ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.160 by root, Sat Dec 1 22:57:20 2007 UTC vs.
Revision 1.338 by root, Tue Mar 16 00:20:17 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
56# endif 79# endif
57# endif 80# endif
58 81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
61# define EV_USE_SELECT 1 92# define EV_USE_SELECT 1
62# else 93# else
63# define EV_USE_SELECT 0 94# define EV_USE_SELECT 0
79# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
80# endif 111# endif
81# endif 112# endif
82 113
83# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
85# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
86# else 117# else
87# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
88# endif 119# endif
89# endif 120# endif
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
107#endif 154#endif
108 155
109#include <math.h> 156#include <math.h>
110#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
111#include <fcntl.h> 159#include <fcntl.h>
112#include <stddef.h> 160#include <stddef.h>
113 161
114#include <stdio.h> 162#include <stdio.h>
115 163
116#include <assert.h> 164#include <assert.h>
117#include <errno.h> 165#include <errno.h>
118#include <sys/types.h> 166#include <sys/types.h>
119#include <time.h> 167#include <time.h>
168#include <limits.h>
120 169
121#include <signal.h> 170#include <signal.h>
122 171
123#ifdef EV_H 172#ifdef EV_H
124# include EV_H 173# include EV_H
129#ifndef _WIN32 178#ifndef _WIN32
130# include <sys/time.h> 179# include <sys/time.h>
131# include <sys/wait.h> 180# include <sys/wait.h>
132# include <unistd.h> 181# include <unistd.h>
133#else 182#else
183# include <io.h>
134# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 185# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
138# endif 188# endif
189# undef EV_AVOID_STDIO
190#endif
191
192/* this block tries to deduce configuration from header-defined symbols and defaults */
193
194/* try to deduce the maximum number of signals on this platform */
195#if defined (EV_NSIG)
196/* use what's provided */
197#elif defined (NSIG)
198# define EV_NSIG (NSIG)
199#elif defined(_NSIG)
200# define EV_NSIG (_NSIG)
201#elif defined (SIGMAX)
202# define EV_NSIG (SIGMAX+1)
203#elif defined (SIG_MAX)
204# define EV_NSIG (SIG_MAX+1)
205#elif defined (_SIG_MAX)
206# define EV_NSIG (_SIG_MAX+1)
207#elif defined (MAXSIG)
208# define EV_NSIG (MAXSIG+1)
209#elif defined (MAX_SIG)
210# define EV_NSIG (MAX_SIG+1)
211#elif defined (SIGARRAYSIZE)
212# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
213#elif defined (_sys_nsig)
214# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215#else
216# error "unable to find value for NSIG, please report"
217/* to make it compile regardless, just remove the above line, */
218/* but consider reporting it, too! :) */
219# define EV_NSIG 65
220#endif
221
222#ifndef EV_USE_CLOCK_SYSCALL
223# if __linux && __GLIBC__ >= 2
224# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
225# else
226# define EV_USE_CLOCK_SYSCALL 0
139#endif 227# endif
140 228#endif
141/**/
142 229
143#ifndef EV_USE_MONOTONIC 230#ifndef EV_USE_MONOTONIC
231# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
232# define EV_USE_MONOTONIC EV_FEATURE_OS
233# else
144# define EV_USE_MONOTONIC 0 234# define EV_USE_MONOTONIC 0
235# endif
145#endif 236#endif
146 237
147#ifndef EV_USE_REALTIME 238#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 239# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
240#endif
241
242#ifndef EV_USE_NANOSLEEP
243# if _POSIX_C_SOURCE >= 199309L
244# define EV_USE_NANOSLEEP EV_FEATURE_OS
245# else
246# define EV_USE_NANOSLEEP 0
247# endif
149#endif 248#endif
150 249
151#ifndef EV_USE_SELECT 250#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 251# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 252#endif
154 253
155#ifndef EV_USE_POLL 254#ifndef EV_USE_POLL
156# ifdef _WIN32 255# ifdef _WIN32
157# define EV_USE_POLL 0 256# define EV_USE_POLL 0
158# else 257# else
159# define EV_USE_POLL 1 258# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 259# endif
161#endif 260#endif
162 261
163#ifndef EV_USE_EPOLL 262#ifndef EV_USE_EPOLL
263# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
264# define EV_USE_EPOLL EV_FEATURE_BACKENDS
265# else
164# define EV_USE_EPOLL 0 266# define EV_USE_EPOLL 0
267# endif
165#endif 268#endif
166 269
167#ifndef EV_USE_KQUEUE 270#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 271# define EV_USE_KQUEUE 0
169#endif 272#endif
171#ifndef EV_USE_PORT 274#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 275# define EV_USE_PORT 0
173#endif 276#endif
174 277
175#ifndef EV_USE_INOTIFY 278#ifndef EV_USE_INOTIFY
279# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
280# define EV_USE_INOTIFY EV_FEATURE_OS
281# else
176# define EV_USE_INOTIFY 0 282# define EV_USE_INOTIFY 0
283# endif
177#endif 284#endif
178 285
179#ifndef EV_PID_HASHSIZE 286#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 287# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 288#endif
289
290#ifndef EV_INOTIFY_HASHSIZE
291# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
292#endif
293
294#ifndef EV_USE_EVENTFD
295# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
296# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 297# else
183# define EV_PID_HASHSIZE 16 298# define EV_USE_EVENTFD 0
184# endif
185#endif 299# endif
300#endif
186 301
187#ifndef EV_INOTIFY_HASHSIZE 302#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 304# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 305# else
191# define EV_INOTIFY_HASHSIZE 16 306# define EV_USE_SIGNALFD 0
192# endif
193#endif 307# endif
308#endif
194 309
195/**/ 310#if 0 /* debugging */
311# define EV_VERIFY 3
312# define EV_USE_4HEAP 1
313# define EV_HEAP_CACHE_AT 1
314#endif
315
316#ifndef EV_VERIFY
317# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
318#endif
319
320#ifndef EV_USE_4HEAP
321# define EV_USE_4HEAP EV_FEATURE_DATA
322#endif
323
324#ifndef EV_HEAP_CACHE_AT
325# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
326#endif
327
328/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
329/* which makes programs even slower. might work on other unices, too. */
330#if EV_USE_CLOCK_SYSCALL
331# include <syscall.h>
332# ifdef SYS_clock_gettime
333# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
334# undef EV_USE_MONOTONIC
335# define EV_USE_MONOTONIC 1
336# else
337# undef EV_USE_CLOCK_SYSCALL
338# define EV_USE_CLOCK_SYSCALL 0
339# endif
340#endif
341
342/* this block fixes any misconfiguration where we know we run into trouble otherwise */
343
344#ifdef _AIX
345/* AIX has a completely broken poll.h header */
346# undef EV_USE_POLL
347# define EV_USE_POLL 0
348#endif
196 349
197#ifndef CLOCK_MONOTONIC 350#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 351# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 352# define EV_USE_MONOTONIC 0
200#endif 353#endif
202#ifndef CLOCK_REALTIME 355#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 356# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 357# define EV_USE_REALTIME 0
205#endif 358#endif
206 359
360#if !EV_STAT_ENABLE
361# undef EV_USE_INOTIFY
362# define EV_USE_INOTIFY 0
363#endif
364
365#if !EV_USE_NANOSLEEP
366# ifndef _WIN32
367# include <sys/select.h>
368# endif
369#endif
370
371#if EV_USE_INOTIFY
372# include <sys/utsname.h>
373# include <sys/statfs.h>
374# include <sys/inotify.h>
375/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
376# ifndef IN_DONT_FOLLOW
377# undef EV_USE_INOTIFY
378# define EV_USE_INOTIFY 0
379# endif
380#endif
381
207#if EV_SELECT_IS_WINSOCKET 382#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 383# include <winsock.h>
209#endif 384#endif
210 385
211#if !EV_STAT_ENABLE 386#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 387/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
388# include <stdint.h>
389# ifndef EFD_NONBLOCK
390# define EFD_NONBLOCK O_NONBLOCK
213#endif 391# endif
214 392# ifndef EFD_CLOEXEC
215#if EV_USE_INOTIFY 393# ifdef O_CLOEXEC
216# include <sys/inotify.h> 394# define EFD_CLOEXEC O_CLOEXEC
395# else
396# define EFD_CLOEXEC 02000000
397# endif
217#endif 398# endif
399# ifdef __cplusplus
400extern "C" {
401# endif
402int (eventfd) (unsigned int initval, int flags);
403# ifdef __cplusplus
404}
405# endif
406#endif
407
408#if EV_USE_SIGNALFD
409/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
410# include <stdint.h>
411# ifndef SFD_NONBLOCK
412# define SFD_NONBLOCK O_NONBLOCK
413# endif
414# ifndef SFD_CLOEXEC
415# ifdef O_CLOEXEC
416# define SFD_CLOEXEC O_CLOEXEC
417# else
418# define SFD_CLOEXEC 02000000
419# endif
420# endif
421# ifdef __cplusplus
422extern "C" {
423# endif
424int signalfd (int fd, const sigset_t *mask, int flags);
425
426struct signalfd_siginfo
427{
428 uint32_t ssi_signo;
429 char pad[128 - sizeof (uint32_t)];
430};
431# ifdef __cplusplus
432}
433# endif
434#endif
435
218 436
219/**/ 437/**/
438
439#if EV_VERIFY >= 3
440# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
441#else
442# define EV_FREQUENT_CHECK do { } while (0)
443#endif
444
445/*
446 * This is used to avoid floating point rounding problems.
447 * It is added to ev_rt_now when scheduling periodics
448 * to ensure progress, time-wise, even when rounding
449 * errors are against us.
450 * This value is good at least till the year 4000.
451 * Better solutions welcome.
452 */
453#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 454
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 455#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 456#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 457
225#if __GNUC__ >= 3 458#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 459# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 460# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 461#else
236# define expect(expr,value) (expr) 462# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 463# define noinline
464# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
465# define inline
466# endif
240#endif 467#endif
241 468
242#define expect_false(expr) expect ((expr) != 0, 0) 469#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 470#define expect_true(expr) expect ((expr) != 0, 1)
471#define inline_size static inline
244 472
473#if EV_FEATURE_CODE
474# define inline_speed static inline
475#else
476# define inline_speed static noinline
477#endif
478
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 479#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
480
481#if EV_MINPRI == EV_MAXPRI
482# define ABSPRI(w) (((W)w), 0)
483#else
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 484# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
485#endif
247 486
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 487#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 488#define EMPTY2(a,b) /* used to suppress some warnings */
250 489
251typedef ev_watcher *W; 490typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 491typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 492typedef ev_watcher_time *WT;
254 493
494#define ev_active(w) ((W)(w))->active
495#define ev_at(w) ((WT)(w))->at
496
497#if EV_USE_REALTIME
498/* sig_atomic_t is used to avoid per-thread variables or locking but still */
499/* giving it a reasonably high chance of working on typical architetcures */
500static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
501#endif
502
503#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 504static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
505#endif
506
507#ifndef EV_FD_TO_WIN32_HANDLE
508# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
509#endif
510#ifndef EV_WIN32_HANDLE_TO_FD
511# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
512#endif
513#ifndef EV_WIN32_CLOSE_FD
514# define EV_WIN32_CLOSE_FD(fd) close (fd)
515#endif
256 516
257#ifdef _WIN32 517#ifdef _WIN32
258# include "ev_win32.c" 518# include "ev_win32.c"
259#endif 519#endif
260 520
261/*****************************************************************************/ 521/*****************************************************************************/
262 522
523#if EV_AVOID_STDIO
524static void noinline
525ev_printerr (const char *msg)
526{
527 write (STDERR_FILENO, msg, strlen (msg));
528}
529#endif
530
263static void (*syserr_cb)(const char *msg); 531static void (*syserr_cb)(const char *msg);
264 532
265void 533void
266ev_set_syserr_cb (void (*cb)(const char *msg)) 534ev_set_syserr_cb (void (*cb)(const char *msg))
267{ 535{
268 syserr_cb = cb; 536 syserr_cb = cb;
269} 537}
270 538
271static void noinline 539static void noinline
272syserr (const char *msg) 540ev_syserr (const char *msg)
273{ 541{
274 if (!msg) 542 if (!msg)
275 msg = "(libev) system error"; 543 msg = "(libev) system error";
276 544
277 if (syserr_cb) 545 if (syserr_cb)
278 syserr_cb (msg); 546 syserr_cb (msg);
279 else 547 else
280 { 548 {
549#if EV_AVOID_STDIO
550 const char *err = strerror (errno);
551
552 ev_printerr (msg);
553 ev_printerr (": ");
554 ev_printerr (err);
555 ev_printerr ("\n");
556#else
281 perror (msg); 557 perror (msg);
558#endif
282 abort (); 559 abort ();
283 } 560 }
284} 561}
285 562
563static void *
564ev_realloc_emul (void *ptr, long size)
565{
566#if __GLIBC__
567 return realloc (ptr, size);
568#else
569 /* some systems, notably openbsd and darwin, fail to properly
570 * implement realloc (x, 0) (as required by both ansi c-89 and
571 * the single unix specification, so work around them here.
572 */
573
574 if (size)
575 return realloc (ptr, size);
576
577 free (ptr);
578 return 0;
579#endif
580}
581
286static void *(*alloc)(void *ptr, long size); 582static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 583
288void 584void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 585ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 586{
291 alloc = cb; 587 alloc = cb;
292} 588}
293 589
294inline_speed void * 590inline_speed void *
295ev_realloc (void *ptr, long size) 591ev_realloc (void *ptr, long size)
296{ 592{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 593 ptr = alloc (ptr, size);
298 594
299 if (!ptr && size) 595 if (!ptr && size)
300 { 596 {
597#if EV_AVOID_STDIO
598 ev_printerr ("libev: memory allocation failed, aborting.\n");
599#else
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 600 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
601#endif
302 abort (); 602 abort ();
303 } 603 }
304 604
305 return ptr; 605 return ptr;
306} 606}
308#define ev_malloc(size) ev_realloc (0, (size)) 608#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 609#define ev_free(ptr) ev_realloc ((ptr), 0)
310 610
311/*****************************************************************************/ 611/*****************************************************************************/
312 612
613/* set in reify when reification needed */
614#define EV_ANFD_REIFY 1
615
616/* file descriptor info structure */
313typedef struct 617typedef struct
314{ 618{
315 WL head; 619 WL head;
316 unsigned char events; 620 unsigned char events; /* the events watched for */
621 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
622 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 623 unsigned char unused;
624#if EV_USE_EPOLL
625 unsigned int egen; /* generation counter to counter epoll bugs */
626#endif
318#if EV_SELECT_IS_WINSOCKET 627#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 628 SOCKET handle;
320#endif 629#endif
321} ANFD; 630} ANFD;
322 631
632/* stores the pending event set for a given watcher */
323typedef struct 633typedef struct
324{ 634{
325 W w; 635 W w;
326 int events; 636 int events; /* the pending event set for the given watcher */
327} ANPENDING; 637} ANPENDING;
328 638
329#if EV_USE_INOTIFY 639#if EV_USE_INOTIFY
640/* hash table entry per inotify-id */
330typedef struct 641typedef struct
331{ 642{
332 WL head; 643 WL head;
333} ANFS; 644} ANFS;
645#endif
646
647/* Heap Entry */
648#if EV_HEAP_CACHE_AT
649 /* a heap element */
650 typedef struct {
651 ev_tstamp at;
652 WT w;
653 } ANHE;
654
655 #define ANHE_w(he) (he).w /* access watcher, read-write */
656 #define ANHE_at(he) (he).at /* access cached at, read-only */
657 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
658#else
659 /* a heap element */
660 typedef WT ANHE;
661
662 #define ANHE_w(he) (he)
663 #define ANHE_at(he) (he)->at
664 #define ANHE_at_cache(he)
334#endif 665#endif
335 666
336#if EV_MULTIPLICITY 667#if EV_MULTIPLICITY
337 668
338 struct ev_loop 669 struct ev_loop
357 688
358 static int ev_default_loop_ptr; 689 static int ev_default_loop_ptr;
359 690
360#endif 691#endif
361 692
693#if EV_FEATURE_API
694# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
695# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
696# define EV_INVOKE_PENDING invoke_cb (EV_A)
697#else
698# define EV_RELEASE_CB (void)0
699# define EV_ACQUIRE_CB (void)0
700# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
701#endif
702
703#define EVUNLOOP_RECURSE 0x80
704
362/*****************************************************************************/ 705/*****************************************************************************/
363 706
707#ifndef EV_HAVE_EV_TIME
364ev_tstamp 708ev_tstamp
365ev_time (void) 709ev_time (void)
366{ 710{
367#if EV_USE_REALTIME 711#if EV_USE_REALTIME
712 if (expect_true (have_realtime))
713 {
368 struct timespec ts; 714 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 715 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 716 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 717 }
718#endif
719
372 struct timeval tv; 720 struct timeval tv;
373 gettimeofday (&tv, 0); 721 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 722 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 723}
724#endif
377 725
378ev_tstamp inline_size 726inline_size ev_tstamp
379get_clock (void) 727get_clock (void)
380{ 728{
381#if EV_USE_MONOTONIC 729#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 730 if (expect_true (have_monotonic))
383 { 731 {
396{ 744{
397 return ev_rt_now; 745 return ev_rt_now;
398} 746}
399#endif 747#endif
400 748
401#define array_roundsize(type,n) (((n) | 4) & ~3) 749void
750ev_sleep (ev_tstamp delay)
751{
752 if (delay > 0.)
753 {
754#if EV_USE_NANOSLEEP
755 struct timespec ts;
756
757 ts.tv_sec = (time_t)delay;
758 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
759
760 nanosleep (&ts, 0);
761#elif defined(_WIN32)
762 Sleep ((unsigned long)(delay * 1e3));
763#else
764 struct timeval tv;
765
766 tv.tv_sec = (time_t)delay;
767 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
768
769 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
770 /* something not guaranteed by newer posix versions, but guaranteed */
771 /* by older ones */
772 select (0, 0, 0, 0, &tv);
773#endif
774 }
775}
776
777/*****************************************************************************/
778
779#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
780
781/* find a suitable new size for the given array, */
782/* hopefully by rounding to a ncie-to-malloc size */
783inline_size int
784array_nextsize (int elem, int cur, int cnt)
785{
786 int ncur = cur + 1;
787
788 do
789 ncur <<= 1;
790 while (cnt > ncur);
791
792 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
793 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
794 {
795 ncur *= elem;
796 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
797 ncur = ncur - sizeof (void *) * 4;
798 ncur /= elem;
799 }
800
801 return ncur;
802}
803
804static noinline void *
805array_realloc (int elem, void *base, int *cur, int cnt)
806{
807 *cur = array_nextsize (elem, *cur, cnt);
808 return ev_realloc (base, elem * *cur);
809}
810
811#define array_init_zero(base,count) \
812 memset ((void *)(base), 0, sizeof (*(base)) * (count))
402 813
403#define array_needsize(type,base,cur,cnt,init) \ 814#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 815 if (expect_false ((cnt) > (cur))) \
405 { \ 816 { \
406 int newcnt = cur; \ 817 int ocur_ = (cur); \
407 do \ 818 (base) = (type *)array_realloc \
408 { \ 819 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 820 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 821 }
417 822
823#if 0
418#define array_slim(type,stem) \ 824#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 825 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 826 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 827 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 828 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 829 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 830 }
831#endif
425 832
426#define array_free(stem, idx) \ 833#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 834 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
428 835
429/*****************************************************************************/ 836/*****************************************************************************/
837
838/* dummy callback for pending events */
839static void noinline
840pendingcb (EV_P_ ev_prepare *w, int revents)
841{
842}
430 843
431void noinline 844void noinline
432ev_feed_event (EV_P_ void *w, int revents) 845ev_feed_event (EV_P_ void *w, int revents)
433{ 846{
434 W w_ = (W)w; 847 W w_ = (W)w;
848 int pri = ABSPRI (w_);
435 849
436 if (expect_false (w_->pending)) 850 if (expect_false (w_->pending))
851 pendings [pri][w_->pending - 1].events |= revents;
852 else
437 { 853 {
854 w_->pending = ++pendingcnt [pri];
855 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
856 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 857 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 858 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 859}
447 860
448void inline_size 861inline_speed void
862feed_reverse (EV_P_ W w)
863{
864 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
865 rfeeds [rfeedcnt++] = w;
866}
867
868inline_size void
869feed_reverse_done (EV_P_ int revents)
870{
871 do
872 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
873 while (rfeedcnt);
874}
875
876inline_speed void
449queue_events (EV_P_ W *events, int eventcnt, int type) 877queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 878{
451 int i; 879 int i;
452 880
453 for (i = 0; i < eventcnt; ++i) 881 for (i = 0; i < eventcnt; ++i)
454 ev_feed_event (EV_A_ events [i], type); 882 ev_feed_event (EV_A_ events [i], type);
455} 883}
456 884
457/*****************************************************************************/ 885/*****************************************************************************/
458 886
459void inline_size 887inline_speed void
460anfds_init (ANFD *base, int count)
461{
462 while (count--)
463 {
464 base->head = 0;
465 base->events = EV_NONE;
466 base->reify = 0;
467
468 ++base;
469 }
470}
471
472void inline_speed
473fd_event (EV_P_ int fd, int revents) 888fd_event_nocheck (EV_P_ int fd, int revents)
474{ 889{
475 ANFD *anfd = anfds + fd; 890 ANFD *anfd = anfds + fd;
476 ev_io *w; 891 ev_io *w;
477 892
478 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 893 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
482 if (ev) 897 if (ev)
483 ev_feed_event (EV_A_ (W)w, ev); 898 ev_feed_event (EV_A_ (W)w, ev);
484 } 899 }
485} 900}
486 901
902/* do not submit kernel events for fds that have reify set */
903/* because that means they changed while we were polling for new events */
904inline_speed void
905fd_event (EV_P_ int fd, int revents)
906{
907 ANFD *anfd = anfds + fd;
908
909 if (expect_true (!anfd->reify))
910 fd_event_nocheck (EV_A_ fd, revents);
911}
912
487void 913void
488ev_feed_fd_event (EV_P_ int fd, int revents) 914ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 915{
916 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 917 fd_event_nocheck (EV_A_ fd, revents);
491} 918}
492 919
493void inline_size 920/* make sure the external fd watch events are in-sync */
921/* with the kernel/libev internal state */
922inline_size void
494fd_reify (EV_P) 923fd_reify (EV_P)
495{ 924{
496 int i; 925 int i;
497 926
498 for (i = 0; i < fdchangecnt; ++i) 927 for (i = 0; i < fdchangecnt; ++i)
499 { 928 {
500 int fd = fdchanges [i]; 929 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 930 ANFD *anfd = anfds + fd;
502 ev_io *w; 931 ev_io *w;
503 932
504 int events = 0; 933 unsigned char events = 0;
505 934
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 935 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 936 events |= (unsigned char)w->events;
508 937
509#if EV_SELECT_IS_WINSOCKET 938#if EV_SELECT_IS_WINSOCKET
510 if (events) 939 if (events)
511 { 940 {
512 unsigned long argp; 941 unsigned long arg;
513 anfd->handle = _get_osfhandle (fd); 942 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 943 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
515 } 944 }
516#endif 945#endif
517 946
947 {
948 unsigned char o_events = anfd->events;
949 unsigned char o_reify = anfd->reify;
950
518 anfd->reify = 0; 951 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 952 anfd->events = events;
953
954 if (o_events != events || o_reify & EV__IOFDSET)
955 backend_modify (EV_A_ fd, o_events, events);
956 }
522 } 957 }
523 958
524 fdchangecnt = 0; 959 fdchangecnt = 0;
525} 960}
526 961
527void inline_size 962/* something about the given fd changed */
963inline_size void
528fd_change (EV_P_ int fd) 964fd_change (EV_P_ int fd, int flags)
529{ 965{
530 if (expect_false (anfds [fd].reify)) 966 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 967 anfds [fd].reify |= flags;
534 968
969 if (expect_true (!reify))
970 {
535 ++fdchangecnt; 971 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 972 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 973 fdchanges [fdchangecnt - 1] = fd;
974 }
538} 975}
539 976
540void inline_speed 977/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
978inline_speed void
541fd_kill (EV_P_ int fd) 979fd_kill (EV_P_ int fd)
542{ 980{
543 ev_io *w; 981 ev_io *w;
544 982
545 while ((w = (ev_io *)anfds [fd].head)) 983 while ((w = (ev_io *)anfds [fd].head))
547 ev_io_stop (EV_A_ w); 985 ev_io_stop (EV_A_ w);
548 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 986 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
549 } 987 }
550} 988}
551 989
552int inline_size 990/* check whether the given fd is actually valid, for error recovery */
991inline_size int
553fd_valid (int fd) 992fd_valid (int fd)
554{ 993{
555#ifdef _WIN32 994#ifdef _WIN32
556 return _get_osfhandle (fd) != -1; 995 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
557#else 996#else
558 return fcntl (fd, F_GETFD) != -1; 997 return fcntl (fd, F_GETFD) != -1;
559#endif 998#endif
560} 999}
561 1000
565{ 1004{
566 int fd; 1005 int fd;
567 1006
568 for (fd = 0; fd < anfdmax; ++fd) 1007 for (fd = 0; fd < anfdmax; ++fd)
569 if (anfds [fd].events) 1008 if (anfds [fd].events)
570 if (!fd_valid (fd) == -1 && errno == EBADF) 1009 if (!fd_valid (fd) && errno == EBADF)
571 fd_kill (EV_A_ fd); 1010 fd_kill (EV_A_ fd);
572} 1011}
573 1012
574/* called on ENOMEM in select/poll to kill some fds and retry */ 1013/* called on ENOMEM in select/poll to kill some fds and retry */
575static void noinline 1014static void noinline
579 1018
580 for (fd = anfdmax; fd--; ) 1019 for (fd = anfdmax; fd--; )
581 if (anfds [fd].events) 1020 if (anfds [fd].events)
582 { 1021 {
583 fd_kill (EV_A_ fd); 1022 fd_kill (EV_A_ fd);
584 return; 1023 break;
585 } 1024 }
586} 1025}
587 1026
588/* usually called after fork if backend needs to re-arm all fds from scratch */ 1027/* usually called after fork if backend needs to re-arm all fds from scratch */
589static void noinline 1028static void noinline
593 1032
594 for (fd = 0; fd < anfdmax; ++fd) 1033 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 1034 if (anfds [fd].events)
596 { 1035 {
597 anfds [fd].events = 0; 1036 anfds [fd].events = 0;
598 fd_change (EV_A_ fd); 1037 anfds [fd].emask = 0;
1038 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
599 } 1039 }
600} 1040}
601 1041
602/*****************************************************************************/ 1042/* used to prepare libev internal fd's */
603 1043/* this is not fork-safe */
604void inline_speed 1044inline_speed void
605upheap (WT *heap, int k)
606{
607 WT w = heap [k];
608
609 while (k && heap [k >> 1]->at > w->at)
610 {
611 heap [k] = heap [k >> 1];
612 ((W)heap [k])->active = k + 1;
613 k >>= 1;
614 }
615
616 heap [k] = w;
617 ((W)heap [k])->active = k + 1;
618
619}
620
621void inline_speed
622downheap (WT *heap, int N, int k)
623{
624 WT w = heap [k];
625
626 while (k < (N >> 1))
627 {
628 int j = k << 1;
629
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
631 ++j;
632
633 if (w->at <= heap [j]->at)
634 break;
635
636 heap [k] = heap [j];
637 ((W)heap [k])->active = k + 1;
638 k = j;
639 }
640
641 heap [k] = w;
642 ((W)heap [k])->active = k + 1;
643}
644
645void inline_size
646adjustheap (WT *heap, int N, int k)
647{
648 upheap (heap, k);
649 downheap (heap, N, k);
650}
651
652/*****************************************************************************/
653
654typedef struct
655{
656 WL head;
657 sig_atomic_t volatile gotsig;
658} ANSIG;
659
660static ANSIG *signals;
661static int signalmax;
662
663static int sigpipe [2];
664static sig_atomic_t volatile gotsig;
665static ev_io sigev;
666
667void inline_size
668signals_init (ANSIG *base, int count)
669{
670 while (count--)
671 {
672 base->head = 0;
673 base->gotsig = 0;
674
675 ++base;
676 }
677}
678
679static void
680sighandler (int signum)
681{
682#if _WIN32
683 signal (signum, sighandler);
684#endif
685
686 signals [signum - 1].gotsig = 1;
687
688 if (!gotsig)
689 {
690 int old_errno = errno;
691 gotsig = 1;
692 write (sigpipe [1], &signum, 1);
693 errno = old_errno;
694 }
695}
696
697void noinline
698ev_feed_signal_event (EV_P_ int signum)
699{
700 WL w;
701
702#if EV_MULTIPLICITY
703 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
704#endif
705
706 --signum;
707
708 if (signum < 0 || signum >= signalmax)
709 return;
710
711 signals [signum].gotsig = 0;
712
713 for (w = signals [signum].head; w; w = w->next)
714 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
715}
716
717static void
718sigcb (EV_P_ ev_io *iow, int revents)
719{
720 int signum;
721
722 read (sigpipe [0], &revents, 1);
723 gotsig = 0;
724
725 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1);
728}
729
730void inline_size
731fd_intern (int fd) 1045fd_intern (int fd)
732{ 1046{
733#ifdef _WIN32 1047#ifdef _WIN32
734 int arg = 1; 1048 unsigned long arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1049 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
736#else 1050#else
737 fcntl (fd, F_SETFD, FD_CLOEXEC); 1051 fcntl (fd, F_SETFD, FD_CLOEXEC);
738 fcntl (fd, F_SETFL, O_NONBLOCK); 1052 fcntl (fd, F_SETFL, O_NONBLOCK);
739#endif 1053#endif
740} 1054}
741 1055
1056/*****************************************************************************/
1057
1058/*
1059 * the heap functions want a real array index. array index 0 uis guaranteed to not
1060 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1061 * the branching factor of the d-tree.
1062 */
1063
1064/*
1065 * at the moment we allow libev the luxury of two heaps,
1066 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1067 * which is more cache-efficient.
1068 * the difference is about 5% with 50000+ watchers.
1069 */
1070#if EV_USE_4HEAP
1071
1072#define DHEAP 4
1073#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1074#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1075#define UPHEAP_DONE(p,k) ((p) == (k))
1076
1077/* away from the root */
1078inline_speed void
1079downheap (ANHE *heap, int N, int k)
1080{
1081 ANHE he = heap [k];
1082 ANHE *E = heap + N + HEAP0;
1083
1084 for (;;)
1085 {
1086 ev_tstamp minat;
1087 ANHE *minpos;
1088 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1089
1090 /* find minimum child */
1091 if (expect_true (pos + DHEAP - 1 < E))
1092 {
1093 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1094 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1095 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1096 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1097 }
1098 else if (pos < E)
1099 {
1100 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1101 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1102 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1103 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1104 }
1105 else
1106 break;
1107
1108 if (ANHE_at (he) <= minat)
1109 break;
1110
1111 heap [k] = *minpos;
1112 ev_active (ANHE_w (*minpos)) = k;
1113
1114 k = minpos - heap;
1115 }
1116
1117 heap [k] = he;
1118 ev_active (ANHE_w (he)) = k;
1119}
1120
1121#else /* 4HEAP */
1122
1123#define HEAP0 1
1124#define HPARENT(k) ((k) >> 1)
1125#define UPHEAP_DONE(p,k) (!(p))
1126
1127/* away from the root */
1128inline_speed void
1129downheap (ANHE *heap, int N, int k)
1130{
1131 ANHE he = heap [k];
1132
1133 for (;;)
1134 {
1135 int c = k << 1;
1136
1137 if (c >= N + HEAP0)
1138 break;
1139
1140 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1141 ? 1 : 0;
1142
1143 if (ANHE_at (he) <= ANHE_at (heap [c]))
1144 break;
1145
1146 heap [k] = heap [c];
1147 ev_active (ANHE_w (heap [k])) = k;
1148
1149 k = c;
1150 }
1151
1152 heap [k] = he;
1153 ev_active (ANHE_w (he)) = k;
1154}
1155#endif
1156
1157/* towards the root */
1158inline_speed void
1159upheap (ANHE *heap, int k)
1160{
1161 ANHE he = heap [k];
1162
1163 for (;;)
1164 {
1165 int p = HPARENT (k);
1166
1167 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1168 break;
1169
1170 heap [k] = heap [p];
1171 ev_active (ANHE_w (heap [k])) = k;
1172 k = p;
1173 }
1174
1175 heap [k] = he;
1176 ev_active (ANHE_w (he)) = k;
1177}
1178
1179/* move an element suitably so it is in a correct place */
1180inline_size void
1181adjustheap (ANHE *heap, int N, int k)
1182{
1183 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1184 upheap (heap, k);
1185 else
1186 downheap (heap, N, k);
1187}
1188
1189/* rebuild the heap: this function is used only once and executed rarely */
1190inline_size void
1191reheap (ANHE *heap, int N)
1192{
1193 int i;
1194
1195 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1196 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1197 for (i = 0; i < N; ++i)
1198 upheap (heap, i + HEAP0);
1199}
1200
1201/*****************************************************************************/
1202
1203/* associate signal watchers to a signal signal */
1204typedef struct
1205{
1206 EV_ATOMIC_T pending;
1207#if EV_MULTIPLICITY
1208 EV_P;
1209#endif
1210 WL head;
1211} ANSIG;
1212
1213static ANSIG signals [EV_NSIG - 1];
1214
1215/*****************************************************************************/
1216
1217#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1218
742static void noinline 1219static void noinline
743siginit (EV_P) 1220evpipe_init (EV_P)
744{ 1221{
1222 if (!ev_is_active (&pipe_w))
1223 {
1224# if EV_USE_EVENTFD
1225 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1226 if (evfd < 0 && errno == EINVAL)
1227 evfd = eventfd (0, 0);
1228
1229 if (evfd >= 0)
1230 {
1231 evpipe [0] = -1;
1232 fd_intern (evfd); /* doing it twice doesn't hurt */
1233 ev_io_set (&pipe_w, evfd, EV_READ);
1234 }
1235 else
1236# endif
1237 {
1238 while (pipe (evpipe))
1239 ev_syserr ("(libev) error creating signal/async pipe");
1240
745 fd_intern (sigpipe [0]); 1241 fd_intern (evpipe [0]);
746 fd_intern (sigpipe [1]); 1242 fd_intern (evpipe [1]);
1243 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1244 }
747 1245
748 ev_io_set (&sigev, sigpipe [0], EV_READ);
749 ev_io_start (EV_A_ &sigev); 1246 ev_io_start (EV_A_ &pipe_w);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1247 ev_unref (EV_A); /* watcher should not keep loop alive */
1248 }
1249}
1250
1251inline_size void
1252evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1253{
1254 if (!*flag)
1255 {
1256 int old_errno = errno; /* save errno because write might clobber it */
1257 char dummy;
1258
1259 *flag = 1;
1260
1261#if EV_USE_EVENTFD
1262 if (evfd >= 0)
1263 {
1264 uint64_t counter = 1;
1265 write (evfd, &counter, sizeof (uint64_t));
1266 }
1267 else
1268#endif
1269 write (evpipe [1], &dummy, 1);
1270
1271 errno = old_errno;
1272 }
1273}
1274
1275/* called whenever the libev signal pipe */
1276/* got some events (signal, async) */
1277static void
1278pipecb (EV_P_ ev_io *iow, int revents)
1279{
1280 int i;
1281
1282#if EV_USE_EVENTFD
1283 if (evfd >= 0)
1284 {
1285 uint64_t counter;
1286 read (evfd, &counter, sizeof (uint64_t));
1287 }
1288 else
1289#endif
1290 {
1291 char dummy;
1292 read (evpipe [0], &dummy, 1);
1293 }
1294
1295 if (sig_pending)
1296 {
1297 sig_pending = 0;
1298
1299 for (i = EV_NSIG - 1; i--; )
1300 if (expect_false (signals [i].pending))
1301 ev_feed_signal_event (EV_A_ i + 1);
1302 }
1303
1304#if EV_ASYNC_ENABLE
1305 if (async_pending)
1306 {
1307 async_pending = 0;
1308
1309 for (i = asynccnt; i--; )
1310 if (asyncs [i]->sent)
1311 {
1312 asyncs [i]->sent = 0;
1313 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1314 }
1315 }
1316#endif
751} 1317}
752 1318
753/*****************************************************************************/ 1319/*****************************************************************************/
754 1320
755static ev_child *childs [EV_PID_HASHSIZE]; 1321static void
1322ev_sighandler (int signum)
1323{
1324#if EV_MULTIPLICITY
1325 EV_P = signals [signum - 1].loop;
1326#endif
756 1327
757#ifndef _WIN32 1328#ifdef _WIN32
1329 signal (signum, ev_sighandler);
1330#endif
1331
1332 signals [signum - 1].pending = 1;
1333 evpipe_write (EV_A_ &sig_pending);
1334}
1335
1336void noinline
1337ev_feed_signal_event (EV_P_ int signum)
1338{
1339 WL w;
1340
1341 if (expect_false (signum <= 0 || signum > EV_NSIG))
1342 return;
1343
1344 --signum;
1345
1346#if EV_MULTIPLICITY
1347 /* it is permissible to try to feed a signal to the wrong loop */
1348 /* or, likely more useful, feeding a signal nobody is waiting for */
1349
1350 if (expect_false (signals [signum].loop != EV_A))
1351 return;
1352#endif
1353
1354 signals [signum].pending = 0;
1355
1356 for (w = signals [signum].head; w; w = w->next)
1357 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1358}
1359
1360#if EV_USE_SIGNALFD
1361static void
1362sigfdcb (EV_P_ ev_io *iow, int revents)
1363{
1364 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1365
1366 for (;;)
1367 {
1368 ssize_t res = read (sigfd, si, sizeof (si));
1369
1370 /* not ISO-C, as res might be -1, but works with SuS */
1371 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1372 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1373
1374 if (res < (ssize_t)sizeof (si))
1375 break;
1376 }
1377}
1378#endif
1379
1380#endif
1381
1382/*****************************************************************************/
1383
1384#if EV_CHILD_ENABLE
1385static WL childs [EV_PID_HASHSIZE];
758 1386
759static ev_signal childev; 1387static ev_signal childev;
760 1388
761void inline_speed 1389#ifndef WIFCONTINUED
1390# define WIFCONTINUED(status) 0
1391#endif
1392
1393/* handle a single child status event */
1394inline_speed void
762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1395child_reap (EV_P_ int chain, int pid, int status)
763{ 1396{
764 ev_child *w; 1397 ev_child *w;
1398 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
765 1399
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1400 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1401 {
767 if (w->pid == pid || !w->pid) 1402 if ((w->pid == pid || !w->pid)
1403 && (!traced || (w->flags & 1)))
768 { 1404 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1405 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
770 w->rpid = pid; 1406 w->rpid = pid;
771 w->rstatus = status; 1407 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1408 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 1409 }
1410 }
774} 1411}
775 1412
776#ifndef WCONTINUED 1413#ifndef WCONTINUED
777# define WCONTINUED 0 1414# define WCONTINUED 0
778#endif 1415#endif
779 1416
1417/* called on sigchld etc., calls waitpid */
780static void 1418static void
781childcb (EV_P_ ev_signal *sw, int revents) 1419childcb (EV_P_ ev_signal *sw, int revents)
782{ 1420{
783 int pid, status; 1421 int pid, status;
784 1422
787 if (!WCONTINUED 1425 if (!WCONTINUED
788 || errno != EINVAL 1426 || errno != EINVAL
789 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1427 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
790 return; 1428 return;
791 1429
792 /* make sure we are called again until all childs have been reaped */ 1430 /* make sure we are called again until all children have been reaped */
793 /* we need to do it this way so that the callback gets called before we continue */ 1431 /* we need to do it this way so that the callback gets called before we continue */
794 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1432 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
795 1433
796 child_reap (EV_A_ sw, pid, pid, status); 1434 child_reap (EV_A_ pid, pid, status);
797 if (EV_PID_HASHSIZE > 1) 1435 if ((EV_PID_HASHSIZE) > 1)
798 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1436 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
799} 1437}
800 1438
801#endif 1439#endif
802 1440
803/*****************************************************************************/ 1441/*****************************************************************************/
865 /* kqueue is borked on everything but netbsd apparently */ 1503 /* kqueue is borked on everything but netbsd apparently */
866 /* it usually doesn't work correctly on anything but sockets and pipes */ 1504 /* it usually doesn't work correctly on anything but sockets and pipes */
867 flags &= ~EVBACKEND_KQUEUE; 1505 flags &= ~EVBACKEND_KQUEUE;
868#endif 1506#endif
869#ifdef __APPLE__ 1507#ifdef __APPLE__
870 // flags &= ~EVBACKEND_KQUEUE; for documentation 1508 /* only select works correctly on that "unix-certified" platform */
871 flags &= ~EVBACKEND_POLL; 1509 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1510 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
872#endif 1511#endif
873 1512
874 return flags; 1513 return flags;
875} 1514}
876 1515
877unsigned int 1516unsigned int
878ev_embeddable_backends (void) 1517ev_embeddable_backends (void)
879{ 1518{
880 return EVBACKEND_EPOLL 1519 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 1520
882 | EVBACKEND_PORT; 1521 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1522 /* please fix it and tell me how to detect the fix */
1523 flags &= ~EVBACKEND_EPOLL;
1524
1525 return flags;
883} 1526}
884 1527
885unsigned int 1528unsigned int
886ev_backend (EV_P) 1529ev_backend (EV_P)
887{ 1530{
888 return backend; 1531 return backend;
889} 1532}
890 1533
1534#if EV_FEATURE_API
1535unsigned int
1536ev_loop_count (EV_P)
1537{
1538 return loop_count;
1539}
1540
1541unsigned int
1542ev_loop_depth (EV_P)
1543{
1544 return loop_depth;
1545}
1546
1547void
1548ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1549{
1550 io_blocktime = interval;
1551}
1552
1553void
1554ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1555{
1556 timeout_blocktime = interval;
1557}
1558
1559void
1560ev_set_userdata (EV_P_ void *data)
1561{
1562 userdata = data;
1563}
1564
1565void *
1566ev_userdata (EV_P)
1567{
1568 return userdata;
1569}
1570
1571void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1572{
1573 invoke_cb = invoke_pending_cb;
1574}
1575
1576void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1577{
1578 release_cb = release;
1579 acquire_cb = acquire;
1580}
1581#endif
1582
1583/* initialise a loop structure, must be zero-initialised */
891static void noinline 1584static void noinline
892loop_init (EV_P_ unsigned int flags) 1585loop_init (EV_P_ unsigned int flags)
893{ 1586{
894 if (!backend) 1587 if (!backend)
895 { 1588 {
1589#if EV_USE_REALTIME
1590 if (!have_realtime)
1591 {
1592 struct timespec ts;
1593
1594 if (!clock_gettime (CLOCK_REALTIME, &ts))
1595 have_realtime = 1;
1596 }
1597#endif
1598
896#if EV_USE_MONOTONIC 1599#if EV_USE_MONOTONIC
1600 if (!have_monotonic)
897 { 1601 {
898 struct timespec ts; 1602 struct timespec ts;
1603
899 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1604 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
900 have_monotonic = 1; 1605 have_monotonic = 1;
901 } 1606 }
902#endif 1607#endif
903
904 ev_rt_now = ev_time ();
905 mn_now = get_clock ();
906 now_floor = mn_now;
907 rtmn_diff = ev_rt_now - mn_now;
908 1608
909 /* pid check not overridable via env */ 1609 /* pid check not overridable via env */
910#ifndef _WIN32 1610#ifndef _WIN32
911 if (flags & EVFLAG_FORKCHECK) 1611 if (flags & EVFLAG_FORKCHECK)
912 curpid = getpid (); 1612 curpid = getpid ();
915 if (!(flags & EVFLAG_NOENV) 1615 if (!(flags & EVFLAG_NOENV)
916 && !enable_secure () 1616 && !enable_secure ()
917 && getenv ("LIBEV_FLAGS")) 1617 && getenv ("LIBEV_FLAGS"))
918 flags = atoi (getenv ("LIBEV_FLAGS")); 1618 flags = atoi (getenv ("LIBEV_FLAGS"));
919 1619
1620 ev_rt_now = ev_time ();
1621 mn_now = get_clock ();
1622 now_floor = mn_now;
1623 rtmn_diff = ev_rt_now - mn_now;
1624#if EV_FEATURE_API
1625 invoke_cb = ev_invoke_pending;
1626#endif
1627
1628 io_blocktime = 0.;
1629 timeout_blocktime = 0.;
1630 backend = 0;
1631 backend_fd = -1;
1632 sig_pending = 0;
1633#if EV_ASYNC_ENABLE
1634 async_pending = 0;
1635#endif
1636#if EV_USE_INOTIFY
1637 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1638#endif
1639#if EV_USE_SIGNALFD
1640 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1641#endif
1642
920 if (!(flags & 0x0000ffffUL)) 1643 if (!(flags & 0x0000ffffU))
921 flags |= ev_recommended_backends (); 1644 flags |= ev_recommended_backends ();
922
923 backend = 0;
924 backend_fd = -1;
925#if EV_USE_INOTIFY
926 fs_fd = -2;
927#endif
928 1645
929#if EV_USE_PORT 1646#if EV_USE_PORT
930 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1647 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
931#endif 1648#endif
932#if EV_USE_KQUEUE 1649#if EV_USE_KQUEUE
940#endif 1657#endif
941#if EV_USE_SELECT 1658#if EV_USE_SELECT
942 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1659 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
943#endif 1660#endif
944 1661
1662 ev_prepare_init (&pending_w, pendingcb);
1663
1664#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
945 ev_init (&sigev, sigcb); 1665 ev_init (&pipe_w, pipecb);
946 ev_set_priority (&sigev, EV_MAXPRI); 1666 ev_set_priority (&pipe_w, EV_MAXPRI);
1667#endif
947 } 1668 }
948} 1669}
949 1670
1671/* free up a loop structure */
950static void noinline 1672static void noinline
951loop_destroy (EV_P) 1673loop_destroy (EV_P)
952{ 1674{
953 int i; 1675 int i;
1676
1677 if (ev_is_active (&pipe_w))
1678 {
1679 /*ev_ref (EV_A);*/
1680 /*ev_io_stop (EV_A_ &pipe_w);*/
1681
1682#if EV_USE_EVENTFD
1683 if (evfd >= 0)
1684 close (evfd);
1685#endif
1686
1687 if (evpipe [0] >= 0)
1688 {
1689 EV_WIN32_CLOSE_FD (evpipe [0]);
1690 EV_WIN32_CLOSE_FD (evpipe [1]);
1691 }
1692 }
1693
1694#if EV_USE_SIGNALFD
1695 if (ev_is_active (&sigfd_w))
1696 close (sigfd);
1697#endif
954 1698
955#if EV_USE_INOTIFY 1699#if EV_USE_INOTIFY
956 if (fs_fd >= 0) 1700 if (fs_fd >= 0)
957 close (fs_fd); 1701 close (fs_fd);
958#endif 1702#endif
975#if EV_USE_SELECT 1719#if EV_USE_SELECT
976 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1720 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
977#endif 1721#endif
978 1722
979 for (i = NUMPRI; i--; ) 1723 for (i = NUMPRI; i--; )
1724 {
980 array_free (pending, [i]); 1725 array_free (pending, [i]);
1726#if EV_IDLE_ENABLE
1727 array_free (idle, [i]);
1728#endif
1729 }
1730
1731 ev_free (anfds); anfds = 0; anfdmax = 0;
981 1732
982 /* have to use the microsoft-never-gets-it-right macro */ 1733 /* have to use the microsoft-never-gets-it-right macro */
1734 array_free (rfeed, EMPTY);
983 array_free (fdchange, EMPTY0); 1735 array_free (fdchange, EMPTY);
984 array_free (timer, EMPTY0); 1736 array_free (timer, EMPTY);
985#if EV_PERIODIC_ENABLE 1737#if EV_PERIODIC_ENABLE
986 array_free (periodic, EMPTY0); 1738 array_free (periodic, EMPTY);
987#endif 1739#endif
1740#if EV_FORK_ENABLE
988 array_free (idle, EMPTY0); 1741 array_free (fork, EMPTY);
1742#endif
989 array_free (prepare, EMPTY0); 1743 array_free (prepare, EMPTY);
990 array_free (check, EMPTY0); 1744 array_free (check, EMPTY);
1745#if EV_ASYNC_ENABLE
1746 array_free (async, EMPTY);
1747#endif
991 1748
992 backend = 0; 1749 backend = 0;
993} 1750}
994 1751
1752#if EV_USE_INOTIFY
995void inline_size infy_fork (EV_P); 1753inline_size void infy_fork (EV_P);
1754#endif
996 1755
997void inline_size 1756inline_size void
998loop_fork (EV_P) 1757loop_fork (EV_P)
999{ 1758{
1000#if EV_USE_PORT 1759#if EV_USE_PORT
1001 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1760 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1002#endif 1761#endif
1008#endif 1767#endif
1009#if EV_USE_INOTIFY 1768#if EV_USE_INOTIFY
1010 infy_fork (EV_A); 1769 infy_fork (EV_A);
1011#endif 1770#endif
1012 1771
1013 if (ev_is_active (&sigev)) 1772 if (ev_is_active (&pipe_w))
1014 { 1773 {
1015 /* default loop */ 1774 /* this "locks" the handlers against writing to the pipe */
1775 /* while we modify the fd vars */
1776 sig_pending = 1;
1777#if EV_ASYNC_ENABLE
1778 async_pending = 1;
1779#endif
1016 1780
1017 ev_ref (EV_A); 1781 ev_ref (EV_A);
1018 ev_io_stop (EV_A_ &sigev); 1782 ev_io_stop (EV_A_ &pipe_w);
1019 close (sigpipe [0]);
1020 close (sigpipe [1]);
1021 1783
1022 while (pipe (sigpipe)) 1784#if EV_USE_EVENTFD
1023 syserr ("(libev) error creating pipe"); 1785 if (evfd >= 0)
1786 close (evfd);
1787#endif
1024 1788
1789 if (evpipe [0] >= 0)
1790 {
1791 EV_WIN32_CLOSE_FD (evpipe [0]);
1792 EV_WIN32_CLOSE_FD (evpipe [1]);
1793 }
1794
1795#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1025 siginit (EV_A); 1796 evpipe_init (EV_A);
1797 /* now iterate over everything, in case we missed something */
1798 pipecb (EV_A_ &pipe_w, EV_READ);
1799#endif
1026 } 1800 }
1027 1801
1028 postfork = 0; 1802 postfork = 0;
1029} 1803}
1030 1804
1031#if EV_MULTIPLICITY 1805#if EV_MULTIPLICITY
1806
1032struct ev_loop * 1807struct ev_loop *
1033ev_loop_new (unsigned int flags) 1808ev_loop_new (unsigned int flags)
1034{ 1809{
1035 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1810 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1036 1811
1037 memset (loop, 0, sizeof (struct ev_loop)); 1812 memset (EV_A, 0, sizeof (struct ev_loop));
1038
1039 loop_init (EV_A_ flags); 1813 loop_init (EV_A_ flags);
1040 1814
1041 if (ev_backend (EV_A)) 1815 if (ev_backend (EV_A))
1042 return loop; 1816 return EV_A;
1043 1817
1044 return 0; 1818 return 0;
1045} 1819}
1046 1820
1047void 1821void
1052} 1826}
1053 1827
1054void 1828void
1055ev_loop_fork (EV_P) 1829ev_loop_fork (EV_P)
1056{ 1830{
1057 postfork = 1; 1831 postfork = 1; /* must be in line with ev_default_fork */
1058} 1832}
1833#endif /* multiplicity */
1059 1834
1835#if EV_VERIFY
1836static void noinline
1837verify_watcher (EV_P_ W w)
1838{
1839 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1840
1841 if (w->pending)
1842 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1843}
1844
1845static void noinline
1846verify_heap (EV_P_ ANHE *heap, int N)
1847{
1848 int i;
1849
1850 for (i = HEAP0; i < N + HEAP0; ++i)
1851 {
1852 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1853 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1854 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1855
1856 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1857 }
1858}
1859
1860static void noinline
1861array_verify (EV_P_ W *ws, int cnt)
1862{
1863 while (cnt--)
1864 {
1865 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1866 verify_watcher (EV_A_ ws [cnt]);
1867 }
1868}
1869#endif
1870
1871#if EV_FEATURE_API
1872void
1873ev_loop_verify (EV_P)
1874{
1875#if EV_VERIFY
1876 int i;
1877 WL w;
1878
1879 assert (activecnt >= -1);
1880
1881 assert (fdchangemax >= fdchangecnt);
1882 for (i = 0; i < fdchangecnt; ++i)
1883 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1884
1885 assert (anfdmax >= 0);
1886 for (i = 0; i < anfdmax; ++i)
1887 for (w = anfds [i].head; w; w = w->next)
1888 {
1889 verify_watcher (EV_A_ (W)w);
1890 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1891 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1892 }
1893
1894 assert (timermax >= timercnt);
1895 verify_heap (EV_A_ timers, timercnt);
1896
1897#if EV_PERIODIC_ENABLE
1898 assert (periodicmax >= periodiccnt);
1899 verify_heap (EV_A_ periodics, periodiccnt);
1900#endif
1901
1902 for (i = NUMPRI; i--; )
1903 {
1904 assert (pendingmax [i] >= pendingcnt [i]);
1905#if EV_IDLE_ENABLE
1906 assert (idleall >= 0);
1907 assert (idlemax [i] >= idlecnt [i]);
1908 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1909#endif
1910 }
1911
1912#if EV_FORK_ENABLE
1913 assert (forkmax >= forkcnt);
1914 array_verify (EV_A_ (W *)forks, forkcnt);
1915#endif
1916
1917#if EV_ASYNC_ENABLE
1918 assert (asyncmax >= asynccnt);
1919 array_verify (EV_A_ (W *)asyncs, asynccnt);
1920#endif
1921
1922#if EV_PREPARE_ENABLE
1923 assert (preparemax >= preparecnt);
1924 array_verify (EV_A_ (W *)prepares, preparecnt);
1925#endif
1926
1927#if EV_CHECK_ENABLE
1928 assert (checkmax >= checkcnt);
1929 array_verify (EV_A_ (W *)checks, checkcnt);
1930#endif
1931
1932# if 0
1933#if EV_CHILD_ENABLE
1934 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1935 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1936#endif
1937# endif
1938#endif
1939}
1060#endif 1940#endif
1061 1941
1062#if EV_MULTIPLICITY 1942#if EV_MULTIPLICITY
1063struct ev_loop * 1943struct ev_loop *
1064ev_default_loop_init (unsigned int flags) 1944ev_default_loop_init (unsigned int flags)
1065#else 1945#else
1066int 1946int
1067ev_default_loop (unsigned int flags) 1947ev_default_loop (unsigned int flags)
1068#endif 1948#endif
1069{ 1949{
1070 if (sigpipe [0] == sigpipe [1])
1071 if (pipe (sigpipe))
1072 return 0;
1073
1074 if (!ev_default_loop_ptr) 1950 if (!ev_default_loop_ptr)
1075 { 1951 {
1076#if EV_MULTIPLICITY 1952#if EV_MULTIPLICITY
1077 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1953 EV_P = ev_default_loop_ptr = &default_loop_struct;
1078#else 1954#else
1079 ev_default_loop_ptr = 1; 1955 ev_default_loop_ptr = 1;
1080#endif 1956#endif
1081 1957
1082 loop_init (EV_A_ flags); 1958 loop_init (EV_A_ flags);
1083 1959
1084 if (ev_backend (EV_A)) 1960 if (ev_backend (EV_A))
1085 { 1961 {
1086 siginit (EV_A); 1962#if EV_CHILD_ENABLE
1087
1088#ifndef _WIN32
1089 ev_signal_init (&childev, childcb, SIGCHLD); 1963 ev_signal_init (&childev, childcb, SIGCHLD);
1090 ev_set_priority (&childev, EV_MAXPRI); 1964 ev_set_priority (&childev, EV_MAXPRI);
1091 ev_signal_start (EV_A_ &childev); 1965 ev_signal_start (EV_A_ &childev);
1092 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1966 ev_unref (EV_A); /* child watcher should not keep loop alive */
1093#endif 1967#endif
1101 1975
1102void 1976void
1103ev_default_destroy (void) 1977ev_default_destroy (void)
1104{ 1978{
1105#if EV_MULTIPLICITY 1979#if EV_MULTIPLICITY
1106 struct ev_loop *loop = ev_default_loop_ptr; 1980 EV_P = ev_default_loop_ptr;
1107#endif 1981#endif
1108 1982
1109#ifndef _WIN32 1983 ev_default_loop_ptr = 0;
1984
1985#if EV_CHILD_ENABLE
1110 ev_ref (EV_A); /* child watcher */ 1986 ev_ref (EV_A); /* child watcher */
1111 ev_signal_stop (EV_A_ &childev); 1987 ev_signal_stop (EV_A_ &childev);
1112#endif 1988#endif
1113 1989
1114 ev_ref (EV_A); /* signal watcher */
1115 ev_io_stop (EV_A_ &sigev);
1116
1117 close (sigpipe [0]); sigpipe [0] = 0;
1118 close (sigpipe [1]); sigpipe [1] = 0;
1119
1120 loop_destroy (EV_A); 1990 loop_destroy (EV_A);
1121} 1991}
1122 1992
1123void 1993void
1124ev_default_fork (void) 1994ev_default_fork (void)
1125{ 1995{
1126#if EV_MULTIPLICITY 1996#if EV_MULTIPLICITY
1127 struct ev_loop *loop = ev_default_loop_ptr; 1997 EV_P = ev_default_loop_ptr;
1128#endif 1998#endif
1129 1999
1130 if (backend) 2000 postfork = 1; /* must be in line with ev_loop_fork */
1131 postfork = 1;
1132} 2001}
1133 2002
1134/*****************************************************************************/ 2003/*****************************************************************************/
1135 2004
1136int inline_size 2005void
1137any_pending (EV_P) 2006ev_invoke (EV_P_ void *w, int revents)
2007{
2008 EV_CB_INVOKE ((W)w, revents);
2009}
2010
2011unsigned int
2012ev_pending_count (EV_P)
1138{ 2013{
1139 int pri; 2014 int pri;
2015 unsigned int count = 0;
1140 2016
1141 for (pri = NUMPRI; pri--; ) 2017 for (pri = NUMPRI; pri--; )
1142 if (pendingcnt [pri]) 2018 count += pendingcnt [pri];
1143 return 1;
1144 2019
1145 return 0; 2020 return count;
1146} 2021}
1147 2022
1148void inline_speed 2023void noinline
1149call_pending (EV_P) 2024ev_invoke_pending (EV_P)
1150{ 2025{
1151 int pri; 2026 int pri;
1152 2027
1153 for (pri = NUMPRI; pri--; ) 2028 for (pri = NUMPRI; pri--; )
1154 while (pendingcnt [pri]) 2029 while (pendingcnt [pri])
1155 { 2030 {
1156 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2031 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1157 2032
1158 if (expect_true (p->w))
1159 {
1160 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2033 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2034 /* ^ this is no longer true, as pending_w could be here */
1161 2035
1162 p->w->pending = 0; 2036 p->w->pending = 0;
1163 EV_CB_INVOKE (p->w, p->events); 2037 EV_CB_INVOKE (p->w, p->events);
1164 } 2038 EV_FREQUENT_CHECK;
1165 } 2039 }
1166} 2040}
1167 2041
1168void inline_size 2042#if EV_IDLE_ENABLE
2043/* make idle watchers pending. this handles the "call-idle */
2044/* only when higher priorities are idle" logic */
2045inline_size void
2046idle_reify (EV_P)
2047{
2048 if (expect_false (idleall))
2049 {
2050 int pri;
2051
2052 for (pri = NUMPRI; pri--; )
2053 {
2054 if (pendingcnt [pri])
2055 break;
2056
2057 if (idlecnt [pri])
2058 {
2059 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2060 break;
2061 }
2062 }
2063 }
2064}
2065#endif
2066
2067/* make timers pending */
2068inline_size void
1169timers_reify (EV_P) 2069timers_reify (EV_P)
1170{ 2070{
2071 EV_FREQUENT_CHECK;
2072
1171 while (timercnt && ((WT)timers [0])->at <= mn_now) 2073 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1172 { 2074 {
1173 ev_timer *w = timers [0]; 2075 do
1174
1175 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1176
1177 /* first reschedule or stop timer */
1178 if (w->repeat)
1179 { 2076 {
2077 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2078
2079 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2080
2081 /* first reschedule or stop timer */
2082 if (w->repeat)
2083 {
2084 ev_at (w) += w->repeat;
2085 if (ev_at (w) < mn_now)
2086 ev_at (w) = mn_now;
2087
1180 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2088 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1181 2089
1182 ((WT)w)->at += w->repeat; 2090 ANHE_at_cache (timers [HEAP0]);
1183 if (((WT)w)->at < mn_now)
1184 ((WT)w)->at = mn_now;
1185
1186 downheap ((WT *)timers, timercnt, 0); 2091 downheap (timers, timercnt, HEAP0);
2092 }
2093 else
2094 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2095
2096 EV_FREQUENT_CHECK;
2097 feed_reverse (EV_A_ (W)w);
1187 } 2098 }
1188 else 2099 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1189 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1190 2100
1191 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2101 feed_reverse_done (EV_A_ EV_TIMEOUT);
1192 } 2102 }
1193} 2103}
1194 2104
1195#if EV_PERIODIC_ENABLE 2105#if EV_PERIODIC_ENABLE
1196void inline_size 2106/* make periodics pending */
2107inline_size void
1197periodics_reify (EV_P) 2108periodics_reify (EV_P)
1198{ 2109{
2110 EV_FREQUENT_CHECK;
2111
1199 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2112 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1200 { 2113 {
1201 ev_periodic *w = periodics [0]; 2114 int feed_count = 0;
1202 2115
1203 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2116 do
1204
1205 /* first reschedule or stop timer */
1206 if (w->reschedule_cb)
1207 { 2117 {
2118 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2119
2120 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2121
2122 /* first reschedule or stop timer */
2123 if (w->reschedule_cb)
2124 {
1208 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2125 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2126
1209 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2127 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2128
2129 ANHE_at_cache (periodics [HEAP0]);
1210 downheap ((WT *)periodics, periodiccnt, 0); 2130 downheap (periodics, periodiccnt, HEAP0);
2131 }
2132 else if (w->interval)
2133 {
2134 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2135 /* if next trigger time is not sufficiently in the future, put it there */
2136 /* this might happen because of floating point inexactness */
2137 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2138 {
2139 ev_at (w) += w->interval;
2140
2141 /* if interval is unreasonably low we might still have a time in the past */
2142 /* so correct this. this will make the periodic very inexact, but the user */
2143 /* has effectively asked to get triggered more often than possible */
2144 if (ev_at (w) < ev_rt_now)
2145 ev_at (w) = ev_rt_now;
2146 }
2147
2148 ANHE_at_cache (periodics [HEAP0]);
2149 downheap (periodics, periodiccnt, HEAP0);
2150 }
2151 else
2152 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2153
2154 EV_FREQUENT_CHECK;
2155 feed_reverse (EV_A_ (W)w);
1211 } 2156 }
1212 else if (w->interval) 2157 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1213 {
1214 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1215 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1216 downheap ((WT *)periodics, periodiccnt, 0);
1217 }
1218 else
1219 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1220 2158
1221 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2159 feed_reverse_done (EV_A_ EV_PERIODIC);
1222 } 2160 }
1223} 2161}
1224 2162
2163/* simply recalculate all periodics */
2164/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1225static void noinline 2165static void noinline
1226periodics_reschedule (EV_P) 2166periodics_reschedule (EV_P)
1227{ 2167{
1228 int i; 2168 int i;
1229 2169
1230 /* adjust periodics after time jump */ 2170 /* adjust periodics after time jump */
1231 for (i = 0; i < periodiccnt; ++i) 2171 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1232 { 2172 {
1233 ev_periodic *w = periodics [i]; 2173 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1234 2174
1235 if (w->reschedule_cb) 2175 if (w->reschedule_cb)
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2176 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1237 else if (w->interval) 2177 else if (w->interval)
1238 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2178 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2179
2180 ANHE_at_cache (periodics [i]);
2181 }
2182
2183 reheap (periodics, periodiccnt);
2184}
2185#endif
2186
2187/* adjust all timers by a given offset */
2188static void noinline
2189timers_reschedule (EV_P_ ev_tstamp adjust)
2190{
2191 int i;
2192
2193 for (i = 0; i < timercnt; ++i)
1239 } 2194 {
1240 2195 ANHE *he = timers + i + HEAP0;
1241 /* now rebuild the heap */ 2196 ANHE_w (*he)->at += adjust;
1242 for (i = periodiccnt >> 1; i--; ) 2197 ANHE_at_cache (*he);
1243 downheap ((WT *)periodics, periodiccnt, i); 2198 }
1244} 2199}
1245#endif
1246 2200
1247int inline_size 2201/* fetch new monotonic and realtime times from the kernel */
1248time_update_monotonic (EV_P) 2202/* also detect if there was a timejump, and act accordingly */
2203inline_speed void
2204time_update (EV_P_ ev_tstamp max_block)
1249{ 2205{
2206#if EV_USE_MONOTONIC
2207 if (expect_true (have_monotonic))
2208 {
2209 int i;
2210 ev_tstamp odiff = rtmn_diff;
2211
1250 mn_now = get_clock (); 2212 mn_now = get_clock ();
1251 2213
2214 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2215 /* interpolate in the meantime */
1252 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2216 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1253 { 2217 {
1254 ev_rt_now = rtmn_diff + mn_now; 2218 ev_rt_now = rtmn_diff + mn_now;
1255 return 0; 2219 return;
1256 } 2220 }
1257 else 2221
1258 {
1259 now_floor = mn_now; 2222 now_floor = mn_now;
1260 ev_rt_now = ev_time (); 2223 ev_rt_now = ev_time ();
1261 return 1;
1262 }
1263}
1264 2224
1265void inline_size 2225 /* loop a few times, before making important decisions.
1266time_update (EV_P) 2226 * on the choice of "4": one iteration isn't enough,
1267{ 2227 * in case we get preempted during the calls to
1268 int i; 2228 * ev_time and get_clock. a second call is almost guaranteed
1269 2229 * to succeed in that case, though. and looping a few more times
1270#if EV_USE_MONOTONIC 2230 * doesn't hurt either as we only do this on time-jumps or
1271 if (expect_true (have_monotonic)) 2231 * in the unlikely event of having been preempted here.
1272 { 2232 */
1273 if (time_update_monotonic (EV_A)) 2233 for (i = 4; --i; )
1274 { 2234 {
1275 ev_tstamp odiff = rtmn_diff;
1276
1277 /* loop a few times, before making important decisions.
1278 * on the choice of "4": one iteration isn't enough,
1279 * in case we get preempted during the calls to
1280 * ev_time and get_clock. a second call is almost guaranteed
1281 * to succeed in that case, though. and looping a few more times
1282 * doesn't hurt either as we only do this on time-jumps or
1283 * in the unlikely event of having been preempted here.
1284 */
1285 for (i = 4; --i; )
1286 {
1287 rtmn_diff = ev_rt_now - mn_now; 2235 rtmn_diff = ev_rt_now - mn_now;
1288 2236
1289 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2237 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1290 return; /* all is well */ 2238 return; /* all is well */
1291 2239
1292 ev_rt_now = ev_time (); 2240 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 2241 mn_now = get_clock ();
1294 now_floor = mn_now; 2242 now_floor = mn_now;
1295 } 2243 }
1296 2244
2245 /* no timer adjustment, as the monotonic clock doesn't jump */
2246 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1297# if EV_PERIODIC_ENABLE 2247# if EV_PERIODIC_ENABLE
1298 periodics_reschedule (EV_A); 2248 periodics_reschedule (EV_A);
1299# endif 2249# endif
1300 /* no timer adjustment, as the monotonic clock doesn't jump */
1301 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1302 }
1303 } 2250 }
1304 else 2251 else
1305#endif 2252#endif
1306 { 2253 {
1307 ev_rt_now = ev_time (); 2254 ev_rt_now = ev_time ();
1308 2255
1309 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2256 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1310 { 2257 {
2258 /* adjust timers. this is easy, as the offset is the same for all of them */
2259 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1311#if EV_PERIODIC_ENABLE 2260#if EV_PERIODIC_ENABLE
1312 periodics_reschedule (EV_A); 2261 periodics_reschedule (EV_A);
1313#endif 2262#endif
1314
1315 /* adjust timers. this is easy, as the offset is the same for all of them */
1316 for (i = 0; i < timercnt; ++i)
1317 ((WT)timers [i])->at += ev_rt_now - mn_now;
1318 } 2263 }
1319 2264
1320 mn_now = ev_rt_now; 2265 mn_now = ev_rt_now;
1321 } 2266 }
1322} 2267}
1323 2268
1324void 2269void
1325ev_ref (EV_P)
1326{
1327 ++activecnt;
1328}
1329
1330void
1331ev_unref (EV_P)
1332{
1333 --activecnt;
1334}
1335
1336static int loop_done;
1337
1338void
1339ev_loop (EV_P_ int flags) 2270ev_loop (EV_P_ int flags)
1340{ 2271{
1341 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2272#if EV_FEATURE_API
1342 ? EVUNLOOP_ONE 2273 ++loop_depth;
1343 : EVUNLOOP_CANCEL; 2274#endif
1344 2275
2276 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2277
2278 loop_done = EVUNLOOP_CANCEL;
2279
1345 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2280 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1346 2281
1347 while (expect_false (!activecnt)) 2282 do
1348 { 2283 {
2284#if EV_VERIFY >= 2
2285 ev_loop_verify (EV_A);
2286#endif
2287
1349#ifndef _WIN32 2288#ifndef _WIN32
1350 if (expect_false (curpid)) /* penalise the forking check even more */ 2289 if (expect_false (curpid)) /* penalise the forking check even more */
1351 if (expect_false (getpid () != curpid)) 2290 if (expect_false (getpid () != curpid))
1352 { 2291 {
1353 curpid = getpid (); 2292 curpid = getpid ();
1359 /* we might have forked, so queue fork handlers */ 2298 /* we might have forked, so queue fork handlers */
1360 if (expect_false (postfork)) 2299 if (expect_false (postfork))
1361 if (forkcnt) 2300 if (forkcnt)
1362 { 2301 {
1363 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2302 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1364 call_pending (EV_A); 2303 EV_INVOKE_PENDING;
1365 } 2304 }
1366#endif 2305#endif
1367 2306
2307#if EV_PREPARE_ENABLE
1368 /* queue check watchers (and execute them) */ 2308 /* queue prepare watchers (and execute them) */
1369 if (expect_false (preparecnt)) 2309 if (expect_false (preparecnt))
1370 { 2310 {
1371 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2311 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1372 call_pending (EV_A); 2312 EV_INVOKE_PENDING;
1373 } 2313 }
2314#endif
1374 2315
1375 if (expect_false (!activecnt)) 2316 if (expect_false (loop_done))
1376 break; 2317 break;
1377 2318
1378 /* we might have forked, so reify kernel state if necessary */ 2319 /* we might have forked, so reify kernel state if necessary */
1379 if (expect_false (postfork)) 2320 if (expect_false (postfork))
1380 loop_fork (EV_A); 2321 loop_fork (EV_A);
1382 /* update fd-related kernel structures */ 2323 /* update fd-related kernel structures */
1383 fd_reify (EV_A); 2324 fd_reify (EV_A);
1384 2325
1385 /* calculate blocking time */ 2326 /* calculate blocking time */
1386 { 2327 {
1387 ev_tstamp block; 2328 ev_tstamp waittime = 0.;
2329 ev_tstamp sleeptime = 0.;
1388 2330
1389 if (expect_false (flags & EVLOOP_NONBLOCK || idlecnt || !activecnt)) 2331 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1390 block = 0.; /* do not block at all */
1391 else
1392 { 2332 {
2333 /* remember old timestamp for io_blocktime calculation */
2334 ev_tstamp prev_mn_now = mn_now;
2335
1393 /* update time to cancel out callback processing overhead */ 2336 /* update time to cancel out callback processing overhead */
1394#if EV_USE_MONOTONIC
1395 if (expect_true (have_monotonic))
1396 time_update_monotonic (EV_A); 2337 time_update (EV_A_ 1e100);
1397 else
1398#endif
1399 {
1400 ev_rt_now = ev_time ();
1401 mn_now = ev_rt_now;
1402 }
1403 2338
1404 block = MAX_BLOCKTIME; 2339 waittime = MAX_BLOCKTIME;
1405 2340
1406 if (timercnt) 2341 if (timercnt)
1407 { 2342 {
1408 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2343 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1409 if (block > to) block = to; 2344 if (waittime > to) waittime = to;
1410 } 2345 }
1411 2346
1412#if EV_PERIODIC_ENABLE 2347#if EV_PERIODIC_ENABLE
1413 if (periodiccnt) 2348 if (periodiccnt)
1414 { 2349 {
1415 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2350 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1416 if (block > to) block = to; 2351 if (waittime > to) waittime = to;
1417 } 2352 }
1418#endif 2353#endif
1419 2354
2355 /* don't let timeouts decrease the waittime below timeout_blocktime */
2356 if (expect_false (waittime < timeout_blocktime))
2357 waittime = timeout_blocktime;
2358
2359 /* extra check because io_blocktime is commonly 0 */
1420 if (expect_false (block < 0.)) block = 0.; 2360 if (expect_false (io_blocktime))
2361 {
2362 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2363
2364 if (sleeptime > waittime - backend_fudge)
2365 sleeptime = waittime - backend_fudge;
2366
2367 if (expect_true (sleeptime > 0.))
2368 {
2369 ev_sleep (sleeptime);
2370 waittime -= sleeptime;
2371 }
2372 }
1421 } 2373 }
1422 2374
2375#if EV_FEATURE_API
2376 ++loop_count;
2377#endif
2378 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1423 backend_poll (EV_A_ block); 2379 backend_poll (EV_A_ waittime);
2380 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2381
2382 /* update ev_rt_now, do magic */
2383 time_update (EV_A_ waittime + sleeptime);
1424 } 2384 }
1425
1426 /* update ev_rt_now, do magic */
1427 time_update (EV_A);
1428 2385
1429 /* queue pending timers and reschedule them */ 2386 /* queue pending timers and reschedule them */
1430 timers_reify (EV_A); /* relative timers called last */ 2387 timers_reify (EV_A); /* relative timers called last */
1431#if EV_PERIODIC_ENABLE 2388#if EV_PERIODIC_ENABLE
1432 periodics_reify (EV_A); /* absolute timers called first */ 2389 periodics_reify (EV_A); /* absolute timers called first */
1433#endif 2390#endif
1434 2391
2392#if EV_IDLE_ENABLE
1435 /* queue idle watchers unless other events are pending */ 2393 /* queue idle watchers unless other events are pending */
1436 if (idlecnt && !any_pending (EV_A)) 2394 idle_reify (EV_A);
1437 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2395#endif
1438 2396
2397#if EV_CHECK_ENABLE
1439 /* queue check watchers, to be executed first */ 2398 /* queue check watchers, to be executed first */
1440 if (expect_false (checkcnt)) 2399 if (expect_false (checkcnt))
1441 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2400 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2401#endif
1442 2402
1443 call_pending (EV_A); 2403 EV_INVOKE_PENDING;
1444
1445 if (expect_false (loop_done))
1446 break;
1447 } 2404 }
2405 while (expect_true (
2406 activecnt
2407 && !loop_done
2408 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2409 ));
1448 2410
1449 if (loop_done == EVUNLOOP_ONE) 2411 if (loop_done == EVUNLOOP_ONE)
1450 loop_done = EVUNLOOP_CANCEL; 2412 loop_done = EVUNLOOP_CANCEL;
2413
2414#if EV_FEATURE_API
2415 --loop_depth;
2416#endif
1451} 2417}
1452 2418
1453void 2419void
1454ev_unloop (EV_P_ int how) 2420ev_unloop (EV_P_ int how)
1455{ 2421{
1456 loop_done = how; 2422 loop_done = how;
1457} 2423}
1458 2424
2425void
2426ev_ref (EV_P)
2427{
2428 ++activecnt;
2429}
2430
2431void
2432ev_unref (EV_P)
2433{
2434 --activecnt;
2435}
2436
2437void
2438ev_now_update (EV_P)
2439{
2440 time_update (EV_A_ 1e100);
2441}
2442
2443void
2444ev_suspend (EV_P)
2445{
2446 ev_now_update (EV_A);
2447}
2448
2449void
2450ev_resume (EV_P)
2451{
2452 ev_tstamp mn_prev = mn_now;
2453
2454 ev_now_update (EV_A);
2455 timers_reschedule (EV_A_ mn_now - mn_prev);
2456#if EV_PERIODIC_ENABLE
2457 /* TODO: really do this? */
2458 periodics_reschedule (EV_A);
2459#endif
2460}
2461
1459/*****************************************************************************/ 2462/*****************************************************************************/
2463/* singly-linked list management, used when the expected list length is short */
1460 2464
1461void inline_size 2465inline_size void
1462wlist_add (WL *head, WL elem) 2466wlist_add (WL *head, WL elem)
1463{ 2467{
1464 elem->next = *head; 2468 elem->next = *head;
1465 *head = elem; 2469 *head = elem;
1466} 2470}
1467 2471
1468void inline_size 2472inline_size void
1469wlist_del (WL *head, WL elem) 2473wlist_del (WL *head, WL elem)
1470{ 2474{
1471 while (*head) 2475 while (*head)
1472 { 2476 {
1473 if (*head == elem) 2477 if (expect_true (*head == elem))
1474 { 2478 {
1475 *head = elem->next; 2479 *head = elem->next;
1476 return; 2480 break;
1477 } 2481 }
1478 2482
1479 head = &(*head)->next; 2483 head = &(*head)->next;
1480 } 2484 }
1481} 2485}
1482 2486
1483void inline_speed 2487/* internal, faster, version of ev_clear_pending */
2488inline_speed void
1484ev_clear_pending (EV_P_ W w) 2489clear_pending (EV_P_ W w)
1485{ 2490{
1486 if (w->pending) 2491 if (w->pending)
1487 { 2492 {
1488 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2493 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1489 w->pending = 0; 2494 w->pending = 0;
1490 } 2495 }
1491} 2496}
1492 2497
1493void inline_speed 2498int
2499ev_clear_pending (EV_P_ void *w)
2500{
2501 W w_ = (W)w;
2502 int pending = w_->pending;
2503
2504 if (expect_true (pending))
2505 {
2506 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2507 p->w = (W)&pending_w;
2508 w_->pending = 0;
2509 return p->events;
2510 }
2511 else
2512 return 0;
2513}
2514
2515inline_size void
2516pri_adjust (EV_P_ W w)
2517{
2518 int pri = ev_priority (w);
2519 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2520 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2521 ev_set_priority (w, pri);
2522}
2523
2524inline_speed void
1494ev_start (EV_P_ W w, int active) 2525ev_start (EV_P_ W w, int active)
1495{ 2526{
1496 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2527 pri_adjust (EV_A_ w);
1497 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1498
1499 w->active = active; 2528 w->active = active;
1500 ev_ref (EV_A); 2529 ev_ref (EV_A);
1501} 2530}
1502 2531
1503void inline_size 2532inline_size void
1504ev_stop (EV_P_ W w) 2533ev_stop (EV_P_ W w)
1505{ 2534{
1506 ev_unref (EV_A); 2535 ev_unref (EV_A);
1507 w->active = 0; 2536 w->active = 0;
1508} 2537}
1509 2538
1510/*****************************************************************************/ 2539/*****************************************************************************/
1511 2540
1512void 2541void noinline
1513ev_io_start (EV_P_ ev_io *w) 2542ev_io_start (EV_P_ ev_io *w)
1514{ 2543{
1515 int fd = w->fd; 2544 int fd = w->fd;
1516 2545
1517 if (expect_false (ev_is_active (w))) 2546 if (expect_false (ev_is_active (w)))
1518 return; 2547 return;
1519 2548
1520 assert (("ev_io_start called with negative fd", fd >= 0)); 2549 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2550 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2551
2552 EV_FREQUENT_CHECK;
1521 2553
1522 ev_start (EV_A_ (W)w, 1); 2554 ev_start (EV_A_ (W)w, 1);
1523 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2555 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1524 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2556 wlist_add (&anfds[fd].head, (WL)w);
1525 2557
1526 fd_change (EV_A_ fd); 2558 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1527} 2559 w->events &= ~EV__IOFDSET;
1528 2560
1529void 2561 EV_FREQUENT_CHECK;
2562}
2563
2564void noinline
1530ev_io_stop (EV_P_ ev_io *w) 2565ev_io_stop (EV_P_ ev_io *w)
1531{ 2566{
1532 ev_clear_pending (EV_A_ (W)w); 2567 clear_pending (EV_A_ (W)w);
1533 if (expect_false (!ev_is_active (w))) 2568 if (expect_false (!ev_is_active (w)))
1534 return; 2569 return;
1535 2570
1536 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2571 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1537 2572
2573 EV_FREQUENT_CHECK;
2574
1538 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2575 wlist_del (&anfds[w->fd].head, (WL)w);
1539 ev_stop (EV_A_ (W)w); 2576 ev_stop (EV_A_ (W)w);
1540 2577
1541 fd_change (EV_A_ w->fd); 2578 fd_change (EV_A_ w->fd, 1);
1542}
1543 2579
1544void 2580 EV_FREQUENT_CHECK;
2581}
2582
2583void noinline
1545ev_timer_start (EV_P_ ev_timer *w) 2584ev_timer_start (EV_P_ ev_timer *w)
1546{ 2585{
1547 if (expect_false (ev_is_active (w))) 2586 if (expect_false (ev_is_active (w)))
1548 return; 2587 return;
1549 2588
1550 ((WT)w)->at += mn_now; 2589 ev_at (w) += mn_now;
1551 2590
1552 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2591 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1553 2592
2593 EV_FREQUENT_CHECK;
2594
2595 ++timercnt;
1554 ev_start (EV_A_ (W)w, ++timercnt); 2596 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1555 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2597 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1556 timers [timercnt - 1] = w; 2598 ANHE_w (timers [ev_active (w)]) = (WT)w;
1557 upheap ((WT *)timers, timercnt - 1); 2599 ANHE_at_cache (timers [ev_active (w)]);
2600 upheap (timers, ev_active (w));
1558 2601
2602 EV_FREQUENT_CHECK;
2603
1559 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2604 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1560} 2605}
1561 2606
1562void 2607void noinline
1563ev_timer_stop (EV_P_ ev_timer *w) 2608ev_timer_stop (EV_P_ ev_timer *w)
1564{ 2609{
1565 ev_clear_pending (EV_A_ (W)w); 2610 clear_pending (EV_A_ (W)w);
1566 if (expect_false (!ev_is_active (w))) 2611 if (expect_false (!ev_is_active (w)))
1567 return; 2612 return;
1568 2613
1569 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2614 EV_FREQUENT_CHECK;
1570 2615
1571 { 2616 {
1572 int active = ((W)w)->active; 2617 int active = ev_active (w);
1573 2618
2619 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2620
2621 --timercnt;
2622
1574 if (expect_true (--active < --timercnt)) 2623 if (expect_true (active < timercnt + HEAP0))
1575 { 2624 {
1576 timers [active] = timers [timercnt]; 2625 timers [active] = timers [timercnt + HEAP0];
1577 adjustheap ((WT *)timers, timercnt, active); 2626 adjustheap (timers, timercnt, active);
1578 } 2627 }
1579 } 2628 }
1580 2629
1581 ((WT)w)->at -= mn_now; 2630 ev_at (w) -= mn_now;
1582 2631
1583 ev_stop (EV_A_ (W)w); 2632 ev_stop (EV_A_ (W)w);
1584}
1585 2633
1586void 2634 EV_FREQUENT_CHECK;
2635}
2636
2637void noinline
1587ev_timer_again (EV_P_ ev_timer *w) 2638ev_timer_again (EV_P_ ev_timer *w)
1588{ 2639{
2640 EV_FREQUENT_CHECK;
2641
1589 if (ev_is_active (w)) 2642 if (ev_is_active (w))
1590 { 2643 {
1591 if (w->repeat) 2644 if (w->repeat)
1592 { 2645 {
1593 ((WT)w)->at = mn_now + w->repeat; 2646 ev_at (w) = mn_now + w->repeat;
2647 ANHE_at_cache (timers [ev_active (w)]);
1594 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2648 adjustheap (timers, timercnt, ev_active (w));
1595 } 2649 }
1596 else 2650 else
1597 ev_timer_stop (EV_A_ w); 2651 ev_timer_stop (EV_A_ w);
1598 } 2652 }
1599 else if (w->repeat) 2653 else if (w->repeat)
1600 { 2654 {
1601 w->at = w->repeat; 2655 ev_at (w) = w->repeat;
1602 ev_timer_start (EV_A_ w); 2656 ev_timer_start (EV_A_ w);
1603 } 2657 }
2658
2659 EV_FREQUENT_CHECK;
2660}
2661
2662ev_tstamp
2663ev_timer_remaining (EV_P_ ev_timer *w)
2664{
2665 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1604} 2666}
1605 2667
1606#if EV_PERIODIC_ENABLE 2668#if EV_PERIODIC_ENABLE
1607void 2669void noinline
1608ev_periodic_start (EV_P_ ev_periodic *w) 2670ev_periodic_start (EV_P_ ev_periodic *w)
1609{ 2671{
1610 if (expect_false (ev_is_active (w))) 2672 if (expect_false (ev_is_active (w)))
1611 return; 2673 return;
1612 2674
1613 if (w->reschedule_cb) 2675 if (w->reschedule_cb)
1614 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2676 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1615 else if (w->interval) 2677 else if (w->interval)
1616 { 2678 {
1617 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2679 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1618 /* this formula differs from the one in periodic_reify because we do not always round up */ 2680 /* this formula differs from the one in periodic_reify because we do not always round up */
1619 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2681 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1620 } 2682 }
2683 else
2684 ev_at (w) = w->offset;
1621 2685
2686 EV_FREQUENT_CHECK;
2687
2688 ++periodiccnt;
1622 ev_start (EV_A_ (W)w, ++periodiccnt); 2689 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1623 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2690 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1624 periodics [periodiccnt - 1] = w; 2691 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1625 upheap ((WT *)periodics, periodiccnt - 1); 2692 ANHE_at_cache (periodics [ev_active (w)]);
2693 upheap (periodics, ev_active (w));
1626 2694
2695 EV_FREQUENT_CHECK;
2696
1627 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2697 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1628} 2698}
1629 2699
1630void 2700void noinline
1631ev_periodic_stop (EV_P_ ev_periodic *w) 2701ev_periodic_stop (EV_P_ ev_periodic *w)
1632{ 2702{
1633 ev_clear_pending (EV_A_ (W)w); 2703 clear_pending (EV_A_ (W)w);
1634 if (expect_false (!ev_is_active (w))) 2704 if (expect_false (!ev_is_active (w)))
1635 return; 2705 return;
1636 2706
1637 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2707 EV_FREQUENT_CHECK;
1638 2708
1639 { 2709 {
1640 int active = ((W)w)->active; 2710 int active = ev_active (w);
1641 2711
2712 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2713
2714 --periodiccnt;
2715
1642 if (expect_true (--active < --periodiccnt)) 2716 if (expect_true (active < periodiccnt + HEAP0))
1643 { 2717 {
1644 periodics [active] = periodics [periodiccnt]; 2718 periodics [active] = periodics [periodiccnt + HEAP0];
1645 adjustheap ((WT *)periodics, periodiccnt, active); 2719 adjustheap (periodics, periodiccnt, active);
1646 } 2720 }
1647 } 2721 }
1648 2722
1649 ev_stop (EV_A_ (W)w); 2723 ev_stop (EV_A_ (W)w);
1650}
1651 2724
1652void 2725 EV_FREQUENT_CHECK;
2726}
2727
2728void noinline
1653ev_periodic_again (EV_P_ ev_periodic *w) 2729ev_periodic_again (EV_P_ ev_periodic *w)
1654{ 2730{
1655 /* TODO: use adjustheap and recalculation */ 2731 /* TODO: use adjustheap and recalculation */
1656 ev_periodic_stop (EV_A_ w); 2732 ev_periodic_stop (EV_A_ w);
1657 ev_periodic_start (EV_A_ w); 2733 ev_periodic_start (EV_A_ w);
1660 2736
1661#ifndef SA_RESTART 2737#ifndef SA_RESTART
1662# define SA_RESTART 0 2738# define SA_RESTART 0
1663#endif 2739#endif
1664 2740
1665void 2741#if EV_SIGNAL_ENABLE
2742
2743void noinline
1666ev_signal_start (EV_P_ ev_signal *w) 2744ev_signal_start (EV_P_ ev_signal *w)
1667{ 2745{
1668#if EV_MULTIPLICITY
1669 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1670#endif
1671 if (expect_false (ev_is_active (w))) 2746 if (expect_false (ev_is_active (w)))
1672 return; 2747 return;
1673 2748
1674 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2749 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2750
2751#if EV_MULTIPLICITY
2752 assert (("libev: a signal must not be attached to two different loops",
2753 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2754
2755 signals [w->signum - 1].loop = EV_A;
2756#endif
2757
2758 EV_FREQUENT_CHECK;
2759
2760#if EV_USE_SIGNALFD
2761 if (sigfd == -2)
2762 {
2763 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2764 if (sigfd < 0 && errno == EINVAL)
2765 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2766
2767 if (sigfd >= 0)
2768 {
2769 fd_intern (sigfd); /* doing it twice will not hurt */
2770
2771 sigemptyset (&sigfd_set);
2772
2773 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2774 ev_set_priority (&sigfd_w, EV_MAXPRI);
2775 ev_io_start (EV_A_ &sigfd_w);
2776 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2777 }
2778 }
2779
2780 if (sigfd >= 0)
2781 {
2782 /* TODO: check .head */
2783 sigaddset (&sigfd_set, w->signum);
2784 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2785
2786 signalfd (sigfd, &sigfd_set, 0);
2787 }
2788#endif
1675 2789
1676 ev_start (EV_A_ (W)w, 1); 2790 ev_start (EV_A_ (W)w, 1);
1677 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1678 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2791 wlist_add (&signals [w->signum - 1].head, (WL)w);
1679 2792
1680 if (!((WL)w)->next) 2793 if (!((WL)w)->next)
2794# if EV_USE_SIGNALFD
2795 if (sigfd < 0) /*TODO*/
2796# endif
1681 { 2797 {
1682#if _WIN32 2798# ifdef _WIN32
2799 evpipe_init (EV_A);
2800
1683 signal (w->signum, sighandler); 2801 signal (w->signum, ev_sighandler);
1684#else 2802# else
1685 struct sigaction sa; 2803 struct sigaction sa;
2804
2805 evpipe_init (EV_A);
2806
1686 sa.sa_handler = sighandler; 2807 sa.sa_handler = ev_sighandler;
1687 sigfillset (&sa.sa_mask); 2808 sigfillset (&sa.sa_mask);
1688 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2809 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1689 sigaction (w->signum, &sa, 0); 2810 sigaction (w->signum, &sa, 0);
2811
2812 sigemptyset (&sa.sa_mask);
2813 sigaddset (&sa.sa_mask, w->signum);
2814 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1690#endif 2815#endif
1691 } 2816 }
1692}
1693 2817
1694void 2818 EV_FREQUENT_CHECK;
2819}
2820
2821void noinline
1695ev_signal_stop (EV_P_ ev_signal *w) 2822ev_signal_stop (EV_P_ ev_signal *w)
1696{ 2823{
1697 ev_clear_pending (EV_A_ (W)w); 2824 clear_pending (EV_A_ (W)w);
1698 if (expect_false (!ev_is_active (w))) 2825 if (expect_false (!ev_is_active (w)))
1699 return; 2826 return;
1700 2827
2828 EV_FREQUENT_CHECK;
2829
1701 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2830 wlist_del (&signals [w->signum - 1].head, (WL)w);
1702 ev_stop (EV_A_ (W)w); 2831 ev_stop (EV_A_ (W)w);
1703 2832
1704 if (!signals [w->signum - 1].head) 2833 if (!signals [w->signum - 1].head)
2834 {
2835#if EV_MULTIPLICITY
2836 signals [w->signum - 1].loop = 0; /* unattach from signal */
2837#endif
2838#if EV_USE_SIGNALFD
2839 if (sigfd >= 0)
2840 {
2841 sigset_t ss;
2842
2843 sigemptyset (&ss);
2844 sigaddset (&ss, w->signum);
2845 sigdelset (&sigfd_set, w->signum);
2846
2847 signalfd (sigfd, &sigfd_set, 0);
2848 sigprocmask (SIG_UNBLOCK, &ss, 0);
2849 }
2850 else
2851#endif
1705 signal (w->signum, SIG_DFL); 2852 signal (w->signum, SIG_DFL);
2853 }
2854
2855 EV_FREQUENT_CHECK;
1706} 2856}
2857
2858#endif
2859
2860#if EV_CHILD_ENABLE
1707 2861
1708void 2862void
1709ev_child_start (EV_P_ ev_child *w) 2863ev_child_start (EV_P_ ev_child *w)
1710{ 2864{
1711#if EV_MULTIPLICITY 2865#if EV_MULTIPLICITY
1712 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2866 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1713#endif 2867#endif
1714 if (expect_false (ev_is_active (w))) 2868 if (expect_false (ev_is_active (w)))
1715 return; 2869 return;
1716 2870
2871 EV_FREQUENT_CHECK;
2872
1717 ev_start (EV_A_ (W)w, 1); 2873 ev_start (EV_A_ (W)w, 1);
1718 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2874 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2875
2876 EV_FREQUENT_CHECK;
1719} 2877}
1720 2878
1721void 2879void
1722ev_child_stop (EV_P_ ev_child *w) 2880ev_child_stop (EV_P_ ev_child *w)
1723{ 2881{
1724 ev_clear_pending (EV_A_ (W)w); 2882 clear_pending (EV_A_ (W)w);
1725 if (expect_false (!ev_is_active (w))) 2883 if (expect_false (!ev_is_active (w)))
1726 return; 2884 return;
1727 2885
2886 EV_FREQUENT_CHECK;
2887
1728 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2888 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1729 ev_stop (EV_A_ (W)w); 2889 ev_stop (EV_A_ (W)w);
2890
2891 EV_FREQUENT_CHECK;
1730} 2892}
2893
2894#endif
1731 2895
1732#if EV_STAT_ENABLE 2896#if EV_STAT_ENABLE
1733 2897
1734# ifdef _WIN32 2898# ifdef _WIN32
1735# undef lstat 2899# undef lstat
1736# define lstat(a,b) _stati64 (a,b) 2900# define lstat(a,b) _stati64 (a,b)
1737# endif 2901# endif
1738 2902
1739#define DEF_STAT_INTERVAL 5.0074891 2903#define DEF_STAT_INTERVAL 5.0074891
2904#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1740#define MIN_STAT_INTERVAL 0.1074891 2905#define MIN_STAT_INTERVAL 0.1074891
1741 2906
1742static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2907static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1743 2908
1744#if EV_USE_INOTIFY 2909#if EV_USE_INOTIFY
1745# define EV_INOTIFY_BUFSIZE 8192 2910
2911/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2912# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1746 2913
1747static void noinline 2914static void noinline
1748infy_add (EV_P_ ev_stat *w) 2915infy_add (EV_P_ ev_stat *w)
1749{ 2916{
1750 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2917 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1751 2918
1752 if (w->wd < 0) 2919 if (w->wd >= 0)
2920 {
2921 struct statfs sfs;
2922
2923 /* now local changes will be tracked by inotify, but remote changes won't */
2924 /* unless the filesystem is known to be local, we therefore still poll */
2925 /* also do poll on <2.6.25, but with normal frequency */
2926
2927 if (!fs_2625)
2928 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2929 else if (!statfs (w->path, &sfs)
2930 && (sfs.f_type == 0x1373 /* devfs */
2931 || sfs.f_type == 0xEF53 /* ext2/3 */
2932 || sfs.f_type == 0x3153464a /* jfs */
2933 || sfs.f_type == 0x52654973 /* reiser3 */
2934 || sfs.f_type == 0x01021994 /* tempfs */
2935 || sfs.f_type == 0x58465342 /* xfs */))
2936 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2937 else
2938 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1753 { 2939 }
1754 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2940 else
2941 {
2942 /* can't use inotify, continue to stat */
2943 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1755 2944
1756 /* monitor some parent directory for speedup hints */ 2945 /* if path is not there, monitor some parent directory for speedup hints */
2946 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2947 /* but an efficiency issue only */
1757 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2948 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1758 { 2949 {
1759 char path [4096]; 2950 char path [4096];
1760 strcpy (path, w->path); 2951 strcpy (path, w->path);
1761 2952
1764 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2955 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1765 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2956 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1766 2957
1767 char *pend = strrchr (path, '/'); 2958 char *pend = strrchr (path, '/');
1768 2959
1769 if (!pend) 2960 if (!pend || pend == path)
1770 break; /* whoops, no '/', complain to your admin */ 2961 break;
1771 2962
1772 *pend = 0; 2963 *pend = 0;
1773 w->wd = inotify_add_watch (fs_fd, path, mask); 2964 w->wd = inotify_add_watch (fs_fd, path, mask);
1774 } 2965 }
1775 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2966 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1776 } 2967 }
1777 } 2968 }
1778 else
1779 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1780 2969
1781 if (w->wd >= 0) 2970 if (w->wd >= 0)
1782 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2971 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2972
2973 /* now re-arm timer, if required */
2974 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2975 ev_timer_again (EV_A_ &w->timer);
2976 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1783} 2977}
1784 2978
1785static void noinline 2979static void noinline
1786infy_del (EV_P_ ev_stat *w) 2980infy_del (EV_P_ ev_stat *w)
1787{ 2981{
1790 2984
1791 if (wd < 0) 2985 if (wd < 0)
1792 return; 2986 return;
1793 2987
1794 w->wd = -2; 2988 w->wd = -2;
1795 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 2989 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1796 wlist_del (&fs_hash [slot].head, (WL)w); 2990 wlist_del (&fs_hash [slot].head, (WL)w);
1797 2991
1798 /* remove this watcher, if others are watching it, they will rearm */ 2992 /* remove this watcher, if others are watching it, they will rearm */
1799 inotify_rm_watch (fs_fd, wd); 2993 inotify_rm_watch (fs_fd, wd);
1800} 2994}
1801 2995
1802static void noinline 2996static void noinline
1803infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2997infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1804{ 2998{
1805 if (slot < 0) 2999 if (slot < 0)
1806 /* overflow, need to check for all hahs slots */ 3000 /* overflow, need to check for all hash slots */
1807 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3001 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1808 infy_wd (EV_A_ slot, wd, ev); 3002 infy_wd (EV_A_ slot, wd, ev);
1809 else 3003 else
1810 { 3004 {
1811 WL w_; 3005 WL w_;
1812 3006
1813 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3007 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1814 { 3008 {
1815 ev_stat *w = (ev_stat *)w_; 3009 ev_stat *w = (ev_stat *)w_;
1816 w_ = w_->next; /* lets us remove this watcher and all before it */ 3010 w_ = w_->next; /* lets us remove this watcher and all before it */
1817 3011
1818 if (w->wd == wd || wd == -1) 3012 if (w->wd == wd || wd == -1)
1819 { 3013 {
1820 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3014 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1821 { 3015 {
3016 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1822 w->wd = -1; 3017 w->wd = -1;
1823 infy_add (EV_A_ w); /* re-add, no matter what */ 3018 infy_add (EV_A_ w); /* re-add, no matter what */
1824 } 3019 }
1825 3020
1826 stat_timer_cb (EV_A_ &w->timer, 0); 3021 stat_timer_cb (EV_A_ &w->timer, 0);
1831 3026
1832static void 3027static void
1833infy_cb (EV_P_ ev_io *w, int revents) 3028infy_cb (EV_P_ ev_io *w, int revents)
1834{ 3029{
1835 char buf [EV_INOTIFY_BUFSIZE]; 3030 char buf [EV_INOTIFY_BUFSIZE];
1836 struct inotify_event *ev = (struct inotify_event *)buf;
1837 int ofs; 3031 int ofs;
1838 int len = read (fs_fd, buf, sizeof (buf)); 3032 int len = read (fs_fd, buf, sizeof (buf));
1839 3033
1840 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3034 for (ofs = 0; ofs < len; )
3035 {
3036 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1841 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3037 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3038 ofs += sizeof (struct inotify_event) + ev->len;
3039 }
1842} 3040}
1843 3041
1844void inline_size 3042inline_size unsigned int
3043ev_linux_version (void)
3044{
3045 struct utsname buf;
3046 unsigned int v;
3047 int i;
3048 char *p = buf.release;
3049
3050 if (uname (&buf))
3051 return 0;
3052
3053 for (i = 3+1; --i; )
3054 {
3055 unsigned int c = 0;
3056
3057 for (;;)
3058 {
3059 if (*p >= '0' && *p <= '9')
3060 c = c * 10 + *p++ - '0';
3061 else
3062 {
3063 p += *p == '.';
3064 break;
3065 }
3066 }
3067
3068 v = (v << 8) | c;
3069 }
3070
3071 return v;
3072}
3073
3074inline_size void
3075ev_check_2625 (EV_P)
3076{
3077 /* kernels < 2.6.25 are borked
3078 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3079 */
3080 if (ev_linux_version () < 0x020619)
3081 return;
3082
3083 fs_2625 = 1;
3084}
3085
3086inline_size int
3087infy_newfd (void)
3088{
3089#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3090 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3091 if (fd >= 0)
3092 return fd;
3093#endif
3094 return inotify_init ();
3095}
3096
3097inline_size void
1845infy_init (EV_P) 3098infy_init (EV_P)
1846{ 3099{
1847 if (fs_fd != -2) 3100 if (fs_fd != -2)
1848 return; 3101 return;
1849 3102
3103 fs_fd = -1;
3104
3105 ev_check_2625 (EV_A);
3106
1850 fs_fd = inotify_init (); 3107 fs_fd = infy_newfd ();
1851 3108
1852 if (fs_fd >= 0) 3109 if (fs_fd >= 0)
1853 { 3110 {
3111 fd_intern (fs_fd);
1854 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3112 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1855 ev_set_priority (&fs_w, EV_MAXPRI); 3113 ev_set_priority (&fs_w, EV_MAXPRI);
1856 ev_io_start (EV_A_ &fs_w); 3114 ev_io_start (EV_A_ &fs_w);
3115 ev_unref (EV_A);
1857 } 3116 }
1858} 3117}
1859 3118
1860void inline_size 3119inline_size void
1861infy_fork (EV_P) 3120infy_fork (EV_P)
1862{ 3121{
1863 int slot; 3122 int slot;
1864 3123
1865 if (fs_fd < 0) 3124 if (fs_fd < 0)
1866 return; 3125 return;
1867 3126
3127 ev_ref (EV_A);
3128 ev_io_stop (EV_A_ &fs_w);
1868 close (fs_fd); 3129 close (fs_fd);
1869 fs_fd = inotify_init (); 3130 fs_fd = infy_newfd ();
1870 3131
3132 if (fs_fd >= 0)
3133 {
3134 fd_intern (fs_fd);
3135 ev_io_set (&fs_w, fs_fd, EV_READ);
3136 ev_io_start (EV_A_ &fs_w);
3137 ev_unref (EV_A);
3138 }
3139
1871 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3140 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1872 { 3141 {
1873 WL w_ = fs_hash [slot].head; 3142 WL w_ = fs_hash [slot].head;
1874 fs_hash [slot].head = 0; 3143 fs_hash [slot].head = 0;
1875 3144
1876 while (w_) 3145 while (w_)
1881 w->wd = -1; 3150 w->wd = -1;
1882 3151
1883 if (fs_fd >= 0) 3152 if (fs_fd >= 0)
1884 infy_add (EV_A_ w); /* re-add, no matter what */ 3153 infy_add (EV_A_ w); /* re-add, no matter what */
1885 else 3154 else
3155 {
3156 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3157 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1886 ev_timer_start (EV_A_ &w->timer); 3158 ev_timer_again (EV_A_ &w->timer);
3159 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3160 }
1887 } 3161 }
1888
1889 } 3162 }
1890} 3163}
1891 3164
3165#endif
3166
3167#ifdef _WIN32
3168# define EV_LSTAT(p,b) _stati64 (p, b)
3169#else
3170# define EV_LSTAT(p,b) lstat (p, b)
1892#endif 3171#endif
1893 3172
1894void 3173void
1895ev_stat_stat (EV_P_ ev_stat *w) 3174ev_stat_stat (EV_P_ ev_stat *w)
1896{ 3175{
1903static void noinline 3182static void noinline
1904stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3183stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1905{ 3184{
1906 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3185 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1907 3186
1908 /* we copy this here each the time so that */ 3187 ev_statdata prev = w->attr;
1909 /* prev has the old value when the callback gets invoked */
1910 w->prev = w->attr;
1911 ev_stat_stat (EV_A_ w); 3188 ev_stat_stat (EV_A_ w);
1912 3189
1913 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3190 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1914 if ( 3191 if (
1915 w->prev.st_dev != w->attr.st_dev 3192 prev.st_dev != w->attr.st_dev
1916 || w->prev.st_ino != w->attr.st_ino 3193 || prev.st_ino != w->attr.st_ino
1917 || w->prev.st_mode != w->attr.st_mode 3194 || prev.st_mode != w->attr.st_mode
1918 || w->prev.st_nlink != w->attr.st_nlink 3195 || prev.st_nlink != w->attr.st_nlink
1919 || w->prev.st_uid != w->attr.st_uid 3196 || prev.st_uid != w->attr.st_uid
1920 || w->prev.st_gid != w->attr.st_gid 3197 || prev.st_gid != w->attr.st_gid
1921 || w->prev.st_rdev != w->attr.st_rdev 3198 || prev.st_rdev != w->attr.st_rdev
1922 || w->prev.st_size != w->attr.st_size 3199 || prev.st_size != w->attr.st_size
1923 || w->prev.st_atime != w->attr.st_atime 3200 || prev.st_atime != w->attr.st_atime
1924 || w->prev.st_mtime != w->attr.st_mtime 3201 || prev.st_mtime != w->attr.st_mtime
1925 || w->prev.st_ctime != w->attr.st_ctime 3202 || prev.st_ctime != w->attr.st_ctime
1926 ) { 3203 ) {
3204 /* we only update w->prev on actual differences */
3205 /* in case we test more often than invoke the callback, */
3206 /* to ensure that prev is always different to attr */
3207 w->prev = prev;
3208
1927 #if EV_USE_INOTIFY 3209 #if EV_USE_INOTIFY
3210 if (fs_fd >= 0)
3211 {
1928 infy_del (EV_A_ w); 3212 infy_del (EV_A_ w);
1929 infy_add (EV_A_ w); 3213 infy_add (EV_A_ w);
1930 ev_stat_stat (EV_A_ w); /* avoid race... */ 3214 ev_stat_stat (EV_A_ w); /* avoid race... */
3215 }
1931 #endif 3216 #endif
1932 3217
1933 ev_feed_event (EV_A_ w, EV_STAT); 3218 ev_feed_event (EV_A_ w, EV_STAT);
1934 } 3219 }
1935} 3220}
1938ev_stat_start (EV_P_ ev_stat *w) 3223ev_stat_start (EV_P_ ev_stat *w)
1939{ 3224{
1940 if (expect_false (ev_is_active (w))) 3225 if (expect_false (ev_is_active (w)))
1941 return; 3226 return;
1942 3227
1943 /* since we use memcmp, we need to clear any padding data etc. */
1944 memset (&w->prev, 0, sizeof (ev_statdata));
1945 memset (&w->attr, 0, sizeof (ev_statdata));
1946
1947 ev_stat_stat (EV_A_ w); 3228 ev_stat_stat (EV_A_ w);
1948 3229
3230 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1949 if (w->interval < MIN_STAT_INTERVAL) 3231 w->interval = MIN_STAT_INTERVAL;
1950 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1951 3232
1952 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3233 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1953 ev_set_priority (&w->timer, ev_priority (w)); 3234 ev_set_priority (&w->timer, ev_priority (w));
1954 3235
1955#if EV_USE_INOTIFY 3236#if EV_USE_INOTIFY
1956 infy_init (EV_A); 3237 infy_init (EV_A);
1957 3238
1958 if (fs_fd >= 0) 3239 if (fs_fd >= 0)
1959 infy_add (EV_A_ w); 3240 infy_add (EV_A_ w);
1960 else 3241 else
1961#endif 3242#endif
3243 {
1962 ev_timer_start (EV_A_ &w->timer); 3244 ev_timer_again (EV_A_ &w->timer);
3245 ev_unref (EV_A);
3246 }
1963 3247
1964 ev_start (EV_A_ (W)w, 1); 3248 ev_start (EV_A_ (W)w, 1);
3249
3250 EV_FREQUENT_CHECK;
1965} 3251}
1966 3252
1967void 3253void
1968ev_stat_stop (EV_P_ ev_stat *w) 3254ev_stat_stop (EV_P_ ev_stat *w)
1969{ 3255{
1970 ev_clear_pending (EV_A_ (W)w); 3256 clear_pending (EV_A_ (W)w);
1971 if (expect_false (!ev_is_active (w))) 3257 if (expect_false (!ev_is_active (w)))
1972 return; 3258 return;
1973 3259
3260 EV_FREQUENT_CHECK;
3261
1974#if EV_USE_INOTIFY 3262#if EV_USE_INOTIFY
1975 infy_del (EV_A_ w); 3263 infy_del (EV_A_ w);
1976#endif 3264#endif
3265
3266 if (ev_is_active (&w->timer))
3267 {
3268 ev_ref (EV_A);
1977 ev_timer_stop (EV_A_ &w->timer); 3269 ev_timer_stop (EV_A_ &w->timer);
3270 }
1978 3271
1979 ev_stop (EV_A_ (W)w); 3272 ev_stop (EV_A_ (W)w);
1980}
1981#endif
1982 3273
3274 EV_FREQUENT_CHECK;
3275}
3276#endif
3277
3278#if EV_IDLE_ENABLE
1983void 3279void
1984ev_idle_start (EV_P_ ev_idle *w) 3280ev_idle_start (EV_P_ ev_idle *w)
1985{ 3281{
1986 if (expect_false (ev_is_active (w))) 3282 if (expect_false (ev_is_active (w)))
1987 return; 3283 return;
1988 3284
3285 pri_adjust (EV_A_ (W)w);
3286
3287 EV_FREQUENT_CHECK;
3288
3289 {
3290 int active = ++idlecnt [ABSPRI (w)];
3291
3292 ++idleall;
1989 ev_start (EV_A_ (W)w, ++idlecnt); 3293 ev_start (EV_A_ (W)w, active);
3294
1990 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3295 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1991 idles [idlecnt - 1] = w; 3296 idles [ABSPRI (w)][active - 1] = w;
3297 }
3298
3299 EV_FREQUENT_CHECK;
1992} 3300}
1993 3301
1994void 3302void
1995ev_idle_stop (EV_P_ ev_idle *w) 3303ev_idle_stop (EV_P_ ev_idle *w)
1996{ 3304{
1997 ev_clear_pending (EV_A_ (W)w); 3305 clear_pending (EV_A_ (W)w);
1998 if (expect_false (!ev_is_active (w))) 3306 if (expect_false (!ev_is_active (w)))
1999 return; 3307 return;
2000 3308
3309 EV_FREQUENT_CHECK;
3310
2001 { 3311 {
2002 int active = ((W)w)->active; 3312 int active = ev_active (w);
2003 idles [active - 1] = idles [--idlecnt]; 3313
2004 ((W)idles [active - 1])->active = active; 3314 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3315 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3316
3317 ev_stop (EV_A_ (W)w);
3318 --idleall;
2005 } 3319 }
2006 3320
2007 ev_stop (EV_A_ (W)w); 3321 EV_FREQUENT_CHECK;
2008} 3322}
3323#endif
2009 3324
3325#if EV_PREPARE_ENABLE
2010void 3326void
2011ev_prepare_start (EV_P_ ev_prepare *w) 3327ev_prepare_start (EV_P_ ev_prepare *w)
2012{ 3328{
2013 if (expect_false (ev_is_active (w))) 3329 if (expect_false (ev_is_active (w)))
2014 return; 3330 return;
3331
3332 EV_FREQUENT_CHECK;
2015 3333
2016 ev_start (EV_A_ (W)w, ++preparecnt); 3334 ev_start (EV_A_ (W)w, ++preparecnt);
2017 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3335 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2018 prepares [preparecnt - 1] = w; 3336 prepares [preparecnt - 1] = w;
3337
3338 EV_FREQUENT_CHECK;
2019} 3339}
2020 3340
2021void 3341void
2022ev_prepare_stop (EV_P_ ev_prepare *w) 3342ev_prepare_stop (EV_P_ ev_prepare *w)
2023{ 3343{
2024 ev_clear_pending (EV_A_ (W)w); 3344 clear_pending (EV_A_ (W)w);
2025 if (expect_false (!ev_is_active (w))) 3345 if (expect_false (!ev_is_active (w)))
2026 return; 3346 return;
2027 3347
3348 EV_FREQUENT_CHECK;
3349
2028 { 3350 {
2029 int active = ((W)w)->active; 3351 int active = ev_active (w);
3352
2030 prepares [active - 1] = prepares [--preparecnt]; 3353 prepares [active - 1] = prepares [--preparecnt];
2031 ((W)prepares [active - 1])->active = active; 3354 ev_active (prepares [active - 1]) = active;
2032 } 3355 }
2033 3356
2034 ev_stop (EV_A_ (W)w); 3357 ev_stop (EV_A_ (W)w);
2035}
2036 3358
3359 EV_FREQUENT_CHECK;
3360}
3361#endif
3362
3363#if EV_CHECK_ENABLE
2037void 3364void
2038ev_check_start (EV_P_ ev_check *w) 3365ev_check_start (EV_P_ ev_check *w)
2039{ 3366{
2040 if (expect_false (ev_is_active (w))) 3367 if (expect_false (ev_is_active (w)))
2041 return; 3368 return;
3369
3370 EV_FREQUENT_CHECK;
2042 3371
2043 ev_start (EV_A_ (W)w, ++checkcnt); 3372 ev_start (EV_A_ (W)w, ++checkcnt);
2044 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3373 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2045 checks [checkcnt - 1] = w; 3374 checks [checkcnt - 1] = w;
3375
3376 EV_FREQUENT_CHECK;
2046} 3377}
2047 3378
2048void 3379void
2049ev_check_stop (EV_P_ ev_check *w) 3380ev_check_stop (EV_P_ ev_check *w)
2050{ 3381{
2051 ev_clear_pending (EV_A_ (W)w); 3382 clear_pending (EV_A_ (W)w);
2052 if (expect_false (!ev_is_active (w))) 3383 if (expect_false (!ev_is_active (w)))
2053 return; 3384 return;
2054 3385
3386 EV_FREQUENT_CHECK;
3387
2055 { 3388 {
2056 int active = ((W)w)->active; 3389 int active = ev_active (w);
3390
2057 checks [active - 1] = checks [--checkcnt]; 3391 checks [active - 1] = checks [--checkcnt];
2058 ((W)checks [active - 1])->active = active; 3392 ev_active (checks [active - 1]) = active;
2059 } 3393 }
2060 3394
2061 ev_stop (EV_A_ (W)w); 3395 ev_stop (EV_A_ (W)w);
3396
3397 EV_FREQUENT_CHECK;
2062} 3398}
3399#endif
2063 3400
2064#if EV_EMBED_ENABLE 3401#if EV_EMBED_ENABLE
2065void noinline 3402void noinline
2066ev_embed_sweep (EV_P_ ev_embed *w) 3403ev_embed_sweep (EV_P_ ev_embed *w)
2067{ 3404{
2068 ev_loop (w->loop, EVLOOP_NONBLOCK); 3405 ev_loop (w->other, EVLOOP_NONBLOCK);
2069} 3406}
2070 3407
2071static void 3408static void
2072embed_cb (EV_P_ ev_io *io, int revents) 3409embed_io_cb (EV_P_ ev_io *io, int revents)
2073{ 3410{
2074 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3411 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2075 3412
2076 if (ev_cb (w)) 3413 if (ev_cb (w))
2077 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3414 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2078 else 3415 else
2079 ev_embed_sweep (loop, w); 3416 ev_loop (w->other, EVLOOP_NONBLOCK);
2080} 3417}
3418
3419static void
3420embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3421{
3422 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3423
3424 {
3425 EV_P = w->other;
3426
3427 while (fdchangecnt)
3428 {
3429 fd_reify (EV_A);
3430 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3431 }
3432 }
3433}
3434
3435static void
3436embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3437{
3438 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3439
3440 ev_embed_stop (EV_A_ w);
3441
3442 {
3443 EV_P = w->other;
3444
3445 ev_loop_fork (EV_A);
3446 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3447 }
3448
3449 ev_embed_start (EV_A_ w);
3450}
3451
3452#if 0
3453static void
3454embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3455{
3456 ev_idle_stop (EV_A_ idle);
3457}
3458#endif
2081 3459
2082void 3460void
2083ev_embed_start (EV_P_ ev_embed *w) 3461ev_embed_start (EV_P_ ev_embed *w)
2084{ 3462{
2085 if (expect_false (ev_is_active (w))) 3463 if (expect_false (ev_is_active (w)))
2086 return; 3464 return;
2087 3465
2088 { 3466 {
2089 struct ev_loop *loop = w->loop; 3467 EV_P = w->other;
2090 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3468 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2091 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3469 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2092 } 3470 }
3471
3472 EV_FREQUENT_CHECK;
2093 3473
2094 ev_set_priority (&w->io, ev_priority (w)); 3474 ev_set_priority (&w->io, ev_priority (w));
2095 ev_io_start (EV_A_ &w->io); 3475 ev_io_start (EV_A_ &w->io);
2096 3476
3477 ev_prepare_init (&w->prepare, embed_prepare_cb);
3478 ev_set_priority (&w->prepare, EV_MINPRI);
3479 ev_prepare_start (EV_A_ &w->prepare);
3480
3481 ev_fork_init (&w->fork, embed_fork_cb);
3482 ev_fork_start (EV_A_ &w->fork);
3483
3484 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3485
2097 ev_start (EV_A_ (W)w, 1); 3486 ev_start (EV_A_ (W)w, 1);
3487
3488 EV_FREQUENT_CHECK;
2098} 3489}
2099 3490
2100void 3491void
2101ev_embed_stop (EV_P_ ev_embed *w) 3492ev_embed_stop (EV_P_ ev_embed *w)
2102{ 3493{
2103 ev_clear_pending (EV_A_ (W)w); 3494 clear_pending (EV_A_ (W)w);
2104 if (expect_false (!ev_is_active (w))) 3495 if (expect_false (!ev_is_active (w)))
2105 return; 3496 return;
2106 3497
3498 EV_FREQUENT_CHECK;
3499
2107 ev_io_stop (EV_A_ &w->io); 3500 ev_io_stop (EV_A_ &w->io);
3501 ev_prepare_stop (EV_A_ &w->prepare);
3502 ev_fork_stop (EV_A_ &w->fork);
2108 3503
2109 ev_stop (EV_A_ (W)w); 3504 ev_stop (EV_A_ (W)w);
3505
3506 EV_FREQUENT_CHECK;
2110} 3507}
2111#endif 3508#endif
2112 3509
2113#if EV_FORK_ENABLE 3510#if EV_FORK_ENABLE
2114void 3511void
2115ev_fork_start (EV_P_ ev_fork *w) 3512ev_fork_start (EV_P_ ev_fork *w)
2116{ 3513{
2117 if (expect_false (ev_is_active (w))) 3514 if (expect_false (ev_is_active (w)))
2118 return; 3515 return;
3516
3517 EV_FREQUENT_CHECK;
2119 3518
2120 ev_start (EV_A_ (W)w, ++forkcnt); 3519 ev_start (EV_A_ (W)w, ++forkcnt);
2121 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3520 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2122 forks [forkcnt - 1] = w; 3521 forks [forkcnt - 1] = w;
3522
3523 EV_FREQUENT_CHECK;
2123} 3524}
2124 3525
2125void 3526void
2126ev_fork_stop (EV_P_ ev_fork *w) 3527ev_fork_stop (EV_P_ ev_fork *w)
2127{ 3528{
2128 ev_clear_pending (EV_A_ (W)w); 3529 clear_pending (EV_A_ (W)w);
2129 if (expect_false (!ev_is_active (w))) 3530 if (expect_false (!ev_is_active (w)))
2130 return; 3531 return;
2131 3532
3533 EV_FREQUENT_CHECK;
3534
2132 { 3535 {
2133 int active = ((W)w)->active; 3536 int active = ev_active (w);
3537
2134 forks [active - 1] = forks [--forkcnt]; 3538 forks [active - 1] = forks [--forkcnt];
2135 ((W)forks [active - 1])->active = active; 3539 ev_active (forks [active - 1]) = active;
2136 } 3540 }
2137 3541
2138 ev_stop (EV_A_ (W)w); 3542 ev_stop (EV_A_ (W)w);
3543
3544 EV_FREQUENT_CHECK;
3545}
3546#endif
3547
3548#if EV_ASYNC_ENABLE
3549void
3550ev_async_start (EV_P_ ev_async *w)
3551{
3552 if (expect_false (ev_is_active (w)))
3553 return;
3554
3555 evpipe_init (EV_A);
3556
3557 EV_FREQUENT_CHECK;
3558
3559 ev_start (EV_A_ (W)w, ++asynccnt);
3560 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3561 asyncs [asynccnt - 1] = w;
3562
3563 EV_FREQUENT_CHECK;
3564}
3565
3566void
3567ev_async_stop (EV_P_ ev_async *w)
3568{
3569 clear_pending (EV_A_ (W)w);
3570 if (expect_false (!ev_is_active (w)))
3571 return;
3572
3573 EV_FREQUENT_CHECK;
3574
3575 {
3576 int active = ev_active (w);
3577
3578 asyncs [active - 1] = asyncs [--asynccnt];
3579 ev_active (asyncs [active - 1]) = active;
3580 }
3581
3582 ev_stop (EV_A_ (W)w);
3583
3584 EV_FREQUENT_CHECK;
3585}
3586
3587void
3588ev_async_send (EV_P_ ev_async *w)
3589{
3590 w->sent = 1;
3591 evpipe_write (EV_A_ &async_pending);
2139} 3592}
2140#endif 3593#endif
2141 3594
2142/*****************************************************************************/ 3595/*****************************************************************************/
2143 3596
2153once_cb (EV_P_ struct ev_once *once, int revents) 3606once_cb (EV_P_ struct ev_once *once, int revents)
2154{ 3607{
2155 void (*cb)(int revents, void *arg) = once->cb; 3608 void (*cb)(int revents, void *arg) = once->cb;
2156 void *arg = once->arg; 3609 void *arg = once->arg;
2157 3610
2158 ev_io_stop (EV_A_ &once->io); 3611 ev_io_stop (EV_A_ &once->io);
2159 ev_timer_stop (EV_A_ &once->to); 3612 ev_timer_stop (EV_A_ &once->to);
2160 ev_free (once); 3613 ev_free (once);
2161 3614
2162 cb (revents, arg); 3615 cb (revents, arg);
2163} 3616}
2164 3617
2165static void 3618static void
2166once_cb_io (EV_P_ ev_io *w, int revents) 3619once_cb_io (EV_P_ ev_io *w, int revents)
2167{ 3620{
2168 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3621 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3622
3623 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2169} 3624}
2170 3625
2171static void 3626static void
2172once_cb_to (EV_P_ ev_timer *w, int revents) 3627once_cb_to (EV_P_ ev_timer *w, int revents)
2173{ 3628{
2174 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3629 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3630
3631 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2175} 3632}
2176 3633
2177void 3634void
2178ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3635ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2179{ 3636{
2201 ev_timer_set (&once->to, timeout, 0.); 3658 ev_timer_set (&once->to, timeout, 0.);
2202 ev_timer_start (EV_A_ &once->to); 3659 ev_timer_start (EV_A_ &once->to);
2203 } 3660 }
2204} 3661}
2205 3662
3663/*****************************************************************************/
3664
3665#if EV_WALK_ENABLE
3666void
3667ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3668{
3669 int i, j;
3670 ev_watcher_list *wl, *wn;
3671
3672 if (types & (EV_IO | EV_EMBED))
3673 for (i = 0; i < anfdmax; ++i)
3674 for (wl = anfds [i].head; wl; )
3675 {
3676 wn = wl->next;
3677
3678#if EV_EMBED_ENABLE
3679 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3680 {
3681 if (types & EV_EMBED)
3682 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3683 }
3684 else
3685#endif
3686#if EV_USE_INOTIFY
3687 if (ev_cb ((ev_io *)wl) == infy_cb)
3688 ;
3689 else
3690#endif
3691 if ((ev_io *)wl != &pipe_w)
3692 if (types & EV_IO)
3693 cb (EV_A_ EV_IO, wl);
3694
3695 wl = wn;
3696 }
3697
3698 if (types & (EV_TIMER | EV_STAT))
3699 for (i = timercnt + HEAP0; i-- > HEAP0; )
3700#if EV_STAT_ENABLE
3701 /*TODO: timer is not always active*/
3702 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3703 {
3704 if (types & EV_STAT)
3705 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3706 }
3707 else
3708#endif
3709 if (types & EV_TIMER)
3710 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3711
3712#if EV_PERIODIC_ENABLE
3713 if (types & EV_PERIODIC)
3714 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3715 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3716#endif
3717
3718#if EV_IDLE_ENABLE
3719 if (types & EV_IDLE)
3720 for (j = NUMPRI; i--; )
3721 for (i = idlecnt [j]; i--; )
3722 cb (EV_A_ EV_IDLE, idles [j][i]);
3723#endif
3724
3725#if EV_FORK_ENABLE
3726 if (types & EV_FORK)
3727 for (i = forkcnt; i--; )
3728 if (ev_cb (forks [i]) != embed_fork_cb)
3729 cb (EV_A_ EV_FORK, forks [i]);
3730#endif
3731
3732#if EV_ASYNC_ENABLE
3733 if (types & EV_ASYNC)
3734 for (i = asynccnt; i--; )
3735 cb (EV_A_ EV_ASYNC, asyncs [i]);
3736#endif
3737
3738#if EV_PREPARE_ENABLE
3739 if (types & EV_PREPARE)
3740 for (i = preparecnt; i--; )
3741# if EV_EMBED_ENABLE
3742 if (ev_cb (prepares [i]) != embed_prepare_cb)
3743# endif
3744 cb (EV_A_ EV_PREPARE, prepares [i]);
3745#endif
3746
3747#if EV_CHECK_ENABLE
3748 if (types & EV_CHECK)
3749 for (i = checkcnt; i--; )
3750 cb (EV_A_ EV_CHECK, checks [i]);
3751#endif
3752
3753#if EV_SIGNAL_ENABLE
3754 if (types & EV_SIGNAL)
3755 for (i = 0; i < EV_NSIG - 1; ++i)
3756 for (wl = signals [i].head; wl; )
3757 {
3758 wn = wl->next;
3759 cb (EV_A_ EV_SIGNAL, wl);
3760 wl = wn;
3761 }
3762#endif
3763
3764#if EV_CHILD_ENABLE
3765 if (types & EV_CHILD)
3766 for (i = (EV_PID_HASHSIZE); i--; )
3767 for (wl = childs [i]; wl; )
3768 {
3769 wn = wl->next;
3770 cb (EV_A_ EV_CHILD, wl);
3771 wl = wn;
3772 }
3773#endif
3774/* EV_STAT 0x00001000 /* stat data changed */
3775/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3776}
3777#endif
3778
3779#if EV_MULTIPLICITY
3780 #include "ev_wrap.h"
3781#endif
3782
2206#ifdef __cplusplus 3783#ifdef __cplusplus
2207} 3784}
2208#endif 3785#endif
2209 3786

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines