ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.16 by root, Wed Oct 31 13:57:34 2007 UTC vs.
Revision 1.77 by root, Thu Nov 8 00:44:17 2007 UTC

1/*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * * Redistributions in binary form must reproduce the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer in the documentation and/or other materials provided
17 * with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
55#endif
56
1#include <math.h> 57#include <math.h>
2#include <stdlib.h> 58#include <stdlib.h>
3#include <unistd.h>
4#include <fcntl.h> 59#include <fcntl.h>
5#include <signal.h>
6#include <stddef.h> 60#include <stddef.h>
7 61
8#include <stdio.h> 62#include <stdio.h>
9 63
10#include <assert.h> 64#include <assert.h>
11#include <errno.h> 65#include <errno.h>
12#include <sys/time.h> 66#include <sys/types.h>
13#include <time.h> 67#include <time.h>
14 68
15#define HAVE_EPOLL 1 69#include <signal.h>
16 70
71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
74# include <sys/wait.h>
75#endif
76/**/
77
17#ifndef HAVE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
18# ifdef CLOCK_MONOTONIC
19# define HAVE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
80#endif
81
82#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1
84#endif
85
86#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
88#endif
89
90#ifndef EV_USE_EPOLL
91# define EV_USE_EPOLL 0
92#endif
93
94#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
20# endif 105# endif
21#endif 106#endif
22 107
23#ifndef HAVE_SELECT
24# define HAVE_SELECT 1
25#endif
26
27#ifndef HAVE_EPOLL
28# define HAVE_EPOLL 0
29#endif
30
31#ifndef HAVE_REALTIME 108#ifndef EV_USE_REALTIME
32# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 109# define EV_USE_REALTIME 1
33#endif 110#endif
111
112/**/
113
114#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0
117#endif
118
119#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0
122#endif
123
124/**/
34 125
35#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
36#define MAX_BLOCKTIME 60. 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
37 130
38#include "ev.h" 131#include "ev.h"
132
133#if __GNUC__ >= 3
134# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline
136#else
137# define expect(expr,value) (expr)
138# define inline static
139#endif
140
141#define expect_false(expr) expect ((expr) != 0, 0)
142#define expect_true(expr) expect ((expr) != 0, 1)
143
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145#define ABSPRI(w) ((w)->priority - EV_MINPRI)
39 146
40typedef struct ev_watcher *W; 147typedef struct ev_watcher *W;
41typedef struct ev_watcher_list *WL; 148typedef struct ev_watcher_list *WL;
42typedef struct ev_watcher_time *WT; 149typedef struct ev_watcher_time *WT;
43 150
44static ev_tstamp now, diff; /* monotonic clock */ 151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
45ev_tstamp ev_now;
46int ev_method;
47 152
48static int have_monotonic; /* runtime */ 153#include "ev_win32.c"
49
50static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
51static void (*method_modify)(int fd, int oev, int nev);
52static void (*method_poll)(ev_tstamp timeout);
53 154
54/*****************************************************************************/ 155/*****************************************************************************/
55 156
56ev_tstamp 157static void (*syserr_cb)(const char *msg);
158
159void ev_set_syserr_cb (void (*cb)(const char *msg))
160{
161 syserr_cb = cb;
162}
163
164static void
165syserr (const char *msg)
166{
167 if (!msg)
168 msg = "(libev) system error";
169
170 if (syserr_cb)
171 syserr_cb (msg);
172 else
173 {
174 perror (msg);
175 abort ();
176 }
177}
178
179static void *(*alloc)(void *ptr, long size);
180
181void ev_set_allocator (void *(*cb)(void *ptr, long size))
182{
183 alloc = cb;
184}
185
186static void *
187ev_realloc (void *ptr, long size)
188{
189 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
190
191 if (!ptr && size)
192 {
193 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
194 abort ();
195 }
196
197 return ptr;
198}
199
200#define ev_malloc(size) ev_realloc (0, (size))
201#define ev_free(ptr) ev_realloc ((ptr), 0)
202
203/*****************************************************************************/
204
205typedef struct
206{
207 WL head;
208 unsigned char events;
209 unsigned char reify;
210} ANFD;
211
212typedef struct
213{
214 W w;
215 int events;
216} ANPENDING;
217
218#if EV_MULTIPLICITY
219
220struct ev_loop
221{
222# define VAR(name,decl) decl;
223# include "ev_vars.h"
224};
225# undef VAR
226# include "ev_wrap.h"
227
228#else
229
230# define VAR(name,decl) static decl;
231# include "ev_vars.h"
232# undef VAR
233
234#endif
235
236/*****************************************************************************/
237
238inline ev_tstamp
57ev_time (void) 239ev_time (void)
58{ 240{
59#if HAVE_REALTIME 241#if EV_USE_REALTIME
60 struct timespec ts; 242 struct timespec ts;
61 clock_gettime (CLOCK_REALTIME, &ts); 243 clock_gettime (CLOCK_REALTIME, &ts);
62 return ts.tv_sec + ts.tv_nsec * 1e-9; 244 return ts.tv_sec + ts.tv_nsec * 1e-9;
63#else 245#else
64 struct timeval tv; 246 struct timeval tv;
65 gettimeofday (&tv, 0); 247 gettimeofday (&tv, 0);
66 return tv.tv_sec + tv.tv_usec * 1e-6; 248 return tv.tv_sec + tv.tv_usec * 1e-6;
67#endif 249#endif
68} 250}
69 251
70static ev_tstamp 252inline ev_tstamp
71get_clock (void) 253get_clock (void)
72{ 254{
73#if HAVE_MONOTONIC 255#if EV_USE_MONOTONIC
74 if (have_monotonic) 256 if (expect_true (have_monotonic))
75 { 257 {
76 struct timespec ts; 258 struct timespec ts;
77 clock_gettime (CLOCK_MONOTONIC, &ts); 259 clock_gettime (CLOCK_MONOTONIC, &ts);
78 return ts.tv_sec + ts.tv_nsec * 1e-9; 260 return ts.tv_sec + ts.tv_nsec * 1e-9;
79 } 261 }
80#endif 262#endif
81 263
82 return ev_time (); 264 return ev_time ();
83} 265}
84 266
267ev_tstamp
268ev_now (EV_P)
269{
270 return rt_now;
271}
272
273#define array_roundsize(type,n) ((n) | 4 & ~3)
274
85#define array_needsize(base,cur,cnt,init) \ 275#define array_needsize(type,base,cur,cnt,init) \
86 if ((cnt) > cur) \ 276 if (expect_false ((cnt) > cur)) \
87 { \ 277 { \
88 int newcnt = cur ? cur << 1 : 16; \ 278 int newcnt = cur; \
279 do \
280 { \
281 newcnt = array_roundsize (type, newcnt << 1); \
282 } \
283 while ((cnt) > newcnt); \
284 \
89 base = realloc (base, sizeof (*base) * (newcnt)); \ 285 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
90 init (base + cur, newcnt - cur); \ 286 init (base + cur, newcnt - cur); \
91 cur = newcnt; \ 287 cur = newcnt; \
92 } 288 }
289
290#define array_slim(type,stem) \
291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292 { \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 }
297
298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300#define array_free_microshit(stem) \
301 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302
303#define array_free(stem, idx) \
304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
93 305
94/*****************************************************************************/ 306/*****************************************************************************/
95 307
96typedef struct
97{
98 struct ev_io *head;
99 unsigned char wev, rev; /* want, received event set */
100} ANFD;
101
102static ANFD *anfds;
103static int anfdmax;
104
105static int *fdchanges;
106static int fdchangemax, fdchangecnt;
107
108static void 308static void
109anfds_init (ANFD *base, int count) 309anfds_init (ANFD *base, int count)
110{ 310{
111 while (count--) 311 while (count--)
112 { 312 {
113 base->head = 0; 313 base->head = 0;
114 base->wev = base->rev = EV_NONE; 314 base->events = EV_NONE;
315 base->reify = 0;
316
115 ++base; 317 ++base;
116 } 318 }
117} 319}
118 320
119typedef struct
120{
121 W w;
122 int events;
123} ANPENDING;
124
125static ANPENDING *pendings;
126static int pendingmax, pendingcnt;
127
128static void 321static void
129event (W w, int events) 322event (EV_P_ W w, int events)
130{ 323{
131 if (w->active) 324 if (w->pending)
132 { 325 {
133 w->pending = ++pendingcnt;
134 array_needsize (pendings, pendingmax, pendingcnt, );
135 pendings [pendingcnt - 1].w = w;
136 pendings [pendingcnt - 1].events = events; 326 pendings [ABSPRI (w)][w->pending - 1].events |= events;
327 return;
137 } 328 }
138}
139 329
330 w->pending = ++pendingcnt [ABSPRI (w)];
331 array_needsize (ANPENDING, pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void));
332 pendings [ABSPRI (w)][w->pending - 1].w = w;
333 pendings [ABSPRI (w)][w->pending - 1].events = events;
334}
335
140static void 336static void
337queue_events (EV_P_ W *events, int eventcnt, int type)
338{
339 int i;
340
341 for (i = 0; i < eventcnt; ++i)
342 event (EV_A_ events [i], type);
343}
344
345static void
141fd_event (int fd, int events) 346fd_event (EV_P_ int fd, int events)
142{ 347{
143 ANFD *anfd = anfds + fd; 348 ANFD *anfd = anfds + fd;
144 struct ev_io *w; 349 struct ev_io *w;
145 350
146 for (w = anfd->head; w; w = w->next) 351 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
147 { 352 {
148 int ev = w->events & events; 353 int ev = w->events & events;
149 354
150 if (ev) 355 if (ev)
151 event ((W)w, ev); 356 event (EV_A_ (W)w, ev);
152 } 357 }
153} 358}
154 359
360/*****************************************************************************/
361
155static void 362static void
156queue_events (W *events, int eventcnt, int type) 363fd_reify (EV_P)
157{ 364{
158 int i; 365 int i;
159 366
160 for (i = 0; i < eventcnt; ++i) 367 for (i = 0; i < fdchangecnt; ++i)
161 event (events [i], type); 368 {
369 int fd = fdchanges [i];
370 ANFD *anfd = anfds + fd;
371 struct ev_io *w;
372
373 int events = 0;
374
375 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
376 events |= w->events;
377
378 anfd->reify = 0;
379
380 method_modify (EV_A_ fd, anfd->events, events);
381 anfd->events = events;
382 }
383
384 fdchangecnt = 0;
385}
386
387static void
388fd_change (EV_P_ int fd)
389{
390 if (anfds [fd].reify)
391 return;
392
393 anfds [fd].reify = 1;
394
395 ++fdchangecnt;
396 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
397 fdchanges [fdchangecnt - 1] = fd;
398}
399
400static void
401fd_kill (EV_P_ int fd)
402{
403 struct ev_io *w;
404
405 while ((w = (struct ev_io *)anfds [fd].head))
406 {
407 ev_io_stop (EV_A_ w);
408 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
409 }
410}
411
412static int
413fd_valid (int fd)
414{
415#ifdef WIN32
416 return !!win32_get_osfhandle (fd);
417#else
418 return fcntl (fd, F_GETFD) != -1;
419#endif
420}
421
422/* called on EBADF to verify fds */
423static void
424fd_ebadf (EV_P)
425{
426 int fd;
427
428 for (fd = 0; fd < anfdmax; ++fd)
429 if (anfds [fd].events)
430 if (!fd_valid (fd) == -1 && errno == EBADF)
431 fd_kill (EV_A_ fd);
432}
433
434/* called on ENOMEM in select/poll to kill some fds and retry */
435static void
436fd_enomem (EV_P)
437{
438 int fd;
439
440 for (fd = anfdmax; fd--; )
441 if (anfds [fd].events)
442 {
443 fd_kill (EV_A_ fd);
444 return;
445 }
446}
447
448/* usually called after fork if method needs to re-arm all fds from scratch */
449static void
450fd_rearm_all (EV_P)
451{
452 int fd;
453
454 /* this should be highly optimised to not do anything but set a flag */
455 for (fd = 0; fd < anfdmax; ++fd)
456 if (anfds [fd].events)
457 {
458 anfds [fd].events = 0;
459 fd_change (EV_A_ fd);
460 }
162} 461}
163 462
164/*****************************************************************************/ 463/*****************************************************************************/
165 464
166static struct ev_timer **timers;
167static int timermax, timercnt;
168
169static struct ev_periodic **periodics;
170static int periodicmax, periodiccnt;
171
172static void 465static void
173upheap (WT *timers, int k) 466upheap (WT *heap, int k)
174{ 467{
175 WT w = timers [k]; 468 WT w = heap [k];
176 469
177 while (k && timers [k >> 1]->at > w->at) 470 while (k && heap [k >> 1]->at > w->at)
178 { 471 {
179 timers [k] = timers [k >> 1]; 472 heap [k] = heap [k >> 1];
180 timers [k]->active = k + 1; 473 ((W)heap [k])->active = k + 1;
181 k >>= 1; 474 k >>= 1;
182 } 475 }
183 476
184 timers [k] = w; 477 heap [k] = w;
185 timers [k]->active = k + 1; 478 ((W)heap [k])->active = k + 1;
186 479
187} 480}
188 481
189static void 482static void
190downheap (WT *timers, int N, int k) 483downheap (WT *heap, int N, int k)
191{ 484{
192 WT w = timers [k]; 485 WT w = heap [k];
193 486
194 while (k < (N >> 1)) 487 while (k < (N >> 1))
195 { 488 {
196 int j = k << 1; 489 int j = k << 1;
197 490
198 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 491 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
199 ++j; 492 ++j;
200 493
201 if (w->at <= timers [j]->at) 494 if (w->at <= heap [j]->at)
202 break; 495 break;
203 496
204 timers [k] = timers [j]; 497 heap [k] = heap [j];
205 timers [k]->active = k + 1; 498 ((W)heap [k])->active = k + 1;
206 k = j; 499 k = j;
207 } 500 }
208 501
209 timers [k] = w; 502 heap [k] = w;
210 timers [k]->active = k + 1; 503 ((W)heap [k])->active = k + 1;
211} 504}
212 505
213/*****************************************************************************/ 506/*****************************************************************************/
214 507
215typedef struct 508typedef struct
216{ 509{
217 struct ev_signal *head; 510 WL head;
218 sig_atomic_t gotsig; 511 sig_atomic_t volatile gotsig;
219} ANSIG; 512} ANSIG;
220 513
221static ANSIG *signals; 514static ANSIG *signals;
222static int signalmax; 515static int signalmax;
223 516
224static int sigpipe [2]; 517static int sigpipe [2];
225static sig_atomic_t gotsig; 518static sig_atomic_t volatile gotsig;
226static struct ev_io sigev; 519static struct ev_io sigev;
227 520
228static void 521static void
229signals_init (ANSIG *base, int count) 522signals_init (ANSIG *base, int count)
230{ 523{
231 while (count--) 524 while (count--)
232 { 525 {
233 base->head = 0; 526 base->head = 0;
234 base->gotsig = 0; 527 base->gotsig = 0;
528
235 ++base; 529 ++base;
236 } 530 }
237} 531}
238 532
239static void 533static void
240sighandler (int signum) 534sighandler (int signum)
241{ 535{
536#if WIN32
537 signal (signum, sighandler);
538#endif
539
242 signals [signum - 1].gotsig = 1; 540 signals [signum - 1].gotsig = 1;
243 541
244 if (!gotsig) 542 if (!gotsig)
245 { 543 {
544 int old_errno = errno;
246 gotsig = 1; 545 gotsig = 1;
546#ifdef WIN32
547 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
548#else
247 write (sigpipe [1], &gotsig, 1); 549 write (sigpipe [1], &signum, 1);
550#endif
551 errno = old_errno;
248 } 552 }
249} 553}
250 554
251static void 555static void
252sigcb (struct ev_io *iow, int revents) 556sigcb (EV_P_ struct ev_io *iow, int revents)
253{ 557{
254 struct ev_signal *w; 558 WL w;
255 int sig; 559 int signum;
256 560
561#ifdef WIN32
562 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
563#else
564 read (sigpipe [0], &revents, 1);
565#endif
257 gotsig = 0; 566 gotsig = 0;
258 read (sigpipe [0], &revents, 1);
259 567
260 for (sig = signalmax; sig--; ) 568 for (signum = signalmax; signum--; )
261 if (signals [sig].gotsig) 569 if (signals [signum].gotsig)
262 { 570 {
263 signals [sig].gotsig = 0; 571 signals [signum].gotsig = 0;
264 572
265 for (w = signals [sig].head; w; w = w->next) 573 for (w = signals [signum].head; w; w = w->next)
266 event ((W)w, EV_SIGNAL); 574 event (EV_A_ (W)w, EV_SIGNAL);
267 } 575 }
268} 576}
269 577
270static void 578static void
271siginit (void) 579siginit (EV_P)
272{ 580{
581#ifndef WIN32
273 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 582 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
274 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 583 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
275 584
276 /* rather than sort out wether we really need nb, set it */ 585 /* rather than sort out wether we really need nb, set it */
277 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 586 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
278 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 587 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
588#endif
279 589
280 evio_set (&sigev, sigpipe [0], EV_READ); 590 ev_io_set (&sigev, sigpipe [0], EV_READ);
281 evio_start (&sigev); 591 ev_io_start (EV_A_ &sigev);
592 ev_unref (EV_A); /* child watcher should not keep loop alive */
282} 593}
283 594
284/*****************************************************************************/ 595/*****************************************************************************/
285 596
286static struct ev_idle **idles; 597static struct ev_child *childs [PID_HASHSIZE];
287static int idlemax, idlecnt;
288 598
289static struct ev_check **checks; 599#ifndef WIN32
290static int checkmax, checkcnt; 600
601static struct ev_signal childev;
602
603#ifndef WCONTINUED
604# define WCONTINUED 0
605#endif
606
607static void
608child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
609{
610 struct ev_child *w;
611
612 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
613 if (w->pid == pid || !w->pid)
614 {
615 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
616 w->rpid = pid;
617 w->rstatus = status;
618 event (EV_A_ (W)w, EV_CHILD);
619 }
620}
621
622static void
623childcb (EV_P_ struct ev_signal *sw, int revents)
624{
625 int pid, status;
626
627 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
628 {
629 /* make sure we are called again until all childs have been reaped */
630 event (EV_A_ (W)sw, EV_SIGNAL);
631
632 child_reap (EV_A_ sw, pid, pid, status);
633 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
634 }
635}
636
637#endif
291 638
292/*****************************************************************************/ 639/*****************************************************************************/
293 640
641#if EV_USE_KQUEUE
642# include "ev_kqueue.c"
643#endif
294#if HAVE_EPOLL 644#if EV_USE_EPOLL
295# include "ev_epoll.c" 645# include "ev_epoll.c"
296#endif 646#endif
647#if EV_USE_POLL
648# include "ev_poll.c"
649#endif
297#if HAVE_SELECT 650#if EV_USE_SELECT
298# include "ev_select.c" 651# include "ev_select.c"
299#endif 652#endif
300 653
301int ev_init (int flags) 654int
655ev_version_major (void)
302{ 656{
657 return EV_VERSION_MAJOR;
658}
659
660int
661ev_version_minor (void)
662{
663 return EV_VERSION_MINOR;
664}
665
666/* return true if we are running with elevated privileges and should ignore env variables */
667static int
668enable_secure (void)
669{
670#ifdef WIN32
671 return 0;
672#else
673 return getuid () != geteuid ()
674 || getgid () != getegid ();
675#endif
676}
677
678int
679ev_method (EV_P)
680{
681 return method;
682}
683
684static void
685loop_init (EV_P_ int methods)
686{
687 if (!method)
688 {
303#if HAVE_MONOTONIC 689#if EV_USE_MONOTONIC
304 { 690 {
305 struct timespec ts; 691 struct timespec ts;
306 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 692 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
307 have_monotonic = 1; 693 have_monotonic = 1;
308 } 694 }
309#endif 695#endif
310 696
311 ev_now = ev_time (); 697 rt_now = ev_time ();
312 now = get_clock (); 698 mn_now = get_clock ();
313 diff = ev_now - now; 699 now_floor = mn_now;
700 rtmn_diff = rt_now - mn_now;
314 701
702 if (methods == EVMETHOD_AUTO)
703 if (!enable_secure () && getenv ("LIBEV_METHODS"))
704 methods = atoi (getenv ("LIBEV_METHODS"));
705 else
706 methods = EVMETHOD_ANY;
707
708 method = 0;
709#if EV_USE_WIN32
710 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
711#endif
712#if EV_USE_KQUEUE
713 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
714#endif
715#if EV_USE_EPOLL
716 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
717#endif
718#if EV_USE_POLL
719 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
720#endif
721#if EV_USE_SELECT
722 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
723#endif
724
725 ev_watcher_init (&sigev, sigcb);
726 ev_set_priority (&sigev, EV_MAXPRI);
727 }
728}
729
730void
731loop_destroy (EV_P)
732{
733 int i;
734
735#if EV_USE_WIN32
736 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
737#endif
738#if EV_USE_KQUEUE
739 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
740#endif
741#if EV_USE_EPOLL
742 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
743#endif
744#if EV_USE_POLL
745 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
746#endif
747#if EV_USE_SELECT
748 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
749#endif
750
751 for (i = NUMPRI; i--; )
752 array_free (pending, [i]);
753
754 /* have to use the microsoft-never-gets-it-right macro */
755 array_free_microshit (fdchange);
756 array_free_microshit (timer);
757 array_free_microshit (periodic);
758 array_free_microshit (idle);
759 array_free_microshit (prepare);
760 array_free_microshit (check);
761
762 method = 0;
763}
764
765static void
766loop_fork (EV_P)
767{
768#if EV_USE_EPOLL
769 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
770#endif
771#if EV_USE_KQUEUE
772 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
773#endif
774
775 if (ev_is_active (&sigev))
776 {
777 /* default loop */
778
779 ev_ref (EV_A);
780 ev_io_stop (EV_A_ &sigev);
781 close (sigpipe [0]);
782 close (sigpipe [1]);
783
784 while (pipe (sigpipe))
785 syserr ("(libev) error creating pipe");
786
787 siginit (EV_A);
788 }
789
790 postfork = 0;
791}
792
793#if EV_MULTIPLICITY
794struct ev_loop *
795ev_loop_new (int methods)
796{
797 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
798
799 memset (loop, 0, sizeof (struct ev_loop));
800
801 loop_init (EV_A_ methods);
802
803 if (ev_method (EV_A))
804 return loop;
805
806 return 0;
807}
808
809void
810ev_loop_destroy (EV_P)
811{
812 loop_destroy (EV_A);
813 ev_free (loop);
814}
815
816void
817ev_loop_fork (EV_P)
818{
819 postfork = 1;
820}
821
822#endif
823
824#if EV_MULTIPLICITY
825struct ev_loop default_loop_struct;
826static struct ev_loop *default_loop;
827
828struct ev_loop *
829#else
830static int default_loop;
831
832int
833#endif
834ev_default_loop (int methods)
835{
836 if (sigpipe [0] == sigpipe [1])
315 if (pipe (sigpipe)) 837 if (pipe (sigpipe))
316 return 0; 838 return 0;
317 839
318 ev_method = EVMETHOD_NONE; 840 if (!default_loop)
319#if HAVE_EPOLL 841 {
320 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 842#if EV_MULTIPLICITY
843 struct ev_loop *loop = default_loop = &default_loop_struct;
844#else
845 default_loop = 1;
321#endif 846#endif
322#if HAVE_SELECT
323 if (ev_method == EVMETHOD_NONE) select_init (flags);
324#endif
325 847
848 loop_init (EV_A_ methods);
849
850 if (ev_method (EV_A))
851 {
852 siginit (EV_A);
853
854#ifndef WIN32
855 ev_signal_init (&childev, childcb, SIGCHLD);
856 ev_set_priority (&childev, EV_MAXPRI);
857 ev_signal_start (EV_A_ &childev);
858 ev_unref (EV_A); /* child watcher should not keep loop alive */
859#endif
860 }
861 else
862 default_loop = 0;
863 }
864
865 return default_loop;
866}
867
868void
869ev_default_destroy (void)
870{
871#if EV_MULTIPLICITY
872 struct ev_loop *loop = default_loop;
873#endif
874
875#ifndef WIN32
876 ev_ref (EV_A); /* child watcher */
877 ev_signal_stop (EV_A_ &childev);
878#endif
879
880 ev_ref (EV_A); /* signal watcher */
881 ev_io_stop (EV_A_ &sigev);
882
883 close (sigpipe [0]); sigpipe [0] = 0;
884 close (sigpipe [1]); sigpipe [1] = 0;
885
886 loop_destroy (EV_A);
887}
888
889void
890ev_default_fork (void)
891{
892#if EV_MULTIPLICITY
893 struct ev_loop *loop = default_loop;
894#endif
895
326 if (ev_method) 896 if (method)
327 { 897 postfork = 1;
328 evw_init (&sigev, sigcb);
329 siginit ();
330 }
331
332 return ev_method;
333} 898}
334 899
335/*****************************************************************************/ 900/*****************************************************************************/
336 901
337void ev_prefork (void)
338{
339 /* nop */
340}
341
342void ev_postfork_parent (void)
343{
344 /* nop */
345}
346
347void ev_postfork_child (void)
348{
349#if HAVE_EPOLL
350 if (ev_method == EVMETHOD_EPOLL)
351 epoll_postfork_child ();
352#endif
353
354 evio_stop (&sigev);
355 close (sigpipe [0]);
356 close (sigpipe [1]);
357 pipe (sigpipe);
358 siginit ();
359}
360
361/*****************************************************************************/
362
363static void 902static int
364fd_reify (void) 903any_pending (EV_P)
365{ 904{
366 int i; 905 int pri;
367 906
368 for (i = 0; i < fdchangecnt; ++i) 907 for (pri = NUMPRI; pri--; )
369 { 908 if (pendingcnt [pri])
370 int fd = fdchanges [i]; 909 return 1;
371 ANFD *anfd = anfds + fd;
372 struct ev_io *w;
373 910
374 int wev = 0; 911 return 0;
375
376 for (w = anfd->head; w; w = w->next)
377 wev |= w->events;
378
379 if (anfd->wev != wev)
380 {
381 method_modify (fd, anfd->wev, wev);
382 anfd->wev = wev;
383 }
384 }
385
386 fdchangecnt = 0;
387} 912}
388 913
389static void 914static void
390call_pending () 915call_pending (EV_P)
391{ 916{
392 int i; 917 int pri;
393 918
394 for (i = 0; i < pendingcnt; ++i) 919 for (pri = NUMPRI; pri--; )
920 while (pendingcnt [pri])
395 { 921 {
396 ANPENDING *p = pendings + i; 922 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
397 923
398 if (p->w) 924 if (p->w)
399 { 925 {
400 p->w->pending = 0; 926 p->w->pending = 0;
401 p->w->cb (p->w, p->events); 927 p->w->cb (EV_A_ p->w, p->events);
402 } 928 }
403 } 929 }
404
405 pendingcnt = 0;
406} 930}
407 931
408static void 932static void
409timers_reify () 933timers_reify (EV_P)
410{ 934{
411 while (timercnt && timers [0]->at <= now) 935 while (timercnt && ((WT)timers [0])->at <= mn_now)
412 { 936 {
413 struct ev_timer *w = timers [0]; 937 struct ev_timer *w = timers [0];
414 938
415 event ((W)w, EV_TIMEOUT); 939 assert (("inactive timer on timer heap detected", ev_is_active (w)));
416 940
417 /* first reschedule or stop timer */ 941 /* first reschedule or stop timer */
418 if (w->repeat) 942 if (w->repeat)
419 { 943 {
944 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
420 w->at = now + w->repeat; 945 ((WT)w)->at = mn_now + w->repeat;
421 assert (("timer timeout in the past, negative repeat?", w->at > now));
422 downheap ((WT *)timers, timercnt, 0); 946 downheap ((WT *)timers, timercnt, 0);
423 } 947 }
424 else 948 else
425 evtimer_stop (w); /* nonrepeating: stop timer */ 949 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
426 }
427}
428 950
951 event (EV_A_ (W)w, EV_TIMEOUT);
952 }
953}
954
429static void 955static void
430periodics_reify () 956periodics_reify (EV_P)
431{ 957{
432 while (periodiccnt && periodics [0]->at <= ev_now) 958 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
433 { 959 {
434 struct ev_periodic *w = periodics [0]; 960 struct ev_periodic *w = periodics [0];
435 961
962 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
963
436 /* first reschedule or stop timer */ 964 /* first reschedule or stop timer */
437 if (w->interval) 965 if (w->reschedule_cb)
438 { 966 {
967 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001);
968
969 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now));
970 downheap ((WT *)periodics, periodiccnt, 0);
971 }
972 else if (w->interval)
973 {
439 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 974 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
440 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 975 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
441 downheap ((WT *)periodics, periodiccnt, 0); 976 downheap ((WT *)periodics, periodiccnt, 0);
442 } 977 }
443 else 978 else
444 evperiodic_stop (w); /* nonrepeating: stop timer */ 979 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
445 980
446 event ((W)w, EV_TIMEOUT); 981 event (EV_A_ (W)w, EV_PERIODIC);
447 } 982 }
448} 983}
449 984
450static void 985static void
451periodics_reschedule (ev_tstamp diff) 986periodics_reschedule (EV_P)
452{ 987{
453 int i; 988 int i;
454 989
455 /* adjust periodics after time jump */ 990 /* adjust periodics after time jump */
456 for (i = 0; i < periodiccnt; ++i) 991 for (i = 0; i < periodiccnt; ++i)
457 { 992 {
458 struct ev_periodic *w = periodics [i]; 993 struct ev_periodic *w = periodics [i];
459 994
995 if (w->reschedule_cb)
996 ((WT)w)->at = w->reschedule_cb (w, rt_now);
460 if (w->interval) 997 else if (w->interval)
998 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
999 }
1000
1001 /* now rebuild the heap */
1002 for (i = periodiccnt >> 1; i--; )
1003 downheap ((WT *)periodics, periodiccnt, i);
1004}
1005
1006inline int
1007time_update_monotonic (EV_P)
1008{
1009 mn_now = get_clock ();
1010
1011 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1012 {
1013 rt_now = rtmn_diff + mn_now;
1014 return 0;
1015 }
1016 else
1017 {
1018 now_floor = mn_now;
1019 rt_now = ev_time ();
1020 return 1;
1021 }
1022}
1023
1024static void
1025time_update (EV_P)
1026{
1027 int i;
1028
1029#if EV_USE_MONOTONIC
1030 if (expect_true (have_monotonic))
1031 {
1032 if (time_update_monotonic (EV_A))
461 { 1033 {
462 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 1034 ev_tstamp odiff = rtmn_diff;
463 1035
464 if (fabs (diff) >= 1e-4) 1036 for (i = 4; --i; ) /* loop a few times, before making important decisions */
465 { 1037 {
466 evperiodic_stop (w); 1038 rtmn_diff = rt_now - mn_now;
467 evperiodic_start (w);
468 1039
469 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 1040 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1041 return; /* all is well */
1042
1043 rt_now = ev_time ();
1044 mn_now = get_clock ();
1045 now_floor = mn_now;
470 } 1046 }
1047
1048 periodics_reschedule (EV_A);
1049 /* no timer adjustment, as the monotonic clock doesn't jump */
1050 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
471 } 1051 }
472 } 1052 }
473} 1053 else
474 1054#endif
475static void 1055 {
476time_update ()
477{
478 int i;
479
480 ev_now = ev_time (); 1056 rt_now = ev_time ();
481 1057
482 if (have_monotonic) 1058 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
483 {
484 ev_tstamp odiff = diff;
485
486 for (i = 4; --i; ) /* loop a few times, before making important decisions */
487 { 1059 {
488 now = get_clock ();
489 diff = ev_now - now;
490
491 if (fabs (odiff - diff) < MIN_TIMEJUMP)
492 return; /* all is well */
493
494 ev_now = ev_time ();
495 }
496
497 periodics_reschedule (diff - odiff);
498 /* no timer adjustment, as the monotonic clock doesn't jump */
499 }
500 else
501 {
502 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)
503 {
504 periodics_reschedule (ev_now - now); 1060 periodics_reschedule (EV_A);
505 1061
506 /* adjust timers. this is easy, as the offset is the same for all */ 1062 /* adjust timers. this is easy, as the offset is the same for all */
507 for (i = 0; i < timercnt; ++i) 1063 for (i = 0; i < timercnt; ++i)
508 timers [i]->at += diff; 1064 ((WT)timers [i])->at += rt_now - mn_now;
509 } 1065 }
510 1066
511 now = ev_now; 1067 mn_now = rt_now;
512 } 1068 }
513} 1069}
514 1070
515int ev_loop_done; 1071void
1072ev_ref (EV_P)
1073{
1074 ++activecnt;
1075}
516 1076
1077void
1078ev_unref (EV_P)
1079{
1080 --activecnt;
1081}
1082
1083static int loop_done;
1084
1085void
517void ev_loop (int flags) 1086ev_loop (EV_P_ int flags)
518{ 1087{
519 double block; 1088 double block;
520 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0; 1089 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
521
522 if (checkcnt)
523 {
524 queue_events ((W *)checks, checkcnt, EV_CHECK);
525 call_pending ();
526 }
527 1090
528 do 1091 do
529 { 1092 {
1093 /* queue check watchers (and execute them) */
1094 if (expect_false (preparecnt))
1095 {
1096 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1097 call_pending (EV_A);
1098 }
1099
1100 /* we might have forked, so reify kernel state if necessary */
1101 if (expect_false (postfork))
1102 loop_fork (EV_A);
1103
530 /* update fd-related kernel structures */ 1104 /* update fd-related kernel structures */
531 fd_reify (); 1105 fd_reify (EV_A);
532 1106
533 /* calculate blocking time */ 1107 /* calculate blocking time */
534 1108
535 /* we only need this for !monotonic clock, but as we always have timers, we just calculate it every time */ 1109 /* we only need this for !monotonic clock or timers, but as we basically
1110 always have timers, we just calculate it always */
1111#if EV_USE_MONOTONIC
1112 if (expect_true (have_monotonic))
1113 time_update_monotonic (EV_A);
1114 else
1115#endif
1116 {
536 ev_now = ev_time (); 1117 rt_now = ev_time ();
1118 mn_now = rt_now;
1119 }
537 1120
538 if (flags & EVLOOP_NONBLOCK || idlecnt) 1121 if (flags & EVLOOP_NONBLOCK || idlecnt)
539 block = 0.; 1122 block = 0.;
540 else 1123 else
541 { 1124 {
542 block = MAX_BLOCKTIME; 1125 block = MAX_BLOCKTIME;
543 1126
544 if (timercnt) 1127 if (timercnt)
545 { 1128 {
546 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1129 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
547 if (block > to) block = to; 1130 if (block > to) block = to;
548 } 1131 }
549 1132
550 if (periodiccnt) 1133 if (periodiccnt)
551 { 1134 {
552 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1135 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
553 if (block > to) block = to; 1136 if (block > to) block = to;
554 } 1137 }
555 1138
556 if (block < 0.) block = 0.; 1139 if (block < 0.) block = 0.;
557 } 1140 }
558 1141
559 method_poll (block); 1142 method_poll (EV_A_ block);
560 1143
561 /* update ev_now, do magic */ 1144 /* update rt_now, do magic */
562 time_update (); 1145 time_update (EV_A);
563 1146
564 /* queue pending timers and reschedule them */ 1147 /* queue pending timers and reschedule them */
1148 timers_reify (EV_A); /* relative timers called last */
565 periodics_reify (); /* absolute timers first */ 1149 periodics_reify (EV_A); /* absolute timers called first */
566 timers_reify (); /* relative timers second */
567 1150
568 /* queue idle watchers unless io or timers are pending */ 1151 /* queue idle watchers unless io or timers are pending */
569 if (!pendingcnt) 1152 if (idlecnt && !any_pending (EV_A))
570 queue_events ((W *)idles, idlecnt, EV_IDLE); 1153 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
571 1154
572 /* queue check and possibly idle watchers */ 1155 /* queue check watchers, to be executed first */
1156 if (checkcnt)
573 queue_events ((W *)checks, checkcnt, EV_CHECK); 1157 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
574 1158
575 call_pending (); 1159 call_pending (EV_A);
576 } 1160 }
577 while (!ev_loop_done); 1161 while (activecnt && !loop_done);
578 1162
579 if (ev_loop_done != 2) 1163 if (loop_done != 2)
580 ev_loop_done = 0; 1164 loop_done = 0;
1165}
1166
1167void
1168ev_unloop (EV_P_ int how)
1169{
1170 loop_done = how;
581} 1171}
582 1172
583/*****************************************************************************/ 1173/*****************************************************************************/
584 1174
585static void 1175inline void
586wlist_add (WL *head, WL elem) 1176wlist_add (WL *head, WL elem)
587{ 1177{
588 elem->next = *head; 1178 elem->next = *head;
589 *head = elem; 1179 *head = elem;
590} 1180}
591 1181
592static void 1182inline void
593wlist_del (WL *head, WL elem) 1183wlist_del (WL *head, WL elem)
594{ 1184{
595 while (*head) 1185 while (*head)
596 { 1186 {
597 if (*head == elem) 1187 if (*head == elem)
602 1192
603 head = &(*head)->next; 1193 head = &(*head)->next;
604 } 1194 }
605} 1195}
606 1196
607static void 1197inline void
608ev_clear (W w) 1198ev_clear_pending (EV_P_ W w)
609{ 1199{
610 if (w->pending) 1200 if (w->pending)
611 { 1201 {
612 pendings [w->pending - 1].w = 0; 1202 pendings [ABSPRI (w)][w->pending - 1].w = 0;
613 w->pending = 0; 1203 w->pending = 0;
614 } 1204 }
615} 1205}
616 1206
617static void 1207inline void
618ev_start (W w, int active) 1208ev_start (EV_P_ W w, int active)
619{ 1209{
1210 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1211 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1212
620 w->active = active; 1213 w->active = active;
1214 ev_ref (EV_A);
621} 1215}
622 1216
623static void 1217inline void
624ev_stop (W w) 1218ev_stop (EV_P_ W w)
625{ 1219{
1220 ev_unref (EV_A);
626 w->active = 0; 1221 w->active = 0;
627} 1222}
628 1223
629/*****************************************************************************/ 1224/*****************************************************************************/
630 1225
631void 1226void
632evio_start (struct ev_io *w) 1227ev_io_start (EV_P_ struct ev_io *w)
633{ 1228{
1229 int fd = w->fd;
1230
634 if (ev_is_active (w)) 1231 if (ev_is_active (w))
635 return; 1232 return;
636 1233
637 int fd = w->fd; 1234 assert (("ev_io_start called with negative fd", fd >= 0));
638 1235
639 ev_start ((W)w, 1); 1236 ev_start (EV_A_ (W)w, 1);
640 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1237 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
641 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1238 wlist_add ((WL *)&anfds[fd].head, (WL)w);
642 1239
643 ++fdchangecnt; 1240 fd_change (EV_A_ fd);
644 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
645 fdchanges [fdchangecnt - 1] = fd;
646} 1241}
647 1242
648void 1243void
649evio_stop (struct ev_io *w) 1244ev_io_stop (EV_P_ struct ev_io *w)
650{ 1245{
651 ev_clear ((W)w); 1246 ev_clear_pending (EV_A_ (W)w);
652 if (!ev_is_active (w)) 1247 if (!ev_is_active (w))
653 return; 1248 return;
654 1249
655 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1250 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
656 ev_stop ((W)w); 1251 ev_stop (EV_A_ (W)w);
657 1252
658 ++fdchangecnt; 1253 fd_change (EV_A_ w->fd);
659 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
660 fdchanges [fdchangecnt - 1] = w->fd;
661} 1254}
662 1255
663void 1256void
664evtimer_start (struct ev_timer *w) 1257ev_timer_start (EV_P_ struct ev_timer *w)
665{ 1258{
666 if (ev_is_active (w)) 1259 if (ev_is_active (w))
667 return; 1260 return;
668 1261
669 w->at += now; 1262 ((WT)w)->at += mn_now;
670 1263
671 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1264 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
672 1265
673 ev_start ((W)w, ++timercnt); 1266 ev_start (EV_A_ (W)w, ++timercnt);
674 array_needsize (timers, timermax, timercnt, ); 1267 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
675 timers [timercnt - 1] = w; 1268 timers [timercnt - 1] = w;
676 upheap ((WT *)timers, timercnt - 1); 1269 upheap ((WT *)timers, timercnt - 1);
677}
678 1270
1271 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1272}
1273
679void 1274void
680evtimer_stop (struct ev_timer *w) 1275ev_timer_stop (EV_P_ struct ev_timer *w)
681{ 1276{
682 ev_clear ((W)w); 1277 ev_clear_pending (EV_A_ (W)w);
683 if (!ev_is_active (w)) 1278 if (!ev_is_active (w))
684 return; 1279 return;
685 1280
1281 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1282
686 if (w->active < timercnt--) 1283 if (((W)w)->active < timercnt--)
687 { 1284 {
688 timers [w->active - 1] = timers [timercnt]; 1285 timers [((W)w)->active - 1] = timers [timercnt];
689 downheap ((WT *)timers, timercnt, w->active - 1); 1286 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
690 } 1287 }
691 1288
692 w->at = w->repeat; 1289 ((WT)w)->at = w->repeat;
693 1290
694 ev_stop ((W)w); 1291 ev_stop (EV_A_ (W)w);
695} 1292}
696 1293
697void 1294void
698evtimer_again (struct ev_timer *w) 1295ev_timer_again (EV_P_ struct ev_timer *w)
699{ 1296{
700 if (ev_is_active (w)) 1297 if (ev_is_active (w))
701 { 1298 {
702 if (w->repeat) 1299 if (w->repeat)
703 { 1300 {
704 w->at = now + w->repeat; 1301 ((WT)w)->at = mn_now + w->repeat;
705 downheap ((WT *)timers, timercnt, w->active - 1); 1302 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
706 } 1303 }
707 else 1304 else
708 evtimer_stop (w); 1305 ev_timer_stop (EV_A_ w);
709 } 1306 }
710 else if (w->repeat) 1307 else if (w->repeat)
711 evtimer_start (w); 1308 ev_timer_start (EV_A_ w);
712} 1309}
713 1310
714void 1311void
715evperiodic_start (struct ev_periodic *w) 1312ev_periodic_start (EV_P_ struct ev_periodic *w)
716{ 1313{
717 if (ev_is_active (w)) 1314 if (ev_is_active (w))
718 return; 1315 return;
719 1316
720 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1317 if (w->reschedule_cb)
721 1318 ((WT)w)->at = w->reschedule_cb (w, rt_now);
1319 else if (w->interval)
1320 {
1321 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
722 /* this formula differs from the one in periodic_reify because we do not always round up */ 1322 /* this formula differs from the one in periodic_reify because we do not always round up */
723 if (w->interval)
724 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1323 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1324 }
725 1325
726 ev_start ((W)w, ++periodiccnt); 1326 ev_start (EV_A_ (W)w, ++periodiccnt);
727 array_needsize (periodics, periodicmax, periodiccnt, ); 1327 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
728 periodics [periodiccnt - 1] = w; 1328 periodics [periodiccnt - 1] = w;
729 upheap ((WT *)periodics, periodiccnt - 1); 1329 upheap ((WT *)periodics, periodiccnt - 1);
730}
731 1330
1331 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1332}
1333
732void 1334void
733evperiodic_stop (struct ev_periodic *w) 1335ev_periodic_stop (EV_P_ struct ev_periodic *w)
734{ 1336{
735 ev_clear ((W)w); 1337 ev_clear_pending (EV_A_ (W)w);
736 if (!ev_is_active (w)) 1338 if (!ev_is_active (w))
737 return; 1339 return;
738 1340
1341 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1342
739 if (w->active < periodiccnt--) 1343 if (((W)w)->active < periodiccnt--)
740 { 1344 {
741 periodics [w->active - 1] = periodics [periodiccnt]; 1345 periodics [((W)w)->active - 1] = periodics [periodiccnt];
742 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1346 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
743 } 1347 }
744 1348
745 ev_stop ((W)w); 1349 ev_stop (EV_A_ (W)w);
746} 1350}
747 1351
748void 1352void
749evsignal_start (struct ev_signal *w) 1353ev_periodic_again (EV_P_ struct ev_periodic *w)
1354{
1355 ev_periodic_stop (EV_A_ w);
1356 ev_periodic_start (EV_A_ w);
1357}
1358
1359void
1360ev_idle_start (EV_P_ struct ev_idle *w)
750{ 1361{
751 if (ev_is_active (w)) 1362 if (ev_is_active (w))
752 return; 1363 return;
753 1364
1365 ev_start (EV_A_ (W)w, ++idlecnt);
1366 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1367 idles [idlecnt - 1] = w;
1368}
1369
1370void
1371ev_idle_stop (EV_P_ struct ev_idle *w)
1372{
1373 ev_clear_pending (EV_A_ (W)w);
1374 if (ev_is_active (w))
1375 return;
1376
1377 idles [((W)w)->active - 1] = idles [--idlecnt];
1378 ev_stop (EV_A_ (W)w);
1379}
1380
1381void
1382ev_prepare_start (EV_P_ struct ev_prepare *w)
1383{
1384 if (ev_is_active (w))
1385 return;
1386
1387 ev_start (EV_A_ (W)w, ++preparecnt);
1388 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1389 prepares [preparecnt - 1] = w;
1390}
1391
1392void
1393ev_prepare_stop (EV_P_ struct ev_prepare *w)
1394{
1395 ev_clear_pending (EV_A_ (W)w);
1396 if (ev_is_active (w))
1397 return;
1398
1399 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1400 ev_stop (EV_A_ (W)w);
1401}
1402
1403void
1404ev_check_start (EV_P_ struct ev_check *w)
1405{
1406 if (ev_is_active (w))
1407 return;
1408
1409 ev_start (EV_A_ (W)w, ++checkcnt);
1410 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1411 checks [checkcnt - 1] = w;
1412}
1413
1414void
1415ev_check_stop (EV_P_ struct ev_check *w)
1416{
1417 ev_clear_pending (EV_A_ (W)w);
1418 if (ev_is_active (w))
1419 return;
1420
1421 checks [((W)w)->active - 1] = checks [--checkcnt];
1422 ev_stop (EV_A_ (W)w);
1423}
1424
1425#ifndef SA_RESTART
1426# define SA_RESTART 0
1427#endif
1428
1429void
1430ev_signal_start (EV_P_ struct ev_signal *w)
1431{
1432#if EV_MULTIPLICITY
1433 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1434#endif
1435 if (ev_is_active (w))
1436 return;
1437
1438 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1439
754 ev_start ((W)w, 1); 1440 ev_start (EV_A_ (W)w, 1);
755 array_needsize (signals, signalmax, w->signum, signals_init); 1441 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
756 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1442 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
757 1443
758 if (!w->next) 1444 if (!((WL)w)->next)
759 { 1445 {
1446#if WIN32
1447 signal (w->signum, sighandler);
1448#else
760 struct sigaction sa; 1449 struct sigaction sa;
761 sa.sa_handler = sighandler; 1450 sa.sa_handler = sighandler;
762 sigfillset (&sa.sa_mask); 1451 sigfillset (&sa.sa_mask);
763 sa.sa_flags = 0; 1452 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
764 sigaction (w->signum, &sa, 0); 1453 sigaction (w->signum, &sa, 0);
1454#endif
765 } 1455 }
766} 1456}
767 1457
768void 1458void
769evsignal_stop (struct ev_signal *w) 1459ev_signal_stop (EV_P_ struct ev_signal *w)
770{ 1460{
771 ev_clear ((W)w); 1461 ev_clear_pending (EV_A_ (W)w);
772 if (!ev_is_active (w)) 1462 if (!ev_is_active (w))
773 return; 1463 return;
774 1464
775 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1465 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
776 ev_stop ((W)w); 1466 ev_stop (EV_A_ (W)w);
777 1467
778 if (!signals [w->signum - 1].head) 1468 if (!signals [w->signum - 1].head)
779 signal (w->signum, SIG_DFL); 1469 signal (w->signum, SIG_DFL);
780} 1470}
781 1471
782void evidle_start (struct ev_idle *w) 1472void
1473ev_child_start (EV_P_ struct ev_child *w)
783{ 1474{
1475#if EV_MULTIPLICITY
1476 assert (("child watchers are only supported in the default loop", loop == default_loop));
1477#endif
784 if (ev_is_active (w)) 1478 if (ev_is_active (w))
785 return; 1479 return;
786 1480
787 ev_start ((W)w, ++idlecnt); 1481 ev_start (EV_A_ (W)w, 1);
788 array_needsize (idles, idlemax, idlecnt, ); 1482 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
789 idles [idlecnt - 1] = w;
790} 1483}
791 1484
792void evidle_stop (struct ev_idle *w) 1485void
1486ev_child_stop (EV_P_ struct ev_child *w)
793{ 1487{
794 ev_clear ((W)w); 1488 ev_clear_pending (EV_A_ (W)w);
795 if (ev_is_active (w)) 1489 if (ev_is_active (w))
796 return; 1490 return;
797 1491
798 idles [w->active - 1] = idles [--idlecnt]; 1492 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
799 ev_stop ((W)w); 1493 ev_stop (EV_A_ (W)w);
800}
801
802void evcheck_start (struct ev_check *w)
803{
804 if (ev_is_active (w))
805 return;
806
807 ev_start ((W)w, ++checkcnt);
808 array_needsize (checks, checkmax, checkcnt, );
809 checks [checkcnt - 1] = w;
810}
811
812void evcheck_stop (struct ev_check *w)
813{
814 ev_clear ((W)w);
815 if (ev_is_active (w))
816 return;
817
818 checks [w->active - 1] = checks [--checkcnt];
819 ev_stop ((W)w);
820} 1494}
821 1495
822/*****************************************************************************/ 1496/*****************************************************************************/
823 1497
824struct ev_once 1498struct ev_once
828 void (*cb)(int revents, void *arg); 1502 void (*cb)(int revents, void *arg);
829 void *arg; 1503 void *arg;
830}; 1504};
831 1505
832static void 1506static void
833once_cb (struct ev_once *once, int revents) 1507once_cb (EV_P_ struct ev_once *once, int revents)
834{ 1508{
835 void (*cb)(int revents, void *arg) = once->cb; 1509 void (*cb)(int revents, void *arg) = once->cb;
836 void *arg = once->arg; 1510 void *arg = once->arg;
837 1511
838 evio_stop (&once->io); 1512 ev_io_stop (EV_A_ &once->io);
839 evtimer_stop (&once->to); 1513 ev_timer_stop (EV_A_ &once->to);
840 free (once); 1514 ev_free (once);
841 1515
842 cb (revents, arg); 1516 cb (revents, arg);
843} 1517}
844 1518
845static void 1519static void
846once_cb_io (struct ev_io *w, int revents) 1520once_cb_io (EV_P_ struct ev_io *w, int revents)
847{ 1521{
848 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1522 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
849} 1523}
850 1524
851static void 1525static void
852once_cb_to (struct ev_timer *w, int revents) 1526once_cb_to (EV_P_ struct ev_timer *w, int revents)
853{ 1527{
854 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1528 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
855} 1529}
856 1530
857void 1531void
858ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1532ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
859{ 1533{
860 struct ev_once *once = malloc (sizeof (struct ev_once)); 1534 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
861 1535
862 if (!once) 1536 if (!once)
863 cb (EV_ERROR, arg); 1537 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
864 else 1538 else
865 { 1539 {
866 once->cb = cb; 1540 once->cb = cb;
867 once->arg = arg; 1541 once->arg = arg;
868 1542
869 evw_init (&once->io, once_cb_io); 1543 ev_watcher_init (&once->io, once_cb_io);
870
871 if (fd >= 0) 1544 if (fd >= 0)
872 { 1545 {
873 evio_set (&once->io, fd, events); 1546 ev_io_set (&once->io, fd, events);
874 evio_start (&once->io); 1547 ev_io_start (EV_A_ &once->io);
875 } 1548 }
876 1549
877 evw_init (&once->to, once_cb_to); 1550 ev_watcher_init (&once->to, once_cb_to);
878
879 if (timeout >= 0.) 1551 if (timeout >= 0.)
880 { 1552 {
881 evtimer_set (&once->to, timeout, 0.); 1553 ev_timer_set (&once->to, timeout, 0.);
882 evtimer_start (&once->to); 1554 ev_timer_start (EV_A_ &once->to);
883 } 1555 }
884 } 1556 }
885} 1557}
886 1558
887/*****************************************************************************/
888
889#if 0
890
891struct ev_io wio;
892
893static void
894sin_cb (struct ev_io *w, int revents)
895{
896 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
897}
898
899static void
900ocb (struct ev_timer *w, int revents)
901{
902 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
903 evtimer_stop (w);
904 evtimer_start (w);
905}
906
907static void
908scb (struct ev_signal *w, int revents)
909{
910 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
911 evio_stop (&wio);
912 evio_start (&wio);
913}
914
915static void
916gcb (struct ev_signal *w, int revents)
917{
918 fprintf (stderr, "generic %x\n", revents);
919
920}
921
922int main (void)
923{
924 ev_init (0);
925
926 evio_init (&wio, sin_cb, 0, EV_READ);
927 evio_start (&wio);
928
929 struct ev_timer t[10000];
930
931#if 0
932 int i;
933 for (i = 0; i < 10000; ++i)
934 {
935 struct ev_timer *w = t + i;
936 evw_init (w, ocb, i);
937 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
938 evtimer_start (w);
939 if (drand48 () < 0.5)
940 evtimer_stop (w);
941 }
942#endif
943
944 struct ev_timer t1;
945 evtimer_init (&t1, ocb, 5, 10);
946 evtimer_start (&t1);
947
948 struct ev_signal sig;
949 evsignal_init (&sig, scb, SIGQUIT);
950 evsignal_start (&sig);
951
952 struct ev_check cw;
953 evcheck_init (&cw, gcb);
954 evcheck_start (&cw);
955
956 struct ev_idle iw;
957 evidle_init (&iw, gcb);
958 evidle_start (&iw);
959
960 ev_loop (0);
961
962 return 0;
963}
964
965#endif
966
967
968
969

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines