ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.160 by root, Sat Dec 1 22:57:20 2007 UTC vs.
Revision 1.240 by root, Thu May 8 21:21:41 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 241
197#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
200#endif 245#endif
202#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
205#endif 250#endif
206 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
207#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 268# include <winsock.h>
209#endif 269#endif
210 270
211#if !EV_STAT_ENABLE 271#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
213#endif 276# endif
214 277int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 278# ifdef __cplusplus
216# include <sys/inotify.h> 279}
280# endif
217#endif 281#endif
218 282
219/**/ 283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 294
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 298
225#if __GNUC__ >= 3 299#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 301# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 302#else
236# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
240#endif 308#endif
241 309
242#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
244 319
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 322
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 323#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 324#define EMPTY2(a,b) /* used to suppress some warnings */
250 325
251typedef ev_watcher *W; 326typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
254 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
333#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif
256 338
257#ifdef _WIN32 339#ifdef _WIN32
258# include "ev_win32.c" 340# include "ev_win32.c"
259#endif 341#endif
260 342
281 perror (msg); 363 perror (msg);
282 abort (); 364 abort ();
283 } 365 }
284} 366}
285 367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
286static void *(*alloc)(void *ptr, long size); 383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 384
288void 385void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 386ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 387{
291 alloc = cb; 388 alloc = cb;
292} 389}
293 390
294inline_speed void * 391inline_speed void *
295ev_realloc (void *ptr, long size) 392ev_realloc (void *ptr, long size)
296{ 393{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 394 ptr = alloc (ptr, size);
298 395
299 if (!ptr && size) 396 if (!ptr && size)
300 { 397 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 399 abort ();
396{ 493{
397 return ev_rt_now; 494 return ev_rt_now;
398} 495}
399#endif 496#endif
400 497
401#define array_roundsize(type,n) (((n) | 4) & ~3) 498void
499ev_sleep (ev_tstamp delay)
500{
501 if (delay > 0.)
502 {
503#if EV_USE_NANOSLEEP
504 struct timespec ts;
505
506 ts.tv_sec = (time_t)delay;
507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
508
509 nanosleep (&ts, 0);
510#elif defined(_WIN32)
511 Sleep ((unsigned long)(delay * 1e3));
512#else
513 struct timeval tv;
514
515 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517
518 select (0, 0, 0, 0, &tv);
519#endif
520 }
521}
522
523/*****************************************************************************/
524
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526
527int inline_size
528array_nextsize (int elem, int cur, int cnt)
529{
530 int ncur = cur + 1;
531
532 do
533 ncur <<= 1;
534 while (cnt > ncur);
535
536 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
537 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
538 {
539 ncur *= elem;
540 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
541 ncur = ncur - sizeof (void *) * 4;
542 ncur /= elem;
543 }
544
545 return ncur;
546}
547
548static noinline void *
549array_realloc (int elem, void *base, int *cur, int cnt)
550{
551 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur);
553}
402 554
403#define array_needsize(type,base,cur,cnt,init) \ 555#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 556 if (expect_false ((cnt) > (cur))) \
405 { \ 557 { \
406 int newcnt = cur; \ 558 int ocur_ = (cur); \
407 do \ 559 (base) = (type *)array_realloc \
408 { \ 560 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 561 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 562 }
417 563
564#if 0
418#define array_slim(type,stem) \ 565#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 566 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 567 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 568 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 569 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 571 }
572#endif
425 573
426#define array_free(stem, idx) \ 574#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 576
429/*****************************************************************************/ 577/*****************************************************************************/
430 578
431void noinline 579void noinline
432ev_feed_event (EV_P_ void *w, int revents) 580ev_feed_event (EV_P_ void *w, int revents)
433{ 581{
434 W w_ = (W)w; 582 W w_ = (W)w;
583 int pri = ABSPRI (w_);
435 584
436 if (expect_false (w_->pending)) 585 if (expect_false (w_->pending))
586 pendings [pri][w_->pending - 1].events |= revents;
587 else
437 { 588 {
589 w_->pending = ++pendingcnt [pri];
590 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
591 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 592 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 593 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 594}
447 595
448void inline_size 596void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 597queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 598{
451 int i; 599 int i;
452 600
453 for (i = 0; i < eventcnt; ++i) 601 for (i = 0; i < eventcnt; ++i)
485} 633}
486 634
487void 635void
488ev_feed_fd_event (EV_P_ int fd, int revents) 636ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 637{
638 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 639 fd_event (EV_A_ fd, revents);
491} 640}
492 641
493void inline_size 642void inline_size
494fd_reify (EV_P) 643fd_reify (EV_P)
495{ 644{
499 { 648 {
500 int fd = fdchanges [i]; 649 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 650 ANFD *anfd = anfds + fd;
502 ev_io *w; 651 ev_io *w;
503 652
504 int events = 0; 653 unsigned char events = 0;
505 654
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 655 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 656 events |= (unsigned char)w->events;
508 657
509#if EV_SELECT_IS_WINSOCKET 658#if EV_SELECT_IS_WINSOCKET
510 if (events) 659 if (events)
511 { 660 {
512 unsigned long argp; 661 unsigned long argp;
662 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else
513 anfd->handle = _get_osfhandle (fd); 665 anfd->handle = _get_osfhandle (fd);
666 #endif
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
515 } 668 }
516#endif 669#endif
517 670
671 {
672 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify;
674
518 anfd->reify = 0; 675 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 676 anfd->events = events;
677
678 if (o_events != events || o_reify & EV_IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events);
680 }
522 } 681 }
523 682
524 fdchangecnt = 0; 683 fdchangecnt = 0;
525} 684}
526 685
527void inline_size 686void inline_size
528fd_change (EV_P_ int fd) 687fd_change (EV_P_ int fd, int flags)
529{ 688{
530 if (expect_false (anfds [fd].reify)) 689 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 690 anfds [fd].reify |= flags;
534 691
692 if (expect_true (!reify))
693 {
535 ++fdchangecnt; 694 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 696 fdchanges [fdchangecnt - 1] = fd;
697 }
538} 698}
539 699
540void inline_speed 700void inline_speed
541fd_kill (EV_P_ int fd) 701fd_kill (EV_P_ int fd)
542{ 702{
593 753
594 for (fd = 0; fd < anfdmax; ++fd) 754 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 755 if (anfds [fd].events)
596 { 756 {
597 anfds [fd].events = 0; 757 anfds [fd].events = 0;
598 fd_change (EV_A_ fd); 758 fd_change (EV_A_ fd, EV_IOFDSET | 1);
599 } 759 }
600} 760}
601 761
602/*****************************************************************************/ 762/*****************************************************************************/
603 763
764/*
765 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers.
769 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP
772
773#define DHEAP 4
774#define HEAP0 (DHEAP - 1) /* index of first element in heap */
775
776/* towards the root */
604void inline_speed 777void inline_speed
605upheap (WT *heap, int k) 778upheap (WT *heap, int k)
606{ 779{
607 WT w = heap [k]; 780 WT w = heap [k];
781 ev_tstamp w_at = w->at;
608 782
609 while (k && heap [k >> 1]->at > w->at) 783 for (;;)
610 { 784 {
785 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
786
787 if (p == k || heap [p]->at <= w_at)
788 break;
789
611 heap [k] = heap [k >> 1]; 790 heap [k] = heap [p];
612 ((W)heap [k])->active = k + 1; 791 ev_active (heap [k]) = k;
613 k >>= 1; 792 k = p;
614 } 793 }
615 794
616 heap [k] = w; 795 heap [k] = w;
617 ((W)heap [k])->active = k + 1; 796 ev_active (heap [k]) = k;
618
619} 797}
620 798
799/* away from the root */
621void inline_speed 800void inline_speed
622downheap (WT *heap, int N, int k) 801downheap (WT *heap, int N, int k)
623{ 802{
624 WT w = heap [k]; 803 WT w = heap [k];
804 WT *E = heap + N + HEAP0;
625 805
626 while (k < (N >> 1)) 806 for (;;)
627 { 807 {
628 int j = k << 1; 808 ev_tstamp minat;
809 WT *minpos;
810 WT *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
629 811
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 812 // find minimum child
813 if (expect_true (pos + DHEAP - 1 < E))
631 ++j; 814 {
632 815 /* fast path */ (minpos = pos + 0), (minat = (*minpos)->at);
633 if (w->at <= heap [j]->at) 816 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
817 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
818 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
819 }
820 else if (pos < E)
821 {
822 /* slow path */ (minpos = pos + 0), (minat = (*minpos)->at);
823 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
824 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
825 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
826 }
827 else
634 break; 828 break;
635 829
636 heap [k] = heap [j]; 830 if (w->at <= minat)
637 ((W)heap [k])->active = k + 1; 831 break;
638 k = j; 832
833 ev_active (*minpos) = k;
834 heap [k] = *minpos;
835
836 k = minpos - heap;
639 } 837 }
640 838
641 heap [k] = w; 839 heap [k] = w;
840 ev_active (heap [k]) = k;
841}
842
843#else // 4HEAP
844
845#define HEAP0 1
846
847/* towards the root */
848void inline_speed
849upheap (WT *heap, int k)
850{
851 WT w = heap [k];
852
853 for (;;)
854 {
855 int p = k >> 1;
856
857 /* maybe we could use a dummy element at heap [0]? */
858 if (!p || heap [p]->at <= w->at)
859 break;
860
861 heap [k] = heap [p];
862 ev_active (heap [k]) = k;
863 k = p;
864 }
865
866 heap [k] = w;
867 ev_active (heap [k]) = k;
868}
869
870/* away from the root */
871void inline_speed
872downheap (WT *heap, int N, int k)
873{
874 WT w = heap [k];
875
876 for (;;)
877 {
878 int c = k << 1;
879
880 if (c > N)
881 break;
882
883 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
884 ? 1 : 0;
885
886 if (w->at <= heap [c]->at)
887 break;
888
889 heap [k] = heap [c];
642 ((W)heap [k])->active = k + 1; 890 ((W)heap [k])->active = k;
891
892 k = c;
893 }
894
895 heap [k] = w;
896 ev_active (heap [k]) = k;
643} 897}
898#endif
644 899
645void inline_size 900void inline_size
646adjustheap (WT *heap, int N, int k) 901adjustheap (WT *heap, int N, int k)
647{ 902{
648 upheap (heap, k); 903 upheap (heap, k);
652/*****************************************************************************/ 907/*****************************************************************************/
653 908
654typedef struct 909typedef struct
655{ 910{
656 WL head; 911 WL head;
657 sig_atomic_t volatile gotsig; 912 EV_ATOMIC_T gotsig;
658} ANSIG; 913} ANSIG;
659 914
660static ANSIG *signals; 915static ANSIG *signals;
661static int signalmax; 916static int signalmax;
662 917
663static int sigpipe [2]; 918static EV_ATOMIC_T gotsig;
664static sig_atomic_t volatile gotsig;
665static ev_io sigev;
666 919
667void inline_size 920void inline_size
668signals_init (ANSIG *base, int count) 921signals_init (ANSIG *base, int count)
669{ 922{
670 while (count--) 923 while (count--)
674 927
675 ++base; 928 ++base;
676 } 929 }
677} 930}
678 931
679static void 932/*****************************************************************************/
680sighandler (int signum)
681{
682#if _WIN32
683 signal (signum, sighandler);
684#endif
685 933
686 signals [signum - 1].gotsig = 1;
687
688 if (!gotsig)
689 {
690 int old_errno = errno;
691 gotsig = 1;
692 write (sigpipe [1], &signum, 1);
693 errno = old_errno;
694 }
695}
696
697void noinline
698ev_feed_signal_event (EV_P_ int signum)
699{
700 WL w;
701
702#if EV_MULTIPLICITY
703 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
704#endif
705
706 --signum;
707
708 if (signum < 0 || signum >= signalmax)
709 return;
710
711 signals [signum].gotsig = 0;
712
713 for (w = signals [signum].head; w; w = w->next)
714 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
715}
716
717static void
718sigcb (EV_P_ ev_io *iow, int revents)
719{
720 int signum;
721
722 read (sigpipe [0], &revents, 1);
723 gotsig = 0;
724
725 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1);
728}
729
730void inline_size 934void inline_speed
731fd_intern (int fd) 935fd_intern (int fd)
732{ 936{
733#ifdef _WIN32 937#ifdef _WIN32
734 int arg = 1; 938 int arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 939 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
738 fcntl (fd, F_SETFL, O_NONBLOCK); 942 fcntl (fd, F_SETFL, O_NONBLOCK);
739#endif 943#endif
740} 944}
741 945
742static void noinline 946static void noinline
743siginit (EV_P) 947evpipe_init (EV_P)
744{ 948{
949 if (!ev_is_active (&pipeev))
950 {
951#if EV_USE_EVENTFD
952 if ((evfd = eventfd (0, 0)) >= 0)
953 {
954 evpipe [0] = -1;
955 fd_intern (evfd);
956 ev_io_set (&pipeev, evfd, EV_READ);
957 }
958 else
959#endif
960 {
961 while (pipe (evpipe))
962 syserr ("(libev) error creating signal/async pipe");
963
745 fd_intern (sigpipe [0]); 964 fd_intern (evpipe [0]);
746 fd_intern (sigpipe [1]); 965 fd_intern (evpipe [1]);
966 ev_io_set (&pipeev, evpipe [0], EV_READ);
967 }
747 968
748 ev_io_set (&sigev, sigpipe [0], EV_READ);
749 ev_io_start (EV_A_ &sigev); 969 ev_io_start (EV_A_ &pipeev);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 970 ev_unref (EV_A); /* watcher should not keep loop alive */
971 }
972}
973
974void inline_size
975evpipe_write (EV_P_ EV_ATOMIC_T *flag)
976{
977 if (!*flag)
978 {
979 int old_errno = errno; /* save errno because write might clobber it */
980
981 *flag = 1;
982
983#if EV_USE_EVENTFD
984 if (evfd >= 0)
985 {
986 uint64_t counter = 1;
987 write (evfd, &counter, sizeof (uint64_t));
988 }
989 else
990#endif
991 write (evpipe [1], &old_errno, 1);
992
993 errno = old_errno;
994 }
995}
996
997static void
998pipecb (EV_P_ ev_io *iow, int revents)
999{
1000#if EV_USE_EVENTFD
1001 if (evfd >= 0)
1002 {
1003 uint64_t counter;
1004 read (evfd, &counter, sizeof (uint64_t));
1005 }
1006 else
1007#endif
1008 {
1009 char dummy;
1010 read (evpipe [0], &dummy, 1);
1011 }
1012
1013 if (gotsig && ev_is_default_loop (EV_A))
1014 {
1015 int signum;
1016 gotsig = 0;
1017
1018 for (signum = signalmax; signum--; )
1019 if (signals [signum].gotsig)
1020 ev_feed_signal_event (EV_A_ signum + 1);
1021 }
1022
1023#if EV_ASYNC_ENABLE
1024 if (gotasync)
1025 {
1026 int i;
1027 gotasync = 0;
1028
1029 for (i = asynccnt; i--; )
1030 if (asyncs [i]->sent)
1031 {
1032 asyncs [i]->sent = 0;
1033 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1034 }
1035 }
1036#endif
751} 1037}
752 1038
753/*****************************************************************************/ 1039/*****************************************************************************/
754 1040
1041static void
1042ev_sighandler (int signum)
1043{
1044#if EV_MULTIPLICITY
1045 struct ev_loop *loop = &default_loop_struct;
1046#endif
1047
1048#if _WIN32
1049 signal (signum, ev_sighandler);
1050#endif
1051
1052 signals [signum - 1].gotsig = 1;
1053 evpipe_write (EV_A_ &gotsig);
1054}
1055
1056void noinline
1057ev_feed_signal_event (EV_P_ int signum)
1058{
1059 WL w;
1060
1061#if EV_MULTIPLICITY
1062 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1063#endif
1064
1065 --signum;
1066
1067 if (signum < 0 || signum >= signalmax)
1068 return;
1069
1070 signals [signum].gotsig = 0;
1071
1072 for (w = signals [signum].head; w; w = w->next)
1073 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1074}
1075
1076/*****************************************************************************/
1077
755static ev_child *childs [EV_PID_HASHSIZE]; 1078static WL childs [EV_PID_HASHSIZE];
756 1079
757#ifndef _WIN32 1080#ifndef _WIN32
758 1081
759static ev_signal childev; 1082static ev_signal childev;
760 1083
1084#ifndef WIFCONTINUED
1085# define WIFCONTINUED(status) 0
1086#endif
1087
761void inline_speed 1088void inline_speed
762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1089child_reap (EV_P_ int chain, int pid, int status)
763{ 1090{
764 ev_child *w; 1091 ev_child *w;
1092 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
765 1093
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1094 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1095 {
767 if (w->pid == pid || !w->pid) 1096 if ((w->pid == pid || !w->pid)
1097 && (!traced || (w->flags & 1)))
768 { 1098 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1099 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
770 w->rpid = pid; 1100 w->rpid = pid;
771 w->rstatus = status; 1101 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1102 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 1103 }
1104 }
774} 1105}
775 1106
776#ifndef WCONTINUED 1107#ifndef WCONTINUED
777# define WCONTINUED 0 1108# define WCONTINUED 0
778#endif 1109#endif
787 if (!WCONTINUED 1118 if (!WCONTINUED
788 || errno != EINVAL 1119 || errno != EINVAL
789 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1120 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
790 return; 1121 return;
791 1122
792 /* make sure we are called again until all childs have been reaped */ 1123 /* make sure we are called again until all children have been reaped */
793 /* we need to do it this way so that the callback gets called before we continue */ 1124 /* we need to do it this way so that the callback gets called before we continue */
794 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1125 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
795 1126
796 child_reap (EV_A_ sw, pid, pid, status); 1127 child_reap (EV_A_ pid, pid, status);
797 if (EV_PID_HASHSIZE > 1) 1128 if (EV_PID_HASHSIZE > 1)
798 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1129 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
799} 1130}
800 1131
801#endif 1132#endif
802 1133
803/*****************************************************************************/ 1134/*****************************************************************************/
875} 1206}
876 1207
877unsigned int 1208unsigned int
878ev_embeddable_backends (void) 1209ev_embeddable_backends (void)
879{ 1210{
880 return EVBACKEND_EPOLL 1211 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 1212
882 | EVBACKEND_PORT; 1213 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1214 /* please fix it and tell me how to detect the fix */
1215 flags &= ~EVBACKEND_EPOLL;
1216
1217 return flags;
883} 1218}
884 1219
885unsigned int 1220unsigned int
886ev_backend (EV_P) 1221ev_backend (EV_P)
887{ 1222{
888 return backend; 1223 return backend;
1224}
1225
1226unsigned int
1227ev_loop_count (EV_P)
1228{
1229 return loop_count;
1230}
1231
1232void
1233ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1234{
1235 io_blocktime = interval;
1236}
1237
1238void
1239ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1240{
1241 timeout_blocktime = interval;
889} 1242}
890 1243
891static void noinline 1244static void noinline
892loop_init (EV_P_ unsigned int flags) 1245loop_init (EV_P_ unsigned int flags)
893{ 1246{
899 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1252 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
900 have_monotonic = 1; 1253 have_monotonic = 1;
901 } 1254 }
902#endif 1255#endif
903 1256
904 ev_rt_now = ev_time (); 1257 ev_rt_now = ev_time ();
905 mn_now = get_clock (); 1258 mn_now = get_clock ();
906 now_floor = mn_now; 1259 now_floor = mn_now;
907 rtmn_diff = ev_rt_now - mn_now; 1260 rtmn_diff = ev_rt_now - mn_now;
1261
1262 io_blocktime = 0.;
1263 timeout_blocktime = 0.;
1264 backend = 0;
1265 backend_fd = -1;
1266 gotasync = 0;
1267#if EV_USE_INOTIFY
1268 fs_fd = -2;
1269#endif
908 1270
909 /* pid check not overridable via env */ 1271 /* pid check not overridable via env */
910#ifndef _WIN32 1272#ifndef _WIN32
911 if (flags & EVFLAG_FORKCHECK) 1273 if (flags & EVFLAG_FORKCHECK)
912 curpid = getpid (); 1274 curpid = getpid ();
915 if (!(flags & EVFLAG_NOENV) 1277 if (!(flags & EVFLAG_NOENV)
916 && !enable_secure () 1278 && !enable_secure ()
917 && getenv ("LIBEV_FLAGS")) 1279 && getenv ("LIBEV_FLAGS"))
918 flags = atoi (getenv ("LIBEV_FLAGS")); 1280 flags = atoi (getenv ("LIBEV_FLAGS"));
919 1281
920 if (!(flags & 0x0000ffffUL)) 1282 if (!(flags & 0x0000ffffU))
921 flags |= ev_recommended_backends (); 1283 flags |= ev_recommended_backends ();
922
923 backend = 0;
924 backend_fd = -1;
925#if EV_USE_INOTIFY
926 fs_fd = -2;
927#endif
928 1284
929#if EV_USE_PORT 1285#if EV_USE_PORT
930 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1286 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
931#endif 1287#endif
932#if EV_USE_KQUEUE 1288#if EV_USE_KQUEUE
940#endif 1296#endif
941#if EV_USE_SELECT 1297#if EV_USE_SELECT
942 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1298 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
943#endif 1299#endif
944 1300
945 ev_init (&sigev, sigcb); 1301 ev_init (&pipeev, pipecb);
946 ev_set_priority (&sigev, EV_MAXPRI); 1302 ev_set_priority (&pipeev, EV_MAXPRI);
947 } 1303 }
948} 1304}
949 1305
950static void noinline 1306static void noinline
951loop_destroy (EV_P) 1307loop_destroy (EV_P)
952{ 1308{
953 int i; 1309 int i;
1310
1311 if (ev_is_active (&pipeev))
1312 {
1313 ev_ref (EV_A); /* signal watcher */
1314 ev_io_stop (EV_A_ &pipeev);
1315
1316#if EV_USE_EVENTFD
1317 if (evfd >= 0)
1318 close (evfd);
1319#endif
1320
1321 if (evpipe [0] >= 0)
1322 {
1323 close (evpipe [0]);
1324 close (evpipe [1]);
1325 }
1326 }
954 1327
955#if EV_USE_INOTIFY 1328#if EV_USE_INOTIFY
956 if (fs_fd >= 0) 1329 if (fs_fd >= 0)
957 close (fs_fd); 1330 close (fs_fd);
958#endif 1331#endif
975#if EV_USE_SELECT 1348#if EV_USE_SELECT
976 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1349 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
977#endif 1350#endif
978 1351
979 for (i = NUMPRI; i--; ) 1352 for (i = NUMPRI; i--; )
1353 {
980 array_free (pending, [i]); 1354 array_free (pending, [i]);
1355#if EV_IDLE_ENABLE
1356 array_free (idle, [i]);
1357#endif
1358 }
1359
1360 ev_free (anfds); anfdmax = 0;
981 1361
982 /* have to use the microsoft-never-gets-it-right macro */ 1362 /* have to use the microsoft-never-gets-it-right macro */
983 array_free (fdchange, EMPTY0); 1363 array_free (fdchange, EMPTY);
984 array_free (timer, EMPTY0); 1364 array_free (timer, EMPTY);
985#if EV_PERIODIC_ENABLE 1365#if EV_PERIODIC_ENABLE
986 array_free (periodic, EMPTY0); 1366 array_free (periodic, EMPTY);
987#endif 1367#endif
1368#if EV_FORK_ENABLE
988 array_free (idle, EMPTY0); 1369 array_free (fork, EMPTY);
1370#endif
989 array_free (prepare, EMPTY0); 1371 array_free (prepare, EMPTY);
990 array_free (check, EMPTY0); 1372 array_free (check, EMPTY);
1373#if EV_ASYNC_ENABLE
1374 array_free (async, EMPTY);
1375#endif
991 1376
992 backend = 0; 1377 backend = 0;
993} 1378}
994 1379
1380#if EV_USE_INOTIFY
995void inline_size infy_fork (EV_P); 1381void inline_size infy_fork (EV_P);
1382#endif
996 1383
997void inline_size 1384void inline_size
998loop_fork (EV_P) 1385loop_fork (EV_P)
999{ 1386{
1000#if EV_USE_PORT 1387#if EV_USE_PORT
1008#endif 1395#endif
1009#if EV_USE_INOTIFY 1396#if EV_USE_INOTIFY
1010 infy_fork (EV_A); 1397 infy_fork (EV_A);
1011#endif 1398#endif
1012 1399
1013 if (ev_is_active (&sigev)) 1400 if (ev_is_active (&pipeev))
1014 { 1401 {
1015 /* default loop */ 1402 /* this "locks" the handlers against writing to the pipe */
1403 /* while we modify the fd vars */
1404 gotsig = 1;
1405#if EV_ASYNC_ENABLE
1406 gotasync = 1;
1407#endif
1016 1408
1017 ev_ref (EV_A); 1409 ev_ref (EV_A);
1018 ev_io_stop (EV_A_ &sigev); 1410 ev_io_stop (EV_A_ &pipeev);
1411
1412#if EV_USE_EVENTFD
1413 if (evfd >= 0)
1414 close (evfd);
1415#endif
1416
1417 if (evpipe [0] >= 0)
1418 {
1019 close (sigpipe [0]); 1419 close (evpipe [0]);
1020 close (sigpipe [1]); 1420 close (evpipe [1]);
1421 }
1021 1422
1022 while (pipe (sigpipe))
1023 syserr ("(libev) error creating pipe");
1024
1025 siginit (EV_A); 1423 evpipe_init (EV_A);
1424 /* now iterate over everything, in case we missed something */
1425 pipecb (EV_A_ &pipeev, EV_READ);
1026 } 1426 }
1027 1427
1028 postfork = 0; 1428 postfork = 0;
1029} 1429}
1030 1430
1052} 1452}
1053 1453
1054void 1454void
1055ev_loop_fork (EV_P) 1455ev_loop_fork (EV_P)
1056{ 1456{
1057 postfork = 1; 1457 postfork = 1; /* must be in line with ev_default_fork */
1058} 1458}
1059
1060#endif 1459#endif
1061 1460
1062#if EV_MULTIPLICITY 1461#if EV_MULTIPLICITY
1063struct ev_loop * 1462struct ev_loop *
1064ev_default_loop_init (unsigned int flags) 1463ev_default_loop_init (unsigned int flags)
1065#else 1464#else
1066int 1465int
1067ev_default_loop (unsigned int flags) 1466ev_default_loop (unsigned int flags)
1068#endif 1467#endif
1069{ 1468{
1070 if (sigpipe [0] == sigpipe [1])
1071 if (pipe (sigpipe))
1072 return 0;
1073
1074 if (!ev_default_loop_ptr) 1469 if (!ev_default_loop_ptr)
1075 { 1470 {
1076#if EV_MULTIPLICITY 1471#if EV_MULTIPLICITY
1077 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1472 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1078#else 1473#else
1081 1476
1082 loop_init (EV_A_ flags); 1477 loop_init (EV_A_ flags);
1083 1478
1084 if (ev_backend (EV_A)) 1479 if (ev_backend (EV_A))
1085 { 1480 {
1086 siginit (EV_A);
1087
1088#ifndef _WIN32 1481#ifndef _WIN32
1089 ev_signal_init (&childev, childcb, SIGCHLD); 1482 ev_signal_init (&childev, childcb, SIGCHLD);
1090 ev_set_priority (&childev, EV_MAXPRI); 1483 ev_set_priority (&childev, EV_MAXPRI);
1091 ev_signal_start (EV_A_ &childev); 1484 ev_signal_start (EV_A_ &childev);
1092 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1485 ev_unref (EV_A); /* child watcher should not keep loop alive */
1109#ifndef _WIN32 1502#ifndef _WIN32
1110 ev_ref (EV_A); /* child watcher */ 1503 ev_ref (EV_A); /* child watcher */
1111 ev_signal_stop (EV_A_ &childev); 1504 ev_signal_stop (EV_A_ &childev);
1112#endif 1505#endif
1113 1506
1114 ev_ref (EV_A); /* signal watcher */
1115 ev_io_stop (EV_A_ &sigev);
1116
1117 close (sigpipe [0]); sigpipe [0] = 0;
1118 close (sigpipe [1]); sigpipe [1] = 0;
1119
1120 loop_destroy (EV_A); 1507 loop_destroy (EV_A);
1121} 1508}
1122 1509
1123void 1510void
1124ev_default_fork (void) 1511ev_default_fork (void)
1126#if EV_MULTIPLICITY 1513#if EV_MULTIPLICITY
1127 struct ev_loop *loop = ev_default_loop_ptr; 1514 struct ev_loop *loop = ev_default_loop_ptr;
1128#endif 1515#endif
1129 1516
1130 if (backend) 1517 if (backend)
1131 postfork = 1; 1518 postfork = 1; /* must be in line with ev_loop_fork */
1132} 1519}
1133 1520
1134/*****************************************************************************/ 1521/*****************************************************************************/
1135 1522
1136int inline_size 1523void
1137any_pending (EV_P) 1524ev_invoke (EV_P_ void *w, int revents)
1138{ 1525{
1139 int pri; 1526 EV_CB_INVOKE ((W)w, revents);
1140
1141 for (pri = NUMPRI; pri--; )
1142 if (pendingcnt [pri])
1143 return 1;
1144
1145 return 0;
1146} 1527}
1147 1528
1148void inline_speed 1529void inline_speed
1149call_pending (EV_P) 1530call_pending (EV_P)
1150{ 1531{
1163 EV_CB_INVOKE (p->w, p->events); 1544 EV_CB_INVOKE (p->w, p->events);
1164 } 1545 }
1165 } 1546 }
1166} 1547}
1167 1548
1549#if EV_IDLE_ENABLE
1550void inline_size
1551idle_reify (EV_P)
1552{
1553 if (expect_false (idleall))
1554 {
1555 int pri;
1556
1557 for (pri = NUMPRI; pri--; )
1558 {
1559 if (pendingcnt [pri])
1560 break;
1561
1562 if (idlecnt [pri])
1563 {
1564 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1565 break;
1566 }
1567 }
1568 }
1569}
1570#endif
1571
1168void inline_size 1572void inline_size
1169timers_reify (EV_P) 1573timers_reify (EV_P)
1170{ 1574{
1171 while (timercnt && ((WT)timers [0])->at <= mn_now) 1575 while (timercnt && ev_at (timers [HEAP0]) <= mn_now)
1172 { 1576 {
1173 ev_timer *w = timers [0]; 1577 ev_timer *w = (ev_timer *)timers [HEAP0];
1174 1578
1175 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1579 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1176 1580
1177 /* first reschedule or stop timer */ 1581 /* first reschedule or stop timer */
1178 if (w->repeat) 1582 if (w->repeat)
1179 { 1583 {
1180 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1584 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1181 1585
1182 ((WT)w)->at += w->repeat; 1586 ev_at (w) += w->repeat;
1183 if (((WT)w)->at < mn_now) 1587 if (ev_at (w) < mn_now)
1184 ((WT)w)->at = mn_now; 1588 ev_at (w) = mn_now;
1185 1589
1186 downheap ((WT *)timers, timercnt, 0); 1590 downheap (timers, timercnt, HEAP0);
1187 } 1591 }
1188 else 1592 else
1189 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1593 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1190 1594
1191 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1595 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1194 1598
1195#if EV_PERIODIC_ENABLE 1599#if EV_PERIODIC_ENABLE
1196void inline_size 1600void inline_size
1197periodics_reify (EV_P) 1601periodics_reify (EV_P)
1198{ 1602{
1199 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1603 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now)
1200 { 1604 {
1201 ev_periodic *w = periodics [0]; 1605 ev_periodic *w = (ev_periodic *)periodics [HEAP0];
1202 1606
1203 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1607 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1204 1608
1205 /* first reschedule or stop timer */ 1609 /* first reschedule or stop timer */
1206 if (w->reschedule_cb) 1610 if (w->reschedule_cb)
1207 { 1611 {
1208 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1612 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1209 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1613 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1210 downheap ((WT *)periodics, periodiccnt, 0); 1614 downheap (periodics, periodiccnt, 1);
1211 } 1615 }
1212 else if (w->interval) 1616 else if (w->interval)
1213 { 1617 {
1214 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1618 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1619 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1215 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1620 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1216 downheap ((WT *)periodics, periodiccnt, 0); 1621 downheap (periodics, periodiccnt, HEAP0);
1217 } 1622 }
1218 else 1623 else
1219 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1624 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1220 1625
1221 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1626 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1226periodics_reschedule (EV_P) 1631periodics_reschedule (EV_P)
1227{ 1632{
1228 int i; 1633 int i;
1229 1634
1230 /* adjust periodics after time jump */ 1635 /* adjust periodics after time jump */
1231 for (i = 0; i < periodiccnt; ++i) 1636 for (i = 1; i <= periodiccnt; ++i)
1232 { 1637 {
1233 ev_periodic *w = periodics [i]; 1638 ev_periodic *w = (ev_periodic *)periodics [i];
1234 1639
1235 if (w->reschedule_cb) 1640 if (w->reschedule_cb)
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1641 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1237 else if (w->interval) 1642 else if (w->interval)
1238 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1643 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1239 } 1644 }
1240 1645
1241 /* now rebuild the heap */ 1646 /* now rebuild the heap */
1242 for (i = periodiccnt >> 1; i--; ) 1647 for (i = periodiccnt >> 1; --i; )
1243 downheap ((WT *)periodics, periodiccnt, i); 1648 downheap (periodics, periodiccnt, i + HEAP0);
1244} 1649}
1245#endif 1650#endif
1246 1651
1247int inline_size 1652void inline_speed
1248time_update_monotonic (EV_P) 1653time_update (EV_P_ ev_tstamp max_block)
1249{ 1654{
1655 int i;
1656
1657#if EV_USE_MONOTONIC
1658 if (expect_true (have_monotonic))
1659 {
1660 ev_tstamp odiff = rtmn_diff;
1661
1250 mn_now = get_clock (); 1662 mn_now = get_clock ();
1251 1663
1664 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1665 /* interpolate in the meantime */
1252 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1666 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1253 { 1667 {
1254 ev_rt_now = rtmn_diff + mn_now; 1668 ev_rt_now = rtmn_diff + mn_now;
1255 return 0; 1669 return;
1256 } 1670 }
1257 else 1671
1258 {
1259 now_floor = mn_now; 1672 now_floor = mn_now;
1260 ev_rt_now = ev_time (); 1673 ev_rt_now = ev_time ();
1261 return 1;
1262 }
1263}
1264 1674
1265void inline_size 1675 /* loop a few times, before making important decisions.
1266time_update (EV_P) 1676 * on the choice of "4": one iteration isn't enough,
1267{ 1677 * in case we get preempted during the calls to
1268 int i; 1678 * ev_time and get_clock. a second call is almost guaranteed
1269 1679 * to succeed in that case, though. and looping a few more times
1270#if EV_USE_MONOTONIC 1680 * doesn't hurt either as we only do this on time-jumps or
1271 if (expect_true (have_monotonic)) 1681 * in the unlikely event of having been preempted here.
1272 { 1682 */
1273 if (time_update_monotonic (EV_A)) 1683 for (i = 4; --i; )
1274 { 1684 {
1275 ev_tstamp odiff = rtmn_diff;
1276
1277 /* loop a few times, before making important decisions.
1278 * on the choice of "4": one iteration isn't enough,
1279 * in case we get preempted during the calls to
1280 * ev_time and get_clock. a second call is almost guaranteed
1281 * to succeed in that case, though. and looping a few more times
1282 * doesn't hurt either as we only do this on time-jumps or
1283 * in the unlikely event of having been preempted here.
1284 */
1285 for (i = 4; --i; )
1286 {
1287 rtmn_diff = ev_rt_now - mn_now; 1685 rtmn_diff = ev_rt_now - mn_now;
1288 1686
1289 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1687 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1290 return; /* all is well */ 1688 return; /* all is well */
1291 1689
1292 ev_rt_now = ev_time (); 1690 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 1691 mn_now = get_clock ();
1294 now_floor = mn_now; 1692 now_floor = mn_now;
1295 } 1693 }
1296 1694
1297# if EV_PERIODIC_ENABLE 1695# if EV_PERIODIC_ENABLE
1298 periodics_reschedule (EV_A); 1696 periodics_reschedule (EV_A);
1299# endif 1697# endif
1300 /* no timer adjustment, as the monotonic clock doesn't jump */ 1698 /* no timer adjustment, as the monotonic clock doesn't jump */
1301 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1699 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1302 }
1303 } 1700 }
1304 else 1701 else
1305#endif 1702#endif
1306 { 1703 {
1307 ev_rt_now = ev_time (); 1704 ev_rt_now = ev_time ();
1308 1705
1309 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1706 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1310 { 1707 {
1311#if EV_PERIODIC_ENABLE 1708#if EV_PERIODIC_ENABLE
1312 periodics_reschedule (EV_A); 1709 periodics_reschedule (EV_A);
1313#endif 1710#endif
1314
1315 /* adjust timers. this is easy, as the offset is the same for all of them */ 1711 /* adjust timers. this is easy, as the offset is the same for all of them */
1316 for (i = 0; i < timercnt; ++i) 1712 for (i = 1; i <= timercnt; ++i)
1317 ((WT)timers [i])->at += ev_rt_now - mn_now; 1713 ev_at (timers [i]) += ev_rt_now - mn_now;
1318 } 1714 }
1319 1715
1320 mn_now = ev_rt_now; 1716 mn_now = ev_rt_now;
1321 } 1717 }
1322} 1718}
1336static int loop_done; 1732static int loop_done;
1337 1733
1338void 1734void
1339ev_loop (EV_P_ int flags) 1735ev_loop (EV_P_ int flags)
1340{ 1736{
1341 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1737 loop_done = EVUNLOOP_CANCEL;
1342 ? EVUNLOOP_ONE
1343 : EVUNLOOP_CANCEL;
1344 1738
1345 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1739 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1346 1740
1347 while (expect_false (!activecnt)) 1741 do
1348 { 1742 {
1349#ifndef _WIN32 1743#ifndef _WIN32
1350 if (expect_false (curpid)) /* penalise the forking check even more */ 1744 if (expect_false (curpid)) /* penalise the forking check even more */
1351 if (expect_false (getpid () != curpid)) 1745 if (expect_false (getpid () != curpid))
1352 { 1746 {
1363 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1757 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1364 call_pending (EV_A); 1758 call_pending (EV_A);
1365 } 1759 }
1366#endif 1760#endif
1367 1761
1368 /* queue check watchers (and execute them) */ 1762 /* queue prepare watchers (and execute them) */
1369 if (expect_false (preparecnt)) 1763 if (expect_false (preparecnt))
1370 { 1764 {
1371 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1765 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1372 call_pending (EV_A); 1766 call_pending (EV_A);
1373 } 1767 }
1382 /* update fd-related kernel structures */ 1776 /* update fd-related kernel structures */
1383 fd_reify (EV_A); 1777 fd_reify (EV_A);
1384 1778
1385 /* calculate blocking time */ 1779 /* calculate blocking time */
1386 { 1780 {
1387 ev_tstamp block; 1781 ev_tstamp waittime = 0.;
1782 ev_tstamp sleeptime = 0.;
1388 1783
1389 if (expect_false (flags & EVLOOP_NONBLOCK || idlecnt || !activecnt)) 1784 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1390 block = 0.; /* do not block at all */
1391 else
1392 { 1785 {
1393 /* update time to cancel out callback processing overhead */ 1786 /* update time to cancel out callback processing overhead */
1394#if EV_USE_MONOTONIC
1395 if (expect_true (have_monotonic))
1396 time_update_monotonic (EV_A); 1787 time_update (EV_A_ 1e100);
1397 else
1398#endif
1399 {
1400 ev_rt_now = ev_time ();
1401 mn_now = ev_rt_now;
1402 }
1403 1788
1404 block = MAX_BLOCKTIME; 1789 waittime = MAX_BLOCKTIME;
1405 1790
1406 if (timercnt) 1791 if (timercnt)
1407 { 1792 {
1408 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1793 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge;
1409 if (block > to) block = to; 1794 if (waittime > to) waittime = to;
1410 } 1795 }
1411 1796
1412#if EV_PERIODIC_ENABLE 1797#if EV_PERIODIC_ENABLE
1413 if (periodiccnt) 1798 if (periodiccnt)
1414 { 1799 {
1415 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1800 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1416 if (block > to) block = to; 1801 if (waittime > to) waittime = to;
1417 } 1802 }
1418#endif 1803#endif
1419 1804
1420 if (expect_false (block < 0.)) block = 0.; 1805 if (expect_false (waittime < timeout_blocktime))
1806 waittime = timeout_blocktime;
1807
1808 sleeptime = waittime - backend_fudge;
1809
1810 if (expect_true (sleeptime > io_blocktime))
1811 sleeptime = io_blocktime;
1812
1813 if (sleeptime)
1814 {
1815 ev_sleep (sleeptime);
1816 waittime -= sleeptime;
1817 }
1421 } 1818 }
1422 1819
1820 ++loop_count;
1423 backend_poll (EV_A_ block); 1821 backend_poll (EV_A_ waittime);
1822
1823 /* update ev_rt_now, do magic */
1824 time_update (EV_A_ waittime + sleeptime);
1424 } 1825 }
1425
1426 /* update ev_rt_now, do magic */
1427 time_update (EV_A);
1428 1826
1429 /* queue pending timers and reschedule them */ 1827 /* queue pending timers and reschedule them */
1430 timers_reify (EV_A); /* relative timers called last */ 1828 timers_reify (EV_A); /* relative timers called last */
1431#if EV_PERIODIC_ENABLE 1829#if EV_PERIODIC_ENABLE
1432 periodics_reify (EV_A); /* absolute timers called first */ 1830 periodics_reify (EV_A); /* absolute timers called first */
1433#endif 1831#endif
1434 1832
1833#if EV_IDLE_ENABLE
1435 /* queue idle watchers unless other events are pending */ 1834 /* queue idle watchers unless other events are pending */
1436 if (idlecnt && !any_pending (EV_A)) 1835 idle_reify (EV_A);
1437 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1836#endif
1438 1837
1439 /* queue check watchers, to be executed first */ 1838 /* queue check watchers, to be executed first */
1440 if (expect_false (checkcnt)) 1839 if (expect_false (checkcnt))
1441 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1840 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1442 1841
1443 call_pending (EV_A); 1842 call_pending (EV_A);
1444
1445 if (expect_false (loop_done))
1446 break;
1447 } 1843 }
1844 while (expect_true (
1845 activecnt
1846 && !loop_done
1847 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1848 ));
1448 1849
1449 if (loop_done == EVUNLOOP_ONE) 1850 if (loop_done == EVUNLOOP_ONE)
1450 loop_done = EVUNLOOP_CANCEL; 1851 loop_done = EVUNLOOP_CANCEL;
1451} 1852}
1452 1853
1479 head = &(*head)->next; 1880 head = &(*head)->next;
1480 } 1881 }
1481} 1882}
1482 1883
1483void inline_speed 1884void inline_speed
1484ev_clear_pending (EV_P_ W w) 1885clear_pending (EV_P_ W w)
1485{ 1886{
1486 if (w->pending) 1887 if (w->pending)
1487 { 1888 {
1488 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1889 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1489 w->pending = 0; 1890 w->pending = 0;
1490 } 1891 }
1491} 1892}
1492 1893
1894int
1895ev_clear_pending (EV_P_ void *w)
1896{
1897 W w_ = (W)w;
1898 int pending = w_->pending;
1899
1900 if (expect_true (pending))
1901 {
1902 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1903 w_->pending = 0;
1904 p->w = 0;
1905 return p->events;
1906 }
1907 else
1908 return 0;
1909}
1910
1911void inline_size
1912pri_adjust (EV_P_ W w)
1913{
1914 int pri = w->priority;
1915 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1916 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1917 w->priority = pri;
1918}
1919
1493void inline_speed 1920void inline_speed
1494ev_start (EV_P_ W w, int active) 1921ev_start (EV_P_ W w, int active)
1495{ 1922{
1496 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1923 pri_adjust (EV_A_ w);
1497 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1498
1499 w->active = active; 1924 w->active = active;
1500 ev_ref (EV_A); 1925 ev_ref (EV_A);
1501} 1926}
1502 1927
1503void inline_size 1928void inline_size
1507 w->active = 0; 1932 w->active = 0;
1508} 1933}
1509 1934
1510/*****************************************************************************/ 1935/*****************************************************************************/
1511 1936
1512void 1937void noinline
1513ev_io_start (EV_P_ ev_io *w) 1938ev_io_start (EV_P_ ev_io *w)
1514{ 1939{
1515 int fd = w->fd; 1940 int fd = w->fd;
1516 1941
1517 if (expect_false (ev_is_active (w))) 1942 if (expect_false (ev_is_active (w)))
1519 1944
1520 assert (("ev_io_start called with negative fd", fd >= 0)); 1945 assert (("ev_io_start called with negative fd", fd >= 0));
1521 1946
1522 ev_start (EV_A_ (W)w, 1); 1947 ev_start (EV_A_ (W)w, 1);
1523 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1948 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1524 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1949 wlist_add (&anfds[fd].head, (WL)w);
1525 1950
1526 fd_change (EV_A_ fd); 1951 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1952 w->events &= ~EV_IOFDSET;
1527} 1953}
1528 1954
1529void 1955void noinline
1530ev_io_stop (EV_P_ ev_io *w) 1956ev_io_stop (EV_P_ ev_io *w)
1531{ 1957{
1532 ev_clear_pending (EV_A_ (W)w); 1958 clear_pending (EV_A_ (W)w);
1533 if (expect_false (!ev_is_active (w))) 1959 if (expect_false (!ev_is_active (w)))
1534 return; 1960 return;
1535 1961
1536 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1962 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1537 1963
1538 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1964 wlist_del (&anfds[w->fd].head, (WL)w);
1539 ev_stop (EV_A_ (W)w); 1965 ev_stop (EV_A_ (W)w);
1540 1966
1541 fd_change (EV_A_ w->fd); 1967 fd_change (EV_A_ w->fd, 1);
1542} 1968}
1543 1969
1544void 1970void noinline
1545ev_timer_start (EV_P_ ev_timer *w) 1971ev_timer_start (EV_P_ ev_timer *w)
1546{ 1972{
1547 if (expect_false (ev_is_active (w))) 1973 if (expect_false (ev_is_active (w)))
1548 return; 1974 return;
1549 1975
1550 ((WT)w)->at += mn_now; 1976 ev_at (w) += mn_now;
1551 1977
1552 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1978 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1553 1979
1554 ev_start (EV_A_ (W)w, ++timercnt); 1980 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1555 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1981 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2);
1556 timers [timercnt - 1] = w; 1982 timers [ev_active (w)] = (WT)w;
1557 upheap ((WT *)timers, timercnt - 1); 1983 upheap (timers, ev_active (w));
1558 1984
1559 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1985 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/
1560} 1986}
1561 1987
1562void 1988void noinline
1563ev_timer_stop (EV_P_ ev_timer *w) 1989ev_timer_stop (EV_P_ ev_timer *w)
1564{ 1990{
1565 ev_clear_pending (EV_A_ (W)w); 1991 clear_pending (EV_A_ (W)w);
1566 if (expect_false (!ev_is_active (w))) 1992 if (expect_false (!ev_is_active (w)))
1567 return; 1993 return;
1568 1994
1569 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1570
1571 { 1995 {
1572 int active = ((W)w)->active; 1996 int active = ev_active (w);
1573 1997
1998 assert (("internal timer heap corruption", timers [active] == (WT)w));
1999
1574 if (expect_true (--active < --timercnt)) 2000 if (expect_true (active < timercnt + HEAP0 - 1))
1575 { 2001 {
1576 timers [active] = timers [timercnt]; 2002 timers [active] = timers [timercnt + HEAP0 - 1];
1577 adjustheap ((WT *)timers, timercnt, active); 2003 adjustheap (timers, timercnt, active);
1578 } 2004 }
2005
2006 --timercnt;
1579 } 2007 }
1580 2008
1581 ((WT)w)->at -= mn_now; 2009 ev_at (w) -= mn_now;
1582 2010
1583 ev_stop (EV_A_ (W)w); 2011 ev_stop (EV_A_ (W)w);
1584} 2012}
1585 2013
1586void 2014void noinline
1587ev_timer_again (EV_P_ ev_timer *w) 2015ev_timer_again (EV_P_ ev_timer *w)
1588{ 2016{
1589 if (ev_is_active (w)) 2017 if (ev_is_active (w))
1590 { 2018 {
1591 if (w->repeat) 2019 if (w->repeat)
1592 { 2020 {
1593 ((WT)w)->at = mn_now + w->repeat; 2021 ev_at (w) = mn_now + w->repeat;
1594 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2022 adjustheap (timers, timercnt, ev_active (w));
1595 } 2023 }
1596 else 2024 else
1597 ev_timer_stop (EV_A_ w); 2025 ev_timer_stop (EV_A_ w);
1598 } 2026 }
1599 else if (w->repeat) 2027 else if (w->repeat)
1600 { 2028 {
1601 w->at = w->repeat; 2029 ev_at (w) = w->repeat;
1602 ev_timer_start (EV_A_ w); 2030 ev_timer_start (EV_A_ w);
1603 } 2031 }
1604} 2032}
1605 2033
1606#if EV_PERIODIC_ENABLE 2034#if EV_PERIODIC_ENABLE
1607void 2035void noinline
1608ev_periodic_start (EV_P_ ev_periodic *w) 2036ev_periodic_start (EV_P_ ev_periodic *w)
1609{ 2037{
1610 if (expect_false (ev_is_active (w))) 2038 if (expect_false (ev_is_active (w)))
1611 return; 2039 return;
1612 2040
1613 if (w->reschedule_cb) 2041 if (w->reschedule_cb)
1614 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2042 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1615 else if (w->interval) 2043 else if (w->interval)
1616 { 2044 {
1617 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2045 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1618 /* this formula differs from the one in periodic_reify because we do not always round up */ 2046 /* this formula differs from the one in periodic_reify because we do not always round up */
1619 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2047 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1620 } 2048 }
2049 else
2050 ev_at (w) = w->offset;
1621 2051
1622 ev_start (EV_A_ (W)w, ++periodiccnt); 2052 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1623 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2053 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2);
1624 periodics [periodiccnt - 1] = w; 2054 periodics [ev_active (w)] = (WT)w;
1625 upheap ((WT *)periodics, periodiccnt - 1); 2055 upheap (periodics, ev_active (w));
1626 2056
1627 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2057 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/
1628} 2058}
1629 2059
1630void 2060void noinline
1631ev_periodic_stop (EV_P_ ev_periodic *w) 2061ev_periodic_stop (EV_P_ ev_periodic *w)
1632{ 2062{
1633 ev_clear_pending (EV_A_ (W)w); 2063 clear_pending (EV_A_ (W)w);
1634 if (expect_false (!ev_is_active (w))) 2064 if (expect_false (!ev_is_active (w)))
1635 return; 2065 return;
1636 2066
1637 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1638
1639 { 2067 {
1640 int active = ((W)w)->active; 2068 int active = ev_active (w);
1641 2069
2070 assert (("internal periodic heap corruption", periodics [active] == (WT)w));
2071
1642 if (expect_true (--active < --periodiccnt)) 2072 if (expect_true (active < periodiccnt + HEAP0 - 1))
1643 { 2073 {
1644 periodics [active] = periodics [periodiccnt]; 2074 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1645 adjustheap ((WT *)periodics, periodiccnt, active); 2075 adjustheap (periodics, periodiccnt, active);
1646 } 2076 }
2077
2078 --periodiccnt;
1647 } 2079 }
1648 2080
1649 ev_stop (EV_A_ (W)w); 2081 ev_stop (EV_A_ (W)w);
1650} 2082}
1651 2083
1652void 2084void noinline
1653ev_periodic_again (EV_P_ ev_periodic *w) 2085ev_periodic_again (EV_P_ ev_periodic *w)
1654{ 2086{
1655 /* TODO: use adjustheap and recalculation */ 2087 /* TODO: use adjustheap and recalculation */
1656 ev_periodic_stop (EV_A_ w); 2088 ev_periodic_stop (EV_A_ w);
1657 ev_periodic_start (EV_A_ w); 2089 ev_periodic_start (EV_A_ w);
1660 2092
1661#ifndef SA_RESTART 2093#ifndef SA_RESTART
1662# define SA_RESTART 0 2094# define SA_RESTART 0
1663#endif 2095#endif
1664 2096
1665void 2097void noinline
1666ev_signal_start (EV_P_ ev_signal *w) 2098ev_signal_start (EV_P_ ev_signal *w)
1667{ 2099{
1668#if EV_MULTIPLICITY 2100#if EV_MULTIPLICITY
1669 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2101 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1670#endif 2102#endif
1671 if (expect_false (ev_is_active (w))) 2103 if (expect_false (ev_is_active (w)))
1672 return; 2104 return;
1673 2105
1674 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2106 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1675 2107
2108 evpipe_init (EV_A);
2109
2110 {
2111#ifndef _WIN32
2112 sigset_t full, prev;
2113 sigfillset (&full);
2114 sigprocmask (SIG_SETMASK, &full, &prev);
2115#endif
2116
2117 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2118
2119#ifndef _WIN32
2120 sigprocmask (SIG_SETMASK, &prev, 0);
2121#endif
2122 }
2123
1676 ev_start (EV_A_ (W)w, 1); 2124 ev_start (EV_A_ (W)w, 1);
1677 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1678 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2125 wlist_add (&signals [w->signum - 1].head, (WL)w);
1679 2126
1680 if (!((WL)w)->next) 2127 if (!((WL)w)->next)
1681 { 2128 {
1682#if _WIN32 2129#if _WIN32
1683 signal (w->signum, sighandler); 2130 signal (w->signum, ev_sighandler);
1684#else 2131#else
1685 struct sigaction sa; 2132 struct sigaction sa;
1686 sa.sa_handler = sighandler; 2133 sa.sa_handler = ev_sighandler;
1687 sigfillset (&sa.sa_mask); 2134 sigfillset (&sa.sa_mask);
1688 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2135 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1689 sigaction (w->signum, &sa, 0); 2136 sigaction (w->signum, &sa, 0);
1690#endif 2137#endif
1691 } 2138 }
1692} 2139}
1693 2140
1694void 2141void noinline
1695ev_signal_stop (EV_P_ ev_signal *w) 2142ev_signal_stop (EV_P_ ev_signal *w)
1696{ 2143{
1697 ev_clear_pending (EV_A_ (W)w); 2144 clear_pending (EV_A_ (W)w);
1698 if (expect_false (!ev_is_active (w))) 2145 if (expect_false (!ev_is_active (w)))
1699 return; 2146 return;
1700 2147
1701 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2148 wlist_del (&signals [w->signum - 1].head, (WL)w);
1702 ev_stop (EV_A_ (W)w); 2149 ev_stop (EV_A_ (W)w);
1703 2150
1704 if (!signals [w->signum - 1].head) 2151 if (!signals [w->signum - 1].head)
1705 signal (w->signum, SIG_DFL); 2152 signal (w->signum, SIG_DFL);
1706} 2153}
1713#endif 2160#endif
1714 if (expect_false (ev_is_active (w))) 2161 if (expect_false (ev_is_active (w)))
1715 return; 2162 return;
1716 2163
1717 ev_start (EV_A_ (W)w, 1); 2164 ev_start (EV_A_ (W)w, 1);
1718 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2165 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1719} 2166}
1720 2167
1721void 2168void
1722ev_child_stop (EV_P_ ev_child *w) 2169ev_child_stop (EV_P_ ev_child *w)
1723{ 2170{
1724 ev_clear_pending (EV_A_ (W)w); 2171 clear_pending (EV_A_ (W)w);
1725 if (expect_false (!ev_is_active (w))) 2172 if (expect_false (!ev_is_active (w)))
1726 return; 2173 return;
1727 2174
1728 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2175 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1729 ev_stop (EV_A_ (W)w); 2176 ev_stop (EV_A_ (W)w);
1730} 2177}
1731 2178
1732#if EV_STAT_ENABLE 2179#if EV_STAT_ENABLE
1733 2180
1752 if (w->wd < 0) 2199 if (w->wd < 0)
1753 { 2200 {
1754 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2201 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1755 2202
1756 /* monitor some parent directory for speedup hints */ 2203 /* monitor some parent directory for speedup hints */
2204 /* note that exceeding the hardcoded limit is not a correctness issue, */
2205 /* but an efficiency issue only */
1757 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2206 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1758 { 2207 {
1759 char path [4096]; 2208 char path [4096];
1760 strcpy (path, w->path); 2209 strcpy (path, w->path);
1761 2210
1965} 2414}
1966 2415
1967void 2416void
1968ev_stat_stop (EV_P_ ev_stat *w) 2417ev_stat_stop (EV_P_ ev_stat *w)
1969{ 2418{
1970 ev_clear_pending (EV_A_ (W)w); 2419 clear_pending (EV_A_ (W)w);
1971 if (expect_false (!ev_is_active (w))) 2420 if (expect_false (!ev_is_active (w)))
1972 return; 2421 return;
1973 2422
1974#if EV_USE_INOTIFY 2423#if EV_USE_INOTIFY
1975 infy_del (EV_A_ w); 2424 infy_del (EV_A_ w);
1978 2427
1979 ev_stop (EV_A_ (W)w); 2428 ev_stop (EV_A_ (W)w);
1980} 2429}
1981#endif 2430#endif
1982 2431
2432#if EV_IDLE_ENABLE
1983void 2433void
1984ev_idle_start (EV_P_ ev_idle *w) 2434ev_idle_start (EV_P_ ev_idle *w)
1985{ 2435{
1986 if (expect_false (ev_is_active (w))) 2436 if (expect_false (ev_is_active (w)))
1987 return; 2437 return;
1988 2438
2439 pri_adjust (EV_A_ (W)w);
2440
2441 {
2442 int active = ++idlecnt [ABSPRI (w)];
2443
2444 ++idleall;
1989 ev_start (EV_A_ (W)w, ++idlecnt); 2445 ev_start (EV_A_ (W)w, active);
2446
1990 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2447 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1991 idles [idlecnt - 1] = w; 2448 idles [ABSPRI (w)][active - 1] = w;
2449 }
1992} 2450}
1993 2451
1994void 2452void
1995ev_idle_stop (EV_P_ ev_idle *w) 2453ev_idle_stop (EV_P_ ev_idle *w)
1996{ 2454{
1997 ev_clear_pending (EV_A_ (W)w); 2455 clear_pending (EV_A_ (W)w);
1998 if (expect_false (!ev_is_active (w))) 2456 if (expect_false (!ev_is_active (w)))
1999 return; 2457 return;
2000 2458
2001 { 2459 {
2002 int active = ((W)w)->active; 2460 int active = ev_active (w);
2003 idles [active - 1] = idles [--idlecnt]; 2461
2004 ((W)idles [active - 1])->active = active; 2462 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2463 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2464
2465 ev_stop (EV_A_ (W)w);
2466 --idleall;
2005 } 2467 }
2006
2007 ev_stop (EV_A_ (W)w);
2008} 2468}
2469#endif
2009 2470
2010void 2471void
2011ev_prepare_start (EV_P_ ev_prepare *w) 2472ev_prepare_start (EV_P_ ev_prepare *w)
2012{ 2473{
2013 if (expect_false (ev_is_active (w))) 2474 if (expect_false (ev_is_active (w)))
2019} 2480}
2020 2481
2021void 2482void
2022ev_prepare_stop (EV_P_ ev_prepare *w) 2483ev_prepare_stop (EV_P_ ev_prepare *w)
2023{ 2484{
2024 ev_clear_pending (EV_A_ (W)w); 2485 clear_pending (EV_A_ (W)w);
2025 if (expect_false (!ev_is_active (w))) 2486 if (expect_false (!ev_is_active (w)))
2026 return; 2487 return;
2027 2488
2028 { 2489 {
2029 int active = ((W)w)->active; 2490 int active = ev_active (w);
2491
2030 prepares [active - 1] = prepares [--preparecnt]; 2492 prepares [active - 1] = prepares [--preparecnt];
2031 ((W)prepares [active - 1])->active = active; 2493 ev_active (prepares [active - 1]) = active;
2032 } 2494 }
2033 2495
2034 ev_stop (EV_A_ (W)w); 2496 ev_stop (EV_A_ (W)w);
2035} 2497}
2036 2498
2046} 2508}
2047 2509
2048void 2510void
2049ev_check_stop (EV_P_ ev_check *w) 2511ev_check_stop (EV_P_ ev_check *w)
2050{ 2512{
2051 ev_clear_pending (EV_A_ (W)w); 2513 clear_pending (EV_A_ (W)w);
2052 if (expect_false (!ev_is_active (w))) 2514 if (expect_false (!ev_is_active (w)))
2053 return; 2515 return;
2054 2516
2055 { 2517 {
2056 int active = ((W)w)->active; 2518 int active = ev_active (w);
2519
2057 checks [active - 1] = checks [--checkcnt]; 2520 checks [active - 1] = checks [--checkcnt];
2058 ((W)checks [active - 1])->active = active; 2521 ev_active (checks [active - 1]) = active;
2059 } 2522 }
2060 2523
2061 ev_stop (EV_A_ (W)w); 2524 ev_stop (EV_A_ (W)w);
2062} 2525}
2063 2526
2064#if EV_EMBED_ENABLE 2527#if EV_EMBED_ENABLE
2065void noinline 2528void noinline
2066ev_embed_sweep (EV_P_ ev_embed *w) 2529ev_embed_sweep (EV_P_ ev_embed *w)
2067{ 2530{
2068 ev_loop (w->loop, EVLOOP_NONBLOCK); 2531 ev_loop (w->other, EVLOOP_NONBLOCK);
2069} 2532}
2070 2533
2071static void 2534static void
2072embed_cb (EV_P_ ev_io *io, int revents) 2535embed_io_cb (EV_P_ ev_io *io, int revents)
2073{ 2536{
2074 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2537 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2075 2538
2076 if (ev_cb (w)) 2539 if (ev_cb (w))
2077 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2540 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2078 else 2541 else
2079 ev_embed_sweep (loop, w); 2542 ev_loop (w->other, EVLOOP_NONBLOCK);
2080} 2543}
2544
2545static void
2546embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2547{
2548 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2549
2550 {
2551 struct ev_loop *loop = w->other;
2552
2553 while (fdchangecnt)
2554 {
2555 fd_reify (EV_A);
2556 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2557 }
2558 }
2559}
2560
2561#if 0
2562static void
2563embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2564{
2565 ev_idle_stop (EV_A_ idle);
2566}
2567#endif
2081 2568
2082void 2569void
2083ev_embed_start (EV_P_ ev_embed *w) 2570ev_embed_start (EV_P_ ev_embed *w)
2084{ 2571{
2085 if (expect_false (ev_is_active (w))) 2572 if (expect_false (ev_is_active (w)))
2086 return; 2573 return;
2087 2574
2088 { 2575 {
2089 struct ev_loop *loop = w->loop; 2576 struct ev_loop *loop = w->other;
2090 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2577 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2091 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2578 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2092 } 2579 }
2093 2580
2094 ev_set_priority (&w->io, ev_priority (w)); 2581 ev_set_priority (&w->io, ev_priority (w));
2095 ev_io_start (EV_A_ &w->io); 2582 ev_io_start (EV_A_ &w->io);
2096 2583
2584 ev_prepare_init (&w->prepare, embed_prepare_cb);
2585 ev_set_priority (&w->prepare, EV_MINPRI);
2586 ev_prepare_start (EV_A_ &w->prepare);
2587
2588 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2589
2097 ev_start (EV_A_ (W)w, 1); 2590 ev_start (EV_A_ (W)w, 1);
2098} 2591}
2099 2592
2100void 2593void
2101ev_embed_stop (EV_P_ ev_embed *w) 2594ev_embed_stop (EV_P_ ev_embed *w)
2102{ 2595{
2103 ev_clear_pending (EV_A_ (W)w); 2596 clear_pending (EV_A_ (W)w);
2104 if (expect_false (!ev_is_active (w))) 2597 if (expect_false (!ev_is_active (w)))
2105 return; 2598 return;
2106 2599
2107 ev_io_stop (EV_A_ &w->io); 2600 ev_io_stop (EV_A_ &w->io);
2601 ev_prepare_stop (EV_A_ &w->prepare);
2108 2602
2109 ev_stop (EV_A_ (W)w); 2603 ev_stop (EV_A_ (W)w);
2110} 2604}
2111#endif 2605#endif
2112 2606
2123} 2617}
2124 2618
2125void 2619void
2126ev_fork_stop (EV_P_ ev_fork *w) 2620ev_fork_stop (EV_P_ ev_fork *w)
2127{ 2621{
2128 ev_clear_pending (EV_A_ (W)w); 2622 clear_pending (EV_A_ (W)w);
2129 if (expect_false (!ev_is_active (w))) 2623 if (expect_false (!ev_is_active (w)))
2130 return; 2624 return;
2131 2625
2132 { 2626 {
2133 int active = ((W)w)->active; 2627 int active = ev_active (w);
2628
2134 forks [active - 1] = forks [--forkcnt]; 2629 forks [active - 1] = forks [--forkcnt];
2135 ((W)forks [active - 1])->active = active; 2630 ev_active (forks [active - 1]) = active;
2136 } 2631 }
2137 2632
2138 ev_stop (EV_A_ (W)w); 2633 ev_stop (EV_A_ (W)w);
2634}
2635#endif
2636
2637#if EV_ASYNC_ENABLE
2638void
2639ev_async_start (EV_P_ ev_async *w)
2640{
2641 if (expect_false (ev_is_active (w)))
2642 return;
2643
2644 evpipe_init (EV_A);
2645
2646 ev_start (EV_A_ (W)w, ++asynccnt);
2647 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2648 asyncs [asynccnt - 1] = w;
2649}
2650
2651void
2652ev_async_stop (EV_P_ ev_async *w)
2653{
2654 clear_pending (EV_A_ (W)w);
2655 if (expect_false (!ev_is_active (w)))
2656 return;
2657
2658 {
2659 int active = ev_active (w);
2660
2661 asyncs [active - 1] = asyncs [--asynccnt];
2662 ev_active (asyncs [active - 1]) = active;
2663 }
2664
2665 ev_stop (EV_A_ (W)w);
2666}
2667
2668void
2669ev_async_send (EV_P_ ev_async *w)
2670{
2671 w->sent = 1;
2672 evpipe_write (EV_A_ &gotasync);
2139} 2673}
2140#endif 2674#endif
2141 2675
2142/*****************************************************************************/ 2676/*****************************************************************************/
2143 2677
2201 ev_timer_set (&once->to, timeout, 0.); 2735 ev_timer_set (&once->to, timeout, 0.);
2202 ev_timer_start (EV_A_ &once->to); 2736 ev_timer_start (EV_A_ &once->to);
2203 } 2737 }
2204} 2738}
2205 2739
2740#if EV_MULTIPLICITY
2741 #include "ev_wrap.h"
2742#endif
2743
2206#ifdef __cplusplus 2744#ifdef __cplusplus
2207} 2745}
2208#endif 2746#endif
2209 2747

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines