ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.16 by root, Wed Oct 31 13:57:34 2007 UTC vs.
Revision 1.66 by root, Sun Nov 4 23:30:53 2007 UTC

1/*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * * Redistributions in binary form must reproduce the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer in the documentation and/or other materials provided
17 * with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
55#endif
56
1#include <math.h> 57#include <math.h>
2#include <stdlib.h> 58#include <stdlib.h>
3#include <unistd.h> 59#include <unistd.h>
4#include <fcntl.h> 60#include <fcntl.h>
5#include <signal.h> 61#include <signal.h>
7 63
8#include <stdio.h> 64#include <stdio.h>
9 65
10#include <assert.h> 66#include <assert.h>
11#include <errno.h> 67#include <errno.h>
68#include <sys/types.h>
69#ifndef WIN32
70# include <sys/wait.h>
71#endif
12#include <sys/time.h> 72#include <sys/time.h>
13#include <time.h> 73#include <time.h>
14 74
15#define HAVE_EPOLL 1 75/**/
16 76
17#ifndef HAVE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
18# ifdef CLOCK_MONOTONIC
19# define HAVE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
79#endif
80
81#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1
83#endif
84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
89#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
20# endif 102# endif
21#endif 103#endif
22 104
23#ifndef HAVE_SELECT
24# define HAVE_SELECT 1
25#endif
26
27#ifndef HAVE_EPOLL
28# define HAVE_EPOLL 0
29#endif
30
31#ifndef HAVE_REALTIME 105#ifndef EV_USE_REALTIME
32# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 106# define EV_USE_REALTIME 1
33#endif 107#endif
108
109/**/
110
111#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0
114#endif
115
116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0
119#endif
120
121/**/
34 122
35#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
36#define MAX_BLOCKTIME 60. 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
37 127
38#include "ev.h" 128#include "ev.h"
129
130#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
137
138#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1)
140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
39 143
40typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
41typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
42typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
43 147
44static ev_tstamp now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
45ev_tstamp ev_now;
46int ev_method;
47
48static int have_monotonic; /* runtime */
49
50static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
51static void (*method_modify)(int fd, int oev, int nev);
52static void (*method_poll)(ev_tstamp timeout);
53 149
54/*****************************************************************************/ 150/*****************************************************************************/
55 151
56ev_tstamp 152typedef struct
153{
154 struct ev_watcher_list *head;
155 unsigned char events;
156 unsigned char reify;
157} ANFD;
158
159typedef struct
160{
161 W w;
162 int events;
163} ANPENDING;
164
165#if EV_MULTIPLICITY
166
167struct ev_loop
168{
169# define VAR(name,decl) decl;
170# include "ev_vars.h"
171};
172# undef VAR
173# include "ev_wrap.h"
174
175#else
176
177# define VAR(name,decl) static decl;
178# include "ev_vars.h"
179# undef VAR
180
181#endif
182
183/*****************************************************************************/
184
185inline ev_tstamp
57ev_time (void) 186ev_time (void)
58{ 187{
59#if HAVE_REALTIME 188#if EV_USE_REALTIME
60 struct timespec ts; 189 struct timespec ts;
61 clock_gettime (CLOCK_REALTIME, &ts); 190 clock_gettime (CLOCK_REALTIME, &ts);
62 return ts.tv_sec + ts.tv_nsec * 1e-9; 191 return ts.tv_sec + ts.tv_nsec * 1e-9;
63#else 192#else
64 struct timeval tv; 193 struct timeval tv;
65 gettimeofday (&tv, 0); 194 gettimeofday (&tv, 0);
66 return tv.tv_sec + tv.tv_usec * 1e-6; 195 return tv.tv_sec + tv.tv_usec * 1e-6;
67#endif 196#endif
68} 197}
69 198
70static ev_tstamp 199inline ev_tstamp
71get_clock (void) 200get_clock (void)
72{ 201{
73#if HAVE_MONOTONIC 202#if EV_USE_MONOTONIC
74 if (have_monotonic) 203 if (expect_true (have_monotonic))
75 { 204 {
76 struct timespec ts; 205 struct timespec ts;
77 clock_gettime (CLOCK_MONOTONIC, &ts); 206 clock_gettime (CLOCK_MONOTONIC, &ts);
78 return ts.tv_sec + ts.tv_nsec * 1e-9; 207 return ts.tv_sec + ts.tv_nsec * 1e-9;
79 } 208 }
80#endif 209#endif
81 210
82 return ev_time (); 211 return ev_time ();
83} 212}
84 213
214ev_tstamp
215ev_now (EV_P)
216{
217 return rt_now;
218}
219
220#define array_roundsize(base,n) ((n) | 4 & ~3)
221
85#define array_needsize(base,cur,cnt,init) \ 222#define array_needsize(base,cur,cnt,init) \
86 if ((cnt) > cur) \ 223 if (expect_false ((cnt) > cur)) \
87 { \ 224 { \
88 int newcnt = cur ? cur << 1 : 16; \ 225 int newcnt = cur; \
226 do \
227 { \
228 newcnt = array_roundsize (base, newcnt << 1); \
229 } \
230 while ((cnt) > newcnt); \
231 \
89 base = realloc (base, sizeof (*base) * (newcnt)); \ 232 base = realloc (base, sizeof (*base) * (newcnt)); \
90 init (base + cur, newcnt - cur); \ 233 init (base + cur, newcnt - cur); \
91 cur = newcnt; \ 234 cur = newcnt; \
92 } 235 }
93 236
237#define array_free(stem, idx) \
238 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
239
94/*****************************************************************************/ 240/*****************************************************************************/
95 241
96typedef struct
97{
98 struct ev_io *head;
99 unsigned char wev, rev; /* want, received event set */
100} ANFD;
101
102static ANFD *anfds;
103static int anfdmax;
104
105static int *fdchanges;
106static int fdchangemax, fdchangecnt;
107
108static void 242static void
109anfds_init (ANFD *base, int count) 243anfds_init (ANFD *base, int count)
110{ 244{
111 while (count--) 245 while (count--)
112 { 246 {
113 base->head = 0; 247 base->head = 0;
114 base->wev = base->rev = EV_NONE; 248 base->events = EV_NONE;
249 base->reify = 0;
250
115 ++base; 251 ++base;
116 } 252 }
117} 253}
118 254
119typedef struct
120{
121 W w;
122 int events;
123} ANPENDING;
124
125static ANPENDING *pendings;
126static int pendingmax, pendingcnt;
127
128static void 255static void
129event (W w, int events) 256event (EV_P_ W w, int events)
130{ 257{
131 if (w->active) 258 if (w->pending)
132 { 259 {
133 w->pending = ++pendingcnt;
134 array_needsize (pendings, pendingmax, pendingcnt, );
135 pendings [pendingcnt - 1].w = w;
136 pendings [pendingcnt - 1].events = events; 260 pendings [ABSPRI (w)][w->pending - 1].events |= events;
261 return;
137 } 262 }
138}
139 263
264 w->pending = ++pendingcnt [ABSPRI (w)];
265 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
266 pendings [ABSPRI (w)][w->pending - 1].w = w;
267 pendings [ABSPRI (w)][w->pending - 1].events = events;
268}
269
140static void 270static void
271queue_events (EV_P_ W *events, int eventcnt, int type)
272{
273 int i;
274
275 for (i = 0; i < eventcnt; ++i)
276 event (EV_A_ events [i], type);
277}
278
279static void
141fd_event (int fd, int events) 280fd_event (EV_P_ int fd, int events)
142{ 281{
143 ANFD *anfd = anfds + fd; 282 ANFD *anfd = anfds + fd;
144 struct ev_io *w; 283 struct ev_io *w;
145 284
146 for (w = anfd->head; w; w = w->next) 285 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
147 { 286 {
148 int ev = w->events & events; 287 int ev = w->events & events;
149 288
150 if (ev) 289 if (ev)
151 event ((W)w, ev); 290 event (EV_A_ (W)w, ev);
152 } 291 }
153} 292}
154 293
294/*****************************************************************************/
295
155static void 296static void
156queue_events (W *events, int eventcnt, int type) 297fd_reify (EV_P)
157{ 298{
158 int i; 299 int i;
159 300
160 for (i = 0; i < eventcnt; ++i) 301 for (i = 0; i < fdchangecnt; ++i)
161 event (events [i], type); 302 {
303 int fd = fdchanges [i];
304 ANFD *anfd = anfds + fd;
305 struct ev_io *w;
306
307 int events = 0;
308
309 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
310 events |= w->events;
311
312 anfd->reify = 0;
313
314 method_modify (EV_A_ fd, anfd->events, events);
315 anfd->events = events;
316 }
317
318 fdchangecnt = 0;
319}
320
321static void
322fd_change (EV_P_ int fd)
323{
324 if (anfds [fd].reify || fdchangecnt < 0)
325 return;
326
327 anfds [fd].reify = 1;
328
329 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
331 fdchanges [fdchangecnt - 1] = fd;
332}
333
334static void
335fd_kill (EV_P_ int fd)
336{
337 struct ev_io *w;
338
339 while ((w = (struct ev_io *)anfds [fd].head))
340 {
341 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 }
344}
345
346/* called on EBADF to verify fds */
347static void
348fd_ebadf (EV_P)
349{
350 int fd;
351
352 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events)
354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
355 fd_kill (EV_A_ fd);
356}
357
358/* called on ENOMEM in select/poll to kill some fds and retry */
359static void
360fd_enomem (EV_P)
361{
362 int fd;
363
364 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events)
366 {
367 close (fd);
368 fd_kill (EV_A_ fd);
369 return;
370 }
371}
372
373/* susually called after fork if method needs to re-arm all fds from scratch */
374static void
375fd_rearm_all (EV_P)
376{
377 int fd;
378
379 /* this should be highly optimised to not do anything but set a flag */
380 for (fd = 0; fd < anfdmax; ++fd)
381 if (anfds [fd].events)
382 {
383 anfds [fd].events = 0;
384 fd_change (EV_A_ fd);
385 }
162} 386}
163 387
164/*****************************************************************************/ 388/*****************************************************************************/
165 389
166static struct ev_timer **timers;
167static int timermax, timercnt;
168
169static struct ev_periodic **periodics;
170static int periodicmax, periodiccnt;
171
172static void 390static void
173upheap (WT *timers, int k) 391upheap (WT *heap, int k)
174{ 392{
175 WT w = timers [k]; 393 WT w = heap [k];
176 394
177 while (k && timers [k >> 1]->at > w->at) 395 while (k && heap [k >> 1]->at > w->at)
178 { 396 {
179 timers [k] = timers [k >> 1]; 397 heap [k] = heap [k >> 1];
180 timers [k]->active = k + 1; 398 ((W)heap [k])->active = k + 1;
181 k >>= 1; 399 k >>= 1;
182 } 400 }
183 401
184 timers [k] = w; 402 heap [k] = w;
185 timers [k]->active = k + 1; 403 ((W)heap [k])->active = k + 1;
186 404
187} 405}
188 406
189static void 407static void
190downheap (WT *timers, int N, int k) 408downheap (WT *heap, int N, int k)
191{ 409{
192 WT w = timers [k]; 410 WT w = heap [k];
193 411
194 while (k < (N >> 1)) 412 while (k < (N >> 1))
195 { 413 {
196 int j = k << 1; 414 int j = k << 1;
197 415
198 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 416 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
199 ++j; 417 ++j;
200 418
201 if (w->at <= timers [j]->at) 419 if (w->at <= heap [j]->at)
202 break; 420 break;
203 421
204 timers [k] = timers [j]; 422 heap [k] = heap [j];
205 timers [k]->active = k + 1; 423 ((W)heap [k])->active = k + 1;
206 k = j; 424 k = j;
207 } 425 }
208 426
209 timers [k] = w; 427 heap [k] = w;
210 timers [k]->active = k + 1; 428 ((W)heap [k])->active = k + 1;
211} 429}
212 430
213/*****************************************************************************/ 431/*****************************************************************************/
214 432
215typedef struct 433typedef struct
216{ 434{
217 struct ev_signal *head; 435 struct ev_watcher_list *head;
218 sig_atomic_t gotsig; 436 sig_atomic_t volatile gotsig;
219} ANSIG; 437} ANSIG;
220 438
221static ANSIG *signals; 439static ANSIG *signals;
222static int signalmax; 440static int signalmax;
223 441
224static int sigpipe [2]; 442static int sigpipe [2];
225static sig_atomic_t gotsig; 443static sig_atomic_t volatile gotsig;
226static struct ev_io sigev; 444static struct ev_io sigev;
227 445
228static void 446static void
229signals_init (ANSIG *base, int count) 447signals_init (ANSIG *base, int count)
230{ 448{
231 while (count--) 449 while (count--)
232 { 450 {
233 base->head = 0; 451 base->head = 0;
234 base->gotsig = 0; 452 base->gotsig = 0;
453
235 ++base; 454 ++base;
236 } 455 }
237} 456}
238 457
239static void 458static void
241{ 460{
242 signals [signum - 1].gotsig = 1; 461 signals [signum - 1].gotsig = 1;
243 462
244 if (!gotsig) 463 if (!gotsig)
245 { 464 {
465 int old_errno = errno;
246 gotsig = 1; 466 gotsig = 1;
247 write (sigpipe [1], &gotsig, 1); 467 write (sigpipe [1], &signum, 1);
468 errno = old_errno;
248 } 469 }
249} 470}
250 471
251static void 472static void
252sigcb (struct ev_io *iow, int revents) 473sigcb (EV_P_ struct ev_io *iow, int revents)
253{ 474{
254 struct ev_signal *w; 475 struct ev_watcher_list *w;
255 int sig; 476 int signum;
256 477
478 read (sigpipe [0], &revents, 1);
257 gotsig = 0; 479 gotsig = 0;
258 read (sigpipe [0], &revents, 1);
259 480
260 for (sig = signalmax; sig--; ) 481 for (signum = signalmax; signum--; )
261 if (signals [sig].gotsig) 482 if (signals [signum].gotsig)
262 { 483 {
263 signals [sig].gotsig = 0; 484 signals [signum].gotsig = 0;
264 485
265 for (w = signals [sig].head; w; w = w->next) 486 for (w = signals [signum].head; w; w = w->next)
266 event ((W)w, EV_SIGNAL); 487 event (EV_A_ (W)w, EV_SIGNAL);
267 } 488 }
268} 489}
269 490
270static void 491static void
271siginit (void) 492siginit (EV_P)
272{ 493{
494#ifndef WIN32
273 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
274 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
275 497
276 /* rather than sort out wether we really need nb, set it */ 498 /* rather than sort out wether we really need nb, set it */
277 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
278 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
279 502
280 evio_set (&sigev, sigpipe [0], EV_READ); 503 ev_io_set (&sigev, sigpipe [0], EV_READ);
281 evio_start (&sigev); 504 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */
282} 506}
283 507
284/*****************************************************************************/ 508/*****************************************************************************/
285 509
286static struct ev_idle **idles; 510#ifndef WIN32
287static int idlemax, idlecnt;
288 511
289static struct ev_check **checks; 512static struct ev_child *childs [PID_HASHSIZE];
290static int checkmax, checkcnt; 513static struct ev_signal childev;
514
515#ifndef WCONTINUED
516# define WCONTINUED 0
517#endif
518
519static void
520child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
521{
522 struct ev_child *w;
523
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid)
526 {
527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid;
529 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD);
531 }
532}
533
534static void
535childcb (EV_P_ struct ev_signal *sw, int revents)
536{
537 int pid, status;
538
539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540 {
541 /* make sure we are called again until all childs have been reaped */
542 event (EV_A_ (W)sw, EV_SIGNAL);
543
544 child_reap (EV_A_ sw, pid, pid, status);
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 }
547}
548
549#endif
291 550
292/*****************************************************************************/ 551/*****************************************************************************/
293 552
553#if EV_USE_KQUEUE
554# include "ev_kqueue.c"
555#endif
294#if HAVE_EPOLL 556#if EV_USE_EPOLL
295# include "ev_epoll.c" 557# include "ev_epoll.c"
296#endif 558#endif
559#if EV_USE_POLL
560# include "ev_poll.c"
561#endif
297#if HAVE_SELECT 562#if EV_USE_SELECT
298# include "ev_select.c" 563# include "ev_select.c"
299#endif 564#endif
300 565
301int ev_init (int flags) 566int
567ev_version_major (void)
302{ 568{
569 return EV_VERSION_MAJOR;
570}
571
572int
573ev_version_minor (void)
574{
575 return EV_VERSION_MINOR;
576}
577
578/* return true if we are running with elevated privileges and should ignore env variables */
579static int
580enable_secure (void)
581{
582#ifdef WIN32
583 return 0;
584#else
585 return getuid () != geteuid ()
586 || getgid () != getegid ();
587#endif
588}
589
590int
591ev_method (EV_P)
592{
593 return method;
594}
595
596static void
597loop_init (EV_P_ int methods)
598{
599 if (!method)
600 {
303#if HAVE_MONOTONIC 601#if EV_USE_MONOTONIC
304 { 602 {
305 struct timespec ts; 603 struct timespec ts;
306 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 604 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
307 have_monotonic = 1; 605 have_monotonic = 1;
308 } 606 }
309#endif 607#endif
310 608
311 ev_now = ev_time (); 609 rt_now = ev_time ();
312 now = get_clock (); 610 mn_now = get_clock ();
313 diff = ev_now - now; 611 now_floor = mn_now;
612 rtmn_diff = rt_now - mn_now;
314 613
614 if (methods == EVMETHOD_AUTO)
615 if (!enable_secure () && getenv ("LIBEV_METHODS"))
616 methods = atoi (getenv ("LIBEV_METHODS"));
617 else
618 methods = EVMETHOD_ANY;
619
620 method = 0;
621#if EV_USE_WIN32
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
623#endif
624#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
626#endif
627#if EV_USE_EPOLL
628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
629#endif
630#if EV_USE_POLL
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
632#endif
633#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
635#endif
636 }
637}
638
639void
640loop_destroy (EV_P)
641{
642 int i;
643
644#if EV_USE_WIN32
645 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
646#endif
647#if EV_USE_KQUEUE
648 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
649#endif
650#if EV_USE_EPOLL
651 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
652#endif
653#if EV_USE_POLL
654 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
655#endif
656#if EV_USE_SELECT
657 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
658#endif
659
660 for (i = NUMPRI; i--; )
661 array_free (pending, [i]);
662
663 array_free (fdchange, );
664 array_free (timer, );
665 array_free (periodic, );
666 array_free (idle, );
667 array_free (prepare, );
668 array_free (check, );
669
670 method = 0;
671 /*TODO*/
672}
673
674void
675loop_fork (EV_P)
676{
677 /*TODO*/
678#if EV_USE_EPOLL
679 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
680#endif
681#if EV_USE_KQUEUE
682 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
683#endif
684}
685
686#if EV_MULTIPLICITY
687struct ev_loop *
688ev_loop_new (int methods)
689{
690 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
691
692 loop_init (EV_A_ methods);
693
694 if (ev_method (EV_A))
695 return loop;
696
697 return 0;
698}
699
700void
701ev_loop_destroy (EV_P)
702{
703 loop_destroy (EV_A);
704 free (loop);
705}
706
707void
708ev_loop_fork (EV_P)
709{
710 loop_fork (EV_A);
711}
712
713#endif
714
715#if EV_MULTIPLICITY
716struct ev_loop default_loop_struct;
717static struct ev_loop *default_loop;
718
719struct ev_loop *
720#else
721static int default_loop;
722
723int
724#endif
725ev_default_loop (int methods)
726{
727 if (sigpipe [0] == sigpipe [1])
315 if (pipe (sigpipe)) 728 if (pipe (sigpipe))
316 return 0; 729 return 0;
317 730
318 ev_method = EVMETHOD_NONE; 731 if (!default_loop)
319#if HAVE_EPOLL
320 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
321#endif
322#if HAVE_SELECT
323 if (ev_method == EVMETHOD_NONE) select_init (flags);
324#endif
325
326 if (ev_method)
327 { 732 {
733#if EV_MULTIPLICITY
734 struct ev_loop *loop = default_loop = &default_loop_struct;
735#else
736 default_loop = 1;
737#endif
738
739 loop_init (EV_A_ methods);
740
741 if (ev_method (EV_A))
742 {
328 evw_init (&sigev, sigcb); 743 ev_watcher_init (&sigev, sigcb);
744 ev_set_priority (&sigev, EV_MAXPRI);
329 siginit (); 745 siginit (EV_A);
330 }
331 746
332 return ev_method; 747#ifndef WIN32
333} 748 ev_signal_init (&childev, childcb, SIGCHLD);
334 749 ev_set_priority (&childev, EV_MAXPRI);
335/*****************************************************************************/ 750 ev_signal_start (EV_A_ &childev);
336 751 ev_unref (EV_A); /* child watcher should not keep loop alive */
337void ev_prefork (void)
338{
339 /* nop */
340}
341
342void ev_postfork_parent (void)
343{
344 /* nop */
345}
346
347void ev_postfork_child (void)
348{
349#if HAVE_EPOLL
350 if (ev_method == EVMETHOD_EPOLL)
351 epoll_postfork_child ();
352#endif 752#endif
753 }
754 else
755 default_loop = 0;
756 }
353 757
758 return default_loop;
759}
760
761void
762ev_default_destroy (void)
763{
764#if EV_MULTIPLICITY
765 struct ev_loop *loop = default_loop;
766#endif
767
768 ev_ref (EV_A); /* child watcher */
769 ev_signal_stop (EV_A_ &childev);
770
771 ev_ref (EV_A); /* signal watcher */
354 evio_stop (&sigev); 772 ev_io_stop (EV_A_ &sigev);
773
774 close (sigpipe [0]); sigpipe [0] = 0;
775 close (sigpipe [1]); sigpipe [1] = 0;
776
777 loop_destroy (EV_A);
778}
779
780void
781ev_default_fork (void)
782{
783#if EV_MULTIPLICITY
784 struct ev_loop *loop = default_loop;
785#endif
786
787 loop_fork (EV_A);
788
789 ev_io_stop (EV_A_ &sigev);
355 close (sigpipe [0]); 790 close (sigpipe [0]);
356 close (sigpipe [1]); 791 close (sigpipe [1]);
357 pipe (sigpipe); 792 pipe (sigpipe);
793
794 ev_ref (EV_A); /* signal watcher */
358 siginit (); 795 siginit (EV_A);
359} 796}
360 797
361/*****************************************************************************/ 798/*****************************************************************************/
362 799
363static void 800static void
364fd_reify (void) 801call_pending (EV_P)
365{ 802{
366 int i; 803 int pri;
367 804
368 for (i = 0; i < fdchangecnt; ++i) 805 for (pri = NUMPRI; pri--; )
369 { 806 while (pendingcnt [pri])
370 int fd = fdchanges [i];
371 ANFD *anfd = anfds + fd;
372 struct ev_io *w;
373
374 int wev = 0;
375
376 for (w = anfd->head; w; w = w->next)
377 wev |= w->events;
378
379 if (anfd->wev != wev)
380 { 807 {
381 method_modify (fd, anfd->wev, wev); 808 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
382 anfd->wev = wev;
383 }
384 }
385 809
386 fdchangecnt = 0;
387}
388
389static void
390call_pending ()
391{
392 int i;
393
394 for (i = 0; i < pendingcnt; ++i)
395 {
396 ANPENDING *p = pendings + i;
397
398 if (p->w) 810 if (p->w)
399 { 811 {
400 p->w->pending = 0; 812 p->w->pending = 0;
401 p->w->cb (p->w, p->events); 813 p->w->cb (EV_A_ p->w, p->events);
402 } 814 }
403 } 815 }
404
405 pendingcnt = 0;
406} 816}
407 817
408static void 818static void
409timers_reify () 819timers_reify (EV_P)
410{ 820{
411 while (timercnt && timers [0]->at <= now) 821 while (timercnt && ((WT)timers [0])->at <= mn_now)
412 { 822 {
413 struct ev_timer *w = timers [0]; 823 struct ev_timer *w = timers [0];
414 824
415 event ((W)w, EV_TIMEOUT); 825 assert (("inactive timer on timer heap detected", ev_is_active (w)));
416 826
417 /* first reschedule or stop timer */ 827 /* first reschedule or stop timer */
418 if (w->repeat) 828 if (w->repeat)
419 { 829 {
830 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
420 w->at = now + w->repeat; 831 ((WT)w)->at = mn_now + w->repeat;
421 assert (("timer timeout in the past, negative repeat?", w->at > now));
422 downheap ((WT *)timers, timercnt, 0); 832 downheap ((WT *)timers, timercnt, 0);
423 } 833 }
424 else 834 else
425 evtimer_stop (w); /* nonrepeating: stop timer */ 835 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
426 }
427}
428 836
837 event (EV_A_ (W)w, EV_TIMEOUT);
838 }
839}
840
429static void 841static void
430periodics_reify () 842periodics_reify (EV_P)
431{ 843{
432 while (periodiccnt && periodics [0]->at <= ev_now) 844 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
433 { 845 {
434 struct ev_periodic *w = periodics [0]; 846 struct ev_periodic *w = periodics [0];
847
848 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
435 849
436 /* first reschedule or stop timer */ 850 /* first reschedule or stop timer */
437 if (w->interval) 851 if (w->interval)
438 { 852 {
439 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 853 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
440 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 854 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
441 downheap ((WT *)periodics, periodiccnt, 0); 855 downheap ((WT *)periodics, periodiccnt, 0);
442 } 856 }
443 else 857 else
444 evperiodic_stop (w); /* nonrepeating: stop timer */ 858 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
445 859
446 event ((W)w, EV_TIMEOUT); 860 event (EV_A_ (W)w, EV_PERIODIC);
447 } 861 }
448} 862}
449 863
450static void 864static void
451periodics_reschedule (ev_tstamp diff) 865periodics_reschedule (EV_P)
452{ 866{
453 int i; 867 int i;
454 868
455 /* adjust periodics after time jump */ 869 /* adjust periodics after time jump */
456 for (i = 0; i < periodiccnt; ++i) 870 for (i = 0; i < periodiccnt; ++i)
457 { 871 {
458 struct ev_periodic *w = periodics [i]; 872 struct ev_periodic *w = periodics [i];
459 873
460 if (w->interval) 874 if (w->interval)
461 { 875 {
462 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 876 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
463 877
464 if (fabs (diff) >= 1e-4) 878 if (fabs (diff) >= 1e-4)
465 { 879 {
466 evperiodic_stop (w); 880 ev_periodic_stop (EV_A_ w);
467 evperiodic_start (w); 881 ev_periodic_start (EV_A_ w);
468 882
469 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 883 i = 0; /* restart loop, inefficient, but time jumps should be rare */
470 } 884 }
471 } 885 }
472 } 886 }
473} 887}
474 888
889inline int
890time_update_monotonic (EV_P)
891{
892 mn_now = get_clock ();
893
894 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
895 {
896 rt_now = rtmn_diff + mn_now;
897 return 0;
898 }
899 else
900 {
901 now_floor = mn_now;
902 rt_now = ev_time ();
903 return 1;
904 }
905}
906
475static void 907static void
476time_update () 908time_update (EV_P)
477{ 909{
478 int i; 910 int i;
479 911
480 ev_now = ev_time (); 912#if EV_USE_MONOTONIC
481
482 if (have_monotonic) 913 if (expect_true (have_monotonic))
483 { 914 {
484 ev_tstamp odiff = diff; 915 if (time_update_monotonic (EV_A))
485
486 for (i = 4; --i; ) /* loop a few times, before making important decisions */
487 { 916 {
488 now = get_clock (); 917 ev_tstamp odiff = rtmn_diff;
918
919 for (i = 4; --i; ) /* loop a few times, before making important decisions */
920 {
489 diff = ev_now - now; 921 rtmn_diff = rt_now - mn_now;
490 922
491 if (fabs (odiff - diff) < MIN_TIMEJUMP) 923 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
492 return; /* all is well */ 924 return; /* all is well */
493 925
494 ev_now = ev_time (); 926 rt_now = ev_time ();
927 mn_now = get_clock ();
928 now_floor = mn_now;
929 }
930
931 periodics_reschedule (EV_A);
932 /* no timer adjustment, as the monotonic clock doesn't jump */
933 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
495 } 934 }
496
497 periodics_reschedule (diff - odiff);
498 /* no timer adjustment, as the monotonic clock doesn't jump */
499 } 935 }
500 else 936 else
937#endif
501 { 938 {
502 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 939 rt_now = ev_time ();
940
941 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
503 { 942 {
504 periodics_reschedule (ev_now - now); 943 periodics_reschedule (EV_A);
505 944
506 /* adjust timers. this is easy, as the offset is the same for all */ 945 /* adjust timers. this is easy, as the offset is the same for all */
507 for (i = 0; i < timercnt; ++i) 946 for (i = 0; i < timercnt; ++i)
508 timers [i]->at += diff; 947 ((WT)timers [i])->at += rt_now - mn_now;
509 } 948 }
510 949
511 now = ev_now; 950 mn_now = rt_now;
512 } 951 }
513} 952}
514 953
515int ev_loop_done; 954void
955ev_ref (EV_P)
956{
957 ++activecnt;
958}
516 959
960void
961ev_unref (EV_P)
962{
963 --activecnt;
964}
965
966static int loop_done;
967
968void
517void ev_loop (int flags) 969ev_loop (EV_P_ int flags)
518{ 970{
519 double block; 971 double block;
520 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0; 972 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
521
522 if (checkcnt)
523 {
524 queue_events ((W *)checks, checkcnt, EV_CHECK);
525 call_pending ();
526 }
527 973
528 do 974 do
529 { 975 {
976 /* queue check watchers (and execute them) */
977 if (expect_false (preparecnt))
978 {
979 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
980 call_pending (EV_A);
981 }
982
530 /* update fd-related kernel structures */ 983 /* update fd-related kernel structures */
531 fd_reify (); 984 fd_reify (EV_A);
532 985
533 /* calculate blocking time */ 986 /* calculate blocking time */
534 987
535 /* we only need this for !monotonic clock, but as we always have timers, we just calculate it every time */ 988 /* we only need this for !monotonic clockor timers, but as we basically
989 always have timers, we just calculate it always */
990#if EV_USE_MONOTONIC
991 if (expect_true (have_monotonic))
992 time_update_monotonic (EV_A);
993 else
994#endif
995 {
536 ev_now = ev_time (); 996 rt_now = ev_time ();
997 mn_now = rt_now;
998 }
537 999
538 if (flags & EVLOOP_NONBLOCK || idlecnt) 1000 if (flags & EVLOOP_NONBLOCK || idlecnt)
539 block = 0.; 1001 block = 0.;
540 else 1002 else
541 { 1003 {
542 block = MAX_BLOCKTIME; 1004 block = MAX_BLOCKTIME;
543 1005
544 if (timercnt) 1006 if (timercnt)
545 { 1007 {
546 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1008 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
547 if (block > to) block = to; 1009 if (block > to) block = to;
548 } 1010 }
549 1011
550 if (periodiccnt) 1012 if (periodiccnt)
551 { 1013 {
552 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1014 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
553 if (block > to) block = to; 1015 if (block > to) block = to;
554 } 1016 }
555 1017
556 if (block < 0.) block = 0.; 1018 if (block < 0.) block = 0.;
557 } 1019 }
558 1020
559 method_poll (block); 1021 method_poll (EV_A_ block);
560 1022
561 /* update ev_now, do magic */ 1023 /* update rt_now, do magic */
562 time_update (); 1024 time_update (EV_A);
563 1025
564 /* queue pending timers and reschedule them */ 1026 /* queue pending timers and reschedule them */
1027 timers_reify (EV_A); /* relative timers called last */
565 periodics_reify (); /* absolute timers first */ 1028 periodics_reify (EV_A); /* absolute timers called first */
566 timers_reify (); /* relative timers second */
567 1029
568 /* queue idle watchers unless io or timers are pending */ 1030 /* queue idle watchers unless io or timers are pending */
569 if (!pendingcnt) 1031 if (!pendingcnt)
570 queue_events ((W *)idles, idlecnt, EV_IDLE); 1032 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
571 1033
572 /* queue check and possibly idle watchers */ 1034 /* queue check watchers, to be executed first */
1035 if (checkcnt)
573 queue_events ((W *)checks, checkcnt, EV_CHECK); 1036 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
574 1037
575 call_pending (); 1038 call_pending (EV_A);
576 } 1039 }
577 while (!ev_loop_done); 1040 while (activecnt && !loop_done);
578 1041
579 if (ev_loop_done != 2) 1042 if (loop_done != 2)
580 ev_loop_done = 0; 1043 loop_done = 0;
1044}
1045
1046void
1047ev_unloop (EV_P_ int how)
1048{
1049 loop_done = how;
581} 1050}
582 1051
583/*****************************************************************************/ 1052/*****************************************************************************/
584 1053
585static void 1054inline void
586wlist_add (WL *head, WL elem) 1055wlist_add (WL *head, WL elem)
587{ 1056{
588 elem->next = *head; 1057 elem->next = *head;
589 *head = elem; 1058 *head = elem;
590} 1059}
591 1060
592static void 1061inline void
593wlist_del (WL *head, WL elem) 1062wlist_del (WL *head, WL elem)
594{ 1063{
595 while (*head) 1064 while (*head)
596 { 1065 {
597 if (*head == elem) 1066 if (*head == elem)
602 1071
603 head = &(*head)->next; 1072 head = &(*head)->next;
604 } 1073 }
605} 1074}
606 1075
607static void 1076inline void
608ev_clear (W w) 1077ev_clear_pending (EV_P_ W w)
609{ 1078{
610 if (w->pending) 1079 if (w->pending)
611 { 1080 {
612 pendings [w->pending - 1].w = 0; 1081 pendings [ABSPRI (w)][w->pending - 1].w = 0;
613 w->pending = 0; 1082 w->pending = 0;
614 } 1083 }
615} 1084}
616 1085
617static void 1086inline void
618ev_start (W w, int active) 1087ev_start (EV_P_ W w, int active)
619{ 1088{
1089 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1090 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1091
620 w->active = active; 1092 w->active = active;
1093 ev_ref (EV_A);
621} 1094}
622 1095
623static void 1096inline void
624ev_stop (W w) 1097ev_stop (EV_P_ W w)
625{ 1098{
1099 ev_unref (EV_A);
626 w->active = 0; 1100 w->active = 0;
627} 1101}
628 1102
629/*****************************************************************************/ 1103/*****************************************************************************/
630 1104
631void 1105void
632evio_start (struct ev_io *w) 1106ev_io_start (EV_P_ struct ev_io *w)
633{ 1107{
1108 int fd = w->fd;
1109
634 if (ev_is_active (w)) 1110 if (ev_is_active (w))
635 return; 1111 return;
636 1112
637 int fd = w->fd; 1113 assert (("ev_io_start called with negative fd", fd >= 0));
638 1114
639 ev_start ((W)w, 1); 1115 ev_start (EV_A_ (W)w, 1);
640 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1116 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
641 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1117 wlist_add ((WL *)&anfds[fd].head, (WL)w);
642 1118
643 ++fdchangecnt; 1119 fd_change (EV_A_ fd);
644 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
645 fdchanges [fdchangecnt - 1] = fd;
646} 1120}
647 1121
648void 1122void
649evio_stop (struct ev_io *w) 1123ev_io_stop (EV_P_ struct ev_io *w)
650{ 1124{
651 ev_clear ((W)w); 1125 ev_clear_pending (EV_A_ (W)w);
652 if (!ev_is_active (w)) 1126 if (!ev_is_active (w))
653 return; 1127 return;
654 1128
655 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1129 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
656 ev_stop ((W)w); 1130 ev_stop (EV_A_ (W)w);
657 1131
658 ++fdchangecnt; 1132 fd_change (EV_A_ w->fd);
659 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
660 fdchanges [fdchangecnt - 1] = w->fd;
661} 1133}
662 1134
663void 1135void
664evtimer_start (struct ev_timer *w) 1136ev_timer_start (EV_P_ struct ev_timer *w)
665{ 1137{
666 if (ev_is_active (w)) 1138 if (ev_is_active (w))
667 return; 1139 return;
668 1140
669 w->at += now; 1141 ((WT)w)->at += mn_now;
670 1142
671 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1143 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
672 1144
673 ev_start ((W)w, ++timercnt); 1145 ev_start (EV_A_ (W)w, ++timercnt);
674 array_needsize (timers, timermax, timercnt, ); 1146 array_needsize (timers, timermax, timercnt, );
675 timers [timercnt - 1] = w; 1147 timers [timercnt - 1] = w;
676 upheap ((WT *)timers, timercnt - 1); 1148 upheap ((WT *)timers, timercnt - 1);
677}
678 1149
1150 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1151}
1152
679void 1153void
680evtimer_stop (struct ev_timer *w) 1154ev_timer_stop (EV_P_ struct ev_timer *w)
681{ 1155{
682 ev_clear ((W)w); 1156 ev_clear_pending (EV_A_ (W)w);
683 if (!ev_is_active (w)) 1157 if (!ev_is_active (w))
684 return; 1158 return;
685 1159
1160 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1161
686 if (w->active < timercnt--) 1162 if (((W)w)->active < timercnt--)
687 { 1163 {
688 timers [w->active - 1] = timers [timercnt]; 1164 timers [((W)w)->active - 1] = timers [timercnt];
689 downheap ((WT *)timers, timercnt, w->active - 1); 1165 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
690 } 1166 }
691 1167
692 w->at = w->repeat; 1168 ((WT)w)->at = w->repeat;
693 1169
694 ev_stop ((W)w); 1170 ev_stop (EV_A_ (W)w);
695} 1171}
696 1172
697void 1173void
698evtimer_again (struct ev_timer *w) 1174ev_timer_again (EV_P_ struct ev_timer *w)
699{ 1175{
700 if (ev_is_active (w)) 1176 if (ev_is_active (w))
701 { 1177 {
702 if (w->repeat) 1178 if (w->repeat)
703 { 1179 {
704 w->at = now + w->repeat; 1180 ((WT)w)->at = mn_now + w->repeat;
705 downheap ((WT *)timers, timercnt, w->active - 1); 1181 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
706 } 1182 }
707 else 1183 else
708 evtimer_stop (w); 1184 ev_timer_stop (EV_A_ w);
709 } 1185 }
710 else if (w->repeat) 1186 else if (w->repeat)
711 evtimer_start (w); 1187 ev_timer_start (EV_A_ w);
712} 1188}
713 1189
714void 1190void
715evperiodic_start (struct ev_periodic *w) 1191ev_periodic_start (EV_P_ struct ev_periodic *w)
716{ 1192{
717 if (ev_is_active (w)) 1193 if (ev_is_active (w))
718 return; 1194 return;
719 1195
720 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1196 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
721 1197
722 /* this formula differs from the one in periodic_reify because we do not always round up */ 1198 /* this formula differs from the one in periodic_reify because we do not always round up */
723 if (w->interval) 1199 if (w->interval)
724 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1200 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
725 1201
726 ev_start ((W)w, ++periodiccnt); 1202 ev_start (EV_A_ (W)w, ++periodiccnt);
727 array_needsize (periodics, periodicmax, periodiccnt, ); 1203 array_needsize (periodics, periodicmax, periodiccnt, );
728 periodics [periodiccnt - 1] = w; 1204 periodics [periodiccnt - 1] = w;
729 upheap ((WT *)periodics, periodiccnt - 1); 1205 upheap ((WT *)periodics, periodiccnt - 1);
730}
731 1206
1207 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1208}
1209
732void 1210void
733evperiodic_stop (struct ev_periodic *w) 1211ev_periodic_stop (EV_P_ struct ev_periodic *w)
734{ 1212{
735 ev_clear ((W)w); 1213 ev_clear_pending (EV_A_ (W)w);
736 if (!ev_is_active (w)) 1214 if (!ev_is_active (w))
737 return; 1215 return;
738 1216
1217 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1218
739 if (w->active < periodiccnt--) 1219 if (((W)w)->active < periodiccnt--)
740 { 1220 {
741 periodics [w->active - 1] = periodics [periodiccnt]; 1221 periodics [((W)w)->active - 1] = periodics [periodiccnt];
742 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1222 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
743 } 1223 }
744 1224
745 ev_stop ((W)w); 1225 ev_stop (EV_A_ (W)w);
746} 1226}
747 1227
748void 1228void
749evsignal_start (struct ev_signal *w) 1229ev_idle_start (EV_P_ struct ev_idle *w)
750{ 1230{
751 if (ev_is_active (w)) 1231 if (ev_is_active (w))
752 return; 1232 return;
753 1233
1234 ev_start (EV_A_ (W)w, ++idlecnt);
1235 array_needsize (idles, idlemax, idlecnt, );
1236 idles [idlecnt - 1] = w;
1237}
1238
1239void
1240ev_idle_stop (EV_P_ struct ev_idle *w)
1241{
1242 ev_clear_pending (EV_A_ (W)w);
1243 if (ev_is_active (w))
1244 return;
1245
1246 idles [((W)w)->active - 1] = idles [--idlecnt];
1247 ev_stop (EV_A_ (W)w);
1248}
1249
1250void
1251ev_prepare_start (EV_P_ struct ev_prepare *w)
1252{
1253 if (ev_is_active (w))
1254 return;
1255
1256 ev_start (EV_A_ (W)w, ++preparecnt);
1257 array_needsize (prepares, preparemax, preparecnt, );
1258 prepares [preparecnt - 1] = w;
1259}
1260
1261void
1262ev_prepare_stop (EV_P_ struct ev_prepare *w)
1263{
1264 ev_clear_pending (EV_A_ (W)w);
1265 if (ev_is_active (w))
1266 return;
1267
1268 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1269 ev_stop (EV_A_ (W)w);
1270}
1271
1272void
1273ev_check_start (EV_P_ struct ev_check *w)
1274{
1275 if (ev_is_active (w))
1276 return;
1277
1278 ev_start (EV_A_ (W)w, ++checkcnt);
1279 array_needsize (checks, checkmax, checkcnt, );
1280 checks [checkcnt - 1] = w;
1281}
1282
1283void
1284ev_check_stop (EV_P_ struct ev_check *w)
1285{
1286 ev_clear_pending (EV_A_ (W)w);
1287 if (ev_is_active (w))
1288 return;
1289
1290 checks [((W)w)->active - 1] = checks [--checkcnt];
1291 ev_stop (EV_A_ (W)w);
1292}
1293
1294#ifndef SA_RESTART
1295# define SA_RESTART 0
1296#endif
1297
1298void
1299ev_signal_start (EV_P_ struct ev_signal *w)
1300{
1301#if EV_MULTIPLICITY
1302 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1303#endif
1304 if (ev_is_active (w))
1305 return;
1306
1307 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1308
754 ev_start ((W)w, 1); 1309 ev_start (EV_A_ (W)w, 1);
755 array_needsize (signals, signalmax, w->signum, signals_init); 1310 array_needsize (signals, signalmax, w->signum, signals_init);
756 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1311 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
757 1312
758 if (!w->next) 1313 if (!((WL)w)->next)
759 { 1314 {
760 struct sigaction sa; 1315 struct sigaction sa;
761 sa.sa_handler = sighandler; 1316 sa.sa_handler = sighandler;
762 sigfillset (&sa.sa_mask); 1317 sigfillset (&sa.sa_mask);
763 sa.sa_flags = 0; 1318 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
764 sigaction (w->signum, &sa, 0); 1319 sigaction (w->signum, &sa, 0);
765 } 1320 }
766} 1321}
767 1322
768void 1323void
769evsignal_stop (struct ev_signal *w) 1324ev_signal_stop (EV_P_ struct ev_signal *w)
770{ 1325{
771 ev_clear ((W)w); 1326 ev_clear_pending (EV_A_ (W)w);
772 if (!ev_is_active (w)) 1327 if (!ev_is_active (w))
773 return; 1328 return;
774 1329
775 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1330 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
776 ev_stop ((W)w); 1331 ev_stop (EV_A_ (W)w);
777 1332
778 if (!signals [w->signum - 1].head) 1333 if (!signals [w->signum - 1].head)
779 signal (w->signum, SIG_DFL); 1334 signal (w->signum, SIG_DFL);
780} 1335}
781 1336
782void evidle_start (struct ev_idle *w) 1337void
1338ev_child_start (EV_P_ struct ev_child *w)
783{ 1339{
1340#if EV_MULTIPLICITY
1341 assert (("child watchers are only supported in the default loop", loop == default_loop));
1342#endif
784 if (ev_is_active (w)) 1343 if (ev_is_active (w))
785 return; 1344 return;
786 1345
787 ev_start ((W)w, ++idlecnt); 1346 ev_start (EV_A_ (W)w, 1);
788 array_needsize (idles, idlemax, idlecnt, ); 1347 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
789 idles [idlecnt - 1] = w;
790} 1348}
791 1349
792void evidle_stop (struct ev_idle *w) 1350void
1351ev_child_stop (EV_P_ struct ev_child *w)
793{ 1352{
794 ev_clear ((W)w); 1353 ev_clear_pending (EV_A_ (W)w);
795 if (ev_is_active (w)) 1354 if (ev_is_active (w))
796 return; 1355 return;
797 1356
798 idles [w->active - 1] = idles [--idlecnt]; 1357 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
799 ev_stop ((W)w); 1358 ev_stop (EV_A_ (W)w);
800}
801
802void evcheck_start (struct ev_check *w)
803{
804 if (ev_is_active (w))
805 return;
806
807 ev_start ((W)w, ++checkcnt);
808 array_needsize (checks, checkmax, checkcnt, );
809 checks [checkcnt - 1] = w;
810}
811
812void evcheck_stop (struct ev_check *w)
813{
814 ev_clear ((W)w);
815 if (ev_is_active (w))
816 return;
817
818 checks [w->active - 1] = checks [--checkcnt];
819 ev_stop ((W)w);
820} 1359}
821 1360
822/*****************************************************************************/ 1361/*****************************************************************************/
823 1362
824struct ev_once 1363struct ev_once
828 void (*cb)(int revents, void *arg); 1367 void (*cb)(int revents, void *arg);
829 void *arg; 1368 void *arg;
830}; 1369};
831 1370
832static void 1371static void
833once_cb (struct ev_once *once, int revents) 1372once_cb (EV_P_ struct ev_once *once, int revents)
834{ 1373{
835 void (*cb)(int revents, void *arg) = once->cb; 1374 void (*cb)(int revents, void *arg) = once->cb;
836 void *arg = once->arg; 1375 void *arg = once->arg;
837 1376
838 evio_stop (&once->io); 1377 ev_io_stop (EV_A_ &once->io);
839 evtimer_stop (&once->to); 1378 ev_timer_stop (EV_A_ &once->to);
840 free (once); 1379 free (once);
841 1380
842 cb (revents, arg); 1381 cb (revents, arg);
843} 1382}
844 1383
845static void 1384static void
846once_cb_io (struct ev_io *w, int revents) 1385once_cb_io (EV_P_ struct ev_io *w, int revents)
847{ 1386{
848 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1387 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
849} 1388}
850 1389
851static void 1390static void
852once_cb_to (struct ev_timer *w, int revents) 1391once_cb_to (EV_P_ struct ev_timer *w, int revents)
853{ 1392{
854 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1393 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
855} 1394}
856 1395
857void 1396void
858ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1397ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
859{ 1398{
860 struct ev_once *once = malloc (sizeof (struct ev_once)); 1399 struct ev_once *once = malloc (sizeof (struct ev_once));
861 1400
862 if (!once) 1401 if (!once)
863 cb (EV_ERROR, arg); 1402 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
864 else 1403 else
865 { 1404 {
866 once->cb = cb; 1405 once->cb = cb;
867 once->arg = arg; 1406 once->arg = arg;
868 1407
869 evw_init (&once->io, once_cb_io); 1408 ev_watcher_init (&once->io, once_cb_io);
870
871 if (fd >= 0) 1409 if (fd >= 0)
872 { 1410 {
873 evio_set (&once->io, fd, events); 1411 ev_io_set (&once->io, fd, events);
874 evio_start (&once->io); 1412 ev_io_start (EV_A_ &once->io);
875 } 1413 }
876 1414
877 evw_init (&once->to, once_cb_to); 1415 ev_watcher_init (&once->to, once_cb_to);
878
879 if (timeout >= 0.) 1416 if (timeout >= 0.)
880 { 1417 {
881 evtimer_set (&once->to, timeout, 0.); 1418 ev_timer_set (&once->to, timeout, 0.);
882 evtimer_start (&once->to); 1419 ev_timer_start (EV_A_ &once->to);
883 } 1420 }
884 } 1421 }
885} 1422}
886 1423
887/*****************************************************************************/
888
889#if 0
890
891struct ev_io wio;
892
893static void
894sin_cb (struct ev_io *w, int revents)
895{
896 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
897}
898
899static void
900ocb (struct ev_timer *w, int revents)
901{
902 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
903 evtimer_stop (w);
904 evtimer_start (w);
905}
906
907static void
908scb (struct ev_signal *w, int revents)
909{
910 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
911 evio_stop (&wio);
912 evio_start (&wio);
913}
914
915static void
916gcb (struct ev_signal *w, int revents)
917{
918 fprintf (stderr, "generic %x\n", revents);
919
920}
921
922int main (void)
923{
924 ev_init (0);
925
926 evio_init (&wio, sin_cb, 0, EV_READ);
927 evio_start (&wio);
928
929 struct ev_timer t[10000];
930
931#if 0
932 int i;
933 for (i = 0; i < 10000; ++i)
934 {
935 struct ev_timer *w = t + i;
936 evw_init (w, ocb, i);
937 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
938 evtimer_start (w);
939 if (drand48 () < 0.5)
940 evtimer_stop (w);
941 }
942#endif
943
944 struct ev_timer t1;
945 evtimer_init (&t1, ocb, 5, 10);
946 evtimer_start (&t1);
947
948 struct ev_signal sig;
949 evsignal_init (&sig, scb, SIGQUIT);
950 evsignal_start (&sig);
951
952 struct ev_check cw;
953 evcheck_init (&cw, gcb);
954 evcheck_start (&cw);
955
956 struct ev_idle iw;
957 evidle_init (&iw, gcb);
958 evidle_start (&iw);
959
960 ev_loop (0);
961
962 return 0;
963}
964
965#endif
966
967
968
969

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines