ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.161 by root, Sat Dec 1 23:43:45 2007 UTC vs.
Revision 1.251 by root, Thu May 22 03:42:34 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
250#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL
252#endif
253
254#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif
257
258/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 259
197#ifndef CLOCK_MONOTONIC 260#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 261# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 262# define EV_USE_MONOTONIC 0
200#endif 263#endif
202#ifndef CLOCK_REALTIME 265#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 266# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 267# define EV_USE_REALTIME 0
205#endif 268#endif
206 269
270#if !EV_STAT_ENABLE
271# undef EV_USE_INOTIFY
272# define EV_USE_INOTIFY 0
273#endif
274
275#if !EV_USE_NANOSLEEP
276# ifndef _WIN32
277# include <sys/select.h>
278# endif
279#endif
280
281#if EV_USE_INOTIFY
282# include <sys/inotify.h>
283#endif
284
207#if EV_SELECT_IS_WINSOCKET 285#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 286# include <winsock.h>
209#endif 287#endif
210 288
211#if !EV_STAT_ENABLE 289#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 290/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
291# include <stdint.h>
292# ifdef __cplusplus
293extern "C" {
213#endif 294# endif
214 295int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 296# ifdef __cplusplus
216# include <sys/inotify.h> 297}
298# endif
217#endif 299#endif
218 300
219/**/ 301/**/
302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
308
309/*
310 * This is used to avoid floating point rounding problems.
311 * It is added to ev_rt_now when scheduling periodics
312 * to ensure progress, time-wise, even when rounding
313 * errors are against us.
314 * This value is good at least till the year 4000.
315 * Better solutions welcome.
316 */
317#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 318
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 319#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 320#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 321/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 322
225#if __GNUC__ >= 3 323#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 324# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 325# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 326#else
236# define expect(expr,value) (expr) 327# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 328# define noinline
329# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
330# define inline
331# endif
240#endif 332#endif
241 333
242#define expect_false(expr) expect ((expr) != 0, 0) 334#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 335#define expect_true(expr) expect ((expr) != 0, 1)
336#define inline_size static inline
337
338#if EV_MINIMAL
339# define inline_speed static noinline
340#else
341# define inline_speed static inline
342#endif
244 343
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 344#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 345#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 346
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 347#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 348#define EMPTY2(a,b) /* used to suppress some warnings */
250 349
251typedef ev_watcher *W; 350typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 351typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 352typedef ev_watcher_time *WT;
254 353
354#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at
356
357#if EV_USE_MONOTONIC
358/* sig_atomic_t is used to avoid per-thread variables or locking but still */
359/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
361#endif
256 362
257#ifdef _WIN32 363#ifdef _WIN32
258# include "ev_win32.c" 364# include "ev_win32.c"
259#endif 365#endif
260 366
281 perror (msg); 387 perror (msg);
282 abort (); 388 abort ();
283 } 389 }
284} 390}
285 391
392static void *
393ev_realloc_emul (void *ptr, long size)
394{
395 /* some systems, notably openbsd and darwin, fail to properly
396 * implement realloc (x, 0) (as required by both ansi c-98 and
397 * the single unix specification, so work around them here.
398 */
399
400 if (size)
401 return realloc (ptr, size);
402
403 free (ptr);
404 return 0;
405}
406
286static void *(*alloc)(void *ptr, long size); 407static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 408
288void 409void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 410ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 411{
291 alloc = cb; 412 alloc = cb;
292} 413}
293 414
294inline_speed void * 415inline_speed void *
295ev_realloc (void *ptr, long size) 416ev_realloc (void *ptr, long size)
296{ 417{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 418 ptr = alloc (ptr, size);
298 419
299 if (!ptr && size) 420 if (!ptr && size)
300 { 421 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 422 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 423 abort ();
325 W w; 446 W w;
326 int events; 447 int events;
327} ANPENDING; 448} ANPENDING;
328 449
329#if EV_USE_INOTIFY 450#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */
330typedef struct 452typedef struct
331{ 453{
332 WL head; 454 WL head;
333} ANFS; 455} ANFS;
456#endif
457
458/* Heap Entry */
459#if EV_HEAP_CACHE_AT
460 typedef struct {
461 ev_tstamp at;
462 WT w;
463 } ANHE;
464
465 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else
469 typedef WT ANHE;
470
471 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he)
334#endif 474#endif
335 475
336#if EV_MULTIPLICITY 476#if EV_MULTIPLICITY
337 477
338 struct ev_loop 478 struct ev_loop
396{ 536{
397 return ev_rt_now; 537 return ev_rt_now;
398} 538}
399#endif 539#endif
400 540
401#define array_roundsize(type,n) (((n) | 4) & ~3) 541void
542ev_sleep (ev_tstamp delay)
543{
544 if (delay > 0.)
545 {
546#if EV_USE_NANOSLEEP
547 struct timespec ts;
548
549 ts.tv_sec = (time_t)delay;
550 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
551
552 nanosleep (&ts, 0);
553#elif defined(_WIN32)
554 Sleep ((unsigned long)(delay * 1e3));
555#else
556 struct timeval tv;
557
558 tv.tv_sec = (time_t)delay;
559 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
560
561 select (0, 0, 0, 0, &tv);
562#endif
563 }
564}
565
566/*****************************************************************************/
567
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
569
570int inline_size
571array_nextsize (int elem, int cur, int cnt)
572{
573 int ncur = cur + 1;
574
575 do
576 ncur <<= 1;
577 while (cnt > ncur);
578
579 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
580 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
581 {
582 ncur *= elem;
583 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
584 ncur = ncur - sizeof (void *) * 4;
585 ncur /= elem;
586 }
587
588 return ncur;
589}
590
591static noinline void *
592array_realloc (int elem, void *base, int *cur, int cnt)
593{
594 *cur = array_nextsize (elem, *cur, cnt);
595 return ev_realloc (base, elem * *cur);
596}
402 597
403#define array_needsize(type,base,cur,cnt,init) \ 598#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 599 if (expect_false ((cnt) > (cur))) \
405 { \ 600 { \
406 int newcnt = cur; \ 601 int ocur_ = (cur); \
407 do \ 602 (base) = (type *)array_realloc \
408 { \ 603 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 604 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 605 }
417 606
607#if 0
418#define array_slim(type,stem) \ 608#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 609 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 610 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 611 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 612 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 613 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 614 }
615#endif
425 616
426#define array_free(stem, idx) \ 617#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 618 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 619
429/*****************************************************************************/ 620/*****************************************************************************/
430 621
431void noinline 622void noinline
432ev_feed_event (EV_P_ void *w, int revents) 623ev_feed_event (EV_P_ void *w, int revents)
433{ 624{
434 W w_ = (W)w; 625 W w_ = (W)w;
626 int pri = ABSPRI (w_);
435 627
436 if (expect_false (w_->pending)) 628 if (expect_false (w_->pending))
629 pendings [pri][w_->pending - 1].events |= revents;
630 else
437 { 631 {
632 w_->pending = ++pendingcnt [pri];
633 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
634 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 635 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 636 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 637}
447 638
448void inline_size 639void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 640queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 641{
451 int i; 642 int i;
452 643
453 for (i = 0; i < eventcnt; ++i) 644 for (i = 0; i < eventcnt; ++i)
485} 676}
486 677
487void 678void
488ev_feed_fd_event (EV_P_ int fd, int revents) 679ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 680{
681 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 682 fd_event (EV_A_ fd, revents);
491} 683}
492 684
493void inline_size 685void inline_size
494fd_reify (EV_P) 686fd_reify (EV_P)
495{ 687{
499 { 691 {
500 int fd = fdchanges [i]; 692 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 693 ANFD *anfd = anfds + fd;
502 ev_io *w; 694 ev_io *w;
503 695
504 int events = 0; 696 unsigned char events = 0;
505 697
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 698 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 699 events |= (unsigned char)w->events;
508 700
509#if EV_SELECT_IS_WINSOCKET 701#if EV_SELECT_IS_WINSOCKET
510 if (events) 702 if (events)
511 { 703 {
512 unsigned long argp; 704 unsigned long argp;
705 #ifdef EV_FD_TO_WIN32_HANDLE
706 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
707 #else
513 anfd->handle = _get_osfhandle (fd); 708 anfd->handle = _get_osfhandle (fd);
709 #endif
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 710 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
515 } 711 }
516#endif 712#endif
517 713
714 {
715 unsigned char o_events = anfd->events;
716 unsigned char o_reify = anfd->reify;
717
518 anfd->reify = 0; 718 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 719 anfd->events = events;
720
721 if (o_events != events || o_reify & EV_IOFDSET)
722 backend_modify (EV_A_ fd, o_events, events);
723 }
522 } 724 }
523 725
524 fdchangecnt = 0; 726 fdchangecnt = 0;
525} 727}
526 728
527void inline_size 729void inline_size
528fd_change (EV_P_ int fd) 730fd_change (EV_P_ int fd, int flags)
529{ 731{
530 if (expect_false (anfds [fd].reify)) 732 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 733 anfds [fd].reify |= flags;
534 734
735 if (expect_true (!reify))
736 {
535 ++fdchangecnt; 737 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 738 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 739 fdchanges [fdchangecnt - 1] = fd;
740 }
538} 741}
539 742
540void inline_speed 743void inline_speed
541fd_kill (EV_P_ int fd) 744fd_kill (EV_P_ int fd)
542{ 745{
593 796
594 for (fd = 0; fd < anfdmax; ++fd) 797 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 798 if (anfds [fd].events)
596 { 799 {
597 anfds [fd].events = 0; 800 anfds [fd].events = 0;
598 fd_change (EV_A_ fd); 801 fd_change (EV_A_ fd, EV_IOFDSET | 1);
599 } 802 }
600} 803}
601 804
602/*****************************************************************************/ 805/*****************************************************************************/
603 806
807/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree.
811 */
812
813/*
814 * at the moment we allow libev the luxury of two heaps,
815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
816 * which is more cache-efficient.
817 * the difference is about 5% with 50000+ watchers.
818 */
819#if EV_USE_4HEAP
820
821#define DHEAP 4
822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k))
825
826/* away from the root */
604void inline_speed 827void inline_speed
605upheap (WT *heap, int k) 828downheap (ANHE *heap, int N, int k)
606{ 829{
607 WT w = heap [k]; 830 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0;
608 832
609 while (k && heap [k >> 1]->at > w->at) 833 for (;;)
610 {
611 heap [k] = heap [k >> 1];
612 ((W)heap [k])->active = k + 1;
613 k >>= 1;
614 } 834 {
835 ev_tstamp minat;
836 ANHE *minpos;
837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
615 838
839 /* find minimum child */
840 if (expect_true (pos + DHEAP - 1 < E))
841 {
842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
846 }
847 else if (pos < E)
848 {
849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
851 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
852 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
853 }
854 else
855 break;
856
857 if (ANHE_at (he) <= minat)
858 break;
859
860 heap [k] = *minpos;
861 ev_active (ANHE_w (*minpos)) = k;
862
863 k = minpos - heap;
864 }
865
616 heap [k] = w; 866 heap [k] = he;
617 ((W)heap [k])->active = k + 1; 867 ev_active (ANHE_w (he)) = k;
618
619} 868}
620 869
870#else /* 4HEAP */
871
872#define HEAP0 1
873#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p))
875
876/* away from the root */
621void inline_speed 877void inline_speed
622downheap (WT *heap, int N, int k) 878downheap (ANHE *heap, int N, int k)
623{ 879{
624 WT w = heap [k]; 880 ANHE he = heap [k];
625 881
626 while (k < (N >> 1)) 882 for (;;)
627 { 883 {
628 int j = k << 1; 884 int c = k << 1;
629 885
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 886 if (c > N + HEAP0 - 1)
631 ++j;
632
633 if (w->at <= heap [j]->at)
634 break; 887 break;
635 888
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0;
891
892 if (ANHE_at (he) <= ANHE_at (heap [c]))
893 break;
894
636 heap [k] = heap [j]; 895 heap [k] = heap [c];
637 ((W)heap [k])->active = k + 1; 896 ev_active (ANHE_w (heap [k])) = k;
897
638 k = j; 898 k = c;
639 } 899 }
640 900
641 heap [k] = w; 901 heap [k] = he;
642 ((W)heap [k])->active = k + 1; 902 ev_active (ANHE_w (he)) = k;
903}
904#endif
905
906/* towards the root */
907void inline_speed
908upheap (ANHE *heap, int k)
909{
910 ANHE he = heap [k];
911
912 for (;;)
913 {
914 int p = HPARENT (k);
915
916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
917 break;
918
919 heap [k] = heap [p];
920 ev_active (ANHE_w (heap [k])) = k;
921 k = p;
922 }
923
924 heap [k] = he;
925 ev_active (ANHE_w (he)) = k;
643} 926}
644 927
645void inline_size 928void inline_size
646adjustheap (WT *heap, int N, int k) 929adjustheap (ANHE *heap, int N, int k)
647{ 930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
648 upheap (heap, k); 932 upheap (heap, k);
933 else
649 downheap (heap, N, k); 934 downheap (heap, N, k);
935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
944 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
945 for (i = 0; i < N; ++i)
946 upheap (heap, i + HEAP0);
650} 947}
651 948
652/*****************************************************************************/ 949/*****************************************************************************/
653 950
654typedef struct 951typedef struct
655{ 952{
656 WL head; 953 WL head;
657 sig_atomic_t volatile gotsig; 954 EV_ATOMIC_T gotsig;
658} ANSIG; 955} ANSIG;
659 956
660static ANSIG *signals; 957static ANSIG *signals;
661static int signalmax; 958static int signalmax;
662 959
663static int sigpipe [2]; 960static EV_ATOMIC_T gotsig;
664static sig_atomic_t volatile gotsig;
665static ev_io sigev;
666 961
667void inline_size 962void inline_size
668signals_init (ANSIG *base, int count) 963signals_init (ANSIG *base, int count)
669{ 964{
670 while (count--) 965 while (count--)
674 969
675 ++base; 970 ++base;
676 } 971 }
677} 972}
678 973
679static void 974/*****************************************************************************/
680sighandler (int signum)
681{
682#if _WIN32
683 signal (signum, sighandler);
684#endif
685 975
686 signals [signum - 1].gotsig = 1;
687
688 if (!gotsig)
689 {
690 int old_errno = errno;
691 gotsig = 1;
692 write (sigpipe [1], &signum, 1);
693 errno = old_errno;
694 }
695}
696
697void noinline
698ev_feed_signal_event (EV_P_ int signum)
699{
700 WL w;
701
702#if EV_MULTIPLICITY
703 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
704#endif
705
706 --signum;
707
708 if (signum < 0 || signum >= signalmax)
709 return;
710
711 signals [signum].gotsig = 0;
712
713 for (w = signals [signum].head; w; w = w->next)
714 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
715}
716
717static void
718sigcb (EV_P_ ev_io *iow, int revents)
719{
720 int signum;
721
722 read (sigpipe [0], &revents, 1);
723 gotsig = 0;
724
725 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1);
728}
729
730void inline_size 976void inline_speed
731fd_intern (int fd) 977fd_intern (int fd)
732{ 978{
733#ifdef _WIN32 979#ifdef _WIN32
734 int arg = 1; 980 int arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 981 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
738 fcntl (fd, F_SETFL, O_NONBLOCK); 984 fcntl (fd, F_SETFL, O_NONBLOCK);
739#endif 985#endif
740} 986}
741 987
742static void noinline 988static void noinline
743siginit (EV_P) 989evpipe_init (EV_P)
744{ 990{
991 if (!ev_is_active (&pipeev))
992 {
993#if EV_USE_EVENTFD
994 if ((evfd = eventfd (0, 0)) >= 0)
995 {
996 evpipe [0] = -1;
997 fd_intern (evfd);
998 ev_io_set (&pipeev, evfd, EV_READ);
999 }
1000 else
1001#endif
1002 {
1003 while (pipe (evpipe))
1004 syserr ("(libev) error creating signal/async pipe");
1005
745 fd_intern (sigpipe [0]); 1006 fd_intern (evpipe [0]);
746 fd_intern (sigpipe [1]); 1007 fd_intern (evpipe [1]);
1008 ev_io_set (&pipeev, evpipe [0], EV_READ);
1009 }
747 1010
748 ev_io_set (&sigev, sigpipe [0], EV_READ);
749 ev_io_start (EV_A_ &sigev); 1011 ev_io_start (EV_A_ &pipeev);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1012 ev_unref (EV_A); /* watcher should not keep loop alive */
1013 }
1014}
1015
1016void inline_size
1017evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1018{
1019 if (!*flag)
1020 {
1021 int old_errno = errno; /* save errno because write might clobber it */
1022
1023 *flag = 1;
1024
1025#if EV_USE_EVENTFD
1026 if (evfd >= 0)
1027 {
1028 uint64_t counter = 1;
1029 write (evfd, &counter, sizeof (uint64_t));
1030 }
1031 else
1032#endif
1033 write (evpipe [1], &old_errno, 1);
1034
1035 errno = old_errno;
1036 }
1037}
1038
1039static void
1040pipecb (EV_P_ ev_io *iow, int revents)
1041{
1042#if EV_USE_EVENTFD
1043 if (evfd >= 0)
1044 {
1045 uint64_t counter;
1046 read (evfd, &counter, sizeof (uint64_t));
1047 }
1048 else
1049#endif
1050 {
1051 char dummy;
1052 read (evpipe [0], &dummy, 1);
1053 }
1054
1055 if (gotsig && ev_is_default_loop (EV_A))
1056 {
1057 int signum;
1058 gotsig = 0;
1059
1060 for (signum = signalmax; signum--; )
1061 if (signals [signum].gotsig)
1062 ev_feed_signal_event (EV_A_ signum + 1);
1063 }
1064
1065#if EV_ASYNC_ENABLE
1066 if (gotasync)
1067 {
1068 int i;
1069 gotasync = 0;
1070
1071 for (i = asynccnt; i--; )
1072 if (asyncs [i]->sent)
1073 {
1074 asyncs [i]->sent = 0;
1075 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1076 }
1077 }
1078#endif
751} 1079}
752 1080
753/*****************************************************************************/ 1081/*****************************************************************************/
754 1082
1083static void
1084ev_sighandler (int signum)
1085{
1086#if EV_MULTIPLICITY
1087 struct ev_loop *loop = &default_loop_struct;
1088#endif
1089
1090#if _WIN32
1091 signal (signum, ev_sighandler);
1092#endif
1093
1094 signals [signum - 1].gotsig = 1;
1095 evpipe_write (EV_A_ &gotsig);
1096}
1097
1098void noinline
1099ev_feed_signal_event (EV_P_ int signum)
1100{
1101 WL w;
1102
1103#if EV_MULTIPLICITY
1104 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1105#endif
1106
1107 --signum;
1108
1109 if (signum < 0 || signum >= signalmax)
1110 return;
1111
1112 signals [signum].gotsig = 0;
1113
1114 for (w = signals [signum].head; w; w = w->next)
1115 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1116}
1117
1118/*****************************************************************************/
1119
755static ev_child *childs [EV_PID_HASHSIZE]; 1120static WL childs [EV_PID_HASHSIZE];
756 1121
757#ifndef _WIN32 1122#ifndef _WIN32
758 1123
759static ev_signal childev; 1124static ev_signal childev;
760 1125
1126#ifndef WIFCONTINUED
1127# define WIFCONTINUED(status) 0
1128#endif
1129
761void inline_speed 1130void inline_speed
762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1131child_reap (EV_P_ int chain, int pid, int status)
763{ 1132{
764 ev_child *w; 1133 ev_child *w;
1134 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
765 1135
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1136 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1137 {
767 if (w->pid == pid || !w->pid) 1138 if ((w->pid == pid || !w->pid)
1139 && (!traced || (w->flags & 1)))
768 { 1140 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1141 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
770 w->rpid = pid; 1142 w->rpid = pid;
771 w->rstatus = status; 1143 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1144 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 1145 }
1146 }
774} 1147}
775 1148
776#ifndef WCONTINUED 1149#ifndef WCONTINUED
777# define WCONTINUED 0 1150# define WCONTINUED 0
778#endif 1151#endif
787 if (!WCONTINUED 1160 if (!WCONTINUED
788 || errno != EINVAL 1161 || errno != EINVAL
789 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1162 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
790 return; 1163 return;
791 1164
792 /* make sure we are called again until all childs have been reaped */ 1165 /* make sure we are called again until all children have been reaped */
793 /* we need to do it this way so that the callback gets called before we continue */ 1166 /* we need to do it this way so that the callback gets called before we continue */
794 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1167 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
795 1168
796 child_reap (EV_A_ sw, pid, pid, status); 1169 child_reap (EV_A_ pid, pid, status);
797 if (EV_PID_HASHSIZE > 1) 1170 if (EV_PID_HASHSIZE > 1)
798 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1171 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
799} 1172}
800 1173
801#endif 1174#endif
802 1175
803/*****************************************************************************/ 1176/*****************************************************************************/
875} 1248}
876 1249
877unsigned int 1250unsigned int
878ev_embeddable_backends (void) 1251ev_embeddable_backends (void)
879{ 1252{
880 return EVBACKEND_EPOLL 1253 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 1254
882 | EVBACKEND_PORT; 1255 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1256 /* please fix it and tell me how to detect the fix */
1257 flags &= ~EVBACKEND_EPOLL;
1258
1259 return flags;
883} 1260}
884 1261
885unsigned int 1262unsigned int
886ev_backend (EV_P) 1263ev_backend (EV_P)
887{ 1264{
888 return backend; 1265 return backend;
1266}
1267
1268unsigned int
1269ev_loop_count (EV_P)
1270{
1271 return loop_count;
1272}
1273
1274void
1275ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1276{
1277 io_blocktime = interval;
1278}
1279
1280void
1281ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1282{
1283 timeout_blocktime = interval;
889} 1284}
890 1285
891static void noinline 1286static void noinline
892loop_init (EV_P_ unsigned int flags) 1287loop_init (EV_P_ unsigned int flags)
893{ 1288{
899 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1294 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
900 have_monotonic = 1; 1295 have_monotonic = 1;
901 } 1296 }
902#endif 1297#endif
903 1298
904 ev_rt_now = ev_time (); 1299 ev_rt_now = ev_time ();
905 mn_now = get_clock (); 1300 mn_now = get_clock ();
906 now_floor = mn_now; 1301 now_floor = mn_now;
907 rtmn_diff = ev_rt_now - mn_now; 1302 rtmn_diff = ev_rt_now - mn_now;
1303
1304 io_blocktime = 0.;
1305 timeout_blocktime = 0.;
1306 backend = 0;
1307 backend_fd = -1;
1308 gotasync = 0;
1309#if EV_USE_INOTIFY
1310 fs_fd = -2;
1311#endif
908 1312
909 /* pid check not overridable via env */ 1313 /* pid check not overridable via env */
910#ifndef _WIN32 1314#ifndef _WIN32
911 if (flags & EVFLAG_FORKCHECK) 1315 if (flags & EVFLAG_FORKCHECK)
912 curpid = getpid (); 1316 curpid = getpid ();
915 if (!(flags & EVFLAG_NOENV) 1319 if (!(flags & EVFLAG_NOENV)
916 && !enable_secure () 1320 && !enable_secure ()
917 && getenv ("LIBEV_FLAGS")) 1321 && getenv ("LIBEV_FLAGS"))
918 flags = atoi (getenv ("LIBEV_FLAGS")); 1322 flags = atoi (getenv ("LIBEV_FLAGS"));
919 1323
920 if (!(flags & 0x0000ffffUL)) 1324 if (!(flags & 0x0000ffffU))
921 flags |= ev_recommended_backends (); 1325 flags |= ev_recommended_backends ();
922
923 backend = 0;
924 backend_fd = -1;
925#if EV_USE_INOTIFY
926 fs_fd = -2;
927#endif
928 1326
929#if EV_USE_PORT 1327#if EV_USE_PORT
930 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1328 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
931#endif 1329#endif
932#if EV_USE_KQUEUE 1330#if EV_USE_KQUEUE
940#endif 1338#endif
941#if EV_USE_SELECT 1339#if EV_USE_SELECT
942 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1340 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
943#endif 1341#endif
944 1342
945 ev_init (&sigev, sigcb); 1343 ev_init (&pipeev, pipecb);
946 ev_set_priority (&sigev, EV_MAXPRI); 1344 ev_set_priority (&pipeev, EV_MAXPRI);
947 } 1345 }
948} 1346}
949 1347
950static void noinline 1348static void noinline
951loop_destroy (EV_P) 1349loop_destroy (EV_P)
952{ 1350{
953 int i; 1351 int i;
1352
1353 if (ev_is_active (&pipeev))
1354 {
1355 ev_ref (EV_A); /* signal watcher */
1356 ev_io_stop (EV_A_ &pipeev);
1357
1358#if EV_USE_EVENTFD
1359 if (evfd >= 0)
1360 close (evfd);
1361#endif
1362
1363 if (evpipe [0] >= 0)
1364 {
1365 close (evpipe [0]);
1366 close (evpipe [1]);
1367 }
1368 }
954 1369
955#if EV_USE_INOTIFY 1370#if EV_USE_INOTIFY
956 if (fs_fd >= 0) 1371 if (fs_fd >= 0)
957 close (fs_fd); 1372 close (fs_fd);
958#endif 1373#endif
975#if EV_USE_SELECT 1390#if EV_USE_SELECT
976 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1391 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
977#endif 1392#endif
978 1393
979 for (i = NUMPRI; i--; ) 1394 for (i = NUMPRI; i--; )
1395 {
980 array_free (pending, [i]); 1396 array_free (pending, [i]);
1397#if EV_IDLE_ENABLE
1398 array_free (idle, [i]);
1399#endif
1400 }
1401
1402 ev_free (anfds); anfdmax = 0;
981 1403
982 /* have to use the microsoft-never-gets-it-right macro */ 1404 /* have to use the microsoft-never-gets-it-right macro */
983 array_free (fdchange, EMPTY0); 1405 array_free (fdchange, EMPTY);
984 array_free (timer, EMPTY0); 1406 array_free (timer, EMPTY);
985#if EV_PERIODIC_ENABLE 1407#if EV_PERIODIC_ENABLE
986 array_free (periodic, EMPTY0); 1408 array_free (periodic, EMPTY);
987#endif 1409#endif
1410#if EV_FORK_ENABLE
988 array_free (idle, EMPTY0); 1411 array_free (fork, EMPTY);
1412#endif
989 array_free (prepare, EMPTY0); 1413 array_free (prepare, EMPTY);
990 array_free (check, EMPTY0); 1414 array_free (check, EMPTY);
1415#if EV_ASYNC_ENABLE
1416 array_free (async, EMPTY);
1417#endif
991 1418
992 backend = 0; 1419 backend = 0;
993} 1420}
994 1421
1422#if EV_USE_INOTIFY
995void inline_size infy_fork (EV_P); 1423void inline_size infy_fork (EV_P);
1424#endif
996 1425
997void inline_size 1426void inline_size
998loop_fork (EV_P) 1427loop_fork (EV_P)
999{ 1428{
1000#if EV_USE_PORT 1429#if EV_USE_PORT
1008#endif 1437#endif
1009#if EV_USE_INOTIFY 1438#if EV_USE_INOTIFY
1010 infy_fork (EV_A); 1439 infy_fork (EV_A);
1011#endif 1440#endif
1012 1441
1013 if (ev_is_active (&sigev)) 1442 if (ev_is_active (&pipeev))
1014 { 1443 {
1015 /* default loop */ 1444 /* this "locks" the handlers against writing to the pipe */
1445 /* while we modify the fd vars */
1446 gotsig = 1;
1447#if EV_ASYNC_ENABLE
1448 gotasync = 1;
1449#endif
1016 1450
1017 ev_ref (EV_A); 1451 ev_ref (EV_A);
1018 ev_io_stop (EV_A_ &sigev); 1452 ev_io_stop (EV_A_ &pipeev);
1453
1454#if EV_USE_EVENTFD
1455 if (evfd >= 0)
1456 close (evfd);
1457#endif
1458
1459 if (evpipe [0] >= 0)
1460 {
1019 close (sigpipe [0]); 1461 close (evpipe [0]);
1020 close (sigpipe [1]); 1462 close (evpipe [1]);
1463 }
1021 1464
1022 while (pipe (sigpipe))
1023 syserr ("(libev) error creating pipe");
1024
1025 siginit (EV_A); 1465 evpipe_init (EV_A);
1466 /* now iterate over everything, in case we missed something */
1467 pipecb (EV_A_ &pipeev, EV_READ);
1026 } 1468 }
1027 1469
1028 postfork = 0; 1470 postfork = 0;
1029} 1471}
1030 1472
1031#if EV_MULTIPLICITY 1473#if EV_MULTIPLICITY
1474
1032struct ev_loop * 1475struct ev_loop *
1033ev_loop_new (unsigned int flags) 1476ev_loop_new (unsigned int flags)
1034{ 1477{
1035 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1478 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1036 1479
1052} 1495}
1053 1496
1054void 1497void
1055ev_loop_fork (EV_P) 1498ev_loop_fork (EV_P)
1056{ 1499{
1057 postfork = 1; 1500 postfork = 1; /* must be in line with ev_default_fork */
1058} 1501}
1059 1502
1503#if EV_VERIFY
1504void noinline
1505verify_watcher (EV_P_ W w)
1506{
1507 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1508
1509 if (w->pending)
1510 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1511}
1512
1513static void noinline
1514verify_heap (EV_P_ ANHE *heap, int N)
1515{
1516 int i;
1517
1518 for (i = HEAP0; i < N + HEAP0; ++i)
1519 {
1520 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1521 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1522 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1523
1524 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1525 }
1526}
1527
1528static void noinline
1529array_verify (EV_P_ W *ws, int cnt)
1530{
1531 while (cnt--)
1532 {
1533 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1534 verify_watcher (EV_A_ ws [cnt]);
1535 }
1536}
1537#endif
1538
1539void
1540ev_loop_verify (EV_P)
1541{
1542#if EV_VERIFY
1543 int i;
1544 WL w;
1545
1546 assert (activecnt >= -1);
1547
1548 assert (fdchangemax >= fdchangecnt);
1549 for (i = 0; i < fdchangecnt; ++i)
1550 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1551
1552 assert (anfdmax >= 0);
1553 for (i = 0; i < anfdmax; ++i)
1554 for (w = anfds [i].head; w; w = w->next)
1555 {
1556 verify_watcher (EV_A_ (W)w);
1557 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1558 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1559 }
1560
1561 assert (timermax >= timercnt);
1562 verify_heap (EV_A_ timers, timercnt);
1563
1564#if EV_PERIODIC_ENABLE
1565 assert (periodicmax >= periodiccnt);
1566 verify_heap (EV_A_ periodics, periodiccnt);
1567#endif
1568
1569 for (i = NUMPRI; i--; )
1570 {
1571 assert (pendingmax [i] >= pendingcnt [i]);
1572#if EV_IDLE_ENABLE
1573 assert (idlemax [i] >= idlecnt [i]);
1574 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1575#endif
1576 }
1577
1578#if EV_FORK_ENABLE
1579 assert (forkmax >= forkcnt);
1580 array_verify (EV_A_ (W *)forks, forkcnt);
1581#endif
1582
1583#if EV_ASYNC_ENABLE
1584 assert (asyncmax >= asynccnt);
1585 array_verify (EV_A_ (W *)asyncs, asynccnt);
1586#endif
1587
1588 assert (preparemax >= preparecnt);
1589 array_verify (EV_A_ (W *)prepares, preparecnt);
1590
1591 assert (checkmax >= checkcnt);
1592 array_verify (EV_A_ (W *)checks, checkcnt);
1593
1594# if 0
1595 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1596 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1060#endif 1597# endif
1598#endif
1599}
1600
1601#endif /* multiplicity */
1061 1602
1062#if EV_MULTIPLICITY 1603#if EV_MULTIPLICITY
1063struct ev_loop * 1604struct ev_loop *
1064ev_default_loop_init (unsigned int flags) 1605ev_default_loop_init (unsigned int flags)
1065#else 1606#else
1066int 1607int
1067ev_default_loop (unsigned int flags) 1608ev_default_loop (unsigned int flags)
1068#endif 1609#endif
1069{ 1610{
1070 if (sigpipe [0] == sigpipe [1])
1071 if (pipe (sigpipe))
1072 return 0;
1073
1074 if (!ev_default_loop_ptr) 1611 if (!ev_default_loop_ptr)
1075 { 1612 {
1076#if EV_MULTIPLICITY 1613#if EV_MULTIPLICITY
1077 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1614 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1078#else 1615#else
1081 1618
1082 loop_init (EV_A_ flags); 1619 loop_init (EV_A_ flags);
1083 1620
1084 if (ev_backend (EV_A)) 1621 if (ev_backend (EV_A))
1085 { 1622 {
1086 siginit (EV_A);
1087
1088#ifndef _WIN32 1623#ifndef _WIN32
1089 ev_signal_init (&childev, childcb, SIGCHLD); 1624 ev_signal_init (&childev, childcb, SIGCHLD);
1090 ev_set_priority (&childev, EV_MAXPRI); 1625 ev_set_priority (&childev, EV_MAXPRI);
1091 ev_signal_start (EV_A_ &childev); 1626 ev_signal_start (EV_A_ &childev);
1092 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1627 ev_unref (EV_A); /* child watcher should not keep loop alive */
1109#ifndef _WIN32 1644#ifndef _WIN32
1110 ev_ref (EV_A); /* child watcher */ 1645 ev_ref (EV_A); /* child watcher */
1111 ev_signal_stop (EV_A_ &childev); 1646 ev_signal_stop (EV_A_ &childev);
1112#endif 1647#endif
1113 1648
1114 ev_ref (EV_A); /* signal watcher */
1115 ev_io_stop (EV_A_ &sigev);
1116
1117 close (sigpipe [0]); sigpipe [0] = 0;
1118 close (sigpipe [1]); sigpipe [1] = 0;
1119
1120 loop_destroy (EV_A); 1649 loop_destroy (EV_A);
1121} 1650}
1122 1651
1123void 1652void
1124ev_default_fork (void) 1653ev_default_fork (void)
1126#if EV_MULTIPLICITY 1655#if EV_MULTIPLICITY
1127 struct ev_loop *loop = ev_default_loop_ptr; 1656 struct ev_loop *loop = ev_default_loop_ptr;
1128#endif 1657#endif
1129 1658
1130 if (backend) 1659 if (backend)
1131 postfork = 1; 1660 postfork = 1; /* must be in line with ev_loop_fork */
1132} 1661}
1133 1662
1134/*****************************************************************************/ 1663/*****************************************************************************/
1135 1664
1136int inline_size 1665void
1137any_pending (EV_P) 1666ev_invoke (EV_P_ void *w, int revents)
1138{ 1667{
1139 int pri; 1668 EV_CB_INVOKE ((W)w, revents);
1140
1141 for (pri = NUMPRI; pri--; )
1142 if (pendingcnt [pri])
1143 return 1;
1144
1145 return 0;
1146} 1669}
1147 1670
1148void inline_speed 1671void inline_speed
1149call_pending (EV_P) 1672call_pending (EV_P)
1150{ 1673{
1159 { 1682 {
1160 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1683 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1161 1684
1162 p->w->pending = 0; 1685 p->w->pending = 0;
1163 EV_CB_INVOKE (p->w, p->events); 1686 EV_CB_INVOKE (p->w, p->events);
1687 EV_FREQUENT_CHECK;
1164 } 1688 }
1165 } 1689 }
1166} 1690}
1167 1691
1692#if EV_IDLE_ENABLE
1693void inline_size
1694idle_reify (EV_P)
1695{
1696 if (expect_false (idleall))
1697 {
1698 int pri;
1699
1700 for (pri = NUMPRI; pri--; )
1701 {
1702 if (pendingcnt [pri])
1703 break;
1704
1705 if (idlecnt [pri])
1706 {
1707 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1708 break;
1709 }
1710 }
1711 }
1712}
1713#endif
1714
1168void inline_size 1715void inline_size
1169timers_reify (EV_P) 1716timers_reify (EV_P)
1170{ 1717{
1718 EV_FREQUENT_CHECK;
1719
1171 while (timercnt && ((WT)timers [0])->at <= mn_now) 1720 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1172 { 1721 {
1173 ev_timer *w = timers [0]; 1722 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1174 1723
1175 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1724 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1176 1725
1177 /* first reschedule or stop timer */ 1726 /* first reschedule or stop timer */
1178 if (w->repeat) 1727 if (w->repeat)
1179 { 1728 {
1729 ev_at (w) += w->repeat;
1730 if (ev_at (w) < mn_now)
1731 ev_at (w) = mn_now;
1732
1180 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1733 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1181 1734
1182 ((WT)w)->at += w->repeat; 1735 ANHE_at_cache (timers [HEAP0]);
1183 if (((WT)w)->at < mn_now)
1184 ((WT)w)->at = mn_now;
1185
1186 downheap ((WT *)timers, timercnt, 0); 1736 downheap (timers, timercnt, HEAP0);
1187 } 1737 }
1188 else 1738 else
1189 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1739 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1190 1740
1741 EV_FREQUENT_CHECK;
1191 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1742 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1192 } 1743 }
1193} 1744}
1194 1745
1195#if EV_PERIODIC_ENABLE 1746#if EV_PERIODIC_ENABLE
1196void inline_size 1747void inline_size
1197periodics_reify (EV_P) 1748periodics_reify (EV_P)
1198{ 1749{
1750 EV_FREQUENT_CHECK;
1751
1199 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1752 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1200 { 1753 {
1201 ev_periodic *w = periodics [0]; 1754 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1202 1755
1203 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1756 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1204 1757
1205 /* first reschedule or stop timer */ 1758 /* first reschedule or stop timer */
1206 if (w->reschedule_cb) 1759 if (w->reschedule_cb)
1207 { 1760 {
1208 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1761 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1762
1209 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1763 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1764
1765 ANHE_at_cache (periodics [HEAP0]);
1210 downheap ((WT *)periodics, periodiccnt, 0); 1766 downheap (periodics, periodiccnt, HEAP0);
1211 } 1767 }
1212 else if (w->interval) 1768 else if (w->interval)
1213 { 1769 {
1214 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1770 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1215 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1771 /* if next trigger time is not sufficiently in the future, put it there */
1772 /* this might happen because of floating point inexactness */
1773 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1774 {
1775 ev_at (w) += w->interval;
1776
1777 /* if interval is unreasonably low we might still have a time in the past */
1778 /* so correct this. this will make the periodic very inexact, but the user */
1779 /* has effectively asked to get triggered more often than possible */
1780 if (ev_at (w) < ev_rt_now)
1781 ev_at (w) = ev_rt_now;
1782 }
1783
1784 ANHE_at_cache (periodics [HEAP0]);
1216 downheap ((WT *)periodics, periodiccnt, 0); 1785 downheap (periodics, periodiccnt, HEAP0);
1217 } 1786 }
1218 else 1787 else
1219 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1788 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1220 1789
1790 EV_FREQUENT_CHECK;
1221 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1791 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1222 } 1792 }
1223} 1793}
1224 1794
1225static void noinline 1795static void noinline
1226periodics_reschedule (EV_P) 1796periodics_reschedule (EV_P)
1227{ 1797{
1228 int i; 1798 int i;
1229 1799
1230 /* adjust periodics after time jump */ 1800 /* adjust periodics after time jump */
1231 for (i = 0; i < periodiccnt; ++i) 1801 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1232 { 1802 {
1233 ev_periodic *w = periodics [i]; 1803 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1234 1804
1235 if (w->reschedule_cb) 1805 if (w->reschedule_cb)
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1806 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1237 else if (w->interval) 1807 else if (w->interval)
1238 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1808 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1809
1810 ANHE_at_cache (periodics [i]);
1811 }
1812
1813 reheap (periodics, periodiccnt);
1814}
1815#endif
1816
1817void inline_speed
1818time_update (EV_P_ ev_tstamp max_block)
1819{
1820 int i;
1821
1822#if EV_USE_MONOTONIC
1823 if (expect_true (have_monotonic))
1239 } 1824 {
1825 ev_tstamp odiff = rtmn_diff;
1240 1826
1241 /* now rebuild the heap */
1242 for (i = periodiccnt >> 1; i--; )
1243 downheap ((WT *)periodics, periodiccnt, i);
1244}
1245#endif
1246
1247int inline_size
1248time_update_monotonic (EV_P)
1249{
1250 mn_now = get_clock (); 1827 mn_now = get_clock ();
1251 1828
1829 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1830 /* interpolate in the meantime */
1252 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1831 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1253 { 1832 {
1254 ev_rt_now = rtmn_diff + mn_now; 1833 ev_rt_now = rtmn_diff + mn_now;
1255 return 0; 1834 return;
1256 } 1835 }
1257 else 1836
1258 {
1259 now_floor = mn_now; 1837 now_floor = mn_now;
1260 ev_rt_now = ev_time (); 1838 ev_rt_now = ev_time ();
1261 return 1;
1262 }
1263}
1264 1839
1265void inline_size 1840 /* loop a few times, before making important decisions.
1266time_update (EV_P) 1841 * on the choice of "4": one iteration isn't enough,
1267{ 1842 * in case we get preempted during the calls to
1268 int i; 1843 * ev_time and get_clock. a second call is almost guaranteed
1269 1844 * to succeed in that case, though. and looping a few more times
1270#if EV_USE_MONOTONIC 1845 * doesn't hurt either as we only do this on time-jumps or
1271 if (expect_true (have_monotonic)) 1846 * in the unlikely event of having been preempted here.
1272 { 1847 */
1273 if (time_update_monotonic (EV_A)) 1848 for (i = 4; --i; )
1274 { 1849 {
1275 ev_tstamp odiff = rtmn_diff;
1276
1277 /* loop a few times, before making important decisions.
1278 * on the choice of "4": one iteration isn't enough,
1279 * in case we get preempted during the calls to
1280 * ev_time and get_clock. a second call is almost guaranteed
1281 * to succeed in that case, though. and looping a few more times
1282 * doesn't hurt either as we only do this on time-jumps or
1283 * in the unlikely event of having been preempted here.
1284 */
1285 for (i = 4; --i; )
1286 {
1287 rtmn_diff = ev_rt_now - mn_now; 1850 rtmn_diff = ev_rt_now - mn_now;
1288 1851
1289 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1852 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1290 return; /* all is well */ 1853 return; /* all is well */
1291 1854
1292 ev_rt_now = ev_time (); 1855 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 1856 mn_now = get_clock ();
1294 now_floor = mn_now; 1857 now_floor = mn_now;
1295 } 1858 }
1296 1859
1297# if EV_PERIODIC_ENABLE 1860# if EV_PERIODIC_ENABLE
1298 periodics_reschedule (EV_A); 1861 periodics_reschedule (EV_A);
1299# endif 1862# endif
1300 /* no timer adjustment, as the monotonic clock doesn't jump */ 1863 /* no timer adjustment, as the monotonic clock doesn't jump */
1301 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1864 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1302 }
1303 } 1865 }
1304 else 1866 else
1305#endif 1867#endif
1306 { 1868 {
1307 ev_rt_now = ev_time (); 1869 ev_rt_now = ev_time ();
1308 1870
1309 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1871 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1310 { 1872 {
1311#if EV_PERIODIC_ENABLE 1873#if EV_PERIODIC_ENABLE
1312 periodics_reschedule (EV_A); 1874 periodics_reschedule (EV_A);
1313#endif 1875#endif
1314
1315 /* adjust timers. this is easy, as the offset is the same for all of them */ 1876 /* adjust timers. this is easy, as the offset is the same for all of them */
1316 for (i = 0; i < timercnt; ++i) 1877 for (i = 0; i < timercnt; ++i)
1878 {
1879 ANHE *he = timers + i + HEAP0;
1317 ((WT)timers [i])->at += ev_rt_now - mn_now; 1880 ANHE_w (*he)->at += ev_rt_now - mn_now;
1881 ANHE_at_cache (*he);
1882 }
1318 } 1883 }
1319 1884
1320 mn_now = ev_rt_now; 1885 mn_now = ev_rt_now;
1321 } 1886 }
1322} 1887}
1336static int loop_done; 1901static int loop_done;
1337 1902
1338void 1903void
1339ev_loop (EV_P_ int flags) 1904ev_loop (EV_P_ int flags)
1340{ 1905{
1341 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1906 loop_done = EVUNLOOP_CANCEL;
1342 ? EVUNLOOP_ONE
1343 : EVUNLOOP_CANCEL;
1344 1907
1345 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1908 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1346 1909
1347 do 1910 do
1348 { 1911 {
1912#if EV_VERIFY >= 2
1913 ev_loop_verify (EV_A);
1914#endif
1915
1349#ifndef _WIN32 1916#ifndef _WIN32
1350 if (expect_false (curpid)) /* penalise the forking check even more */ 1917 if (expect_false (curpid)) /* penalise the forking check even more */
1351 if (expect_false (getpid () != curpid)) 1918 if (expect_false (getpid () != curpid))
1352 { 1919 {
1353 curpid = getpid (); 1920 curpid = getpid ();
1363 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1930 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1364 call_pending (EV_A); 1931 call_pending (EV_A);
1365 } 1932 }
1366#endif 1933#endif
1367 1934
1368 /* queue check watchers (and execute them) */ 1935 /* queue prepare watchers (and execute them) */
1369 if (expect_false (preparecnt)) 1936 if (expect_false (preparecnt))
1370 { 1937 {
1371 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1938 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1372 call_pending (EV_A); 1939 call_pending (EV_A);
1373 } 1940 }
1382 /* update fd-related kernel structures */ 1949 /* update fd-related kernel structures */
1383 fd_reify (EV_A); 1950 fd_reify (EV_A);
1384 1951
1385 /* calculate blocking time */ 1952 /* calculate blocking time */
1386 { 1953 {
1387 ev_tstamp block; 1954 ev_tstamp waittime = 0.;
1955 ev_tstamp sleeptime = 0.;
1388 1956
1389 if (expect_false (flags & EVLOOP_NONBLOCK || idlecnt || !activecnt)) 1957 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1390 block = 0.; /* do not block at all */
1391 else
1392 { 1958 {
1393 /* update time to cancel out callback processing overhead */ 1959 /* update time to cancel out callback processing overhead */
1394#if EV_USE_MONOTONIC
1395 if (expect_true (have_monotonic))
1396 time_update_monotonic (EV_A); 1960 time_update (EV_A_ 1e100);
1397 else
1398#endif
1399 {
1400 ev_rt_now = ev_time ();
1401 mn_now = ev_rt_now;
1402 }
1403 1961
1404 block = MAX_BLOCKTIME; 1962 waittime = MAX_BLOCKTIME;
1405 1963
1406 if (timercnt) 1964 if (timercnt)
1407 { 1965 {
1408 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1966 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1409 if (block > to) block = to; 1967 if (waittime > to) waittime = to;
1410 } 1968 }
1411 1969
1412#if EV_PERIODIC_ENABLE 1970#if EV_PERIODIC_ENABLE
1413 if (periodiccnt) 1971 if (periodiccnt)
1414 { 1972 {
1415 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1973 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1416 if (block > to) block = to; 1974 if (waittime > to) waittime = to;
1417 } 1975 }
1418#endif 1976#endif
1419 1977
1420 if (expect_false (block < 0.)) block = 0.; 1978 if (expect_false (waittime < timeout_blocktime))
1979 waittime = timeout_blocktime;
1980
1981 sleeptime = waittime - backend_fudge;
1982
1983 if (expect_true (sleeptime > io_blocktime))
1984 sleeptime = io_blocktime;
1985
1986 if (sleeptime)
1987 {
1988 ev_sleep (sleeptime);
1989 waittime -= sleeptime;
1990 }
1421 } 1991 }
1422 1992
1993 ++loop_count;
1423 backend_poll (EV_A_ block); 1994 backend_poll (EV_A_ waittime);
1995
1996 /* update ev_rt_now, do magic */
1997 time_update (EV_A_ waittime + sleeptime);
1424 } 1998 }
1425
1426 /* update ev_rt_now, do magic */
1427 time_update (EV_A);
1428 1999
1429 /* queue pending timers and reschedule them */ 2000 /* queue pending timers and reschedule them */
1430 timers_reify (EV_A); /* relative timers called last */ 2001 timers_reify (EV_A); /* relative timers called last */
1431#if EV_PERIODIC_ENABLE 2002#if EV_PERIODIC_ENABLE
1432 periodics_reify (EV_A); /* absolute timers called first */ 2003 periodics_reify (EV_A); /* absolute timers called first */
1433#endif 2004#endif
1434 2005
2006#if EV_IDLE_ENABLE
1435 /* queue idle watchers unless other events are pending */ 2007 /* queue idle watchers unless other events are pending */
1436 if (idlecnt && !any_pending (EV_A)) 2008 idle_reify (EV_A);
1437 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2009#endif
1438 2010
1439 /* queue check watchers, to be executed first */ 2011 /* queue check watchers, to be executed first */
1440 if (expect_false (checkcnt)) 2012 if (expect_false (checkcnt))
1441 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2013 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1442 2014
1443 call_pending (EV_A); 2015 call_pending (EV_A);
1444
1445 } 2016 }
1446 while (expect_true (activecnt && !loop_done)); 2017 while (expect_true (
2018 activecnt
2019 && !loop_done
2020 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2021 ));
1447 2022
1448 if (loop_done == EVUNLOOP_ONE) 2023 if (loop_done == EVUNLOOP_ONE)
1449 loop_done = EVUNLOOP_CANCEL; 2024 loop_done = EVUNLOOP_CANCEL;
1450} 2025}
1451 2026
1478 head = &(*head)->next; 2053 head = &(*head)->next;
1479 } 2054 }
1480} 2055}
1481 2056
1482void inline_speed 2057void inline_speed
1483ev_clear_pending (EV_P_ W w) 2058clear_pending (EV_P_ W w)
1484{ 2059{
1485 if (w->pending) 2060 if (w->pending)
1486 { 2061 {
1487 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2062 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1488 w->pending = 0; 2063 w->pending = 0;
1489 } 2064 }
1490} 2065}
1491 2066
2067int
2068ev_clear_pending (EV_P_ void *w)
2069{
2070 W w_ = (W)w;
2071 int pending = w_->pending;
2072
2073 if (expect_true (pending))
2074 {
2075 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2076 w_->pending = 0;
2077 p->w = 0;
2078 return p->events;
2079 }
2080 else
2081 return 0;
2082}
2083
2084void inline_size
2085pri_adjust (EV_P_ W w)
2086{
2087 int pri = w->priority;
2088 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2089 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2090 w->priority = pri;
2091}
2092
1492void inline_speed 2093void inline_speed
1493ev_start (EV_P_ W w, int active) 2094ev_start (EV_P_ W w, int active)
1494{ 2095{
1495 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2096 pri_adjust (EV_A_ w);
1496 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1497
1498 w->active = active; 2097 w->active = active;
1499 ev_ref (EV_A); 2098 ev_ref (EV_A);
1500} 2099}
1501 2100
1502void inline_size 2101void inline_size
1506 w->active = 0; 2105 w->active = 0;
1507} 2106}
1508 2107
1509/*****************************************************************************/ 2108/*****************************************************************************/
1510 2109
1511void 2110void noinline
1512ev_io_start (EV_P_ ev_io *w) 2111ev_io_start (EV_P_ ev_io *w)
1513{ 2112{
1514 int fd = w->fd; 2113 int fd = w->fd;
1515 2114
1516 if (expect_false (ev_is_active (w))) 2115 if (expect_false (ev_is_active (w)))
1517 return; 2116 return;
1518 2117
1519 assert (("ev_io_start called with negative fd", fd >= 0)); 2118 assert (("ev_io_start called with negative fd", fd >= 0));
1520 2119
2120 EV_FREQUENT_CHECK;
2121
1521 ev_start (EV_A_ (W)w, 1); 2122 ev_start (EV_A_ (W)w, 1);
1522 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2123 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1523 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2124 wlist_add (&anfds[fd].head, (WL)w);
1524 2125
1525 fd_change (EV_A_ fd); 2126 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1526} 2127 w->events &= ~EV_IOFDSET;
1527 2128
1528void 2129 EV_FREQUENT_CHECK;
2130}
2131
2132void noinline
1529ev_io_stop (EV_P_ ev_io *w) 2133ev_io_stop (EV_P_ ev_io *w)
1530{ 2134{
1531 ev_clear_pending (EV_A_ (W)w); 2135 clear_pending (EV_A_ (W)w);
1532 if (expect_false (!ev_is_active (w))) 2136 if (expect_false (!ev_is_active (w)))
1533 return; 2137 return;
1534 2138
1535 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2139 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1536 2140
2141 EV_FREQUENT_CHECK;
2142
1537 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2143 wlist_del (&anfds[w->fd].head, (WL)w);
1538 ev_stop (EV_A_ (W)w); 2144 ev_stop (EV_A_ (W)w);
1539 2145
1540 fd_change (EV_A_ w->fd); 2146 fd_change (EV_A_ w->fd, 1);
1541}
1542 2147
1543void 2148 EV_FREQUENT_CHECK;
2149}
2150
2151void noinline
1544ev_timer_start (EV_P_ ev_timer *w) 2152ev_timer_start (EV_P_ ev_timer *w)
1545{ 2153{
1546 if (expect_false (ev_is_active (w))) 2154 if (expect_false (ev_is_active (w)))
1547 return; 2155 return;
1548 2156
1549 ((WT)w)->at += mn_now; 2157 ev_at (w) += mn_now;
1550 2158
1551 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2159 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1552 2160
2161 EV_FREQUENT_CHECK;
2162
2163 ++timercnt;
1553 ev_start (EV_A_ (W)w, ++timercnt); 2164 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1554 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2165 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1555 timers [timercnt - 1] = w; 2166 ANHE_w (timers [ev_active (w)]) = (WT)w;
1556 upheap ((WT *)timers, timercnt - 1); 2167 ANHE_at_cache (timers [ev_active (w)]);
2168 upheap (timers, ev_active (w));
1557 2169
2170 EV_FREQUENT_CHECK;
2171
1558 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2172 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1559} 2173}
1560 2174
1561void 2175void noinline
1562ev_timer_stop (EV_P_ ev_timer *w) 2176ev_timer_stop (EV_P_ ev_timer *w)
1563{ 2177{
1564 ev_clear_pending (EV_A_ (W)w); 2178 clear_pending (EV_A_ (W)w);
1565 if (expect_false (!ev_is_active (w))) 2179 if (expect_false (!ev_is_active (w)))
1566 return; 2180 return;
1567 2181
1568 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2182 EV_FREQUENT_CHECK;
1569 2183
1570 { 2184 {
1571 int active = ((W)w)->active; 2185 int active = ev_active (w);
1572 2186
2187 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2188
2189 --timercnt;
2190
1573 if (expect_true (--active < --timercnt)) 2191 if (expect_true (active < timercnt + HEAP0))
1574 { 2192 {
1575 timers [active] = timers [timercnt]; 2193 timers [active] = timers [timercnt + HEAP0];
1576 adjustheap ((WT *)timers, timercnt, active); 2194 adjustheap (timers, timercnt, active);
1577 } 2195 }
1578 } 2196 }
1579 2197
1580 ((WT)w)->at -= mn_now; 2198 EV_FREQUENT_CHECK;
2199
2200 ev_at (w) -= mn_now;
1581 2201
1582 ev_stop (EV_A_ (W)w); 2202 ev_stop (EV_A_ (W)w);
1583} 2203}
1584 2204
1585void 2205void noinline
1586ev_timer_again (EV_P_ ev_timer *w) 2206ev_timer_again (EV_P_ ev_timer *w)
1587{ 2207{
2208 EV_FREQUENT_CHECK;
2209
1588 if (ev_is_active (w)) 2210 if (ev_is_active (w))
1589 { 2211 {
1590 if (w->repeat) 2212 if (w->repeat)
1591 { 2213 {
1592 ((WT)w)->at = mn_now + w->repeat; 2214 ev_at (w) = mn_now + w->repeat;
2215 ANHE_at_cache (timers [ev_active (w)]);
1593 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2216 adjustheap (timers, timercnt, ev_active (w));
1594 } 2217 }
1595 else 2218 else
1596 ev_timer_stop (EV_A_ w); 2219 ev_timer_stop (EV_A_ w);
1597 } 2220 }
1598 else if (w->repeat) 2221 else if (w->repeat)
1599 { 2222 {
1600 w->at = w->repeat; 2223 ev_at (w) = w->repeat;
1601 ev_timer_start (EV_A_ w); 2224 ev_timer_start (EV_A_ w);
1602 } 2225 }
2226
2227 EV_FREQUENT_CHECK;
1603} 2228}
1604 2229
1605#if EV_PERIODIC_ENABLE 2230#if EV_PERIODIC_ENABLE
1606void 2231void noinline
1607ev_periodic_start (EV_P_ ev_periodic *w) 2232ev_periodic_start (EV_P_ ev_periodic *w)
1608{ 2233{
1609 if (expect_false (ev_is_active (w))) 2234 if (expect_false (ev_is_active (w)))
1610 return; 2235 return;
1611 2236
1612 if (w->reschedule_cb) 2237 if (w->reschedule_cb)
1613 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2238 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1614 else if (w->interval) 2239 else if (w->interval)
1615 { 2240 {
1616 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2241 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1617 /* this formula differs from the one in periodic_reify because we do not always round up */ 2242 /* this formula differs from the one in periodic_reify because we do not always round up */
1618 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2243 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1619 } 2244 }
2245 else
2246 ev_at (w) = w->offset;
1620 2247
2248 EV_FREQUENT_CHECK;
2249
2250 ++periodiccnt;
1621 ev_start (EV_A_ (W)w, ++periodiccnt); 2251 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1622 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2252 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1623 periodics [periodiccnt - 1] = w; 2253 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1624 upheap ((WT *)periodics, periodiccnt - 1); 2254 ANHE_at_cache (periodics [ev_active (w)]);
2255 upheap (periodics, ev_active (w));
1625 2256
2257 EV_FREQUENT_CHECK;
2258
1626 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2259 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1627} 2260}
1628 2261
1629void 2262void noinline
1630ev_periodic_stop (EV_P_ ev_periodic *w) 2263ev_periodic_stop (EV_P_ ev_periodic *w)
1631{ 2264{
1632 ev_clear_pending (EV_A_ (W)w); 2265 clear_pending (EV_A_ (W)w);
1633 if (expect_false (!ev_is_active (w))) 2266 if (expect_false (!ev_is_active (w)))
1634 return; 2267 return;
1635 2268
1636 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2269 EV_FREQUENT_CHECK;
1637 2270
1638 { 2271 {
1639 int active = ((W)w)->active; 2272 int active = ev_active (w);
1640 2273
2274 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2275
2276 --periodiccnt;
2277
1641 if (expect_true (--active < --periodiccnt)) 2278 if (expect_true (active < periodiccnt + HEAP0))
1642 { 2279 {
1643 periodics [active] = periodics [periodiccnt]; 2280 periodics [active] = periodics [periodiccnt + HEAP0];
1644 adjustheap ((WT *)periodics, periodiccnt, active); 2281 adjustheap (periodics, periodiccnt, active);
1645 } 2282 }
1646 } 2283 }
1647 2284
2285 EV_FREQUENT_CHECK;
2286
1648 ev_stop (EV_A_ (W)w); 2287 ev_stop (EV_A_ (W)w);
1649} 2288}
1650 2289
1651void 2290void noinline
1652ev_periodic_again (EV_P_ ev_periodic *w) 2291ev_periodic_again (EV_P_ ev_periodic *w)
1653{ 2292{
1654 /* TODO: use adjustheap and recalculation */ 2293 /* TODO: use adjustheap and recalculation */
1655 ev_periodic_stop (EV_A_ w); 2294 ev_periodic_stop (EV_A_ w);
1656 ev_periodic_start (EV_A_ w); 2295 ev_periodic_start (EV_A_ w);
1659 2298
1660#ifndef SA_RESTART 2299#ifndef SA_RESTART
1661# define SA_RESTART 0 2300# define SA_RESTART 0
1662#endif 2301#endif
1663 2302
1664void 2303void noinline
1665ev_signal_start (EV_P_ ev_signal *w) 2304ev_signal_start (EV_P_ ev_signal *w)
1666{ 2305{
1667#if EV_MULTIPLICITY 2306#if EV_MULTIPLICITY
1668 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2307 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1669#endif 2308#endif
1670 if (expect_false (ev_is_active (w))) 2309 if (expect_false (ev_is_active (w)))
1671 return; 2310 return;
1672 2311
1673 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2312 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1674 2313
2314 evpipe_init (EV_A);
2315
2316 EV_FREQUENT_CHECK;
2317
2318 {
2319#ifndef _WIN32
2320 sigset_t full, prev;
2321 sigfillset (&full);
2322 sigprocmask (SIG_SETMASK, &full, &prev);
2323#endif
2324
2325 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2326
2327#ifndef _WIN32
2328 sigprocmask (SIG_SETMASK, &prev, 0);
2329#endif
2330 }
2331
1675 ev_start (EV_A_ (W)w, 1); 2332 ev_start (EV_A_ (W)w, 1);
1676 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1677 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2333 wlist_add (&signals [w->signum - 1].head, (WL)w);
1678 2334
1679 if (!((WL)w)->next) 2335 if (!((WL)w)->next)
1680 { 2336 {
1681#if _WIN32 2337#if _WIN32
1682 signal (w->signum, sighandler); 2338 signal (w->signum, ev_sighandler);
1683#else 2339#else
1684 struct sigaction sa; 2340 struct sigaction sa;
1685 sa.sa_handler = sighandler; 2341 sa.sa_handler = ev_sighandler;
1686 sigfillset (&sa.sa_mask); 2342 sigfillset (&sa.sa_mask);
1687 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2343 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1688 sigaction (w->signum, &sa, 0); 2344 sigaction (w->signum, &sa, 0);
1689#endif 2345#endif
1690 } 2346 }
1691}
1692 2347
1693void 2348 EV_FREQUENT_CHECK;
2349}
2350
2351void noinline
1694ev_signal_stop (EV_P_ ev_signal *w) 2352ev_signal_stop (EV_P_ ev_signal *w)
1695{ 2353{
1696 ev_clear_pending (EV_A_ (W)w); 2354 clear_pending (EV_A_ (W)w);
1697 if (expect_false (!ev_is_active (w))) 2355 if (expect_false (!ev_is_active (w)))
1698 return; 2356 return;
1699 2357
2358 EV_FREQUENT_CHECK;
2359
1700 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2360 wlist_del (&signals [w->signum - 1].head, (WL)w);
1701 ev_stop (EV_A_ (W)w); 2361 ev_stop (EV_A_ (W)w);
1702 2362
1703 if (!signals [w->signum - 1].head) 2363 if (!signals [w->signum - 1].head)
1704 signal (w->signum, SIG_DFL); 2364 signal (w->signum, SIG_DFL);
2365
2366 EV_FREQUENT_CHECK;
1705} 2367}
1706 2368
1707void 2369void
1708ev_child_start (EV_P_ ev_child *w) 2370ev_child_start (EV_P_ ev_child *w)
1709{ 2371{
1711 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2373 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1712#endif 2374#endif
1713 if (expect_false (ev_is_active (w))) 2375 if (expect_false (ev_is_active (w)))
1714 return; 2376 return;
1715 2377
2378 EV_FREQUENT_CHECK;
2379
1716 ev_start (EV_A_ (W)w, 1); 2380 ev_start (EV_A_ (W)w, 1);
1717 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2381 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2382
2383 EV_FREQUENT_CHECK;
1718} 2384}
1719 2385
1720void 2386void
1721ev_child_stop (EV_P_ ev_child *w) 2387ev_child_stop (EV_P_ ev_child *w)
1722{ 2388{
1723 ev_clear_pending (EV_A_ (W)w); 2389 clear_pending (EV_A_ (W)w);
1724 if (expect_false (!ev_is_active (w))) 2390 if (expect_false (!ev_is_active (w)))
1725 return; 2391 return;
1726 2392
2393 EV_FREQUENT_CHECK;
2394
1727 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2395 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1728 ev_stop (EV_A_ (W)w); 2396 ev_stop (EV_A_ (W)w);
2397
2398 EV_FREQUENT_CHECK;
1729} 2399}
1730 2400
1731#if EV_STAT_ENABLE 2401#if EV_STAT_ENABLE
1732 2402
1733# ifdef _WIN32 2403# ifdef _WIN32
1751 if (w->wd < 0) 2421 if (w->wd < 0)
1752 { 2422 {
1753 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2423 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1754 2424
1755 /* monitor some parent directory for speedup hints */ 2425 /* monitor some parent directory for speedup hints */
2426 /* note that exceeding the hardcoded limit is not a correctness issue, */
2427 /* but an efficiency issue only */
1756 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2428 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1757 { 2429 {
1758 char path [4096]; 2430 char path [4096];
1759 strcpy (path, w->path); 2431 strcpy (path, w->path);
1760 2432
1959 else 2631 else
1960#endif 2632#endif
1961 ev_timer_start (EV_A_ &w->timer); 2633 ev_timer_start (EV_A_ &w->timer);
1962 2634
1963 ev_start (EV_A_ (W)w, 1); 2635 ev_start (EV_A_ (W)w, 1);
2636
2637 EV_FREQUENT_CHECK;
1964} 2638}
1965 2639
1966void 2640void
1967ev_stat_stop (EV_P_ ev_stat *w) 2641ev_stat_stop (EV_P_ ev_stat *w)
1968{ 2642{
1969 ev_clear_pending (EV_A_ (W)w); 2643 clear_pending (EV_A_ (W)w);
1970 if (expect_false (!ev_is_active (w))) 2644 if (expect_false (!ev_is_active (w)))
1971 return; 2645 return;
1972 2646
2647 EV_FREQUENT_CHECK;
2648
1973#if EV_USE_INOTIFY 2649#if EV_USE_INOTIFY
1974 infy_del (EV_A_ w); 2650 infy_del (EV_A_ w);
1975#endif 2651#endif
1976 ev_timer_stop (EV_A_ &w->timer); 2652 ev_timer_stop (EV_A_ &w->timer);
1977 2653
1978 ev_stop (EV_A_ (W)w); 2654 ev_stop (EV_A_ (W)w);
1979}
1980#endif
1981 2655
2656 EV_FREQUENT_CHECK;
2657}
2658#endif
2659
2660#if EV_IDLE_ENABLE
1982void 2661void
1983ev_idle_start (EV_P_ ev_idle *w) 2662ev_idle_start (EV_P_ ev_idle *w)
1984{ 2663{
1985 if (expect_false (ev_is_active (w))) 2664 if (expect_false (ev_is_active (w)))
1986 return; 2665 return;
1987 2666
2667 pri_adjust (EV_A_ (W)w);
2668
2669 EV_FREQUENT_CHECK;
2670
2671 {
2672 int active = ++idlecnt [ABSPRI (w)];
2673
2674 ++idleall;
1988 ev_start (EV_A_ (W)w, ++idlecnt); 2675 ev_start (EV_A_ (W)w, active);
2676
1989 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2677 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1990 idles [idlecnt - 1] = w; 2678 idles [ABSPRI (w)][active - 1] = w;
2679 }
2680
2681 EV_FREQUENT_CHECK;
1991} 2682}
1992 2683
1993void 2684void
1994ev_idle_stop (EV_P_ ev_idle *w) 2685ev_idle_stop (EV_P_ ev_idle *w)
1995{ 2686{
1996 ev_clear_pending (EV_A_ (W)w); 2687 clear_pending (EV_A_ (W)w);
1997 if (expect_false (!ev_is_active (w))) 2688 if (expect_false (!ev_is_active (w)))
1998 return; 2689 return;
1999 2690
2691 EV_FREQUENT_CHECK;
2692
2000 { 2693 {
2001 int active = ((W)w)->active; 2694 int active = ev_active (w);
2002 idles [active - 1] = idles [--idlecnt]; 2695
2003 ((W)idles [active - 1])->active = active; 2696 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2697 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2698
2699 ev_stop (EV_A_ (W)w);
2700 --idleall;
2004 } 2701 }
2005 2702
2006 ev_stop (EV_A_ (W)w); 2703 EV_FREQUENT_CHECK;
2007} 2704}
2705#endif
2008 2706
2009void 2707void
2010ev_prepare_start (EV_P_ ev_prepare *w) 2708ev_prepare_start (EV_P_ ev_prepare *w)
2011{ 2709{
2012 if (expect_false (ev_is_active (w))) 2710 if (expect_false (ev_is_active (w)))
2013 return; 2711 return;
2712
2713 EV_FREQUENT_CHECK;
2014 2714
2015 ev_start (EV_A_ (W)w, ++preparecnt); 2715 ev_start (EV_A_ (W)w, ++preparecnt);
2016 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2716 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2017 prepares [preparecnt - 1] = w; 2717 prepares [preparecnt - 1] = w;
2718
2719 EV_FREQUENT_CHECK;
2018} 2720}
2019 2721
2020void 2722void
2021ev_prepare_stop (EV_P_ ev_prepare *w) 2723ev_prepare_stop (EV_P_ ev_prepare *w)
2022{ 2724{
2023 ev_clear_pending (EV_A_ (W)w); 2725 clear_pending (EV_A_ (W)w);
2024 if (expect_false (!ev_is_active (w))) 2726 if (expect_false (!ev_is_active (w)))
2025 return; 2727 return;
2026 2728
2729 EV_FREQUENT_CHECK;
2730
2027 { 2731 {
2028 int active = ((W)w)->active; 2732 int active = ev_active (w);
2733
2029 prepares [active - 1] = prepares [--preparecnt]; 2734 prepares [active - 1] = prepares [--preparecnt];
2030 ((W)prepares [active - 1])->active = active; 2735 ev_active (prepares [active - 1]) = active;
2031 } 2736 }
2032 2737
2033 ev_stop (EV_A_ (W)w); 2738 ev_stop (EV_A_ (W)w);
2739
2740 EV_FREQUENT_CHECK;
2034} 2741}
2035 2742
2036void 2743void
2037ev_check_start (EV_P_ ev_check *w) 2744ev_check_start (EV_P_ ev_check *w)
2038{ 2745{
2039 if (expect_false (ev_is_active (w))) 2746 if (expect_false (ev_is_active (w)))
2040 return; 2747 return;
2748
2749 EV_FREQUENT_CHECK;
2041 2750
2042 ev_start (EV_A_ (W)w, ++checkcnt); 2751 ev_start (EV_A_ (W)w, ++checkcnt);
2043 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2752 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2044 checks [checkcnt - 1] = w; 2753 checks [checkcnt - 1] = w;
2754
2755 EV_FREQUENT_CHECK;
2045} 2756}
2046 2757
2047void 2758void
2048ev_check_stop (EV_P_ ev_check *w) 2759ev_check_stop (EV_P_ ev_check *w)
2049{ 2760{
2050 ev_clear_pending (EV_A_ (W)w); 2761 clear_pending (EV_A_ (W)w);
2051 if (expect_false (!ev_is_active (w))) 2762 if (expect_false (!ev_is_active (w)))
2052 return; 2763 return;
2053 2764
2765 EV_FREQUENT_CHECK;
2766
2054 { 2767 {
2055 int active = ((W)w)->active; 2768 int active = ev_active (w);
2769
2056 checks [active - 1] = checks [--checkcnt]; 2770 checks [active - 1] = checks [--checkcnt];
2057 ((W)checks [active - 1])->active = active; 2771 ev_active (checks [active - 1]) = active;
2058 } 2772 }
2059 2773
2060 ev_stop (EV_A_ (W)w); 2774 ev_stop (EV_A_ (W)w);
2775
2776 EV_FREQUENT_CHECK;
2061} 2777}
2062 2778
2063#if EV_EMBED_ENABLE 2779#if EV_EMBED_ENABLE
2064void noinline 2780void noinline
2065ev_embed_sweep (EV_P_ ev_embed *w) 2781ev_embed_sweep (EV_P_ ev_embed *w)
2066{ 2782{
2067 ev_loop (w->loop, EVLOOP_NONBLOCK); 2783 ev_loop (w->other, EVLOOP_NONBLOCK);
2068} 2784}
2069 2785
2070static void 2786static void
2071embed_cb (EV_P_ ev_io *io, int revents) 2787embed_io_cb (EV_P_ ev_io *io, int revents)
2072{ 2788{
2073 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2789 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2074 2790
2075 if (ev_cb (w)) 2791 if (ev_cb (w))
2076 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2792 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2077 else 2793 else
2078 ev_embed_sweep (loop, w); 2794 ev_loop (w->other, EVLOOP_NONBLOCK);
2079} 2795}
2796
2797static void
2798embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2799{
2800 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2801
2802 {
2803 struct ev_loop *loop = w->other;
2804
2805 while (fdchangecnt)
2806 {
2807 fd_reify (EV_A);
2808 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2809 }
2810 }
2811}
2812
2813#if 0
2814static void
2815embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2816{
2817 ev_idle_stop (EV_A_ idle);
2818}
2819#endif
2080 2820
2081void 2821void
2082ev_embed_start (EV_P_ ev_embed *w) 2822ev_embed_start (EV_P_ ev_embed *w)
2083{ 2823{
2084 if (expect_false (ev_is_active (w))) 2824 if (expect_false (ev_is_active (w)))
2085 return; 2825 return;
2086 2826
2087 { 2827 {
2088 struct ev_loop *loop = w->loop; 2828 struct ev_loop *loop = w->other;
2089 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2829 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2090 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2830 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2091 } 2831 }
2832
2833 EV_FREQUENT_CHECK;
2092 2834
2093 ev_set_priority (&w->io, ev_priority (w)); 2835 ev_set_priority (&w->io, ev_priority (w));
2094 ev_io_start (EV_A_ &w->io); 2836 ev_io_start (EV_A_ &w->io);
2095 2837
2838 ev_prepare_init (&w->prepare, embed_prepare_cb);
2839 ev_set_priority (&w->prepare, EV_MINPRI);
2840 ev_prepare_start (EV_A_ &w->prepare);
2841
2842 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2843
2096 ev_start (EV_A_ (W)w, 1); 2844 ev_start (EV_A_ (W)w, 1);
2845
2846 EV_FREQUENT_CHECK;
2097} 2847}
2098 2848
2099void 2849void
2100ev_embed_stop (EV_P_ ev_embed *w) 2850ev_embed_stop (EV_P_ ev_embed *w)
2101{ 2851{
2102 ev_clear_pending (EV_A_ (W)w); 2852 clear_pending (EV_A_ (W)w);
2103 if (expect_false (!ev_is_active (w))) 2853 if (expect_false (!ev_is_active (w)))
2104 return; 2854 return;
2105 2855
2856 EV_FREQUENT_CHECK;
2857
2106 ev_io_stop (EV_A_ &w->io); 2858 ev_io_stop (EV_A_ &w->io);
2859 ev_prepare_stop (EV_A_ &w->prepare);
2107 2860
2108 ev_stop (EV_A_ (W)w); 2861 ev_stop (EV_A_ (W)w);
2862
2863 EV_FREQUENT_CHECK;
2109} 2864}
2110#endif 2865#endif
2111 2866
2112#if EV_FORK_ENABLE 2867#if EV_FORK_ENABLE
2113void 2868void
2114ev_fork_start (EV_P_ ev_fork *w) 2869ev_fork_start (EV_P_ ev_fork *w)
2115{ 2870{
2116 if (expect_false (ev_is_active (w))) 2871 if (expect_false (ev_is_active (w)))
2117 return; 2872 return;
2873
2874 EV_FREQUENT_CHECK;
2118 2875
2119 ev_start (EV_A_ (W)w, ++forkcnt); 2876 ev_start (EV_A_ (W)w, ++forkcnt);
2120 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2877 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2121 forks [forkcnt - 1] = w; 2878 forks [forkcnt - 1] = w;
2879
2880 EV_FREQUENT_CHECK;
2122} 2881}
2123 2882
2124void 2883void
2125ev_fork_stop (EV_P_ ev_fork *w) 2884ev_fork_stop (EV_P_ ev_fork *w)
2126{ 2885{
2127 ev_clear_pending (EV_A_ (W)w); 2886 clear_pending (EV_A_ (W)w);
2128 if (expect_false (!ev_is_active (w))) 2887 if (expect_false (!ev_is_active (w)))
2129 return; 2888 return;
2130 2889
2890 EV_FREQUENT_CHECK;
2891
2131 { 2892 {
2132 int active = ((W)w)->active; 2893 int active = ev_active (w);
2894
2133 forks [active - 1] = forks [--forkcnt]; 2895 forks [active - 1] = forks [--forkcnt];
2134 ((W)forks [active - 1])->active = active; 2896 ev_active (forks [active - 1]) = active;
2135 } 2897 }
2136 2898
2137 ev_stop (EV_A_ (W)w); 2899 ev_stop (EV_A_ (W)w);
2900
2901 EV_FREQUENT_CHECK;
2902}
2903#endif
2904
2905#if EV_ASYNC_ENABLE
2906void
2907ev_async_start (EV_P_ ev_async *w)
2908{
2909 if (expect_false (ev_is_active (w)))
2910 return;
2911
2912 evpipe_init (EV_A);
2913
2914 EV_FREQUENT_CHECK;
2915
2916 ev_start (EV_A_ (W)w, ++asynccnt);
2917 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2918 asyncs [asynccnt - 1] = w;
2919
2920 EV_FREQUENT_CHECK;
2921}
2922
2923void
2924ev_async_stop (EV_P_ ev_async *w)
2925{
2926 clear_pending (EV_A_ (W)w);
2927 if (expect_false (!ev_is_active (w)))
2928 return;
2929
2930 EV_FREQUENT_CHECK;
2931
2932 {
2933 int active = ev_active (w);
2934
2935 asyncs [active - 1] = asyncs [--asynccnt];
2936 ev_active (asyncs [active - 1]) = active;
2937 }
2938
2939 ev_stop (EV_A_ (W)w);
2940
2941 EV_FREQUENT_CHECK;
2942}
2943
2944void
2945ev_async_send (EV_P_ ev_async *w)
2946{
2947 w->sent = 1;
2948 evpipe_write (EV_A_ &gotasync);
2138} 2949}
2139#endif 2950#endif
2140 2951
2141/*****************************************************************************/ 2952/*****************************************************************************/
2142 2953
2200 ev_timer_set (&once->to, timeout, 0.); 3011 ev_timer_set (&once->to, timeout, 0.);
2201 ev_timer_start (EV_A_ &once->to); 3012 ev_timer_start (EV_A_ &once->to);
2202 } 3013 }
2203} 3014}
2204 3015
3016#if EV_MULTIPLICITY
3017 #include "ev_wrap.h"
3018#endif
3019
2205#ifdef __cplusplus 3020#ifdef __cplusplus
2206} 3021}
2207#endif 3022#endif
2208 3023

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines