ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.161 by root, Sat Dec 1 23:43:45 2007 UTC vs.
Revision 1.220 by root, Sun Apr 6 09:53:17 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 241
197#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
200#endif 245#endif
202#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
205#endif 250#endif
206 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
207#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 268# include <winsock.h>
209#endif 269#endif
210 270
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY 271#if EV_USE_EVENTFD
216# include <sys/inotify.h> 272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273int eventfd (unsigned int initval, int flags);
217#endif 274#endif
218 275
219/**/ 276/**/
277
278/*
279 * This is used to avoid floating point rounding problems.
280 * It is added to ev_rt_now when scheduling periodics
281 * to ensure progress, time-wise, even when rounding
282 * errors are against us.
283 * This value is good at least till the year 4000.
284 * Better solutions welcome.
285 */
286#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 287
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 288#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 289#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 290/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 291
225#if __GNUC__ >= 3 292#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 293# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 294# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 295#else
236# define expect(expr,value) (expr) 296# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 297# define noinline
298# if __STDC_VERSION__ < 199901L
299# define inline
300# endif
240#endif 301#endif
241 302
242#define expect_false(expr) expect ((expr) != 0, 0) 303#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 304#define expect_true(expr) expect ((expr) != 0, 1)
305#define inline_size static inline
306
307#if EV_MINIMAL
308# define inline_speed static noinline
309#else
310# define inline_speed static inline
311#endif
244 312
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 313#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 314#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 315
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 316#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 317#define EMPTY2(a,b) /* used to suppress some warnings */
250 318
251typedef ev_watcher *W; 319typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 320typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 321typedef ev_watcher_time *WT;
254 322
323#if EV_USE_MONOTONIC
324/* sig_atomic_t is used to avoid per-thread variables or locking but still */
325/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 326static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
327#endif
256 328
257#ifdef _WIN32 329#ifdef _WIN32
258# include "ev_win32.c" 330# include "ev_win32.c"
259#endif 331#endif
260 332
396{ 468{
397 return ev_rt_now; 469 return ev_rt_now;
398} 470}
399#endif 471#endif
400 472
401#define array_roundsize(type,n) (((n) | 4) & ~3) 473void
474ev_sleep (ev_tstamp delay)
475{
476 if (delay > 0.)
477 {
478#if EV_USE_NANOSLEEP
479 struct timespec ts;
480
481 ts.tv_sec = (time_t)delay;
482 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
483
484 nanosleep (&ts, 0);
485#elif defined(_WIN32)
486 Sleep ((unsigned long)(delay * 1e3));
487#else
488 struct timeval tv;
489
490 tv.tv_sec = (time_t)delay;
491 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
492
493 select (0, 0, 0, 0, &tv);
494#endif
495 }
496}
497
498/*****************************************************************************/
499
500int inline_size
501array_nextsize (int elem, int cur, int cnt)
502{
503 int ncur = cur + 1;
504
505 do
506 ncur <<= 1;
507 while (cnt > ncur);
508
509 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
510 if (elem * ncur > 4096)
511 {
512 ncur *= elem;
513 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
514 ncur = ncur - sizeof (void *) * 4;
515 ncur /= elem;
516 }
517
518 return ncur;
519}
520
521static noinline void *
522array_realloc (int elem, void *base, int *cur, int cnt)
523{
524 *cur = array_nextsize (elem, *cur, cnt);
525 return ev_realloc (base, elem * *cur);
526}
402 527
403#define array_needsize(type,base,cur,cnt,init) \ 528#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 529 if (expect_false ((cnt) > (cur))) \
405 { \ 530 { \
406 int newcnt = cur; \ 531 int ocur_ = (cur); \
407 do \ 532 (base) = (type *)array_realloc \
408 { \ 533 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 534 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 535 }
417 536
537#if 0
418#define array_slim(type,stem) \ 538#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 539 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 540 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 541 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 542 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 543 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 544 }
545#endif
425 546
426#define array_free(stem, idx) \ 547#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 548 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 549
429/*****************************************************************************/ 550/*****************************************************************************/
430 551
431void noinline 552void noinline
432ev_feed_event (EV_P_ void *w, int revents) 553ev_feed_event (EV_P_ void *w, int revents)
433{ 554{
434 W w_ = (W)w; 555 W w_ = (W)w;
556 int pri = ABSPRI (w_);
435 557
436 if (expect_false (w_->pending)) 558 if (expect_false (w_->pending))
559 pendings [pri][w_->pending - 1].events |= revents;
560 else
437 { 561 {
562 w_->pending = ++pendingcnt [pri];
563 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
564 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 565 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 566 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 567}
447 568
448void inline_size 569void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 570queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 571{
451 int i; 572 int i;
452 573
453 for (i = 0; i < eventcnt; ++i) 574 for (i = 0; i < eventcnt; ++i)
485} 606}
486 607
487void 608void
488ev_feed_fd_event (EV_P_ int fd, int revents) 609ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 610{
611 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 612 fd_event (EV_A_ fd, revents);
491} 613}
492 614
493void inline_size 615void inline_size
494fd_reify (EV_P) 616fd_reify (EV_P)
495{ 617{
499 { 621 {
500 int fd = fdchanges [i]; 622 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 623 ANFD *anfd = anfds + fd;
502 ev_io *w; 624 ev_io *w;
503 625
504 int events = 0; 626 unsigned char events = 0;
505 627
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 628 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 629 events |= (unsigned char)w->events;
508 630
509#if EV_SELECT_IS_WINSOCKET 631#if EV_SELECT_IS_WINSOCKET
510 if (events) 632 if (events)
511 { 633 {
512 unsigned long argp; 634 unsigned long argp;
635 #ifdef EV_FD_TO_WIN32_HANDLE
636 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
637 #else
513 anfd->handle = _get_osfhandle (fd); 638 anfd->handle = _get_osfhandle (fd);
639 #endif
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 640 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
515 } 641 }
516#endif 642#endif
517 643
644 {
645 unsigned char o_events = anfd->events;
646 unsigned char o_reify = anfd->reify;
647
518 anfd->reify = 0; 648 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 649 anfd->events = events;
650
651 if (o_events != events || o_reify & EV_IOFDSET)
652 backend_modify (EV_A_ fd, o_events, events);
653 }
522 } 654 }
523 655
524 fdchangecnt = 0; 656 fdchangecnt = 0;
525} 657}
526 658
527void inline_size 659void inline_size
528fd_change (EV_P_ int fd) 660fd_change (EV_P_ int fd, int flags)
529{ 661{
530 if (expect_false (anfds [fd].reify)) 662 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 663 anfds [fd].reify |= flags;
534 664
665 if (expect_true (!reify))
666 {
535 ++fdchangecnt; 667 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 668 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 669 fdchanges [fdchangecnt - 1] = fd;
670 }
538} 671}
539 672
540void inline_speed 673void inline_speed
541fd_kill (EV_P_ int fd) 674fd_kill (EV_P_ int fd)
542{ 675{
593 726
594 for (fd = 0; fd < anfdmax; ++fd) 727 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 728 if (anfds [fd].events)
596 { 729 {
597 anfds [fd].events = 0; 730 anfds [fd].events = 0;
598 fd_change (EV_A_ fd); 731 fd_change (EV_A_ fd, EV_IOFDSET | 1);
599 } 732 }
600} 733}
601 734
602/*****************************************************************************/ 735/*****************************************************************************/
603 736
604void inline_speed 737void inline_speed
605upheap (WT *heap, int k) 738upheap (WT *heap, int k)
606{ 739{
607 WT w = heap [k]; 740 WT w = heap [k];
608 741
609 while (k && heap [k >> 1]->at > w->at) 742 while (k)
610 { 743 {
744 int p = (k - 1) >> 1;
745
746 if (heap [p]->at <= w->at)
747 break;
748
611 heap [k] = heap [k >> 1]; 749 heap [k] = heap [p];
612 ((W)heap [k])->active = k + 1; 750 ((W)heap [k])->active = k + 1;
613 k >>= 1; 751 k = p;
614 } 752 }
615 753
616 heap [k] = w; 754 heap [k] = w;
617 ((W)heap [k])->active = k + 1; 755 ((W)heap [k])->active = k + 1;
618
619} 756}
620 757
621void inline_speed 758void inline_speed
622downheap (WT *heap, int N, int k) 759downheap (WT *heap, int N, int k)
623{ 760{
624 WT w = heap [k]; 761 WT w = heap [k];
625 762
626 while (k < (N >> 1)) 763 for (;;)
627 { 764 {
628 int j = k << 1; 765 int c = (k << 1) + 1;
629 766
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 767 if (c >= N)
631 ++j;
632
633 if (w->at <= heap [j]->at)
634 break; 768 break;
635 769
770 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
771 ? 1 : 0;
772
773 if (w->at <= heap [c]->at)
774 break;
775
636 heap [k] = heap [j]; 776 heap [k] = heap [c];
637 ((W)heap [k])->active = k + 1; 777 ((W)heap [k])->active = k + 1;
778
638 k = j; 779 k = c;
639 } 780 }
640 781
641 heap [k] = w; 782 heap [k] = w;
642 ((W)heap [k])->active = k + 1; 783 ((W)heap [k])->active = k + 1;
643} 784}
652/*****************************************************************************/ 793/*****************************************************************************/
653 794
654typedef struct 795typedef struct
655{ 796{
656 WL head; 797 WL head;
657 sig_atomic_t volatile gotsig; 798 EV_ATOMIC_T gotsig;
658} ANSIG; 799} ANSIG;
659 800
660static ANSIG *signals; 801static ANSIG *signals;
661static int signalmax; 802static int signalmax;
662 803
663static int sigpipe [2]; 804static EV_ATOMIC_T gotsig;
664static sig_atomic_t volatile gotsig;
665static ev_io sigev;
666 805
667void inline_size 806void inline_size
668signals_init (ANSIG *base, int count) 807signals_init (ANSIG *base, int count)
669{ 808{
670 while (count--) 809 while (count--)
674 813
675 ++base; 814 ++base;
676 } 815 }
677} 816}
678 817
679static void 818/*****************************************************************************/
680sighandler (int signum)
681{
682#if _WIN32
683 signal (signum, sighandler);
684#endif
685 819
686 signals [signum - 1].gotsig = 1;
687
688 if (!gotsig)
689 {
690 int old_errno = errno;
691 gotsig = 1;
692 write (sigpipe [1], &signum, 1);
693 errno = old_errno;
694 }
695}
696
697void noinline
698ev_feed_signal_event (EV_P_ int signum)
699{
700 WL w;
701
702#if EV_MULTIPLICITY
703 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
704#endif
705
706 --signum;
707
708 if (signum < 0 || signum >= signalmax)
709 return;
710
711 signals [signum].gotsig = 0;
712
713 for (w = signals [signum].head; w; w = w->next)
714 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
715}
716
717static void
718sigcb (EV_P_ ev_io *iow, int revents)
719{
720 int signum;
721
722 read (sigpipe [0], &revents, 1);
723 gotsig = 0;
724
725 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1);
728}
729
730void inline_size 820void inline_speed
731fd_intern (int fd) 821fd_intern (int fd)
732{ 822{
733#ifdef _WIN32 823#ifdef _WIN32
734 int arg = 1; 824 int arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 825 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
738 fcntl (fd, F_SETFL, O_NONBLOCK); 828 fcntl (fd, F_SETFL, O_NONBLOCK);
739#endif 829#endif
740} 830}
741 831
742static void noinline 832static void noinline
743siginit (EV_P) 833evpipe_init (EV_P)
744{ 834{
835 if (!ev_is_active (&pipeev))
836 {
837#if EV_USE_EVENTFD
838 if ((evfd = eventfd (0, 0)) >= 0)
839 {
840 evpipe [0] = -1;
841 fd_intern (evfd);
842 ev_io_set (&pipeev, evfd, EV_READ);
843 }
844 else
845#endif
846 {
847 while (pipe (evpipe))
848 syserr ("(libev) error creating signal/async pipe");
849
745 fd_intern (sigpipe [0]); 850 fd_intern (evpipe [0]);
746 fd_intern (sigpipe [1]); 851 fd_intern (evpipe [1]);
852 ev_io_set (&pipeev, evpipe [0], EV_READ);
853 }
747 854
748 ev_io_set (&sigev, sigpipe [0], EV_READ);
749 ev_io_start (EV_A_ &sigev); 855 ev_io_start (EV_A_ &pipeev);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 856 ev_unref (EV_A); /* watcher should not keep loop alive */
857 }
858}
859
860void inline_size
861evpipe_write (EV_P_ EV_ATOMIC_T *flag)
862{
863 if (!*flag)
864 {
865 int old_errno = errno; /* save errno because write might clobber it */
866
867 *flag = 1;
868
869#if EV_USE_EVENTFD
870 if (evfd >= 0)
871 {
872 uint64_t counter = 1;
873 write (evfd, &counter, sizeof (uint64_t));
874 }
875 else
876#endif
877 write (evpipe [1], &old_errno, 1);
878
879 errno = old_errno;
880 }
881}
882
883static void
884pipecb (EV_P_ ev_io *iow, int revents)
885{
886#if EV_USE_EVENTFD
887 if (evfd >= 0)
888 {
889 uint64_t counter = 1;
890 read (evfd, &counter, sizeof (uint64_t));
891 }
892 else
893#endif
894 {
895 char dummy;
896 read (evpipe [0], &dummy, 1);
897 }
898
899 if (gotsig && ev_is_default_loop (EV_A))
900 {
901 int signum;
902 gotsig = 0;
903
904 for (signum = signalmax; signum--; )
905 if (signals [signum].gotsig)
906 ev_feed_signal_event (EV_A_ signum + 1);
907 }
908
909#if EV_ASYNC_ENABLE
910 if (gotasync)
911 {
912 int i;
913 gotasync = 0;
914
915 for (i = asynccnt; i--; )
916 if (asyncs [i]->sent)
917 {
918 asyncs [i]->sent = 0;
919 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
920 }
921 }
922#endif
751} 923}
752 924
753/*****************************************************************************/ 925/*****************************************************************************/
754 926
927static void
928ev_sighandler (int signum)
929{
930#if EV_MULTIPLICITY
931 struct ev_loop *loop = &default_loop_struct;
932#endif
933
934#if _WIN32
935 signal (signum, ev_sighandler);
936#endif
937
938 signals [signum - 1].gotsig = 1;
939 evpipe_write (EV_A_ &gotsig);
940}
941
942void noinline
943ev_feed_signal_event (EV_P_ int signum)
944{
945 WL w;
946
947#if EV_MULTIPLICITY
948 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
949#endif
950
951 --signum;
952
953 if (signum < 0 || signum >= signalmax)
954 return;
955
956 signals [signum].gotsig = 0;
957
958 for (w = signals [signum].head; w; w = w->next)
959 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
960}
961
962/*****************************************************************************/
963
755static ev_child *childs [EV_PID_HASHSIZE]; 964static WL childs [EV_PID_HASHSIZE];
756 965
757#ifndef _WIN32 966#ifndef _WIN32
758 967
759static ev_signal childev; 968static ev_signal childev;
760 969
970#ifndef WIFCONTINUED
971# define WIFCONTINUED(status) 0
972#endif
973
761void inline_speed 974void inline_speed
762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 975child_reap (EV_P_ int chain, int pid, int status)
763{ 976{
764 ev_child *w; 977 ev_child *w;
978 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
765 979
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 980 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
981 {
767 if (w->pid == pid || !w->pid) 982 if ((w->pid == pid || !w->pid)
983 && (!traced || (w->flags & 1)))
768 { 984 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 985 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
770 w->rpid = pid; 986 w->rpid = pid;
771 w->rstatus = status; 987 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 988 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 989 }
990 }
774} 991}
775 992
776#ifndef WCONTINUED 993#ifndef WCONTINUED
777# define WCONTINUED 0 994# define WCONTINUED 0
778#endif 995#endif
787 if (!WCONTINUED 1004 if (!WCONTINUED
788 || errno != EINVAL 1005 || errno != EINVAL
789 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1006 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
790 return; 1007 return;
791 1008
792 /* make sure we are called again until all childs have been reaped */ 1009 /* make sure we are called again until all children have been reaped */
793 /* we need to do it this way so that the callback gets called before we continue */ 1010 /* we need to do it this way so that the callback gets called before we continue */
794 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1011 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
795 1012
796 child_reap (EV_A_ sw, pid, pid, status); 1013 child_reap (EV_A_ pid, pid, status);
797 if (EV_PID_HASHSIZE > 1) 1014 if (EV_PID_HASHSIZE > 1)
798 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1015 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
799} 1016}
800 1017
801#endif 1018#endif
802 1019
803/*****************************************************************************/ 1020/*****************************************************************************/
875} 1092}
876 1093
877unsigned int 1094unsigned int
878ev_embeddable_backends (void) 1095ev_embeddable_backends (void)
879{ 1096{
880 return EVBACKEND_EPOLL 1097 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 1098
882 | EVBACKEND_PORT; 1099 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1100 /* please fix it and tell me how to detect the fix */
1101 flags &= ~EVBACKEND_EPOLL;
1102
1103 return flags;
883} 1104}
884 1105
885unsigned int 1106unsigned int
886ev_backend (EV_P) 1107ev_backend (EV_P)
887{ 1108{
888 return backend; 1109 return backend;
1110}
1111
1112unsigned int
1113ev_loop_count (EV_P)
1114{
1115 return loop_count;
1116}
1117
1118void
1119ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1120{
1121 io_blocktime = interval;
1122}
1123
1124void
1125ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1126{
1127 timeout_blocktime = interval;
889} 1128}
890 1129
891static void noinline 1130static void noinline
892loop_init (EV_P_ unsigned int flags) 1131loop_init (EV_P_ unsigned int flags)
893{ 1132{
899 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1138 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
900 have_monotonic = 1; 1139 have_monotonic = 1;
901 } 1140 }
902#endif 1141#endif
903 1142
904 ev_rt_now = ev_time (); 1143 ev_rt_now = ev_time ();
905 mn_now = get_clock (); 1144 mn_now = get_clock ();
906 now_floor = mn_now; 1145 now_floor = mn_now;
907 rtmn_diff = ev_rt_now - mn_now; 1146 rtmn_diff = ev_rt_now - mn_now;
1147
1148 io_blocktime = 0.;
1149 timeout_blocktime = 0.;
1150 backend = 0;
1151 backend_fd = -1;
1152 gotasync = 0;
1153#if EV_USE_INOTIFY
1154 fs_fd = -2;
1155#endif
908 1156
909 /* pid check not overridable via env */ 1157 /* pid check not overridable via env */
910#ifndef _WIN32 1158#ifndef _WIN32
911 if (flags & EVFLAG_FORKCHECK) 1159 if (flags & EVFLAG_FORKCHECK)
912 curpid = getpid (); 1160 curpid = getpid ();
918 flags = atoi (getenv ("LIBEV_FLAGS")); 1166 flags = atoi (getenv ("LIBEV_FLAGS"));
919 1167
920 if (!(flags & 0x0000ffffUL)) 1168 if (!(flags & 0x0000ffffUL))
921 flags |= ev_recommended_backends (); 1169 flags |= ev_recommended_backends ();
922 1170
923 backend = 0;
924 backend_fd = -1;
925#if EV_USE_INOTIFY
926 fs_fd = -2;
927#endif
928
929#if EV_USE_PORT 1171#if EV_USE_PORT
930 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1172 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
931#endif 1173#endif
932#if EV_USE_KQUEUE 1174#if EV_USE_KQUEUE
933 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1175 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
940#endif 1182#endif
941#if EV_USE_SELECT 1183#if EV_USE_SELECT
942 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1184 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
943#endif 1185#endif
944 1186
945 ev_init (&sigev, sigcb); 1187 ev_init (&pipeev, pipecb);
946 ev_set_priority (&sigev, EV_MAXPRI); 1188 ev_set_priority (&pipeev, EV_MAXPRI);
947 } 1189 }
948} 1190}
949 1191
950static void noinline 1192static void noinline
951loop_destroy (EV_P) 1193loop_destroy (EV_P)
952{ 1194{
953 int i; 1195 int i;
1196
1197 if (ev_is_active (&pipeev))
1198 {
1199 ev_ref (EV_A); /* signal watcher */
1200 ev_io_stop (EV_A_ &pipeev);
1201
1202#if EV_USE_EVENTFD
1203 if (evfd >= 0)
1204 close (evfd);
1205#endif
1206
1207 if (evpipe [0] >= 0)
1208 {
1209 close (evpipe [0]);
1210 close (evpipe [1]);
1211 }
1212 }
954 1213
955#if EV_USE_INOTIFY 1214#if EV_USE_INOTIFY
956 if (fs_fd >= 0) 1215 if (fs_fd >= 0)
957 close (fs_fd); 1216 close (fs_fd);
958#endif 1217#endif
975#if EV_USE_SELECT 1234#if EV_USE_SELECT
976 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1235 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
977#endif 1236#endif
978 1237
979 for (i = NUMPRI; i--; ) 1238 for (i = NUMPRI; i--; )
1239 {
980 array_free (pending, [i]); 1240 array_free (pending, [i]);
1241#if EV_IDLE_ENABLE
1242 array_free (idle, [i]);
1243#endif
1244 }
1245
1246 ev_free (anfds); anfdmax = 0;
981 1247
982 /* have to use the microsoft-never-gets-it-right macro */ 1248 /* have to use the microsoft-never-gets-it-right macro */
983 array_free (fdchange, EMPTY0); 1249 array_free (fdchange, EMPTY);
984 array_free (timer, EMPTY0); 1250 array_free (timer, EMPTY);
985#if EV_PERIODIC_ENABLE 1251#if EV_PERIODIC_ENABLE
986 array_free (periodic, EMPTY0); 1252 array_free (periodic, EMPTY);
987#endif 1253#endif
1254#if EV_FORK_ENABLE
988 array_free (idle, EMPTY0); 1255 array_free (fork, EMPTY);
1256#endif
989 array_free (prepare, EMPTY0); 1257 array_free (prepare, EMPTY);
990 array_free (check, EMPTY0); 1258 array_free (check, EMPTY);
1259#if EV_ASYNC_ENABLE
1260 array_free (async, EMPTY);
1261#endif
991 1262
992 backend = 0; 1263 backend = 0;
993} 1264}
994 1265
995void inline_size infy_fork (EV_P); 1266void inline_size infy_fork (EV_P);
1008#endif 1279#endif
1009#if EV_USE_INOTIFY 1280#if EV_USE_INOTIFY
1010 infy_fork (EV_A); 1281 infy_fork (EV_A);
1011#endif 1282#endif
1012 1283
1013 if (ev_is_active (&sigev)) 1284 if (ev_is_active (&pipeev))
1014 { 1285 {
1015 /* default loop */ 1286 /* this "locks" the handlers against writing to the pipe */
1287 /* while we modify the fd vars */
1288 gotsig = 1;
1289#if EV_ASYNC_ENABLE
1290 gotasync = 1;
1291#endif
1016 1292
1017 ev_ref (EV_A); 1293 ev_ref (EV_A);
1018 ev_io_stop (EV_A_ &sigev); 1294 ev_io_stop (EV_A_ &pipeev);
1295
1296#if EV_USE_EVENTFD
1297 if (evfd >= 0)
1298 close (evfd);
1299#endif
1300
1301 if (evpipe [0] >= 0)
1302 {
1019 close (sigpipe [0]); 1303 close (evpipe [0]);
1020 close (sigpipe [1]); 1304 close (evpipe [1]);
1305 }
1021 1306
1022 while (pipe (sigpipe))
1023 syserr ("(libev) error creating pipe");
1024
1025 siginit (EV_A); 1307 evpipe_init (EV_A);
1308 /* now iterate over everything, in case we missed something */
1309 pipecb (EV_A_ &pipeev, EV_READ);
1026 } 1310 }
1027 1311
1028 postfork = 0; 1312 postfork = 0;
1029} 1313}
1030 1314
1052} 1336}
1053 1337
1054void 1338void
1055ev_loop_fork (EV_P) 1339ev_loop_fork (EV_P)
1056{ 1340{
1057 postfork = 1; 1341 postfork = 1; /* must be in line with ev_default_fork */
1058} 1342}
1059 1343
1060#endif 1344#endif
1061 1345
1062#if EV_MULTIPLICITY 1346#if EV_MULTIPLICITY
1065#else 1349#else
1066int 1350int
1067ev_default_loop (unsigned int flags) 1351ev_default_loop (unsigned int flags)
1068#endif 1352#endif
1069{ 1353{
1070 if (sigpipe [0] == sigpipe [1])
1071 if (pipe (sigpipe))
1072 return 0;
1073
1074 if (!ev_default_loop_ptr) 1354 if (!ev_default_loop_ptr)
1075 { 1355 {
1076#if EV_MULTIPLICITY 1356#if EV_MULTIPLICITY
1077 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1357 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1078#else 1358#else
1081 1361
1082 loop_init (EV_A_ flags); 1362 loop_init (EV_A_ flags);
1083 1363
1084 if (ev_backend (EV_A)) 1364 if (ev_backend (EV_A))
1085 { 1365 {
1086 siginit (EV_A);
1087
1088#ifndef _WIN32 1366#ifndef _WIN32
1089 ev_signal_init (&childev, childcb, SIGCHLD); 1367 ev_signal_init (&childev, childcb, SIGCHLD);
1090 ev_set_priority (&childev, EV_MAXPRI); 1368 ev_set_priority (&childev, EV_MAXPRI);
1091 ev_signal_start (EV_A_ &childev); 1369 ev_signal_start (EV_A_ &childev);
1092 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1370 ev_unref (EV_A); /* child watcher should not keep loop alive */
1109#ifndef _WIN32 1387#ifndef _WIN32
1110 ev_ref (EV_A); /* child watcher */ 1388 ev_ref (EV_A); /* child watcher */
1111 ev_signal_stop (EV_A_ &childev); 1389 ev_signal_stop (EV_A_ &childev);
1112#endif 1390#endif
1113 1391
1114 ev_ref (EV_A); /* signal watcher */
1115 ev_io_stop (EV_A_ &sigev);
1116
1117 close (sigpipe [0]); sigpipe [0] = 0;
1118 close (sigpipe [1]); sigpipe [1] = 0;
1119
1120 loop_destroy (EV_A); 1392 loop_destroy (EV_A);
1121} 1393}
1122 1394
1123void 1395void
1124ev_default_fork (void) 1396ev_default_fork (void)
1126#if EV_MULTIPLICITY 1398#if EV_MULTIPLICITY
1127 struct ev_loop *loop = ev_default_loop_ptr; 1399 struct ev_loop *loop = ev_default_loop_ptr;
1128#endif 1400#endif
1129 1401
1130 if (backend) 1402 if (backend)
1131 postfork = 1; 1403 postfork = 1; /* must be in line with ev_loop_fork */
1132} 1404}
1133 1405
1134/*****************************************************************************/ 1406/*****************************************************************************/
1135 1407
1136int inline_size 1408void
1137any_pending (EV_P) 1409ev_invoke (EV_P_ void *w, int revents)
1138{ 1410{
1139 int pri; 1411 EV_CB_INVOKE ((W)w, revents);
1140
1141 for (pri = NUMPRI; pri--; )
1142 if (pendingcnt [pri])
1143 return 1;
1144
1145 return 0;
1146} 1412}
1147 1413
1148void inline_speed 1414void inline_speed
1149call_pending (EV_P) 1415call_pending (EV_P)
1150{ 1416{
1168void inline_size 1434void inline_size
1169timers_reify (EV_P) 1435timers_reify (EV_P)
1170{ 1436{
1171 while (timercnt && ((WT)timers [0])->at <= mn_now) 1437 while (timercnt && ((WT)timers [0])->at <= mn_now)
1172 { 1438 {
1173 ev_timer *w = timers [0]; 1439 ev_timer *w = (ev_timer *)timers [0];
1174 1440
1175 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1441 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1176 1442
1177 /* first reschedule or stop timer */ 1443 /* first reschedule or stop timer */
1178 if (w->repeat) 1444 if (w->repeat)
1181 1447
1182 ((WT)w)->at += w->repeat; 1448 ((WT)w)->at += w->repeat;
1183 if (((WT)w)->at < mn_now) 1449 if (((WT)w)->at < mn_now)
1184 ((WT)w)->at = mn_now; 1450 ((WT)w)->at = mn_now;
1185 1451
1186 downheap ((WT *)timers, timercnt, 0); 1452 downheap (timers, timercnt, 0);
1187 } 1453 }
1188 else 1454 else
1189 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1455 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1190 1456
1191 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1457 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1196void inline_size 1462void inline_size
1197periodics_reify (EV_P) 1463periodics_reify (EV_P)
1198{ 1464{
1199 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1465 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1200 { 1466 {
1201 ev_periodic *w = periodics [0]; 1467 ev_periodic *w = (ev_periodic *)periodics [0];
1202 1468
1203 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1469 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1204 1470
1205 /* first reschedule or stop timer */ 1471 /* first reschedule or stop timer */
1206 if (w->reschedule_cb) 1472 if (w->reschedule_cb)
1207 { 1473 {
1208 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1474 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1209 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1475 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1210 downheap ((WT *)periodics, periodiccnt, 0); 1476 downheap (periodics, periodiccnt, 0);
1211 } 1477 }
1212 else if (w->interval) 1478 else if (w->interval)
1213 { 1479 {
1214 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1480 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1481 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1215 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1482 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1216 downheap ((WT *)periodics, periodiccnt, 0); 1483 downheap (periodics, periodiccnt, 0);
1217 } 1484 }
1218 else 1485 else
1219 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1486 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1220 1487
1221 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1488 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1228 int i; 1495 int i;
1229 1496
1230 /* adjust periodics after time jump */ 1497 /* adjust periodics after time jump */
1231 for (i = 0; i < periodiccnt; ++i) 1498 for (i = 0; i < periodiccnt; ++i)
1232 { 1499 {
1233 ev_periodic *w = periodics [i]; 1500 ev_periodic *w = (ev_periodic *)periodics [i];
1234 1501
1235 if (w->reschedule_cb) 1502 if (w->reschedule_cb)
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1503 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1237 else if (w->interval) 1504 else if (w->interval)
1238 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1505 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1239 } 1506 }
1240 1507
1241 /* now rebuild the heap */ 1508 /* now rebuild the heap */
1242 for (i = periodiccnt >> 1; i--; ) 1509 for (i = periodiccnt >> 1; i--; )
1243 downheap ((WT *)periodics, periodiccnt, i); 1510 downheap (periodics, periodiccnt, i);
1244} 1511}
1245#endif 1512#endif
1246 1513
1514#if EV_IDLE_ENABLE
1247int inline_size 1515void inline_size
1248time_update_monotonic (EV_P) 1516idle_reify (EV_P)
1249{ 1517{
1518 if (expect_false (idleall))
1519 {
1520 int pri;
1521
1522 for (pri = NUMPRI; pri--; )
1523 {
1524 if (pendingcnt [pri])
1525 break;
1526
1527 if (idlecnt [pri])
1528 {
1529 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1530 break;
1531 }
1532 }
1533 }
1534}
1535#endif
1536
1537void inline_speed
1538time_update (EV_P_ ev_tstamp max_block)
1539{
1540 int i;
1541
1542#if EV_USE_MONOTONIC
1543 if (expect_true (have_monotonic))
1544 {
1545 ev_tstamp odiff = rtmn_diff;
1546
1250 mn_now = get_clock (); 1547 mn_now = get_clock ();
1251 1548
1549 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1550 /* interpolate in the meantime */
1252 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1551 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1253 { 1552 {
1254 ev_rt_now = rtmn_diff + mn_now; 1553 ev_rt_now = rtmn_diff + mn_now;
1255 return 0; 1554 return;
1256 } 1555 }
1257 else 1556
1258 {
1259 now_floor = mn_now; 1557 now_floor = mn_now;
1260 ev_rt_now = ev_time (); 1558 ev_rt_now = ev_time ();
1261 return 1;
1262 }
1263}
1264 1559
1265void inline_size 1560 /* loop a few times, before making important decisions.
1266time_update (EV_P) 1561 * on the choice of "4": one iteration isn't enough,
1267{ 1562 * in case we get preempted during the calls to
1268 int i; 1563 * ev_time and get_clock. a second call is almost guaranteed
1269 1564 * to succeed in that case, though. and looping a few more times
1270#if EV_USE_MONOTONIC 1565 * doesn't hurt either as we only do this on time-jumps or
1271 if (expect_true (have_monotonic)) 1566 * in the unlikely event of having been preempted here.
1272 { 1567 */
1273 if (time_update_monotonic (EV_A)) 1568 for (i = 4; --i; )
1274 { 1569 {
1275 ev_tstamp odiff = rtmn_diff;
1276
1277 /* loop a few times, before making important decisions.
1278 * on the choice of "4": one iteration isn't enough,
1279 * in case we get preempted during the calls to
1280 * ev_time and get_clock. a second call is almost guaranteed
1281 * to succeed in that case, though. and looping a few more times
1282 * doesn't hurt either as we only do this on time-jumps or
1283 * in the unlikely event of having been preempted here.
1284 */
1285 for (i = 4; --i; )
1286 {
1287 rtmn_diff = ev_rt_now - mn_now; 1570 rtmn_diff = ev_rt_now - mn_now;
1288 1571
1289 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1572 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1290 return; /* all is well */ 1573 return; /* all is well */
1291 1574
1292 ev_rt_now = ev_time (); 1575 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 1576 mn_now = get_clock ();
1294 now_floor = mn_now; 1577 now_floor = mn_now;
1295 } 1578 }
1296 1579
1297# if EV_PERIODIC_ENABLE 1580# if EV_PERIODIC_ENABLE
1298 periodics_reschedule (EV_A); 1581 periodics_reschedule (EV_A);
1299# endif 1582# endif
1300 /* no timer adjustment, as the monotonic clock doesn't jump */ 1583 /* no timer adjustment, as the monotonic clock doesn't jump */
1301 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1584 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1302 }
1303 } 1585 }
1304 else 1586 else
1305#endif 1587#endif
1306 { 1588 {
1307 ev_rt_now = ev_time (); 1589 ev_rt_now = ev_time ();
1308 1590
1309 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1591 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1310 { 1592 {
1311#if EV_PERIODIC_ENABLE 1593#if EV_PERIODIC_ENABLE
1312 periodics_reschedule (EV_A); 1594 periodics_reschedule (EV_A);
1313#endif 1595#endif
1314
1315 /* adjust timers. this is easy, as the offset is the same for all of them */ 1596 /* adjust timers. this is easy, as the offset is the same for all of them */
1316 for (i = 0; i < timercnt; ++i) 1597 for (i = 0; i < timercnt; ++i)
1317 ((WT)timers [i])->at += ev_rt_now - mn_now; 1598 ((WT)timers [i])->at += ev_rt_now - mn_now;
1318 } 1599 }
1319 1600
1336static int loop_done; 1617static int loop_done;
1337 1618
1338void 1619void
1339ev_loop (EV_P_ int flags) 1620ev_loop (EV_P_ int flags)
1340{ 1621{
1341 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1622 loop_done = EVUNLOOP_CANCEL;
1342 ? EVUNLOOP_ONE
1343 : EVUNLOOP_CANCEL;
1344 1623
1345 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1624 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1346 1625
1347 do 1626 do
1348 { 1627 {
1363 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1642 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1364 call_pending (EV_A); 1643 call_pending (EV_A);
1365 } 1644 }
1366#endif 1645#endif
1367 1646
1368 /* queue check watchers (and execute them) */ 1647 /* queue prepare watchers (and execute them) */
1369 if (expect_false (preparecnt)) 1648 if (expect_false (preparecnt))
1370 { 1649 {
1371 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1650 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1372 call_pending (EV_A); 1651 call_pending (EV_A);
1373 } 1652 }
1382 /* update fd-related kernel structures */ 1661 /* update fd-related kernel structures */
1383 fd_reify (EV_A); 1662 fd_reify (EV_A);
1384 1663
1385 /* calculate blocking time */ 1664 /* calculate blocking time */
1386 { 1665 {
1387 ev_tstamp block; 1666 ev_tstamp waittime = 0.;
1667 ev_tstamp sleeptime = 0.;
1388 1668
1389 if (expect_false (flags & EVLOOP_NONBLOCK || idlecnt || !activecnt)) 1669 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1390 block = 0.; /* do not block at all */
1391 else
1392 { 1670 {
1393 /* update time to cancel out callback processing overhead */ 1671 /* update time to cancel out callback processing overhead */
1394#if EV_USE_MONOTONIC
1395 if (expect_true (have_monotonic))
1396 time_update_monotonic (EV_A); 1672 time_update (EV_A_ 1e100);
1397 else
1398#endif
1399 {
1400 ev_rt_now = ev_time ();
1401 mn_now = ev_rt_now;
1402 }
1403 1673
1404 block = MAX_BLOCKTIME; 1674 waittime = MAX_BLOCKTIME;
1405 1675
1406 if (timercnt) 1676 if (timercnt)
1407 { 1677 {
1408 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1678 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1409 if (block > to) block = to; 1679 if (waittime > to) waittime = to;
1410 } 1680 }
1411 1681
1412#if EV_PERIODIC_ENABLE 1682#if EV_PERIODIC_ENABLE
1413 if (periodiccnt) 1683 if (periodiccnt)
1414 { 1684 {
1415 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1685 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1416 if (block > to) block = to; 1686 if (waittime > to) waittime = to;
1417 } 1687 }
1418#endif 1688#endif
1419 1689
1420 if (expect_false (block < 0.)) block = 0.; 1690 if (expect_false (waittime < timeout_blocktime))
1691 waittime = timeout_blocktime;
1692
1693 sleeptime = waittime - backend_fudge;
1694
1695 if (expect_true (sleeptime > io_blocktime))
1696 sleeptime = io_blocktime;
1697
1698 if (sleeptime)
1699 {
1700 ev_sleep (sleeptime);
1701 waittime -= sleeptime;
1702 }
1421 } 1703 }
1422 1704
1705 ++loop_count;
1423 backend_poll (EV_A_ block); 1706 backend_poll (EV_A_ waittime);
1707
1708 /* update ev_rt_now, do magic */
1709 time_update (EV_A_ waittime + sleeptime);
1424 } 1710 }
1425
1426 /* update ev_rt_now, do magic */
1427 time_update (EV_A);
1428 1711
1429 /* queue pending timers and reschedule them */ 1712 /* queue pending timers and reschedule them */
1430 timers_reify (EV_A); /* relative timers called last */ 1713 timers_reify (EV_A); /* relative timers called last */
1431#if EV_PERIODIC_ENABLE 1714#if EV_PERIODIC_ENABLE
1432 periodics_reify (EV_A); /* absolute timers called first */ 1715 periodics_reify (EV_A); /* absolute timers called first */
1433#endif 1716#endif
1434 1717
1718#if EV_IDLE_ENABLE
1435 /* queue idle watchers unless other events are pending */ 1719 /* queue idle watchers unless other events are pending */
1436 if (idlecnt && !any_pending (EV_A)) 1720 idle_reify (EV_A);
1437 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1721#endif
1438 1722
1439 /* queue check watchers, to be executed first */ 1723 /* queue check watchers, to be executed first */
1440 if (expect_false (checkcnt)) 1724 if (expect_false (checkcnt))
1441 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1725 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1442 1726
1443 call_pending (EV_A); 1727 call_pending (EV_A);
1444
1445 } 1728 }
1446 while (expect_true (activecnt && !loop_done)); 1729 while (expect_true (
1730 activecnt
1731 && !loop_done
1732 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1733 ));
1447 1734
1448 if (loop_done == EVUNLOOP_ONE) 1735 if (loop_done == EVUNLOOP_ONE)
1449 loop_done = EVUNLOOP_CANCEL; 1736 loop_done = EVUNLOOP_CANCEL;
1450} 1737}
1451 1738
1478 head = &(*head)->next; 1765 head = &(*head)->next;
1479 } 1766 }
1480} 1767}
1481 1768
1482void inline_speed 1769void inline_speed
1483ev_clear_pending (EV_P_ W w) 1770clear_pending (EV_P_ W w)
1484{ 1771{
1485 if (w->pending) 1772 if (w->pending)
1486 { 1773 {
1487 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1774 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1488 w->pending = 0; 1775 w->pending = 0;
1489 } 1776 }
1490} 1777}
1491 1778
1779int
1780ev_clear_pending (EV_P_ void *w)
1781{
1782 W w_ = (W)w;
1783 int pending = w_->pending;
1784
1785 if (expect_true (pending))
1786 {
1787 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1788 w_->pending = 0;
1789 p->w = 0;
1790 return p->events;
1791 }
1792 else
1793 return 0;
1794}
1795
1796void inline_size
1797pri_adjust (EV_P_ W w)
1798{
1799 int pri = w->priority;
1800 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1801 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1802 w->priority = pri;
1803}
1804
1492void inline_speed 1805void inline_speed
1493ev_start (EV_P_ W w, int active) 1806ev_start (EV_P_ W w, int active)
1494{ 1807{
1495 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1808 pri_adjust (EV_A_ w);
1496 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1497
1498 w->active = active; 1809 w->active = active;
1499 ev_ref (EV_A); 1810 ev_ref (EV_A);
1500} 1811}
1501 1812
1502void inline_size 1813void inline_size
1506 w->active = 0; 1817 w->active = 0;
1507} 1818}
1508 1819
1509/*****************************************************************************/ 1820/*****************************************************************************/
1510 1821
1511void 1822void noinline
1512ev_io_start (EV_P_ ev_io *w) 1823ev_io_start (EV_P_ ev_io *w)
1513{ 1824{
1514 int fd = w->fd; 1825 int fd = w->fd;
1515 1826
1516 if (expect_false (ev_is_active (w))) 1827 if (expect_false (ev_is_active (w)))
1518 1829
1519 assert (("ev_io_start called with negative fd", fd >= 0)); 1830 assert (("ev_io_start called with negative fd", fd >= 0));
1520 1831
1521 ev_start (EV_A_ (W)w, 1); 1832 ev_start (EV_A_ (W)w, 1);
1522 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1833 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1523 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1834 wlist_add (&anfds[fd].head, (WL)w);
1524 1835
1525 fd_change (EV_A_ fd); 1836 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1837 w->events &= ~EV_IOFDSET;
1526} 1838}
1527 1839
1528void 1840void noinline
1529ev_io_stop (EV_P_ ev_io *w) 1841ev_io_stop (EV_P_ ev_io *w)
1530{ 1842{
1531 ev_clear_pending (EV_A_ (W)w); 1843 clear_pending (EV_A_ (W)w);
1532 if (expect_false (!ev_is_active (w))) 1844 if (expect_false (!ev_is_active (w)))
1533 return; 1845 return;
1534 1846
1535 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1847 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1536 1848
1537 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1849 wlist_del (&anfds[w->fd].head, (WL)w);
1538 ev_stop (EV_A_ (W)w); 1850 ev_stop (EV_A_ (W)w);
1539 1851
1540 fd_change (EV_A_ w->fd); 1852 fd_change (EV_A_ w->fd, 1);
1541} 1853}
1542 1854
1543void 1855void noinline
1544ev_timer_start (EV_P_ ev_timer *w) 1856ev_timer_start (EV_P_ ev_timer *w)
1545{ 1857{
1546 if (expect_false (ev_is_active (w))) 1858 if (expect_false (ev_is_active (w)))
1547 return; 1859 return;
1548 1860
1549 ((WT)w)->at += mn_now; 1861 ((WT)w)->at += mn_now;
1550 1862
1551 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1863 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1552 1864
1553 ev_start (EV_A_ (W)w, ++timercnt); 1865 ev_start (EV_A_ (W)w, ++timercnt);
1554 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1866 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1555 timers [timercnt - 1] = w; 1867 timers [timercnt - 1] = (WT)w;
1556 upheap ((WT *)timers, timercnt - 1); 1868 upheap (timers, timercnt - 1);
1557 1869
1558 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1870 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1559} 1871}
1560 1872
1561void 1873void noinline
1562ev_timer_stop (EV_P_ ev_timer *w) 1874ev_timer_stop (EV_P_ ev_timer *w)
1563{ 1875{
1564 ev_clear_pending (EV_A_ (W)w); 1876 clear_pending (EV_A_ (W)w);
1565 if (expect_false (!ev_is_active (w))) 1877 if (expect_false (!ev_is_active (w)))
1566 return; 1878 return;
1567 1879
1568 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1880 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1569 1881
1570 { 1882 {
1571 int active = ((W)w)->active; 1883 int active = ((W)w)->active;
1572 1884
1573 if (expect_true (--active < --timercnt)) 1885 if (expect_true (--active < --timercnt))
1574 { 1886 {
1575 timers [active] = timers [timercnt]; 1887 timers [active] = timers [timercnt];
1576 adjustheap ((WT *)timers, timercnt, active); 1888 adjustheap (timers, timercnt, active);
1577 } 1889 }
1578 } 1890 }
1579 1891
1580 ((WT)w)->at -= mn_now; 1892 ((WT)w)->at -= mn_now;
1581 1893
1582 ev_stop (EV_A_ (W)w); 1894 ev_stop (EV_A_ (W)w);
1583} 1895}
1584 1896
1585void 1897void noinline
1586ev_timer_again (EV_P_ ev_timer *w) 1898ev_timer_again (EV_P_ ev_timer *w)
1587{ 1899{
1588 if (ev_is_active (w)) 1900 if (ev_is_active (w))
1589 { 1901 {
1590 if (w->repeat) 1902 if (w->repeat)
1591 { 1903 {
1592 ((WT)w)->at = mn_now + w->repeat; 1904 ((WT)w)->at = mn_now + w->repeat;
1593 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1905 adjustheap (timers, timercnt, ((W)w)->active - 1);
1594 } 1906 }
1595 else 1907 else
1596 ev_timer_stop (EV_A_ w); 1908 ev_timer_stop (EV_A_ w);
1597 } 1909 }
1598 else if (w->repeat) 1910 else if (w->repeat)
1601 ev_timer_start (EV_A_ w); 1913 ev_timer_start (EV_A_ w);
1602 } 1914 }
1603} 1915}
1604 1916
1605#if EV_PERIODIC_ENABLE 1917#if EV_PERIODIC_ENABLE
1606void 1918void noinline
1607ev_periodic_start (EV_P_ ev_periodic *w) 1919ev_periodic_start (EV_P_ ev_periodic *w)
1608{ 1920{
1609 if (expect_false (ev_is_active (w))) 1921 if (expect_false (ev_is_active (w)))
1610 return; 1922 return;
1611 1923
1613 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1925 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1614 else if (w->interval) 1926 else if (w->interval)
1615 { 1927 {
1616 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1928 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1617 /* this formula differs from the one in periodic_reify because we do not always round up */ 1929 /* this formula differs from the one in periodic_reify because we do not always round up */
1618 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1930 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1619 } 1931 }
1932 else
1933 ((WT)w)->at = w->offset;
1620 1934
1621 ev_start (EV_A_ (W)w, ++periodiccnt); 1935 ev_start (EV_A_ (W)w, ++periodiccnt);
1622 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1936 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1623 periodics [periodiccnt - 1] = w; 1937 periodics [periodiccnt - 1] = (WT)w;
1624 upheap ((WT *)periodics, periodiccnt - 1); 1938 upheap (periodics, periodiccnt - 1);
1625 1939
1626 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1940 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1627} 1941}
1628 1942
1629void 1943void noinline
1630ev_periodic_stop (EV_P_ ev_periodic *w) 1944ev_periodic_stop (EV_P_ ev_periodic *w)
1631{ 1945{
1632 ev_clear_pending (EV_A_ (W)w); 1946 clear_pending (EV_A_ (W)w);
1633 if (expect_false (!ev_is_active (w))) 1947 if (expect_false (!ev_is_active (w)))
1634 return; 1948 return;
1635 1949
1636 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1950 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1637 1951
1638 { 1952 {
1639 int active = ((W)w)->active; 1953 int active = ((W)w)->active;
1640 1954
1641 if (expect_true (--active < --periodiccnt)) 1955 if (expect_true (--active < --periodiccnt))
1642 { 1956 {
1643 periodics [active] = periodics [periodiccnt]; 1957 periodics [active] = periodics [periodiccnt];
1644 adjustheap ((WT *)periodics, periodiccnt, active); 1958 adjustheap (periodics, periodiccnt, active);
1645 } 1959 }
1646 } 1960 }
1647 1961
1648 ev_stop (EV_A_ (W)w); 1962 ev_stop (EV_A_ (W)w);
1649} 1963}
1650 1964
1651void 1965void noinline
1652ev_periodic_again (EV_P_ ev_periodic *w) 1966ev_periodic_again (EV_P_ ev_periodic *w)
1653{ 1967{
1654 /* TODO: use adjustheap and recalculation */ 1968 /* TODO: use adjustheap and recalculation */
1655 ev_periodic_stop (EV_A_ w); 1969 ev_periodic_stop (EV_A_ w);
1656 ev_periodic_start (EV_A_ w); 1970 ev_periodic_start (EV_A_ w);
1659 1973
1660#ifndef SA_RESTART 1974#ifndef SA_RESTART
1661# define SA_RESTART 0 1975# define SA_RESTART 0
1662#endif 1976#endif
1663 1977
1664void 1978void noinline
1665ev_signal_start (EV_P_ ev_signal *w) 1979ev_signal_start (EV_P_ ev_signal *w)
1666{ 1980{
1667#if EV_MULTIPLICITY 1981#if EV_MULTIPLICITY
1668 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1982 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1669#endif 1983#endif
1670 if (expect_false (ev_is_active (w))) 1984 if (expect_false (ev_is_active (w)))
1671 return; 1985 return;
1672 1986
1673 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1987 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1674 1988
1989 evpipe_init (EV_A);
1990
1991 {
1992#ifndef _WIN32
1993 sigset_t full, prev;
1994 sigfillset (&full);
1995 sigprocmask (SIG_SETMASK, &full, &prev);
1996#endif
1997
1998 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1999
2000#ifndef _WIN32
2001 sigprocmask (SIG_SETMASK, &prev, 0);
2002#endif
2003 }
2004
1675 ev_start (EV_A_ (W)w, 1); 2005 ev_start (EV_A_ (W)w, 1);
1676 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1677 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2006 wlist_add (&signals [w->signum - 1].head, (WL)w);
1678 2007
1679 if (!((WL)w)->next) 2008 if (!((WL)w)->next)
1680 { 2009 {
1681#if _WIN32 2010#if _WIN32
1682 signal (w->signum, sighandler); 2011 signal (w->signum, ev_sighandler);
1683#else 2012#else
1684 struct sigaction sa; 2013 struct sigaction sa;
1685 sa.sa_handler = sighandler; 2014 sa.sa_handler = ev_sighandler;
1686 sigfillset (&sa.sa_mask); 2015 sigfillset (&sa.sa_mask);
1687 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2016 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1688 sigaction (w->signum, &sa, 0); 2017 sigaction (w->signum, &sa, 0);
1689#endif 2018#endif
1690 } 2019 }
1691} 2020}
1692 2021
1693void 2022void noinline
1694ev_signal_stop (EV_P_ ev_signal *w) 2023ev_signal_stop (EV_P_ ev_signal *w)
1695{ 2024{
1696 ev_clear_pending (EV_A_ (W)w); 2025 clear_pending (EV_A_ (W)w);
1697 if (expect_false (!ev_is_active (w))) 2026 if (expect_false (!ev_is_active (w)))
1698 return; 2027 return;
1699 2028
1700 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2029 wlist_del (&signals [w->signum - 1].head, (WL)w);
1701 ev_stop (EV_A_ (W)w); 2030 ev_stop (EV_A_ (W)w);
1702 2031
1703 if (!signals [w->signum - 1].head) 2032 if (!signals [w->signum - 1].head)
1704 signal (w->signum, SIG_DFL); 2033 signal (w->signum, SIG_DFL);
1705} 2034}
1712#endif 2041#endif
1713 if (expect_false (ev_is_active (w))) 2042 if (expect_false (ev_is_active (w)))
1714 return; 2043 return;
1715 2044
1716 ev_start (EV_A_ (W)w, 1); 2045 ev_start (EV_A_ (W)w, 1);
1717 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2046 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1718} 2047}
1719 2048
1720void 2049void
1721ev_child_stop (EV_P_ ev_child *w) 2050ev_child_stop (EV_P_ ev_child *w)
1722{ 2051{
1723 ev_clear_pending (EV_A_ (W)w); 2052 clear_pending (EV_A_ (W)w);
1724 if (expect_false (!ev_is_active (w))) 2053 if (expect_false (!ev_is_active (w)))
1725 return; 2054 return;
1726 2055
1727 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2056 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1728 ev_stop (EV_A_ (W)w); 2057 ev_stop (EV_A_ (W)w);
1729} 2058}
1730 2059
1731#if EV_STAT_ENABLE 2060#if EV_STAT_ENABLE
1732 2061
1964} 2293}
1965 2294
1966void 2295void
1967ev_stat_stop (EV_P_ ev_stat *w) 2296ev_stat_stop (EV_P_ ev_stat *w)
1968{ 2297{
1969 ev_clear_pending (EV_A_ (W)w); 2298 clear_pending (EV_A_ (W)w);
1970 if (expect_false (!ev_is_active (w))) 2299 if (expect_false (!ev_is_active (w)))
1971 return; 2300 return;
1972 2301
1973#if EV_USE_INOTIFY 2302#if EV_USE_INOTIFY
1974 infy_del (EV_A_ w); 2303 infy_del (EV_A_ w);
1977 2306
1978 ev_stop (EV_A_ (W)w); 2307 ev_stop (EV_A_ (W)w);
1979} 2308}
1980#endif 2309#endif
1981 2310
2311#if EV_IDLE_ENABLE
1982void 2312void
1983ev_idle_start (EV_P_ ev_idle *w) 2313ev_idle_start (EV_P_ ev_idle *w)
1984{ 2314{
1985 if (expect_false (ev_is_active (w))) 2315 if (expect_false (ev_is_active (w)))
1986 return; 2316 return;
1987 2317
2318 pri_adjust (EV_A_ (W)w);
2319
2320 {
2321 int active = ++idlecnt [ABSPRI (w)];
2322
2323 ++idleall;
1988 ev_start (EV_A_ (W)w, ++idlecnt); 2324 ev_start (EV_A_ (W)w, active);
2325
1989 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2326 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1990 idles [idlecnt - 1] = w; 2327 idles [ABSPRI (w)][active - 1] = w;
2328 }
1991} 2329}
1992 2330
1993void 2331void
1994ev_idle_stop (EV_P_ ev_idle *w) 2332ev_idle_stop (EV_P_ ev_idle *w)
1995{ 2333{
1996 ev_clear_pending (EV_A_ (W)w); 2334 clear_pending (EV_A_ (W)w);
1997 if (expect_false (!ev_is_active (w))) 2335 if (expect_false (!ev_is_active (w)))
1998 return; 2336 return;
1999 2337
2000 { 2338 {
2001 int active = ((W)w)->active; 2339 int active = ((W)w)->active;
2002 idles [active - 1] = idles [--idlecnt]; 2340
2341 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2003 ((W)idles [active - 1])->active = active; 2342 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2343
2344 ev_stop (EV_A_ (W)w);
2345 --idleall;
2004 } 2346 }
2005
2006 ev_stop (EV_A_ (W)w);
2007} 2347}
2348#endif
2008 2349
2009void 2350void
2010ev_prepare_start (EV_P_ ev_prepare *w) 2351ev_prepare_start (EV_P_ ev_prepare *w)
2011{ 2352{
2012 if (expect_false (ev_is_active (w))) 2353 if (expect_false (ev_is_active (w)))
2018} 2359}
2019 2360
2020void 2361void
2021ev_prepare_stop (EV_P_ ev_prepare *w) 2362ev_prepare_stop (EV_P_ ev_prepare *w)
2022{ 2363{
2023 ev_clear_pending (EV_A_ (W)w); 2364 clear_pending (EV_A_ (W)w);
2024 if (expect_false (!ev_is_active (w))) 2365 if (expect_false (!ev_is_active (w)))
2025 return; 2366 return;
2026 2367
2027 { 2368 {
2028 int active = ((W)w)->active; 2369 int active = ((W)w)->active;
2045} 2386}
2046 2387
2047void 2388void
2048ev_check_stop (EV_P_ ev_check *w) 2389ev_check_stop (EV_P_ ev_check *w)
2049{ 2390{
2050 ev_clear_pending (EV_A_ (W)w); 2391 clear_pending (EV_A_ (W)w);
2051 if (expect_false (!ev_is_active (w))) 2392 if (expect_false (!ev_is_active (w)))
2052 return; 2393 return;
2053 2394
2054 { 2395 {
2055 int active = ((W)w)->active; 2396 int active = ((W)w)->active;
2062 2403
2063#if EV_EMBED_ENABLE 2404#if EV_EMBED_ENABLE
2064void noinline 2405void noinline
2065ev_embed_sweep (EV_P_ ev_embed *w) 2406ev_embed_sweep (EV_P_ ev_embed *w)
2066{ 2407{
2067 ev_loop (w->loop, EVLOOP_NONBLOCK); 2408 ev_loop (w->other, EVLOOP_NONBLOCK);
2068} 2409}
2069 2410
2070static void 2411static void
2071embed_cb (EV_P_ ev_io *io, int revents) 2412embed_io_cb (EV_P_ ev_io *io, int revents)
2072{ 2413{
2073 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2414 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2074 2415
2075 if (ev_cb (w)) 2416 if (ev_cb (w))
2076 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2417 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2077 else 2418 else
2078 ev_embed_sweep (loop, w); 2419 ev_loop (w->other, EVLOOP_NONBLOCK);
2079} 2420}
2421
2422static void
2423embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2424{
2425 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2426
2427 {
2428 struct ev_loop *loop = w->other;
2429
2430 while (fdchangecnt)
2431 {
2432 fd_reify (EV_A);
2433 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2434 }
2435 }
2436}
2437
2438#if 0
2439static void
2440embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2441{
2442 ev_idle_stop (EV_A_ idle);
2443}
2444#endif
2080 2445
2081void 2446void
2082ev_embed_start (EV_P_ ev_embed *w) 2447ev_embed_start (EV_P_ ev_embed *w)
2083{ 2448{
2084 if (expect_false (ev_is_active (w))) 2449 if (expect_false (ev_is_active (w)))
2085 return; 2450 return;
2086 2451
2087 { 2452 {
2088 struct ev_loop *loop = w->loop; 2453 struct ev_loop *loop = w->other;
2089 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2454 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2090 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2455 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2091 } 2456 }
2092 2457
2093 ev_set_priority (&w->io, ev_priority (w)); 2458 ev_set_priority (&w->io, ev_priority (w));
2094 ev_io_start (EV_A_ &w->io); 2459 ev_io_start (EV_A_ &w->io);
2095 2460
2461 ev_prepare_init (&w->prepare, embed_prepare_cb);
2462 ev_set_priority (&w->prepare, EV_MINPRI);
2463 ev_prepare_start (EV_A_ &w->prepare);
2464
2465 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2466
2096 ev_start (EV_A_ (W)w, 1); 2467 ev_start (EV_A_ (W)w, 1);
2097} 2468}
2098 2469
2099void 2470void
2100ev_embed_stop (EV_P_ ev_embed *w) 2471ev_embed_stop (EV_P_ ev_embed *w)
2101{ 2472{
2102 ev_clear_pending (EV_A_ (W)w); 2473 clear_pending (EV_A_ (W)w);
2103 if (expect_false (!ev_is_active (w))) 2474 if (expect_false (!ev_is_active (w)))
2104 return; 2475 return;
2105 2476
2106 ev_io_stop (EV_A_ &w->io); 2477 ev_io_stop (EV_A_ &w->io);
2478 ev_prepare_stop (EV_A_ &w->prepare);
2107 2479
2108 ev_stop (EV_A_ (W)w); 2480 ev_stop (EV_A_ (W)w);
2109} 2481}
2110#endif 2482#endif
2111 2483
2122} 2494}
2123 2495
2124void 2496void
2125ev_fork_stop (EV_P_ ev_fork *w) 2497ev_fork_stop (EV_P_ ev_fork *w)
2126{ 2498{
2127 ev_clear_pending (EV_A_ (W)w); 2499 clear_pending (EV_A_ (W)w);
2128 if (expect_false (!ev_is_active (w))) 2500 if (expect_false (!ev_is_active (w)))
2129 return; 2501 return;
2130 2502
2131 { 2503 {
2132 int active = ((W)w)->active; 2504 int active = ((W)w)->active;
2136 2508
2137 ev_stop (EV_A_ (W)w); 2509 ev_stop (EV_A_ (W)w);
2138} 2510}
2139#endif 2511#endif
2140 2512
2513#if EV_ASYNC_ENABLE
2514void
2515ev_async_start (EV_P_ ev_async *w)
2516{
2517 if (expect_false (ev_is_active (w)))
2518 return;
2519
2520 evpipe_init (EV_A);
2521
2522 ev_start (EV_A_ (W)w, ++asynccnt);
2523 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2524 asyncs [asynccnt - 1] = w;
2525}
2526
2527void
2528ev_async_stop (EV_P_ ev_async *w)
2529{
2530 clear_pending (EV_A_ (W)w);
2531 if (expect_false (!ev_is_active (w)))
2532 return;
2533
2534 {
2535 int active = ((W)w)->active;
2536 asyncs [active - 1] = asyncs [--asynccnt];
2537 ((W)asyncs [active - 1])->active = active;
2538 }
2539
2540 ev_stop (EV_A_ (W)w);
2541}
2542
2543void
2544ev_async_send (EV_P_ ev_async *w)
2545{
2546 w->sent = 1;
2547 evpipe_write (EV_A_ &gotasync);
2548}
2549#endif
2550
2141/*****************************************************************************/ 2551/*****************************************************************************/
2142 2552
2143struct ev_once 2553struct ev_once
2144{ 2554{
2145 ev_io io; 2555 ev_io io;
2200 ev_timer_set (&once->to, timeout, 0.); 2610 ev_timer_set (&once->to, timeout, 0.);
2201 ev_timer_start (EV_A_ &once->to); 2611 ev_timer_start (EV_A_ &once->to);
2202 } 2612 }
2203} 2613}
2204 2614
2615#if EV_MULTIPLICITY
2616 #include "ev_wrap.h"
2617#endif
2618
2205#ifdef __cplusplus 2619#ifdef __cplusplus
2206} 2620}
2207#endif 2621#endif
2208 2622

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines