ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.16 by root, Wed Oct 31 13:57:34 2007 UTC vs.
Revision 1.69 by root, Tue Nov 6 00:10:04 2007 UTC

1/*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * * Redistributions in binary form must reproduce the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer in the documentation and/or other materials provided
17 * with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
55#endif
56
1#include <math.h> 57#include <math.h>
2#include <stdlib.h> 58#include <stdlib.h>
3#include <unistd.h> 59#include <unistd.h>
4#include <fcntl.h> 60#include <fcntl.h>
5#include <signal.h> 61#include <signal.h>
7 63
8#include <stdio.h> 64#include <stdio.h>
9 65
10#include <assert.h> 66#include <assert.h>
11#include <errno.h> 67#include <errno.h>
68#include <sys/types.h>
69#ifndef WIN32
70# include <sys/wait.h>
71#endif
12#include <sys/time.h> 72#include <sys/time.h>
13#include <time.h> 73#include <time.h>
14 74
15#define HAVE_EPOLL 1 75/**/
16 76
17#ifndef HAVE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
18# ifdef CLOCK_MONOTONIC
19# define HAVE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
79#endif
80
81#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1
83#endif
84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
89#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
20# endif 102# endif
21#endif 103#endif
22 104
23#ifndef HAVE_SELECT
24# define HAVE_SELECT 1
25#endif
26
27#ifndef HAVE_EPOLL
28# define HAVE_EPOLL 0
29#endif
30
31#ifndef HAVE_REALTIME 105#ifndef EV_USE_REALTIME
32# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 106# define EV_USE_REALTIME 1
33#endif 107#endif
108
109/**/
110
111#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0
114#endif
115
116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0
119#endif
120
121/**/
34 122
35#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
36#define MAX_BLOCKTIME 60. 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
37 127
38#include "ev.h" 128#include "ev.h"
129
130#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
137
138#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1)
140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
39 143
40typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
41typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
42typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
43 147
44static ev_tstamp now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
45ev_tstamp ev_now;
46int ev_method;
47 149
48static int have_monotonic; /* runtime */ 150#if WIN32
49 151/* note: the comment below could not be substantiated, but what would I care */
50static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 152/* MSDN says this is required to handle SIGFPE */
51static void (*method_modify)(int fd, int oev, int nev); 153volatile double SIGFPE_REQ = 0.0f;
52static void (*method_poll)(ev_tstamp timeout); 154#endif
53 155
54/*****************************************************************************/ 156/*****************************************************************************/
55 157
56ev_tstamp 158static void (*syserr_cb)(void);
159
160void ev_set_syserr_cb (void (*cb)(void))
161{
162 syserr_cb = cb;
163}
164
165static void
166syserr (void)
167{
168 if (syserr_cb)
169 syserr_cb ();
170 else
171 {
172 perror ("libev");
173 abort ();
174 }
175}
176
177static void *(*alloc)(void *ptr, long size);
178
179void ev_set_allocator (void *(*cb)(void *ptr, long size))
180{
181 alloc = cb;
182}
183
184static void *
185ev_realloc (void *ptr, long size)
186{
187 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
188
189 if (!ptr && size)
190 {
191 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
192 abort ();
193 }
194
195 return ptr;
196}
197
198#define ev_malloc(size) ev_realloc (0, (size))
199#define ev_free(ptr) ev_realloc ((ptr), 0)
200
201/*****************************************************************************/
202
203typedef struct
204{
205 WL head;
206 unsigned char events;
207 unsigned char reify;
208} ANFD;
209
210typedef struct
211{
212 W w;
213 int events;
214} ANPENDING;
215
216#if EV_MULTIPLICITY
217
218struct ev_loop
219{
220# define VAR(name,decl) decl;
221# include "ev_vars.h"
222};
223# undef VAR
224# include "ev_wrap.h"
225
226#else
227
228# define VAR(name,decl) static decl;
229# include "ev_vars.h"
230# undef VAR
231
232#endif
233
234/*****************************************************************************/
235
236inline ev_tstamp
57ev_time (void) 237ev_time (void)
58{ 238{
59#if HAVE_REALTIME 239#if EV_USE_REALTIME
60 struct timespec ts; 240 struct timespec ts;
61 clock_gettime (CLOCK_REALTIME, &ts); 241 clock_gettime (CLOCK_REALTIME, &ts);
62 return ts.tv_sec + ts.tv_nsec * 1e-9; 242 return ts.tv_sec + ts.tv_nsec * 1e-9;
63#else 243#else
64 struct timeval tv; 244 struct timeval tv;
65 gettimeofday (&tv, 0); 245 gettimeofday (&tv, 0);
66 return tv.tv_sec + tv.tv_usec * 1e-6; 246 return tv.tv_sec + tv.tv_usec * 1e-6;
67#endif 247#endif
68} 248}
69 249
70static ev_tstamp 250inline ev_tstamp
71get_clock (void) 251get_clock (void)
72{ 252{
73#if HAVE_MONOTONIC 253#if EV_USE_MONOTONIC
74 if (have_monotonic) 254 if (expect_true (have_monotonic))
75 { 255 {
76 struct timespec ts; 256 struct timespec ts;
77 clock_gettime (CLOCK_MONOTONIC, &ts); 257 clock_gettime (CLOCK_MONOTONIC, &ts);
78 return ts.tv_sec + ts.tv_nsec * 1e-9; 258 return ts.tv_sec + ts.tv_nsec * 1e-9;
79 } 259 }
80#endif 260#endif
81 261
82 return ev_time (); 262 return ev_time ();
83} 263}
84 264
265ev_tstamp
266ev_now (EV_P)
267{
268 return rt_now;
269}
270
271#define array_roundsize(base,n) ((n) | 4 & ~3)
272
85#define array_needsize(base,cur,cnt,init) \ 273#define array_needsize(base,cur,cnt,init) \
86 if ((cnt) > cur) \ 274 if (expect_false ((cnt) > cur)) \
87 { \ 275 { \
88 int newcnt = cur ? cur << 1 : 16; \ 276 int newcnt = cur; \
277 do \
278 { \
279 newcnt = array_roundsize (base, newcnt << 1); \
280 } \
281 while ((cnt) > newcnt); \
282 \
89 base = realloc (base, sizeof (*base) * (newcnt)); \ 283 base = ev_realloc (base, sizeof (*base) * (newcnt)); \
90 init (base + cur, newcnt - cur); \ 284 init (base + cur, newcnt - cur); \
91 cur = newcnt; \ 285 cur = newcnt; \
92 } 286 }
287
288#define array_slim(stem) \
289 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
290 { \
291 stem ## max = array_roundsize (stem ## cnt >> 1); \
292 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \
293 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
294 }
295
296#define array_free(stem, idx) \
297 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
93 298
94/*****************************************************************************/ 299/*****************************************************************************/
95 300
96typedef struct
97{
98 struct ev_io *head;
99 unsigned char wev, rev; /* want, received event set */
100} ANFD;
101
102static ANFD *anfds;
103static int anfdmax;
104
105static int *fdchanges;
106static int fdchangemax, fdchangecnt;
107
108static void 301static void
109anfds_init (ANFD *base, int count) 302anfds_init (ANFD *base, int count)
110{ 303{
111 while (count--) 304 while (count--)
112 { 305 {
113 base->head = 0; 306 base->head = 0;
114 base->wev = base->rev = EV_NONE; 307 base->events = EV_NONE;
308 base->reify = 0;
309
115 ++base; 310 ++base;
116 } 311 }
117} 312}
118 313
119typedef struct
120{
121 W w;
122 int events;
123} ANPENDING;
124
125static ANPENDING *pendings;
126static int pendingmax, pendingcnt;
127
128static void 314static void
129event (W w, int events) 315event (EV_P_ W w, int events)
130{ 316{
131 if (w->active) 317 if (w->pending)
132 { 318 {
133 w->pending = ++pendingcnt;
134 array_needsize (pendings, pendingmax, pendingcnt, );
135 pendings [pendingcnt - 1].w = w;
136 pendings [pendingcnt - 1].events = events; 319 pendings [ABSPRI (w)][w->pending - 1].events |= events;
320 return;
137 } 321 }
138}
139 322
323 w->pending = ++pendingcnt [ABSPRI (w)];
324 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
325 pendings [ABSPRI (w)][w->pending - 1].w = w;
326 pendings [ABSPRI (w)][w->pending - 1].events = events;
327}
328
140static void 329static void
330queue_events (EV_P_ W *events, int eventcnt, int type)
331{
332 int i;
333
334 for (i = 0; i < eventcnt; ++i)
335 event (EV_A_ events [i], type);
336}
337
338static void
141fd_event (int fd, int events) 339fd_event (EV_P_ int fd, int events)
142{ 340{
143 ANFD *anfd = anfds + fd; 341 ANFD *anfd = anfds + fd;
144 struct ev_io *w; 342 struct ev_io *w;
145 343
146 for (w = anfd->head; w; w = w->next) 344 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
147 { 345 {
148 int ev = w->events & events; 346 int ev = w->events & events;
149 347
150 if (ev) 348 if (ev)
151 event ((W)w, ev); 349 event (EV_A_ (W)w, ev);
152 } 350 }
153} 351}
154 352
353/*****************************************************************************/
354
155static void 355static void
156queue_events (W *events, int eventcnt, int type) 356fd_reify (EV_P)
157{ 357{
158 int i; 358 int i;
159 359
160 for (i = 0; i < eventcnt; ++i) 360 for (i = 0; i < fdchangecnt; ++i)
161 event (events [i], type); 361 {
362 int fd = fdchanges [i];
363 ANFD *anfd = anfds + fd;
364 struct ev_io *w;
365
366 int events = 0;
367
368 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
369 events |= w->events;
370
371 anfd->reify = 0;
372
373 method_modify (EV_A_ fd, anfd->events, events);
374 anfd->events = events;
375 }
376
377 fdchangecnt = 0;
378}
379
380static void
381fd_change (EV_P_ int fd)
382{
383 if (anfds [fd].reify || fdchangecnt < 0)
384 return;
385
386 anfds [fd].reify = 1;
387
388 ++fdchangecnt;
389 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
390 fdchanges [fdchangecnt - 1] = fd;
391}
392
393static void
394fd_kill (EV_P_ int fd)
395{
396 struct ev_io *w;
397
398 while ((w = (struct ev_io *)anfds [fd].head))
399 {
400 ev_io_stop (EV_A_ w);
401 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
402 }
403}
404
405/* called on EBADF to verify fds */
406static void
407fd_ebadf (EV_P)
408{
409 int fd;
410
411 for (fd = 0; fd < anfdmax; ++fd)
412 if (anfds [fd].events)
413 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
414 fd_kill (EV_A_ fd);
415}
416
417/* called on ENOMEM in select/poll to kill some fds and retry */
418static void
419fd_enomem (EV_P)
420{
421 int fd;
422
423 for (fd = anfdmax; fd--; )
424 if (anfds [fd].events)
425 {
426 fd_kill (EV_A_ fd);
427 return;
428 }
429}
430
431/* susually called after fork if method needs to re-arm all fds from scratch */
432static void
433fd_rearm_all (EV_P)
434{
435 int fd;
436
437 /* this should be highly optimised to not do anything but set a flag */
438 for (fd = 0; fd < anfdmax; ++fd)
439 if (anfds [fd].events)
440 {
441 anfds [fd].events = 0;
442 fd_change (EV_A_ fd);
443 }
162} 444}
163 445
164/*****************************************************************************/ 446/*****************************************************************************/
165 447
166static struct ev_timer **timers;
167static int timermax, timercnt;
168
169static struct ev_periodic **periodics;
170static int periodicmax, periodiccnt;
171
172static void 448static void
173upheap (WT *timers, int k) 449upheap (WT *heap, int k)
174{ 450{
175 WT w = timers [k]; 451 WT w = heap [k];
176 452
177 while (k && timers [k >> 1]->at > w->at) 453 while (k && heap [k >> 1]->at > w->at)
178 { 454 {
179 timers [k] = timers [k >> 1]; 455 heap [k] = heap [k >> 1];
180 timers [k]->active = k + 1; 456 ((W)heap [k])->active = k + 1;
181 k >>= 1; 457 k >>= 1;
182 } 458 }
183 459
184 timers [k] = w; 460 heap [k] = w;
185 timers [k]->active = k + 1; 461 ((W)heap [k])->active = k + 1;
186 462
187} 463}
188 464
189static void 465static void
190downheap (WT *timers, int N, int k) 466downheap (WT *heap, int N, int k)
191{ 467{
192 WT w = timers [k]; 468 WT w = heap [k];
193 469
194 while (k < (N >> 1)) 470 while (k < (N >> 1))
195 { 471 {
196 int j = k << 1; 472 int j = k << 1;
197 473
198 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 474 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
199 ++j; 475 ++j;
200 476
201 if (w->at <= timers [j]->at) 477 if (w->at <= heap [j]->at)
202 break; 478 break;
203 479
204 timers [k] = timers [j]; 480 heap [k] = heap [j];
205 timers [k]->active = k + 1; 481 ((W)heap [k])->active = k + 1;
206 k = j; 482 k = j;
207 } 483 }
208 484
209 timers [k] = w; 485 heap [k] = w;
210 timers [k]->active = k + 1; 486 ((W)heap [k])->active = k + 1;
211} 487}
212 488
213/*****************************************************************************/ 489/*****************************************************************************/
214 490
215typedef struct 491typedef struct
216{ 492{
217 struct ev_signal *head; 493 WL head;
218 sig_atomic_t gotsig; 494 sig_atomic_t volatile gotsig;
219} ANSIG; 495} ANSIG;
220 496
221static ANSIG *signals; 497static ANSIG *signals;
222static int signalmax; 498static int signalmax;
223 499
224static int sigpipe [2]; 500static int sigpipe [2];
225static sig_atomic_t gotsig; 501static sig_atomic_t volatile gotsig;
226static struct ev_io sigev; 502static struct ev_io sigev;
227 503
228static void 504static void
229signals_init (ANSIG *base, int count) 505signals_init (ANSIG *base, int count)
230{ 506{
231 while (count--) 507 while (count--)
232 { 508 {
233 base->head = 0; 509 base->head = 0;
234 base->gotsig = 0; 510 base->gotsig = 0;
511
235 ++base; 512 ++base;
236 } 513 }
237} 514}
238 515
239static void 516static void
240sighandler (int signum) 517sighandler (int signum)
241{ 518{
519#if WIN32
520 signal (signum, sighandler);
521#endif
522
242 signals [signum - 1].gotsig = 1; 523 signals [signum - 1].gotsig = 1;
243 524
244 if (!gotsig) 525 if (!gotsig)
245 { 526 {
527 int old_errno = errno;
246 gotsig = 1; 528 gotsig = 1;
247 write (sigpipe [1], &gotsig, 1); 529 write (sigpipe [1], &signum, 1);
530 errno = old_errno;
248 } 531 }
249} 532}
250 533
251static void 534static void
252sigcb (struct ev_io *iow, int revents) 535sigcb (EV_P_ struct ev_io *iow, int revents)
253{ 536{
254 struct ev_signal *w; 537 WL w;
255 int sig; 538 int signum;
256 539
540 read (sigpipe [0], &revents, 1);
257 gotsig = 0; 541 gotsig = 0;
258 read (sigpipe [0], &revents, 1);
259 542
260 for (sig = signalmax; sig--; ) 543 for (signum = signalmax; signum--; )
261 if (signals [sig].gotsig) 544 if (signals [signum].gotsig)
262 { 545 {
263 signals [sig].gotsig = 0; 546 signals [signum].gotsig = 0;
264 547
265 for (w = signals [sig].head; w; w = w->next) 548 for (w = signals [signum].head; w; w = w->next)
266 event ((W)w, EV_SIGNAL); 549 event (EV_A_ (W)w, EV_SIGNAL);
267 } 550 }
268} 551}
269 552
270static void 553static void
271siginit (void) 554siginit (EV_P)
272{ 555{
556#ifndef WIN32
273 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 557 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
274 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 558 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
275 559
276 /* rather than sort out wether we really need nb, set it */ 560 /* rather than sort out wether we really need nb, set it */
277 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 561 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
278 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 562 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
563#endif
279 564
280 evio_set (&sigev, sigpipe [0], EV_READ); 565 ev_io_set (&sigev, sigpipe [0], EV_READ);
281 evio_start (&sigev); 566 ev_io_start (EV_A_ &sigev);
567 ev_unref (EV_A); /* child watcher should not keep loop alive */
282} 568}
283 569
284/*****************************************************************************/ 570/*****************************************************************************/
285 571
286static struct ev_idle **idles; 572#ifndef WIN32
287static int idlemax, idlecnt;
288 573
289static struct ev_check **checks; 574static struct ev_child *childs [PID_HASHSIZE];
290static int checkmax, checkcnt; 575static struct ev_signal childev;
576
577#ifndef WCONTINUED
578# define WCONTINUED 0
579#endif
580
581static void
582child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
583{
584 struct ev_child *w;
585
586 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
587 if (w->pid == pid || !w->pid)
588 {
589 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
590 w->rpid = pid;
591 w->rstatus = status;
592 event (EV_A_ (W)w, EV_CHILD);
593 }
594}
595
596static void
597childcb (EV_P_ struct ev_signal *sw, int revents)
598{
599 int pid, status;
600
601 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
602 {
603 /* make sure we are called again until all childs have been reaped */
604 event (EV_A_ (W)sw, EV_SIGNAL);
605
606 child_reap (EV_A_ sw, pid, pid, status);
607 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
608 }
609}
610
611#endif
291 612
292/*****************************************************************************/ 613/*****************************************************************************/
293 614
615#if EV_USE_KQUEUE
616# include "ev_kqueue.c"
617#endif
294#if HAVE_EPOLL 618#if EV_USE_EPOLL
295# include "ev_epoll.c" 619# include "ev_epoll.c"
296#endif 620#endif
621#if EV_USE_POLL
622# include "ev_poll.c"
623#endif
297#if HAVE_SELECT 624#if EV_USE_SELECT
298# include "ev_select.c" 625# include "ev_select.c"
299#endif 626#endif
300 627
301int ev_init (int flags) 628int
629ev_version_major (void)
302{ 630{
631 return EV_VERSION_MAJOR;
632}
633
634int
635ev_version_minor (void)
636{
637 return EV_VERSION_MINOR;
638}
639
640/* return true if we are running with elevated privileges and should ignore env variables */
641static int
642enable_secure (void)
643{
644#ifdef WIN32
645 return 0;
646#else
647 return getuid () != geteuid ()
648 || getgid () != getegid ();
649#endif
650}
651
652int
653ev_method (EV_P)
654{
655 return method;
656}
657
658static void
659loop_init (EV_P_ int methods)
660{
661 if (!method)
662 {
303#if HAVE_MONOTONIC 663#if EV_USE_MONOTONIC
304 { 664 {
305 struct timespec ts; 665 struct timespec ts;
306 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 666 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
307 have_monotonic = 1; 667 have_monotonic = 1;
308 } 668 }
309#endif 669#endif
310 670
311 ev_now = ev_time (); 671 rt_now = ev_time ();
312 now = get_clock (); 672 mn_now = get_clock ();
313 diff = ev_now - now; 673 now_floor = mn_now;
674 rtmn_diff = rt_now - mn_now;
314 675
676 if (methods == EVMETHOD_AUTO)
677 if (!enable_secure () && getenv ("LIBEV_METHODS"))
678 methods = atoi (getenv ("LIBEV_METHODS"));
679 else
680 methods = EVMETHOD_ANY;
681
682 method = 0;
683#if EV_USE_WIN32
684 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
685#endif
686#if EV_USE_KQUEUE
687 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
688#endif
689#if EV_USE_EPOLL
690 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
691#endif
692#if EV_USE_POLL
693 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
694#endif
695#if EV_USE_SELECT
696 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
697#endif
698 }
699}
700
701void
702loop_destroy (EV_P)
703{
704 int i;
705
706#if EV_USE_WIN32
707 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
708#endif
709#if EV_USE_KQUEUE
710 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
711#endif
712#if EV_USE_EPOLL
713 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
714#endif
715#if EV_USE_POLL
716 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
717#endif
718#if EV_USE_SELECT
719 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
720#endif
721
722 for (i = NUMPRI; i--; )
723 array_free (pending, [i]);
724
725 array_free (fdchange, );
726 array_free (timer, );
727 array_free (periodic, );
728 array_free (idle, );
729 array_free (prepare, );
730 array_free (check, );
731
732 method = 0;
733 /*TODO*/
734}
735
736void
737loop_fork (EV_P)
738{
739 /*TODO*/
740#if EV_USE_EPOLL
741 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
742#endif
743#if EV_USE_KQUEUE
744 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
745#endif
746}
747
748#if EV_MULTIPLICITY
749struct ev_loop *
750ev_loop_new (int methods)
751{
752 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
753
754 memset (loop, 0, sizeof (struct ev_loop));
755
756 loop_init (EV_A_ methods);
757
758 if (ev_method (EV_A))
759 return loop;
760
761 return 0;
762}
763
764void
765ev_loop_destroy (EV_P)
766{
767 loop_destroy (EV_A);
768 ev_free (loop);
769}
770
771void
772ev_loop_fork (EV_P)
773{
774 loop_fork (EV_A);
775}
776
777#endif
778
779#if EV_MULTIPLICITY
780struct ev_loop default_loop_struct;
781static struct ev_loop *default_loop;
782
783struct ev_loop *
784#else
785static int default_loop;
786
787int
788#endif
789ev_default_loop (int methods)
790{
791 if (sigpipe [0] == sigpipe [1])
315 if (pipe (sigpipe)) 792 if (pipe (sigpipe))
316 return 0; 793 return 0;
317 794
318 ev_method = EVMETHOD_NONE; 795 if (!default_loop)
319#if HAVE_EPOLL
320 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
321#endif
322#if HAVE_SELECT
323 if (ev_method == EVMETHOD_NONE) select_init (flags);
324#endif
325
326 if (ev_method)
327 { 796 {
797#if EV_MULTIPLICITY
798 struct ev_loop *loop = default_loop = &default_loop_struct;
799#else
800 default_loop = 1;
801#endif
802
803 loop_init (EV_A_ methods);
804
805 if (ev_method (EV_A))
806 {
328 evw_init (&sigev, sigcb); 807 ev_watcher_init (&sigev, sigcb);
808 ev_set_priority (&sigev, EV_MAXPRI);
329 siginit (); 809 siginit (EV_A);
330 }
331 810
332 return ev_method; 811#ifndef WIN32
333} 812 ev_signal_init (&childev, childcb, SIGCHLD);
334 813 ev_set_priority (&childev, EV_MAXPRI);
335/*****************************************************************************/ 814 ev_signal_start (EV_A_ &childev);
336 815 ev_unref (EV_A); /* child watcher should not keep loop alive */
337void ev_prefork (void)
338{
339 /* nop */
340}
341
342void ev_postfork_parent (void)
343{
344 /* nop */
345}
346
347void ev_postfork_child (void)
348{
349#if HAVE_EPOLL
350 if (ev_method == EVMETHOD_EPOLL)
351 epoll_postfork_child ();
352#endif 816#endif
817 }
818 else
819 default_loop = 0;
820 }
353 821
822 return default_loop;
823}
824
825void
826ev_default_destroy (void)
827{
828#if EV_MULTIPLICITY
829 struct ev_loop *loop = default_loop;
830#endif
831
832 ev_ref (EV_A); /* child watcher */
833 ev_signal_stop (EV_A_ &childev);
834
835 ev_ref (EV_A); /* signal watcher */
354 evio_stop (&sigev); 836 ev_io_stop (EV_A_ &sigev);
837
838 close (sigpipe [0]); sigpipe [0] = 0;
839 close (sigpipe [1]); sigpipe [1] = 0;
840
841 loop_destroy (EV_A);
842}
843
844void
845ev_default_fork (void)
846{
847#if EV_MULTIPLICITY
848 struct ev_loop *loop = default_loop;
849#endif
850
851 loop_fork (EV_A);
852
853 ev_io_stop (EV_A_ &sigev);
355 close (sigpipe [0]); 854 close (sigpipe [0]);
356 close (sigpipe [1]); 855 close (sigpipe [1]);
357 pipe (sigpipe); 856 pipe (sigpipe);
857
858 ev_ref (EV_A); /* signal watcher */
358 siginit (); 859 siginit (EV_A);
359} 860}
360 861
361/*****************************************************************************/ 862/*****************************************************************************/
362 863
363static void 864static void
364fd_reify (void) 865call_pending (EV_P)
365{ 866{
366 int i; 867 int pri;
367 868
368 for (i = 0; i < fdchangecnt; ++i) 869 for (pri = NUMPRI; pri--; )
369 { 870 while (pendingcnt [pri])
370 int fd = fdchanges [i];
371 ANFD *anfd = anfds + fd;
372 struct ev_io *w;
373
374 int wev = 0;
375
376 for (w = anfd->head; w; w = w->next)
377 wev |= w->events;
378
379 if (anfd->wev != wev)
380 { 871 {
381 method_modify (fd, anfd->wev, wev); 872 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
382 anfd->wev = wev;
383 }
384 }
385 873
386 fdchangecnt = 0;
387}
388
389static void
390call_pending ()
391{
392 int i;
393
394 for (i = 0; i < pendingcnt; ++i)
395 {
396 ANPENDING *p = pendings + i;
397
398 if (p->w) 874 if (p->w)
399 { 875 {
400 p->w->pending = 0; 876 p->w->pending = 0;
401 p->w->cb (p->w, p->events); 877 p->w->cb (EV_A_ p->w, p->events);
402 } 878 }
403 } 879 }
404
405 pendingcnt = 0;
406} 880}
407 881
408static void 882static void
409timers_reify () 883timers_reify (EV_P)
410{ 884{
411 while (timercnt && timers [0]->at <= now) 885 while (timercnt && ((WT)timers [0])->at <= mn_now)
412 { 886 {
413 struct ev_timer *w = timers [0]; 887 struct ev_timer *w = timers [0];
414 888
415 event ((W)w, EV_TIMEOUT); 889 assert (("inactive timer on timer heap detected", ev_is_active (w)));
416 890
417 /* first reschedule or stop timer */ 891 /* first reschedule or stop timer */
418 if (w->repeat) 892 if (w->repeat)
419 { 893 {
894 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
420 w->at = now + w->repeat; 895 ((WT)w)->at = mn_now + w->repeat;
421 assert (("timer timeout in the past, negative repeat?", w->at > now));
422 downheap ((WT *)timers, timercnt, 0); 896 downheap ((WT *)timers, timercnt, 0);
423 } 897 }
424 else 898 else
425 evtimer_stop (w); /* nonrepeating: stop timer */ 899 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
426 }
427}
428 900
901 event (EV_A_ (W)w, EV_TIMEOUT);
902 }
903}
904
429static void 905static void
430periodics_reify () 906periodics_reify (EV_P)
431{ 907{
432 while (periodiccnt && periodics [0]->at <= ev_now) 908 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
433 { 909 {
434 struct ev_periodic *w = periodics [0]; 910 struct ev_periodic *w = periodics [0];
911
912 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
435 913
436 /* first reschedule or stop timer */ 914 /* first reschedule or stop timer */
437 if (w->interval) 915 if (w->interval)
438 { 916 {
439 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 917 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
440 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 918 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
441 downheap ((WT *)periodics, periodiccnt, 0); 919 downheap ((WT *)periodics, periodiccnt, 0);
442 } 920 }
443 else 921 else
444 evperiodic_stop (w); /* nonrepeating: stop timer */ 922 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
445 923
446 event ((W)w, EV_TIMEOUT); 924 event (EV_A_ (W)w, EV_PERIODIC);
447 } 925 }
448} 926}
449 927
450static void 928static void
451periodics_reschedule (ev_tstamp diff) 929periodics_reschedule (EV_P)
452{ 930{
453 int i; 931 int i;
454 932
455 /* adjust periodics after time jump */ 933 /* adjust periodics after time jump */
456 for (i = 0; i < periodiccnt; ++i) 934 for (i = 0; i < periodiccnt; ++i)
457 { 935 {
458 struct ev_periodic *w = periodics [i]; 936 struct ev_periodic *w = periodics [i];
459 937
460 if (w->interval) 938 if (w->interval)
461 { 939 {
462 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 940 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
463 941
464 if (fabs (diff) >= 1e-4) 942 if (fabs (diff) >= 1e-4)
465 { 943 {
466 evperiodic_stop (w); 944 ev_periodic_stop (EV_A_ w);
467 evperiodic_start (w); 945 ev_periodic_start (EV_A_ w);
468 946
469 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 947 i = 0; /* restart loop, inefficient, but time jumps should be rare */
470 } 948 }
471 } 949 }
472 } 950 }
473} 951}
474 952
953inline int
954time_update_monotonic (EV_P)
955{
956 mn_now = get_clock ();
957
958 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
959 {
960 rt_now = rtmn_diff + mn_now;
961 return 0;
962 }
963 else
964 {
965 now_floor = mn_now;
966 rt_now = ev_time ();
967 return 1;
968 }
969}
970
475static void 971static void
476time_update () 972time_update (EV_P)
477{ 973{
478 int i; 974 int i;
479 975
480 ev_now = ev_time (); 976#if EV_USE_MONOTONIC
481
482 if (have_monotonic) 977 if (expect_true (have_monotonic))
483 { 978 {
484 ev_tstamp odiff = diff; 979 if (time_update_monotonic (EV_A))
485
486 for (i = 4; --i; ) /* loop a few times, before making important decisions */
487 { 980 {
488 now = get_clock (); 981 ev_tstamp odiff = rtmn_diff;
982
983 for (i = 4; --i; ) /* loop a few times, before making important decisions */
984 {
489 diff = ev_now - now; 985 rtmn_diff = rt_now - mn_now;
490 986
491 if (fabs (odiff - diff) < MIN_TIMEJUMP) 987 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
492 return; /* all is well */ 988 return; /* all is well */
493 989
494 ev_now = ev_time (); 990 rt_now = ev_time ();
991 mn_now = get_clock ();
992 now_floor = mn_now;
993 }
994
995 periodics_reschedule (EV_A);
996 /* no timer adjustment, as the monotonic clock doesn't jump */
997 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
495 } 998 }
496
497 periodics_reschedule (diff - odiff);
498 /* no timer adjustment, as the monotonic clock doesn't jump */
499 } 999 }
500 else 1000 else
1001#endif
501 { 1002 {
502 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 1003 rt_now = ev_time ();
1004
1005 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
503 { 1006 {
504 periodics_reschedule (ev_now - now); 1007 periodics_reschedule (EV_A);
505 1008
506 /* adjust timers. this is easy, as the offset is the same for all */ 1009 /* adjust timers. this is easy, as the offset is the same for all */
507 for (i = 0; i < timercnt; ++i) 1010 for (i = 0; i < timercnt; ++i)
508 timers [i]->at += diff; 1011 ((WT)timers [i])->at += rt_now - mn_now;
509 } 1012 }
510 1013
511 now = ev_now; 1014 mn_now = rt_now;
512 } 1015 }
513} 1016}
514 1017
515int ev_loop_done; 1018void
1019ev_ref (EV_P)
1020{
1021 ++activecnt;
1022}
516 1023
1024void
1025ev_unref (EV_P)
1026{
1027 --activecnt;
1028}
1029
1030static int loop_done;
1031
1032void
517void ev_loop (int flags) 1033ev_loop (EV_P_ int flags)
518{ 1034{
519 double block; 1035 double block;
520 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0; 1036 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
521
522 if (checkcnt)
523 {
524 queue_events ((W *)checks, checkcnt, EV_CHECK);
525 call_pending ();
526 }
527 1037
528 do 1038 do
529 { 1039 {
1040 /* queue check watchers (and execute them) */
1041 if (expect_false (preparecnt))
1042 {
1043 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1044 call_pending (EV_A);
1045 }
1046
530 /* update fd-related kernel structures */ 1047 /* update fd-related kernel structures */
531 fd_reify (); 1048 fd_reify (EV_A);
532 1049
533 /* calculate blocking time */ 1050 /* calculate blocking time */
534 1051
535 /* we only need this for !monotonic clock, but as we always have timers, we just calculate it every time */ 1052 /* we only need this for !monotonic clockor timers, but as we basically
1053 always have timers, we just calculate it always */
1054#if EV_USE_MONOTONIC
1055 if (expect_true (have_monotonic))
1056 time_update_monotonic (EV_A);
1057 else
1058#endif
1059 {
536 ev_now = ev_time (); 1060 rt_now = ev_time ();
1061 mn_now = rt_now;
1062 }
537 1063
538 if (flags & EVLOOP_NONBLOCK || idlecnt) 1064 if (flags & EVLOOP_NONBLOCK || idlecnt)
539 block = 0.; 1065 block = 0.;
540 else 1066 else
541 { 1067 {
542 block = MAX_BLOCKTIME; 1068 block = MAX_BLOCKTIME;
543 1069
544 if (timercnt) 1070 if (timercnt)
545 { 1071 {
546 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1072 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
547 if (block > to) block = to; 1073 if (block > to) block = to;
548 } 1074 }
549 1075
550 if (periodiccnt) 1076 if (periodiccnt)
551 { 1077 {
552 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1078 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
553 if (block > to) block = to; 1079 if (block > to) block = to;
554 } 1080 }
555 1081
556 if (block < 0.) block = 0.; 1082 if (block < 0.) block = 0.;
557 } 1083 }
558 1084
559 method_poll (block); 1085 method_poll (EV_A_ block);
560 1086
561 /* update ev_now, do magic */ 1087 /* update rt_now, do magic */
562 time_update (); 1088 time_update (EV_A);
563 1089
564 /* queue pending timers and reschedule them */ 1090 /* queue pending timers and reschedule them */
1091 timers_reify (EV_A); /* relative timers called last */
565 periodics_reify (); /* absolute timers first */ 1092 periodics_reify (EV_A); /* absolute timers called first */
566 timers_reify (); /* relative timers second */
567 1093
568 /* queue idle watchers unless io or timers are pending */ 1094 /* queue idle watchers unless io or timers are pending */
569 if (!pendingcnt) 1095 if (!pendingcnt)
570 queue_events ((W *)idles, idlecnt, EV_IDLE); 1096 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
571 1097
572 /* queue check and possibly idle watchers */ 1098 /* queue check watchers, to be executed first */
1099 if (checkcnt)
573 queue_events ((W *)checks, checkcnt, EV_CHECK); 1100 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
574 1101
575 call_pending (); 1102 call_pending (EV_A);
576 } 1103 }
577 while (!ev_loop_done); 1104 while (activecnt && !loop_done);
578 1105
579 if (ev_loop_done != 2) 1106 if (loop_done != 2)
580 ev_loop_done = 0; 1107 loop_done = 0;
1108}
1109
1110void
1111ev_unloop (EV_P_ int how)
1112{
1113 loop_done = how;
581} 1114}
582 1115
583/*****************************************************************************/ 1116/*****************************************************************************/
584 1117
585static void 1118inline void
586wlist_add (WL *head, WL elem) 1119wlist_add (WL *head, WL elem)
587{ 1120{
588 elem->next = *head; 1121 elem->next = *head;
589 *head = elem; 1122 *head = elem;
590} 1123}
591 1124
592static void 1125inline void
593wlist_del (WL *head, WL elem) 1126wlist_del (WL *head, WL elem)
594{ 1127{
595 while (*head) 1128 while (*head)
596 { 1129 {
597 if (*head == elem) 1130 if (*head == elem)
602 1135
603 head = &(*head)->next; 1136 head = &(*head)->next;
604 } 1137 }
605} 1138}
606 1139
607static void 1140inline void
608ev_clear (W w) 1141ev_clear_pending (EV_P_ W w)
609{ 1142{
610 if (w->pending) 1143 if (w->pending)
611 { 1144 {
612 pendings [w->pending - 1].w = 0; 1145 pendings [ABSPRI (w)][w->pending - 1].w = 0;
613 w->pending = 0; 1146 w->pending = 0;
614 } 1147 }
615} 1148}
616 1149
617static void 1150inline void
618ev_start (W w, int active) 1151ev_start (EV_P_ W w, int active)
619{ 1152{
1153 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1154 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1155
620 w->active = active; 1156 w->active = active;
1157 ev_ref (EV_A);
621} 1158}
622 1159
623static void 1160inline void
624ev_stop (W w) 1161ev_stop (EV_P_ W w)
625{ 1162{
1163 ev_unref (EV_A);
626 w->active = 0; 1164 w->active = 0;
627} 1165}
628 1166
629/*****************************************************************************/ 1167/*****************************************************************************/
630 1168
631void 1169void
632evio_start (struct ev_io *w) 1170ev_io_start (EV_P_ struct ev_io *w)
633{ 1171{
1172 int fd = w->fd;
1173
634 if (ev_is_active (w)) 1174 if (ev_is_active (w))
635 return; 1175 return;
636 1176
637 int fd = w->fd; 1177 assert (("ev_io_start called with negative fd", fd >= 0));
638 1178
639 ev_start ((W)w, 1); 1179 ev_start (EV_A_ (W)w, 1);
640 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1180 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
641 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1181 wlist_add ((WL *)&anfds[fd].head, (WL)w);
642 1182
643 ++fdchangecnt; 1183 fd_change (EV_A_ fd);
644 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
645 fdchanges [fdchangecnt - 1] = fd;
646} 1184}
647 1185
648void 1186void
649evio_stop (struct ev_io *w) 1187ev_io_stop (EV_P_ struct ev_io *w)
650{ 1188{
651 ev_clear ((W)w); 1189 ev_clear_pending (EV_A_ (W)w);
652 if (!ev_is_active (w)) 1190 if (!ev_is_active (w))
653 return; 1191 return;
654 1192
655 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1193 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
656 ev_stop ((W)w); 1194 ev_stop (EV_A_ (W)w);
657 1195
658 ++fdchangecnt; 1196 fd_change (EV_A_ w->fd);
659 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
660 fdchanges [fdchangecnt - 1] = w->fd;
661} 1197}
662 1198
663void 1199void
664evtimer_start (struct ev_timer *w) 1200ev_timer_start (EV_P_ struct ev_timer *w)
665{ 1201{
666 if (ev_is_active (w)) 1202 if (ev_is_active (w))
667 return; 1203 return;
668 1204
669 w->at += now; 1205 ((WT)w)->at += mn_now;
670 1206
671 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1207 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
672 1208
673 ev_start ((W)w, ++timercnt); 1209 ev_start (EV_A_ (W)w, ++timercnt);
674 array_needsize (timers, timermax, timercnt, ); 1210 array_needsize (timers, timermax, timercnt, );
675 timers [timercnt - 1] = w; 1211 timers [timercnt - 1] = w;
676 upheap ((WT *)timers, timercnt - 1); 1212 upheap ((WT *)timers, timercnt - 1);
677}
678 1213
1214 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1215}
1216
679void 1217void
680evtimer_stop (struct ev_timer *w) 1218ev_timer_stop (EV_P_ struct ev_timer *w)
681{ 1219{
682 ev_clear ((W)w); 1220 ev_clear_pending (EV_A_ (W)w);
683 if (!ev_is_active (w)) 1221 if (!ev_is_active (w))
684 return; 1222 return;
685 1223
1224 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1225
686 if (w->active < timercnt--) 1226 if (((W)w)->active < timercnt--)
687 { 1227 {
688 timers [w->active - 1] = timers [timercnt]; 1228 timers [((W)w)->active - 1] = timers [timercnt];
689 downheap ((WT *)timers, timercnt, w->active - 1); 1229 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
690 } 1230 }
691 1231
692 w->at = w->repeat; 1232 ((WT)w)->at = w->repeat;
693 1233
694 ev_stop ((W)w); 1234 ev_stop (EV_A_ (W)w);
695} 1235}
696 1236
697void 1237void
698evtimer_again (struct ev_timer *w) 1238ev_timer_again (EV_P_ struct ev_timer *w)
699{ 1239{
700 if (ev_is_active (w)) 1240 if (ev_is_active (w))
701 { 1241 {
702 if (w->repeat) 1242 if (w->repeat)
703 { 1243 {
704 w->at = now + w->repeat; 1244 ((WT)w)->at = mn_now + w->repeat;
705 downheap ((WT *)timers, timercnt, w->active - 1); 1245 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
706 } 1246 }
707 else 1247 else
708 evtimer_stop (w); 1248 ev_timer_stop (EV_A_ w);
709 } 1249 }
710 else if (w->repeat) 1250 else if (w->repeat)
711 evtimer_start (w); 1251 ev_timer_start (EV_A_ w);
712} 1252}
713 1253
714void 1254void
715evperiodic_start (struct ev_periodic *w) 1255ev_periodic_start (EV_P_ struct ev_periodic *w)
716{ 1256{
717 if (ev_is_active (w)) 1257 if (ev_is_active (w))
718 return; 1258 return;
719 1259
720 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1260 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
721 1261
722 /* this formula differs from the one in periodic_reify because we do not always round up */ 1262 /* this formula differs from the one in periodic_reify because we do not always round up */
723 if (w->interval) 1263 if (w->interval)
724 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1264 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
725 1265
726 ev_start ((W)w, ++periodiccnt); 1266 ev_start (EV_A_ (W)w, ++periodiccnt);
727 array_needsize (periodics, periodicmax, periodiccnt, ); 1267 array_needsize (periodics, periodicmax, periodiccnt, );
728 periodics [periodiccnt - 1] = w; 1268 periodics [periodiccnt - 1] = w;
729 upheap ((WT *)periodics, periodiccnt - 1); 1269 upheap ((WT *)periodics, periodiccnt - 1);
730}
731 1270
1271 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1272}
1273
732void 1274void
733evperiodic_stop (struct ev_periodic *w) 1275ev_periodic_stop (EV_P_ struct ev_periodic *w)
734{ 1276{
735 ev_clear ((W)w); 1277 ev_clear_pending (EV_A_ (W)w);
736 if (!ev_is_active (w)) 1278 if (!ev_is_active (w))
737 return; 1279 return;
738 1280
1281 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1282
739 if (w->active < periodiccnt--) 1283 if (((W)w)->active < periodiccnt--)
740 { 1284 {
741 periodics [w->active - 1] = periodics [periodiccnt]; 1285 periodics [((W)w)->active - 1] = periodics [periodiccnt];
742 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1286 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
743 } 1287 }
744 1288
745 ev_stop ((W)w); 1289 ev_stop (EV_A_ (W)w);
746} 1290}
747 1291
748void 1292void
749evsignal_start (struct ev_signal *w) 1293ev_idle_start (EV_P_ struct ev_idle *w)
750{ 1294{
751 if (ev_is_active (w)) 1295 if (ev_is_active (w))
752 return; 1296 return;
753 1297
1298 ev_start (EV_A_ (W)w, ++idlecnt);
1299 array_needsize (idles, idlemax, idlecnt, );
1300 idles [idlecnt - 1] = w;
1301}
1302
1303void
1304ev_idle_stop (EV_P_ struct ev_idle *w)
1305{
1306 ev_clear_pending (EV_A_ (W)w);
1307 if (ev_is_active (w))
1308 return;
1309
1310 idles [((W)w)->active - 1] = idles [--idlecnt];
1311 ev_stop (EV_A_ (W)w);
1312}
1313
1314void
1315ev_prepare_start (EV_P_ struct ev_prepare *w)
1316{
1317 if (ev_is_active (w))
1318 return;
1319
1320 ev_start (EV_A_ (W)w, ++preparecnt);
1321 array_needsize (prepares, preparemax, preparecnt, );
1322 prepares [preparecnt - 1] = w;
1323}
1324
1325void
1326ev_prepare_stop (EV_P_ struct ev_prepare *w)
1327{
1328 ev_clear_pending (EV_A_ (W)w);
1329 if (ev_is_active (w))
1330 return;
1331
1332 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1333 ev_stop (EV_A_ (W)w);
1334}
1335
1336void
1337ev_check_start (EV_P_ struct ev_check *w)
1338{
1339 if (ev_is_active (w))
1340 return;
1341
1342 ev_start (EV_A_ (W)w, ++checkcnt);
1343 array_needsize (checks, checkmax, checkcnt, );
1344 checks [checkcnt - 1] = w;
1345}
1346
1347void
1348ev_check_stop (EV_P_ struct ev_check *w)
1349{
1350 ev_clear_pending (EV_A_ (W)w);
1351 if (ev_is_active (w))
1352 return;
1353
1354 checks [((W)w)->active - 1] = checks [--checkcnt];
1355 ev_stop (EV_A_ (W)w);
1356}
1357
1358#ifndef SA_RESTART
1359# define SA_RESTART 0
1360#endif
1361
1362void
1363ev_signal_start (EV_P_ struct ev_signal *w)
1364{
1365#if EV_MULTIPLICITY
1366 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1367#endif
1368 if (ev_is_active (w))
1369 return;
1370
1371 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1372
754 ev_start ((W)w, 1); 1373 ev_start (EV_A_ (W)w, 1);
755 array_needsize (signals, signalmax, w->signum, signals_init); 1374 array_needsize (signals, signalmax, w->signum, signals_init);
756 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1375 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
757 1376
758 if (!w->next) 1377 if (!((WL)w)->next)
759 { 1378 {
1379#if WIN32
1380 signal (w->signum, sighandler);
1381#else
760 struct sigaction sa; 1382 struct sigaction sa;
761 sa.sa_handler = sighandler; 1383 sa.sa_handler = sighandler;
762 sigfillset (&sa.sa_mask); 1384 sigfillset (&sa.sa_mask);
763 sa.sa_flags = 0; 1385 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
764 sigaction (w->signum, &sa, 0); 1386 sigaction (w->signum, &sa, 0);
1387#endif
765 } 1388 }
766} 1389}
767 1390
768void 1391void
769evsignal_stop (struct ev_signal *w) 1392ev_signal_stop (EV_P_ struct ev_signal *w)
770{ 1393{
771 ev_clear ((W)w); 1394 ev_clear_pending (EV_A_ (W)w);
772 if (!ev_is_active (w)) 1395 if (!ev_is_active (w))
773 return; 1396 return;
774 1397
775 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1398 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
776 ev_stop ((W)w); 1399 ev_stop (EV_A_ (W)w);
777 1400
778 if (!signals [w->signum - 1].head) 1401 if (!signals [w->signum - 1].head)
779 signal (w->signum, SIG_DFL); 1402 signal (w->signum, SIG_DFL);
780} 1403}
781 1404
782void evidle_start (struct ev_idle *w) 1405void
1406ev_child_start (EV_P_ struct ev_child *w)
783{ 1407{
1408#if EV_MULTIPLICITY
1409 assert (("child watchers are only supported in the default loop", loop == default_loop));
1410#endif
784 if (ev_is_active (w)) 1411 if (ev_is_active (w))
785 return; 1412 return;
786 1413
787 ev_start ((W)w, ++idlecnt); 1414 ev_start (EV_A_ (W)w, 1);
788 array_needsize (idles, idlemax, idlecnt, ); 1415 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
789 idles [idlecnt - 1] = w;
790} 1416}
791 1417
792void evidle_stop (struct ev_idle *w) 1418void
1419ev_child_stop (EV_P_ struct ev_child *w)
793{ 1420{
794 ev_clear ((W)w); 1421 ev_clear_pending (EV_A_ (W)w);
795 if (ev_is_active (w)) 1422 if (ev_is_active (w))
796 return; 1423 return;
797 1424
798 idles [w->active - 1] = idles [--idlecnt]; 1425 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
799 ev_stop ((W)w); 1426 ev_stop (EV_A_ (W)w);
800}
801
802void evcheck_start (struct ev_check *w)
803{
804 if (ev_is_active (w))
805 return;
806
807 ev_start ((W)w, ++checkcnt);
808 array_needsize (checks, checkmax, checkcnt, );
809 checks [checkcnt - 1] = w;
810}
811
812void evcheck_stop (struct ev_check *w)
813{
814 ev_clear ((W)w);
815 if (ev_is_active (w))
816 return;
817
818 checks [w->active - 1] = checks [--checkcnt];
819 ev_stop ((W)w);
820} 1427}
821 1428
822/*****************************************************************************/ 1429/*****************************************************************************/
823 1430
824struct ev_once 1431struct ev_once
828 void (*cb)(int revents, void *arg); 1435 void (*cb)(int revents, void *arg);
829 void *arg; 1436 void *arg;
830}; 1437};
831 1438
832static void 1439static void
833once_cb (struct ev_once *once, int revents) 1440once_cb (EV_P_ struct ev_once *once, int revents)
834{ 1441{
835 void (*cb)(int revents, void *arg) = once->cb; 1442 void (*cb)(int revents, void *arg) = once->cb;
836 void *arg = once->arg; 1443 void *arg = once->arg;
837 1444
838 evio_stop (&once->io); 1445 ev_io_stop (EV_A_ &once->io);
839 evtimer_stop (&once->to); 1446 ev_timer_stop (EV_A_ &once->to);
840 free (once); 1447 ev_free (once);
841 1448
842 cb (revents, arg); 1449 cb (revents, arg);
843} 1450}
844 1451
845static void 1452static void
846once_cb_io (struct ev_io *w, int revents) 1453once_cb_io (EV_P_ struct ev_io *w, int revents)
847{ 1454{
848 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1455 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
849} 1456}
850 1457
851static void 1458static void
852once_cb_to (struct ev_timer *w, int revents) 1459once_cb_to (EV_P_ struct ev_timer *w, int revents)
853{ 1460{
854 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1461 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
855} 1462}
856 1463
857void 1464void
858ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1465ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
859{ 1466{
860 struct ev_once *once = malloc (sizeof (struct ev_once)); 1467 struct ev_once *once = ev_malloc (sizeof (struct ev_once));
861 1468
862 if (!once) 1469 if (!once)
863 cb (EV_ERROR, arg); 1470 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
864 else 1471 else
865 { 1472 {
866 once->cb = cb; 1473 once->cb = cb;
867 once->arg = arg; 1474 once->arg = arg;
868 1475
869 evw_init (&once->io, once_cb_io); 1476 ev_watcher_init (&once->io, once_cb_io);
870
871 if (fd >= 0) 1477 if (fd >= 0)
872 { 1478 {
873 evio_set (&once->io, fd, events); 1479 ev_io_set (&once->io, fd, events);
874 evio_start (&once->io); 1480 ev_io_start (EV_A_ &once->io);
875 } 1481 }
876 1482
877 evw_init (&once->to, once_cb_to); 1483 ev_watcher_init (&once->to, once_cb_to);
878
879 if (timeout >= 0.) 1484 if (timeout >= 0.)
880 { 1485 {
881 evtimer_set (&once->to, timeout, 0.); 1486 ev_timer_set (&once->to, timeout, 0.);
882 evtimer_start (&once->to); 1487 ev_timer_start (EV_A_ &once->to);
883 } 1488 }
884 } 1489 }
885} 1490}
886 1491
887/*****************************************************************************/
888
889#if 0
890
891struct ev_io wio;
892
893static void
894sin_cb (struct ev_io *w, int revents)
895{
896 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
897}
898
899static void
900ocb (struct ev_timer *w, int revents)
901{
902 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
903 evtimer_stop (w);
904 evtimer_start (w);
905}
906
907static void
908scb (struct ev_signal *w, int revents)
909{
910 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
911 evio_stop (&wio);
912 evio_start (&wio);
913}
914
915static void
916gcb (struct ev_signal *w, int revents)
917{
918 fprintf (stderr, "generic %x\n", revents);
919
920}
921
922int main (void)
923{
924 ev_init (0);
925
926 evio_init (&wio, sin_cb, 0, EV_READ);
927 evio_start (&wio);
928
929 struct ev_timer t[10000];
930
931#if 0
932 int i;
933 for (i = 0; i < 10000; ++i)
934 {
935 struct ev_timer *w = t + i;
936 evw_init (w, ocb, i);
937 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
938 evtimer_start (w);
939 if (drand48 () < 0.5)
940 evtimer_stop (w);
941 }
942#endif
943
944 struct ev_timer t1;
945 evtimer_init (&t1, ocb, 5, 10);
946 evtimer_start (&t1);
947
948 struct ev_signal sig;
949 evsignal_init (&sig, scb, SIGQUIT);
950 evsignal_start (&sig);
951
952 struct ev_check cw;
953 evcheck_init (&cw, gcb);
954 evcheck_start (&cw);
955
956 struct ev_idle iw;
957 evidle_init (&iw, gcb);
958 evidle_start (&iw);
959
960 ev_loop (0);
961
962 return 0;
963}
964
965#endif
966
967
968
969

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines