MEMORY_FENCE
1385# define ECB_MEMORY_FENCE do { } while (0)
1386# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1387# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1388#endif
1389
1390#define expect_false(cond) ecb_expect_false (cond)
1391#define expect_true(cond) ecb_expect_true (cond)
1392#define noinline ecb_noinline
1393
1394#define inline_size ecb_inline
1395
1396#if EV_FEATURE_CODE
1397# define inline_speed ecb_inline
1398#else
1399# define inline_speed static noinline
1400#endif
1401
1402#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1403
1404#if EV_MINPRI == EV_MAXPRI
1405# define ABSPRI(w) (((W)w), 0)
1406#else
1407# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1408#endif
1409
1410#define EMPTY /* required for microsofts broken pseudo-c compiler */
1411#define EMPTY2(a,b) /* used to suppress some warnings */
1412
1413typedef ev_watcher *W;
1414typedef ev_watcher_list *WL;
1415typedef ev_watcher_time *WT;
1416
1417#define ev_active(w) ((W)(w))->active
1418#define ev_at(w) ((WT)(w))->at
1419
1420#if EV_USE_REALTIME
1421/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1422/* giving it a reasonably high chance of working on typical architectures */
1423static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1424#endif
1425
1426#if EV_USE_MONOTONIC
1427static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1428#endif
1429
1430#ifndef EV_FD_TO_WIN32_HANDLE
1431# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1432#endif
1433#ifndef EV_WIN32_HANDLE_TO_FD
1434# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1435#endif
1436#ifndef EV_WIN32_CLOSE_FD
1437# define EV_WIN32_CLOSE_FD(fd) close (fd)
1438#endif
1439
1440#ifdef _WIN32
1441# include "ev_win32.c"
1442#endif
1443
1444/*****************************************************************************/
1445
1446/* define a suitable floor function (only used by periodics atm) */
1447
1448#if EV_USE_FLOOR
1449# include <math.h>
1450# define ev_floor(v) floor (v)
1451#else
1452
1453#include <float.h>
1454
1455/* a floor() replacement function, should be independent of ev_tstamp type */
1456static ev_tstamp noinline
1457ev_floor (ev_tstamp v)
1458{
1459 /* the choice of shift factor is not terribly important */
1460#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1461 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1462#else
1463 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1464#endif
1465
1466 /* argument too large for an unsigned long? */
1467 if (expect_false (v >= shift))
1468 {
1469 ev_tstamp f;
1470
1471 if (v == v - 1.)
1472 return v; /* very large number */
1473
1474 f = shift * ev_floor (v * (1. / shift));
1475 return f + ev_floor (v - f);
1476 }
1477
1478 /* special treatment for negative args? */
1479 if (expect_false (v < 0.))
1480 {
1481 ev_tstamp f = -ev_floor (-v);
1482
1483 return f - (f == v ? 0 : 1);
1484 }
1485
1486 /* fits into an unsigned long */
1487 return (unsigned long)v;
1488}
1489
1490#endif
1491
1492/*****************************************************************************/
1493
1494#ifdef __linux
1495# include <sys/utsname.h>
1496#endif
1497
1498static unsigned int noinline ecb_cold
1499ev_linux_version (void)
1500{
1501#ifdef __linux
1502 unsigned int v = 0;
1503 struct utsname buf;
1504 int i;
1505 char *p = buf.release;
1506
1507 if (uname (&buf))
1508 return 0;
1509
1510 for (i = 3+1; --i; )
1511 {
1512 unsigned int c = 0;
1513
1514 for (;;)
1515 {
1516 if (*p >= '0' && *p <= '9')
1517 c = c * 10 + *p++ - '0';
1518 else
1519 {
1520 p += *p == '.';
1521 break;
1522 }
1523 }
1524
1525 v = (v << 8) | c;
1526 }
1527
1528 return v;
1529#else
1530 return 0;
1531#endif
1532}
1533
1534/*****************************************************************************/
1535
1536#if EV_AVOID_STDIO
1537static void noinline ecb_cold
1538ev_printerr (const char *msg)
1539{
1540 write (STDERR_FILENO, msg, strlen (msg));
1541}
1542#endif
1543
1544static void (*syserr_cb)(const char *msg) EV_THROW;
1545
1546void ecb_cold
1547ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1548{
1549 syserr_cb = cb;
1550}
1551
1552static void noinline ecb_cold
1553ev_syserr (const char *msg)
1554{
1555 if (!msg)
1556 msg = "(libev) system error";
1557
1558 if (syserr_cb)
1559 syserr_cb (msg);
1560 else
1561 {
1562#if EV_AVOID_STDIO
1563 ev_printerr (msg);
1564 ev_printerr (": ");
1565 ev_printerr (strerror (errno));
1566 ev_printerr ("\n");
1567#else
1568 perror (msg);
1569#endif
1570 abort ();
1571 }
1572}
1573
1574static void *
1575ev_realloc_emul (void *ptr, long size) EV_THROW
1576{
1577 /* some systems, notably openbsd and darwin, fail to properly
1578 * implement realloc (x, 0) (as required by both ansi c-89 and
1579 * the single unix specification, so work around them here.
1580 * recently, also (at least) fedora and debian started breaking it,
1581 * despite documenting it otherwise.
1582 */
1583
1584 if (size)
1585 return realloc (ptr, size);
1586
1587 free (ptr);
1588 return 0;
1589}
1590
1591static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1592
1593void ecb_cold
1594ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1595{
1596 alloc = cb;
1597}
1598
1599inline_speed void *
1600ev_realloc (void *ptr, long size)
1601{
1602 ptr = alloc (ptr, size);
1603
1604 if (!ptr && size)
1605 {
1606#if EV_AVOID_STDIO
1607 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1608#else
1609 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1610#endif
1611 abort ();
1612 }
1613
1614 return ptr;
1615}
1616
1617#define ev_malloc(size) ev_realloc (0, (size))
1618#define ev_free(ptr) ev_realloc ((ptr), 0)
1619
1620/*****************************************************************************/
1621
1622/* set in reify when reification needed */
1623#define EV_ANFD_REIFY 1
1624
1625/* file descriptor info structure */
1626typedef struct
1627{
1628 WL head;
1629 unsigned char events; /* the events watched for */
1630 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1631 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1632 unsigned char unused;
1633#if EV_USE_EPOLL
1634 unsigned int egen; /* generation counter to counter epoll bugs */
1635#endif
1636#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1637 SOCKET handle;
1638#endif
1639#if EV_USE_IOCP
1640 OVERLAPPED or, ow;
1641#endif
1642} ANFD;
1643
1644/* stores the pending event set for a given watcher */
1645typedef struct
1646{
1647 W w;
1648 int events; /* the pending event set for the given watcher */
1649} ANPENDING;
1650
1651#if EV_USE_INOTIFY
1652/* hash table entry per inotify-id */
1653typedef struct
1654{
1655 WL head;
1656} ANFS;
1657#endif
1658
1659/* Heap Entry */
1660#if EV_HEAP_CACHE_AT
1661 /* a heap element */
1662 typedef struct {
1663 ev_tstamp at;
1664 WT w;
1665 } ANHE;
1666
1667 #define ANHE_w(he) (he).w /* access watcher, read-write */
1668 #define ANHE_at(he) (he).at /* access cached at, read-only */
1669 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1670#else
1671 /* a heap element */
1672 typedef WT ANHE;
1673
1674 #define ANHE_w(he) (he)
1675 #define ANHE_at(he) (he)->at
1676 #define ANHE_at_cache(he)
1677#endif
1678
1679#if EV_MULTIPLICITY
1680
1681 struct ev_loop
1682 {
1683 ev_tstamp ev_rt_now;
1684 #define ev_rt_now ((loop)->ev_rt_now)
1685 #define VAR(name,decl) decl;
1686 #include "ev_vars.h"
1687 #undef VAR
1688 };
1689 #include "ev_wrap.h"
1690
1691 static struct ev_loop default_loop_struct;
1692 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1693
1694#else
1695
1696 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1697 #define VAR(name,decl) static decl;
1698 #include "ev_vars.h"
1699 #undef VAR
1700
1701 static int ev_default_loop_ptr;
1702
1703#endif
1704
1705#if EV_FEATURE_API
1706# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1707# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1708# define EV_INVOKE_PENDING invoke_cb (EV_A)
1709#else
1710# define EV_RELEASE_CB (void)0
1711# define EV_ACQUIRE_CB (void)0
1712# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1713#endif
1714
1715#define EVBREAK_RECURSE 0x80
1716
1717/*****************************************************************************/
1718
1719#ifndef EV_HAVE_EV_TIME
56ev_tstamp 1720ev_tstamp
57ev_time (void) 1721ev_time (void) EV_THROW
58{ 1722{
59#if HAVE_REALTIME 1723#if EV_USE_REALTIME
1724 if (expect_true (have_realtime))
1725 {
60 struct timespec ts; 1726 struct timespec ts;
61 clock_gettime (CLOCK_REALTIME, &ts); 1727 clock_gettime (CLOCK_REALTIME, &ts);
62 return ts.tv_sec + ts.tv_nsec * 1e-9; 1728 return ts.tv_sec + ts.tv_nsec * 1e-9;
63#else 1729 }
1730#endif
1731
64 struct timeval tv; 1732 struct timeval tv;
65 gettimeofday (&tv, 0); 1733 gettimeofday (&tv, 0);
66 return tv.tv_sec + tv.tv_usec * 1e-6; 1734 return tv.tv_sec + tv.tv_usec * 1e-6;
67#endif
68} 1735}
1736#endif
69 1737
70static ev_tstamp 1738inline_size ev_tstamp
71get_clock (void) 1739get_clock (void)
72{ 1740{
73#if HAVE_MONOTONIC 1741#if EV_USE_MONOTONIC
74 if (have_monotonic) 1742 if (expect_true (have_monotonic))
75 { 1743 {
76 struct timespec ts; 1744 struct timespec ts;
77 clock_gettime (CLOCK_MONOTONIC, &ts); 1745 clock_gettime (CLOCK_MONOTONIC, &ts);
78 return ts.tv_sec + ts.tv_nsec * 1e-9; 1746 return ts.tv_sec + ts.tv_nsec * 1e-9;
79 } 1747 }
80#endif 1748#endif
81 1749
82 return ev_time (); 1750 return ev_time ();
83} 1751}
84 1752
85#define array_needsize(base,cur,cnt,init) \ 1753#if EV_MULTIPLICITY
86 if ((cnt) > cur) \ 1754ev_tstamp
87 { \ 1755ev_now (EV_P) EV_THROW
88 int newcnt = cur ? cur << 1 : 16; \ 1756{
89 base = realloc (base, sizeof (*base) * (newcnt)); \ 1757 return ev_rt_now;
90 init (base + cur, newcnt - cur); \ 1758}
91 cur = newcnt; \ 1759#endif
1760
1761void
1762ev_sleep (ev_tstamp delay) EV_THROW
1763{
1764 if (delay > 0.)
92 } 1765 {
1766#if EV_USE_NANOSLEEP
1767 struct timespec ts;
1768
1769 EV_TS_SET (ts, delay);
1770 nanosleep (&ts, 0);
1771#elif defined _WIN32
1772 Sleep ((unsigned long)(delay * 1e3));
1773#else
1774 struct timeval tv;
1775
1776 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1777 /* something not guaranteed by newer posix versions, but guaranteed */
1778 /* by older ones */
1779 EV_TV_SET (tv, delay);
1780 select (0, 0, 0, 0, &tv);
1781#endif
1782 }
1783}
93 1784
94/*****************************************************************************/ 1785/*****************************************************************************/
95 1786
96typedef struct 1787#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
97{
98 struct ev_io *head;
99 unsigned char wev, rev; /* want, received event set */
100} ANFD;
101 1788
102static ANFD *anfds; 1789/* find a suitable new size for the given array, */
103static int anfdmax; 1790/* hopefully by rounding to a nice-to-malloc size */
104 1791inline_size int
105static int *fdchanges; 1792array_nextsize (int elem, int cur, int cnt)
106static int fdchangemax, fdchangecnt;
107
108static void
109anfds_init (ANFD *base, int count)
110{ 1793{
111 while (count--) 1794 int ncur = cur + 1;
112 { 1795
113 base->head = 0; 1796 do
114 base->wev = base->rev = EV_NONE; 1797 ncur <<= 1;
115 ++base; 1798 while (cnt > ncur);
1799
1800 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1801 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
116 } 1802 {
117} 1803 ncur *= elem;
118 1804 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
119typedef struct 1805 ncur = ncur - sizeof (void *) * 4;
120{ 1806 ncur /= elem;
121 W w;
122 int events;
123} ANPENDING;
124
125static ANPENDING *pendings;
126static int pendingmax, pendingcnt;
127
128static void
129event (W w, int events)
130{
131 if (w->active)
132 { 1807 }
1808
1809 return ncur;
1810}
1811
1812static void * noinline ecb_cold
1813array_realloc (int elem, void *base, int *cur, int cnt)
1814{
1815 *cur = array_nextsize (elem, *cur, cnt);
1816 return ev_realloc (base, elem * *cur);
1817}
1818
1819#define array_init_zero(base,count) \
1820 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1821
1822#define array_needsize(type,base,cur,cnt,init) \
1823 if (expect_false ((cnt) > (cur))) \
1824 { \
1825 int ecb_unused ocur_ = (cur); \
1826 (base) = (type *)array_realloc \
1827 (sizeof (type), (base), &(cur), (cnt)); \
1828 init ((base) + (ocur_), (cur) - ocur_); \
1829 }
1830
1831#if 0
1832#define array_slim(type,stem) \
1833 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1834 { \
1835 stem ## max = array_roundsize (stem ## cnt >> 1); \
1836 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1837 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1838 }
1839#endif
1840
1841#define array_free(stem, idx) \
1842 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1843
1844/*****************************************************************************/
1845
1846/* dummy callback for pending events */
1847static void noinline
1848pendingcb (EV_P_ ev_prepare *w, int revents)
1849{
1850}
1851
1852void noinline
1853ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1854{
1855 W w_ = (W)w;
1856 int pri = ABSPRI (w_);
1857
1858 if (expect_false (w_->pending))
1859 pendings [pri][w_->pending - 1].events |= revents;
1860 else
1861 {
133 w->pending = ++pendingcnt; 1862 w_->pending = ++pendingcnt [pri];
134 array_needsize (pendings, pendingmax, pendingcnt, ); 1863 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
135 pendings [pendingcnt - 1].w = w; 1864 pendings [pri][w_->pending - 1].w = w_;
136 pendings [pendingcnt - 1].events = events; 1865 pendings [pri][w_->pending - 1].events = revents;
137 } 1866 }
138}
139 1867
140static void 1868 pendingpri = NUMPRI - 1;
1869}
1870
1871inline_speed void
1872feed_reverse (EV_P_ W w)
1873{
1874 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1875 rfeeds [rfeedcnt++] = w;
1876}
1877
1878inline_size void
1879feed_reverse_done (EV_P_ int revents)
1880{
1881 do
1882 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1883 while (rfeedcnt);
1884}
1885
1886inline_speed void
1887queue_events (EV_P_ W *events, int eventcnt, int type)
1888{
1889 int i;
1890
1891 for (i = 0; i < eventcnt; ++i)
1892 ev_feed_event (EV_A_ events [i], type);
1893}
1894
1895/*****************************************************************************/
1896
1897inline_speed void
141fd_event (int fd, int events) 1898fd_event_nocheck (EV_P_ int fd, int revents)
142{ 1899{
143 ANFD *anfd = anfds + fd; 1900 ANFD *anfd = anfds + fd;
144 struct ev_io *w; 1901 ev_io *w;
145 1902
146 for (w = anfd->head; w; w = w->next) 1903 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
147 { 1904 {
148 int ev = w->events & events; 1905 int ev = w->events & revents;
149 1906
150 if (ev) 1907 if (ev)
151 event ((W)w, ev); 1908 ev_feed_event (EV_A_ (W)w, ev);
152 } 1909 }
153} 1910}
154 1911
155static void 1912/* do not submit kernel events for fds that have reify set */
156queue_events (W *events, int eventcnt, int type) 1913/* because that means they changed while we were polling for new events */
1914inline_speed void
1915fd_event (EV_P_ int fd, int revents)
1916{
1917 ANFD *anfd = anfds + fd;
1918
1919 if (expect_true (!anfd->reify))
1920 fd_event_nocheck (EV_A_ fd, revents);
1921}
1922
1923void
1924ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1925{
1926 if (fd >= 0 && fd < anfdmax)
1927 fd_event_nocheck (EV_A_ fd, revents);
1928}
1929
1930/* make sure the external fd watch events are in-sync */
1931/* with the kernel/libev internal state */
1932inline_size void
1933fd_reify (EV_P)
157{ 1934{
158 int i; 1935 int i;
159 1936
160 for (i = 0; i < eventcnt; ++i) 1937#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
161 event (events [i], type);
162}
163
164/*****************************************************************************/
165
166static struct ev_timer **timers;
167static int timermax, timercnt;
168
169static struct ev_periodic **periodics;
170static int periodicmax, periodiccnt;
171
172static void
173upheap (WT *timers, int k)
174{
175 WT w = timers [k];
176
177 while (k && timers [k >> 1]->at > w->at)
178 {
179 timers [k] = timers [k >> 1];
180 timers [k]->active = k + 1;
181 k >>= 1;
182 }
183
184 timers [k] = w;
185 timers [k]->active = k + 1;
186
187}
188
189static void
190downheap (WT *timers, int N, int k)
191{
192 WT w = timers [k];
193
194 while (k < (N >> 1))
195 {
196 int j = k << 1;
197
198 if (j + 1 < N && timers [j]->at > timers [j + 1]->at)
199 ++j;
200
201 if (w->at <= timers [j]->at)
202 break;
203
204 timers [k] = timers [j];
205 timers [k]->active = k + 1;
206 k = j;
207 }
208
209 timers [k] = w;
210 timers [k]->active = k + 1;
211}
212
213/*****************************************************************************/
214
215typedef struct
216{
217 struct ev_signal *head;
218 sig_atomic_t gotsig;
219} ANSIG;
220
221static ANSIG *signals;
222static int signalmax;
223
224static int sigpipe [2];
225static sig_atomic_t gotsig;
226static struct ev_io sigev;
227
228static void
229signals_init (ANSIG *base, int count)
230{
231 while (count--)
232 {
233 base->head = 0;
234 base->gotsig = 0;
235 ++base;
236 }
237}
238
239static void
240sighandler (int signum)
241{
242 signals [signum - 1].gotsig = 1;
243
244 if (!gotsig)
245 {
246 gotsig = 1;
247 write (sigpipe [1], &gotsig, 1);
248 }
249}
250
251static void
252sigcb (struct ev_io *iow, int revents)
253{
254 struct ev_signal *w;
255 int sig;
256
257 gotsig = 0;
258 read (sigpipe [0], &revents, 1);
259
260 for (sig = signalmax; sig--; )
261 if (signals [sig].gotsig)
262 {
263 signals [sig].gotsig = 0;
264
265 for (w = signals [sig].head; w; w = w->next)
266 event ((W)w, EV_SIGNAL);
267 }
268}
269
270static void
271siginit (void)
272{
273 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
274 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
275
276 /* rather than sort out wether we really need nb, set it */
277 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
278 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
279
280 evio_set (&sigev, sigpipe [0], EV_READ);
281 evio_start (&sigev);
282}
283
284/*****************************************************************************/
285
286static struct ev_idle **idles;
287static int idlemax, idlecnt;
288
289static struct ev_check **checks;
290static int checkmax, checkcnt;
291
292/*****************************************************************************/
293
294#if HAVE_EPOLL
295# include "ev_epoll.c"
296#endif
297#if HAVE_SELECT
298# include "ev_select.c"
299#endif
300
301int ev_init (int flags)
302{
303#if HAVE_MONOTONIC
304 {
305 struct timespec ts;
306 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
307 have_monotonic = 1;
308 }
309#endif
310
311 ev_now = ev_time ();
312 now = get_clock ();
313 diff = ev_now - now;
314
315 if (pipe (sigpipe))
316 return 0;
317
318 ev_method = EVMETHOD_NONE;
319#if HAVE_EPOLL
320 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
321#endif
322#if HAVE_SELECT
323 if (ev_method == EVMETHOD_NONE) select_init (flags);
324#endif
325
326 if (ev_method)
327 {
328 evw_init (&sigev, sigcb);
329 siginit ();
330 }
331
332 return ev_method;
333}
334
335/*****************************************************************************/
336
337void ev_prefork (void)
338{
339 /* nop */
340}
341
342void ev_postfork_parent (void)
343{
344 /* nop */
345}
346
347void ev_postfork_child (void)
348{
349#if HAVE_EPOLL
350 if (ev_method == EVMETHOD_EPOLL)
351 epoll_postfork_child ();
352#endif
353
354 evio_stop (&sigev);
355 close (sigpipe [0]);
356 close (sigpipe [1]);
357 pipe (sigpipe);
358 siginit ();
359}
360
361/*****************************************************************************/
362
363static void
364fd_reify (void)
365{
366 int i;
367
368 for (i = 0; i < fdchangecnt; ++i) 1938 for (i = 0; i < fdchangecnt; ++i)
369 { 1939 {
370 int fd = fdchanges [i]; 1940 int fd = fdchanges [i];
371 ANFD *anfd = anfds + fd; 1941 ANFD *anfd = anfds + fd;
372 struct ev_io *w;
373 1942
374 int wev = 0; 1943 if (anfd->reify & EV__IOFDSET && anfd->head)
375
376 for (w = anfd->head; w; w = w->next)
377 wev |= w->events;
378
379 if (anfd->wev != wev)
380 { 1944 {
381 method_modify (fd, anfd->wev, wev); 1945 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1946
1947 if (handle != anfd->handle)
1948 {
1949 unsigned long arg;
1950
1951 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1952
1953 /* handle changed, but fd didn't - we need to do it in two steps */
1954 backend_modify (EV_A_ fd, anfd->events, 0);
382 anfd->wev = wev; 1955 anfd->events = 0;
1956 anfd->handle = handle;
1957 }
383 } 1958 }
384 } 1959 }
1960#endif
1961
1962 for (i = 0; i < fdchangecnt; ++i)
1963 {
1964 int fd = fdchanges [i];
1965 ANFD *anfd = anfds + fd;
1966 ev_io *w;
1967
1968 unsigned char o_events = anfd->events;
1969 unsigned char o_reify = anfd->reify;
1970
1971 anfd->reify = 0;
1972
1973 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1974 {
1975 anfd->events = 0;
1976
1977 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1978 anfd->events |= (unsigned char)w->events;
1979
1980 if (o_events != anfd->events)
1981 o_reify = EV__IOFDSET; /* actually |= */
1982 }
1983
1984 if (o_reify & EV__IOFDSET)
1985 backend_modify (EV_A_ fd, o_events, anfd->events);
1986 }
385 1987
386 fdchangecnt = 0; 1988 fdchangecnt = 0;
387} 1989}
388 1990
1991/* something about the given fd changed */
1992inline_size void
1993fd_change (EV_P_ int fd, int flags)
1994{
1995 unsigned char reify = anfds [fd].reify;
1996 anfds [fd].reify |= flags;
1997
1998 if (expect_true (!reify))
1999 {
2000 ++fdchangecnt;
2001 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
2002 fdchanges [fdchangecnt - 1] = fd;
2003 }
2004}
2005
2006/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2007inline_speed void ecb_cold
2008fd_kill (EV_P_ int fd)
2009{
2010 ev_io *w;
2011
2012 while ((w = (ev_io *)anfds [fd].head))
2013 {
2014 ev_io_stop (EV_A_ w);
2015 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2016 }
2017}
2018
2019/* check whether the given fd is actually valid, for error recovery */
2020inline_size int ecb_cold
2021fd_valid (int fd)
2022{
2023#ifdef _WIN32
2024 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2025#else
2026 return fcntl (fd, F_GETFD) != -1;
2027#endif
2028}
2029
2030/* called on EBADF to verify fds */
2031static void noinline ecb_cold
2032fd_ebadf (EV_P)
2033{
2034 int fd;
2035
2036 for (fd = 0; fd < anfdmax; ++fd)
2037 if (anfds [fd].events)
2038 if (!fd_valid (fd) && errno == EBADF)
2039 fd_kill (EV_A_ fd);
2040}
2041
2042/* called on ENOMEM in select/poll to kill some fds and retry */
2043static void noinline ecb_cold
2044fd_enomem (EV_P)
2045{
2046 int fd;
2047
2048 for (fd = anfdmax; fd--; )
2049 if (anfds [fd].events)
2050 {
2051 fd_kill (EV_A_ fd);
2052 break;
2053 }
2054}
2055
2056/* usually called after fork if backend needs to re-arm all fds from scratch */
2057static void noinline
2058fd_rearm_all (EV_P)
2059{
2060 int fd;
2061
2062 for (fd = 0; fd < anfdmax; ++fd)
2063 if (anfds [fd].events)
2064 {
2065 anfds [fd].events = 0;
2066 anfds [fd].emask = 0;
2067 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2068 }
2069}
2070
2071/* used to prepare libev internal fd's */
2072/* this is not fork-safe */
2073inline_speed void
2074fd_intern (int fd)
2075{
2076#ifdef _WIN32
2077 unsigned long arg = 1;
2078 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2079#else
2080 fcntl (fd, F_SETFD, FD_CLOEXEC);
2081 fcntl (fd, F_SETFL, O_NONBLOCK);
2082#endif
2083}
2084
2085/*****************************************************************************/
2086
2087/*
2088 * the heap functions want a real array index. array index 0 is guaranteed to not
2089 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2090 * the branching factor of the d-tree.
2091 */
2092
2093/*
2094 * at the moment we allow libev the luxury of two heaps,
2095 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2096 * which is more cache-efficient.
2097 * the difference is about 5% with 50000+ watchers.
2098 */
2099#if EV_USE_4HEAP
2100
2101#define DHEAP 4
2102#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2103#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2104#define UPHEAP_DONE(p,k) ((p) == (k))
2105
2106/* away from the root */
2107inline_speed void
2108downheap (ANHE *heap, int N, int k)
2109{
2110 ANHE he = heap [k];
2111 ANHE *E = heap + N + HEAP0;
2112
2113 for (;;)
2114 {
2115 ev_tstamp minat;
2116 ANHE *minpos;
2117 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2118
2119 /* find minimum child */
2120 if (expect_true (pos + DHEAP - 1 < E))
2121 {
2122 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2123 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2124 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2125 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2126 }
2127 else if (pos < E)
2128 {
2129 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2130 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2131 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2132 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2133 }
2134 else
2135 break;
2136
2137 if (ANHE_at (he) <= minat)
2138 break;
2139
2140 heap [k] = *minpos;
2141 ev_active (ANHE_w (*minpos)) = k;
2142
2143 k = minpos - heap;
2144 }
2145
2146 heap [k] = he;
2147 ev_active (ANHE_w (he)) = k;
2148}
2149
2150#else /* 4HEAP */
2151
2152#define HEAP0 1
2153#define HPARENT(k) ((k) >> 1)
2154#define UPHEAP_DONE(p,k) (!(p))
2155
2156/* away from the root */
2157inline_speed void
2158downheap (ANHE *heap, int N, int k)
2159{
2160 ANHE he = heap [k];
2161
2162 for (;;)
2163 {
2164 int c = k << 1;
2165
2166 if (c >= N + HEAP0)
2167 break;
2168
2169 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2170 ? 1 : 0;
2171
2172 if (ANHE_at (he) <= ANHE_at (heap [c]))
2173 break;
2174
2175 heap [k] = heap [c];
2176 ev_active (ANHE_w (heap [k])) = k;
2177
2178 k = c;
2179 }
2180
2181 heap [k] = he;
2182 ev_active (ANHE_w (he)) = k;
2183}
2184#endif
2185
2186/* towards the root */
2187inline_speed void
2188upheap (ANHE *heap, int k)
2189{
2190 ANHE he = heap [k];
2191
2192 for (;;)
2193 {
2194 int p = HPARENT (k);
2195
2196 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2197 break;
2198
2199 heap [k] = heap [p];
2200 ev_active (ANHE_w (heap [k])) = k;
2201 k = p;
2202 }
2203
2204 heap [k] = he;
2205 ev_active (ANHE_w (he)) = k;
2206}
2207
2208/* move an element suitably so it is in a correct place */
2209inline_size void
2210adjustheap (ANHE *heap, int N, int k)
2211{
2212 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2213 upheap (heap, k);
2214 else
2215 downheap (heap, N, k);
2216}
2217
2218/* rebuild the heap: this function is used only once and executed rarely */
2219inline_size void
2220reheap (ANHE *heap, int N)
2221{
2222 int i;
2223
2224 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2225 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2226 for (i = 0; i < N; ++i)
2227 upheap (heap, i + HEAP0);
2228}
2229
2230/*****************************************************************************/
2231
2232/* associate signal watchers to a signal signal */
2233typedef struct
2234{
2235 EV_ATOMIC_T pending;
2236#if EV_MULTIPLICITY
2237 EV_P;
2238#endif
2239 WL head;
2240} ANSIG;
2241
2242static ANSIG signals [EV_NSIG - 1];
2243
2244/*****************************************************************************/
2245
2246#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2247
2248static void noinline ecb_cold
2249evpipe_init (EV_P)
2250{
2251 if (!ev_is_active (&pipe_w))
2252 {
2253 int fds [2];
2254
2255# if EV_USE_EVENTFD
2256 fds [0] = -1;
2257 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2258 if (fds [1] < 0 && errno == EINVAL)
2259 fds [1] = eventfd (0, 0);
2260
2261 if (fds [1] < 0)
2262# endif
2263 {
2264 while (pipe (fds))
2265 ev_syserr ("(libev) error creating signal/async pipe");
2266
2267 fd_intern (fds [0]);
2268 }
2269
2270 evpipe [0] = fds [0];
2271
2272 if (evpipe [1] < 0)
2273 evpipe [1] = fds [1]; /* first call, set write fd */
2274 else
2275 {
2276 /* on subsequent calls, do not change evpipe [1] */
2277 /* so that evpipe_write can always rely on its value. */
2278 /* this branch does not do anything sensible on windows, */
2279 /* so must not be executed on windows */
2280
2281 dup2 (fds [1], evpipe [1]);
2282 close (fds [1]);
2283 }
2284
2285 fd_intern (evpipe [1]);
2286
2287 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2288 ev_io_start (EV_A_ &pipe_w);
2289 ev_unref (EV_A); /* watcher should not keep loop alive */
2290 }
2291}
2292
2293inline_speed void
2294evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2295{
2296 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2297
2298 if (expect_true (*flag))
2299 return;
2300
2301 *flag = 1;
2302 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2303
2304 pipe_write_skipped = 1;
2305
2306 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2307
2308 if (pipe_write_wanted)
2309 {
2310 int old_errno;
2311
2312 pipe_write_skipped = 0;
2313 ECB_MEMORY_FENCE_RELEASE;
2314
2315 old_errno = errno; /* save errno because write will clobber it */
2316
2317#if EV_USE_EVENTFD
2318 if (evpipe [0] < 0)
2319 {
2320 uint64_t counter = 1;
2321 write (evpipe [1], &counter, sizeof (uint64_t));
2322 }
2323 else
2324#endif
2325 {
2326#ifdef _WIN32
2327 WSABUF buf;
2328 DWORD sent;
2329 buf.buf = &buf;
2330 buf.len = 1;
2331 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2332#else
2333 write (evpipe [1], &(evpipe [1]), 1);
2334#endif
2335 }
2336
2337 errno = old_errno;
2338 }
2339}
2340
2341/* called whenever the libev signal pipe */
2342/* got some events (signal, async) */
389static void 2343static void
390call_pending () 2344pipecb (EV_P_ ev_io *iow, int revents)
391{ 2345{
392 int i; 2346 int i;
393 2347
394 for (i = 0; i < pendingcnt; ++i) 2348 if (revents & EV_READ)
395 { 2349 {
396 ANPENDING *p = pendings + i; 2350#if EV_USE_EVENTFD
397 2351 if (evpipe [0] < 0)
398 if (p->w)
399 { 2352 {
2353 uint64_t counter;
2354 read (evpipe [1], &counter, sizeof (uint64_t));
2355 }
2356 else
2357#endif
2358 {
2359 char dummy[4];
2360#ifdef _WIN32
2361 WSABUF buf;
2362 DWORD recvd;
2363 DWORD flags = 0;
2364 buf.buf = dummy;
2365 buf.len = sizeof (dummy);
2366 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2367#else
2368 read (evpipe [0], &dummy, sizeof (dummy));
2369#endif
2370 }
2371 }
2372
2373 pipe_write_skipped = 0;
2374
2375 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2376
2377#if EV_SIGNAL_ENABLE
2378 if (sig_pending)
2379 {
2380 sig_pending = 0;
2381
2382 ECB_MEMORY_FENCE;
2383
2384 for (i = EV_NSIG - 1; i--; )
2385 if (expect_false (signals [i].pending))
2386 ev_feed_signal_event (EV_A_ i + 1);
2387 }
2388#endif
2389
2390#if EV_ASYNC_ENABLE
2391 if (async_pending)
2392 {
2393 async_pending = 0;
2394
2395 ECB_MEMORY_FENCE;
2396
2397 for (i = asynccnt; i--; )
2398 if (asyncs [i]->sent)
2399 {
2400 asyncs [i]->sent = 0;
2401 ECB_MEMORY_FENCE_RELEASE;
2402 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2403 }
2404 }
2405#endif
2406}
2407
2408/*****************************************************************************/
2409
2410void
2411ev_feed_signal (int signum) EV_THROW
2412{
2413#if EV_MULTIPLICITY
2414 EV_P;
2415 ECB_MEMORY_FENCE_ACQUIRE;
2416 EV_A = signals [signum - 1].loop;
2417
2418 if (!EV_A)
2419 return;
2420#endif
2421
2422 signals [signum - 1].pending = 1;
2423 evpipe_write (EV_A_ &sig_pending);
2424}
2425
2426static void
2427ev_sighandler (int signum)
2428{
2429#ifdef _WIN32
2430 signal (signum, ev_sighandler);
2431#endif
2432
2433 ev_feed_signal (signum);
2434}
2435
2436void noinline
2437ev_feed_signal_event (EV_P_ int signum) EV_THROW
2438{
2439 WL w;
2440
2441 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2442 return;
2443
2444 --signum;
2445
2446#if EV_MULTIPLICITY
2447 /* it is permissible to try to feed a signal to the wrong loop */
2448 /* or, likely more useful, feeding a signal nobody is waiting for */
2449
2450 if (expect_false (signals [signum].loop != EV_A))
2451 return;
2452#endif
2453
2454 signals [signum].pending = 0;
2455 ECB_MEMORY_FENCE_RELEASE;
2456
2457 for (w = signals [signum].head; w; w = w->next)
2458 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2459}
2460
2461#if EV_USE_SIGNALFD
2462static void
2463sigfdcb (EV_P_ ev_io *iow, int revents)
2464{
2465 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2466
2467 for (;;)
2468 {
2469 ssize_t res = read (sigfd, si, sizeof (si));
2470
2471 /* not ISO-C, as res might be -1, but works with SuS */
2472 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2473 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2474
2475 if (res < (ssize_t)sizeof (si))
2476 break;
2477 }
2478}
2479#endif
2480
2481#endif
2482
2483/*****************************************************************************/
2484
2485#if EV_CHILD_ENABLE
2486static WL childs [EV_PID_HASHSIZE];
2487
2488static ev_signal childev;
2489
2490#ifndef WIFCONTINUED
2491# define WIFCONTINUED(status) 0
2492#endif
2493
2494/* handle a single child status event */
2495inline_speed void
2496child_reap (EV_P_ int chain, int pid, int status)
2497{
2498 ev_child *w;
2499 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2500
2501 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2502 {
2503 if ((w->pid == pid || !w->pid)
2504 && (!traced || (w->flags & 1)))
2505 {
2506 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2507 w->rpid = pid;
2508 w->rstatus = status;
2509 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2510 }
2511 }
2512}
2513
2514#ifndef WCONTINUED
2515# define WCONTINUED 0
2516#endif
2517
2518/* called on sigchld etc., calls waitpid */
2519static void
2520childcb (EV_P_ ev_signal *sw, int revents)
2521{
2522 int pid, status;
2523
2524 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2525 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2526 if (!WCONTINUED
2527 || errno != EINVAL
2528 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2529 return;
2530
2531 /* make sure we are called again until all children have been reaped */
2532 /* we need to do it this way so that the callback gets called before we continue */
2533 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2534
2535 child_reap (EV_A_ pid, pid, status);
2536 if ((EV_PID_HASHSIZE) > 1)
2537 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2538}
2539
2540#endif
2541
2542/*****************************************************************************/
2543
2544#if EV_USE_IOCP
2545# include "ev_iocp.c"
2546#endif
2547#if EV_USE_PORT
2548# include "ev_port.c"
2549#endif
2550#if EV_USE_KQUEUE
2551# include "ev_kqueue.c"
2552#endif
2553#if EV_USE_EPOLL
2554# include "ev_epoll.c"
2555#endif
2556#if EV_USE_POLL
2557# include "ev_poll.c"
2558#endif
2559#if EV_USE_SELECT
2560# include "ev_select.c"
2561#endif
2562
2563int ecb_cold
2564ev_version_major (void) EV_THROW
2565{
2566 return EV_VERSION_MAJOR;
2567}
2568
2569int ecb_cold
2570ev_version_minor (void) EV_THROW
2571{
2572 return EV_VERSION_MINOR;
2573}
2574
2575/* return true if we are running with elevated privileges and should ignore env variables */
2576int inline_size ecb_cold
2577enable_secure (void)
2578{
2579#ifdef _WIN32
2580 return 0;
2581#else
2582 return getuid () != geteuid ()
2583 || getgid () != getegid ();
2584#endif
2585}
2586
2587unsigned int ecb_cold
2588ev_supported_backends (void) EV_THROW
2589{
2590 unsigned int flags = 0;
2591
2592 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2593 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2594 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2595 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2596 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2597
2598 return flags;
2599}
2600
2601unsigned int ecb_cold
2602ev_recommended_backends (void) EV_THROW
2603{
2604 unsigned int flags = ev_supported_backends ();
2605
2606#ifndef __NetBSD__
2607 /* kqueue is borked on everything but netbsd apparently */
2608 /* it usually doesn't work correctly on anything but sockets and pipes */
2609 flags &= ~EVBACKEND_KQUEUE;
2610#endif
2611#ifdef __APPLE__
2612 /* only select works correctly on that "unix-certified" platform */
2613 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2614 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2615#endif
2616#ifdef __FreeBSD__
2617 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2618#endif
2619
2620 return flags;
2621}
2622
2623unsigned int ecb_cold
2624ev_embeddable_backends (void) EV_THROW
2625{
2626 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2627
2628 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2629 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2630 flags &= ~EVBACKEND_EPOLL;
2631
2632 return flags;
2633}
2634
2635unsigned int
2636ev_backend (EV_P) EV_THROW
2637{
2638 return backend;
2639}
2640
2641#if EV_FEATURE_API
2642unsigned int
2643ev_iteration (EV_P) EV_THROW
2644{
2645 return loop_count;
2646}
2647
2648unsigned int
2649ev_depth (EV_P) EV_THROW
2650{
2651 return loop_depth;
2652}
2653
2654void
2655ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2656{
2657 io_blocktime = interval;
2658}
2659
2660void
2661ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2662{
2663 timeout_blocktime = interval;
2664}
2665
2666void
2667ev_set_userdata (EV_P_ void *data) EV_THROW
2668{
2669 userdata = data;
2670}
2671
2672void *
2673ev_userdata (EV_P) EV_THROW
2674{
2675 return userdata;
2676}
2677
2678void
2679ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2680{
2681 invoke_cb = invoke_pending_cb;
2682}
2683
2684void
2685ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2686{
2687 release_cb = release;
2688 acquire_cb = acquire;
2689}
2690#endif
2691
2692/* initialise a loop structure, must be zero-initialised */
2693static void noinline ecb_cold
2694loop_init (EV_P_ unsigned int flags) EV_THROW
2695{
2696 if (!backend)
2697 {
2698 origflags = flags;
2699
2700#if EV_USE_REALTIME
2701 if (!have_realtime)
2702 {
2703 struct timespec ts;
2704
2705 if (!clock_gettime (CLOCK_REALTIME, &ts))
2706 have_realtime = 1;
2707 }
2708#endif
2709
2710#if EV_USE_MONOTONIC
2711 if (!have_monotonic)
2712 {
2713 struct timespec ts;
2714
2715 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2716 have_monotonic = 1;
2717 }
2718#endif
2719
2720 /* pid check not overridable via env */
2721#ifndef _WIN32
2722 if (flags & EVFLAG_FORKCHECK)
2723 curpid = getpid ();
2724#endif
2725
2726 if (!(flags & EVFLAG_NOENV)
2727 && !enable_secure ()
2728 && getenv ("LIBEV_FLAGS"))
2729 flags = atoi (getenv ("LIBEV_FLAGS"));
2730
2731 ev_rt_now = ev_time ();
2732 mn_now = get_clock ();
2733 now_floor = mn_now;
2734 rtmn_diff = ev_rt_now - mn_now;
2735#if EV_FEATURE_API
2736 invoke_cb = ev_invoke_pending;
2737#endif
2738
2739 io_blocktime = 0.;
2740 timeout_blocktime = 0.;
2741 backend = 0;
2742 backend_fd = -1;
2743 sig_pending = 0;
2744#if EV_ASYNC_ENABLE
2745 async_pending = 0;
2746#endif
2747 pipe_write_skipped = 0;
2748 pipe_write_wanted = 0;
2749 evpipe [0] = -1;
2750 evpipe [1] = -1;
2751#if EV_USE_INOTIFY
2752 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2753#endif
2754#if EV_USE_SIGNALFD
2755 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2756#endif
2757
2758 if (!(flags & EVBACKEND_MASK))
2759 flags |= ev_recommended_backends ();
2760
2761#if EV_USE_IOCP
2762 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2763#endif
2764#if EV_USE_PORT
2765 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2766#endif
2767#if EV_USE_KQUEUE
2768 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2769#endif
2770#if EV_USE_EPOLL
2771 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2772#endif
2773#if EV_USE_POLL
2774 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2775#endif
2776#if EV_USE_SELECT
2777 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2778#endif
2779
2780 ev_prepare_init (&pending_w, pendingcb);
2781
2782#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2783 ev_init (&pipe_w, pipecb);
2784 ev_set_priority (&pipe_w, EV_MAXPRI);
2785#endif
2786 }
2787}
2788
2789/* free up a loop structure */
2790void ecb_cold
2791ev_loop_destroy (EV_P)
2792{
2793 int i;
2794
2795#if EV_MULTIPLICITY
2796 /* mimic free (0) */
2797 if (!EV_A)
2798 return;
2799#endif
2800
2801#if EV_CLEANUP_ENABLE
2802 /* queue cleanup watchers (and execute them) */
2803 if (expect_false (cleanupcnt))
2804 {
2805 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2806 EV_INVOKE_PENDING;
2807 }
2808#endif
2809
2810#if EV_CHILD_ENABLE
2811 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2812 {
2813 ev_ref (EV_A); /* child watcher */
2814 ev_signal_stop (EV_A_ &childev);
2815 }
2816#endif
2817
2818 if (ev_is_active (&pipe_w))
2819 {
2820 /*ev_ref (EV_A);*/
2821 /*ev_io_stop (EV_A_ &pipe_w);*/
2822
2823 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2824 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2825 }
2826
2827#if EV_USE_SIGNALFD
2828 if (ev_is_active (&sigfd_w))
2829 close (sigfd);
2830#endif
2831
2832#if EV_USE_INOTIFY
2833 if (fs_fd >= 0)
2834 close (fs_fd);
2835#endif
2836
2837 if (backend_fd >= 0)
2838 close (backend_fd);
2839
2840#if EV_USE_IOCP
2841 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2842#endif
2843#if EV_USE_PORT
2844 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2845#endif
2846#if EV_USE_KQUEUE
2847 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2848#endif
2849#if EV_USE_EPOLL
2850 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2851#endif
2852#if EV_USE_POLL
2853 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2854#endif
2855#if EV_USE_SELECT
2856 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2857#endif
2858
2859 for (i = NUMPRI; i--; )
2860 {
2861 array_free (pending, [i]);
2862#if EV_IDLE_ENABLE
2863 array_free (idle, [i]);
2864#endif
2865 }
2866
2867 ev_free (anfds); anfds = 0; anfdmax = 0;
2868
2869 /* have to use the microsoft-never-gets-it-right macro */
2870 array_free (rfeed, EMPTY);
2871 array_free (fdchange, EMPTY);
2872 array_free (timer, EMPTY);
2873#if EV_PERIODIC_ENABLE
2874 array_free (periodic, EMPTY);
2875#endif
2876#if EV_FORK_ENABLE
2877 array_free (fork, EMPTY);
2878#endif
2879#if EV_CLEANUP_ENABLE
2880 array_free (cleanup, EMPTY);
2881#endif
2882 array_free (prepare, EMPTY);
2883 array_free (check, EMPTY);
2884#if EV_ASYNC_ENABLE
2885 array_free (async, EMPTY);
2886#endif
2887
2888 backend = 0;
2889
2890#if EV_MULTIPLICITY
2891 if (ev_is_default_loop (EV_A))
2892#endif
2893 ev_default_loop_ptr = 0;
2894#if EV_MULTIPLICITY
2895 else
2896 ev_free (EV_A);
2897#endif
2898}
2899
2900#if EV_USE_INOTIFY
2901inline_size void infy_fork (EV_P);
2902#endif
2903
2904inline_size void
2905loop_fork (EV_P)
2906{
2907#if EV_USE_PORT
2908 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2909#endif
2910#if EV_USE_KQUEUE
2911 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2912#endif
2913#if EV_USE_EPOLL
2914 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2915#endif
2916#if EV_USE_INOTIFY
2917 infy_fork (EV_A);
2918#endif
2919
2920#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2921 if (ev_is_active (&pipe_w) && postfork != 2)
2922 {
2923 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2924
2925 ev_ref (EV_A);
2926 ev_io_stop (EV_A_ &pipe_w);
2927
2928 if (evpipe [0] >= 0)
2929 EV_WIN32_CLOSE_FD (evpipe [0]);
2930
2931 evpipe_init (EV_A);
2932 /* iterate over everything, in case we missed something before */
2933 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2934 }
2935#endif
2936
2937 postfork = 0;
2938}
2939
2940#if EV_MULTIPLICITY
2941
2942struct ev_loop * ecb_cold
2943ev_loop_new (unsigned int flags) EV_THROW
2944{
2945 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2946
2947 memset (EV_A, 0, sizeof (struct ev_loop));
2948 loop_init (EV_A_ flags);
2949
2950 if (ev_backend (EV_A))
2951 return EV_A;
2952
2953 ev_free (EV_A);
2954 return 0;
2955}
2956
2957#endif /* multiplicity */
2958
2959#if EV_VERIFY
2960static void noinline ecb_cold
2961verify_watcher (EV_P_ W w)
2962{
2963 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2964
2965 if (w->pending)
2966 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2967}
2968
2969static void noinline ecb_cold
2970verify_heap (EV_P_ ANHE *heap, int N)
2971{
2972 int i;
2973
2974 for (i = HEAP0; i < N + HEAP0; ++i)
2975 {
2976 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2977 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2978 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2979
2980 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2981 }
2982}
2983
2984static void noinline ecb_cold
2985array_verify (EV_P_ W *ws, int cnt)
2986{
2987 while (cnt--)
2988 {
2989 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2990 verify_watcher (EV_A_ ws [cnt]);
2991 }
2992}
2993#endif
2994
2995#if EV_FEATURE_API
2996void ecb_cold
2997ev_verify (EV_P) EV_THROW
2998{
2999#if EV_VERIFY
3000 int i;
3001 WL w, w2;
3002
3003 assert (activecnt >= -1);
3004
3005 assert (fdchangemax >= fdchangecnt);
3006 for (i = 0; i < fdchangecnt; ++i)
3007 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3008
3009 assert (anfdmax >= 0);
3010 for (i = 0; i < anfdmax; ++i)
3011 {
3012 int j = 0;
3013
3014 for (w = w2 = anfds [i].head; w; w = w->next)
3015 {
3016 verify_watcher (EV_A_ (W)w);
3017
3018 if (j++ & 1)
3019 {
3020 assert (("libev: io watcher list contains a loop", w != w2));
3021 w2 = w2->next;
3022 }
3023
3024 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3025 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3026 }
3027 }
3028
3029 assert (timermax >= timercnt);
3030 verify_heap (EV_A_ timers, timercnt);
3031
3032#if EV_PERIODIC_ENABLE
3033 assert (periodicmax >= periodiccnt);
3034 verify_heap (EV_A_ periodics, periodiccnt);
3035#endif
3036
3037 for (i = NUMPRI; i--; )
3038 {
3039 assert (pendingmax [i] >= pendingcnt [i]);
3040#if EV_IDLE_ENABLE
3041 assert (idleall >= 0);
3042 assert (idlemax [i] >= idlecnt [i]);
3043 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3044#endif
3045 }
3046
3047#if EV_FORK_ENABLE
3048 assert (forkmax >= forkcnt);
3049 array_verify (EV_A_ (W *)forks, forkcnt);
3050#endif
3051
3052#if EV_CLEANUP_ENABLE
3053 assert (cleanupmax >= cleanupcnt);
3054 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3055#endif
3056
3057#if EV_ASYNC_ENABLE
3058 assert (asyncmax >= asynccnt);
3059 array_verify (EV_A_ (W *)asyncs, asynccnt);
3060#endif
3061
3062#if EV_PREPARE_ENABLE
3063 assert (preparemax >= preparecnt);
3064 array_verify (EV_A_ (W *)prepares, preparecnt);
3065#endif
3066
3067#if EV_CHECK_ENABLE
3068 assert (checkmax >= checkcnt);
3069 array_verify (EV_A_ (W *)checks, checkcnt);
3070#endif
3071
3072# if 0
3073#if EV_CHILD_ENABLE
3074 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3075 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3076#endif
3077# endif
3078#endif
3079}
3080#endif
3081
3082#if EV_MULTIPLICITY
3083struct ev_loop * ecb_cold
3084#else
3085int
3086#endif
3087ev_default_loop (unsigned int flags) EV_THROW
3088{
3089 if (!ev_default_loop_ptr)
3090 {
3091#if EV_MULTIPLICITY
3092 EV_P = ev_default_loop_ptr = &default_loop_struct;
3093#else
3094 ev_default_loop_ptr = 1;
3095#endif
3096
3097 loop_init (EV_A_ flags);
3098
3099 if (ev_backend (EV_A))
3100 {
3101#if EV_CHILD_ENABLE
3102 ev_signal_init (&childev, childcb, SIGCHLD);
3103 ev_set_priority (&childev, EV_MAXPRI);
3104 ev_signal_start (EV_A_ &childev);
3105 ev_unref (EV_A); /* child watcher should not keep loop alive */
3106#endif
3107 }
3108 else
3109 ev_default_loop_ptr = 0;
3110 }
3111
3112 return ev_default_loop_ptr;
3113}
3114
3115void
3116ev_loop_fork (EV_P) EV_THROW
3117{
3118 postfork = 1;
3119}
3120
3121/*****************************************************************************/
3122
3123void
3124ev_invoke (EV_P_ void *w, int revents)
3125{
3126 EV_CB_INVOKE ((W)w, revents);
3127}
3128
3129unsigned int
3130ev_pending_count (EV_P) EV_THROW
3131{
3132 int pri;
3133 unsigned int count = 0;
3134
3135 for (pri = NUMPRI; pri--; )
3136 count += pendingcnt [pri];
3137
3138 return count;
3139}
3140
3141void noinline
3142ev_invoke_pending (EV_P)
3143{
3144 pendingpri = NUMPRI;
3145
3146 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3147 {
3148 --pendingpri;
3149
3150 while (pendingcnt [pendingpri])
3151 {
3152 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3153
400 p->w->pending = 0; 3154 p->w->pending = 0;
401 p->w->cb (p->w, p->events); 3155 EV_CB_INVOKE (p->w, p->events);
3156 EV_FREQUENT_CHECK;
402 } 3157 }
403 } 3158 }
404
405 pendingcnt = 0;
406} 3159}
407 3160
408static void 3161#if EV_IDLE_ENABLE
3162/* make idle watchers pending. this handles the "call-idle */
3163/* only when higher priorities are idle" logic */
3164inline_size void
3165idle_reify (EV_P)
3166{
3167 if (expect_false (idleall))
3168 {
3169 int pri;
3170
3171 for (pri = NUMPRI; pri--; )
3172 {
3173 if (pendingcnt [pri])
3174 break;
3175
3176 if (idlecnt [pri])
3177 {
3178 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3179 break;
3180 }
3181 }
3182 }
3183}
3184#endif
3185
3186/* make timers pending */
3187inline_size void
409timers_reify () 3188timers_reify (EV_P)
410{ 3189{
411 while (timercnt && timers [0]->at <= now) 3190 EV_FREQUENT_CHECK;
412 {
413 struct ev_timer *w = timers [0];
414 3191
415 event ((W)w, EV_TIMEOUT); 3192 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3193 {
3194 do
3195 {
3196 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
416 3197
3198 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3199
417 /* first reschedule or stop timer */ 3200 /* first reschedule or stop timer */
3201 if (w->repeat)
3202 {
3203 ev_at (w) += w->repeat;
3204 if (ev_at (w) < mn_now)
3205 ev_at (w) = mn_now;
3206
3207 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3208
3209 ANHE_at_cache (timers [HEAP0]);
3210 downheap (timers, timercnt, HEAP0);
3211 }
3212 else
3213 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3214
3215 EV_FREQUENT_CHECK;
3216 feed_reverse (EV_A_ (W)w);
3217 }
3218 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3219
3220 feed_reverse_done (EV_A_ EV_TIMER);
3221 }
3222}
3223
3224#if EV_PERIODIC_ENABLE
3225
3226static void noinline
3227periodic_recalc (EV_P_ ev_periodic *w)
3228{
3229 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3230 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3231
3232 /* the above almost always errs on the low side */
3233 while (at <= ev_rt_now)
3234 {
3235 ev_tstamp nat = at + w->interval;
3236
3237 /* when resolution fails us, we use ev_rt_now */
3238 if (expect_false (nat == at))
3239 {
3240 at = ev_rt_now;
3241 break;
3242 }
3243
3244 at = nat;
3245 }
3246
3247 ev_at (w) = at;
3248}
3249
3250/* make periodics pending */
3251inline_size void
3252periodics_reify (EV_P)
3253{
3254 EV_FREQUENT_CHECK;
3255
3256 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3257 {
3258 do
3259 {
3260 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3261
3262 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3263
3264 /* first reschedule or stop timer */
3265 if (w->reschedule_cb)
3266 {
3267 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3268
3269 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3270
3271 ANHE_at_cache (periodics [HEAP0]);
3272 downheap (periodics, periodiccnt, HEAP0);
3273 }
3274 else if (w->interval)
3275 {
3276 periodic_recalc (EV_A_ w);
3277 ANHE_at_cache (periodics [HEAP0]);
3278 downheap (periodics, periodiccnt, HEAP0);
3279 }
3280 else
3281 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3282
3283 EV_FREQUENT_CHECK;
3284 feed_reverse (EV_A_ (W)w);
3285 }
3286 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3287
3288 feed_reverse_done (EV_A_ EV_PERIODIC);
3289 }
3290}
3291
3292/* simply recalculate all periodics */
3293/* TODO: maybe ensure that at least one event happens when jumping forward? */
3294static void noinline ecb_cold
3295periodics_reschedule (EV_P)
3296{
3297 int i;
3298
3299 /* adjust periodics after time jump */
3300 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3301 {
3302 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3303
3304 if (w->reschedule_cb)
3305 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3306 else if (w->interval)
3307 periodic_recalc (EV_A_ w);
3308
3309 ANHE_at_cache (periodics [i]);
3310 }
3311
3312 reheap (periodics, periodiccnt);
3313}
3314#endif
3315
3316/* adjust all timers by a given offset */
3317static void noinline ecb_cold
3318timers_reschedule (EV_P_ ev_tstamp adjust)
3319{
3320 int i;
3321
3322 for (i = 0; i < timercnt; ++i)
3323 {
3324 ANHE *he = timers + i + HEAP0;
3325 ANHE_w (*he)->at += adjust;
3326 ANHE_at_cache (*he);
3327 }
3328}
3329
3330/* fetch new monotonic and realtime times from the kernel */
3331/* also detect if there was a timejump, and act accordingly */
3332inline_speed void
3333time_update (EV_P_ ev_tstamp max_block)
3334{
3335#if EV_USE_MONOTONIC
3336 if (expect_true (have_monotonic))
3337 {
3338 int i;
3339 ev_tstamp odiff = rtmn_diff;
3340
3341 mn_now = get_clock ();
3342
3343 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3344 /* interpolate in the meantime */
3345 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3346 {
3347 ev_rt_now = rtmn_diff + mn_now;
3348 return;
3349 }
3350
3351 now_floor = mn_now;
3352 ev_rt_now = ev_time ();
3353
3354 /* loop a few times, before making important decisions.
3355 * on the choice of "4": one iteration isn't enough,
3356 * in case we get preempted during the calls to
3357 * ev_time and get_clock. a second call is almost guaranteed
3358 * to succeed in that case, though. and looping a few more times
3359 * doesn't hurt either as we only do this on time-jumps or
3360 * in the unlikely event of having been preempted here.
3361 */
3362 for (i = 4; --i; )
3363 {
3364 ev_tstamp diff;
3365 rtmn_diff = ev_rt_now - mn_now;
3366
3367 diff = odiff - rtmn_diff;
3368
3369 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3370 return; /* all is well */
3371
3372 ev_rt_now = ev_time ();
3373 mn_now = get_clock ();
3374 now_floor = mn_now;
3375 }
3376
3377 /* no timer adjustment, as the monotonic clock doesn't jump */
3378 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3379# if EV_PERIODIC_ENABLE
3380 periodics_reschedule (EV_A);
3381# endif
3382 }
3383 else
3384#endif
3385 {
3386 ev_rt_now = ev_time ();
3387
3388 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3389 {
3390 /* adjust timers. this is easy, as the offset is the same for all of them */
3391 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3392#if EV_PERIODIC_ENABLE
3393 periodics_reschedule (EV_A);
3394#endif
3395 }
3396
3397 mn_now = ev_rt_now;
3398 }
3399}
3400
3401int
3402ev_run (EV_P_ int flags)
3403{
3404#if EV_FEATURE_API
3405 ++loop_depth;
3406#endif
3407
3408 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3409
3410 loop_done = EVBREAK_CANCEL;
3411
3412 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3413
3414 do
3415 {
3416#if EV_VERIFY >= 2
3417 ev_verify (EV_A);
3418#endif
3419
3420#ifndef _WIN32
3421 if (expect_false (curpid)) /* penalise the forking check even more */
3422 if (expect_false (getpid () != curpid))
3423 {
3424 curpid = getpid ();
3425 postfork = 1;
3426 }
3427#endif
3428
3429#if EV_FORK_ENABLE
3430 /* we might have forked, so queue fork handlers */
3431 if (expect_false (postfork))
3432 if (forkcnt)
3433 {
3434 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3435 EV_INVOKE_PENDING;
3436 }
3437#endif
3438
3439#if EV_PREPARE_ENABLE
3440 /* queue prepare watchers (and execute them) */
3441 if (expect_false (preparecnt))
3442 {
3443 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3444 EV_INVOKE_PENDING;
3445 }
3446#endif
3447
3448 if (expect_false (loop_done))
3449 break;
3450
3451 /* we might have forked, so reify kernel state if necessary */
3452 if (expect_false (postfork))
3453 loop_fork (EV_A);
3454
3455 /* update fd-related kernel structures */
3456 fd_reify (EV_A);
3457
3458 /* calculate blocking time */
3459 {
3460 ev_tstamp waittime = 0.;
3461 ev_tstamp sleeptime = 0.;
3462
3463 /* remember old timestamp for io_blocktime calculation */
3464 ev_tstamp prev_mn_now = mn_now;
3465
3466 /* update time to cancel out callback processing overhead */
3467 time_update (EV_A_ 1e100);
3468
3469 /* from now on, we want a pipe-wake-up */
3470 pipe_write_wanted = 1;
3471
3472 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3473
3474 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3475 {
3476 waittime = MAX_BLOCKTIME;
3477
3478 if (timercnt)
3479 {
3480 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3481 if (waittime > to) waittime = to;
3482 }
3483
3484#if EV_PERIODIC_ENABLE
3485 if (periodiccnt)
3486 {
3487 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3488 if (waittime > to) waittime = to;
3489 }
3490#endif
3491
3492 /* don't let timeouts decrease the waittime below timeout_blocktime */
3493 if (expect_false (waittime < timeout_blocktime))
3494 waittime = timeout_blocktime;
3495
3496 /* at this point, we NEED to wait, so we have to ensure */
3497 /* to pass a minimum nonzero value to the backend */
3498 if (expect_false (waittime < backend_mintime))
3499 waittime = backend_mintime;
3500
3501 /* extra check because io_blocktime is commonly 0 */
3502 if (expect_false (io_blocktime))
3503 {
3504 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3505
3506 if (sleeptime > waittime - backend_mintime)
3507 sleeptime = waittime - backend_mintime;
3508
3509 if (expect_true (sleeptime > 0.))
3510 {
3511 ev_sleep (sleeptime);
3512 waittime -= sleeptime;
3513 }
3514 }
3515 }
3516
3517#if EV_FEATURE_API
3518 ++loop_count;
3519#endif
3520 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3521 backend_poll (EV_A_ waittime);
3522 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3523
3524 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3525
3526 ECB_MEMORY_FENCE_ACQUIRE;
3527 if (pipe_write_skipped)
3528 {
3529 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3530 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3531 }
3532
3533
3534 /* update ev_rt_now, do magic */
3535 time_update (EV_A_ waittime + sleeptime);
3536 }
3537
3538 /* queue pending timers and reschedule them */
3539 timers_reify (EV_A); /* relative timers called last */
3540#if EV_PERIODIC_ENABLE
3541 periodics_reify (EV_A); /* absolute timers called first */
3542#endif
3543
3544#if EV_IDLE_ENABLE
3545 /* queue idle watchers unless other events are pending */
3546 idle_reify (EV_A);
3547#endif
3548
3549#if EV_CHECK_ENABLE
3550 /* queue check watchers, to be executed first */
3551 if (expect_false (checkcnt))
3552 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3553#endif
3554
3555 EV_INVOKE_PENDING;
3556 }
3557 while (expect_true (
3558 activecnt
3559 && !loop_done
3560 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3561 ));
3562
3563 if (loop_done == EVBREAK_ONE)
3564 loop_done = EVBREAK_CANCEL;
3565
3566#if EV_FEATURE_API
3567 --loop_depth;
3568#endif
3569
3570 return activecnt;
3571}
3572
3573void
3574ev_break (EV_P_ int how) EV_THROW
3575{
3576 loop_done = how;
3577}
3578
3579void
3580ev_ref (EV_P) EV_THROW
3581{
3582 ++activecnt;
3583}
3584
3585void
3586ev_unref (EV_P) EV_THROW
3587{
3588 --activecnt;
3589}
3590
3591void
3592ev_now_update (EV_P) EV_THROW
3593{
3594 time_update (EV_A_ 1e100);
3595}
3596
3597void
3598ev_suspend (EV_P) EV_THROW
3599{
3600 ev_now_update (EV_A);
3601}
3602
3603void
3604ev_resume (EV_P) EV_THROW
3605{
3606 ev_tstamp mn_prev = mn_now;
3607
3608 ev_now_update (EV_A);
3609 timers_reschedule (EV_A_ mn_now - mn_prev);
3610#if EV_PERIODIC_ENABLE
3611 /* TODO: really do this? */
3612 periodics_reschedule (EV_A);
3613#endif
3614}
3615
3616/*****************************************************************************/
3617/* singly-linked list management, used when the expected list length is short */
3618
3619inline_size void
3620wlist_add (WL *head, WL elem)
3621{
3622 elem->next = *head;
3623 *head = elem;
3624}
3625
3626inline_size void
3627wlist_del (WL *head, WL elem)
3628{
3629 while (*head)
3630 {
3631 if (expect_true (*head == elem))
3632 {
3633 *head = elem->next;
3634 break;
3635 }
3636
3637 head = &(*head)->next;
3638 }
3639}
3640
3641/* internal, faster, version of ev_clear_pending */
3642inline_speed void
3643clear_pending (EV_P_ W w)
3644{
3645 if (w->pending)
3646 {
3647 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3648 w->pending = 0;
3649 }
3650}
3651
3652int
3653ev_clear_pending (EV_P_ void *w) EV_THROW
3654{
3655 W w_ = (W)w;
3656 int pending = w_->pending;
3657
3658 if (expect_true (pending))
3659 {
3660 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3661 p->w = (W)&pending_w;
3662 w_->pending = 0;
3663 return p->events;
3664 }
3665 else
3666 return 0;
3667}
3668
3669inline_size void
3670pri_adjust (EV_P_ W w)
3671{
3672 int pri = ev_priority (w);
3673 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3674 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3675 ev_set_priority (w, pri);
3676}
3677
3678inline_speed void
3679ev_start (EV_P_ W w, int active)
3680{
3681 pri_adjust (EV_A_ w);
3682 w->active = active;
3683 ev_ref (EV_A);
3684}
3685
3686inline_size void
3687ev_stop (EV_P_ W w)
3688{
3689 ev_unref (EV_A);
3690 w->active = 0;
3691}
3692
3693/*****************************************************************************/
3694
3695void noinline
3696ev_io_start (EV_P_ ev_io *w) EV_THROW
3697{
3698 int fd = w->fd;
3699
3700 if (expect_false (ev_is_active (w)))
3701 return;
3702
3703 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3704 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3705
3706 EV_FREQUENT_CHECK;
3707
3708 ev_start (EV_A_ (W)w, 1);
3709 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3710 wlist_add (&anfds[fd].head, (WL)w);
3711
3712 /* common bug, apparently */
3713 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3714
3715 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3716 w->events &= ~EV__IOFDSET;
3717
3718 EV_FREQUENT_CHECK;
3719}
3720
3721void noinline
3722ev_io_stop (EV_P_ ev_io *w) EV_THROW
3723{
3724 clear_pending (EV_A_ (W)w);
3725 if (expect_false (!ev_is_active (w)))
3726 return;
3727
3728 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3729
3730 EV_FREQUENT_CHECK;
3731
3732 wlist_del (&anfds[w->fd].head, (WL)w);
3733 ev_stop (EV_A_ (W)w);
3734
3735 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3736
3737 EV_FREQUENT_CHECK;
3738}
3739
3740void noinline
3741ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3742{
3743 if (expect_false (ev_is_active (w)))
3744 return;
3745
3746 ev_at (w) += mn_now;
3747
3748 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3749
3750 EV_FREQUENT_CHECK;
3751
3752 ++timercnt;
3753 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3754 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3755 ANHE_w (timers [ev_active (w)]) = (WT)w;
3756 ANHE_at_cache (timers [ev_active (w)]);
3757 upheap (timers, ev_active (w));
3758
3759 EV_FREQUENT_CHECK;
3760
3761 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3762}
3763
3764void noinline
3765ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3766{
3767 clear_pending (EV_A_ (W)w);
3768 if (expect_false (!ev_is_active (w)))
3769 return;
3770
3771 EV_FREQUENT_CHECK;
3772
3773 {
3774 int active = ev_active (w);
3775
3776 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3777
3778 --timercnt;
3779
3780 if (expect_true (active < timercnt + HEAP0))
3781 {
3782 timers [active] = timers [timercnt + HEAP0];
3783 adjustheap (timers, timercnt, active);
3784 }
3785 }
3786
3787 ev_at (w) -= mn_now;
3788
3789 ev_stop (EV_A_ (W)w);
3790
3791 EV_FREQUENT_CHECK;
3792}
3793
3794void noinline
3795ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3796{
3797 EV_FREQUENT_CHECK;
3798
3799 clear_pending (EV_A_ (W)w);
3800
3801 if (ev_is_active (w))
3802 {
418 if (w->repeat) 3803 if (w->repeat)
419 { 3804 {
420 w->at = now + w->repeat; 3805 ev_at (w) = mn_now + w->repeat;
421 assert (("timer timeout in the past, negative repeat?", w->at > now)); 3806 ANHE_at_cache (timers [ev_active (w)]);
422 downheap ((WT *)timers, timercnt, 0); 3807 adjustheap (timers, timercnt, ev_active (w));
423 } 3808 }
424 else 3809 else
425 evtimer_stop (w); /* nonrepeating: stop timer */ 3810 ev_timer_stop (EV_A_ w);
426 }
427}
428
429static void
430periodics_reify ()
431{
432 while (periodiccnt && periodics [0]->at <= ev_now)
433 { 3811 }
434 struct ev_periodic *w = periodics [0]; 3812 else if (w->repeat)
3813 {
3814 ev_at (w) = w->repeat;
3815 ev_timer_start (EV_A_ w);
3816 }
435 3817
436 /* first reschedule or stop timer */ 3818 EV_FREQUENT_CHECK;
3819}
3820
3821ev_tstamp
3822ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3823{
3824 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3825}
3826
3827#if EV_PERIODIC_ENABLE
3828void noinline
3829ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3830{
3831 if (expect_false (ev_is_active (w)))
3832 return;
3833
3834 if (w->reschedule_cb)
3835 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
437 if (w->interval) 3836 else if (w->interval)
3837 {
3838 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3839 periodic_recalc (EV_A_ w);
3840 }
3841 else
3842 ev_at (w) = w->offset;
3843
3844 EV_FREQUENT_CHECK;
3845
3846 ++periodiccnt;
3847 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3848 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3849 ANHE_w (periodics [ev_active (w)]) = (WT)w;
3850 ANHE_at_cache (periodics [ev_active (w)]);
3851 upheap (periodics, ev_active (w));
3852
3853 EV_FREQUENT_CHECK;
3854
3855 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3856}
3857
3858void noinline
3859ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3860{
3861 clear_pending (EV_A_ (W)w);
3862 if (expect_false (!ev_is_active (w)))
3863 return;
3864
3865 EV_FREQUENT_CHECK;
3866
3867 {
3868 int active = ev_active (w);
3869
3870 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3871
3872 --periodiccnt;
3873
3874 if (expect_true (active < periodiccnt + HEAP0))
3875 {
3876 periodics [active] = periodics [periodiccnt + HEAP0];
3877 adjustheap (periodics, periodiccnt, active);
3878 }
3879 }
3880
3881 ev_stop (EV_A_ (W)w);
3882
3883 EV_FREQUENT_CHECK;
3884}
3885
3886void noinline
3887ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3888{
3889 /* TODO: use adjustheap and recalculation */
3890 ev_periodic_stop (EV_A_ w);
3891 ev_periodic_start (EV_A_ w);
3892}
3893#endif
3894
3895#ifndef SA_RESTART
3896# define SA_RESTART 0
3897#endif
3898
3899#if EV_SIGNAL_ENABLE
3900
3901void noinline
3902ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3903{
3904 if (expect_false (ev_is_active (w)))
3905 return;
3906
3907 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3908
3909#if EV_MULTIPLICITY
3910 assert (("libev: a signal must not be attached to two different loops",
3911 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3912
3913 signals [w->signum - 1].loop = EV_A;
3914 ECB_MEMORY_FENCE_RELEASE;
3915#endif
3916
3917 EV_FREQUENT_CHECK;
3918
3919#if EV_USE_SIGNALFD
3920 if (sigfd == -2)
3921 {
3922 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3923 if (sigfd < 0 && errno == EINVAL)
3924 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3925
3926 if (sigfd >= 0)
438 { 3927 {
439 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 3928 fd_intern (sigfd); /* doing it twice will not hurt */
440 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 3929
441 downheap ((WT *)periodics, periodiccnt, 0); 3930 sigemptyset (&sigfd_set);
3931
3932 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3933 ev_set_priority (&sigfd_w, EV_MAXPRI);
3934 ev_io_start (EV_A_ &sigfd_w);
3935 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3936 }
3937 }
3938
3939 if (sigfd >= 0)
3940 {
3941 /* TODO: check .head */
3942 sigaddset (&sigfd_set, w->signum);
3943 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3944
3945 signalfd (sigfd, &sigfd_set, 0);
3946 }
3947#endif
3948
3949 ev_start (EV_A_ (W)w, 1);
3950 wlist_add (&signals [w->signum - 1].head, (WL)w);
3951
3952 if (!((WL)w)->next)
3953# if EV_USE_SIGNALFD
3954 if (sigfd < 0) /*TODO*/
3955# endif
3956 {
3957# ifdef _WIN32
3958 evpipe_init (EV_A);
3959
3960 signal (w->signum, ev_sighandler);
3961# else
3962 struct sigaction sa;
3963
3964 evpipe_init (EV_A);
3965
3966 sa.sa_handler = ev_sighandler;
3967 sigfillset (&sa.sa_mask);
3968 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3969 sigaction (w->signum, &sa, 0);
3970
3971 if (origflags & EVFLAG_NOSIGMASK)
3972 {
3973 sigemptyset (&sa.sa_mask);
3974 sigaddset (&sa.sa_mask, w->signum);
3975 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3976 }
3977#endif
3978 }
3979
3980 EV_FREQUENT_CHECK;
3981}
3982
3983void noinline
3984ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3985{
3986 clear_pending (EV_A_ (W)w);
3987 if (expect_false (!ev_is_active (w)))
3988 return;
3989
3990 EV_FREQUENT_CHECK;
3991
3992 wlist_del (&signals [w->signum - 1].head, (WL)w);
3993 ev_stop (EV_A_ (W)w);
3994
3995 if (!signals [w->signum - 1].head)
3996 {
3997#if EV_MULTIPLICITY
3998 signals [w->signum - 1].loop = 0; /* unattach from signal */
3999#endif
4000#if EV_USE_SIGNALFD
4001 if (sigfd >= 0)
4002 {
4003 sigset_t ss;
4004
4005 sigemptyset (&ss);
4006 sigaddset (&ss, w->signum);
4007 sigdelset (&sigfd_set, w->signum);
4008
4009 signalfd (sigfd, &sigfd_set, 0);
4010 sigprocmask (SIG_UNBLOCK, &ss, 0);
442 } 4011 }
443 else 4012 else
444 evperiodic_stop (w); /* nonrepeating: stop timer */ 4013#endif
445 4014 signal (w->signum, SIG_DFL);
446 event ((W)w, EV_TIMEOUT);
447 }
448}
449
450static void
451periodics_reschedule (ev_tstamp diff)
452{
453 int i;
454
455 /* adjust periodics after time jump */
456 for (i = 0; i < periodiccnt; ++i)
457 { 4015 }
458 struct ev_periodic *w = periodics [i];
459 4016
460 if (w->interval) 4017 EV_FREQUENT_CHECK;
4018}
4019
4020#endif
4021
4022#if EV_CHILD_ENABLE
4023
4024void
4025ev_child_start (EV_P_ ev_child *w) EV_THROW
4026{
4027#if EV_MULTIPLICITY
4028 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4029#endif
4030 if (expect_false (ev_is_active (w)))
4031 return;
4032
4033 EV_FREQUENT_CHECK;
4034
4035 ev_start (EV_A_ (W)w, 1);
4036 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4037
4038 EV_FREQUENT_CHECK;
4039}
4040
4041void
4042ev_child_stop (EV_P_ ev_child *w) EV_THROW
4043{
4044 clear_pending (EV_A_ (W)w);
4045 if (expect_false (!ev_is_active (w)))
4046 return;
4047
4048 EV_FREQUENT_CHECK;
4049
4050 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4051 ev_stop (EV_A_ (W)w);
4052
4053 EV_FREQUENT_CHECK;
4054}
4055
4056#endif
4057
4058#if EV_STAT_ENABLE
4059
4060# ifdef _WIN32
4061# undef lstat
4062# define lstat(a,b) _stati64 (a,b)
4063# endif
4064
4065#define DEF_STAT_INTERVAL 5.0074891
4066#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4067#define MIN_STAT_INTERVAL 0.1074891
4068
4069static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4070
4071#if EV_USE_INOTIFY
4072
4073/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4074# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4075
4076static void noinline
4077infy_add (EV_P_ ev_stat *w)
4078{
4079 w->wd = inotify_add_watch (fs_fd, w->path,
4080 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4081 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4082 | IN_DONT_FOLLOW | IN_MASK_ADD);
4083
4084 if (w->wd >= 0)
4085 {
4086 struct statfs sfs;
4087
4088 /* now local changes will be tracked by inotify, but remote changes won't */
4089 /* unless the filesystem is known to be local, we therefore still poll */
4090 /* also do poll on <2.6.25, but with normal frequency */
4091
4092 if (!fs_2625)
4093 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4094 else if (!statfs (w->path, &sfs)
4095 && (sfs.f_type == 0x1373 /* devfs */
4096 || sfs.f_type == 0x4006 /* fat */
4097 || sfs.f_type == 0x4d44 /* msdos */
4098 || sfs.f_type == 0xEF53 /* ext2/3 */
4099 || sfs.f_type == 0x72b6 /* jffs2 */
4100 || sfs.f_type == 0x858458f6 /* ramfs */
4101 || sfs.f_type == 0x5346544e /* ntfs */
4102 || sfs.f_type == 0x3153464a /* jfs */
4103 || sfs.f_type == 0x9123683e /* btrfs */
4104 || sfs.f_type == 0x52654973 /* reiser3 */
4105 || sfs.f_type == 0x01021994 /* tmpfs */
4106 || sfs.f_type == 0x58465342 /* xfs */))
4107 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4108 else
4109 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4110 }
4111 else
4112 {
4113 /* can't use inotify, continue to stat */
4114 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4115
4116 /* if path is not there, monitor some parent directory for speedup hints */
4117 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4118 /* but an efficiency issue only */
4119 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
461 { 4120 {
462 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 4121 char path [4096];
4122 strcpy (path, w->path);
463 4123
464 if (fabs (diff) >= 1e-4) 4124 do
465 { 4125 {
466 evperiodic_stop (w); 4126 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
467 evperiodic_start (w); 4127 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
468 4128
469 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 4129 char *pend = strrchr (path, '/');
4130
4131 if (!pend || pend == path)
4132 break;
4133
4134 *pend = 0;
4135 w->wd = inotify_add_watch (fs_fd, path, mask);
4136 }
4137 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4138 }
4139 }
4140
4141 if (w->wd >= 0)
4142 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4143
4144 /* now re-arm timer, if required */
4145 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4146 ev_timer_again (EV_A_ &w->timer);
4147 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4148}
4149
4150static void noinline
4151infy_del (EV_P_ ev_stat *w)
4152{
4153 int slot;
4154 int wd = w->wd;
4155
4156 if (wd < 0)
4157 return;
4158
4159 w->wd = -2;
4160 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4161 wlist_del (&fs_hash [slot].head, (WL)w);
4162
4163 /* remove this watcher, if others are watching it, they will rearm */
4164 inotify_rm_watch (fs_fd, wd);
4165}
4166
4167static void noinline
4168infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4169{
4170 if (slot < 0)
4171 /* overflow, need to check for all hash slots */
4172 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4173 infy_wd (EV_A_ slot, wd, ev);
4174 else
4175 {
4176 WL w_;
4177
4178 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4179 {
4180 ev_stat *w = (ev_stat *)w_;
4181 w_ = w_->next; /* lets us remove this watcher and all before it */
4182
4183 if (w->wd == wd || wd == -1)
4184 {
4185 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4186 {
4187 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4188 w->wd = -1;
4189 infy_add (EV_A_ w); /* re-add, no matter what */
4190 }
4191
4192 stat_timer_cb (EV_A_ &w->timer, 0);
470 } 4193 }
471 } 4194 }
472 } 4195 }
473} 4196}
474 4197
475static void 4198static void
476time_update () 4199infy_cb (EV_P_ ev_io *w, int revents)
477{ 4200{
4201 char buf [EV_INOTIFY_BUFSIZE];
478 int i; 4202 int ofs;
4203 int len = read (fs_fd, buf, sizeof (buf));
479 4204
480 ev_now = ev_time (); 4205 for (ofs = 0; ofs < len; )
481 4206 {
482 if (have_monotonic) 4207 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4208 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4209 ofs += sizeof (struct inotify_event) + ev->len;
483 { 4210 }
484 ev_tstamp odiff = diff; 4211}
485 4212
486 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 4213inline_size void ecb_cold
4214ev_check_2625 (EV_P)
4215{
4216 /* kernels < 2.6.25 are borked
4217 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4218 */
4219 if (ev_linux_version () < 0x020619)
4220 return;
4221
4222 fs_2625 = 1;
4223}
4224
4225inline_size int
4226infy_newfd (void)
4227{
4228#if defined IN_CLOEXEC && defined IN_NONBLOCK
4229 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4230 if (fd >= 0)
4231 return fd;
4232#endif
4233 return inotify_init ();
4234}
4235
4236inline_size void
4237infy_init (EV_P)
4238{
4239 if (fs_fd != -2)
4240 return;
4241
4242 fs_fd = -1;
4243
4244 ev_check_2625 (EV_A);
4245
4246 fs_fd = infy_newfd ();
4247
4248 if (fs_fd >= 0)
4249 {
4250 fd_intern (fs_fd);
4251 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4252 ev_set_priority (&fs_w, EV_MAXPRI);
4253 ev_io_start (EV_A_ &fs_w);
4254 ev_unref (EV_A);
4255 }
4256}
4257
4258inline_size void
4259infy_fork (EV_P)
4260{
4261 int slot;
4262
4263 if (fs_fd < 0)
4264 return;
4265
4266 ev_ref (EV_A);
4267 ev_io_stop (EV_A_ &fs_w);
4268 close (fs_fd);
4269 fs_fd = infy_newfd ();
4270
4271 if (fs_fd >= 0)
4272 {
4273 fd_intern (fs_fd);
4274 ev_io_set (&fs_w, fs_fd, EV_READ);
4275 ev_io_start (EV_A_ &fs_w);
4276 ev_unref (EV_A);
4277 }
4278
4279 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4280 {
4281 WL w_ = fs_hash [slot].head;
4282 fs_hash [slot].head = 0;
4283
4284 while (w_)
487 { 4285 {
488 now = get_clock (); 4286 ev_stat *w = (ev_stat *)w_;
489 diff = ev_now - now; 4287 w_ = w_->next; /* lets us add this watcher */
490 4288
491 if (fabs (odiff - diff) < MIN_TIMEJUMP) 4289 w->wd = -1;
492 return; /* all is well */
493 4290
494 ev_now = ev_time (); 4291 if (fs_fd >= 0)
4292 infy_add (EV_A_ w); /* re-add, no matter what */
4293 else
4294 {
4295 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4296 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4297 ev_timer_again (EV_A_ &w->timer);
4298 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4299 }
495 } 4300 }
496
497 periodics_reschedule (diff - odiff);
498 /* no timer adjustment, as the monotonic clock doesn't jump */
499 } 4301 }
4302}
4303
4304#endif
4305
4306#ifdef _WIN32
4307# define EV_LSTAT(p,b) _stati64 (p, b)
4308#else
4309# define EV_LSTAT(p,b) lstat (p, b)
4310#endif
4311
4312void
4313ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4314{
4315 if (lstat (w->path, &w->attr) < 0)
4316 w->attr.st_nlink = 0;
4317 else if (!w->attr.st_nlink)
4318 w->attr.st_nlink = 1;
4319}
4320
4321static void noinline
4322stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4323{
4324 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4325
4326 ev_statdata prev = w->attr;
4327 ev_stat_stat (EV_A_ w);
4328
4329 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4330 if (
4331 prev.st_dev != w->attr.st_dev
4332 || prev.st_ino != w->attr.st_ino
4333 || prev.st_mode != w->attr.st_mode
4334 || prev.st_nlink != w->attr.st_nlink
4335 || prev.st_uid != w->attr.st_uid
4336 || prev.st_gid != w->attr.st_gid
4337 || prev.st_rdev != w->attr.st_rdev
4338 || prev.st_size != w->attr.st_size
4339 || prev.st_atime != w->attr.st_atime
4340 || prev.st_mtime != w->attr.st_mtime
4341 || prev.st_ctime != w->attr.st_ctime
4342 ) {
4343 /* we only update w->prev on actual differences */
4344 /* in case we test more often than invoke the callback, */
4345 /* to ensure that prev is always different to attr */
4346 w->prev = prev;
4347
4348 #if EV_USE_INOTIFY
4349 if (fs_fd >= 0)
4350 {
4351 infy_del (EV_A_ w);
4352 infy_add (EV_A_ w);
4353 ev_stat_stat (EV_A_ w); /* avoid race... */
4354 }
4355 #endif
4356
4357 ev_feed_event (EV_A_ w, EV_STAT);
4358 }
4359}
4360
4361void
4362ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4363{
4364 if (expect_false (ev_is_active (w)))
4365 return;
4366
4367 ev_stat_stat (EV_A_ w);
4368
4369 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4370 w->interval = MIN_STAT_INTERVAL;
4371
4372 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4373 ev_set_priority (&w->timer, ev_priority (w));
4374
4375#if EV_USE_INOTIFY
4376 infy_init (EV_A);
4377
4378 if (fs_fd >= 0)
4379 infy_add (EV_A_ w);
500 else 4380 else
4381#endif
4382 {
4383 ev_timer_again (EV_A_ &w->timer);
4384 ev_unref (EV_A);
501 { 4385 }
502 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 4386
4387 ev_start (EV_A_ (W)w, 1);
4388
4389 EV_FREQUENT_CHECK;
4390}
4391
4392void
4393ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4394{
4395 clear_pending (EV_A_ (W)w);
4396 if (expect_false (!ev_is_active (w)))
4397 return;
4398
4399 EV_FREQUENT_CHECK;
4400
4401#if EV_USE_INOTIFY
4402 infy_del (EV_A_ w);
4403#endif
4404
4405 if (ev_is_active (&w->timer))
4406 {
4407 ev_ref (EV_A);
4408 ev_timer_stop (EV_A_ &w->timer);
4409 }
4410
4411 ev_stop (EV_A_ (W)w);
4412
4413 EV_FREQUENT_CHECK;
4414}
4415#endif
4416
4417#if EV_IDLE_ENABLE
4418void
4419ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4420{
4421 if (expect_false (ev_is_active (w)))
4422 return;
4423
4424 pri_adjust (EV_A_ (W)w);
4425
4426 EV_FREQUENT_CHECK;
4427
4428 {
4429 int active = ++idlecnt [ABSPRI (w)];
4430
4431 ++idleall;
4432 ev_start (EV_A_ (W)w, active);
4433
4434 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4435 idles [ABSPRI (w)][active - 1] = w;
4436 }
4437
4438 EV_FREQUENT_CHECK;
4439}
4440
4441void
4442ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4443{
4444 clear_pending (EV_A_ (W)w);
4445 if (expect_false (!ev_is_active (w)))
4446 return;
4447
4448 EV_FREQUENT_CHECK;
4449
4450 {
4451 int active = ev_active (w);
4452
4453 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4454 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4455
4456 ev_stop (EV_A_ (W)w);
4457 --idleall;
4458 }
4459
4460 EV_FREQUENT_CHECK;
4461}
4462#endif
4463
4464#if EV_PREPARE_ENABLE
4465void
4466ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4467{
4468 if (expect_false (ev_is_active (w)))
4469 return;
4470
4471 EV_FREQUENT_CHECK;
4472
4473 ev_start (EV_A_ (W)w, ++preparecnt);
4474 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4475 prepares [preparecnt - 1] = w;
4476
4477 EV_FREQUENT_CHECK;
4478}
4479
4480void
4481ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4482{
4483 clear_pending (EV_A_ (W)w);
4484 if (expect_false (!ev_is_active (w)))
4485 return;
4486
4487 EV_FREQUENT_CHECK;
4488
4489 {
4490 int active = ev_active (w);
4491
4492 prepares [active - 1] = prepares [--preparecnt];
4493 ev_active (prepares [active - 1]) = active;
4494 }
4495
4496 ev_stop (EV_A_ (W)w);
4497
4498 EV_FREQUENT_CHECK;
4499}
4500#endif
4501
4502#if EV_CHECK_ENABLE
4503void
4504ev_check_start (EV_P_ ev_check *w) EV_THROW
4505{
4506 if (expect_false (ev_is_active (w)))
4507 return;
4508
4509 EV_FREQUENT_CHECK;
4510
4511 ev_start (EV_A_ (W)w, ++checkcnt);
4512 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4513 checks [checkcnt - 1] = w;
4514
4515 EV_FREQUENT_CHECK;
4516}
4517
4518void
4519ev_check_stop (EV_P_ ev_check *w) EV_THROW
4520{
4521 clear_pending (EV_A_ (W)w);
4522 if (expect_false (!ev_is_active (w)))
4523 return;
4524
4525 EV_FREQUENT_CHECK;
4526
4527 {
4528 int active = ev_active (w);
4529
4530 checks [active - 1] = checks [--checkcnt];
4531 ev_active (checks [active - 1]) = active;
4532 }
4533
4534 ev_stop (EV_A_ (W)w);
4535
4536 EV_FREQUENT_CHECK;
4537}
4538#endif
4539
4540#if EV_EMBED_ENABLE
4541void noinline
4542ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4543{
4544 ev_run (w->other, EVRUN_NOWAIT);
4545}
4546
4547static void
4548embed_io_cb (EV_P_ ev_io *io, int revents)
4549{
4550 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4551
4552 if (ev_cb (w))
4553 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4554 else
4555 ev_run (w->other, EVRUN_NOWAIT);
4556}
4557
4558static void
4559embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4560{
4561 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4562
4563 {
4564 EV_P = w->other;
4565
4566 while (fdchangecnt)
503 { 4567 {
504 periodics_reschedule (ev_now - now); 4568 fd_reify (EV_A);
505 4569 ev_run (EV_A_ EVRUN_NOWAIT);
506 /* adjust timers. this is easy, as the offset is the same for all */
507 for (i = 0; i < timercnt; ++i)
508 timers [i]->at += diff;
509 } 4570 }
510
511 now = ev_now;
512 } 4571 }
513} 4572}
514 4573
515int ev_loop_done; 4574static void
516 4575embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
517void ev_loop (int flags)
518{ 4576{
519 double block; 4577 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
520 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0;
521 4578
522 if (checkcnt) 4579 ev_embed_stop (EV_A_ w);
4580
523 { 4581 {
524 queue_events ((W *)checks, checkcnt, EV_CHECK); 4582 EV_P = w->other;
525 call_pending (); 4583
4584 ev_loop_fork (EV_A);
4585 ev_run (EV_A_ EVRUN_NOWAIT);
526 } 4586 }
527 4587
528 do 4588 ev_embed_start (EV_A_ w);
4589}
4590
4591#if 0
4592static void
4593embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4594{
4595 ev_idle_stop (EV_A_ idle);
4596}
4597#endif
4598
4599void
4600ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4601{
4602 if (expect_false (ev_is_active (w)))
4603 return;
4604
529 { 4605 {
530 /* update fd-related kernel structures */ 4606 EV_P = w->other;
531 fd_reify (); 4607 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
532 4608 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
533 /* calculate blocking time */
534
535 /* we only need this for !monotonic clock, but as we always have timers, we just calculate it every time */
536 ev_now = ev_time ();
537
538 if (flags & EVLOOP_NONBLOCK || idlecnt)
539 block = 0.;
540 else
541 {
542 block = MAX_BLOCKTIME;
543
544 if (timercnt)
545 {
546 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge;
547 if (block > to) block = to;
548 }
549
550 if (periodiccnt)
551 {
552 ev_tstamp to = periodics [0]->at - ev_now + method_fudge;
553 if (block > to) block = to;
554 }
555
556 if (block < 0.) block = 0.;
557 }
558
559 method_poll (block);
560
561 /* update ev_now, do magic */
562 time_update ();
563
564 /* queue pending timers and reschedule them */
565 periodics_reify (); /* absolute timers first */
566 timers_reify (); /* relative timers second */
567
568 /* queue idle watchers unless io or timers are pending */
569 if (!pendingcnt)
570 queue_events ((W *)idles, idlecnt, EV_IDLE);
571
572 /* queue check and possibly idle watchers */
573 queue_events ((W *)checks, checkcnt, EV_CHECK);
574
575 call_pending ();
576 } 4609 }
577 while (!ev_loop_done);
578 4610
579 if (ev_loop_done != 2) 4611 EV_FREQUENT_CHECK;
580 ev_loop_done = 0; 4612
4613 ev_set_priority (&w->io, ev_priority (w));
4614 ev_io_start (EV_A_ &w->io);
4615
4616 ev_prepare_init (&w->prepare, embed_prepare_cb);
4617 ev_set_priority (&w->prepare, EV_MINPRI);
4618 ev_prepare_start (EV_A_ &w->prepare);
4619
4620 ev_fork_init (&w->fork, embed_fork_cb);
4621 ev_fork_start (EV_A_ &w->fork);
4622
4623 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4624
4625 ev_start (EV_A_ (W)w, 1);
4626
4627 EV_FREQUENT_CHECK;
581} 4628}
4629
4630void
4631ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4632{
4633 clear_pending (EV_A_ (W)w);
4634 if (expect_false (!ev_is_active (w)))
4635 return;
4636
4637 EV_FREQUENT_CHECK;
4638
4639 ev_io_stop (EV_A_ &w->io);
4640 ev_prepare_stop (EV_A_ &w->prepare);
4641 ev_fork_stop (EV_A_ &w->fork);
4642
4643 ev_stop (EV_A_ (W)w);
4644
4645 EV_FREQUENT_CHECK;
4646}
4647#endif
4648
4649#if EV_FORK_ENABLE
4650void
4651ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4652{
4653 if (expect_false (ev_is_active (w)))
4654 return;
4655
4656 EV_FREQUENT_CHECK;
4657
4658 ev_start (EV_A_ (W)w, ++forkcnt);
4659 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4660 forks [forkcnt - 1] = w;
4661
4662 EV_FREQUENT_CHECK;
4663}
4664
4665void
4666ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4667{
4668 clear_pending (EV_A_ (W)w);
4669 if (expect_false (!ev_is_active (w)))
4670 return;
4671
4672 EV_FREQUENT_CHECK;
4673
4674 {
4675 int active = ev_active (w);
4676
4677 forks [active - 1] = forks [--forkcnt];
4678 ev_active (forks [active - 1]) = active;
4679 }
4680
4681 ev_stop (EV_A_ (W)w);
4682
4683 EV_FREQUENT_CHECK;
4684}
4685#endif
4686
4687#if EV_CLEANUP_ENABLE
4688void
4689ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4690{
4691 if (expect_false (ev_is_active (w)))
4692 return;
4693
4694 EV_FREQUENT_CHECK;
4695
4696 ev_start (EV_A_ (W)w, ++cleanupcnt);
4697 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4698 cleanups [cleanupcnt - 1] = w;
4699
4700 /* cleanup watchers should never keep a refcount on the loop */
4701 ev_unref (EV_A);
4702 EV_FREQUENT_CHECK;
4703}
4704
4705void
4706ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4707{
4708 clear_pending (EV_A_ (W)w);
4709 if (expect_false (!ev_is_active (w)))
4710 return;
4711
4712 EV_FREQUENT_CHECK;
4713 ev_ref (EV_A);
4714
4715 {
4716 int active = ev_active (w);
4717
4718 cleanups [active - 1] = cleanups [--cleanupcnt];
4719 ev_active (cleanups [active - 1]) = active;
4720 }
4721
4722 ev_stop (EV_A_ (W)w);
4723
4724 EV_FREQUENT_CHECK;
4725}
4726#endif
4727
4728#if EV_ASYNC_ENABLE
4729void
4730ev_async_start (EV_P_ ev_async *w) EV_THROW
4731{
4732 if (expect_false (ev_is_active (w)))
4733 return;
4734
4735 w->sent = 0;
4736
4737 evpipe_init (EV_A);
4738
4739 EV_FREQUENT_CHECK;
4740
4741 ev_start (EV_A_ (W)w, ++asynccnt);
4742 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4743 asyncs [asynccnt - 1] = w;
4744
4745 EV_FREQUENT_CHECK;
4746}
4747
4748void
4749ev_async_stop (EV_P_ ev_async *w) EV_THROW
4750{
4751 clear_pending (EV_A_ (W)w);
4752 if (expect_false (!ev_is_active (w)))
4753 return;
4754
4755 EV_FREQUENT_CHECK;
4756
4757 {
4758 int active = ev_active (w);
4759
4760 asyncs [active - 1] = asyncs [--asynccnt];
4761 ev_active (asyncs [active - 1]) = active;
4762 }
4763
4764 ev_stop (EV_A_ (W)w);
4765
4766 EV_FREQUENT_CHECK;
4767}
4768
4769void
4770ev_async_send (EV_P_ ev_async *w) EV_THROW
4771{
4772 w->sent = 1;
4773 evpipe_write (EV_A_ &async_pending);
4774}
4775#endif
582 4776
583/*****************************************************************************/ 4777/*****************************************************************************/
584 4778
585static void
586wlist_add (WL *head, WL elem)
587{
588 elem->next = *head;
589 *head = elem;
590}
591
592static void
593wlist_del (WL *head, WL elem)
594{
595 while (*head)
596 {
597 if (*head == elem)
598 {
599 *head = elem->next;
600 return;
601 }
602
603 head = &(*head)->next;
604 }
605}
606
607static void
608ev_clear (W w)
609{
610 if (w->pending)
611 {
612 pendings [w->pending - 1].w = 0;
613 w->pending = 0;
614 }
615}
616
617static void
618ev_start (W w, int active)
619{
620 w->active = active;
621}
622
623static void
624ev_stop (W w)
625{
626 w->active = 0;
627}
628
629/*****************************************************************************/
630
631void
632evio_start (struct ev_io *w)
633{
634 if (ev_is_active (w))
635 return;
636
637 int fd = w->fd;
638
639 ev_start ((W)w, 1);
640 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
641 wlist_add ((WL *)&anfds[fd].head, (WL)w);
642
643 ++fdchangecnt;
644 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
645 fdchanges [fdchangecnt - 1] = fd;
646}
647
648void
649evio_stop (struct ev_io *w)
650{
651 ev_clear ((W)w);
652 if (!ev_is_active (w))
653 return;
654
655 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
656 ev_stop ((W)w);
657
658 ++fdchangecnt;
659 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
660 fdchanges [fdchangecnt - 1] = w->fd;
661}
662
663void
664evtimer_start (struct ev_timer *w)
665{
666 if (ev_is_active (w))
667 return;
668
669 w->at += now;
670
671 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.));
672
673 ev_start ((W)w, ++timercnt);
674 array_needsize (timers, timermax, timercnt, );
675 timers [timercnt - 1] = w;
676 upheap ((WT *)timers, timercnt - 1);
677}
678
679void
680evtimer_stop (struct ev_timer *w)
681{
682 ev_clear ((W)w);
683 if (!ev_is_active (w))
684 return;
685
686 if (w->active < timercnt--)
687 {
688 timers [w->active - 1] = timers [timercnt];
689 downheap ((WT *)timers, timercnt, w->active - 1);
690 }
691
692 w->at = w->repeat;
693
694 ev_stop ((W)w);
695}
696
697void
698evtimer_again (struct ev_timer *w)
699{
700 if (ev_is_active (w))
701 {
702 if (w->repeat)
703 {
704 w->at = now + w->repeat;
705 downheap ((WT *)timers, timercnt, w->active - 1);
706 }
707 else
708 evtimer_stop (w);
709 }
710 else if (w->repeat)
711 evtimer_start (w);
712}
713
714void
715evperiodic_start (struct ev_periodic *w)
716{
717 if (ev_is_active (w))
718 return;
719
720 assert (("periodic interval value less than zero not allowed", w->interval >= 0.));
721
722 /* this formula differs from the one in periodic_reify because we do not always round up */
723 if (w->interval)
724 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval;
725
726 ev_start ((W)w, ++periodiccnt);
727 array_needsize (periodics, periodicmax, periodiccnt, );
728 periodics [periodiccnt - 1] = w;
729 upheap ((WT *)periodics, periodiccnt - 1);
730}
731
732void
733evperiodic_stop (struct ev_periodic *w)
734{
735 ev_clear ((W)w);
736 if (!ev_is_active (w))
737 return;
738
739 if (w->active < periodiccnt--)
740 {
741 periodics [w->active - 1] = periodics [periodiccnt];
742 downheap ((WT *)periodics, periodiccnt, w->active - 1);
743 }
744
745 ev_stop ((W)w);
746}
747
748void
749evsignal_start (struct ev_signal *w)
750{
751 if (ev_is_active (w))
752 return;
753
754 ev_start ((W)w, 1);
755 array_needsize (signals, signalmax, w->signum, signals_init);
756 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
757
758 if (!w->next)
759 {
760 struct sigaction sa;
761 sa.sa_handler = sighandler;
762 sigfillset (&sa.sa_mask);
763 sa.sa_flags = 0;
764 sigaction (w->signum, &sa, 0);
765 }
766}
767
768void
769evsignal_stop (struct ev_signal *w)
770{
771 ev_clear ((W)w);
772 if (!ev_is_active (w))
773 return;
774
775 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
776 ev_stop ((W)w);
777
778 if (!signals [w->signum - 1].head)
779 signal (w->signum, SIG_DFL);
780}
781
782void evidle_start (struct ev_idle *w)
783{
784 if (ev_is_active (w))
785 return;
786
787 ev_start ((W)w, ++idlecnt);
788 array_needsize (idles, idlemax, idlecnt, );
789 idles [idlecnt - 1] = w;
790}
791
792void evidle_stop (struct ev_idle *w)
793{
794 ev_clear ((W)w);
795 if (ev_is_active (w))
796 return;
797
798 idles [w->active - 1] = idles [--idlecnt];
799 ev_stop ((W)w);
800}
801
802void evcheck_start (struct ev_check *w)
803{
804 if (ev_is_active (w))
805 return;
806
807 ev_start ((W)w, ++checkcnt);
808 array_needsize (checks, checkmax, checkcnt, );
809 checks [checkcnt - 1] = w;
810}
811
812void evcheck_stop (struct ev_check *w)
813{
814 ev_clear ((W)w);
815 if (ev_is_active (w))
816 return;
817
818 checks [w->active - 1] = checks [--checkcnt];
819 ev_stop ((W)w);
820}
821
822/*****************************************************************************/
823
824struct ev_once 4779struct ev_once
825{ 4780{
826 struct ev_io io; 4781 ev_io io;
827 struct ev_timer to; 4782 ev_timer to;
828 void (*cb)(int revents, void *arg); 4783 void (*cb)(int revents, void *arg);
829 void *arg; 4784 void *arg;
830}; 4785};
831 4786
832static void 4787static void
833once_cb (struct ev_once *once, int revents) 4788once_cb (EV_P_ struct ev_once *once, int revents)
834{ 4789{
835 void (*cb)(int revents, void *arg) = once->cb; 4790 void (*cb)(int revents, void *arg) = once->cb;
836 void *arg = once->arg; 4791 void *arg = once->arg;
837 4792
838 evio_stop (&once->io); 4793 ev_io_stop (EV_A_ &once->io);
839 evtimer_stop (&once->to); 4794 ev_timer_stop (EV_A_ &once->to);
840 free (once); 4795 ev_free (once);
841 4796
842 cb (revents, arg); 4797 cb (revents, arg);
843} 4798}
844 4799
845static void 4800static void
846once_cb_io (struct ev_io *w, int revents) 4801once_cb_io (EV_P_ ev_io *w, int revents)
847{ 4802{
848 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4803 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4804
4805 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
849} 4806}
850 4807
851static void 4808static void
852once_cb_to (struct ev_timer *w, int revents) 4809once_cb_to (EV_P_ ev_timer *w, int revents)
853{ 4810{
854 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4811 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4812
4813 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
855} 4814}
856 4815
857void 4816void
858ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4817ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
859{ 4818{
860 struct ev_once *once = malloc (sizeof (struct ev_once)); 4819 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
861 4820
862 if (!once) 4821 if (expect_false (!once))
863 cb (EV_ERROR, arg); 4822 {
864 else 4823 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4824 return;
865 { 4825 }
4826
866 once->cb = cb; 4827 once->cb = cb;
867 once->arg = arg; 4828 once->arg = arg;
868 4829
869 evw_init (&once->io, once_cb_io); 4830 ev_init (&once->io, once_cb_io);
870
871 if (fd >= 0) 4831 if (fd >= 0)
4832 {
4833 ev_io_set (&once->io, fd, events);
4834 ev_io_start (EV_A_ &once->io);
4835 }
4836
4837 ev_init (&once->to, once_cb_to);
4838 if (timeout >= 0.)
4839 {
4840 ev_timer_set (&once->to, timeout, 0.);
4841 ev_timer_start (EV_A_ &once->to);
4842 }
4843}
4844
4845/*****************************************************************************/
4846
4847#if EV_WALK_ENABLE
4848void ecb_cold
4849ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4850{
4851 int i, j;
4852 ev_watcher_list *wl, *wn;
4853
4854 if (types & (EV_IO | EV_EMBED))
4855 for (i = 0; i < anfdmax; ++i)
4856 for (wl = anfds [i].head; wl; )
872 { 4857 {
873 evio_set (&once->io, fd, events); 4858 wn = wl->next;
874 evio_start (&once->io); 4859
4860#if EV_EMBED_ENABLE
4861 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4862 {
4863 if (types & EV_EMBED)
4864 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4865 }
4866 else
4867#endif
4868#if EV_USE_INOTIFY
4869 if (ev_cb ((ev_io *)wl) == infy_cb)
4870 ;
4871 else
4872#endif
4873 if ((ev_io *)wl != &pipe_w)
4874 if (types & EV_IO)
4875 cb (EV_A_ EV_IO, wl);
4876
4877 wl = wn;
875 } 4878 }
876 4879
877 evw_init (&once->to, once_cb_to); 4880 if (types & (EV_TIMER | EV_STAT))
878 4881 for (i = timercnt + HEAP0; i-- > HEAP0; )
879 if (timeout >= 0.) 4882#if EV_STAT_ENABLE
4883 /*TODO: timer is not always active*/
4884 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
880 { 4885 {
881 evtimer_set (&once->to, timeout, 0.); 4886 if (types & EV_STAT)
882 evtimer_start (&once->to); 4887 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
883 } 4888 }
884 } 4889 else
885} 4890#endif
4891 if (types & EV_TIMER)
4892 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
886 4893
887/*****************************************************************************/ 4894#if EV_PERIODIC_ENABLE
4895 if (types & EV_PERIODIC)
4896 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4897 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4898#endif
888 4899
889#if 0 4900#if EV_IDLE_ENABLE
4901 if (types & EV_IDLE)
4902 for (j = NUMPRI; j--; )
4903 for (i = idlecnt [j]; i--; )
4904 cb (EV_A_ EV_IDLE, idles [j][i]);
4905#endif
890 4906
891struct ev_io wio; 4907#if EV_FORK_ENABLE
4908 if (types & EV_FORK)
4909 for (i = forkcnt; i--; )
4910 if (ev_cb (forks [i]) != embed_fork_cb)
4911 cb (EV_A_ EV_FORK, forks [i]);
4912#endif
892 4913
893static void 4914#if EV_ASYNC_ENABLE
894sin_cb (struct ev_io *w, int revents) 4915 if (types & EV_ASYNC)
895{ 4916 for (i = asynccnt; i--; )
896 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents); 4917 cb (EV_A_ EV_ASYNC, asyncs [i]);
897} 4918#endif
898 4919
899static void 4920#if EV_PREPARE_ENABLE
900ocb (struct ev_timer *w, int revents) 4921 if (types & EV_PREPARE)
901{ 4922 for (i = preparecnt; i--; )
902 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data); 4923# if EV_EMBED_ENABLE
903 evtimer_stop (w); 4924 if (ev_cb (prepares [i]) != embed_prepare_cb)
904 evtimer_start (w);
905}
906
907static void
908scb (struct ev_signal *w, int revents)
909{
910 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
911 evio_stop (&wio);
912 evio_start (&wio);
913}
914
915static void
916gcb (struct ev_signal *w, int revents)
917{
918 fprintf (stderr, "generic %x\n", revents);
919
920}
921
922int main (void)
923{
924 ev_init (0);
925
926 evio_init (&wio, sin_cb, 0, EV_READ);
927 evio_start (&wio);
928
929 struct ev_timer t[10000];
930
931#if 0
932 int i;
933 for (i = 0; i < 10000; ++i)
934 {
935 struct ev_timer *w = t + i;
936 evw_init (w, ocb, i);
937 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
938 evtimer_start (w);
939 if (drand48 () < 0.5)
940 evtimer_stop (w);
941 }
942#endif 4925# endif
943 4926 cb (EV_A_ EV_PREPARE, prepares [i]);
944 struct ev_timer t1;
945 evtimer_init (&t1, ocb, 5, 10);
946 evtimer_start (&t1);
947
948 struct ev_signal sig;
949 evsignal_init (&sig, scb, SIGQUIT);
950 evsignal_start (&sig);
951
952 struct ev_check cw;
953 evcheck_init (&cw, gcb);
954 evcheck_start (&cw);
955
956 struct ev_idle iw;
957 evidle_init (&iw, gcb);
958 evidle_start (&iw);
959
960 ev_loop (0);
961
962 return 0;
963}
964
965#endif 4927#endif
966 4928
4929#if EV_CHECK_ENABLE
4930 if (types & EV_CHECK)
4931 for (i = checkcnt; i--; )
4932 cb (EV_A_ EV_CHECK, checks [i]);
4933#endif
967 4934
4935#if EV_SIGNAL_ENABLE
4936 if (types & EV_SIGNAL)
4937 for (i = 0; i < EV_NSIG - 1; ++i)
4938 for (wl = signals [i].head; wl; )
4939 {
4940 wn = wl->next;
4941 cb (EV_A_ EV_SIGNAL, wl);
4942 wl = wn;
4943 }
4944#endif
968 4945
4946#if EV_CHILD_ENABLE
4947 if (types & EV_CHILD)
4948 for (i = (EV_PID_HASHSIZE); i--; )
4949 for (wl = childs [i]; wl; )
4950 {
4951 wn = wl->next;
4952 cb (EV_A_ EV_CHILD, wl);
4953 wl = wn;
4954 }
4955#endif
4956/* EV_STAT 0x00001000 /* stat data changed */
4957/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4958}
4959#endif
969 4960
4961#if EV_MULTIPLICITY
4962 #include "ev_wrap.h"
4963#endif
4964

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines