ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.160 by root, Sat Dec 1 22:57:20 2007 UTC vs.
Revision 1.264 by root, Mon Oct 13 23:20:12 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
129#ifndef _WIN32 154#ifndef _WIN32
130# include <sys/time.h> 155# include <sys/time.h>
131# include <sys/wait.h> 156# include <sys/wait.h>
132# include <unistd.h> 157# include <unistd.h>
133#else 158#else
159# include <io.h>
134# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 161# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
138# endif 164# endif
139#endif 165#endif
140 166
141/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
142 168
143#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
144# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
145#endif 175#endif
146 176
147#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
149#endif 187#endif
150 188
151#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
153#endif 191#endif
159# define EV_USE_POLL 1 197# define EV_USE_POLL 1
160# endif 198# endif
161#endif 199#endif
162 200
163#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
164# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
165#endif 207#endif
166 208
167#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
169#endif 211#endif
171#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 214# define EV_USE_PORT 0
173#endif 215#endif
174 216
175#ifndef EV_USE_INOTIFY 217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
176# define EV_USE_INOTIFY 0 221# define EV_USE_INOTIFY 0
222# endif
177#endif 223#endif
178 224
179#ifndef EV_PID_HASHSIZE 225#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 226# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 227# define EV_PID_HASHSIZE 1
190# else 236# else
191# define EV_INOTIFY_HASHSIZE 16 237# define EV_INOTIFY_HASHSIZE 16
192# endif 238# endif
193#endif 239#endif
194 240
195/**/ 241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 268
197#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
200#endif 272#endif
202#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
205#endif 277#endif
206 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
292# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0
297# endif
298#endif
299
207#if EV_SELECT_IS_WINSOCKET 300#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 301# include <winsock.h>
209#endif 302#endif
210 303
211#if !EV_STAT_ENABLE 304#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h>
307# ifdef __cplusplus
308extern "C" {
213#endif 309# endif
214 310int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 311# ifdef __cplusplus
216# include <sys/inotify.h> 312}
313# endif
217#endif 314#endif
218 315
219/**/ 316/**/
317
318#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
320#else
321# define EV_FREQUENT_CHECK do { } while (0)
322#endif
323
324/*
325 * This is used to avoid floating point rounding problems.
326 * It is added to ev_rt_now when scheduling periodics
327 * to ensure progress, time-wise, even when rounding
328 * errors are against us.
329 * This value is good at least till the year 4000.
330 * Better solutions welcome.
331 */
332#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 333
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 334#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 335#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 336/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 337
225#if __GNUC__ >= 3 338#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 339# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 340# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 341#else
236# define expect(expr,value) (expr) 342# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 343# define noinline
344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
345# define inline
346# endif
240#endif 347#endif
241 348
242#define expect_false(expr) expect ((expr) != 0, 0) 349#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 350#define expect_true(expr) expect ((expr) != 0, 1)
351#define inline_size static inline
352
353#if EV_MINIMAL
354# define inline_speed static noinline
355#else
356# define inline_speed static inline
357#endif
244 358
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 359#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 360#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 361
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 362#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 363#define EMPTY2(a,b) /* used to suppress some warnings */
250 364
251typedef ev_watcher *W; 365typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 366typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 367typedef ev_watcher_time *WT;
254 368
369#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at
371
372#if EV_USE_MONOTONIC
373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
374/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
376#endif
256 377
257#ifdef _WIN32 378#ifdef _WIN32
258# include "ev_win32.c" 379# include "ev_win32.c"
259#endif 380#endif
260 381
281 perror (msg); 402 perror (msg);
282 abort (); 403 abort ();
283 } 404 }
284} 405}
285 406
407static void *
408ev_realloc_emul (void *ptr, long size)
409{
410 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and
412 * the single unix specification, so work around them here.
413 */
414
415 if (size)
416 return realloc (ptr, size);
417
418 free (ptr);
419 return 0;
420}
421
286static void *(*alloc)(void *ptr, long size); 422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 423
288void 424void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 425ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 426{
291 alloc = cb; 427 alloc = cb;
292} 428}
293 429
294inline_speed void * 430inline_speed void *
295ev_realloc (void *ptr, long size) 431ev_realloc (void *ptr, long size)
296{ 432{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 433 ptr = alloc (ptr, size);
298 434
299 if (!ptr && size) 435 if (!ptr && size)
300 { 436 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 438 abort ();
325 W w; 461 W w;
326 int events; 462 int events;
327} ANPENDING; 463} ANPENDING;
328 464
329#if EV_USE_INOTIFY 465#if EV_USE_INOTIFY
466/* hash table entry per inotify-id */
330typedef struct 467typedef struct
331{ 468{
332 WL head; 469 WL head;
333} ANFS; 470} ANFS;
471#endif
472
473/* Heap Entry */
474#if EV_HEAP_CACHE_AT
475 typedef struct {
476 ev_tstamp at;
477 WT w;
478 } ANHE;
479
480 #define ANHE_w(he) (he).w /* access watcher, read-write */
481 #define ANHE_at(he) (he).at /* access cached at, read-only */
482 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
483#else
484 typedef WT ANHE;
485
486 #define ANHE_w(he) (he)
487 #define ANHE_at(he) (he)->at
488 #define ANHE_at_cache(he)
334#endif 489#endif
335 490
336#if EV_MULTIPLICITY 491#if EV_MULTIPLICITY
337 492
338 struct ev_loop 493 struct ev_loop
396{ 551{
397 return ev_rt_now; 552 return ev_rt_now;
398} 553}
399#endif 554#endif
400 555
401#define array_roundsize(type,n) (((n) | 4) & ~3) 556void
557ev_sleep (ev_tstamp delay)
558{
559 if (delay > 0.)
560 {
561#if EV_USE_NANOSLEEP
562 struct timespec ts;
563
564 ts.tv_sec = (time_t)delay;
565 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
566
567 nanosleep (&ts, 0);
568#elif defined(_WIN32)
569 Sleep ((unsigned long)(delay * 1e3));
570#else
571 struct timeval tv;
572
573 tv.tv_sec = (time_t)delay;
574 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
575
576 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
577 /* somehting nto guaranteed by newer posix versions, but guaranteed */
578 /* by older ones */
579 select (0, 0, 0, 0, &tv);
580#endif
581 }
582}
583
584/*****************************************************************************/
585
586#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
587
588int inline_size
589array_nextsize (int elem, int cur, int cnt)
590{
591 int ncur = cur + 1;
592
593 do
594 ncur <<= 1;
595 while (cnt > ncur);
596
597 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
598 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
599 {
600 ncur *= elem;
601 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
602 ncur = ncur - sizeof (void *) * 4;
603 ncur /= elem;
604 }
605
606 return ncur;
607}
608
609static noinline void *
610array_realloc (int elem, void *base, int *cur, int cnt)
611{
612 *cur = array_nextsize (elem, *cur, cnt);
613 return ev_realloc (base, elem * *cur);
614}
402 615
403#define array_needsize(type,base,cur,cnt,init) \ 616#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 617 if (expect_false ((cnt) > (cur))) \
405 { \ 618 { \
406 int newcnt = cur; \ 619 int ocur_ = (cur); \
407 do \ 620 (base) = (type *)array_realloc \
408 { \ 621 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 622 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 623 }
417 624
625#if 0
418#define array_slim(type,stem) \ 626#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 627 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 628 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 629 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 630 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 631 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 632 }
633#endif
425 634
426#define array_free(stem, idx) \ 635#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 636 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 637
429/*****************************************************************************/ 638/*****************************************************************************/
430 639
431void noinline 640void noinline
432ev_feed_event (EV_P_ void *w, int revents) 641ev_feed_event (EV_P_ void *w, int revents)
433{ 642{
434 W w_ = (W)w; 643 W w_ = (W)w;
644 int pri = ABSPRI (w_);
435 645
436 if (expect_false (w_->pending)) 646 if (expect_false (w_->pending))
647 pendings [pri][w_->pending - 1].events |= revents;
648 else
437 { 649 {
650 w_->pending = ++pendingcnt [pri];
651 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
652 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 653 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 654 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 655}
447 656
448void inline_size 657void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 658queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 659{
451 int i; 660 int i;
452 661
453 for (i = 0; i < eventcnt; ++i) 662 for (i = 0; i < eventcnt; ++i)
485} 694}
486 695
487void 696void
488ev_feed_fd_event (EV_P_ int fd, int revents) 697ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 698{
699 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 700 fd_event (EV_A_ fd, revents);
491} 701}
492 702
493void inline_size 703void inline_size
494fd_reify (EV_P) 704fd_reify (EV_P)
495{ 705{
499 { 709 {
500 int fd = fdchanges [i]; 710 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 711 ANFD *anfd = anfds + fd;
502 ev_io *w; 712 ev_io *w;
503 713
504 int events = 0; 714 unsigned char events = 0;
505 715
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 716 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 717 events |= (unsigned char)w->events;
508 718
509#if EV_SELECT_IS_WINSOCKET 719#if EV_SELECT_IS_WINSOCKET
510 if (events) 720 if (events)
511 { 721 {
512 unsigned long argp; 722 unsigned long arg;
723 #ifdef EV_FD_TO_WIN32_HANDLE
724 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
725 #else
513 anfd->handle = _get_osfhandle (fd); 726 anfd->handle = _get_osfhandle (fd);
727 #endif
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 728 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
515 } 729 }
516#endif 730#endif
517 731
732 {
733 unsigned char o_events = anfd->events;
734 unsigned char o_reify = anfd->reify;
735
518 anfd->reify = 0; 736 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 737 anfd->events = events;
738
739 if (o_events != events || o_reify & EV_IOFDSET)
740 backend_modify (EV_A_ fd, o_events, events);
741 }
522 } 742 }
523 743
524 fdchangecnt = 0; 744 fdchangecnt = 0;
525} 745}
526 746
527void inline_size 747void inline_size
528fd_change (EV_P_ int fd) 748fd_change (EV_P_ int fd, int flags)
529{ 749{
530 if (expect_false (anfds [fd].reify)) 750 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 751 anfds [fd].reify |= flags;
534 752
753 if (expect_true (!reify))
754 {
535 ++fdchangecnt; 755 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 756 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 757 fdchanges [fdchangecnt - 1] = fd;
758 }
538} 759}
539 760
540void inline_speed 761void inline_speed
541fd_kill (EV_P_ int fd) 762fd_kill (EV_P_ int fd)
542{ 763{
565{ 786{
566 int fd; 787 int fd;
567 788
568 for (fd = 0; fd < anfdmax; ++fd) 789 for (fd = 0; fd < anfdmax; ++fd)
569 if (anfds [fd].events) 790 if (anfds [fd].events)
570 if (!fd_valid (fd) == -1 && errno == EBADF) 791 if (!fd_valid (fd) && errno == EBADF)
571 fd_kill (EV_A_ fd); 792 fd_kill (EV_A_ fd);
572} 793}
573 794
574/* called on ENOMEM in select/poll to kill some fds and retry */ 795/* called on ENOMEM in select/poll to kill some fds and retry */
575static void noinline 796static void noinline
593 814
594 for (fd = 0; fd < anfdmax; ++fd) 815 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 816 if (anfds [fd].events)
596 { 817 {
597 anfds [fd].events = 0; 818 anfds [fd].events = 0;
598 fd_change (EV_A_ fd); 819 fd_change (EV_A_ fd, EV_IOFDSET | 1);
599 } 820 }
600} 821}
601 822
602/*****************************************************************************/ 823/*****************************************************************************/
603 824
825/*
826 * the heap functions want a real array index. array index 0 uis guaranteed to not
827 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
828 * the branching factor of the d-tree.
829 */
830
831/*
832 * at the moment we allow libev the luxury of two heaps,
833 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
834 * which is more cache-efficient.
835 * the difference is about 5% with 50000+ watchers.
836 */
837#if EV_USE_4HEAP
838
839#define DHEAP 4
840#define HEAP0 (DHEAP - 1) /* index of first element in heap */
841#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
842#define UPHEAP_DONE(p,k) ((p) == (k))
843
844/* away from the root */
604void inline_speed 845void inline_speed
605upheap (WT *heap, int k) 846downheap (ANHE *heap, int N, int k)
606{ 847{
607 WT w = heap [k]; 848 ANHE he = heap [k];
849 ANHE *E = heap + N + HEAP0;
608 850
609 while (k && heap [k >> 1]->at > w->at) 851 for (;;)
610 {
611 heap [k] = heap [k >> 1];
612 ((W)heap [k])->active = k + 1;
613 k >>= 1;
614 } 852 {
853 ev_tstamp minat;
854 ANHE *minpos;
855 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
615 856
857 /* find minimum child */
858 if (expect_true (pos + DHEAP - 1 < E))
859 {
860 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
861 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
862 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
863 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
864 }
865 else if (pos < E)
866 {
867 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
868 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
869 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
870 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
871 }
872 else
873 break;
874
875 if (ANHE_at (he) <= minat)
876 break;
877
878 heap [k] = *minpos;
879 ev_active (ANHE_w (*minpos)) = k;
880
881 k = minpos - heap;
882 }
883
616 heap [k] = w; 884 heap [k] = he;
617 ((W)heap [k])->active = k + 1; 885 ev_active (ANHE_w (he)) = k;
618
619} 886}
620 887
888#else /* 4HEAP */
889
890#define HEAP0 1
891#define HPARENT(k) ((k) >> 1)
892#define UPHEAP_DONE(p,k) (!(p))
893
894/* away from the root */
621void inline_speed 895void inline_speed
622downheap (WT *heap, int N, int k) 896downheap (ANHE *heap, int N, int k)
623{ 897{
624 WT w = heap [k]; 898 ANHE he = heap [k];
625 899
626 while (k < (N >> 1)) 900 for (;;)
627 { 901 {
628 int j = k << 1; 902 int c = k << 1;
629 903
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 904 if (c > N + HEAP0 - 1)
631 ++j;
632
633 if (w->at <= heap [j]->at)
634 break; 905 break;
635 906
907 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
908 ? 1 : 0;
909
910 if (ANHE_at (he) <= ANHE_at (heap [c]))
911 break;
912
636 heap [k] = heap [j]; 913 heap [k] = heap [c];
637 ((W)heap [k])->active = k + 1; 914 ev_active (ANHE_w (heap [k])) = k;
915
638 k = j; 916 k = c;
639 } 917 }
640 918
641 heap [k] = w; 919 heap [k] = he;
642 ((W)heap [k])->active = k + 1; 920 ev_active (ANHE_w (he)) = k;
921}
922#endif
923
924/* towards the root */
925void inline_speed
926upheap (ANHE *heap, int k)
927{
928 ANHE he = heap [k];
929
930 for (;;)
931 {
932 int p = HPARENT (k);
933
934 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
935 break;
936
937 heap [k] = heap [p];
938 ev_active (ANHE_w (heap [k])) = k;
939 k = p;
940 }
941
942 heap [k] = he;
943 ev_active (ANHE_w (he)) = k;
643} 944}
644 945
645void inline_size 946void inline_size
646adjustheap (WT *heap, int N, int k) 947adjustheap (ANHE *heap, int N, int k)
647{ 948{
949 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
648 upheap (heap, k); 950 upheap (heap, k);
951 else
649 downheap (heap, N, k); 952 downheap (heap, N, k);
953}
954
955/* rebuild the heap: this function is used only once and executed rarely */
956void inline_size
957reheap (ANHE *heap, int N)
958{
959 int i;
960
961 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
962 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
963 for (i = 0; i < N; ++i)
964 upheap (heap, i + HEAP0);
650} 965}
651 966
652/*****************************************************************************/ 967/*****************************************************************************/
653 968
654typedef struct 969typedef struct
655{ 970{
656 WL head; 971 WL head;
657 sig_atomic_t volatile gotsig; 972 EV_ATOMIC_T gotsig;
658} ANSIG; 973} ANSIG;
659 974
660static ANSIG *signals; 975static ANSIG *signals;
661static int signalmax; 976static int signalmax;
662 977
663static int sigpipe [2]; 978static EV_ATOMIC_T gotsig;
664static sig_atomic_t volatile gotsig;
665static ev_io sigev;
666 979
667void inline_size 980void inline_size
668signals_init (ANSIG *base, int count) 981signals_init (ANSIG *base, int count)
669{ 982{
670 while (count--) 983 while (count--)
674 987
675 ++base; 988 ++base;
676 } 989 }
677} 990}
678 991
679static void 992/*****************************************************************************/
680sighandler (int signum)
681{
682#if _WIN32
683 signal (signum, sighandler);
684#endif
685 993
686 signals [signum - 1].gotsig = 1;
687
688 if (!gotsig)
689 {
690 int old_errno = errno;
691 gotsig = 1;
692 write (sigpipe [1], &signum, 1);
693 errno = old_errno;
694 }
695}
696
697void noinline
698ev_feed_signal_event (EV_P_ int signum)
699{
700 WL w;
701
702#if EV_MULTIPLICITY
703 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
704#endif
705
706 --signum;
707
708 if (signum < 0 || signum >= signalmax)
709 return;
710
711 signals [signum].gotsig = 0;
712
713 for (w = signals [signum].head; w; w = w->next)
714 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
715}
716
717static void
718sigcb (EV_P_ ev_io *iow, int revents)
719{
720 int signum;
721
722 read (sigpipe [0], &revents, 1);
723 gotsig = 0;
724
725 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1);
728}
729
730void inline_size 994void inline_speed
731fd_intern (int fd) 995fd_intern (int fd)
732{ 996{
733#ifdef _WIN32 997#ifdef _WIN32
734 int arg = 1; 998 unsigned long arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 999 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
736#else 1000#else
737 fcntl (fd, F_SETFD, FD_CLOEXEC); 1001 fcntl (fd, F_SETFD, FD_CLOEXEC);
738 fcntl (fd, F_SETFL, O_NONBLOCK); 1002 fcntl (fd, F_SETFL, O_NONBLOCK);
739#endif 1003#endif
740} 1004}
741 1005
742static void noinline 1006static void noinline
743siginit (EV_P) 1007evpipe_init (EV_P)
744{ 1008{
1009 if (!ev_is_active (&pipeev))
1010 {
1011#if EV_USE_EVENTFD
1012 if ((evfd = eventfd (0, 0)) >= 0)
1013 {
1014 evpipe [0] = -1;
1015 fd_intern (evfd);
1016 ev_io_set (&pipeev, evfd, EV_READ);
1017 }
1018 else
1019#endif
1020 {
1021 while (pipe (evpipe))
1022 syserr ("(libev) error creating signal/async pipe");
1023
745 fd_intern (sigpipe [0]); 1024 fd_intern (evpipe [0]);
746 fd_intern (sigpipe [1]); 1025 fd_intern (evpipe [1]);
1026 ev_io_set (&pipeev, evpipe [0], EV_READ);
1027 }
747 1028
748 ev_io_set (&sigev, sigpipe [0], EV_READ);
749 ev_io_start (EV_A_ &sigev); 1029 ev_io_start (EV_A_ &pipeev);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1030 ev_unref (EV_A); /* watcher should not keep loop alive */
1031 }
1032}
1033
1034void inline_size
1035evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1036{
1037 if (!*flag)
1038 {
1039 int old_errno = errno; /* save errno because write might clobber it */
1040
1041 *flag = 1;
1042
1043#if EV_USE_EVENTFD
1044 if (evfd >= 0)
1045 {
1046 uint64_t counter = 1;
1047 write (evfd, &counter, sizeof (uint64_t));
1048 }
1049 else
1050#endif
1051 write (evpipe [1], &old_errno, 1);
1052
1053 errno = old_errno;
1054 }
1055}
1056
1057static void
1058pipecb (EV_P_ ev_io *iow, int revents)
1059{
1060#if EV_USE_EVENTFD
1061 if (evfd >= 0)
1062 {
1063 uint64_t counter;
1064 read (evfd, &counter, sizeof (uint64_t));
1065 }
1066 else
1067#endif
1068 {
1069 char dummy;
1070 read (evpipe [0], &dummy, 1);
1071 }
1072
1073 if (gotsig && ev_is_default_loop (EV_A))
1074 {
1075 int signum;
1076 gotsig = 0;
1077
1078 for (signum = signalmax; signum--; )
1079 if (signals [signum].gotsig)
1080 ev_feed_signal_event (EV_A_ signum + 1);
1081 }
1082
1083#if EV_ASYNC_ENABLE
1084 if (gotasync)
1085 {
1086 int i;
1087 gotasync = 0;
1088
1089 for (i = asynccnt; i--; )
1090 if (asyncs [i]->sent)
1091 {
1092 asyncs [i]->sent = 0;
1093 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1094 }
1095 }
1096#endif
751} 1097}
752 1098
753/*****************************************************************************/ 1099/*****************************************************************************/
754 1100
1101static void
1102ev_sighandler (int signum)
1103{
1104#if EV_MULTIPLICITY
1105 struct ev_loop *loop = &default_loop_struct;
1106#endif
1107
1108#if _WIN32
1109 signal (signum, ev_sighandler);
1110#endif
1111
1112 signals [signum - 1].gotsig = 1;
1113 evpipe_write (EV_A_ &gotsig);
1114}
1115
1116void noinline
1117ev_feed_signal_event (EV_P_ int signum)
1118{
1119 WL w;
1120
1121#if EV_MULTIPLICITY
1122 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1123#endif
1124
1125 --signum;
1126
1127 if (signum < 0 || signum >= signalmax)
1128 return;
1129
1130 signals [signum].gotsig = 0;
1131
1132 for (w = signals [signum].head; w; w = w->next)
1133 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1134}
1135
1136/*****************************************************************************/
1137
755static ev_child *childs [EV_PID_HASHSIZE]; 1138static WL childs [EV_PID_HASHSIZE];
756 1139
757#ifndef _WIN32 1140#ifndef _WIN32
758 1141
759static ev_signal childev; 1142static ev_signal childev;
760 1143
1144#ifndef WIFCONTINUED
1145# define WIFCONTINUED(status) 0
1146#endif
1147
761void inline_speed 1148void inline_speed
762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1149child_reap (EV_P_ int chain, int pid, int status)
763{ 1150{
764 ev_child *w; 1151 ev_child *w;
1152 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
765 1153
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1154 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1155 {
767 if (w->pid == pid || !w->pid) 1156 if ((w->pid == pid || !w->pid)
1157 && (!traced || (w->flags & 1)))
768 { 1158 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1159 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
770 w->rpid = pid; 1160 w->rpid = pid;
771 w->rstatus = status; 1161 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1162 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 1163 }
1164 }
774} 1165}
775 1166
776#ifndef WCONTINUED 1167#ifndef WCONTINUED
777# define WCONTINUED 0 1168# define WCONTINUED 0
778#endif 1169#endif
787 if (!WCONTINUED 1178 if (!WCONTINUED
788 || errno != EINVAL 1179 || errno != EINVAL
789 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1180 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
790 return; 1181 return;
791 1182
792 /* make sure we are called again until all childs have been reaped */ 1183 /* make sure we are called again until all children have been reaped */
793 /* we need to do it this way so that the callback gets called before we continue */ 1184 /* we need to do it this way so that the callback gets called before we continue */
794 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1185 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
795 1186
796 child_reap (EV_A_ sw, pid, pid, status); 1187 child_reap (EV_A_ pid, pid, status);
797 if (EV_PID_HASHSIZE > 1) 1188 if (EV_PID_HASHSIZE > 1)
798 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1189 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
799} 1190}
800 1191
801#endif 1192#endif
802 1193
803/*****************************************************************************/ 1194/*****************************************************************************/
875} 1266}
876 1267
877unsigned int 1268unsigned int
878ev_embeddable_backends (void) 1269ev_embeddable_backends (void)
879{ 1270{
880 return EVBACKEND_EPOLL 1271 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 1272
882 | EVBACKEND_PORT; 1273 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1274 /* please fix it and tell me how to detect the fix */
1275 flags &= ~EVBACKEND_EPOLL;
1276
1277 return flags;
883} 1278}
884 1279
885unsigned int 1280unsigned int
886ev_backend (EV_P) 1281ev_backend (EV_P)
887{ 1282{
888 return backend; 1283 return backend;
1284}
1285
1286unsigned int
1287ev_loop_count (EV_P)
1288{
1289 return loop_count;
1290}
1291
1292void
1293ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1294{
1295 io_blocktime = interval;
1296}
1297
1298void
1299ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1300{
1301 timeout_blocktime = interval;
889} 1302}
890 1303
891static void noinline 1304static void noinline
892loop_init (EV_P_ unsigned int flags) 1305loop_init (EV_P_ unsigned int flags)
893{ 1306{
899 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1312 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
900 have_monotonic = 1; 1313 have_monotonic = 1;
901 } 1314 }
902#endif 1315#endif
903 1316
904 ev_rt_now = ev_time (); 1317 ev_rt_now = ev_time ();
905 mn_now = get_clock (); 1318 mn_now = get_clock ();
906 now_floor = mn_now; 1319 now_floor = mn_now;
907 rtmn_diff = ev_rt_now - mn_now; 1320 rtmn_diff = ev_rt_now - mn_now;
1321
1322 io_blocktime = 0.;
1323 timeout_blocktime = 0.;
1324 backend = 0;
1325 backend_fd = -1;
1326 gotasync = 0;
1327#if EV_USE_INOTIFY
1328 fs_fd = -2;
1329#endif
908 1330
909 /* pid check not overridable via env */ 1331 /* pid check not overridable via env */
910#ifndef _WIN32 1332#ifndef _WIN32
911 if (flags & EVFLAG_FORKCHECK) 1333 if (flags & EVFLAG_FORKCHECK)
912 curpid = getpid (); 1334 curpid = getpid ();
915 if (!(flags & EVFLAG_NOENV) 1337 if (!(flags & EVFLAG_NOENV)
916 && !enable_secure () 1338 && !enable_secure ()
917 && getenv ("LIBEV_FLAGS")) 1339 && getenv ("LIBEV_FLAGS"))
918 flags = atoi (getenv ("LIBEV_FLAGS")); 1340 flags = atoi (getenv ("LIBEV_FLAGS"));
919 1341
920 if (!(flags & 0x0000ffffUL)) 1342 if (!(flags & 0x0000ffffU))
921 flags |= ev_recommended_backends (); 1343 flags |= ev_recommended_backends ();
922
923 backend = 0;
924 backend_fd = -1;
925#if EV_USE_INOTIFY
926 fs_fd = -2;
927#endif
928 1344
929#if EV_USE_PORT 1345#if EV_USE_PORT
930 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1346 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
931#endif 1347#endif
932#if EV_USE_KQUEUE 1348#if EV_USE_KQUEUE
940#endif 1356#endif
941#if EV_USE_SELECT 1357#if EV_USE_SELECT
942 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1358 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
943#endif 1359#endif
944 1360
945 ev_init (&sigev, sigcb); 1361 ev_init (&pipeev, pipecb);
946 ev_set_priority (&sigev, EV_MAXPRI); 1362 ev_set_priority (&pipeev, EV_MAXPRI);
947 } 1363 }
948} 1364}
949 1365
950static void noinline 1366static void noinline
951loop_destroy (EV_P) 1367loop_destroy (EV_P)
952{ 1368{
953 int i; 1369 int i;
1370
1371 if (ev_is_active (&pipeev))
1372 {
1373 ev_ref (EV_A); /* signal watcher */
1374 ev_io_stop (EV_A_ &pipeev);
1375
1376#if EV_USE_EVENTFD
1377 if (evfd >= 0)
1378 close (evfd);
1379#endif
1380
1381 if (evpipe [0] >= 0)
1382 {
1383 close (evpipe [0]);
1384 close (evpipe [1]);
1385 }
1386 }
954 1387
955#if EV_USE_INOTIFY 1388#if EV_USE_INOTIFY
956 if (fs_fd >= 0) 1389 if (fs_fd >= 0)
957 close (fs_fd); 1390 close (fs_fd);
958#endif 1391#endif
975#if EV_USE_SELECT 1408#if EV_USE_SELECT
976 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1409 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
977#endif 1410#endif
978 1411
979 for (i = NUMPRI; i--; ) 1412 for (i = NUMPRI; i--; )
1413 {
980 array_free (pending, [i]); 1414 array_free (pending, [i]);
1415#if EV_IDLE_ENABLE
1416 array_free (idle, [i]);
1417#endif
1418 }
1419
1420 ev_free (anfds); anfdmax = 0;
981 1421
982 /* have to use the microsoft-never-gets-it-right macro */ 1422 /* have to use the microsoft-never-gets-it-right macro */
983 array_free (fdchange, EMPTY0); 1423 array_free (fdchange, EMPTY);
984 array_free (timer, EMPTY0); 1424 array_free (timer, EMPTY);
985#if EV_PERIODIC_ENABLE 1425#if EV_PERIODIC_ENABLE
986 array_free (periodic, EMPTY0); 1426 array_free (periodic, EMPTY);
987#endif 1427#endif
1428#if EV_FORK_ENABLE
988 array_free (idle, EMPTY0); 1429 array_free (fork, EMPTY);
1430#endif
989 array_free (prepare, EMPTY0); 1431 array_free (prepare, EMPTY);
990 array_free (check, EMPTY0); 1432 array_free (check, EMPTY);
1433#if EV_ASYNC_ENABLE
1434 array_free (async, EMPTY);
1435#endif
991 1436
992 backend = 0; 1437 backend = 0;
993} 1438}
994 1439
1440#if EV_USE_INOTIFY
995void inline_size infy_fork (EV_P); 1441void inline_size infy_fork (EV_P);
1442#endif
996 1443
997void inline_size 1444void inline_size
998loop_fork (EV_P) 1445loop_fork (EV_P)
999{ 1446{
1000#if EV_USE_PORT 1447#if EV_USE_PORT
1008#endif 1455#endif
1009#if EV_USE_INOTIFY 1456#if EV_USE_INOTIFY
1010 infy_fork (EV_A); 1457 infy_fork (EV_A);
1011#endif 1458#endif
1012 1459
1013 if (ev_is_active (&sigev)) 1460 if (ev_is_active (&pipeev))
1014 { 1461 {
1015 /* default loop */ 1462 /* this "locks" the handlers against writing to the pipe */
1463 /* while we modify the fd vars */
1464 gotsig = 1;
1465#if EV_ASYNC_ENABLE
1466 gotasync = 1;
1467#endif
1016 1468
1017 ev_ref (EV_A); 1469 ev_ref (EV_A);
1018 ev_io_stop (EV_A_ &sigev); 1470 ev_io_stop (EV_A_ &pipeev);
1471
1472#if EV_USE_EVENTFD
1473 if (evfd >= 0)
1474 close (evfd);
1475#endif
1476
1477 if (evpipe [0] >= 0)
1478 {
1019 close (sigpipe [0]); 1479 close (evpipe [0]);
1020 close (sigpipe [1]); 1480 close (evpipe [1]);
1481 }
1021 1482
1022 while (pipe (sigpipe))
1023 syserr ("(libev) error creating pipe");
1024
1025 siginit (EV_A); 1483 evpipe_init (EV_A);
1484 /* now iterate over everything, in case we missed something */
1485 pipecb (EV_A_ &pipeev, EV_READ);
1026 } 1486 }
1027 1487
1028 postfork = 0; 1488 postfork = 0;
1029} 1489}
1030 1490
1031#if EV_MULTIPLICITY 1491#if EV_MULTIPLICITY
1492
1032struct ev_loop * 1493struct ev_loop *
1033ev_loop_new (unsigned int flags) 1494ev_loop_new (unsigned int flags)
1034{ 1495{
1035 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1496 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1036 1497
1052} 1513}
1053 1514
1054void 1515void
1055ev_loop_fork (EV_P) 1516ev_loop_fork (EV_P)
1056{ 1517{
1057 postfork = 1; 1518 postfork = 1; /* must be in line with ev_default_fork */
1058} 1519}
1059 1520
1521#if EV_VERIFY
1522static void noinline
1523verify_watcher (EV_P_ W w)
1524{
1525 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1526
1527 if (w->pending)
1528 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1529}
1530
1531static void noinline
1532verify_heap (EV_P_ ANHE *heap, int N)
1533{
1534 int i;
1535
1536 for (i = HEAP0; i < N + HEAP0; ++i)
1537 {
1538 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1539 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1540 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1541
1542 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1543 }
1544}
1545
1546static void noinline
1547array_verify (EV_P_ W *ws, int cnt)
1548{
1549 while (cnt--)
1550 {
1551 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1552 verify_watcher (EV_A_ ws [cnt]);
1553 }
1554}
1555#endif
1556
1557void
1558ev_loop_verify (EV_P)
1559{
1560#if EV_VERIFY
1561 int i;
1562 WL w;
1563
1564 assert (activecnt >= -1);
1565
1566 assert (fdchangemax >= fdchangecnt);
1567 for (i = 0; i < fdchangecnt; ++i)
1568 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1569
1570 assert (anfdmax >= 0);
1571 for (i = 0; i < anfdmax; ++i)
1572 for (w = anfds [i].head; w; w = w->next)
1573 {
1574 verify_watcher (EV_A_ (W)w);
1575 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1576 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1577 }
1578
1579 assert (timermax >= timercnt);
1580 verify_heap (EV_A_ timers, timercnt);
1581
1582#if EV_PERIODIC_ENABLE
1583 assert (periodicmax >= periodiccnt);
1584 verify_heap (EV_A_ periodics, periodiccnt);
1585#endif
1586
1587 for (i = NUMPRI; i--; )
1588 {
1589 assert (pendingmax [i] >= pendingcnt [i]);
1590#if EV_IDLE_ENABLE
1591 assert (idleall >= 0);
1592 assert (idlemax [i] >= idlecnt [i]);
1593 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1594#endif
1595 }
1596
1597#if EV_FORK_ENABLE
1598 assert (forkmax >= forkcnt);
1599 array_verify (EV_A_ (W *)forks, forkcnt);
1600#endif
1601
1602#if EV_ASYNC_ENABLE
1603 assert (asyncmax >= asynccnt);
1604 array_verify (EV_A_ (W *)asyncs, asynccnt);
1605#endif
1606
1607 assert (preparemax >= preparecnt);
1608 array_verify (EV_A_ (W *)prepares, preparecnt);
1609
1610 assert (checkmax >= checkcnt);
1611 array_verify (EV_A_ (W *)checks, checkcnt);
1612
1613# if 0
1614 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1615 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1060#endif 1616# endif
1617#endif
1618}
1619
1620#endif /* multiplicity */
1061 1621
1062#if EV_MULTIPLICITY 1622#if EV_MULTIPLICITY
1063struct ev_loop * 1623struct ev_loop *
1064ev_default_loop_init (unsigned int flags) 1624ev_default_loop_init (unsigned int flags)
1065#else 1625#else
1066int 1626int
1067ev_default_loop (unsigned int flags) 1627ev_default_loop (unsigned int flags)
1068#endif 1628#endif
1069{ 1629{
1070 if (sigpipe [0] == sigpipe [1])
1071 if (pipe (sigpipe))
1072 return 0;
1073
1074 if (!ev_default_loop_ptr) 1630 if (!ev_default_loop_ptr)
1075 { 1631 {
1076#if EV_MULTIPLICITY 1632#if EV_MULTIPLICITY
1077 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1633 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1078#else 1634#else
1081 1637
1082 loop_init (EV_A_ flags); 1638 loop_init (EV_A_ flags);
1083 1639
1084 if (ev_backend (EV_A)) 1640 if (ev_backend (EV_A))
1085 { 1641 {
1086 siginit (EV_A);
1087
1088#ifndef _WIN32 1642#ifndef _WIN32
1089 ev_signal_init (&childev, childcb, SIGCHLD); 1643 ev_signal_init (&childev, childcb, SIGCHLD);
1090 ev_set_priority (&childev, EV_MAXPRI); 1644 ev_set_priority (&childev, EV_MAXPRI);
1091 ev_signal_start (EV_A_ &childev); 1645 ev_signal_start (EV_A_ &childev);
1092 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1646 ev_unref (EV_A); /* child watcher should not keep loop alive */
1109#ifndef _WIN32 1663#ifndef _WIN32
1110 ev_ref (EV_A); /* child watcher */ 1664 ev_ref (EV_A); /* child watcher */
1111 ev_signal_stop (EV_A_ &childev); 1665 ev_signal_stop (EV_A_ &childev);
1112#endif 1666#endif
1113 1667
1114 ev_ref (EV_A); /* signal watcher */
1115 ev_io_stop (EV_A_ &sigev);
1116
1117 close (sigpipe [0]); sigpipe [0] = 0;
1118 close (sigpipe [1]); sigpipe [1] = 0;
1119
1120 loop_destroy (EV_A); 1668 loop_destroy (EV_A);
1121} 1669}
1122 1670
1123void 1671void
1124ev_default_fork (void) 1672ev_default_fork (void)
1126#if EV_MULTIPLICITY 1674#if EV_MULTIPLICITY
1127 struct ev_loop *loop = ev_default_loop_ptr; 1675 struct ev_loop *loop = ev_default_loop_ptr;
1128#endif 1676#endif
1129 1677
1130 if (backend) 1678 if (backend)
1131 postfork = 1; 1679 postfork = 1; /* must be in line with ev_loop_fork */
1132} 1680}
1133 1681
1134/*****************************************************************************/ 1682/*****************************************************************************/
1135 1683
1136int inline_size 1684void
1137any_pending (EV_P) 1685ev_invoke (EV_P_ void *w, int revents)
1138{ 1686{
1139 int pri; 1687 EV_CB_INVOKE ((W)w, revents);
1140
1141 for (pri = NUMPRI; pri--; )
1142 if (pendingcnt [pri])
1143 return 1;
1144
1145 return 0;
1146} 1688}
1147 1689
1148void inline_speed 1690void inline_speed
1149call_pending (EV_P) 1691call_pending (EV_P)
1150{ 1692{
1159 { 1701 {
1160 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1702 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1161 1703
1162 p->w->pending = 0; 1704 p->w->pending = 0;
1163 EV_CB_INVOKE (p->w, p->events); 1705 EV_CB_INVOKE (p->w, p->events);
1706 EV_FREQUENT_CHECK;
1164 } 1707 }
1165 } 1708 }
1166} 1709}
1167 1710
1711#if EV_IDLE_ENABLE
1712void inline_size
1713idle_reify (EV_P)
1714{
1715 if (expect_false (idleall))
1716 {
1717 int pri;
1718
1719 for (pri = NUMPRI; pri--; )
1720 {
1721 if (pendingcnt [pri])
1722 break;
1723
1724 if (idlecnt [pri])
1725 {
1726 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1727 break;
1728 }
1729 }
1730 }
1731}
1732#endif
1733
1168void inline_size 1734void inline_size
1169timers_reify (EV_P) 1735timers_reify (EV_P)
1170{ 1736{
1737 EV_FREQUENT_CHECK;
1738
1171 while (timercnt && ((WT)timers [0])->at <= mn_now) 1739 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1172 { 1740 {
1173 ev_timer *w = timers [0]; 1741 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1174 1742
1175 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1743 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1176 1744
1177 /* first reschedule or stop timer */ 1745 /* first reschedule or stop timer */
1178 if (w->repeat) 1746 if (w->repeat)
1179 { 1747 {
1748 ev_at (w) += w->repeat;
1749 if (ev_at (w) < mn_now)
1750 ev_at (w) = mn_now;
1751
1180 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1752 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1181 1753
1182 ((WT)w)->at += w->repeat; 1754 ANHE_at_cache (timers [HEAP0]);
1183 if (((WT)w)->at < mn_now)
1184 ((WT)w)->at = mn_now;
1185
1186 downheap ((WT *)timers, timercnt, 0); 1755 downheap (timers, timercnt, HEAP0);
1187 } 1756 }
1188 else 1757 else
1189 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1758 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1190 1759
1760 EV_FREQUENT_CHECK;
1191 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1761 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1192 } 1762 }
1193} 1763}
1194 1764
1195#if EV_PERIODIC_ENABLE 1765#if EV_PERIODIC_ENABLE
1196void inline_size 1766void inline_size
1197periodics_reify (EV_P) 1767periodics_reify (EV_P)
1198{ 1768{
1769 EV_FREQUENT_CHECK;
1770
1199 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1771 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1200 { 1772 {
1201 ev_periodic *w = periodics [0]; 1773 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1202 1774
1203 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1775 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1204 1776
1205 /* first reschedule or stop timer */ 1777 /* first reschedule or stop timer */
1206 if (w->reschedule_cb) 1778 if (w->reschedule_cb)
1207 { 1779 {
1208 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1780 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1781
1209 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1782 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1783
1784 ANHE_at_cache (periodics [HEAP0]);
1210 downheap ((WT *)periodics, periodiccnt, 0); 1785 downheap (periodics, periodiccnt, HEAP0);
1211 } 1786 }
1212 else if (w->interval) 1787 else if (w->interval)
1213 { 1788 {
1214 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1789 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1215 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1790 /* if next trigger time is not sufficiently in the future, put it there */
1791 /* this might happen because of floating point inexactness */
1792 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1793 {
1794 ev_at (w) += w->interval;
1795
1796 /* if interval is unreasonably low we might still have a time in the past */
1797 /* so correct this. this will make the periodic very inexact, but the user */
1798 /* has effectively asked to get triggered more often than possible */
1799 if (ev_at (w) < ev_rt_now)
1800 ev_at (w) = ev_rt_now;
1801 }
1802
1803 ANHE_at_cache (periodics [HEAP0]);
1216 downheap ((WT *)periodics, periodiccnt, 0); 1804 downheap (periodics, periodiccnt, HEAP0);
1217 } 1805 }
1218 else 1806 else
1219 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1807 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1220 1808
1809 EV_FREQUENT_CHECK;
1221 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1810 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1222 } 1811 }
1223} 1812}
1224 1813
1225static void noinline 1814static void noinline
1226periodics_reschedule (EV_P) 1815periodics_reschedule (EV_P)
1227{ 1816{
1228 int i; 1817 int i;
1229 1818
1230 /* adjust periodics after time jump */ 1819 /* adjust periodics after time jump */
1231 for (i = 0; i < periodiccnt; ++i) 1820 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1232 { 1821 {
1233 ev_periodic *w = periodics [i]; 1822 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1234 1823
1235 if (w->reschedule_cb) 1824 if (w->reschedule_cb)
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1825 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1237 else if (w->interval) 1826 else if (w->interval)
1238 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1827 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1828
1829 ANHE_at_cache (periodics [i]);
1830 }
1831
1832 reheap (periodics, periodiccnt);
1833}
1834#endif
1835
1836void inline_speed
1837time_update (EV_P_ ev_tstamp max_block)
1838{
1839 int i;
1840
1841#if EV_USE_MONOTONIC
1842 if (expect_true (have_monotonic))
1239 } 1843 {
1844 ev_tstamp odiff = rtmn_diff;
1240 1845
1241 /* now rebuild the heap */
1242 for (i = periodiccnt >> 1; i--; )
1243 downheap ((WT *)periodics, periodiccnt, i);
1244}
1245#endif
1246
1247int inline_size
1248time_update_monotonic (EV_P)
1249{
1250 mn_now = get_clock (); 1846 mn_now = get_clock ();
1251 1847
1848 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1849 /* interpolate in the meantime */
1252 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1850 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1253 { 1851 {
1254 ev_rt_now = rtmn_diff + mn_now; 1852 ev_rt_now = rtmn_diff + mn_now;
1255 return 0; 1853 return;
1256 } 1854 }
1257 else 1855
1258 {
1259 now_floor = mn_now; 1856 now_floor = mn_now;
1260 ev_rt_now = ev_time (); 1857 ev_rt_now = ev_time ();
1261 return 1;
1262 }
1263}
1264 1858
1265void inline_size 1859 /* loop a few times, before making important decisions.
1266time_update (EV_P) 1860 * on the choice of "4": one iteration isn't enough,
1267{ 1861 * in case we get preempted during the calls to
1268 int i; 1862 * ev_time and get_clock. a second call is almost guaranteed
1269 1863 * to succeed in that case, though. and looping a few more times
1270#if EV_USE_MONOTONIC 1864 * doesn't hurt either as we only do this on time-jumps or
1271 if (expect_true (have_monotonic)) 1865 * in the unlikely event of having been preempted here.
1272 { 1866 */
1273 if (time_update_monotonic (EV_A)) 1867 for (i = 4; --i; )
1274 { 1868 {
1275 ev_tstamp odiff = rtmn_diff;
1276
1277 /* loop a few times, before making important decisions.
1278 * on the choice of "4": one iteration isn't enough,
1279 * in case we get preempted during the calls to
1280 * ev_time and get_clock. a second call is almost guaranteed
1281 * to succeed in that case, though. and looping a few more times
1282 * doesn't hurt either as we only do this on time-jumps or
1283 * in the unlikely event of having been preempted here.
1284 */
1285 for (i = 4; --i; )
1286 {
1287 rtmn_diff = ev_rt_now - mn_now; 1869 rtmn_diff = ev_rt_now - mn_now;
1288 1870
1289 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1871 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1290 return; /* all is well */ 1872 return; /* all is well */
1291 1873
1292 ev_rt_now = ev_time (); 1874 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 1875 mn_now = get_clock ();
1294 now_floor = mn_now; 1876 now_floor = mn_now;
1295 } 1877 }
1296 1878
1297# if EV_PERIODIC_ENABLE 1879# if EV_PERIODIC_ENABLE
1298 periodics_reschedule (EV_A); 1880 periodics_reschedule (EV_A);
1299# endif 1881# endif
1300 /* no timer adjustment, as the monotonic clock doesn't jump */ 1882 /* no timer adjustment, as the monotonic clock doesn't jump */
1301 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1883 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1302 }
1303 } 1884 }
1304 else 1885 else
1305#endif 1886#endif
1306 { 1887 {
1307 ev_rt_now = ev_time (); 1888 ev_rt_now = ev_time ();
1308 1889
1309 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1890 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1310 { 1891 {
1311#if EV_PERIODIC_ENABLE 1892#if EV_PERIODIC_ENABLE
1312 periodics_reschedule (EV_A); 1893 periodics_reschedule (EV_A);
1313#endif 1894#endif
1314
1315 /* adjust timers. this is easy, as the offset is the same for all of them */ 1895 /* adjust timers. this is easy, as the offset is the same for all of them */
1316 for (i = 0; i < timercnt; ++i) 1896 for (i = 0; i < timercnt; ++i)
1897 {
1898 ANHE *he = timers + i + HEAP0;
1317 ((WT)timers [i])->at += ev_rt_now - mn_now; 1899 ANHE_w (*he)->at += ev_rt_now - mn_now;
1900 ANHE_at_cache (*he);
1901 }
1318 } 1902 }
1319 1903
1320 mn_now = ev_rt_now; 1904 mn_now = ev_rt_now;
1321 } 1905 }
1322} 1906}
1331ev_unref (EV_P) 1915ev_unref (EV_P)
1332{ 1916{
1333 --activecnt; 1917 --activecnt;
1334} 1918}
1335 1919
1920void
1921ev_now_update (EV_P)
1922{
1923 time_update (EV_A_ 1e100);
1924}
1925
1336static int loop_done; 1926static int loop_done;
1337 1927
1338void 1928void
1339ev_loop (EV_P_ int flags) 1929ev_loop (EV_P_ int flags)
1340{ 1930{
1341 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1931 loop_done = EVUNLOOP_CANCEL;
1342 ? EVUNLOOP_ONE
1343 : EVUNLOOP_CANCEL;
1344 1932
1345 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1933 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1346 1934
1347 while (expect_false (!activecnt)) 1935 do
1348 { 1936 {
1937#if EV_VERIFY >= 2
1938 ev_loop_verify (EV_A);
1939#endif
1940
1349#ifndef _WIN32 1941#ifndef _WIN32
1350 if (expect_false (curpid)) /* penalise the forking check even more */ 1942 if (expect_false (curpid)) /* penalise the forking check even more */
1351 if (expect_false (getpid () != curpid)) 1943 if (expect_false (getpid () != curpid))
1352 { 1944 {
1353 curpid = getpid (); 1945 curpid = getpid ();
1363 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1955 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1364 call_pending (EV_A); 1956 call_pending (EV_A);
1365 } 1957 }
1366#endif 1958#endif
1367 1959
1368 /* queue check watchers (and execute them) */ 1960 /* queue prepare watchers (and execute them) */
1369 if (expect_false (preparecnt)) 1961 if (expect_false (preparecnt))
1370 { 1962 {
1371 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1963 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1372 call_pending (EV_A); 1964 call_pending (EV_A);
1373 } 1965 }
1382 /* update fd-related kernel structures */ 1974 /* update fd-related kernel structures */
1383 fd_reify (EV_A); 1975 fd_reify (EV_A);
1384 1976
1385 /* calculate blocking time */ 1977 /* calculate blocking time */
1386 { 1978 {
1387 ev_tstamp block; 1979 ev_tstamp waittime = 0.;
1980 ev_tstamp sleeptime = 0.;
1388 1981
1389 if (expect_false (flags & EVLOOP_NONBLOCK || idlecnt || !activecnt)) 1982 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1390 block = 0.; /* do not block at all */
1391 else
1392 { 1983 {
1393 /* update time to cancel out callback processing overhead */ 1984 /* update time to cancel out callback processing overhead */
1394#if EV_USE_MONOTONIC
1395 if (expect_true (have_monotonic))
1396 time_update_monotonic (EV_A); 1985 time_update (EV_A_ 1e100);
1397 else
1398#endif
1399 {
1400 ev_rt_now = ev_time ();
1401 mn_now = ev_rt_now;
1402 }
1403 1986
1404 block = MAX_BLOCKTIME; 1987 waittime = MAX_BLOCKTIME;
1405 1988
1406 if (timercnt) 1989 if (timercnt)
1407 { 1990 {
1408 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1991 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1409 if (block > to) block = to; 1992 if (waittime > to) waittime = to;
1410 } 1993 }
1411 1994
1412#if EV_PERIODIC_ENABLE 1995#if EV_PERIODIC_ENABLE
1413 if (periodiccnt) 1996 if (periodiccnt)
1414 { 1997 {
1415 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1998 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1416 if (block > to) block = to; 1999 if (waittime > to) waittime = to;
1417 } 2000 }
1418#endif 2001#endif
1419 2002
1420 if (expect_false (block < 0.)) block = 0.; 2003 if (expect_false (waittime < timeout_blocktime))
2004 waittime = timeout_blocktime;
2005
2006 sleeptime = waittime - backend_fudge;
2007
2008 if (expect_true (sleeptime > io_blocktime))
2009 sleeptime = io_blocktime;
2010
2011 if (sleeptime)
2012 {
2013 ev_sleep (sleeptime);
2014 waittime -= sleeptime;
2015 }
1421 } 2016 }
1422 2017
2018 ++loop_count;
1423 backend_poll (EV_A_ block); 2019 backend_poll (EV_A_ waittime);
2020
2021 /* update ev_rt_now, do magic */
2022 time_update (EV_A_ waittime + sleeptime);
1424 } 2023 }
1425
1426 /* update ev_rt_now, do magic */
1427 time_update (EV_A);
1428 2024
1429 /* queue pending timers and reschedule them */ 2025 /* queue pending timers and reschedule them */
1430 timers_reify (EV_A); /* relative timers called last */ 2026 timers_reify (EV_A); /* relative timers called last */
1431#if EV_PERIODIC_ENABLE 2027#if EV_PERIODIC_ENABLE
1432 periodics_reify (EV_A); /* absolute timers called first */ 2028 periodics_reify (EV_A); /* absolute timers called first */
1433#endif 2029#endif
1434 2030
2031#if EV_IDLE_ENABLE
1435 /* queue idle watchers unless other events are pending */ 2032 /* queue idle watchers unless other events are pending */
1436 if (idlecnt && !any_pending (EV_A)) 2033 idle_reify (EV_A);
1437 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2034#endif
1438 2035
1439 /* queue check watchers, to be executed first */ 2036 /* queue check watchers, to be executed first */
1440 if (expect_false (checkcnt)) 2037 if (expect_false (checkcnt))
1441 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2038 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1442 2039
1443 call_pending (EV_A); 2040 call_pending (EV_A);
1444
1445 if (expect_false (loop_done))
1446 break;
1447 } 2041 }
2042 while (expect_true (
2043 activecnt
2044 && !loop_done
2045 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2046 ));
1448 2047
1449 if (loop_done == EVUNLOOP_ONE) 2048 if (loop_done == EVUNLOOP_ONE)
1450 loop_done = EVUNLOOP_CANCEL; 2049 loop_done = EVUNLOOP_CANCEL;
1451} 2050}
1452 2051
1479 head = &(*head)->next; 2078 head = &(*head)->next;
1480 } 2079 }
1481} 2080}
1482 2081
1483void inline_speed 2082void inline_speed
1484ev_clear_pending (EV_P_ W w) 2083clear_pending (EV_P_ W w)
1485{ 2084{
1486 if (w->pending) 2085 if (w->pending)
1487 { 2086 {
1488 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2087 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1489 w->pending = 0; 2088 w->pending = 0;
1490 } 2089 }
1491} 2090}
1492 2091
2092int
2093ev_clear_pending (EV_P_ void *w)
2094{
2095 W w_ = (W)w;
2096 int pending = w_->pending;
2097
2098 if (expect_true (pending))
2099 {
2100 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2101 w_->pending = 0;
2102 p->w = 0;
2103 return p->events;
2104 }
2105 else
2106 return 0;
2107}
2108
2109void inline_size
2110pri_adjust (EV_P_ W w)
2111{
2112 int pri = w->priority;
2113 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2114 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2115 w->priority = pri;
2116}
2117
1493void inline_speed 2118void inline_speed
1494ev_start (EV_P_ W w, int active) 2119ev_start (EV_P_ W w, int active)
1495{ 2120{
1496 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2121 pri_adjust (EV_A_ w);
1497 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1498
1499 w->active = active; 2122 w->active = active;
1500 ev_ref (EV_A); 2123 ev_ref (EV_A);
1501} 2124}
1502 2125
1503void inline_size 2126void inline_size
1507 w->active = 0; 2130 w->active = 0;
1508} 2131}
1509 2132
1510/*****************************************************************************/ 2133/*****************************************************************************/
1511 2134
1512void 2135void noinline
1513ev_io_start (EV_P_ ev_io *w) 2136ev_io_start (EV_P_ ev_io *w)
1514{ 2137{
1515 int fd = w->fd; 2138 int fd = w->fd;
1516 2139
1517 if (expect_false (ev_is_active (w))) 2140 if (expect_false (ev_is_active (w)))
1518 return; 2141 return;
1519 2142
1520 assert (("ev_io_start called with negative fd", fd >= 0)); 2143 assert (("ev_io_start called with negative fd", fd >= 0));
1521 2144
2145 EV_FREQUENT_CHECK;
2146
1522 ev_start (EV_A_ (W)w, 1); 2147 ev_start (EV_A_ (W)w, 1);
1523 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2148 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1524 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2149 wlist_add (&anfds[fd].head, (WL)w);
1525 2150
1526 fd_change (EV_A_ fd); 2151 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1527} 2152 w->events &= ~EV_IOFDSET;
1528 2153
1529void 2154 EV_FREQUENT_CHECK;
2155}
2156
2157void noinline
1530ev_io_stop (EV_P_ ev_io *w) 2158ev_io_stop (EV_P_ ev_io *w)
1531{ 2159{
1532 ev_clear_pending (EV_A_ (W)w); 2160 clear_pending (EV_A_ (W)w);
1533 if (expect_false (!ev_is_active (w))) 2161 if (expect_false (!ev_is_active (w)))
1534 return; 2162 return;
1535 2163
1536 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2164 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1537 2165
2166 EV_FREQUENT_CHECK;
2167
1538 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2168 wlist_del (&anfds[w->fd].head, (WL)w);
1539 ev_stop (EV_A_ (W)w); 2169 ev_stop (EV_A_ (W)w);
1540 2170
1541 fd_change (EV_A_ w->fd); 2171 fd_change (EV_A_ w->fd, 1);
1542}
1543 2172
1544void 2173 EV_FREQUENT_CHECK;
2174}
2175
2176void noinline
1545ev_timer_start (EV_P_ ev_timer *w) 2177ev_timer_start (EV_P_ ev_timer *w)
1546{ 2178{
1547 if (expect_false (ev_is_active (w))) 2179 if (expect_false (ev_is_active (w)))
1548 return; 2180 return;
1549 2181
1550 ((WT)w)->at += mn_now; 2182 ev_at (w) += mn_now;
1551 2183
1552 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2184 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1553 2185
2186 EV_FREQUENT_CHECK;
2187
2188 ++timercnt;
1554 ev_start (EV_A_ (W)w, ++timercnt); 2189 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1555 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2190 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1556 timers [timercnt - 1] = w; 2191 ANHE_w (timers [ev_active (w)]) = (WT)w;
1557 upheap ((WT *)timers, timercnt - 1); 2192 ANHE_at_cache (timers [ev_active (w)]);
2193 upheap (timers, ev_active (w));
1558 2194
2195 EV_FREQUENT_CHECK;
2196
1559 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2197 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1560} 2198}
1561 2199
1562void 2200void noinline
1563ev_timer_stop (EV_P_ ev_timer *w) 2201ev_timer_stop (EV_P_ ev_timer *w)
1564{ 2202{
1565 ev_clear_pending (EV_A_ (W)w); 2203 clear_pending (EV_A_ (W)w);
1566 if (expect_false (!ev_is_active (w))) 2204 if (expect_false (!ev_is_active (w)))
1567 return; 2205 return;
1568 2206
1569 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2207 EV_FREQUENT_CHECK;
1570 2208
1571 { 2209 {
1572 int active = ((W)w)->active; 2210 int active = ev_active (w);
1573 2211
2212 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2213
2214 --timercnt;
2215
1574 if (expect_true (--active < --timercnt)) 2216 if (expect_true (active < timercnt + HEAP0))
1575 { 2217 {
1576 timers [active] = timers [timercnt]; 2218 timers [active] = timers [timercnt + HEAP0];
1577 adjustheap ((WT *)timers, timercnt, active); 2219 adjustheap (timers, timercnt, active);
1578 } 2220 }
1579 } 2221 }
1580 2222
1581 ((WT)w)->at -= mn_now; 2223 EV_FREQUENT_CHECK;
2224
2225 ev_at (w) -= mn_now;
1582 2226
1583 ev_stop (EV_A_ (W)w); 2227 ev_stop (EV_A_ (W)w);
1584} 2228}
1585 2229
1586void 2230void noinline
1587ev_timer_again (EV_P_ ev_timer *w) 2231ev_timer_again (EV_P_ ev_timer *w)
1588{ 2232{
2233 EV_FREQUENT_CHECK;
2234
1589 if (ev_is_active (w)) 2235 if (ev_is_active (w))
1590 { 2236 {
1591 if (w->repeat) 2237 if (w->repeat)
1592 { 2238 {
1593 ((WT)w)->at = mn_now + w->repeat; 2239 ev_at (w) = mn_now + w->repeat;
2240 ANHE_at_cache (timers [ev_active (w)]);
1594 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2241 adjustheap (timers, timercnt, ev_active (w));
1595 } 2242 }
1596 else 2243 else
1597 ev_timer_stop (EV_A_ w); 2244 ev_timer_stop (EV_A_ w);
1598 } 2245 }
1599 else if (w->repeat) 2246 else if (w->repeat)
1600 { 2247 {
1601 w->at = w->repeat; 2248 ev_at (w) = w->repeat;
1602 ev_timer_start (EV_A_ w); 2249 ev_timer_start (EV_A_ w);
1603 } 2250 }
2251
2252 EV_FREQUENT_CHECK;
1604} 2253}
1605 2254
1606#if EV_PERIODIC_ENABLE 2255#if EV_PERIODIC_ENABLE
1607void 2256void noinline
1608ev_periodic_start (EV_P_ ev_periodic *w) 2257ev_periodic_start (EV_P_ ev_periodic *w)
1609{ 2258{
1610 if (expect_false (ev_is_active (w))) 2259 if (expect_false (ev_is_active (w)))
1611 return; 2260 return;
1612 2261
1613 if (w->reschedule_cb) 2262 if (w->reschedule_cb)
1614 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2263 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1615 else if (w->interval) 2264 else if (w->interval)
1616 { 2265 {
1617 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2266 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1618 /* this formula differs from the one in periodic_reify because we do not always round up */ 2267 /* this formula differs from the one in periodic_reify because we do not always round up */
1619 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2268 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1620 } 2269 }
2270 else
2271 ev_at (w) = w->offset;
1621 2272
2273 EV_FREQUENT_CHECK;
2274
2275 ++periodiccnt;
1622 ev_start (EV_A_ (W)w, ++periodiccnt); 2276 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1623 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2277 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1624 periodics [periodiccnt - 1] = w; 2278 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1625 upheap ((WT *)periodics, periodiccnt - 1); 2279 ANHE_at_cache (periodics [ev_active (w)]);
2280 upheap (periodics, ev_active (w));
1626 2281
2282 EV_FREQUENT_CHECK;
2283
1627 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2284 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1628} 2285}
1629 2286
1630void 2287void noinline
1631ev_periodic_stop (EV_P_ ev_periodic *w) 2288ev_periodic_stop (EV_P_ ev_periodic *w)
1632{ 2289{
1633 ev_clear_pending (EV_A_ (W)w); 2290 clear_pending (EV_A_ (W)w);
1634 if (expect_false (!ev_is_active (w))) 2291 if (expect_false (!ev_is_active (w)))
1635 return; 2292 return;
1636 2293
1637 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2294 EV_FREQUENT_CHECK;
1638 2295
1639 { 2296 {
1640 int active = ((W)w)->active; 2297 int active = ev_active (w);
1641 2298
2299 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2300
2301 --periodiccnt;
2302
1642 if (expect_true (--active < --periodiccnt)) 2303 if (expect_true (active < periodiccnt + HEAP0))
1643 { 2304 {
1644 periodics [active] = periodics [periodiccnt]; 2305 periodics [active] = periodics [periodiccnt + HEAP0];
1645 adjustheap ((WT *)periodics, periodiccnt, active); 2306 adjustheap (periodics, periodiccnt, active);
1646 } 2307 }
1647 } 2308 }
1648 2309
2310 EV_FREQUENT_CHECK;
2311
1649 ev_stop (EV_A_ (W)w); 2312 ev_stop (EV_A_ (W)w);
1650} 2313}
1651 2314
1652void 2315void noinline
1653ev_periodic_again (EV_P_ ev_periodic *w) 2316ev_periodic_again (EV_P_ ev_periodic *w)
1654{ 2317{
1655 /* TODO: use adjustheap and recalculation */ 2318 /* TODO: use adjustheap and recalculation */
1656 ev_periodic_stop (EV_A_ w); 2319 ev_periodic_stop (EV_A_ w);
1657 ev_periodic_start (EV_A_ w); 2320 ev_periodic_start (EV_A_ w);
1660 2323
1661#ifndef SA_RESTART 2324#ifndef SA_RESTART
1662# define SA_RESTART 0 2325# define SA_RESTART 0
1663#endif 2326#endif
1664 2327
1665void 2328void noinline
1666ev_signal_start (EV_P_ ev_signal *w) 2329ev_signal_start (EV_P_ ev_signal *w)
1667{ 2330{
1668#if EV_MULTIPLICITY 2331#if EV_MULTIPLICITY
1669 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2332 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1670#endif 2333#endif
1671 if (expect_false (ev_is_active (w))) 2334 if (expect_false (ev_is_active (w)))
1672 return; 2335 return;
1673 2336
1674 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2337 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1675 2338
2339 evpipe_init (EV_A);
2340
2341 EV_FREQUENT_CHECK;
2342
2343 {
2344#ifndef _WIN32
2345 sigset_t full, prev;
2346 sigfillset (&full);
2347 sigprocmask (SIG_SETMASK, &full, &prev);
2348#endif
2349
2350 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2351
2352#ifndef _WIN32
2353 sigprocmask (SIG_SETMASK, &prev, 0);
2354#endif
2355 }
2356
1676 ev_start (EV_A_ (W)w, 1); 2357 ev_start (EV_A_ (W)w, 1);
1677 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1678 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2358 wlist_add (&signals [w->signum - 1].head, (WL)w);
1679 2359
1680 if (!((WL)w)->next) 2360 if (!((WL)w)->next)
1681 { 2361 {
1682#if _WIN32 2362#if _WIN32
1683 signal (w->signum, sighandler); 2363 signal (w->signum, ev_sighandler);
1684#else 2364#else
1685 struct sigaction sa; 2365 struct sigaction sa;
1686 sa.sa_handler = sighandler; 2366 sa.sa_handler = ev_sighandler;
1687 sigfillset (&sa.sa_mask); 2367 sigfillset (&sa.sa_mask);
1688 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2368 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1689 sigaction (w->signum, &sa, 0); 2369 sigaction (w->signum, &sa, 0);
1690#endif 2370#endif
1691 } 2371 }
1692}
1693 2372
1694void 2373 EV_FREQUENT_CHECK;
2374}
2375
2376void noinline
1695ev_signal_stop (EV_P_ ev_signal *w) 2377ev_signal_stop (EV_P_ ev_signal *w)
1696{ 2378{
1697 ev_clear_pending (EV_A_ (W)w); 2379 clear_pending (EV_A_ (W)w);
1698 if (expect_false (!ev_is_active (w))) 2380 if (expect_false (!ev_is_active (w)))
1699 return; 2381 return;
1700 2382
2383 EV_FREQUENT_CHECK;
2384
1701 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2385 wlist_del (&signals [w->signum - 1].head, (WL)w);
1702 ev_stop (EV_A_ (W)w); 2386 ev_stop (EV_A_ (W)w);
1703 2387
1704 if (!signals [w->signum - 1].head) 2388 if (!signals [w->signum - 1].head)
1705 signal (w->signum, SIG_DFL); 2389 signal (w->signum, SIG_DFL);
2390
2391 EV_FREQUENT_CHECK;
1706} 2392}
1707 2393
1708void 2394void
1709ev_child_start (EV_P_ ev_child *w) 2395ev_child_start (EV_P_ ev_child *w)
1710{ 2396{
1712 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2398 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1713#endif 2399#endif
1714 if (expect_false (ev_is_active (w))) 2400 if (expect_false (ev_is_active (w)))
1715 return; 2401 return;
1716 2402
2403 EV_FREQUENT_CHECK;
2404
1717 ev_start (EV_A_ (W)w, 1); 2405 ev_start (EV_A_ (W)w, 1);
1718 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2406 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2407
2408 EV_FREQUENT_CHECK;
1719} 2409}
1720 2410
1721void 2411void
1722ev_child_stop (EV_P_ ev_child *w) 2412ev_child_stop (EV_P_ ev_child *w)
1723{ 2413{
1724 ev_clear_pending (EV_A_ (W)w); 2414 clear_pending (EV_A_ (W)w);
1725 if (expect_false (!ev_is_active (w))) 2415 if (expect_false (!ev_is_active (w)))
1726 return; 2416 return;
1727 2417
2418 EV_FREQUENT_CHECK;
2419
1728 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2420 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1729 ev_stop (EV_A_ (W)w); 2421 ev_stop (EV_A_ (W)w);
2422
2423 EV_FREQUENT_CHECK;
1730} 2424}
1731 2425
1732#if EV_STAT_ENABLE 2426#if EV_STAT_ENABLE
1733 2427
1734# ifdef _WIN32 2428# ifdef _WIN32
1752 if (w->wd < 0) 2446 if (w->wd < 0)
1753 { 2447 {
1754 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2448 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1755 2449
1756 /* monitor some parent directory for speedup hints */ 2450 /* monitor some parent directory for speedup hints */
2451 /* note that exceeding the hardcoded limit is not a correctness issue, */
2452 /* but an efficiency issue only */
1757 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2453 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1758 { 2454 {
1759 char path [4096]; 2455 char path [4096];
1760 strcpy (path, w->path); 2456 strcpy (path, w->path);
1761 2457
1801 2497
1802static void noinline 2498static void noinline
1803infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2499infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1804{ 2500{
1805 if (slot < 0) 2501 if (slot < 0)
1806 /* overflow, need to check for all hahs slots */ 2502 /* overflow, need to check for all hash slots */
1807 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2503 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1808 infy_wd (EV_A_ slot, wd, ev); 2504 infy_wd (EV_A_ slot, wd, ev);
1809 else 2505 else
1810 { 2506 {
1811 WL w_; 2507 WL w_;
1845infy_init (EV_P) 2541infy_init (EV_P)
1846{ 2542{
1847 if (fs_fd != -2) 2543 if (fs_fd != -2)
1848 return; 2544 return;
1849 2545
2546 /* kernels < 2.6.25 are borked
2547 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2548 */
2549 {
2550 struct utsname buf;
2551 int major, minor, micro;
2552
2553 fs_fd = -1;
2554
2555 if (uname (&buf))
2556 return;
2557
2558 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2559 return;
2560
2561 if (major < 2
2562 || (major == 2 && minor < 6)
2563 || (major == 2 && minor == 6 && micro < 25))
2564 return;
2565 }
2566
1850 fs_fd = inotify_init (); 2567 fs_fd = inotify_init ();
1851 2568
1852 if (fs_fd >= 0) 2569 if (fs_fd >= 0)
1853 { 2570 {
1854 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 2571 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1883 if (fs_fd >= 0) 2600 if (fs_fd >= 0)
1884 infy_add (EV_A_ w); /* re-add, no matter what */ 2601 infy_add (EV_A_ w); /* re-add, no matter what */
1885 else 2602 else
1886 ev_timer_start (EV_A_ &w->timer); 2603 ev_timer_start (EV_A_ &w->timer);
1887 } 2604 }
1888
1889 } 2605 }
1890} 2606}
1891 2607
2608#endif
2609
2610#ifdef _WIN32
2611# define EV_LSTAT(p,b) _stati64 (p, b)
2612#else
2613# define EV_LSTAT(p,b) lstat (p, b)
1892#endif 2614#endif
1893 2615
1894void 2616void
1895ev_stat_stat (EV_P_ ev_stat *w) 2617ev_stat_stat (EV_P_ ev_stat *w)
1896{ 2618{
1923 || w->prev.st_atime != w->attr.st_atime 2645 || w->prev.st_atime != w->attr.st_atime
1924 || w->prev.st_mtime != w->attr.st_mtime 2646 || w->prev.st_mtime != w->attr.st_mtime
1925 || w->prev.st_ctime != w->attr.st_ctime 2647 || w->prev.st_ctime != w->attr.st_ctime
1926 ) { 2648 ) {
1927 #if EV_USE_INOTIFY 2649 #if EV_USE_INOTIFY
2650 if (fs_fd >= 0)
2651 {
1928 infy_del (EV_A_ w); 2652 infy_del (EV_A_ w);
1929 infy_add (EV_A_ w); 2653 infy_add (EV_A_ w);
1930 ev_stat_stat (EV_A_ w); /* avoid race... */ 2654 ev_stat_stat (EV_A_ w); /* avoid race... */
2655 }
1931 #endif 2656 #endif
1932 2657
1933 ev_feed_event (EV_A_ w, EV_STAT); 2658 ev_feed_event (EV_A_ w, EV_STAT);
1934 } 2659 }
1935} 2660}
1960 else 2685 else
1961#endif 2686#endif
1962 ev_timer_start (EV_A_ &w->timer); 2687 ev_timer_start (EV_A_ &w->timer);
1963 2688
1964 ev_start (EV_A_ (W)w, 1); 2689 ev_start (EV_A_ (W)w, 1);
2690
2691 EV_FREQUENT_CHECK;
1965} 2692}
1966 2693
1967void 2694void
1968ev_stat_stop (EV_P_ ev_stat *w) 2695ev_stat_stop (EV_P_ ev_stat *w)
1969{ 2696{
1970 ev_clear_pending (EV_A_ (W)w); 2697 clear_pending (EV_A_ (W)w);
1971 if (expect_false (!ev_is_active (w))) 2698 if (expect_false (!ev_is_active (w)))
1972 return; 2699 return;
1973 2700
2701 EV_FREQUENT_CHECK;
2702
1974#if EV_USE_INOTIFY 2703#if EV_USE_INOTIFY
1975 infy_del (EV_A_ w); 2704 infy_del (EV_A_ w);
1976#endif 2705#endif
1977 ev_timer_stop (EV_A_ &w->timer); 2706 ev_timer_stop (EV_A_ &w->timer);
1978 2707
1979 ev_stop (EV_A_ (W)w); 2708 ev_stop (EV_A_ (W)w);
1980}
1981#endif
1982 2709
2710 EV_FREQUENT_CHECK;
2711}
2712#endif
2713
2714#if EV_IDLE_ENABLE
1983void 2715void
1984ev_idle_start (EV_P_ ev_idle *w) 2716ev_idle_start (EV_P_ ev_idle *w)
1985{ 2717{
1986 if (expect_false (ev_is_active (w))) 2718 if (expect_false (ev_is_active (w)))
1987 return; 2719 return;
1988 2720
2721 pri_adjust (EV_A_ (W)w);
2722
2723 EV_FREQUENT_CHECK;
2724
2725 {
2726 int active = ++idlecnt [ABSPRI (w)];
2727
2728 ++idleall;
1989 ev_start (EV_A_ (W)w, ++idlecnt); 2729 ev_start (EV_A_ (W)w, active);
2730
1990 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2731 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1991 idles [idlecnt - 1] = w; 2732 idles [ABSPRI (w)][active - 1] = w;
2733 }
2734
2735 EV_FREQUENT_CHECK;
1992} 2736}
1993 2737
1994void 2738void
1995ev_idle_stop (EV_P_ ev_idle *w) 2739ev_idle_stop (EV_P_ ev_idle *w)
1996{ 2740{
1997 ev_clear_pending (EV_A_ (W)w); 2741 clear_pending (EV_A_ (W)w);
1998 if (expect_false (!ev_is_active (w))) 2742 if (expect_false (!ev_is_active (w)))
1999 return; 2743 return;
2000 2744
2745 EV_FREQUENT_CHECK;
2746
2001 { 2747 {
2002 int active = ((W)w)->active; 2748 int active = ev_active (w);
2003 idles [active - 1] = idles [--idlecnt]; 2749
2004 ((W)idles [active - 1])->active = active; 2750 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2751 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2752
2753 ev_stop (EV_A_ (W)w);
2754 --idleall;
2005 } 2755 }
2006 2756
2007 ev_stop (EV_A_ (W)w); 2757 EV_FREQUENT_CHECK;
2008} 2758}
2759#endif
2009 2760
2010void 2761void
2011ev_prepare_start (EV_P_ ev_prepare *w) 2762ev_prepare_start (EV_P_ ev_prepare *w)
2012{ 2763{
2013 if (expect_false (ev_is_active (w))) 2764 if (expect_false (ev_is_active (w)))
2014 return; 2765 return;
2766
2767 EV_FREQUENT_CHECK;
2015 2768
2016 ev_start (EV_A_ (W)w, ++preparecnt); 2769 ev_start (EV_A_ (W)w, ++preparecnt);
2017 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2770 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2018 prepares [preparecnt - 1] = w; 2771 prepares [preparecnt - 1] = w;
2772
2773 EV_FREQUENT_CHECK;
2019} 2774}
2020 2775
2021void 2776void
2022ev_prepare_stop (EV_P_ ev_prepare *w) 2777ev_prepare_stop (EV_P_ ev_prepare *w)
2023{ 2778{
2024 ev_clear_pending (EV_A_ (W)w); 2779 clear_pending (EV_A_ (W)w);
2025 if (expect_false (!ev_is_active (w))) 2780 if (expect_false (!ev_is_active (w)))
2026 return; 2781 return;
2027 2782
2783 EV_FREQUENT_CHECK;
2784
2028 { 2785 {
2029 int active = ((W)w)->active; 2786 int active = ev_active (w);
2787
2030 prepares [active - 1] = prepares [--preparecnt]; 2788 prepares [active - 1] = prepares [--preparecnt];
2031 ((W)prepares [active - 1])->active = active; 2789 ev_active (prepares [active - 1]) = active;
2032 } 2790 }
2033 2791
2034 ev_stop (EV_A_ (W)w); 2792 ev_stop (EV_A_ (W)w);
2793
2794 EV_FREQUENT_CHECK;
2035} 2795}
2036 2796
2037void 2797void
2038ev_check_start (EV_P_ ev_check *w) 2798ev_check_start (EV_P_ ev_check *w)
2039{ 2799{
2040 if (expect_false (ev_is_active (w))) 2800 if (expect_false (ev_is_active (w)))
2041 return; 2801 return;
2802
2803 EV_FREQUENT_CHECK;
2042 2804
2043 ev_start (EV_A_ (W)w, ++checkcnt); 2805 ev_start (EV_A_ (W)w, ++checkcnt);
2044 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2806 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2045 checks [checkcnt - 1] = w; 2807 checks [checkcnt - 1] = w;
2808
2809 EV_FREQUENT_CHECK;
2046} 2810}
2047 2811
2048void 2812void
2049ev_check_stop (EV_P_ ev_check *w) 2813ev_check_stop (EV_P_ ev_check *w)
2050{ 2814{
2051 ev_clear_pending (EV_A_ (W)w); 2815 clear_pending (EV_A_ (W)w);
2052 if (expect_false (!ev_is_active (w))) 2816 if (expect_false (!ev_is_active (w)))
2053 return; 2817 return;
2054 2818
2819 EV_FREQUENT_CHECK;
2820
2055 { 2821 {
2056 int active = ((W)w)->active; 2822 int active = ev_active (w);
2823
2057 checks [active - 1] = checks [--checkcnt]; 2824 checks [active - 1] = checks [--checkcnt];
2058 ((W)checks [active - 1])->active = active; 2825 ev_active (checks [active - 1]) = active;
2059 } 2826 }
2060 2827
2061 ev_stop (EV_A_ (W)w); 2828 ev_stop (EV_A_ (W)w);
2829
2830 EV_FREQUENT_CHECK;
2062} 2831}
2063 2832
2064#if EV_EMBED_ENABLE 2833#if EV_EMBED_ENABLE
2065void noinline 2834void noinline
2066ev_embed_sweep (EV_P_ ev_embed *w) 2835ev_embed_sweep (EV_P_ ev_embed *w)
2067{ 2836{
2068 ev_loop (w->loop, EVLOOP_NONBLOCK); 2837 ev_loop (w->other, EVLOOP_NONBLOCK);
2069} 2838}
2070 2839
2071static void 2840static void
2072embed_cb (EV_P_ ev_io *io, int revents) 2841embed_io_cb (EV_P_ ev_io *io, int revents)
2073{ 2842{
2074 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2843 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2075 2844
2076 if (ev_cb (w)) 2845 if (ev_cb (w))
2077 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2846 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2078 else 2847 else
2079 ev_embed_sweep (loop, w); 2848 ev_loop (w->other, EVLOOP_NONBLOCK);
2080} 2849}
2850
2851static void
2852embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2853{
2854 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2855
2856 {
2857 struct ev_loop *loop = w->other;
2858
2859 while (fdchangecnt)
2860 {
2861 fd_reify (EV_A);
2862 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2863 }
2864 }
2865}
2866
2867static void
2868embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2869{
2870 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2871
2872 {
2873 struct ev_loop *loop = w->other;
2874
2875 ev_loop_fork (EV_A);
2876 }
2877}
2878
2879#if 0
2880static void
2881embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2882{
2883 ev_idle_stop (EV_A_ idle);
2884}
2885#endif
2081 2886
2082void 2887void
2083ev_embed_start (EV_P_ ev_embed *w) 2888ev_embed_start (EV_P_ ev_embed *w)
2084{ 2889{
2085 if (expect_false (ev_is_active (w))) 2890 if (expect_false (ev_is_active (w)))
2086 return; 2891 return;
2087 2892
2088 { 2893 {
2089 struct ev_loop *loop = w->loop; 2894 struct ev_loop *loop = w->other;
2090 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2895 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2091 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2896 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2092 } 2897 }
2898
2899 EV_FREQUENT_CHECK;
2093 2900
2094 ev_set_priority (&w->io, ev_priority (w)); 2901 ev_set_priority (&w->io, ev_priority (w));
2095 ev_io_start (EV_A_ &w->io); 2902 ev_io_start (EV_A_ &w->io);
2096 2903
2904 ev_prepare_init (&w->prepare, embed_prepare_cb);
2905 ev_set_priority (&w->prepare, EV_MINPRI);
2906 ev_prepare_start (EV_A_ &w->prepare);
2907
2908 ev_fork_init (&w->fork, embed_fork_cb);
2909 ev_fork_start (EV_A_ &w->fork);
2910
2911 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2912
2097 ev_start (EV_A_ (W)w, 1); 2913 ev_start (EV_A_ (W)w, 1);
2914
2915 EV_FREQUENT_CHECK;
2098} 2916}
2099 2917
2100void 2918void
2101ev_embed_stop (EV_P_ ev_embed *w) 2919ev_embed_stop (EV_P_ ev_embed *w)
2102{ 2920{
2103 ev_clear_pending (EV_A_ (W)w); 2921 clear_pending (EV_A_ (W)w);
2104 if (expect_false (!ev_is_active (w))) 2922 if (expect_false (!ev_is_active (w)))
2105 return; 2923 return;
2106 2924
2925 EV_FREQUENT_CHECK;
2926
2107 ev_io_stop (EV_A_ &w->io); 2927 ev_io_stop (EV_A_ &w->io);
2928 ev_prepare_stop (EV_A_ &w->prepare);
2929 ev_fork_stop (EV_A_ &w->fork);
2108 2930
2109 ev_stop (EV_A_ (W)w); 2931 EV_FREQUENT_CHECK;
2110} 2932}
2111#endif 2933#endif
2112 2934
2113#if EV_FORK_ENABLE 2935#if EV_FORK_ENABLE
2114void 2936void
2115ev_fork_start (EV_P_ ev_fork *w) 2937ev_fork_start (EV_P_ ev_fork *w)
2116{ 2938{
2117 if (expect_false (ev_is_active (w))) 2939 if (expect_false (ev_is_active (w)))
2118 return; 2940 return;
2941
2942 EV_FREQUENT_CHECK;
2119 2943
2120 ev_start (EV_A_ (W)w, ++forkcnt); 2944 ev_start (EV_A_ (W)w, ++forkcnt);
2121 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2945 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2122 forks [forkcnt - 1] = w; 2946 forks [forkcnt - 1] = w;
2947
2948 EV_FREQUENT_CHECK;
2123} 2949}
2124 2950
2125void 2951void
2126ev_fork_stop (EV_P_ ev_fork *w) 2952ev_fork_stop (EV_P_ ev_fork *w)
2127{ 2953{
2128 ev_clear_pending (EV_A_ (W)w); 2954 clear_pending (EV_A_ (W)w);
2129 if (expect_false (!ev_is_active (w))) 2955 if (expect_false (!ev_is_active (w)))
2130 return; 2956 return;
2131 2957
2958 EV_FREQUENT_CHECK;
2959
2132 { 2960 {
2133 int active = ((W)w)->active; 2961 int active = ev_active (w);
2962
2134 forks [active - 1] = forks [--forkcnt]; 2963 forks [active - 1] = forks [--forkcnt];
2135 ((W)forks [active - 1])->active = active; 2964 ev_active (forks [active - 1]) = active;
2136 } 2965 }
2137 2966
2138 ev_stop (EV_A_ (W)w); 2967 ev_stop (EV_A_ (W)w);
2968
2969 EV_FREQUENT_CHECK;
2970}
2971#endif
2972
2973#if EV_ASYNC_ENABLE
2974void
2975ev_async_start (EV_P_ ev_async *w)
2976{
2977 if (expect_false (ev_is_active (w)))
2978 return;
2979
2980 evpipe_init (EV_A);
2981
2982 EV_FREQUENT_CHECK;
2983
2984 ev_start (EV_A_ (W)w, ++asynccnt);
2985 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2986 asyncs [asynccnt - 1] = w;
2987
2988 EV_FREQUENT_CHECK;
2989}
2990
2991void
2992ev_async_stop (EV_P_ ev_async *w)
2993{
2994 clear_pending (EV_A_ (W)w);
2995 if (expect_false (!ev_is_active (w)))
2996 return;
2997
2998 EV_FREQUENT_CHECK;
2999
3000 {
3001 int active = ev_active (w);
3002
3003 asyncs [active - 1] = asyncs [--asynccnt];
3004 ev_active (asyncs [active - 1]) = active;
3005 }
3006
3007 ev_stop (EV_A_ (W)w);
3008
3009 EV_FREQUENT_CHECK;
3010}
3011
3012void
3013ev_async_send (EV_P_ ev_async *w)
3014{
3015 w->sent = 1;
3016 evpipe_write (EV_A_ &gotasync);
2139} 3017}
2140#endif 3018#endif
2141 3019
2142/*****************************************************************************/ 3020/*****************************************************************************/
2143 3021
2153once_cb (EV_P_ struct ev_once *once, int revents) 3031once_cb (EV_P_ struct ev_once *once, int revents)
2154{ 3032{
2155 void (*cb)(int revents, void *arg) = once->cb; 3033 void (*cb)(int revents, void *arg) = once->cb;
2156 void *arg = once->arg; 3034 void *arg = once->arg;
2157 3035
2158 ev_io_stop (EV_A_ &once->io); 3036 ev_io_stop (EV_A_ &once->io);
2159 ev_timer_stop (EV_A_ &once->to); 3037 ev_timer_stop (EV_A_ &once->to);
2160 ev_free (once); 3038 ev_free (once);
2161 3039
2162 cb (revents, arg); 3040 cb (revents, arg);
2163} 3041}
2164 3042
2165static void 3043static void
2166once_cb_io (EV_P_ ev_io *w, int revents) 3044once_cb_io (EV_P_ ev_io *w, int revents)
2167{ 3045{
2168 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3046 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3047
3048 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2169} 3049}
2170 3050
2171static void 3051static void
2172once_cb_to (EV_P_ ev_timer *w, int revents) 3052once_cb_to (EV_P_ ev_timer *w, int revents)
2173{ 3053{
2174 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3054 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3055
3056 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2175} 3057}
2176 3058
2177void 3059void
2178ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3060ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2179{ 3061{
2201 ev_timer_set (&once->to, timeout, 0.); 3083 ev_timer_set (&once->to, timeout, 0.);
2202 ev_timer_start (EV_A_ &once->to); 3084 ev_timer_start (EV_A_ &once->to);
2203 } 3085 }
2204} 3086}
2205 3087
3088#if EV_MULTIPLICITY
3089 #include "ev_wrap.h"
3090#endif
3091
2206#ifdef __cplusplus 3092#ifdef __cplusplus
2207} 3093}
2208#endif 3094#endif
2209 3095

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines