ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.161 by root, Sat Dec 1 23:43:45 2007 UTC vs.
Revision 1.513 by root, Fri Dec 20 05:20:23 2019 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
65# endif 91# endif
66 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
73# endif 109# endif
74 110
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
78# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
81# endif 118# endif
82 119
83# ifndef EV_USE_KQUEUE 120# if HAVE_LINUX_AIO_ABI_H
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 121# ifndef EV_USE_LINUXAIO
85# define EV_USE_KQUEUE 1 122# define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
86# else
87# define EV_USE_KQUEUE 0
88# endif 123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
89# endif 127# endif
90 128
129# if HAVE_LINUX_FS_H && HAVE_SYS_TIMERFD_H && HAVE_KERNEL_RWF_T
91# ifndef EV_USE_PORT 130# ifndef EV_USE_IOURING
92# if HAVE_PORT_H && HAVE_PORT_CREATE 131# define EV_USE_IOURING EV_FEATURE_BACKENDS
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif 132# endif
133# else
134# undef EV_USE_IOURING
135# define EV_USE_IOURING 0
97# endif 136# endif
98 137
99# ifndef EV_USE_INOTIFY 138# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 139# ifndef EV_USE_KQUEUE
101# define EV_USE_INOTIFY 1 140# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# else
103# define EV_USE_INOTIFY 0
104# endif 141# endif
142# else
143# undef EV_USE_KQUEUE
144# define EV_USE_KQUEUE 0
105# endif 145# endif
106 146
147# if HAVE_PORT_H && HAVE_PORT_CREATE
148# ifndef EV_USE_PORT
149# define EV_USE_PORT EV_FEATURE_BACKENDS
150# endif
151# else
152# undef EV_USE_PORT
153# define EV_USE_PORT 0
107#endif 154# endif
108 155
109#include <math.h> 156# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
157# ifndef EV_USE_INOTIFY
158# define EV_USE_INOTIFY EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_INOTIFY
162# define EV_USE_INOTIFY 0
163# endif
164
165# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
166# ifndef EV_USE_SIGNALFD
167# define EV_USE_SIGNALFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_SIGNALFD
171# define EV_USE_SIGNALFD 0
172# endif
173
174# if HAVE_EVENTFD
175# ifndef EV_USE_EVENTFD
176# define EV_USE_EVENTFD EV_FEATURE_OS
177# endif
178# else
179# undef EV_USE_EVENTFD
180# define EV_USE_EVENTFD 0
181# endif
182
183#endif
184
185/* OS X, in its infinite idiocy, actually HARDCODES
186 * a limit of 1024 into their select. Where people have brains,
187 * OS X engineers apparently have a vacuum. Or maybe they were
188 * ordered to have a vacuum, or they do anything for money.
189 * This might help. Or not.
190 * Note that this must be defined early, as other include files
191 * will rely on this define as well.
192 */
193#define _DARWIN_UNLIMITED_SELECT 1
194
110#include <stdlib.h> 195#include <stdlib.h>
196#include <string.h>
111#include <fcntl.h> 197#include <fcntl.h>
112#include <stddef.h> 198#include <stddef.h>
113 199
114#include <stdio.h> 200#include <stdio.h>
115 201
116#include <assert.h> 202#include <assert.h>
117#include <errno.h> 203#include <errno.h>
118#include <sys/types.h> 204#include <sys/types.h>
119#include <time.h> 205#include <time.h>
206#include <limits.h>
120 207
121#include <signal.h> 208#include <signal.h>
122 209
123#ifdef EV_H 210#ifdef EV_H
124# include EV_H 211# include EV_H
125#else 212#else
126# include "ev.h" 213# include "ev.h"
214#endif
215
216#if EV_NO_THREADS
217# undef EV_NO_SMP
218# define EV_NO_SMP 1
219# undef ECB_NO_THREADS
220# define ECB_NO_THREADS 1
221#endif
222#if EV_NO_SMP
223# undef EV_NO_SMP
224# define ECB_NO_SMP 1
127#endif 225#endif
128 226
129#ifndef _WIN32 227#ifndef _WIN32
130# include <sys/time.h> 228# include <sys/time.h>
131# include <sys/wait.h> 229# include <sys/wait.h>
132# include <unistd.h> 230# include <unistd.h>
133#else 231#else
232# include <io.h>
134# define WIN32_LEAN_AND_MEAN 233# define WIN32_LEAN_AND_MEAN
234# include <winsock2.h>
135# include <windows.h> 235# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 236# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 237# define EV_SELECT_IS_WINSOCKET 1
138# endif 238# endif
239# undef EV_AVOID_STDIO
240#endif
241
242/* this block tries to deduce configuration from header-defined symbols and defaults */
243
244/* try to deduce the maximum number of signals on this platform */
245#if defined EV_NSIG
246/* use what's provided */
247#elif defined NSIG
248# define EV_NSIG (NSIG)
249#elif defined _NSIG
250# define EV_NSIG (_NSIG)
251#elif defined SIGMAX
252# define EV_NSIG (SIGMAX+1)
253#elif defined SIG_MAX
254# define EV_NSIG (SIG_MAX+1)
255#elif defined _SIG_MAX
256# define EV_NSIG (_SIG_MAX+1)
257#elif defined MAXSIG
258# define EV_NSIG (MAXSIG+1)
259#elif defined MAX_SIG
260# define EV_NSIG (MAX_SIG+1)
261#elif defined SIGARRAYSIZE
262# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
263#elif defined _sys_nsig
264# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
265#else
266# define EV_NSIG (8 * sizeof (sigset_t) + 1)
267#endif
268
269#ifndef EV_USE_FLOOR
270# define EV_USE_FLOOR 0
271#endif
272
273#ifndef EV_USE_CLOCK_SYSCALL
274# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
275# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
276# else
277# define EV_USE_CLOCK_SYSCALL 0
139#endif 278# endif
279#endif
140 280
141/**/ 281#if !(_POSIX_TIMERS > 0)
282# ifndef EV_USE_MONOTONIC
283# define EV_USE_MONOTONIC 0
284# endif
285# ifndef EV_USE_REALTIME
286# define EV_USE_REALTIME 0
287# endif
288#endif
142 289
143#ifndef EV_USE_MONOTONIC 290#ifndef EV_USE_MONOTONIC
291# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
292# define EV_USE_MONOTONIC EV_FEATURE_OS
293# else
144# define EV_USE_MONOTONIC 0 294# define EV_USE_MONOTONIC 0
295# endif
145#endif 296#endif
146 297
147#ifndef EV_USE_REALTIME 298#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 299# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
300#endif
301
302#ifndef EV_USE_NANOSLEEP
303# if _POSIX_C_SOURCE >= 199309L
304# define EV_USE_NANOSLEEP EV_FEATURE_OS
305# else
306# define EV_USE_NANOSLEEP 0
307# endif
149#endif 308#endif
150 309
151#ifndef EV_USE_SELECT 310#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 311# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 312#endif
154 313
155#ifndef EV_USE_POLL 314#ifndef EV_USE_POLL
156# ifdef _WIN32 315# ifdef _WIN32
157# define EV_USE_POLL 0 316# define EV_USE_POLL 0
158# else 317# else
159# define EV_USE_POLL 1 318# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 319# endif
161#endif 320#endif
162 321
163#ifndef EV_USE_EPOLL 322#ifndef EV_USE_EPOLL
323# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
324# define EV_USE_EPOLL EV_FEATURE_BACKENDS
325# else
164# define EV_USE_EPOLL 0 326# define EV_USE_EPOLL 0
327# endif
165#endif 328#endif
166 329
167#ifndef EV_USE_KQUEUE 330#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 331# define EV_USE_KQUEUE 0
169#endif 332#endif
170 333
171#ifndef EV_USE_PORT 334#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 335# define EV_USE_PORT 0
173#endif 336#endif
174 337
338#ifndef EV_USE_LINUXAIO
339# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
340# define EV_USE_LINUXAIO 1
341# else
342# define EV_USE_LINUXAIO 0
343# endif
344#endif
345
346#ifndef EV_USE_IOURING
347# if __linux /* later checks might disable again */
348# define EV_USE_IOURING 1
349# else
350# define EV_USE_IOURING 0
351# endif
352#endif
353
175#ifndef EV_USE_INOTIFY 354#ifndef EV_USE_INOTIFY
355# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
356# define EV_USE_INOTIFY EV_FEATURE_OS
357# else
176# define EV_USE_INOTIFY 0 358# define EV_USE_INOTIFY 0
359# endif
177#endif 360#endif
178 361
179#ifndef EV_PID_HASHSIZE 362#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 363# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 364#endif
365
366#ifndef EV_INOTIFY_HASHSIZE
367# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
368#endif
369
370#ifndef EV_USE_EVENTFD
371# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
372# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 373# else
183# define EV_PID_HASHSIZE 16 374# define EV_USE_EVENTFD 0
184# endif 375# endif
185#endif 376#endif
186 377
187#ifndef EV_INOTIFY_HASHSIZE 378#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 379# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 380# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 381# else
191# define EV_INOTIFY_HASHSIZE 16 382# define EV_USE_SIGNALFD 0
192# endif 383# endif
193#endif 384#endif
194 385
195/**/ 386#if 0 /* debugging */
387# define EV_VERIFY 3
388# define EV_USE_4HEAP 1
389# define EV_HEAP_CACHE_AT 1
390#endif
391
392#ifndef EV_VERIFY
393# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
394#endif
395
396#ifndef EV_USE_4HEAP
397# define EV_USE_4HEAP EV_FEATURE_DATA
398#endif
399
400#ifndef EV_HEAP_CACHE_AT
401# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
402#endif
403
404#ifdef __ANDROID__
405/* supposedly, android doesn't typedef fd_mask */
406# undef EV_USE_SELECT
407# define EV_USE_SELECT 0
408/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
409# undef EV_USE_CLOCK_SYSCALL
410# define EV_USE_CLOCK_SYSCALL 0
411#endif
412
413/* aix's poll.h seems to cause lots of trouble */
414#ifdef _AIX
415/* AIX has a completely broken poll.h header */
416# undef EV_USE_POLL
417# define EV_USE_POLL 0
418#endif
419
420/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
421/* which makes programs even slower. might work on other unices, too. */
422#if EV_USE_CLOCK_SYSCALL
423# include <sys/syscall.h>
424# ifdef SYS_clock_gettime
425# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
426# undef EV_USE_MONOTONIC
427# define EV_USE_MONOTONIC 1
428# define EV_NEED_SYSCALL 1
429# else
430# undef EV_USE_CLOCK_SYSCALL
431# define EV_USE_CLOCK_SYSCALL 0
432# endif
433#endif
434
435/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 436
197#ifndef CLOCK_MONOTONIC 437#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 438# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 439# define EV_USE_MONOTONIC 0
200#endif 440#endif
202#ifndef CLOCK_REALTIME 442#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 443# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 444# define EV_USE_REALTIME 0
205#endif 445#endif
206 446
207#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h>
209#endif
210
211#if !EV_STAT_ENABLE 447#if !EV_STAT_ENABLE
448# undef EV_USE_INOTIFY
212# define EV_USE_INOTIFY 0 449# define EV_USE_INOTIFY 0
213#endif 450#endif
214 451
452#if __linux && EV_USE_IOURING
453# include <linux/version.h>
454# if LINUX_VERSION_CODE < KERNEL_VERSION(4,14,0)
455# undef EV_USE_IOURING
456# define EV_USE_IOURING 0
457# endif
458#endif
459
460#if !EV_USE_NANOSLEEP
461/* hp-ux has it in sys/time.h, which we unconditionally include above */
462# if !defined _WIN32 && !defined __hpux
463# include <sys/select.h>
464# endif
465#endif
466
467#if EV_USE_LINUXAIO
468# include <sys/syscall.h>
469# if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
470# define EV_NEED_SYSCALL 1
471# else
472# undef EV_USE_LINUXAIO
473# define EV_USE_LINUXAIO 0
474# endif
475#endif
476
477#if EV_USE_IOURING
478# include <sys/syscall.h>
479# if !SYS_io_uring_setup && __linux && !__alpha
480# define SYS_io_uring_setup 425
481# define SYS_io_uring_enter 426
482# define SYS_io_uring_wregister 427
483# endif
484# if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
485# define EV_NEED_SYSCALL 1
486# else
487# undef EV_USE_IOURING
488# define EV_USE_IOURING 0
489# endif
490#endif
491
215#if EV_USE_INOTIFY 492#if EV_USE_INOTIFY
493# include <sys/statfs.h>
216# include <sys/inotify.h> 494# include <sys/inotify.h>
217#endif 495/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
218 496# ifndef IN_DONT_FOLLOW
219/**/ 497# undef EV_USE_INOTIFY
220 498# define EV_USE_INOTIFY 0
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224
225#if __GNUC__ >= 3
226# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif 499# endif
500#endif
501
502#if EV_USE_EVENTFD
503/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
504# include <stdint.h>
505# ifndef EFD_NONBLOCK
506# define EFD_NONBLOCK O_NONBLOCK
507# endif
508# ifndef EFD_CLOEXEC
509# ifdef O_CLOEXEC
510# define EFD_CLOEXEC O_CLOEXEC
511# else
512# define EFD_CLOEXEC 02000000
513# endif
514# endif
515EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
516#endif
517
518#if EV_USE_SIGNALFD
519/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
520# include <stdint.h>
521# ifndef SFD_NONBLOCK
522# define SFD_NONBLOCK O_NONBLOCK
523# endif
524# ifndef SFD_CLOEXEC
525# ifdef O_CLOEXEC
526# define SFD_CLOEXEC O_CLOEXEC
527# else
528# define SFD_CLOEXEC 02000000
529# endif
530# endif
531EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
532
533struct signalfd_siginfo
534{
535 uint32_t ssi_signo;
536 char pad[128 - sizeof (uint32_t)];
537};
538#endif
539
540/*****************************************************************************/
541
542#if EV_VERIFY >= 3
543# define EV_FREQUENT_CHECK ev_verify (EV_A)
235#else 544#else
545# define EV_FREQUENT_CHECK do { } while (0)
546#endif
547
548/*
549 * This is used to work around floating point rounding problems.
550 * This value is good at least till the year 4000.
551 */
552#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
553/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
554
555#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
556#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
557
558/* find a portable timestamp that is "always" in the future but fits into time_t.
559 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
560 * and sizes larger than 32 bit, and maybe the unlikely floating point time_t */
561#define EV_TSTAMP_HUGE \
562 (sizeof (time_t) >= 8 ? 10000000000000. \
563 : 0 < (time_t)4294967295 ? 4294967295. \
564 : 2147483647.) \
565
566#ifndef EV_TS_CONST
567# define EV_TS_CONST(nv) nv
568# define EV_TS_TO_MSEC(a) a * 1e3 + 0.9999
569# define EV_TS_FROM_USEC(us) us * 1e-6
570# define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
571# define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
572# define EV_TV_GET(tv) ((tv).tv_sec + (tv).tv_usec * 1e-6)
573# define EV_TS_GET(ts) ((ts).tv_sec + (ts).tv_nsec * 1e-9)
574#endif
575
576/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
577/* ECB.H BEGIN */
578/*
579 * libecb - http://software.schmorp.de/pkg/libecb
580 *
581 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
582 * Copyright (©) 2011 Emanuele Giaquinta
583 * All rights reserved.
584 *
585 * Redistribution and use in source and binary forms, with or without modifica-
586 * tion, are permitted provided that the following conditions are met:
587 *
588 * 1. Redistributions of source code must retain the above copyright notice,
589 * this list of conditions and the following disclaimer.
590 *
591 * 2. Redistributions in binary form must reproduce the above copyright
592 * notice, this list of conditions and the following disclaimer in the
593 * documentation and/or other materials provided with the distribution.
594 *
595 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
596 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
597 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
598 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
599 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
600 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
601 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
602 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
603 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
604 * OF THE POSSIBILITY OF SUCH DAMAGE.
605 *
606 * Alternatively, the contents of this file may be used under the terms of
607 * the GNU General Public License ("GPL") version 2 or any later version,
608 * in which case the provisions of the GPL are applicable instead of
609 * the above. If you wish to allow the use of your version of this file
610 * only under the terms of the GPL and not to allow others to use your
611 * version of this file under the BSD license, indicate your decision
612 * by deleting the provisions above and replace them with the notice
613 * and other provisions required by the GPL. If you do not delete the
614 * provisions above, a recipient may use your version of this file under
615 * either the BSD or the GPL.
616 */
617
618#ifndef ECB_H
619#define ECB_H
620
621/* 16 bits major, 16 bits minor */
622#define ECB_VERSION 0x00010006
623
624#ifdef _WIN32
625 typedef signed char int8_t;
626 typedef unsigned char uint8_t;
627 typedef signed short int16_t;
628 typedef unsigned short uint16_t;
629 typedef signed int int32_t;
630 typedef unsigned int uint32_t;
631 #if __GNUC__
632 typedef signed long long int64_t;
633 typedef unsigned long long uint64_t;
634 #else /* _MSC_VER || __BORLANDC__ */
635 typedef signed __int64 int64_t;
636 typedef unsigned __int64 uint64_t;
637 #endif
638 #ifdef _WIN64
639 #define ECB_PTRSIZE 8
640 typedef uint64_t uintptr_t;
641 typedef int64_t intptr_t;
642 #else
643 #define ECB_PTRSIZE 4
644 typedef uint32_t uintptr_t;
645 typedef int32_t intptr_t;
646 #endif
647#else
648 #include <inttypes.h>
649 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
650 #define ECB_PTRSIZE 8
651 #else
652 #define ECB_PTRSIZE 4
653 #endif
654#endif
655
656#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
657#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
658
659/* work around x32 idiocy by defining proper macros */
660#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
661 #if _ILP32
662 #define ECB_AMD64_X32 1
663 #else
664 #define ECB_AMD64 1
665 #endif
666#endif
667
668/* many compilers define _GNUC_ to some versions but then only implement
669 * what their idiot authors think are the "more important" extensions,
670 * causing enormous grief in return for some better fake benchmark numbers.
671 * or so.
672 * we try to detect these and simply assume they are not gcc - if they have
673 * an issue with that they should have done it right in the first place.
674 */
675#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
676 #define ECB_GCC_VERSION(major,minor) 0
677#else
678 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
679#endif
680
681#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
682
683#if __clang__ && defined __has_builtin
684 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
685#else
686 #define ECB_CLANG_BUILTIN(x) 0
687#endif
688
689#if __clang__ && defined __has_extension
690 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
691#else
692 #define ECB_CLANG_EXTENSION(x) 0
693#endif
694
695#define ECB_CPP (__cplusplus+0)
696#define ECB_CPP11 (__cplusplus >= 201103L)
697#define ECB_CPP14 (__cplusplus >= 201402L)
698#define ECB_CPP17 (__cplusplus >= 201703L)
699
700#if ECB_CPP
701 #define ECB_C 0
702 #define ECB_STDC_VERSION 0
703#else
704 #define ECB_C 1
705 #define ECB_STDC_VERSION __STDC_VERSION__
706#endif
707
708#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
709#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
710#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
711
712#if ECB_CPP
713 #define ECB_EXTERN_C extern "C"
714 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
715 #define ECB_EXTERN_C_END }
716#else
717 #define ECB_EXTERN_C extern
718 #define ECB_EXTERN_C_BEG
719 #define ECB_EXTERN_C_END
720#endif
721
722/*****************************************************************************/
723
724/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
725/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
726
727#if ECB_NO_THREADS
728 #define ECB_NO_SMP 1
729#endif
730
731#if ECB_NO_SMP
732 #define ECB_MEMORY_FENCE do { } while (0)
733#endif
734
735/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
736#if __xlC__ && ECB_CPP
737 #include <builtins.h>
738#endif
739
740#if 1400 <= _MSC_VER
741 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
742#endif
743
744#ifndef ECB_MEMORY_FENCE
745 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
746 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
747 #if __i386 || __i386__
748 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
749 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
750 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
751 #elif ECB_GCC_AMD64
752 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
753 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
754 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
755 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
756 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
757 #elif defined __ARM_ARCH_2__ \
758 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
759 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
760 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
761 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
762 || defined __ARM_ARCH_5TEJ__
763 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
764 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
765 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
766 || defined __ARM_ARCH_6T2__
767 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
768 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
769 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
770 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
771 #elif __aarch64__
772 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
773 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
774 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
775 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
776 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
777 #elif defined __s390__ || defined __s390x__
778 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
779 #elif defined __mips__
780 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
781 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
782 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
783 #elif defined __alpha__
784 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
785 #elif defined __hppa__
786 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
787 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
788 #elif defined __ia64__
789 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
790 #elif defined __m68k__
791 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
792 #elif defined __m88k__
793 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
794 #elif defined __sh__
795 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
796 #endif
797 #endif
798#endif
799
800#ifndef ECB_MEMORY_FENCE
801 #if ECB_GCC_VERSION(4,7)
802 /* see comment below (stdatomic.h) about the C11 memory model. */
803 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
804 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
805 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
806 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
807
808 #elif ECB_CLANG_EXTENSION(c_atomic)
809 /* see comment below (stdatomic.h) about the C11 memory model. */
810 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
811 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
812 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
813 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
814
815 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
816 #define ECB_MEMORY_FENCE __sync_synchronize ()
817 #elif _MSC_VER >= 1500 /* VC++ 2008 */
818 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
819 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
820 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
821 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
822 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
823 #elif _MSC_VER >= 1400 /* VC++ 2005 */
824 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
825 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
826 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
827 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
828 #elif defined _WIN32
829 #include <WinNT.h>
830 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
831 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
832 #include <mbarrier.h>
833 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
834 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
835 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
836 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
837 #elif __xlC__
838 #define ECB_MEMORY_FENCE __sync ()
839 #endif
840#endif
841
842#ifndef ECB_MEMORY_FENCE
843 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
844 /* we assume that these memory fences work on all variables/all memory accesses, */
845 /* not just C11 atomics and atomic accesses */
846 #include <stdatomic.h>
847 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
848 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
849 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
850 #endif
851#endif
852
853#ifndef ECB_MEMORY_FENCE
854 #if !ECB_AVOID_PTHREADS
855 /*
856 * if you get undefined symbol references to pthread_mutex_lock,
857 * or failure to find pthread.h, then you should implement
858 * the ECB_MEMORY_FENCE operations for your cpu/compiler
859 * OR provide pthread.h and link against the posix thread library
860 * of your system.
861 */
862 #include <pthread.h>
863 #define ECB_NEEDS_PTHREADS 1
864 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
865
866 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
867 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
868 #endif
869#endif
870
871#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
872 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
873#endif
874
875#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
876 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
877#endif
878
879#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
880 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
881#endif
882
883/*****************************************************************************/
884
885#if ECB_CPP
886 #define ecb_inline static inline
887#elif ECB_GCC_VERSION(2,5)
888 #define ecb_inline static __inline__
889#elif ECB_C99
890 #define ecb_inline static inline
891#else
892 #define ecb_inline static
893#endif
894
895#if ECB_GCC_VERSION(3,3)
896 #define ecb_restrict __restrict__
897#elif ECB_C99
898 #define ecb_restrict restrict
899#else
900 #define ecb_restrict
901#endif
902
903typedef int ecb_bool;
904
905#define ECB_CONCAT_(a, b) a ## b
906#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
907#define ECB_STRINGIFY_(a) # a
908#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
909#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
910
911#define ecb_function_ ecb_inline
912
913#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
914 #define ecb_attribute(attrlist) __attribute__ (attrlist)
915#else
916 #define ecb_attribute(attrlist)
917#endif
918
919#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
920 #define ecb_is_constant(expr) __builtin_constant_p (expr)
921#else
922 /* possible C11 impl for integral types
923 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
924 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
925
926 #define ecb_is_constant(expr) 0
927#endif
928
929#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
930 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
931#else
236# define expect(expr,value) (expr) 932 #define ecb_expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline
240#endif 933#endif
241 934
935#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
936 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
937#else
938 #define ecb_prefetch(addr,rw,locality)
939#endif
940
941/* no emulation for ecb_decltype */
942#if ECB_CPP11
943 // older implementations might have problems with decltype(x)::type, work around it
944 template<class T> struct ecb_decltype_t { typedef T type; };
945 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
946#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
947 #define ecb_decltype(x) __typeof__ (x)
948#endif
949
950#if _MSC_VER >= 1300
951 #define ecb_deprecated __declspec (deprecated)
952#else
953 #define ecb_deprecated ecb_attribute ((__deprecated__))
954#endif
955
956#if _MSC_VER >= 1500
957 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
958#elif ECB_GCC_VERSION(4,5)
959 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
960#else
961 #define ecb_deprecated_message(msg) ecb_deprecated
962#endif
963
964#if _MSC_VER >= 1400
965 #define ecb_noinline __declspec (noinline)
966#else
967 #define ecb_noinline ecb_attribute ((__noinline__))
968#endif
969
970#define ecb_unused ecb_attribute ((__unused__))
971#define ecb_const ecb_attribute ((__const__))
972#define ecb_pure ecb_attribute ((__pure__))
973
974#if ECB_C11 || __IBMC_NORETURN
975 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
976 #define ecb_noreturn _Noreturn
977#elif ECB_CPP11
978 #define ecb_noreturn [[noreturn]]
979#elif _MSC_VER >= 1200
980 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
981 #define ecb_noreturn __declspec (noreturn)
982#else
983 #define ecb_noreturn ecb_attribute ((__noreturn__))
984#endif
985
986#if ECB_GCC_VERSION(4,3)
987 #define ecb_artificial ecb_attribute ((__artificial__))
988 #define ecb_hot ecb_attribute ((__hot__))
989 #define ecb_cold ecb_attribute ((__cold__))
990#else
991 #define ecb_artificial
992 #define ecb_hot
993 #define ecb_cold
994#endif
995
996/* put around conditional expressions if you are very sure that the */
997/* expression is mostly true or mostly false. note that these return */
998/* booleans, not the expression. */
242#define expect_false(expr) expect ((expr) != 0, 0) 999#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 1000#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
1001/* for compatibility to the rest of the world */
1002#define ecb_likely(expr) ecb_expect_true (expr)
1003#define ecb_unlikely(expr) ecb_expect_false (expr)
244 1004
1005/* count trailing zero bits and count # of one bits */
1006#if ECB_GCC_VERSION(3,4) \
1007 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
1008 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
1009 && ECB_CLANG_BUILTIN(__builtin_popcount))
1010 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
1011 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
1012 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
1013 #define ecb_ctz32(x) __builtin_ctz (x)
1014 #define ecb_ctz64(x) __builtin_ctzll (x)
1015 #define ecb_popcount32(x) __builtin_popcount (x)
1016 /* no popcountll */
1017#else
1018 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
1019 ecb_function_ ecb_const int
1020 ecb_ctz32 (uint32_t x)
1021 {
1022#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1023 unsigned long r;
1024 _BitScanForward (&r, x);
1025 return (int)r;
1026#else
1027 int r = 0;
1028
1029 x &= ~x + 1; /* this isolates the lowest bit */
1030
1031#if ECB_branchless_on_i386
1032 r += !!(x & 0xaaaaaaaa) << 0;
1033 r += !!(x & 0xcccccccc) << 1;
1034 r += !!(x & 0xf0f0f0f0) << 2;
1035 r += !!(x & 0xff00ff00) << 3;
1036 r += !!(x & 0xffff0000) << 4;
1037#else
1038 if (x & 0xaaaaaaaa) r += 1;
1039 if (x & 0xcccccccc) r += 2;
1040 if (x & 0xf0f0f0f0) r += 4;
1041 if (x & 0xff00ff00) r += 8;
1042 if (x & 0xffff0000) r += 16;
1043#endif
1044
1045 return r;
1046#endif
1047 }
1048
1049 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1050 ecb_function_ ecb_const int
1051 ecb_ctz64 (uint64_t x)
1052 {
1053#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1054 unsigned long r;
1055 _BitScanForward64 (&r, x);
1056 return (int)r;
1057#else
1058 int shift = x & 0xffffffff ? 0 : 32;
1059 return ecb_ctz32 (x >> shift) + shift;
1060#endif
1061 }
1062
1063 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1064 ecb_function_ ecb_const int
1065 ecb_popcount32 (uint32_t x)
1066 {
1067 x -= (x >> 1) & 0x55555555;
1068 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1069 x = ((x >> 4) + x) & 0x0f0f0f0f;
1070 x *= 0x01010101;
1071
1072 return x >> 24;
1073 }
1074
1075 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1076 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1077 {
1078#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1079 unsigned long r;
1080 _BitScanReverse (&r, x);
1081 return (int)r;
1082#else
1083 int r = 0;
1084
1085 if (x >> 16) { x >>= 16; r += 16; }
1086 if (x >> 8) { x >>= 8; r += 8; }
1087 if (x >> 4) { x >>= 4; r += 4; }
1088 if (x >> 2) { x >>= 2; r += 2; }
1089 if (x >> 1) { r += 1; }
1090
1091 return r;
1092#endif
1093 }
1094
1095 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1096 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1097 {
1098#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1099 unsigned long r;
1100 _BitScanReverse64 (&r, x);
1101 return (int)r;
1102#else
1103 int r = 0;
1104
1105 if (x >> 32) { x >>= 32; r += 32; }
1106
1107 return r + ecb_ld32 (x);
1108#endif
1109 }
1110#endif
1111
1112ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1113ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1114ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1115ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1116
1117ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1118ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1119{
1120 return ( (x * 0x0802U & 0x22110U)
1121 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1122}
1123
1124ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1125ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1126{
1127 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1128 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1129 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1130 x = ( x >> 8 ) | ( x << 8);
1131
1132 return x;
1133}
1134
1135ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1136ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1137{
1138 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1139 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1140 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1141 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1142 x = ( x >> 16 ) | ( x << 16);
1143
1144 return x;
1145}
1146
1147/* popcount64 is only available on 64 bit cpus as gcc builtin */
1148/* so for this version we are lazy */
1149ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1150ecb_function_ ecb_const int
1151ecb_popcount64 (uint64_t x)
1152{
1153 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1154}
1155
1156ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1157ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1158ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1159ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1160ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1161ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1162ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1163ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1164
1165ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1166ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1167ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1168ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1169ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1170ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1171ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1172ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1173
1174#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1175 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1176 #define ecb_bswap16(x) __builtin_bswap16 (x)
1177 #else
1178 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1179 #endif
1180 #define ecb_bswap32(x) __builtin_bswap32 (x)
1181 #define ecb_bswap64(x) __builtin_bswap64 (x)
1182#elif _MSC_VER
1183 #include <stdlib.h>
1184 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1185 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1186 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1187#else
1188 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1189 ecb_function_ ecb_const uint16_t
1190 ecb_bswap16 (uint16_t x)
1191 {
1192 return ecb_rotl16 (x, 8);
1193 }
1194
1195 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1196 ecb_function_ ecb_const uint32_t
1197 ecb_bswap32 (uint32_t x)
1198 {
1199 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1200 }
1201
1202 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1203 ecb_function_ ecb_const uint64_t
1204 ecb_bswap64 (uint64_t x)
1205 {
1206 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1207 }
1208#endif
1209
1210#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1211 #define ecb_unreachable() __builtin_unreachable ()
1212#else
1213 /* this seems to work fine, but gcc always emits a warning for it :/ */
1214 ecb_inline ecb_noreturn void ecb_unreachable (void);
1215 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1216#endif
1217
1218/* try to tell the compiler that some condition is definitely true */
1219#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1220
1221ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1222ecb_inline ecb_const uint32_t
1223ecb_byteorder_helper (void)
1224{
1225 /* the union code still generates code under pressure in gcc, */
1226 /* but less than using pointers, and always seems to */
1227 /* successfully return a constant. */
1228 /* the reason why we have this horrible preprocessor mess */
1229 /* is to avoid it in all cases, at least on common architectures */
1230 /* or when using a recent enough gcc version (>= 4.6) */
1231#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1232 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1233 #define ECB_LITTLE_ENDIAN 1
1234 return 0x44332211;
1235#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1236 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1237 #define ECB_BIG_ENDIAN 1
1238 return 0x11223344;
1239#else
1240 union
1241 {
1242 uint8_t c[4];
1243 uint32_t u;
1244 } u = { 0x11, 0x22, 0x33, 0x44 };
1245 return u.u;
1246#endif
1247}
1248
1249ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1250ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1251ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1252ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1253
1254#if ECB_GCC_VERSION(3,0) || ECB_C99
1255 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1256#else
1257 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1258#endif
1259
1260#if ECB_CPP
1261 template<typename T>
1262 static inline T ecb_div_rd (T val, T div)
1263 {
1264 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1265 }
1266 template<typename T>
1267 static inline T ecb_div_ru (T val, T div)
1268 {
1269 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1270 }
1271#else
1272 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1273 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1274#endif
1275
1276#if ecb_cplusplus_does_not_suck
1277 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1278 template<typename T, int N>
1279 static inline int ecb_array_length (const T (&arr)[N])
1280 {
1281 return N;
1282 }
1283#else
1284 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1285#endif
1286
1287ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1288ecb_function_ ecb_const uint32_t
1289ecb_binary16_to_binary32 (uint32_t x)
1290{
1291 unsigned int s = (x & 0x8000) << (31 - 15);
1292 int e = (x >> 10) & 0x001f;
1293 unsigned int m = x & 0x03ff;
1294
1295 if (ecb_expect_false (e == 31))
1296 /* infinity or NaN */
1297 e = 255 - (127 - 15);
1298 else if (ecb_expect_false (!e))
1299 {
1300 if (ecb_expect_true (!m))
1301 /* zero, handled by code below by forcing e to 0 */
1302 e = 0 - (127 - 15);
1303 else
1304 {
1305 /* subnormal, renormalise */
1306 unsigned int s = 10 - ecb_ld32 (m);
1307
1308 m = (m << s) & 0x3ff; /* mask implicit bit */
1309 e -= s - 1;
1310 }
1311 }
1312
1313 /* e and m now are normalised, or zero, (or inf or nan) */
1314 e += 127 - 15;
1315
1316 return s | (e << 23) | (m << (23 - 10));
1317}
1318
1319ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1320ecb_function_ ecb_const uint16_t
1321ecb_binary32_to_binary16 (uint32_t x)
1322{
1323 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1324 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1325 unsigned int m = x & 0x007fffff;
1326
1327 x &= 0x7fffffff;
1328
1329 /* if it's within range of binary16 normals, use fast path */
1330 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1331 {
1332 /* mantissa round-to-even */
1333 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1334
1335 /* handle overflow */
1336 if (ecb_expect_false (m >= 0x00800000))
1337 {
1338 m >>= 1;
1339 e += 1;
1340 }
1341
1342 return s | (e << 10) | (m >> (23 - 10));
1343 }
1344
1345 /* handle large numbers and infinity */
1346 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1347 return s | 0x7c00;
1348
1349 /* handle zero, subnormals and small numbers */
1350 if (ecb_expect_true (x < 0x38800000))
1351 {
1352 /* zero */
1353 if (ecb_expect_true (!x))
1354 return s;
1355
1356 /* handle subnormals */
1357
1358 /* too small, will be zero */
1359 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1360 return s;
1361
1362 m |= 0x00800000; /* make implicit bit explicit */
1363
1364 /* very tricky - we need to round to the nearest e (+10) bit value */
1365 {
1366 unsigned int bits = 14 - e;
1367 unsigned int half = (1 << (bits - 1)) - 1;
1368 unsigned int even = (m >> bits) & 1;
1369
1370 /* if this overflows, we will end up with a normalised number */
1371 m = (m + half + even) >> bits;
1372 }
1373
1374 return s | m;
1375 }
1376
1377 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1378 m >>= 13;
1379
1380 return s | 0x7c00 | m | !m;
1381}
1382
1383/*******************************************************************************/
1384/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1385
1386/* basically, everything uses "ieee pure-endian" floating point numbers */
1387/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1388#if 0 \
1389 || __i386 || __i386__ \
1390 || ECB_GCC_AMD64 \
1391 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1392 || defined __s390__ || defined __s390x__ \
1393 || defined __mips__ \
1394 || defined __alpha__ \
1395 || defined __hppa__ \
1396 || defined __ia64__ \
1397 || defined __m68k__ \
1398 || defined __m88k__ \
1399 || defined __sh__ \
1400 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1401 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1402 || defined __aarch64__
1403 #define ECB_STDFP 1
1404 #include <string.h> /* for memcpy */
1405#else
1406 #define ECB_STDFP 0
1407#endif
1408
1409#ifndef ECB_NO_LIBM
1410
1411 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1412
1413 /* only the oldest of old doesn't have this one. solaris. */
1414 #ifdef INFINITY
1415 #define ECB_INFINITY INFINITY
1416 #else
1417 #define ECB_INFINITY HUGE_VAL
1418 #endif
1419
1420 #ifdef NAN
1421 #define ECB_NAN NAN
1422 #else
1423 #define ECB_NAN ECB_INFINITY
1424 #endif
1425
1426 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1427 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1428 #define ecb_frexpf(x,e) frexpf ((x), (e))
1429 #else
1430 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1431 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1432 #endif
1433
1434 /* convert a float to ieee single/binary32 */
1435 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1436 ecb_function_ ecb_const uint32_t
1437 ecb_float_to_binary32 (float x)
1438 {
1439 uint32_t r;
1440
1441 #if ECB_STDFP
1442 memcpy (&r, &x, 4);
1443 #else
1444 /* slow emulation, works for anything but -0 */
1445 uint32_t m;
1446 int e;
1447
1448 if (x == 0e0f ) return 0x00000000U;
1449 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1450 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1451 if (x != x ) return 0x7fbfffffU;
1452
1453 m = ecb_frexpf (x, &e) * 0x1000000U;
1454
1455 r = m & 0x80000000U;
1456
1457 if (r)
1458 m = -m;
1459
1460 if (e <= -126)
1461 {
1462 m &= 0xffffffU;
1463 m >>= (-125 - e);
1464 e = -126;
1465 }
1466
1467 r |= (e + 126) << 23;
1468 r |= m & 0x7fffffU;
1469 #endif
1470
1471 return r;
1472 }
1473
1474 /* converts an ieee single/binary32 to a float */
1475 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1476 ecb_function_ ecb_const float
1477 ecb_binary32_to_float (uint32_t x)
1478 {
1479 float r;
1480
1481 #if ECB_STDFP
1482 memcpy (&r, &x, 4);
1483 #else
1484 /* emulation, only works for normals and subnormals and +0 */
1485 int neg = x >> 31;
1486 int e = (x >> 23) & 0xffU;
1487
1488 x &= 0x7fffffU;
1489
1490 if (e)
1491 x |= 0x800000U;
1492 else
1493 e = 1;
1494
1495 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1496 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1497
1498 r = neg ? -r : r;
1499 #endif
1500
1501 return r;
1502 }
1503
1504 /* convert a double to ieee double/binary64 */
1505 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1506 ecb_function_ ecb_const uint64_t
1507 ecb_double_to_binary64 (double x)
1508 {
1509 uint64_t r;
1510
1511 #if ECB_STDFP
1512 memcpy (&r, &x, 8);
1513 #else
1514 /* slow emulation, works for anything but -0 */
1515 uint64_t m;
1516 int e;
1517
1518 if (x == 0e0 ) return 0x0000000000000000U;
1519 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1520 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1521 if (x != x ) return 0X7ff7ffffffffffffU;
1522
1523 m = frexp (x, &e) * 0x20000000000000U;
1524
1525 r = m & 0x8000000000000000;;
1526
1527 if (r)
1528 m = -m;
1529
1530 if (e <= -1022)
1531 {
1532 m &= 0x1fffffffffffffU;
1533 m >>= (-1021 - e);
1534 e = -1022;
1535 }
1536
1537 r |= ((uint64_t)(e + 1022)) << 52;
1538 r |= m & 0xfffffffffffffU;
1539 #endif
1540
1541 return r;
1542 }
1543
1544 /* converts an ieee double/binary64 to a double */
1545 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1546 ecb_function_ ecb_const double
1547 ecb_binary64_to_double (uint64_t x)
1548 {
1549 double r;
1550
1551 #if ECB_STDFP
1552 memcpy (&r, &x, 8);
1553 #else
1554 /* emulation, only works for normals and subnormals and +0 */
1555 int neg = x >> 63;
1556 int e = (x >> 52) & 0x7ffU;
1557
1558 x &= 0xfffffffffffffU;
1559
1560 if (e)
1561 x |= 0x10000000000000U;
1562 else
1563 e = 1;
1564
1565 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1566 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1567
1568 r = neg ? -r : r;
1569 #endif
1570
1571 return r;
1572 }
1573
1574 /* convert a float to ieee half/binary16 */
1575 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1576 ecb_function_ ecb_const uint16_t
1577 ecb_float_to_binary16 (float x)
1578 {
1579 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1580 }
1581
1582 /* convert an ieee half/binary16 to float */
1583 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1584 ecb_function_ ecb_const float
1585 ecb_binary16_to_float (uint16_t x)
1586 {
1587 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1588 }
1589
1590#endif
1591
1592#endif
1593
1594/* ECB.H END */
1595
1596#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1597/* if your architecture doesn't need memory fences, e.g. because it is
1598 * single-cpu/core, or if you use libev in a project that doesn't use libev
1599 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1600 * libev, in which cases the memory fences become nops.
1601 * alternatively, you can remove this #error and link against libpthread,
1602 * which will then provide the memory fences.
1603 */
1604# error "memory fences not defined for your architecture, please report"
1605#endif
1606
1607#ifndef ECB_MEMORY_FENCE
1608# define ECB_MEMORY_FENCE do { } while (0)
1609# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1610# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1611#endif
1612
1613#define inline_size ecb_inline
1614
1615#if EV_FEATURE_CODE
1616# define inline_speed ecb_inline
1617#else
1618# define inline_speed ecb_noinline static
1619#endif
1620
1621/*****************************************************************************/
1622/* raw syscall wrappers */
1623
1624#if EV_NEED_SYSCALL
1625
1626#include <sys/syscall.h>
1627
1628/*
1629 * define some syscall wrappers for common architectures
1630 * this is mostly for nice looks during debugging, not performance.
1631 * our syscalls return < 0, not == -1, on error. which is good
1632 * enough for linux aio.
1633 * TODO: arm is also common nowadays, maybe even mips and x86
1634 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1635 */
1636#if __GNUC__ && __linux && ECB_AMD64 && !defined __OPTIMIZE_SIZE__
1637 /* the costly errno access probably kills this for size optimisation */
1638
1639 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1640 ({ \
1641 long res; \
1642 register unsigned long r6 __asm__ ("r9" ); \
1643 register unsigned long r5 __asm__ ("r8" ); \
1644 register unsigned long r4 __asm__ ("r10"); \
1645 register unsigned long r3 __asm__ ("rdx"); \
1646 register unsigned long r2 __asm__ ("rsi"); \
1647 register unsigned long r1 __asm__ ("rdi"); \
1648 if (narg >= 6) r6 = (unsigned long)(arg6); \
1649 if (narg >= 5) r5 = (unsigned long)(arg5); \
1650 if (narg >= 4) r4 = (unsigned long)(arg4); \
1651 if (narg >= 3) r3 = (unsigned long)(arg3); \
1652 if (narg >= 2) r2 = (unsigned long)(arg2); \
1653 if (narg >= 1) r1 = (unsigned long)(arg1); \
1654 __asm__ __volatile__ ( \
1655 "syscall\n\t" \
1656 : "=a" (res) \
1657 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1658 : "cc", "r11", "cx", "memory"); \
1659 errno = -res; \
1660 res; \
1661 })
1662
1663#endif
1664
1665#ifdef ev_syscall
1666 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1667 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1668 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1669 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1670 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1671 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1672 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1673#else
1674 #define ev_syscall0(nr) syscall (nr)
1675 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1676 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1677 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1678 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1679 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1680 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1681#endif
1682
1683#endif
1684
1685/*****************************************************************************/
1686
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1687#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1688
1689#if EV_MINPRI == EV_MAXPRI
1690# define ABSPRI(w) (((W)w), 0)
1691#else
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 1692# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1693#endif
247 1694
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 1695#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */
250 1696
251typedef ev_watcher *W; 1697typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 1698typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 1699typedef ev_watcher_time *WT;
254 1700
1701#define ev_active(w) ((W)(w))->active
1702#define ev_at(w) ((WT)(w))->at
1703
1704#if EV_USE_REALTIME
1705/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1706/* giving it a reasonably high chance of working on typical architectures */
1707static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1708#endif
1709
1710#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1711static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1712#endif
1713
1714#ifndef EV_FD_TO_WIN32_HANDLE
1715# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1716#endif
1717#ifndef EV_WIN32_HANDLE_TO_FD
1718# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1719#endif
1720#ifndef EV_WIN32_CLOSE_FD
1721# define EV_WIN32_CLOSE_FD(fd) close (fd)
1722#endif
256 1723
257#ifdef _WIN32 1724#ifdef _WIN32
258# include "ev_win32.c" 1725# include "ev_win32.c"
259#endif 1726#endif
260 1727
261/*****************************************************************************/ 1728/*****************************************************************************/
262 1729
1730#if EV_USE_LINUXAIO
1731# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1732#endif
1733
1734/* define a suitable floor function (only used by periodics atm) */
1735
1736#if EV_USE_FLOOR
1737# include <math.h>
1738# define ev_floor(v) floor (v)
1739#else
1740
1741#include <float.h>
1742
1743/* a floor() replacement function, should be independent of ev_tstamp type */
1744ecb_noinline
1745static ev_tstamp
1746ev_floor (ev_tstamp v)
1747{
1748 /* the choice of shift factor is not terribly important */
1749#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1750 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1751#else
1752 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1753#endif
1754
1755 /* special treatment for negative arguments */
1756 if (ecb_expect_false (v < 0.))
1757 {
1758 ev_tstamp f = -ev_floor (-v);
1759
1760 return f - (f == v ? 0 : 1);
1761 }
1762
1763 /* argument too large for an unsigned long? then reduce it */
1764 if (ecb_expect_false (v >= shift))
1765 {
1766 ev_tstamp f;
1767
1768 if (v == v - 1.)
1769 return v; /* very large numbers are assumed to be integer */
1770
1771 f = shift * ev_floor (v * (1. / shift));
1772 return f + ev_floor (v - f);
1773 }
1774
1775 /* fits into an unsigned long */
1776 return (unsigned long)v;
1777}
1778
1779#endif
1780
1781/*****************************************************************************/
1782
1783#ifdef __linux
1784# include <sys/utsname.h>
1785#endif
1786
1787ecb_noinline ecb_cold
1788static unsigned int
1789ev_linux_version (void)
1790{
1791#ifdef __linux
1792 unsigned int v = 0;
1793 struct utsname buf;
1794 int i;
1795 char *p = buf.release;
1796
1797 if (uname (&buf))
1798 return 0;
1799
1800 for (i = 3+1; --i; )
1801 {
1802 unsigned int c = 0;
1803
1804 for (;;)
1805 {
1806 if (*p >= '0' && *p <= '9')
1807 c = c * 10 + *p++ - '0';
1808 else
1809 {
1810 p += *p == '.';
1811 break;
1812 }
1813 }
1814
1815 v = (v << 8) | c;
1816 }
1817
1818 return v;
1819#else
1820 return 0;
1821#endif
1822}
1823
1824/*****************************************************************************/
1825
1826#if EV_AVOID_STDIO
1827ecb_noinline ecb_cold
1828static void
1829ev_printerr (const char *msg)
1830{
1831 write (STDERR_FILENO, msg, strlen (msg));
1832}
1833#endif
1834
263static void (*syserr_cb)(const char *msg); 1835static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
264 1836
1837ecb_cold
265void 1838void
266ev_set_syserr_cb (void (*cb)(const char *msg)) 1839ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
267{ 1840{
268 syserr_cb = cb; 1841 syserr_cb = cb;
269} 1842}
270 1843
271static void noinline 1844ecb_noinline ecb_cold
1845static void
272syserr (const char *msg) 1846ev_syserr (const char *msg)
273{ 1847{
274 if (!msg) 1848 if (!msg)
275 msg = "(libev) system error"; 1849 msg = "(libev) system error";
276 1850
277 if (syserr_cb) 1851 if (syserr_cb)
278 syserr_cb (msg); 1852 syserr_cb (msg);
279 else 1853 else
280 { 1854 {
1855#if EV_AVOID_STDIO
1856 ev_printerr (msg);
1857 ev_printerr (": ");
1858 ev_printerr (strerror (errno));
1859 ev_printerr ("\n");
1860#else
281 perror (msg); 1861 perror (msg);
1862#endif
282 abort (); 1863 abort ();
283 } 1864 }
284} 1865}
285 1866
286static void *(*alloc)(void *ptr, long size); 1867static void *
1868ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1869{
1870 /* some systems, notably openbsd and darwin, fail to properly
1871 * implement realloc (x, 0) (as required by both ansi c-89 and
1872 * the single unix specification, so work around them here.
1873 * recently, also (at least) fedora and debian started breaking it,
1874 * despite documenting it otherwise.
1875 */
287 1876
1877 if (size)
1878 return realloc (ptr, size);
1879
1880 free (ptr);
1881 return 0;
1882}
1883
1884static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1885
1886ecb_cold
288void 1887void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 1888ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
290{ 1889{
291 alloc = cb; 1890 alloc = cb;
292} 1891}
293 1892
294inline_speed void * 1893inline_speed void *
295ev_realloc (void *ptr, long size) 1894ev_realloc (void *ptr, long size)
296{ 1895{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1896 ptr = alloc (ptr, size);
298 1897
299 if (!ptr && size) 1898 if (!ptr && size)
300 { 1899 {
1900#if EV_AVOID_STDIO
1901 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1902#else
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1903 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1904#endif
302 abort (); 1905 abort ();
303 } 1906 }
304 1907
305 return ptr; 1908 return ptr;
306} 1909}
308#define ev_malloc(size) ev_realloc (0, (size)) 1911#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 1912#define ev_free(ptr) ev_realloc ((ptr), 0)
310 1913
311/*****************************************************************************/ 1914/*****************************************************************************/
312 1915
1916/* set in reify when reification needed */
1917#define EV_ANFD_REIFY 1
1918
1919/* file descriptor info structure */
313typedef struct 1920typedef struct
314{ 1921{
315 WL head; 1922 WL head;
316 unsigned char events; 1923 unsigned char events; /* the events watched for */
317 unsigned char reify; 1924 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1925 unsigned char emask; /* some backends store the actual kernel mask in here */
1926 unsigned char eflags; /* flags field for use by backends */
1927#if EV_USE_EPOLL
1928 unsigned int egen; /* generation counter to counter epoll bugs */
1929#endif
318#if EV_SELECT_IS_WINSOCKET 1930#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
319 SOCKET handle; 1931 SOCKET handle;
320#endif 1932#endif
1933#if EV_USE_IOCP
1934 OVERLAPPED or, ow;
1935#endif
321} ANFD; 1936} ANFD;
322 1937
1938/* stores the pending event set for a given watcher */
323typedef struct 1939typedef struct
324{ 1940{
325 W w; 1941 W w;
326 int events; 1942 int events; /* the pending event set for the given watcher */
327} ANPENDING; 1943} ANPENDING;
328 1944
329#if EV_USE_INOTIFY 1945#if EV_USE_INOTIFY
1946/* hash table entry per inotify-id */
330typedef struct 1947typedef struct
331{ 1948{
332 WL head; 1949 WL head;
333} ANFS; 1950} ANFS;
1951#endif
1952
1953/* Heap Entry */
1954#if EV_HEAP_CACHE_AT
1955 /* a heap element */
1956 typedef struct {
1957 ev_tstamp at;
1958 WT w;
1959 } ANHE;
1960
1961 #define ANHE_w(he) (he).w /* access watcher, read-write */
1962 #define ANHE_at(he) (he).at /* access cached at, read-only */
1963 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1964#else
1965 /* a heap element */
1966 typedef WT ANHE;
1967
1968 #define ANHE_w(he) (he)
1969 #define ANHE_at(he) (he)->at
1970 #define ANHE_at_cache(he)
334#endif 1971#endif
335 1972
336#if EV_MULTIPLICITY 1973#if EV_MULTIPLICITY
337 1974
338 struct ev_loop 1975 struct ev_loop
344 #undef VAR 1981 #undef VAR
345 }; 1982 };
346 #include "ev_wrap.h" 1983 #include "ev_wrap.h"
347 1984
348 static struct ev_loop default_loop_struct; 1985 static struct ev_loop default_loop_struct;
349 struct ev_loop *ev_default_loop_ptr; 1986 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
350 1987
351#else 1988#else
352 1989
353 ev_tstamp ev_rt_now; 1990 EV_API_DECL ev_tstamp ev_rt_now = EV_TS_CONST (0.); /* needs to be initialised to make it a definition despite extern */
354 #define VAR(name,decl) static decl; 1991 #define VAR(name,decl) static decl;
355 #include "ev_vars.h" 1992 #include "ev_vars.h"
356 #undef VAR 1993 #undef VAR
357 1994
358 static int ev_default_loop_ptr; 1995 static int ev_default_loop_ptr;
359 1996
360#endif 1997#endif
361 1998
1999#if EV_FEATURE_API
2000# define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
2001# define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
2002# define EV_INVOKE_PENDING invoke_cb (EV_A)
2003#else
2004# define EV_RELEASE_CB (void)0
2005# define EV_ACQUIRE_CB (void)0
2006# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
2007#endif
2008
2009#define EVBREAK_RECURSE 0x80
2010
362/*****************************************************************************/ 2011/*****************************************************************************/
363 2012
2013#ifndef EV_HAVE_EV_TIME
364ev_tstamp 2014ev_tstamp
365ev_time (void) 2015ev_time (void) EV_NOEXCEPT
366{ 2016{
367#if EV_USE_REALTIME 2017#if EV_USE_REALTIME
2018 if (ecb_expect_true (have_realtime))
2019 {
368 struct timespec ts; 2020 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 2021 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 2022 return EV_TS_GET (ts);
371#else 2023 }
2024#endif
2025
2026 {
372 struct timeval tv; 2027 struct timeval tv;
373 gettimeofday (&tv, 0); 2028 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 2029 return EV_TV_GET (tv);
375#endif 2030 }
376} 2031}
2032#endif
377 2033
378ev_tstamp inline_size 2034inline_size ev_tstamp
379get_clock (void) 2035get_clock (void)
380{ 2036{
381#if EV_USE_MONOTONIC 2037#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 2038 if (ecb_expect_true (have_monotonic))
383 { 2039 {
384 struct timespec ts; 2040 struct timespec ts;
385 clock_gettime (CLOCK_MONOTONIC, &ts); 2041 clock_gettime (CLOCK_MONOTONIC, &ts);
386 return ts.tv_sec + ts.tv_nsec * 1e-9; 2042 return EV_TS_GET (ts);
387 } 2043 }
388#endif 2044#endif
389 2045
390 return ev_time (); 2046 return ev_time ();
391} 2047}
392 2048
393#if EV_MULTIPLICITY 2049#if EV_MULTIPLICITY
394ev_tstamp 2050ev_tstamp
395ev_now (EV_P) 2051ev_now (EV_P) EV_NOEXCEPT
396{ 2052{
397 return ev_rt_now; 2053 return ev_rt_now;
398} 2054}
399#endif 2055#endif
400 2056
401#define array_roundsize(type,n) (((n) | 4) & ~3) 2057void
2058ev_sleep (ev_tstamp delay) EV_NOEXCEPT
2059{
2060 if (delay > EV_TS_CONST (0.))
2061 {
2062#if EV_USE_NANOSLEEP
2063 struct timespec ts;
2064
2065 EV_TS_SET (ts, delay);
2066 nanosleep (&ts, 0);
2067#elif defined _WIN32
2068 /* maybe this should round up, as ms is very low resolution */
2069 /* compared to select (µs) or nanosleep (ns) */
2070 Sleep ((unsigned long)(EV_TS_TO_MSEC (delay)));
2071#else
2072 struct timeval tv;
2073
2074 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
2075 /* something not guaranteed by newer posix versions, but guaranteed */
2076 /* by older ones */
2077 EV_TV_SET (tv, delay);
2078 select (0, 0, 0, 0, &tv);
2079#endif
2080 }
2081}
2082
2083/*****************************************************************************/
2084
2085#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
2086
2087/* find a suitable new size for the given array, */
2088/* hopefully by rounding to a nice-to-malloc size */
2089inline_size int
2090array_nextsize (int elem, int cur, int cnt)
2091{
2092 int ncur = cur + 1;
2093
2094 do
2095 ncur <<= 1;
2096 while (cnt > ncur);
2097
2098 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
2099 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
2100 {
2101 ncur *= elem;
2102 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
2103 ncur = ncur - sizeof (void *) * 4;
2104 ncur /= elem;
2105 }
2106
2107 return ncur;
2108}
2109
2110ecb_noinline ecb_cold
2111static void *
2112array_realloc (int elem, void *base, int *cur, int cnt)
2113{
2114 *cur = array_nextsize (elem, *cur, cnt);
2115 return ev_realloc (base, elem * *cur);
2116}
2117
2118#define array_needsize_noinit(base,offset,count)
2119
2120#define array_needsize_zerofill(base,offset,count) \
2121 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
402 2122
403#define array_needsize(type,base,cur,cnt,init) \ 2123#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 2124 if (ecb_expect_false ((cnt) > (cur))) \
405 { \ 2125 { \
406 int newcnt = cur; \ 2126 ecb_unused int ocur_ = (cur); \
407 do \ 2127 (base) = (type *)array_realloc \
408 { \ 2128 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 2129 init ((base), ocur_, ((cur) - ocur_)); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 2130 }
417 2131
2132#if 0
418#define array_slim(type,stem) \ 2133#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 2134 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 2135 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 2136 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 2137 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 2138 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 2139 }
2140#endif
425 2141
426#define array_free(stem, idx) \ 2142#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 2143 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
428 2144
429/*****************************************************************************/ 2145/*****************************************************************************/
430 2146
431void noinline 2147/* dummy callback for pending events */
2148ecb_noinline
2149static void
2150pendingcb (EV_P_ ev_prepare *w, int revents)
2151{
2152}
2153
2154ecb_noinline
2155void
432ev_feed_event (EV_P_ void *w, int revents) 2156ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
433{ 2157{
434 W w_ = (W)w; 2158 W w_ = (W)w;
2159 int pri = ABSPRI (w_);
435 2160
436 if (expect_false (w_->pending)) 2161 if (ecb_expect_false (w_->pending))
2162 pendings [pri][w_->pending - 1].events |= revents;
2163 else
437 { 2164 {
2165 w_->pending = ++pendingcnt [pri];
2166 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
2167 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 2168 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 2169 }
441 2170
442 w_->pending = ++pendingcnt [ABSPRI (w_)]; 2171 pendingpri = NUMPRI - 1;
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 2172}
447 2173
448void inline_size 2174inline_speed void
2175feed_reverse (EV_P_ W w)
2176{
2177 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2178 rfeeds [rfeedcnt++] = w;
2179}
2180
2181inline_size void
2182feed_reverse_done (EV_P_ int revents)
2183{
2184 do
2185 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2186 while (rfeedcnt);
2187}
2188
2189inline_speed void
449queue_events (EV_P_ W *events, int eventcnt, int type) 2190queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 2191{
451 int i; 2192 int i;
452 2193
453 for (i = 0; i < eventcnt; ++i) 2194 for (i = 0; i < eventcnt; ++i)
454 ev_feed_event (EV_A_ events [i], type); 2195 ev_feed_event (EV_A_ events [i], type);
455} 2196}
456 2197
457/*****************************************************************************/ 2198/*****************************************************************************/
458 2199
459void inline_size 2200inline_speed void
460anfds_init (ANFD *base, int count)
461{
462 while (count--)
463 {
464 base->head = 0;
465 base->events = EV_NONE;
466 base->reify = 0;
467
468 ++base;
469 }
470}
471
472void inline_speed
473fd_event (EV_P_ int fd, int revents) 2201fd_event_nocheck (EV_P_ int fd, int revents)
474{ 2202{
475 ANFD *anfd = anfds + fd; 2203 ANFD *anfd = anfds + fd;
476 ev_io *w; 2204 ev_io *w;
477 2205
478 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2206 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
482 if (ev) 2210 if (ev)
483 ev_feed_event (EV_A_ (W)w, ev); 2211 ev_feed_event (EV_A_ (W)w, ev);
484 } 2212 }
485} 2213}
486 2214
487void 2215/* do not submit kernel events for fds that have reify set */
2216/* because that means they changed while we were polling for new events */
2217inline_speed void
488ev_feed_fd_event (EV_P_ int fd, int revents) 2218fd_event (EV_P_ int fd, int revents)
489{ 2219{
2220 ANFD *anfd = anfds + fd;
2221
2222 if (ecb_expect_true (!anfd->reify))
490 fd_event (EV_A_ fd, revents); 2223 fd_event_nocheck (EV_A_ fd, revents);
491} 2224}
492 2225
493void inline_size 2226void
2227ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2228{
2229 if (fd >= 0 && fd < anfdmax)
2230 fd_event_nocheck (EV_A_ fd, revents);
2231}
2232
2233/* make sure the external fd watch events are in-sync */
2234/* with the kernel/libev internal state */
2235inline_size void
494fd_reify (EV_P) 2236fd_reify (EV_P)
495{ 2237{
496 int i; 2238 int i;
2239
2240#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2241 for (i = 0; i < fdchangecnt; ++i)
2242 {
2243 int fd = fdchanges [i];
2244 ANFD *anfd = anfds + fd;
2245
2246 if (anfd->reify & EV__IOFDSET && anfd->head)
2247 {
2248 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2249
2250 if (handle != anfd->handle)
2251 {
2252 unsigned long arg;
2253
2254 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2255
2256 /* handle changed, but fd didn't - we need to do it in two steps */
2257 backend_modify (EV_A_ fd, anfd->events, 0);
2258 anfd->events = 0;
2259 anfd->handle = handle;
2260 }
2261 }
2262 }
2263#endif
497 2264
498 for (i = 0; i < fdchangecnt; ++i) 2265 for (i = 0; i < fdchangecnt; ++i)
499 { 2266 {
500 int fd = fdchanges [i]; 2267 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 2268 ANFD *anfd = anfds + fd;
502 ev_io *w; 2269 ev_io *w;
503 2270
504 int events = 0; 2271 unsigned char o_events = anfd->events;
2272 unsigned char o_reify = anfd->reify;
505 2273
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2274 anfd->reify = 0;
507 events |= w->events;
508 2275
509#if EV_SELECT_IS_WINSOCKET 2276 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
510 if (events)
511 { 2277 {
512 unsigned long argp; 2278 anfd->events = 0;
513 anfd->handle = _get_osfhandle (fd); 2279
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 2280 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2281 anfd->events |= (unsigned char)w->events;
2282
2283 if (o_events != anfd->events)
2284 o_reify = EV__IOFDSET; /* actually |= */
515 } 2285 }
516#endif
517 2286
518 anfd->reify = 0; 2287 if (o_reify & EV__IOFDSET)
519
520 backend_modify (EV_A_ fd, anfd->events, events); 2288 backend_modify (EV_A_ fd, o_events, anfd->events);
521 anfd->events = events;
522 } 2289 }
523 2290
524 fdchangecnt = 0; 2291 fdchangecnt = 0;
525} 2292}
526 2293
2294/* something about the given fd changed */
527void inline_size 2295inline_size
2296void
528fd_change (EV_P_ int fd) 2297fd_change (EV_P_ int fd, int flags)
529{ 2298{
530 if (expect_false (anfds [fd].reify)) 2299 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 2300 anfds [fd].reify |= flags;
534 2301
2302 if (ecb_expect_true (!reify))
2303 {
535 ++fdchangecnt; 2304 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2305 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
537 fdchanges [fdchangecnt - 1] = fd; 2306 fdchanges [fdchangecnt - 1] = fd;
2307 }
538} 2308}
539 2309
540void inline_speed 2310/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2311inline_speed ecb_cold void
541fd_kill (EV_P_ int fd) 2312fd_kill (EV_P_ int fd)
542{ 2313{
543 ev_io *w; 2314 ev_io *w;
544 2315
545 while ((w = (ev_io *)anfds [fd].head)) 2316 while ((w = (ev_io *)anfds [fd].head))
547 ev_io_stop (EV_A_ w); 2318 ev_io_stop (EV_A_ w);
548 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2319 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
549 } 2320 }
550} 2321}
551 2322
552int inline_size 2323/* check whether the given fd is actually valid, for error recovery */
2324inline_size ecb_cold int
553fd_valid (int fd) 2325fd_valid (int fd)
554{ 2326{
555#ifdef _WIN32 2327#ifdef _WIN32
556 return _get_osfhandle (fd) != -1; 2328 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
557#else 2329#else
558 return fcntl (fd, F_GETFD) != -1; 2330 return fcntl (fd, F_GETFD) != -1;
559#endif 2331#endif
560} 2332}
561 2333
562/* called on EBADF to verify fds */ 2334/* called on EBADF to verify fds */
563static void noinline 2335ecb_noinline ecb_cold
2336static void
564fd_ebadf (EV_P) 2337fd_ebadf (EV_P)
565{ 2338{
566 int fd; 2339 int fd;
567 2340
568 for (fd = 0; fd < anfdmax; ++fd) 2341 for (fd = 0; fd < anfdmax; ++fd)
569 if (anfds [fd].events) 2342 if (anfds [fd].events)
570 if (!fd_valid (fd) == -1 && errno == EBADF) 2343 if (!fd_valid (fd) && errno == EBADF)
571 fd_kill (EV_A_ fd); 2344 fd_kill (EV_A_ fd);
572} 2345}
573 2346
574/* called on ENOMEM in select/poll to kill some fds and retry */ 2347/* called on ENOMEM in select/poll to kill some fds and retry */
575static void noinline 2348ecb_noinline ecb_cold
2349static void
576fd_enomem (EV_P) 2350fd_enomem (EV_P)
577{ 2351{
578 int fd; 2352 int fd;
579 2353
580 for (fd = anfdmax; fd--; ) 2354 for (fd = anfdmax; fd--; )
581 if (anfds [fd].events) 2355 if (anfds [fd].events)
582 { 2356 {
583 fd_kill (EV_A_ fd); 2357 fd_kill (EV_A_ fd);
584 return; 2358 break;
585 } 2359 }
586} 2360}
587 2361
588/* usually called after fork if backend needs to re-arm all fds from scratch */ 2362/* usually called after fork if backend needs to re-arm all fds from scratch */
589static void noinline 2363ecb_noinline
2364static void
590fd_rearm_all (EV_P) 2365fd_rearm_all (EV_P)
591{ 2366{
592 int fd; 2367 int fd;
593 2368
594 for (fd = 0; fd < anfdmax; ++fd) 2369 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 2370 if (anfds [fd].events)
596 { 2371 {
597 anfds [fd].events = 0; 2372 anfds [fd].events = 0;
598 fd_change (EV_A_ fd); 2373 anfds [fd].emask = 0;
2374 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
599 } 2375 }
600} 2376}
601 2377
602/*****************************************************************************/ 2378/* used to prepare libev internal fd's */
603 2379/* this is not fork-safe */
604void inline_speed 2380inline_speed void
605upheap (WT *heap, int k)
606{
607 WT w = heap [k];
608
609 while (k && heap [k >> 1]->at > w->at)
610 {
611 heap [k] = heap [k >> 1];
612 ((W)heap [k])->active = k + 1;
613 k >>= 1;
614 }
615
616 heap [k] = w;
617 ((W)heap [k])->active = k + 1;
618
619}
620
621void inline_speed
622downheap (WT *heap, int N, int k)
623{
624 WT w = heap [k];
625
626 while (k < (N >> 1))
627 {
628 int j = k << 1;
629
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
631 ++j;
632
633 if (w->at <= heap [j]->at)
634 break;
635
636 heap [k] = heap [j];
637 ((W)heap [k])->active = k + 1;
638 k = j;
639 }
640
641 heap [k] = w;
642 ((W)heap [k])->active = k + 1;
643}
644
645void inline_size
646adjustheap (WT *heap, int N, int k)
647{
648 upheap (heap, k);
649 downheap (heap, N, k);
650}
651
652/*****************************************************************************/
653
654typedef struct
655{
656 WL head;
657 sig_atomic_t volatile gotsig;
658} ANSIG;
659
660static ANSIG *signals;
661static int signalmax;
662
663static int sigpipe [2];
664static sig_atomic_t volatile gotsig;
665static ev_io sigev;
666
667void inline_size
668signals_init (ANSIG *base, int count)
669{
670 while (count--)
671 {
672 base->head = 0;
673 base->gotsig = 0;
674
675 ++base;
676 }
677}
678
679static void
680sighandler (int signum)
681{
682#if _WIN32
683 signal (signum, sighandler);
684#endif
685
686 signals [signum - 1].gotsig = 1;
687
688 if (!gotsig)
689 {
690 int old_errno = errno;
691 gotsig = 1;
692 write (sigpipe [1], &signum, 1);
693 errno = old_errno;
694 }
695}
696
697void noinline
698ev_feed_signal_event (EV_P_ int signum)
699{
700 WL w;
701
702#if EV_MULTIPLICITY
703 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
704#endif
705
706 --signum;
707
708 if (signum < 0 || signum >= signalmax)
709 return;
710
711 signals [signum].gotsig = 0;
712
713 for (w = signals [signum].head; w; w = w->next)
714 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
715}
716
717static void
718sigcb (EV_P_ ev_io *iow, int revents)
719{
720 int signum;
721
722 read (sigpipe [0], &revents, 1);
723 gotsig = 0;
724
725 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1);
728}
729
730void inline_size
731fd_intern (int fd) 2381fd_intern (int fd)
732{ 2382{
733#ifdef _WIN32 2383#ifdef _WIN32
734 int arg = 1; 2384 unsigned long arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 2385 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
736#else 2386#else
737 fcntl (fd, F_SETFD, FD_CLOEXEC); 2387 fcntl (fd, F_SETFD, FD_CLOEXEC);
738 fcntl (fd, F_SETFL, O_NONBLOCK); 2388 fcntl (fd, F_SETFL, O_NONBLOCK);
739#endif 2389#endif
740} 2390}
741 2391
742static void noinline
743siginit (EV_P)
744{
745 fd_intern (sigpipe [0]);
746 fd_intern (sigpipe [1]);
747
748 ev_io_set (&sigev, sigpipe [0], EV_READ);
749 ev_io_start (EV_A_ &sigev);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */
751}
752
753/*****************************************************************************/ 2392/*****************************************************************************/
754 2393
755static ev_child *childs [EV_PID_HASHSIZE]; 2394/*
2395 * the heap functions want a real array index. array index 0 is guaranteed to not
2396 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2397 * the branching factor of the d-tree.
2398 */
756 2399
2400/*
2401 * at the moment we allow libev the luxury of two heaps,
2402 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2403 * which is more cache-efficient.
2404 * the difference is about 5% with 50000+ watchers.
2405 */
2406#if EV_USE_4HEAP
2407
2408#define DHEAP 4
2409#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2410#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2411#define UPHEAP_DONE(p,k) ((p) == (k))
2412
2413/* away from the root */
2414inline_speed void
2415downheap (ANHE *heap, int N, int k)
2416{
2417 ANHE he = heap [k];
2418 ANHE *E = heap + N + HEAP0;
2419
2420 for (;;)
2421 {
2422 ev_tstamp minat;
2423 ANHE *minpos;
2424 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2425
2426 /* find minimum child */
2427 if (ecb_expect_true (pos + DHEAP - 1 < E))
2428 {
2429 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2430 if ( minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2431 if ( minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2432 if ( minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2433 }
2434 else if (pos < E)
2435 {
2436 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2437 if (pos + 1 < E && minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2438 if (pos + 2 < E && minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2439 if (pos + 3 < E && minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2440 }
2441 else
2442 break;
2443
2444 if (ANHE_at (he) <= minat)
2445 break;
2446
2447 heap [k] = *minpos;
2448 ev_active (ANHE_w (*minpos)) = k;
2449
2450 k = minpos - heap;
2451 }
2452
2453 heap [k] = he;
2454 ev_active (ANHE_w (he)) = k;
2455}
2456
2457#else /* not 4HEAP */
2458
2459#define HEAP0 1
2460#define HPARENT(k) ((k) >> 1)
2461#define UPHEAP_DONE(p,k) (!(p))
2462
2463/* away from the root */
2464inline_speed void
2465downheap (ANHE *heap, int N, int k)
2466{
2467 ANHE he = heap [k];
2468
2469 for (;;)
2470 {
2471 int c = k << 1;
2472
2473 if (c >= N + HEAP0)
2474 break;
2475
2476 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2477 ? 1 : 0;
2478
2479 if (ANHE_at (he) <= ANHE_at (heap [c]))
2480 break;
2481
2482 heap [k] = heap [c];
2483 ev_active (ANHE_w (heap [k])) = k;
2484
2485 k = c;
2486 }
2487
2488 heap [k] = he;
2489 ev_active (ANHE_w (he)) = k;
2490}
2491#endif
2492
2493/* towards the root */
2494inline_speed void
2495upheap (ANHE *heap, int k)
2496{
2497 ANHE he = heap [k];
2498
2499 for (;;)
2500 {
2501 int p = HPARENT (k);
2502
2503 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2504 break;
2505
2506 heap [k] = heap [p];
2507 ev_active (ANHE_w (heap [k])) = k;
2508 k = p;
2509 }
2510
2511 heap [k] = he;
2512 ev_active (ANHE_w (he)) = k;
2513}
2514
2515/* move an element suitably so it is in a correct place */
2516inline_size void
2517adjustheap (ANHE *heap, int N, int k)
2518{
2519 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2520 upheap (heap, k);
2521 else
2522 downheap (heap, N, k);
2523}
2524
2525/* rebuild the heap: this function is used only once and executed rarely */
2526inline_size void
2527reheap (ANHE *heap, int N)
2528{
2529 int i;
2530
2531 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2532 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2533 for (i = 0; i < N; ++i)
2534 upheap (heap, i + HEAP0);
2535}
2536
2537/*****************************************************************************/
2538
2539/* associate signal watchers to a signal signal */
2540typedef struct
2541{
2542 EV_ATOMIC_T pending;
2543#if EV_MULTIPLICITY
2544 EV_P;
2545#endif
2546 WL head;
2547} ANSIG;
2548
2549static ANSIG signals [EV_NSIG - 1];
2550
2551/*****************************************************************************/
2552
2553#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2554
2555ecb_noinline ecb_cold
2556static void
2557evpipe_init (EV_P)
2558{
2559 if (!ev_is_active (&pipe_w))
2560 {
2561 int fds [2];
2562
2563# if EV_USE_EVENTFD
2564 fds [0] = -1;
2565 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2566 if (fds [1] < 0 && errno == EINVAL)
2567 fds [1] = eventfd (0, 0);
2568
2569 if (fds [1] < 0)
2570# endif
2571 {
2572 while (pipe (fds))
2573 ev_syserr ("(libev) error creating signal/async pipe");
2574
2575 fd_intern (fds [0]);
2576 }
2577
2578 evpipe [0] = fds [0];
2579
2580 if (evpipe [1] < 0)
2581 evpipe [1] = fds [1]; /* first call, set write fd */
2582 else
2583 {
2584 /* on subsequent calls, do not change evpipe [1] */
2585 /* so that evpipe_write can always rely on its value. */
2586 /* this branch does not do anything sensible on windows, */
2587 /* so must not be executed on windows */
2588
2589 dup2 (fds [1], evpipe [1]);
2590 close (fds [1]);
2591 }
2592
2593 fd_intern (evpipe [1]);
2594
2595 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2596 ev_io_start (EV_A_ &pipe_w);
2597 ev_unref (EV_A); /* watcher should not keep loop alive */
2598 }
2599}
2600
2601inline_speed void
2602evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2603{
2604 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2605
2606 if (ecb_expect_true (*flag))
2607 return;
2608
2609 *flag = 1;
2610 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2611
2612 pipe_write_skipped = 1;
2613
2614 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2615
2616 if (pipe_write_wanted)
2617 {
2618 int old_errno;
2619
2620 pipe_write_skipped = 0;
2621 ECB_MEMORY_FENCE_RELEASE;
2622
2623 old_errno = errno; /* save errno because write will clobber it */
2624
2625#if EV_USE_EVENTFD
2626 if (evpipe [0] < 0)
2627 {
2628 uint64_t counter = 1;
2629 write (evpipe [1], &counter, sizeof (uint64_t));
2630 }
2631 else
2632#endif
2633 {
757#ifndef _WIN32 2634#ifdef _WIN32
2635 WSABUF buf;
2636 DWORD sent;
2637 buf.buf = (char *)&buf;
2638 buf.len = 1;
2639 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2640#else
2641 write (evpipe [1], &(evpipe [1]), 1);
2642#endif
2643 }
2644
2645 errno = old_errno;
2646 }
2647}
2648
2649/* called whenever the libev signal pipe */
2650/* got some events (signal, async) */
2651static void
2652pipecb (EV_P_ ev_io *iow, int revents)
2653{
2654 int i;
2655
2656 if (revents & EV_READ)
2657 {
2658#if EV_USE_EVENTFD
2659 if (evpipe [0] < 0)
2660 {
2661 uint64_t counter;
2662 read (evpipe [1], &counter, sizeof (uint64_t));
2663 }
2664 else
2665#endif
2666 {
2667 char dummy[4];
2668#ifdef _WIN32
2669 WSABUF buf;
2670 DWORD recvd;
2671 DWORD flags = 0;
2672 buf.buf = dummy;
2673 buf.len = sizeof (dummy);
2674 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2675#else
2676 read (evpipe [0], &dummy, sizeof (dummy));
2677#endif
2678 }
2679 }
2680
2681 pipe_write_skipped = 0;
2682
2683 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2684
2685#if EV_SIGNAL_ENABLE
2686 if (sig_pending)
2687 {
2688 sig_pending = 0;
2689
2690 ECB_MEMORY_FENCE;
2691
2692 for (i = EV_NSIG - 1; i--; )
2693 if (ecb_expect_false (signals [i].pending))
2694 ev_feed_signal_event (EV_A_ i + 1);
2695 }
2696#endif
2697
2698#if EV_ASYNC_ENABLE
2699 if (async_pending)
2700 {
2701 async_pending = 0;
2702
2703 ECB_MEMORY_FENCE;
2704
2705 for (i = asynccnt; i--; )
2706 if (asyncs [i]->sent)
2707 {
2708 asyncs [i]->sent = 0;
2709 ECB_MEMORY_FENCE_RELEASE;
2710 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2711 }
2712 }
2713#endif
2714}
2715
2716/*****************************************************************************/
2717
2718void
2719ev_feed_signal (int signum) EV_NOEXCEPT
2720{
2721#if EV_MULTIPLICITY
2722 EV_P;
2723 ECB_MEMORY_FENCE_ACQUIRE;
2724 EV_A = signals [signum - 1].loop;
2725
2726 if (!EV_A)
2727 return;
2728#endif
2729
2730 signals [signum - 1].pending = 1;
2731 evpipe_write (EV_A_ &sig_pending);
2732}
2733
2734static void
2735ev_sighandler (int signum)
2736{
2737#ifdef _WIN32
2738 signal (signum, ev_sighandler);
2739#endif
2740
2741 ev_feed_signal (signum);
2742}
2743
2744ecb_noinline
2745void
2746ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2747{
2748 WL w;
2749
2750 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2751 return;
2752
2753 --signum;
2754
2755#if EV_MULTIPLICITY
2756 /* it is permissible to try to feed a signal to the wrong loop */
2757 /* or, likely more useful, feeding a signal nobody is waiting for */
2758
2759 if (ecb_expect_false (signals [signum].loop != EV_A))
2760 return;
2761#endif
2762
2763 signals [signum].pending = 0;
2764 ECB_MEMORY_FENCE_RELEASE;
2765
2766 for (w = signals [signum].head; w; w = w->next)
2767 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2768}
2769
2770#if EV_USE_SIGNALFD
2771static void
2772sigfdcb (EV_P_ ev_io *iow, int revents)
2773{
2774 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2775
2776 for (;;)
2777 {
2778 ssize_t res = read (sigfd, si, sizeof (si));
2779
2780 /* not ISO-C, as res might be -1, but works with SuS */
2781 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2782 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2783
2784 if (res < (ssize_t)sizeof (si))
2785 break;
2786 }
2787}
2788#endif
2789
2790#endif
2791
2792/*****************************************************************************/
2793
2794#if EV_CHILD_ENABLE
2795static WL childs [EV_PID_HASHSIZE];
758 2796
759static ev_signal childev; 2797static ev_signal childev;
760 2798
761void inline_speed 2799#ifndef WIFCONTINUED
2800# define WIFCONTINUED(status) 0
2801#endif
2802
2803/* handle a single child status event */
2804inline_speed void
762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2805child_reap (EV_P_ int chain, int pid, int status)
763{ 2806{
764 ev_child *w; 2807 ev_child *w;
2808 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
765 2809
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2810 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2811 {
767 if (w->pid == pid || !w->pid) 2812 if ((w->pid == pid || !w->pid)
2813 && (!traced || (w->flags & 1)))
768 { 2814 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 2815 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
770 w->rpid = pid; 2816 w->rpid = pid;
771 w->rstatus = status; 2817 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2818 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 2819 }
2820 }
774} 2821}
775 2822
776#ifndef WCONTINUED 2823#ifndef WCONTINUED
777# define WCONTINUED 0 2824# define WCONTINUED 0
778#endif 2825#endif
779 2826
2827/* called on sigchld etc., calls waitpid */
780static void 2828static void
781childcb (EV_P_ ev_signal *sw, int revents) 2829childcb (EV_P_ ev_signal *sw, int revents)
782{ 2830{
783 int pid, status; 2831 int pid, status;
784 2832
787 if (!WCONTINUED 2835 if (!WCONTINUED
788 || errno != EINVAL 2836 || errno != EINVAL
789 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2837 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
790 return; 2838 return;
791 2839
792 /* make sure we are called again until all childs have been reaped */ 2840 /* make sure we are called again until all children have been reaped */
793 /* we need to do it this way so that the callback gets called before we continue */ 2841 /* we need to do it this way so that the callback gets called before we continue */
794 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2842 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
795 2843
796 child_reap (EV_A_ sw, pid, pid, status); 2844 child_reap (EV_A_ pid, pid, status);
797 if (EV_PID_HASHSIZE > 1) 2845 if ((EV_PID_HASHSIZE) > 1)
798 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2846 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
799} 2847}
800 2848
801#endif 2849#endif
802 2850
803/*****************************************************************************/ 2851/*****************************************************************************/
804 2852
2853#if EV_USE_IOCP
2854# include "ev_iocp.c"
2855#endif
805#if EV_USE_PORT 2856#if EV_USE_PORT
806# include "ev_port.c" 2857# include "ev_port.c"
807#endif 2858#endif
808#if EV_USE_KQUEUE 2859#if EV_USE_KQUEUE
809# include "ev_kqueue.c" 2860# include "ev_kqueue.c"
810#endif 2861#endif
811#if EV_USE_EPOLL 2862#if EV_USE_EPOLL
812# include "ev_epoll.c" 2863# include "ev_epoll.c"
813#endif 2864#endif
2865#if EV_USE_LINUXAIO
2866# include "ev_linuxaio.c"
2867#endif
2868#if EV_USE_IOURING
2869# include "ev_iouring.c"
2870#endif
814#if EV_USE_POLL 2871#if EV_USE_POLL
815# include "ev_poll.c" 2872# include "ev_poll.c"
816#endif 2873#endif
817#if EV_USE_SELECT 2874#if EV_USE_SELECT
818# include "ev_select.c" 2875# include "ev_select.c"
819#endif 2876#endif
820 2877
821int 2878ecb_cold int
822ev_version_major (void) 2879ev_version_major (void) EV_NOEXCEPT
823{ 2880{
824 return EV_VERSION_MAJOR; 2881 return EV_VERSION_MAJOR;
825} 2882}
826 2883
827int 2884ecb_cold int
828ev_version_minor (void) 2885ev_version_minor (void) EV_NOEXCEPT
829{ 2886{
830 return EV_VERSION_MINOR; 2887 return EV_VERSION_MINOR;
831} 2888}
832 2889
833/* return true if we are running with elevated privileges and should ignore env variables */ 2890/* return true if we are running with elevated privileges and should ignore env variables */
834int inline_size 2891inline_size ecb_cold int
835enable_secure (void) 2892enable_secure (void)
836{ 2893{
837#ifdef _WIN32 2894#ifdef _WIN32
838 return 0; 2895 return 0;
839#else 2896#else
840 return getuid () != geteuid () 2897 return getuid () != geteuid ()
841 || getgid () != getegid (); 2898 || getgid () != getegid ();
842#endif 2899#endif
843} 2900}
844 2901
2902ecb_cold
845unsigned int 2903unsigned int
846ev_supported_backends (void) 2904ev_supported_backends (void) EV_NOEXCEPT
847{ 2905{
848 unsigned int flags = 0; 2906 unsigned int flags = 0;
849 2907
850 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2908 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
851 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2909 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
852 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 2910 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2911 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2912 if (EV_USE_IOURING ) flags |= EVBACKEND_IOURING;
853 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 2913 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
854 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2914 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
855 2915
856 return flags; 2916 return flags;
857} 2917}
858 2918
2919ecb_cold
859unsigned int 2920unsigned int
860ev_recommended_backends (void) 2921ev_recommended_backends (void) EV_NOEXCEPT
861{ 2922{
862 unsigned int flags = ev_supported_backends (); 2923 unsigned int flags = ev_supported_backends ();
863 2924
864#ifndef __NetBSD__ 2925#ifndef __NetBSD__
865 /* kqueue is borked on everything but netbsd apparently */ 2926 /* kqueue is borked on everything but netbsd apparently */
866 /* it usually doesn't work correctly on anything but sockets and pipes */ 2927 /* it usually doesn't work correctly on anything but sockets and pipes */
867 flags &= ~EVBACKEND_KQUEUE; 2928 flags &= ~EVBACKEND_KQUEUE;
868#endif 2929#endif
869#ifdef __APPLE__ 2930#ifdef __APPLE__
870 // flags &= ~EVBACKEND_KQUEUE; for documentation 2931 /* only select works correctly on that "unix-certified" platform */
2932 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2933 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2934#endif
2935#ifdef __FreeBSD__
2936 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2937#endif
2938
2939 /* TODO: linuxaio is very experimental */
2940#if !EV_RECOMMEND_LINUXAIO
2941 flags &= ~EVBACKEND_LINUXAIO;
2942#endif
2943 /* TODO: linuxaio is super experimental */
2944#if !EV_RECOMMEND_IOURING
871 flags &= ~EVBACKEND_POLL; 2945 flags &= ~EVBACKEND_IOURING;
872#endif 2946#endif
873 2947
874 return flags; 2948 return flags;
875} 2949}
876 2950
2951ecb_cold
877unsigned int 2952unsigned int
878ev_embeddable_backends (void) 2953ev_embeddable_backends (void) EV_NOEXCEPT
879{ 2954{
880 return EVBACKEND_EPOLL 2955 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 2956
882 | EVBACKEND_PORT; 2957 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2958 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2959 flags &= ~EVBACKEND_EPOLL;
2960
2961 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
2962
2963 /* EVBACKEND_IOURING is practically embeddable, but the current implementation is not
2964 * because our backend_fd is the epoll fd we need as fallback.
2965 * if the kernel ever is fixed, this might change...
2966 */
2967
2968 return flags;
883} 2969}
884 2970
885unsigned int 2971unsigned int
886ev_backend (EV_P) 2972ev_backend (EV_P) EV_NOEXCEPT
887{ 2973{
888 return backend; 2974 return backend;
889} 2975}
890 2976
891static void noinline 2977#if EV_FEATURE_API
2978unsigned int
2979ev_iteration (EV_P) EV_NOEXCEPT
2980{
2981 return loop_count;
2982}
2983
2984unsigned int
2985ev_depth (EV_P) EV_NOEXCEPT
2986{
2987 return loop_depth;
2988}
2989
2990void
2991ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2992{
2993 io_blocktime = interval;
2994}
2995
2996void
2997ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2998{
2999 timeout_blocktime = interval;
3000}
3001
3002void
3003ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
3004{
3005 userdata = data;
3006}
3007
3008void *
3009ev_userdata (EV_P) EV_NOEXCEPT
3010{
3011 return userdata;
3012}
3013
3014void
3015ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
3016{
3017 invoke_cb = invoke_pending_cb;
3018}
3019
3020void
3021ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
3022{
3023 release_cb = release;
3024 acquire_cb = acquire;
3025}
3026#endif
3027
3028/* initialise a loop structure, must be zero-initialised */
3029ecb_noinline ecb_cold
3030static void
892loop_init (EV_P_ unsigned int flags) 3031loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
893{ 3032{
894 if (!backend) 3033 if (!backend)
895 { 3034 {
3035 origflags = flags;
3036
3037#if EV_USE_REALTIME
3038 if (!have_realtime)
3039 {
3040 struct timespec ts;
3041
3042 if (!clock_gettime (CLOCK_REALTIME, &ts))
3043 have_realtime = 1;
3044 }
3045#endif
3046
896#if EV_USE_MONOTONIC 3047#if EV_USE_MONOTONIC
3048 if (!have_monotonic)
897 { 3049 {
898 struct timespec ts; 3050 struct timespec ts;
3051
899 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 3052 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
900 have_monotonic = 1; 3053 have_monotonic = 1;
901 } 3054 }
902#endif 3055#endif
903
904 ev_rt_now = ev_time ();
905 mn_now = get_clock ();
906 now_floor = mn_now;
907 rtmn_diff = ev_rt_now - mn_now;
908 3056
909 /* pid check not overridable via env */ 3057 /* pid check not overridable via env */
910#ifndef _WIN32 3058#ifndef _WIN32
911 if (flags & EVFLAG_FORKCHECK) 3059 if (flags & EVFLAG_FORKCHECK)
912 curpid = getpid (); 3060 curpid = getpid ();
915 if (!(flags & EVFLAG_NOENV) 3063 if (!(flags & EVFLAG_NOENV)
916 && !enable_secure () 3064 && !enable_secure ()
917 && getenv ("LIBEV_FLAGS")) 3065 && getenv ("LIBEV_FLAGS"))
918 flags = atoi (getenv ("LIBEV_FLAGS")); 3066 flags = atoi (getenv ("LIBEV_FLAGS"));
919 3067
920 if (!(flags & 0x0000ffffUL)) 3068 ev_rt_now = ev_time ();
3069 mn_now = get_clock ();
3070 now_floor = mn_now;
3071 rtmn_diff = ev_rt_now - mn_now;
3072#if EV_FEATURE_API
3073 invoke_cb = ev_invoke_pending;
3074#endif
3075
3076 io_blocktime = 0.;
3077 timeout_blocktime = 0.;
3078 backend = 0;
3079 backend_fd = -1;
3080 sig_pending = 0;
3081#if EV_ASYNC_ENABLE
3082 async_pending = 0;
3083#endif
3084 pipe_write_skipped = 0;
3085 pipe_write_wanted = 0;
3086 evpipe [0] = -1;
3087 evpipe [1] = -1;
3088#if EV_USE_INOTIFY
3089 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3090#endif
3091#if EV_USE_SIGNALFD
3092 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3093#endif
3094
3095 if (!(flags & EVBACKEND_MASK))
921 flags |= ev_recommended_backends (); 3096 flags |= ev_recommended_backends ();
922 3097
923 backend = 0;
924 backend_fd = -1;
925#if EV_USE_INOTIFY 3098#if EV_USE_IOCP
926 fs_fd = -2; 3099 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
927#endif 3100#endif
928
929#if EV_USE_PORT 3101#if EV_USE_PORT
930 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 3102 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
931#endif 3103#endif
932#if EV_USE_KQUEUE 3104#if EV_USE_KQUEUE
933 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 3105 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3106#endif
3107#if EV_USE_IOURING
3108 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3109#endif
3110#if EV_USE_LINUXAIO
3111 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
934#endif 3112#endif
935#if EV_USE_EPOLL 3113#if EV_USE_EPOLL
936 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags); 3114 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
937#endif 3115#endif
938#if EV_USE_POLL 3116#if EV_USE_POLL
939 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags); 3117 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
940#endif 3118#endif
941#if EV_USE_SELECT 3119#if EV_USE_SELECT
942 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 3120 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
943#endif 3121#endif
944 3122
3123 ev_prepare_init (&pending_w, pendingcb);
3124
3125#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
945 ev_init (&sigev, sigcb); 3126 ev_init (&pipe_w, pipecb);
946 ev_set_priority (&sigev, EV_MAXPRI); 3127 ev_set_priority (&pipe_w, EV_MAXPRI);
3128#endif
947 } 3129 }
948} 3130}
949 3131
950static void noinline 3132/* free up a loop structure */
3133ecb_cold
3134void
951loop_destroy (EV_P) 3135ev_loop_destroy (EV_P)
952{ 3136{
953 int i; 3137 int i;
3138
3139#if EV_MULTIPLICITY
3140 /* mimic free (0) */
3141 if (!EV_A)
3142 return;
3143#endif
3144
3145#if EV_CLEANUP_ENABLE
3146 /* queue cleanup watchers (and execute them) */
3147 if (ecb_expect_false (cleanupcnt))
3148 {
3149 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3150 EV_INVOKE_PENDING;
3151 }
3152#endif
3153
3154#if EV_CHILD_ENABLE
3155 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3156 {
3157 ev_ref (EV_A); /* child watcher */
3158 ev_signal_stop (EV_A_ &childev);
3159 }
3160#endif
3161
3162 if (ev_is_active (&pipe_w))
3163 {
3164 /*ev_ref (EV_A);*/
3165 /*ev_io_stop (EV_A_ &pipe_w);*/
3166
3167 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3168 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3169 }
3170
3171#if EV_USE_SIGNALFD
3172 if (ev_is_active (&sigfd_w))
3173 close (sigfd);
3174#endif
954 3175
955#if EV_USE_INOTIFY 3176#if EV_USE_INOTIFY
956 if (fs_fd >= 0) 3177 if (fs_fd >= 0)
957 close (fs_fd); 3178 close (fs_fd);
958#endif 3179#endif
959 3180
960 if (backend_fd >= 0) 3181 if (backend_fd >= 0)
961 close (backend_fd); 3182 close (backend_fd);
962 3183
3184#if EV_USE_IOCP
3185 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3186#endif
963#if EV_USE_PORT 3187#if EV_USE_PORT
964 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 3188 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
965#endif 3189#endif
966#if EV_USE_KQUEUE 3190#if EV_USE_KQUEUE
967 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3191 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3192#endif
3193#if EV_USE_IOURING
3194 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3195#endif
3196#if EV_USE_LINUXAIO
3197 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
968#endif 3198#endif
969#if EV_USE_EPOLL 3199#if EV_USE_EPOLL
970 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 3200 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
971#endif 3201#endif
972#if EV_USE_POLL 3202#if EV_USE_POLL
973 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A); 3203 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
974#endif 3204#endif
975#if EV_USE_SELECT 3205#if EV_USE_SELECT
976 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 3206 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
977#endif 3207#endif
978 3208
979 for (i = NUMPRI; i--; ) 3209 for (i = NUMPRI; i--; )
3210 {
980 array_free (pending, [i]); 3211 array_free (pending, [i]);
3212#if EV_IDLE_ENABLE
3213 array_free (idle, [i]);
3214#endif
3215 }
3216
3217 ev_free (anfds); anfds = 0; anfdmax = 0;
981 3218
982 /* have to use the microsoft-never-gets-it-right macro */ 3219 /* have to use the microsoft-never-gets-it-right macro */
3220 array_free (rfeed, EMPTY);
983 array_free (fdchange, EMPTY0); 3221 array_free (fdchange, EMPTY);
984 array_free (timer, EMPTY0); 3222 array_free (timer, EMPTY);
985#if EV_PERIODIC_ENABLE 3223#if EV_PERIODIC_ENABLE
986 array_free (periodic, EMPTY0); 3224 array_free (periodic, EMPTY);
987#endif 3225#endif
3226#if EV_FORK_ENABLE
3227 array_free (fork, EMPTY);
3228#endif
3229#if EV_CLEANUP_ENABLE
988 array_free (idle, EMPTY0); 3230 array_free (cleanup, EMPTY);
3231#endif
989 array_free (prepare, EMPTY0); 3232 array_free (prepare, EMPTY);
990 array_free (check, EMPTY0); 3233 array_free (check, EMPTY);
3234#if EV_ASYNC_ENABLE
3235 array_free (async, EMPTY);
3236#endif
991 3237
992 backend = 0; 3238 backend = 0;
993}
994 3239
3240#if EV_MULTIPLICITY
3241 if (ev_is_default_loop (EV_A))
3242#endif
3243 ev_default_loop_ptr = 0;
3244#if EV_MULTIPLICITY
3245 else
3246 ev_free (EV_A);
3247#endif
3248}
3249
3250#if EV_USE_INOTIFY
995void inline_size infy_fork (EV_P); 3251inline_size void infy_fork (EV_P);
3252#endif
996 3253
997void inline_size 3254inline_size void
998loop_fork (EV_P) 3255loop_fork (EV_P)
999{ 3256{
1000#if EV_USE_PORT 3257#if EV_USE_PORT
1001 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3258 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1002#endif 3259#endif
1003#if EV_USE_KQUEUE 3260#if EV_USE_KQUEUE
1004 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 3261 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3262#endif
3263#if EV_USE_IOURING
3264 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3265#endif
3266#if EV_USE_LINUXAIO
3267 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
1005#endif 3268#endif
1006#if EV_USE_EPOLL 3269#if EV_USE_EPOLL
1007 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 3270 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1008#endif 3271#endif
1009#if EV_USE_INOTIFY 3272#if EV_USE_INOTIFY
1010 infy_fork (EV_A); 3273 infy_fork (EV_A);
1011#endif 3274#endif
1012 3275
1013 if (ev_is_active (&sigev)) 3276#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3277 if (ev_is_active (&pipe_w) && postfork != 2)
1014 { 3278 {
1015 /* default loop */ 3279 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1016 3280
1017 ev_ref (EV_A); 3281 ev_ref (EV_A);
1018 ev_io_stop (EV_A_ &sigev); 3282 ev_io_stop (EV_A_ &pipe_w);
1019 close (sigpipe [0]);
1020 close (sigpipe [1]);
1021 3283
1022 while (pipe (sigpipe)) 3284 if (evpipe [0] >= 0)
1023 syserr ("(libev) error creating pipe"); 3285 EV_WIN32_CLOSE_FD (evpipe [0]);
1024 3286
1025 siginit (EV_A); 3287 evpipe_init (EV_A);
3288 /* iterate over everything, in case we missed something before */
3289 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1026 } 3290 }
3291#endif
1027 3292
1028 postfork = 0; 3293 postfork = 0;
1029} 3294}
1030 3295
1031#if EV_MULTIPLICITY 3296#if EV_MULTIPLICITY
3297
3298ecb_cold
1032struct ev_loop * 3299struct ev_loop *
1033ev_loop_new (unsigned int flags) 3300ev_loop_new (unsigned int flags) EV_NOEXCEPT
1034{ 3301{
1035 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 3302 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1036 3303
1037 memset (loop, 0, sizeof (struct ev_loop)); 3304 memset (EV_A, 0, sizeof (struct ev_loop));
1038
1039 loop_init (EV_A_ flags); 3305 loop_init (EV_A_ flags);
1040 3306
1041 if (ev_backend (EV_A)) 3307 if (ev_backend (EV_A))
1042 return loop; 3308 return EV_A;
1043 3309
3310 ev_free (EV_A);
1044 return 0; 3311 return 0;
1045} 3312}
1046 3313
1047void 3314#endif /* multiplicity */
1048ev_loop_destroy (EV_P)
1049{
1050 loop_destroy (EV_A);
1051 ev_free (loop);
1052}
1053 3315
1054void 3316#if EV_VERIFY
1055ev_loop_fork (EV_P) 3317ecb_noinline ecb_cold
3318static void
3319verify_watcher (EV_P_ W w)
1056{ 3320{
1057 postfork = 1; 3321 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1058}
1059 3322
3323 if (w->pending)
3324 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3325}
3326
3327ecb_noinline ecb_cold
3328static void
3329verify_heap (EV_P_ ANHE *heap, int N)
3330{
3331 int i;
3332
3333 for (i = HEAP0; i < N + HEAP0; ++i)
3334 {
3335 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3336 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3337 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3338
3339 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3340 }
3341}
3342
3343ecb_noinline ecb_cold
3344static void
3345array_verify (EV_P_ W *ws, int cnt)
3346{
3347 while (cnt--)
3348 {
3349 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3350 verify_watcher (EV_A_ ws [cnt]);
3351 }
3352}
3353#endif
3354
3355#if EV_FEATURE_API
3356void ecb_cold
3357ev_verify (EV_P) EV_NOEXCEPT
3358{
3359#if EV_VERIFY
3360 int i;
3361 WL w, w2;
3362
3363 assert (activecnt >= -1);
3364
3365 assert (fdchangemax >= fdchangecnt);
3366 for (i = 0; i < fdchangecnt; ++i)
3367 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3368
3369 assert (anfdmax >= 0);
3370 for (i = 0; i < anfdmax; ++i)
3371 {
3372 int j = 0;
3373
3374 for (w = w2 = anfds [i].head; w; w = w->next)
3375 {
3376 verify_watcher (EV_A_ (W)w);
3377
3378 if (j++ & 1)
3379 {
3380 assert (("libev: io watcher list contains a loop", w != w2));
3381 w2 = w2->next;
3382 }
3383
3384 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3385 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3386 }
3387 }
3388
3389 assert (timermax >= timercnt);
3390 verify_heap (EV_A_ timers, timercnt);
3391
3392#if EV_PERIODIC_ENABLE
3393 assert (periodicmax >= periodiccnt);
3394 verify_heap (EV_A_ periodics, periodiccnt);
3395#endif
3396
3397 for (i = NUMPRI; i--; )
3398 {
3399 assert (pendingmax [i] >= pendingcnt [i]);
3400#if EV_IDLE_ENABLE
3401 assert (idleall >= 0);
3402 assert (idlemax [i] >= idlecnt [i]);
3403 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3404#endif
3405 }
3406
3407#if EV_FORK_ENABLE
3408 assert (forkmax >= forkcnt);
3409 array_verify (EV_A_ (W *)forks, forkcnt);
3410#endif
3411
3412#if EV_CLEANUP_ENABLE
3413 assert (cleanupmax >= cleanupcnt);
3414 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3415#endif
3416
3417#if EV_ASYNC_ENABLE
3418 assert (asyncmax >= asynccnt);
3419 array_verify (EV_A_ (W *)asyncs, asynccnt);
3420#endif
3421
3422#if EV_PREPARE_ENABLE
3423 assert (preparemax >= preparecnt);
3424 array_verify (EV_A_ (W *)prepares, preparecnt);
3425#endif
3426
3427#if EV_CHECK_ENABLE
3428 assert (checkmax >= checkcnt);
3429 array_verify (EV_A_ (W *)checks, checkcnt);
3430#endif
3431
3432# if 0
3433#if EV_CHILD_ENABLE
3434 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3435 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3436#endif
3437# endif
3438#endif
3439}
1060#endif 3440#endif
1061 3441
1062#if EV_MULTIPLICITY 3442#if EV_MULTIPLICITY
3443ecb_cold
1063struct ev_loop * 3444struct ev_loop *
1064ev_default_loop_init (unsigned int flags)
1065#else 3445#else
1066int 3446int
3447#endif
1067ev_default_loop (unsigned int flags) 3448ev_default_loop (unsigned int flags) EV_NOEXCEPT
1068#endif
1069{ 3449{
1070 if (sigpipe [0] == sigpipe [1])
1071 if (pipe (sigpipe))
1072 return 0;
1073
1074 if (!ev_default_loop_ptr) 3450 if (!ev_default_loop_ptr)
1075 { 3451 {
1076#if EV_MULTIPLICITY 3452#if EV_MULTIPLICITY
1077 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3453 EV_P = ev_default_loop_ptr = &default_loop_struct;
1078#else 3454#else
1079 ev_default_loop_ptr = 1; 3455 ev_default_loop_ptr = 1;
1080#endif 3456#endif
1081 3457
1082 loop_init (EV_A_ flags); 3458 loop_init (EV_A_ flags);
1083 3459
1084 if (ev_backend (EV_A)) 3460 if (ev_backend (EV_A))
1085 { 3461 {
1086 siginit (EV_A); 3462#if EV_CHILD_ENABLE
1087
1088#ifndef _WIN32
1089 ev_signal_init (&childev, childcb, SIGCHLD); 3463 ev_signal_init (&childev, childcb, SIGCHLD);
1090 ev_set_priority (&childev, EV_MAXPRI); 3464 ev_set_priority (&childev, EV_MAXPRI);
1091 ev_signal_start (EV_A_ &childev); 3465 ev_signal_start (EV_A_ &childev);
1092 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3466 ev_unref (EV_A); /* child watcher should not keep loop alive */
1093#endif 3467#endif
1098 3472
1099 return ev_default_loop_ptr; 3473 return ev_default_loop_ptr;
1100} 3474}
1101 3475
1102void 3476void
1103ev_default_destroy (void) 3477ev_loop_fork (EV_P) EV_NOEXCEPT
1104{ 3478{
1105#if EV_MULTIPLICITY
1106 struct ev_loop *loop = ev_default_loop_ptr;
1107#endif
1108
1109#ifndef _WIN32
1110 ev_ref (EV_A); /* child watcher */
1111 ev_signal_stop (EV_A_ &childev);
1112#endif
1113
1114 ev_ref (EV_A); /* signal watcher */
1115 ev_io_stop (EV_A_ &sigev);
1116
1117 close (sigpipe [0]); sigpipe [0] = 0;
1118 close (sigpipe [1]); sigpipe [1] = 0;
1119
1120 loop_destroy (EV_A);
1121}
1122
1123void
1124ev_default_fork (void)
1125{
1126#if EV_MULTIPLICITY
1127 struct ev_loop *loop = ev_default_loop_ptr;
1128#endif
1129
1130 if (backend)
1131 postfork = 1; 3479 postfork = 1;
1132} 3480}
1133 3481
1134/*****************************************************************************/ 3482/*****************************************************************************/
1135 3483
1136int inline_size 3484void
1137any_pending (EV_P) 3485ev_invoke (EV_P_ void *w, int revents)
3486{
3487 EV_CB_INVOKE ((W)w, revents);
3488}
3489
3490unsigned int
3491ev_pending_count (EV_P) EV_NOEXCEPT
1138{ 3492{
1139 int pri; 3493 int pri;
3494 unsigned int count = 0;
1140 3495
1141 for (pri = NUMPRI; pri--; ) 3496 for (pri = NUMPRI; pri--; )
1142 if (pendingcnt [pri]) 3497 count += pendingcnt [pri];
1143 return 1;
1144 3498
1145 return 0; 3499 return count;
1146} 3500}
1147 3501
1148void inline_speed 3502ecb_noinline
1149call_pending (EV_P) 3503void
3504ev_invoke_pending (EV_P)
1150{ 3505{
1151 int pri; 3506 pendingpri = NUMPRI;
1152 3507
1153 for (pri = NUMPRI; pri--; ) 3508 do
3509 {
3510 --pendingpri;
3511
3512 /* pendingpri possibly gets modified in the inner loop */
1154 while (pendingcnt [pri]) 3513 while (pendingcnt [pendingpri])
1155 {
1156 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1157
1158 if (expect_true (p->w))
1159 { 3514 {
1160 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3515 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1161 3516
1162 p->w->pending = 0; 3517 p->w->pending = 0;
1163 EV_CB_INVOKE (p->w, p->events); 3518 EV_CB_INVOKE (p->w, p->events);
3519 EV_FREQUENT_CHECK;
3520 }
3521 }
3522 while (pendingpri);
3523}
3524
3525#if EV_IDLE_ENABLE
3526/* make idle watchers pending. this handles the "call-idle */
3527/* only when higher priorities are idle" logic */
3528inline_size void
3529idle_reify (EV_P)
3530{
3531 if (ecb_expect_false (idleall))
3532 {
3533 int pri;
3534
3535 for (pri = NUMPRI; pri--; )
3536 {
3537 if (pendingcnt [pri])
3538 break;
3539
3540 if (idlecnt [pri])
3541 {
3542 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3543 break;
1164 } 3544 }
1165 } 3545 }
3546 }
1166} 3547}
3548#endif
1167 3549
1168void inline_size 3550/* make timers pending */
3551inline_size void
1169timers_reify (EV_P) 3552timers_reify (EV_P)
1170{ 3553{
3554 EV_FREQUENT_CHECK;
3555
1171 while (timercnt && ((WT)timers [0])->at <= mn_now) 3556 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1172 { 3557 {
1173 ev_timer *w = timers [0]; 3558 do
1174
1175 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1176
1177 /* first reschedule or stop timer */
1178 if (w->repeat)
1179 { 3559 {
3560 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3561
3562 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3563
3564 /* first reschedule or stop timer */
3565 if (w->repeat)
3566 {
3567 ev_at (w) += w->repeat;
3568 if (ev_at (w) < mn_now)
3569 ev_at (w) = mn_now;
3570
1180 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3571 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > EV_TS_CONST (0.)));
1181 3572
1182 ((WT)w)->at += w->repeat; 3573 ANHE_at_cache (timers [HEAP0]);
1183 if (((WT)w)->at < mn_now)
1184 ((WT)w)->at = mn_now;
1185
1186 downheap ((WT *)timers, timercnt, 0); 3574 downheap (timers, timercnt, HEAP0);
3575 }
3576 else
3577 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3578
3579 EV_FREQUENT_CHECK;
3580 feed_reverse (EV_A_ (W)w);
1187 } 3581 }
1188 else 3582 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1189 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1190 3583
1191 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 3584 feed_reverse_done (EV_A_ EV_TIMER);
1192 } 3585 }
1193} 3586}
1194 3587
1195#if EV_PERIODIC_ENABLE 3588#if EV_PERIODIC_ENABLE
1196void inline_size 3589
3590ecb_noinline
3591static void
3592periodic_recalc (EV_P_ ev_periodic *w)
3593{
3594 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3595 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3596
3597 /* the above almost always errs on the low side */
3598 while (at <= ev_rt_now)
3599 {
3600 ev_tstamp nat = at + w->interval;
3601
3602 /* when resolution fails us, we use ev_rt_now */
3603 if (ecb_expect_false (nat == at))
3604 {
3605 at = ev_rt_now;
3606 break;
3607 }
3608
3609 at = nat;
3610 }
3611
3612 ev_at (w) = at;
3613}
3614
3615/* make periodics pending */
3616inline_size void
1197periodics_reify (EV_P) 3617periodics_reify (EV_P)
1198{ 3618{
3619 EV_FREQUENT_CHECK;
3620
1199 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 3621 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1200 { 3622 {
1201 ev_periodic *w = periodics [0]; 3623 do
3624 {
3625 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1202 3626
1203 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 3627 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1204 3628
1205 /* first reschedule or stop timer */ 3629 /* first reschedule or stop timer */
3630 if (w->reschedule_cb)
3631 {
3632 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3633
3634 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3635
3636 ANHE_at_cache (periodics [HEAP0]);
3637 downheap (periodics, periodiccnt, HEAP0);
3638 }
3639 else if (w->interval)
3640 {
3641 periodic_recalc (EV_A_ w);
3642 ANHE_at_cache (periodics [HEAP0]);
3643 downheap (periodics, periodiccnt, HEAP0);
3644 }
3645 else
3646 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3647
3648 EV_FREQUENT_CHECK;
3649 feed_reverse (EV_A_ (W)w);
3650 }
3651 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3652
3653 feed_reverse_done (EV_A_ EV_PERIODIC);
3654 }
3655}
3656
3657/* simply recalculate all periodics */
3658/* TODO: maybe ensure that at least one event happens when jumping forward? */
3659ecb_noinline ecb_cold
3660static void
3661periodics_reschedule (EV_P)
3662{
3663 int i;
3664
3665 /* adjust periodics after time jump */
3666 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3667 {
3668 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3669
1206 if (w->reschedule_cb) 3670 if (w->reschedule_cb)
3671 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3672 else if (w->interval)
3673 periodic_recalc (EV_A_ w);
3674
3675 ANHE_at_cache (periodics [i]);
3676 }
3677
3678 reheap (periodics, periodiccnt);
3679}
3680#endif
3681
3682/* adjust all timers by a given offset */
3683ecb_noinline ecb_cold
3684static void
3685timers_reschedule (EV_P_ ev_tstamp adjust)
3686{
3687 int i;
3688
3689 for (i = 0; i < timercnt; ++i)
3690 {
3691 ANHE *he = timers + i + HEAP0;
3692 ANHE_w (*he)->at += adjust;
3693 ANHE_at_cache (*he);
3694 }
3695}
3696
3697/* fetch new monotonic and realtime times from the kernel */
3698/* also detect if there was a timejump, and act accordingly */
3699inline_speed void
3700time_update (EV_P_ ev_tstamp max_block)
3701{
3702#if EV_USE_MONOTONIC
3703 if (ecb_expect_true (have_monotonic))
3704 {
3705 int i;
3706 ev_tstamp odiff = rtmn_diff;
3707
3708 mn_now = get_clock ();
3709
3710 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3711 /* interpolate in the meantime */
3712 if (ecb_expect_true (mn_now - now_floor < EV_TS_CONST (MIN_TIMEJUMP * .5)))
1207 { 3713 {
1208 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 3714 ev_rt_now = rtmn_diff + mn_now;
1209 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 3715 return;
1210 downheap ((WT *)periodics, periodiccnt, 0);
1211 } 3716 }
1212 else if (w->interval)
1213 {
1214 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1215 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1216 downheap ((WT *)periodics, periodiccnt, 0);
1217 }
1218 else
1219 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1220 3717
1221 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1222 }
1223}
1224
1225static void noinline
1226periodics_reschedule (EV_P)
1227{
1228 int i;
1229
1230 /* adjust periodics after time jump */
1231 for (i = 0; i < periodiccnt; ++i)
1232 {
1233 ev_periodic *w = periodics [i];
1234
1235 if (w->reschedule_cb)
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1237 else if (w->interval)
1238 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1239 }
1240
1241 /* now rebuild the heap */
1242 for (i = periodiccnt >> 1; i--; )
1243 downheap ((WT *)periodics, periodiccnt, i);
1244}
1245#endif
1246
1247int inline_size
1248time_update_monotonic (EV_P)
1249{
1250 mn_now = get_clock ();
1251
1252 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1253 {
1254 ev_rt_now = rtmn_diff + mn_now;
1255 return 0;
1256 }
1257 else
1258 {
1259 now_floor = mn_now; 3718 now_floor = mn_now;
1260 ev_rt_now = ev_time (); 3719 ev_rt_now = ev_time ();
1261 return 1;
1262 }
1263}
1264 3720
1265void inline_size 3721 /* loop a few times, before making important decisions.
1266time_update (EV_P) 3722 * on the choice of "4": one iteration isn't enough,
1267{ 3723 * in case we get preempted during the calls to
1268 int i; 3724 * ev_time and get_clock. a second call is almost guaranteed
1269 3725 * to succeed in that case, though. and looping a few more times
1270#if EV_USE_MONOTONIC 3726 * doesn't hurt either as we only do this on time-jumps or
1271 if (expect_true (have_monotonic)) 3727 * in the unlikely event of having been preempted here.
1272 { 3728 */
1273 if (time_update_monotonic (EV_A)) 3729 for (i = 4; --i; )
1274 { 3730 {
1275 ev_tstamp odiff = rtmn_diff; 3731 ev_tstamp diff;
1276
1277 /* loop a few times, before making important decisions.
1278 * on the choice of "4": one iteration isn't enough,
1279 * in case we get preempted during the calls to
1280 * ev_time and get_clock. a second call is almost guaranteed
1281 * to succeed in that case, though. and looping a few more times
1282 * doesn't hurt either as we only do this on time-jumps or
1283 * in the unlikely event of having been preempted here.
1284 */
1285 for (i = 4; --i; )
1286 {
1287 rtmn_diff = ev_rt_now - mn_now; 3732 rtmn_diff = ev_rt_now - mn_now;
1288 3733
1289 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3734 diff = odiff - rtmn_diff;
3735
3736 if (ecb_expect_true ((diff < EV_TS_CONST (0.) ? -diff : diff) < EV_TS_CONST (MIN_TIMEJUMP)))
1290 return; /* all is well */ 3737 return; /* all is well */
1291 3738
1292 ev_rt_now = ev_time (); 3739 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 3740 mn_now = get_clock ();
1294 now_floor = mn_now; 3741 now_floor = mn_now;
1295 } 3742 }
1296 3743
3744 /* no timer adjustment, as the monotonic clock doesn't jump */
3745 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1297# if EV_PERIODIC_ENABLE 3746# if EV_PERIODIC_ENABLE
1298 periodics_reschedule (EV_A); 3747 periodics_reschedule (EV_A);
1299# endif 3748# endif
1300 /* no timer adjustment, as the monotonic clock doesn't jump */
1301 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1302 }
1303 } 3749 }
1304 else 3750 else
1305#endif 3751#endif
1306 { 3752 {
1307 ev_rt_now = ev_time (); 3753 ev_rt_now = ev_time ();
1308 3754
1309 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 3755 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + EV_TS_CONST (MIN_TIMEJUMP)))
1310 { 3756 {
3757 /* adjust timers. this is easy, as the offset is the same for all of them */
3758 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1311#if EV_PERIODIC_ENABLE 3759#if EV_PERIODIC_ENABLE
1312 periodics_reschedule (EV_A); 3760 periodics_reschedule (EV_A);
1313#endif 3761#endif
1314
1315 /* adjust timers. this is easy, as the offset is the same for all of them */
1316 for (i = 0; i < timercnt; ++i)
1317 ((WT)timers [i])->at += ev_rt_now - mn_now;
1318 } 3762 }
1319 3763
1320 mn_now = ev_rt_now; 3764 mn_now = ev_rt_now;
1321 } 3765 }
1322} 3766}
1323 3767
1324void 3768int
1325ev_ref (EV_P)
1326{
1327 ++activecnt;
1328}
1329
1330void
1331ev_unref (EV_P)
1332{
1333 --activecnt;
1334}
1335
1336static int loop_done;
1337
1338void
1339ev_loop (EV_P_ int flags) 3769ev_run (EV_P_ int flags)
1340{ 3770{
1341 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 3771#if EV_FEATURE_API
1342 ? EVUNLOOP_ONE 3772 ++loop_depth;
1343 : EVUNLOOP_CANCEL; 3773#endif
1344 3774
3775 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3776
3777 loop_done = EVBREAK_CANCEL;
3778
1345 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3779 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1346 3780
1347 do 3781 do
1348 { 3782 {
3783#if EV_VERIFY >= 2
3784 ev_verify (EV_A);
3785#endif
3786
1349#ifndef _WIN32 3787#ifndef _WIN32
1350 if (expect_false (curpid)) /* penalise the forking check even more */ 3788 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
1351 if (expect_false (getpid () != curpid)) 3789 if (ecb_expect_false (getpid () != curpid))
1352 { 3790 {
1353 curpid = getpid (); 3791 curpid = getpid ();
1354 postfork = 1; 3792 postfork = 1;
1355 } 3793 }
1356#endif 3794#endif
1357 3795
1358#if EV_FORK_ENABLE 3796#if EV_FORK_ENABLE
1359 /* we might have forked, so queue fork handlers */ 3797 /* we might have forked, so queue fork handlers */
1360 if (expect_false (postfork)) 3798 if (ecb_expect_false (postfork))
1361 if (forkcnt) 3799 if (forkcnt)
1362 { 3800 {
1363 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3801 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1364 call_pending (EV_A); 3802 EV_INVOKE_PENDING;
1365 } 3803 }
1366#endif 3804#endif
1367 3805
3806#if EV_PREPARE_ENABLE
1368 /* queue check watchers (and execute them) */ 3807 /* queue prepare watchers (and execute them) */
1369 if (expect_false (preparecnt)) 3808 if (ecb_expect_false (preparecnt))
1370 { 3809 {
1371 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3810 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1372 call_pending (EV_A); 3811 EV_INVOKE_PENDING;
1373 } 3812 }
3813#endif
1374 3814
1375 if (expect_false (!activecnt)) 3815 if (ecb_expect_false (loop_done))
1376 break; 3816 break;
1377 3817
1378 /* we might have forked, so reify kernel state if necessary */ 3818 /* we might have forked, so reify kernel state if necessary */
1379 if (expect_false (postfork)) 3819 if (ecb_expect_false (postfork))
1380 loop_fork (EV_A); 3820 loop_fork (EV_A);
1381 3821
1382 /* update fd-related kernel structures */ 3822 /* update fd-related kernel structures */
1383 fd_reify (EV_A); 3823 fd_reify (EV_A);
1384 3824
1385 /* calculate blocking time */ 3825 /* calculate blocking time */
1386 { 3826 {
1387 ev_tstamp block; 3827 ev_tstamp waittime = 0.;
3828 ev_tstamp sleeptime = 0.;
1388 3829
1389 if (expect_false (flags & EVLOOP_NONBLOCK || idlecnt || !activecnt)) 3830 /* remember old timestamp for io_blocktime calculation */
1390 block = 0.; /* do not block at all */ 3831 ev_tstamp prev_mn_now = mn_now;
1391 else 3832
3833 /* update time to cancel out callback processing overhead */
3834 time_update (EV_A_ EV_TS_CONST (EV_TSTAMP_HUGE));
3835
3836 /* from now on, we want a pipe-wake-up */
3837 pipe_write_wanted = 1;
3838
3839 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3840
3841 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1392 { 3842 {
1393 /* update time to cancel out callback processing overhead */ 3843 waittime = EV_TS_CONST (MAX_BLOCKTIME);
1394#if EV_USE_MONOTONIC
1395 if (expect_true (have_monotonic))
1396 time_update_monotonic (EV_A);
1397 else
1398#endif
1399 {
1400 ev_rt_now = ev_time ();
1401 mn_now = ev_rt_now;
1402 }
1403
1404 block = MAX_BLOCKTIME;
1405 3844
1406 if (timercnt) 3845 if (timercnt)
1407 { 3846 {
1408 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3847 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1409 if (block > to) block = to; 3848 if (waittime > to) waittime = to;
1410 } 3849 }
1411 3850
1412#if EV_PERIODIC_ENABLE 3851#if EV_PERIODIC_ENABLE
1413 if (periodiccnt) 3852 if (periodiccnt)
1414 { 3853 {
1415 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3854 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1416 if (block > to) block = to; 3855 if (waittime > to) waittime = to;
1417 } 3856 }
1418#endif 3857#endif
1419 3858
1420 if (expect_false (block < 0.)) block = 0.; 3859 /* don't let timeouts decrease the waittime below timeout_blocktime */
3860 if (ecb_expect_false (waittime < timeout_blocktime))
3861 waittime = timeout_blocktime;
3862
3863 /* now there are two more special cases left, either we have
3864 * already-expired timers, so we should not sleep, or we have timers
3865 * that expire very soon, in which case we need to weait for a minimum
3866 * amount of time for some event loop backends
3867 */
3868 if (ecb_expect_false (waittime < backend_mintime))
3869 waittime = waittime <= EV_TS_CONST (0.)
3870 ? EV_TS_CONST (0.)
3871 : backend_mintime;
3872
3873 /* extra check because io_blocktime is commonly 0 */
3874 if (ecb_expect_false (io_blocktime))
3875 {
3876 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3877
3878 if (sleeptime > waittime - backend_mintime)
3879 sleeptime = waittime - backend_mintime;
3880
3881 if (ecb_expect_true (sleeptime > EV_TS_CONST (0.)))
3882 {
3883 ev_sleep (sleeptime);
3884 waittime -= sleeptime;
3885 }
3886 }
1421 } 3887 }
1422 3888
3889#if EV_FEATURE_API
3890 ++loop_count;
3891#endif
3892 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1423 backend_poll (EV_A_ block); 3893 backend_poll (EV_A_ waittime);
3894 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3895
3896 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3897
3898 ECB_MEMORY_FENCE_ACQUIRE;
3899 if (pipe_write_skipped)
3900 {
3901 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3902 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3903 }
3904
3905 /* update ev_rt_now, do magic */
3906 time_update (EV_A_ waittime + sleeptime);
1424 } 3907 }
1425
1426 /* update ev_rt_now, do magic */
1427 time_update (EV_A);
1428 3908
1429 /* queue pending timers and reschedule them */ 3909 /* queue pending timers and reschedule them */
1430 timers_reify (EV_A); /* relative timers called last */ 3910 timers_reify (EV_A); /* relative timers called last */
1431#if EV_PERIODIC_ENABLE 3911#if EV_PERIODIC_ENABLE
1432 periodics_reify (EV_A); /* absolute timers called first */ 3912 periodics_reify (EV_A); /* absolute timers called first */
1433#endif 3913#endif
1434 3914
3915#if EV_IDLE_ENABLE
1435 /* queue idle watchers unless other events are pending */ 3916 /* queue idle watchers unless other events are pending */
1436 if (idlecnt && !any_pending (EV_A)) 3917 idle_reify (EV_A);
1437 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3918#endif
1438 3919
3920#if EV_CHECK_ENABLE
1439 /* queue check watchers, to be executed first */ 3921 /* queue check watchers, to be executed first */
1440 if (expect_false (checkcnt)) 3922 if (ecb_expect_false (checkcnt))
1441 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3923 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3924#endif
1442 3925
1443 call_pending (EV_A); 3926 EV_INVOKE_PENDING;
1444
1445 } 3927 }
1446 while (expect_true (activecnt && !loop_done)); 3928 while (ecb_expect_true (
3929 activecnt
3930 && !loop_done
3931 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3932 ));
1447 3933
1448 if (loop_done == EVUNLOOP_ONE) 3934 if (loop_done == EVBREAK_ONE)
1449 loop_done = EVUNLOOP_CANCEL; 3935 loop_done = EVBREAK_CANCEL;
1450}
1451 3936
3937#if EV_FEATURE_API
3938 --loop_depth;
3939#endif
3940
3941 return activecnt;
3942}
3943
1452void 3944void
1453ev_unloop (EV_P_ int how) 3945ev_break (EV_P_ int how) EV_NOEXCEPT
1454{ 3946{
1455 loop_done = how; 3947 loop_done = how;
1456} 3948}
1457 3949
3950void
3951ev_ref (EV_P) EV_NOEXCEPT
3952{
3953 ++activecnt;
3954}
3955
3956void
3957ev_unref (EV_P) EV_NOEXCEPT
3958{
3959 --activecnt;
3960}
3961
3962void
3963ev_now_update (EV_P) EV_NOEXCEPT
3964{
3965 time_update (EV_A_ EV_TSTAMP_HUGE);
3966}
3967
3968void
3969ev_suspend (EV_P) EV_NOEXCEPT
3970{
3971 ev_now_update (EV_A);
3972}
3973
3974void
3975ev_resume (EV_P) EV_NOEXCEPT
3976{
3977 ev_tstamp mn_prev = mn_now;
3978
3979 ev_now_update (EV_A);
3980 timers_reschedule (EV_A_ mn_now - mn_prev);
3981#if EV_PERIODIC_ENABLE
3982 /* TODO: really do this? */
3983 periodics_reschedule (EV_A);
3984#endif
3985}
3986
1458/*****************************************************************************/ 3987/*****************************************************************************/
3988/* singly-linked list management, used when the expected list length is short */
1459 3989
1460void inline_size 3990inline_size void
1461wlist_add (WL *head, WL elem) 3991wlist_add (WL *head, WL elem)
1462{ 3992{
1463 elem->next = *head; 3993 elem->next = *head;
1464 *head = elem; 3994 *head = elem;
1465} 3995}
1466 3996
1467void inline_size 3997inline_size void
1468wlist_del (WL *head, WL elem) 3998wlist_del (WL *head, WL elem)
1469{ 3999{
1470 while (*head) 4000 while (*head)
1471 { 4001 {
1472 if (*head == elem) 4002 if (ecb_expect_true (*head == elem))
1473 { 4003 {
1474 *head = elem->next; 4004 *head = elem->next;
1475 return; 4005 break;
1476 } 4006 }
1477 4007
1478 head = &(*head)->next; 4008 head = &(*head)->next;
1479 } 4009 }
1480} 4010}
1481 4011
1482void inline_speed 4012/* internal, faster, version of ev_clear_pending */
4013inline_speed void
1483ev_clear_pending (EV_P_ W w) 4014clear_pending (EV_P_ W w)
1484{ 4015{
1485 if (w->pending) 4016 if (w->pending)
1486 { 4017 {
1487 pendings [ABSPRI (w)][w->pending - 1].w = 0; 4018 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1488 w->pending = 0; 4019 w->pending = 0;
1489 } 4020 }
1490} 4021}
1491 4022
1492void inline_speed 4023int
4024ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
4025{
4026 W w_ = (W)w;
4027 int pending = w_->pending;
4028
4029 if (ecb_expect_true (pending))
4030 {
4031 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
4032 p->w = (W)&pending_w;
4033 w_->pending = 0;
4034 return p->events;
4035 }
4036 else
4037 return 0;
4038}
4039
4040inline_size void
4041pri_adjust (EV_P_ W w)
4042{
4043 int pri = ev_priority (w);
4044 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
4045 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
4046 ev_set_priority (w, pri);
4047}
4048
4049inline_speed void
1493ev_start (EV_P_ W w, int active) 4050ev_start (EV_P_ W w, int active)
1494{ 4051{
1495 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 4052 pri_adjust (EV_A_ w);
1496 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1497
1498 w->active = active; 4053 w->active = active;
1499 ev_ref (EV_A); 4054 ev_ref (EV_A);
1500} 4055}
1501 4056
1502void inline_size 4057inline_size void
1503ev_stop (EV_P_ W w) 4058ev_stop (EV_P_ W w)
1504{ 4059{
1505 ev_unref (EV_A); 4060 ev_unref (EV_A);
1506 w->active = 0; 4061 w->active = 0;
1507} 4062}
1508 4063
1509/*****************************************************************************/ 4064/*****************************************************************************/
1510 4065
4066ecb_noinline
1511void 4067void
1512ev_io_start (EV_P_ ev_io *w) 4068ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
1513{ 4069{
1514 int fd = w->fd; 4070 int fd = w->fd;
1515 4071
1516 if (expect_false (ev_is_active (w))) 4072 if (ecb_expect_false (ev_is_active (w)))
1517 return; 4073 return;
1518 4074
1519 assert (("ev_io_start called with negative fd", fd >= 0)); 4075 assert (("libev: ev_io_start called with negative fd", fd >= 0));
4076 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
4077
4078#if EV_VERIFY >= 2
4079 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4080#endif
4081 EV_FREQUENT_CHECK;
1520 4082
1521 ev_start (EV_A_ (W)w, 1); 4083 ev_start (EV_A_ (W)w, 1);
1522 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 4084 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
1523 wlist_add ((WL *)&anfds[fd].head, (WL)w); 4085 wlist_add (&anfds[fd].head, (WL)w);
1524 4086
1525 fd_change (EV_A_ fd); 4087 /* common bug, apparently */
1526} 4088 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1527 4089
4090 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
4091 w->events &= ~EV__IOFDSET;
4092
4093 EV_FREQUENT_CHECK;
4094}
4095
4096ecb_noinline
1528void 4097void
1529ev_io_stop (EV_P_ ev_io *w) 4098ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
1530{ 4099{
1531 ev_clear_pending (EV_A_ (W)w); 4100 clear_pending (EV_A_ (W)w);
1532 if (expect_false (!ev_is_active (w))) 4101 if (ecb_expect_false (!ev_is_active (w)))
1533 return; 4102 return;
1534 4103
1535 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 4104 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1536 4105
4106#if EV_VERIFY >= 2
4107 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4108#endif
4109 EV_FREQUENT_CHECK;
4110
1537 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 4111 wlist_del (&anfds[w->fd].head, (WL)w);
1538 ev_stop (EV_A_ (W)w); 4112 ev_stop (EV_A_ (W)w);
1539 4113
1540 fd_change (EV_A_ w->fd); 4114 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1541}
1542 4115
4116 EV_FREQUENT_CHECK;
4117}
4118
4119ecb_noinline
1543void 4120void
1544ev_timer_start (EV_P_ ev_timer *w) 4121ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
1545{ 4122{
1546 if (expect_false (ev_is_active (w))) 4123 if (ecb_expect_false (ev_is_active (w)))
1547 return; 4124 return;
1548 4125
1549 ((WT)w)->at += mn_now; 4126 ev_at (w) += mn_now;
1550 4127
1551 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 4128 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1552 4129
4130 EV_FREQUENT_CHECK;
4131
4132 ++timercnt;
1553 ev_start (EV_A_ (W)w, ++timercnt); 4133 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1554 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 4134 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
1555 timers [timercnt - 1] = w; 4135 ANHE_w (timers [ev_active (w)]) = (WT)w;
1556 upheap ((WT *)timers, timercnt - 1); 4136 ANHE_at_cache (timers [ev_active (w)]);
4137 upheap (timers, ev_active (w));
1557 4138
4139 EV_FREQUENT_CHECK;
4140
1558 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 4141 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1559} 4142}
1560 4143
4144ecb_noinline
1561void 4145void
1562ev_timer_stop (EV_P_ ev_timer *w) 4146ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
1563{ 4147{
1564 ev_clear_pending (EV_A_ (W)w); 4148 clear_pending (EV_A_ (W)w);
1565 if (expect_false (!ev_is_active (w))) 4149 if (ecb_expect_false (!ev_is_active (w)))
1566 return; 4150 return;
1567 4151
1568 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 4152 EV_FREQUENT_CHECK;
1569 4153
1570 { 4154 {
1571 int active = ((W)w)->active; 4155 int active = ev_active (w);
1572 4156
4157 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
4158
4159 --timercnt;
4160
1573 if (expect_true (--active < --timercnt)) 4161 if (ecb_expect_true (active < timercnt + HEAP0))
1574 { 4162 {
1575 timers [active] = timers [timercnt]; 4163 timers [active] = timers [timercnt + HEAP0];
1576 adjustheap ((WT *)timers, timercnt, active); 4164 adjustheap (timers, timercnt, active);
1577 } 4165 }
1578 } 4166 }
1579 4167
1580 ((WT)w)->at -= mn_now; 4168 ev_at (w) -= mn_now;
1581 4169
1582 ev_stop (EV_A_ (W)w); 4170 ev_stop (EV_A_ (W)w);
1583}
1584 4171
4172 EV_FREQUENT_CHECK;
4173}
4174
4175ecb_noinline
1585void 4176void
1586ev_timer_again (EV_P_ ev_timer *w) 4177ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
1587{ 4178{
4179 EV_FREQUENT_CHECK;
4180
4181 clear_pending (EV_A_ (W)w);
4182
1588 if (ev_is_active (w)) 4183 if (ev_is_active (w))
1589 { 4184 {
1590 if (w->repeat) 4185 if (w->repeat)
1591 { 4186 {
1592 ((WT)w)->at = mn_now + w->repeat; 4187 ev_at (w) = mn_now + w->repeat;
4188 ANHE_at_cache (timers [ev_active (w)]);
1593 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 4189 adjustheap (timers, timercnt, ev_active (w));
1594 } 4190 }
1595 else 4191 else
1596 ev_timer_stop (EV_A_ w); 4192 ev_timer_stop (EV_A_ w);
1597 } 4193 }
1598 else if (w->repeat) 4194 else if (w->repeat)
1599 { 4195 {
1600 w->at = w->repeat; 4196 ev_at (w) = w->repeat;
1601 ev_timer_start (EV_A_ w); 4197 ev_timer_start (EV_A_ w);
1602 } 4198 }
4199
4200 EV_FREQUENT_CHECK;
4201}
4202
4203ev_tstamp
4204ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4205{
4206 return ev_at (w) - (ev_is_active (w) ? mn_now : EV_TS_CONST (0.));
1603} 4207}
1604 4208
1605#if EV_PERIODIC_ENABLE 4209#if EV_PERIODIC_ENABLE
4210ecb_noinline
1606void 4211void
1607ev_periodic_start (EV_P_ ev_periodic *w) 4212ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
1608{ 4213{
1609 if (expect_false (ev_is_active (w))) 4214 if (ecb_expect_false (ev_is_active (w)))
1610 return; 4215 return;
1611 4216
1612 if (w->reschedule_cb) 4217 if (w->reschedule_cb)
1613 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 4218 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1614 else if (w->interval) 4219 else if (w->interval)
1615 { 4220 {
1616 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4221 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1617 /* this formula differs from the one in periodic_reify because we do not always round up */ 4222 periodic_recalc (EV_A_ w);
1618 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1619 } 4223 }
4224 else
4225 ev_at (w) = w->offset;
1620 4226
4227 EV_FREQUENT_CHECK;
4228
4229 ++periodiccnt;
1621 ev_start (EV_A_ (W)w, ++periodiccnt); 4230 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1622 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 4231 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
1623 periodics [periodiccnt - 1] = w; 4232 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1624 upheap ((WT *)periodics, periodiccnt - 1); 4233 ANHE_at_cache (periodics [ev_active (w)]);
4234 upheap (periodics, ev_active (w));
1625 4235
4236 EV_FREQUENT_CHECK;
4237
1626 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 4238 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1627} 4239}
1628 4240
4241ecb_noinline
1629void 4242void
1630ev_periodic_stop (EV_P_ ev_periodic *w) 4243ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
1631{ 4244{
1632 ev_clear_pending (EV_A_ (W)w); 4245 clear_pending (EV_A_ (W)w);
1633 if (expect_false (!ev_is_active (w))) 4246 if (ecb_expect_false (!ev_is_active (w)))
1634 return; 4247 return;
1635 4248
1636 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 4249 EV_FREQUENT_CHECK;
1637 4250
1638 { 4251 {
1639 int active = ((W)w)->active; 4252 int active = ev_active (w);
1640 4253
4254 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4255
4256 --periodiccnt;
4257
1641 if (expect_true (--active < --periodiccnt)) 4258 if (ecb_expect_true (active < periodiccnt + HEAP0))
1642 { 4259 {
1643 periodics [active] = periodics [periodiccnt]; 4260 periodics [active] = periodics [periodiccnt + HEAP0];
1644 adjustheap ((WT *)periodics, periodiccnt, active); 4261 adjustheap (periodics, periodiccnt, active);
1645 } 4262 }
1646 } 4263 }
1647 4264
1648 ev_stop (EV_A_ (W)w); 4265 ev_stop (EV_A_ (W)w);
1649}
1650 4266
4267 EV_FREQUENT_CHECK;
4268}
4269
4270ecb_noinline
1651void 4271void
1652ev_periodic_again (EV_P_ ev_periodic *w) 4272ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
1653{ 4273{
1654 /* TODO: use adjustheap and recalculation */ 4274 /* TODO: use adjustheap and recalculation */
1655 ev_periodic_stop (EV_A_ w); 4275 ev_periodic_stop (EV_A_ w);
1656 ev_periodic_start (EV_A_ w); 4276 ev_periodic_start (EV_A_ w);
1657} 4277}
1659 4279
1660#ifndef SA_RESTART 4280#ifndef SA_RESTART
1661# define SA_RESTART 0 4281# define SA_RESTART 0
1662#endif 4282#endif
1663 4283
4284#if EV_SIGNAL_ENABLE
4285
4286ecb_noinline
1664void 4287void
1665ev_signal_start (EV_P_ ev_signal *w) 4288ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
1666{ 4289{
4290 if (ecb_expect_false (ev_is_active (w)))
4291 return;
4292
4293 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4294
1667#if EV_MULTIPLICITY 4295#if EV_MULTIPLICITY
1668 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4296 assert (("libev: a signal must not be attached to two different loops",
4297 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4298
4299 signals [w->signum - 1].loop = EV_A;
4300 ECB_MEMORY_FENCE_RELEASE;
4301#endif
4302
4303 EV_FREQUENT_CHECK;
4304
4305#if EV_USE_SIGNALFD
4306 if (sigfd == -2)
4307 {
4308 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4309 if (sigfd < 0 && errno == EINVAL)
4310 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4311
4312 if (sigfd >= 0)
4313 {
4314 fd_intern (sigfd); /* doing it twice will not hurt */
4315
4316 sigemptyset (&sigfd_set);
4317
4318 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4319 ev_set_priority (&sigfd_w, EV_MAXPRI);
4320 ev_io_start (EV_A_ &sigfd_w);
4321 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4322 }
4323 }
4324
4325 if (sigfd >= 0)
4326 {
4327 /* TODO: check .head */
4328 sigaddset (&sigfd_set, w->signum);
4329 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4330
4331 signalfd (sigfd, &sigfd_set, 0);
4332 }
4333#endif
4334
4335 ev_start (EV_A_ (W)w, 1);
4336 wlist_add (&signals [w->signum - 1].head, (WL)w);
4337
4338 if (!((WL)w)->next)
4339# if EV_USE_SIGNALFD
4340 if (sigfd < 0) /*TODO*/
1669#endif 4341# endif
4342 {
4343# ifdef _WIN32
4344 evpipe_init (EV_A);
4345
4346 signal (w->signum, ev_sighandler);
4347# else
4348 struct sigaction sa;
4349
4350 evpipe_init (EV_A);
4351
4352 sa.sa_handler = ev_sighandler;
4353 sigfillset (&sa.sa_mask);
4354 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4355 sigaction (w->signum, &sa, 0);
4356
4357 if (origflags & EVFLAG_NOSIGMASK)
4358 {
4359 sigemptyset (&sa.sa_mask);
4360 sigaddset (&sa.sa_mask, w->signum);
4361 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4362 }
4363#endif
4364 }
4365
4366 EV_FREQUENT_CHECK;
4367}
4368
4369ecb_noinline
4370void
4371ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4372{
4373 clear_pending (EV_A_ (W)w);
1670 if (expect_false (ev_is_active (w))) 4374 if (ecb_expect_false (!ev_is_active (w)))
1671 return; 4375 return;
1672 4376
1673 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4377 EV_FREQUENT_CHECK;
4378
4379 wlist_del (&signals [w->signum - 1].head, (WL)w);
4380 ev_stop (EV_A_ (W)w);
4381
4382 if (!signals [w->signum - 1].head)
4383 {
4384#if EV_MULTIPLICITY
4385 signals [w->signum - 1].loop = 0; /* unattach from signal */
4386#endif
4387#if EV_USE_SIGNALFD
4388 if (sigfd >= 0)
4389 {
4390 sigset_t ss;
4391
4392 sigemptyset (&ss);
4393 sigaddset (&ss, w->signum);
4394 sigdelset (&sigfd_set, w->signum);
4395
4396 signalfd (sigfd, &sigfd_set, 0);
4397 sigprocmask (SIG_UNBLOCK, &ss, 0);
4398 }
4399 else
4400#endif
4401 signal (w->signum, SIG_DFL);
4402 }
4403
4404 EV_FREQUENT_CHECK;
4405}
4406
4407#endif
4408
4409#if EV_CHILD_ENABLE
4410
4411void
4412ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4413{
4414#if EV_MULTIPLICITY
4415 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4416#endif
4417 if (ecb_expect_false (ev_is_active (w)))
4418 return;
4419
4420 EV_FREQUENT_CHECK;
1674 4421
1675 ev_start (EV_A_ (W)w, 1); 4422 ev_start (EV_A_ (W)w, 1);
1676 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 4423 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1677 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1678 4424
1679 if (!((WL)w)->next) 4425 EV_FREQUENT_CHECK;
1680 {
1681#if _WIN32
1682 signal (w->signum, sighandler);
1683#else
1684 struct sigaction sa;
1685 sa.sa_handler = sighandler;
1686 sigfillset (&sa.sa_mask);
1687 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1688 sigaction (w->signum, &sa, 0);
1689#endif
1690 }
1691} 4426}
1692 4427
1693void 4428void
1694ev_signal_stop (EV_P_ ev_signal *w) 4429ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
1695{ 4430{
1696 ev_clear_pending (EV_A_ (W)w); 4431 clear_pending (EV_A_ (W)w);
1697 if (expect_false (!ev_is_active (w))) 4432 if (ecb_expect_false (!ev_is_active (w)))
1698 return; 4433 return;
1699 4434
1700 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 4435 EV_FREQUENT_CHECK;
4436
4437 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1701 ev_stop (EV_A_ (W)w); 4438 ev_stop (EV_A_ (W)w);
1702 4439
1703 if (!signals [w->signum - 1].head) 4440 EV_FREQUENT_CHECK;
1704 signal (w->signum, SIG_DFL);
1705} 4441}
1706 4442
1707void
1708ev_child_start (EV_P_ ev_child *w)
1709{
1710#if EV_MULTIPLICITY
1711 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1712#endif 4443#endif
1713 if (expect_false (ev_is_active (w)))
1714 return;
1715
1716 ev_start (EV_A_ (W)w, 1);
1717 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1718}
1719
1720void
1721ev_child_stop (EV_P_ ev_child *w)
1722{
1723 ev_clear_pending (EV_A_ (W)w);
1724 if (expect_false (!ev_is_active (w)))
1725 return;
1726
1727 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1728 ev_stop (EV_A_ (W)w);
1729}
1730 4444
1731#if EV_STAT_ENABLE 4445#if EV_STAT_ENABLE
1732 4446
1733# ifdef _WIN32 4447# ifdef _WIN32
1734# undef lstat 4448# undef lstat
1735# define lstat(a,b) _stati64 (a,b) 4449# define lstat(a,b) _stati64 (a,b)
1736# endif 4450# endif
1737 4451
1738#define DEF_STAT_INTERVAL 5.0074891 4452#define DEF_STAT_INTERVAL 5.0074891
4453#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1739#define MIN_STAT_INTERVAL 0.1074891 4454#define MIN_STAT_INTERVAL 0.1074891
1740 4455
1741static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4456ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1742 4457
1743#if EV_USE_INOTIFY 4458#if EV_USE_INOTIFY
1744# define EV_INOTIFY_BUFSIZE 8192
1745 4459
1746static void noinline 4460/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4461# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4462
4463ecb_noinline
4464static void
1747infy_add (EV_P_ ev_stat *w) 4465infy_add (EV_P_ ev_stat *w)
1748{ 4466{
1749 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4467 w->wd = inotify_add_watch (fs_fd, w->path,
4468 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4469 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4470 | IN_DONT_FOLLOW | IN_MASK_ADD);
1750 4471
1751 if (w->wd < 0) 4472 if (w->wd >= 0)
4473 {
4474 struct statfs sfs;
4475
4476 /* now local changes will be tracked by inotify, but remote changes won't */
4477 /* unless the filesystem is known to be local, we therefore still poll */
4478 /* also do poll on <2.6.25, but with normal frequency */
4479
4480 if (!fs_2625)
4481 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4482 else if (!statfs (w->path, &sfs)
4483 && (sfs.f_type == 0x1373 /* devfs */
4484 || sfs.f_type == 0x4006 /* fat */
4485 || sfs.f_type == 0x4d44 /* msdos */
4486 || sfs.f_type == 0xEF53 /* ext2/3 */
4487 || sfs.f_type == 0x72b6 /* jffs2 */
4488 || sfs.f_type == 0x858458f6 /* ramfs */
4489 || sfs.f_type == 0x5346544e /* ntfs */
4490 || sfs.f_type == 0x3153464a /* jfs */
4491 || sfs.f_type == 0x9123683e /* btrfs */
4492 || sfs.f_type == 0x52654973 /* reiser3 */
4493 || sfs.f_type == 0x01021994 /* tmpfs */
4494 || sfs.f_type == 0x58465342 /* xfs */))
4495 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4496 else
4497 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1752 { 4498 }
1753 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4499 else
4500 {
4501 /* can't use inotify, continue to stat */
4502 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1754 4503
1755 /* monitor some parent directory for speedup hints */ 4504 /* if path is not there, monitor some parent directory for speedup hints */
4505 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4506 /* but an efficiency issue only */
1756 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4507 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1757 { 4508 {
1758 char path [4096]; 4509 char path [4096];
1759 strcpy (path, w->path); 4510 strcpy (path, w->path);
1760 4511
1763 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4514 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1764 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4515 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1765 4516
1766 char *pend = strrchr (path, '/'); 4517 char *pend = strrchr (path, '/');
1767 4518
1768 if (!pend) 4519 if (!pend || pend == path)
1769 break; /* whoops, no '/', complain to your admin */ 4520 break;
1770 4521
1771 *pend = 0; 4522 *pend = 0;
1772 w->wd = inotify_add_watch (fs_fd, path, mask); 4523 w->wd = inotify_add_watch (fs_fd, path, mask);
1773 } 4524 }
1774 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4525 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1775 } 4526 }
1776 } 4527 }
1777 else
1778 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1779 4528
1780 if (w->wd >= 0) 4529 if (w->wd >= 0)
1781 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4530 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1782}
1783 4531
1784static void noinline 4532 /* now re-arm timer, if required */
4533 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4534 ev_timer_again (EV_A_ &w->timer);
4535 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4536}
4537
4538ecb_noinline
4539static void
1785infy_del (EV_P_ ev_stat *w) 4540infy_del (EV_P_ ev_stat *w)
1786{ 4541{
1787 int slot; 4542 int slot;
1788 int wd = w->wd; 4543 int wd = w->wd;
1789 4544
1790 if (wd < 0) 4545 if (wd < 0)
1791 return; 4546 return;
1792 4547
1793 w->wd = -2; 4548 w->wd = -2;
1794 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4549 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1795 wlist_del (&fs_hash [slot].head, (WL)w); 4550 wlist_del (&fs_hash [slot].head, (WL)w);
1796 4551
1797 /* remove this watcher, if others are watching it, they will rearm */ 4552 /* remove this watcher, if others are watching it, they will rearm */
1798 inotify_rm_watch (fs_fd, wd); 4553 inotify_rm_watch (fs_fd, wd);
1799} 4554}
1800 4555
1801static void noinline 4556ecb_noinline
4557static void
1802infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4558infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1803{ 4559{
1804 if (slot < 0) 4560 if (slot < 0)
1805 /* overflow, need to check for all hahs slots */ 4561 /* overflow, need to check for all hash slots */
1806 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4562 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1807 infy_wd (EV_A_ slot, wd, ev); 4563 infy_wd (EV_A_ slot, wd, ev);
1808 else 4564 else
1809 { 4565 {
1810 WL w_; 4566 WL w_;
1811 4567
1812 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4568 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1813 { 4569 {
1814 ev_stat *w = (ev_stat *)w_; 4570 ev_stat *w = (ev_stat *)w_;
1815 w_ = w_->next; /* lets us remove this watcher and all before it */ 4571 w_ = w_->next; /* lets us remove this watcher and all before it */
1816 4572
1817 if (w->wd == wd || wd == -1) 4573 if (w->wd == wd || wd == -1)
1818 { 4574 {
1819 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4575 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1820 { 4576 {
4577 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1821 w->wd = -1; 4578 w->wd = -1;
1822 infy_add (EV_A_ w); /* re-add, no matter what */ 4579 infy_add (EV_A_ w); /* re-add, no matter what */
1823 } 4580 }
1824 4581
1825 stat_timer_cb (EV_A_ &w->timer, 0); 4582 stat_timer_cb (EV_A_ &w->timer, 0);
1830 4587
1831static void 4588static void
1832infy_cb (EV_P_ ev_io *w, int revents) 4589infy_cb (EV_P_ ev_io *w, int revents)
1833{ 4590{
1834 char buf [EV_INOTIFY_BUFSIZE]; 4591 char buf [EV_INOTIFY_BUFSIZE];
1835 struct inotify_event *ev = (struct inotify_event *)buf;
1836 int ofs; 4592 int ofs;
1837 int len = read (fs_fd, buf, sizeof (buf)); 4593 int len = read (fs_fd, buf, sizeof (buf));
1838 4594
1839 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4595 for (ofs = 0; ofs < len; )
4596 {
4597 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1840 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4598 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4599 ofs += sizeof (struct inotify_event) + ev->len;
4600 }
1841} 4601}
1842 4602
1843void inline_size 4603inline_size ecb_cold
4604void
4605ev_check_2625 (EV_P)
4606{
4607 /* kernels < 2.6.25 are borked
4608 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4609 */
4610 if (ev_linux_version () < 0x020619)
4611 return;
4612
4613 fs_2625 = 1;
4614}
4615
4616inline_size int
4617infy_newfd (void)
4618{
4619#if defined IN_CLOEXEC && defined IN_NONBLOCK
4620 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4621 if (fd >= 0)
4622 return fd;
4623#endif
4624 return inotify_init ();
4625}
4626
4627inline_size void
1844infy_init (EV_P) 4628infy_init (EV_P)
1845{ 4629{
1846 if (fs_fd != -2) 4630 if (fs_fd != -2)
1847 return; 4631 return;
1848 4632
4633 fs_fd = -1;
4634
4635 ev_check_2625 (EV_A);
4636
1849 fs_fd = inotify_init (); 4637 fs_fd = infy_newfd ();
1850 4638
1851 if (fs_fd >= 0) 4639 if (fs_fd >= 0)
1852 { 4640 {
4641 fd_intern (fs_fd);
1853 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4642 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1854 ev_set_priority (&fs_w, EV_MAXPRI); 4643 ev_set_priority (&fs_w, EV_MAXPRI);
1855 ev_io_start (EV_A_ &fs_w); 4644 ev_io_start (EV_A_ &fs_w);
4645 ev_unref (EV_A);
1856 } 4646 }
1857} 4647}
1858 4648
1859void inline_size 4649inline_size void
1860infy_fork (EV_P) 4650infy_fork (EV_P)
1861{ 4651{
1862 int slot; 4652 int slot;
1863 4653
1864 if (fs_fd < 0) 4654 if (fs_fd < 0)
1865 return; 4655 return;
1866 4656
4657 ev_ref (EV_A);
4658 ev_io_stop (EV_A_ &fs_w);
1867 close (fs_fd); 4659 close (fs_fd);
1868 fs_fd = inotify_init (); 4660 fs_fd = infy_newfd ();
1869 4661
4662 if (fs_fd >= 0)
4663 {
4664 fd_intern (fs_fd);
4665 ev_io_set (&fs_w, fs_fd, EV_READ);
4666 ev_io_start (EV_A_ &fs_w);
4667 ev_unref (EV_A);
4668 }
4669
1870 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4670 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1871 { 4671 {
1872 WL w_ = fs_hash [slot].head; 4672 WL w_ = fs_hash [slot].head;
1873 fs_hash [slot].head = 0; 4673 fs_hash [slot].head = 0;
1874 4674
1875 while (w_) 4675 while (w_)
1880 w->wd = -1; 4680 w->wd = -1;
1881 4681
1882 if (fs_fd >= 0) 4682 if (fs_fd >= 0)
1883 infy_add (EV_A_ w); /* re-add, no matter what */ 4683 infy_add (EV_A_ w); /* re-add, no matter what */
1884 else 4684 else
4685 {
4686 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4687 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1885 ev_timer_start (EV_A_ &w->timer); 4688 ev_timer_again (EV_A_ &w->timer);
4689 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4690 }
1886 } 4691 }
1887
1888 } 4692 }
1889} 4693}
1890 4694
1891#endif 4695#endif
1892 4696
4697#ifdef _WIN32
4698# define EV_LSTAT(p,b) _stati64 (p, b)
4699#else
4700# define EV_LSTAT(p,b) lstat (p, b)
4701#endif
4702
1893void 4703void
1894ev_stat_stat (EV_P_ ev_stat *w) 4704ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
1895{ 4705{
1896 if (lstat (w->path, &w->attr) < 0) 4706 if (lstat (w->path, &w->attr) < 0)
1897 w->attr.st_nlink = 0; 4707 w->attr.st_nlink = 0;
1898 else if (!w->attr.st_nlink) 4708 else if (!w->attr.st_nlink)
1899 w->attr.st_nlink = 1; 4709 w->attr.st_nlink = 1;
1900} 4710}
1901 4711
1902static void noinline 4712ecb_noinline
4713static void
1903stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4714stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1904{ 4715{
1905 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4716 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1906 4717
1907 /* we copy this here each the time so that */ 4718 ev_statdata prev = w->attr;
1908 /* prev has the old value when the callback gets invoked */
1909 w->prev = w->attr;
1910 ev_stat_stat (EV_A_ w); 4719 ev_stat_stat (EV_A_ w);
1911 4720
1912 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4721 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1913 if ( 4722 if (
1914 w->prev.st_dev != w->attr.st_dev 4723 prev.st_dev != w->attr.st_dev
1915 || w->prev.st_ino != w->attr.st_ino 4724 || prev.st_ino != w->attr.st_ino
1916 || w->prev.st_mode != w->attr.st_mode 4725 || prev.st_mode != w->attr.st_mode
1917 || w->prev.st_nlink != w->attr.st_nlink 4726 || prev.st_nlink != w->attr.st_nlink
1918 || w->prev.st_uid != w->attr.st_uid 4727 || prev.st_uid != w->attr.st_uid
1919 || w->prev.st_gid != w->attr.st_gid 4728 || prev.st_gid != w->attr.st_gid
1920 || w->prev.st_rdev != w->attr.st_rdev 4729 || prev.st_rdev != w->attr.st_rdev
1921 || w->prev.st_size != w->attr.st_size 4730 || prev.st_size != w->attr.st_size
1922 || w->prev.st_atime != w->attr.st_atime 4731 || prev.st_atime != w->attr.st_atime
1923 || w->prev.st_mtime != w->attr.st_mtime 4732 || prev.st_mtime != w->attr.st_mtime
1924 || w->prev.st_ctime != w->attr.st_ctime 4733 || prev.st_ctime != w->attr.st_ctime
1925 ) { 4734 ) {
4735 /* we only update w->prev on actual differences */
4736 /* in case we test more often than invoke the callback, */
4737 /* to ensure that prev is always different to attr */
4738 w->prev = prev;
4739
1926 #if EV_USE_INOTIFY 4740 #if EV_USE_INOTIFY
4741 if (fs_fd >= 0)
4742 {
1927 infy_del (EV_A_ w); 4743 infy_del (EV_A_ w);
1928 infy_add (EV_A_ w); 4744 infy_add (EV_A_ w);
1929 ev_stat_stat (EV_A_ w); /* avoid race... */ 4745 ev_stat_stat (EV_A_ w); /* avoid race... */
4746 }
1930 #endif 4747 #endif
1931 4748
1932 ev_feed_event (EV_A_ w, EV_STAT); 4749 ev_feed_event (EV_A_ w, EV_STAT);
1933 } 4750 }
1934} 4751}
1935 4752
1936void 4753void
1937ev_stat_start (EV_P_ ev_stat *w) 4754ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
1938{ 4755{
1939 if (expect_false (ev_is_active (w))) 4756 if (ecb_expect_false (ev_is_active (w)))
1940 return; 4757 return;
1941 4758
1942 /* since we use memcmp, we need to clear any padding data etc. */
1943 memset (&w->prev, 0, sizeof (ev_statdata));
1944 memset (&w->attr, 0, sizeof (ev_statdata));
1945
1946 ev_stat_stat (EV_A_ w); 4759 ev_stat_stat (EV_A_ w);
1947 4760
4761 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1948 if (w->interval < MIN_STAT_INTERVAL) 4762 w->interval = MIN_STAT_INTERVAL;
1949 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1950 4763
1951 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4764 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1952 ev_set_priority (&w->timer, ev_priority (w)); 4765 ev_set_priority (&w->timer, ev_priority (w));
1953 4766
1954#if EV_USE_INOTIFY 4767#if EV_USE_INOTIFY
1955 infy_init (EV_A); 4768 infy_init (EV_A);
1956 4769
1957 if (fs_fd >= 0) 4770 if (fs_fd >= 0)
1958 infy_add (EV_A_ w); 4771 infy_add (EV_A_ w);
1959 else 4772 else
1960#endif 4773#endif
4774 {
1961 ev_timer_start (EV_A_ &w->timer); 4775 ev_timer_again (EV_A_ &w->timer);
4776 ev_unref (EV_A);
4777 }
1962 4778
1963 ev_start (EV_A_ (W)w, 1); 4779 ev_start (EV_A_ (W)w, 1);
1964}
1965 4780
4781 EV_FREQUENT_CHECK;
4782}
4783
1966void 4784void
1967ev_stat_stop (EV_P_ ev_stat *w) 4785ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
1968{ 4786{
1969 ev_clear_pending (EV_A_ (W)w); 4787 clear_pending (EV_A_ (W)w);
1970 if (expect_false (!ev_is_active (w))) 4788 if (ecb_expect_false (!ev_is_active (w)))
1971 return; 4789 return;
4790
4791 EV_FREQUENT_CHECK;
1972 4792
1973#if EV_USE_INOTIFY 4793#if EV_USE_INOTIFY
1974 infy_del (EV_A_ w); 4794 infy_del (EV_A_ w);
1975#endif 4795#endif
4796
4797 if (ev_is_active (&w->timer))
4798 {
4799 ev_ref (EV_A);
1976 ev_timer_stop (EV_A_ &w->timer); 4800 ev_timer_stop (EV_A_ &w->timer);
4801 }
1977 4802
1978 ev_stop (EV_A_ (W)w); 4803 ev_stop (EV_A_ (W)w);
1979}
1980#endif
1981 4804
4805 EV_FREQUENT_CHECK;
4806}
4807#endif
4808
4809#if EV_IDLE_ENABLE
1982void 4810void
1983ev_idle_start (EV_P_ ev_idle *w) 4811ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
1984{ 4812{
1985 if (expect_false (ev_is_active (w))) 4813 if (ecb_expect_false (ev_is_active (w)))
1986 return; 4814 return;
1987 4815
4816 pri_adjust (EV_A_ (W)w);
4817
4818 EV_FREQUENT_CHECK;
4819
4820 {
4821 int active = ++idlecnt [ABSPRI (w)];
4822
4823 ++idleall;
1988 ev_start (EV_A_ (W)w, ++idlecnt); 4824 ev_start (EV_A_ (W)w, active);
1989 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1990 idles [idlecnt - 1] = w;
1991}
1992 4825
4826 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
4827 idles [ABSPRI (w)][active - 1] = w;
4828 }
4829
4830 EV_FREQUENT_CHECK;
4831}
4832
1993void 4833void
1994ev_idle_stop (EV_P_ ev_idle *w) 4834ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
1995{ 4835{
1996 ev_clear_pending (EV_A_ (W)w); 4836 clear_pending (EV_A_ (W)w);
1997 if (expect_false (!ev_is_active (w))) 4837 if (ecb_expect_false (!ev_is_active (w)))
1998 return; 4838 return;
1999 4839
4840 EV_FREQUENT_CHECK;
4841
2000 { 4842 {
2001 int active = ((W)w)->active; 4843 int active = ev_active (w);
2002 idles [active - 1] = idles [--idlecnt]; 4844
2003 ((W)idles [active - 1])->active = active; 4845 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4846 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4847
4848 ev_stop (EV_A_ (W)w);
4849 --idleall;
2004 } 4850 }
2005 4851
4852 EV_FREQUENT_CHECK;
4853}
4854#endif
4855
4856#if EV_PREPARE_ENABLE
4857void
4858ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
4859{
4860 if (ecb_expect_false (ev_is_active (w)))
4861 return;
4862
4863 EV_FREQUENT_CHECK;
4864
4865 ev_start (EV_A_ (W)w, ++preparecnt);
4866 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
4867 prepares [preparecnt - 1] = w;
4868
4869 EV_FREQUENT_CHECK;
4870}
4871
4872void
4873ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
4874{
4875 clear_pending (EV_A_ (W)w);
4876 if (ecb_expect_false (!ev_is_active (w)))
4877 return;
4878
4879 EV_FREQUENT_CHECK;
4880
4881 {
4882 int active = ev_active (w);
4883
4884 prepares [active - 1] = prepares [--preparecnt];
4885 ev_active (prepares [active - 1]) = active;
4886 }
4887
2006 ev_stop (EV_A_ (W)w); 4888 ev_stop (EV_A_ (W)w);
2007}
2008 4889
4890 EV_FREQUENT_CHECK;
4891}
4892#endif
4893
4894#if EV_CHECK_ENABLE
2009void 4895void
2010ev_prepare_start (EV_P_ ev_prepare *w) 4896ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
2011{ 4897{
2012 if (expect_false (ev_is_active (w))) 4898 if (ecb_expect_false (ev_is_active (w)))
2013 return; 4899 return;
2014 4900
4901 EV_FREQUENT_CHECK;
4902
2015 ev_start (EV_A_ (W)w, ++preparecnt); 4903 ev_start (EV_A_ (W)w, ++checkcnt);
2016 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4904 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
2017 prepares [preparecnt - 1] = w; 4905 checks [checkcnt - 1] = w;
2018}
2019 4906
4907 EV_FREQUENT_CHECK;
4908}
4909
2020void 4910void
2021ev_prepare_stop (EV_P_ ev_prepare *w) 4911ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
2022{ 4912{
2023 ev_clear_pending (EV_A_ (W)w); 4913 clear_pending (EV_A_ (W)w);
2024 if (expect_false (!ev_is_active (w))) 4914 if (ecb_expect_false (!ev_is_active (w)))
2025 return; 4915 return;
2026 4916
4917 EV_FREQUENT_CHECK;
4918
2027 { 4919 {
2028 int active = ((W)w)->active; 4920 int active = ev_active (w);
2029 prepares [active - 1] = prepares [--preparecnt]; 4921
2030 ((W)prepares [active - 1])->active = active; 4922 checks [active - 1] = checks [--checkcnt];
4923 ev_active (checks [active - 1]) = active;
2031 } 4924 }
2032 4925
2033 ev_stop (EV_A_ (W)w); 4926 ev_stop (EV_A_ (W)w);
2034}
2035 4927
2036void 4928 EV_FREQUENT_CHECK;
2037ev_check_start (EV_P_ ev_check *w)
2038{
2039 if (expect_false (ev_is_active (w)))
2040 return;
2041
2042 ev_start (EV_A_ (W)w, ++checkcnt);
2043 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2044 checks [checkcnt - 1] = w;
2045} 4929}
2046 4930#endif
2047void
2048ev_check_stop (EV_P_ ev_check *w)
2049{
2050 ev_clear_pending (EV_A_ (W)w);
2051 if (expect_false (!ev_is_active (w)))
2052 return;
2053
2054 {
2055 int active = ((W)w)->active;
2056 checks [active - 1] = checks [--checkcnt];
2057 ((W)checks [active - 1])->active = active;
2058 }
2059
2060 ev_stop (EV_A_ (W)w);
2061}
2062 4931
2063#if EV_EMBED_ENABLE 4932#if EV_EMBED_ENABLE
2064void noinline 4933ecb_noinline
4934void
2065ev_embed_sweep (EV_P_ ev_embed *w) 4935ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
2066{ 4936{
2067 ev_loop (w->loop, EVLOOP_NONBLOCK); 4937 ev_run (w->other, EVRUN_NOWAIT);
2068} 4938}
2069 4939
2070static void 4940static void
2071embed_cb (EV_P_ ev_io *io, int revents) 4941embed_io_cb (EV_P_ ev_io *io, int revents)
2072{ 4942{
2073 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4943 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2074 4944
2075 if (ev_cb (w)) 4945 if (ev_cb (w))
2076 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4946 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2077 else 4947 else
2078 ev_embed_sweep (loop, w); 4948 ev_run (w->other, EVRUN_NOWAIT);
2079} 4949}
2080 4950
4951static void
4952embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4953{
4954 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4955
4956 {
4957 EV_P = w->other;
4958
4959 while (fdchangecnt)
4960 {
4961 fd_reify (EV_A);
4962 ev_run (EV_A_ EVRUN_NOWAIT);
4963 }
4964 }
4965}
4966
4967static void
4968embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4969{
4970 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4971
4972 ev_embed_stop (EV_A_ w);
4973
4974 {
4975 EV_P = w->other;
4976
4977 ev_loop_fork (EV_A);
4978 ev_run (EV_A_ EVRUN_NOWAIT);
4979 }
4980
4981 ev_embed_start (EV_A_ w);
4982}
4983
4984#if 0
4985static void
4986embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4987{
4988 ev_idle_stop (EV_A_ idle);
4989}
4990#endif
4991
2081void 4992void
2082ev_embed_start (EV_P_ ev_embed *w) 4993ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
2083{ 4994{
2084 if (expect_false (ev_is_active (w))) 4995 if (ecb_expect_false (ev_is_active (w)))
2085 return; 4996 return;
2086 4997
2087 { 4998 {
2088 struct ev_loop *loop = w->loop; 4999 EV_P = w->other;
2089 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 5000 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2090 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 5001 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2091 } 5002 }
5003
5004 EV_FREQUENT_CHECK;
2092 5005
2093 ev_set_priority (&w->io, ev_priority (w)); 5006 ev_set_priority (&w->io, ev_priority (w));
2094 ev_io_start (EV_A_ &w->io); 5007 ev_io_start (EV_A_ &w->io);
2095 5008
5009 ev_prepare_init (&w->prepare, embed_prepare_cb);
5010 ev_set_priority (&w->prepare, EV_MINPRI);
5011 ev_prepare_start (EV_A_ &w->prepare);
5012
5013 ev_fork_init (&w->fork, embed_fork_cb);
5014 ev_fork_start (EV_A_ &w->fork);
5015
5016 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
5017
2096 ev_start (EV_A_ (W)w, 1); 5018 ev_start (EV_A_ (W)w, 1);
2097}
2098 5019
5020 EV_FREQUENT_CHECK;
5021}
5022
2099void 5023void
2100ev_embed_stop (EV_P_ ev_embed *w) 5024ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
2101{ 5025{
2102 ev_clear_pending (EV_A_ (W)w); 5026 clear_pending (EV_A_ (W)w);
2103 if (expect_false (!ev_is_active (w))) 5027 if (ecb_expect_false (!ev_is_active (w)))
2104 return; 5028 return;
2105 5029
5030 EV_FREQUENT_CHECK;
5031
2106 ev_io_stop (EV_A_ &w->io); 5032 ev_io_stop (EV_A_ &w->io);
5033 ev_prepare_stop (EV_A_ &w->prepare);
5034 ev_fork_stop (EV_A_ &w->fork);
2107 5035
2108 ev_stop (EV_A_ (W)w); 5036 ev_stop (EV_A_ (W)w);
5037
5038 EV_FREQUENT_CHECK;
2109} 5039}
2110#endif 5040#endif
2111 5041
2112#if EV_FORK_ENABLE 5042#if EV_FORK_ENABLE
2113void 5043void
2114ev_fork_start (EV_P_ ev_fork *w) 5044ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
2115{ 5045{
2116 if (expect_false (ev_is_active (w))) 5046 if (ecb_expect_false (ev_is_active (w)))
2117 return; 5047 return;
2118 5048
5049 EV_FREQUENT_CHECK;
5050
2119 ev_start (EV_A_ (W)w, ++forkcnt); 5051 ev_start (EV_A_ (W)w, ++forkcnt);
2120 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 5052 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
2121 forks [forkcnt - 1] = w; 5053 forks [forkcnt - 1] = w;
2122}
2123 5054
5055 EV_FREQUENT_CHECK;
5056}
5057
2124void 5058void
2125ev_fork_stop (EV_P_ ev_fork *w) 5059ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
2126{ 5060{
2127 ev_clear_pending (EV_A_ (W)w); 5061 clear_pending (EV_A_ (W)w);
2128 if (expect_false (!ev_is_active (w))) 5062 if (ecb_expect_false (!ev_is_active (w)))
2129 return; 5063 return;
2130 5064
5065 EV_FREQUENT_CHECK;
5066
2131 { 5067 {
2132 int active = ((W)w)->active; 5068 int active = ev_active (w);
5069
2133 forks [active - 1] = forks [--forkcnt]; 5070 forks [active - 1] = forks [--forkcnt];
2134 ((W)forks [active - 1])->active = active; 5071 ev_active (forks [active - 1]) = active;
2135 } 5072 }
2136 5073
2137 ev_stop (EV_A_ (W)w); 5074 ev_stop (EV_A_ (W)w);
5075
5076 EV_FREQUENT_CHECK;
5077}
5078#endif
5079
5080#if EV_CLEANUP_ENABLE
5081void
5082ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5083{
5084 if (ecb_expect_false (ev_is_active (w)))
5085 return;
5086
5087 EV_FREQUENT_CHECK;
5088
5089 ev_start (EV_A_ (W)w, ++cleanupcnt);
5090 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5091 cleanups [cleanupcnt - 1] = w;
5092
5093 /* cleanup watchers should never keep a refcount on the loop */
5094 ev_unref (EV_A);
5095 EV_FREQUENT_CHECK;
5096}
5097
5098void
5099ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5100{
5101 clear_pending (EV_A_ (W)w);
5102 if (ecb_expect_false (!ev_is_active (w)))
5103 return;
5104
5105 EV_FREQUENT_CHECK;
5106 ev_ref (EV_A);
5107
5108 {
5109 int active = ev_active (w);
5110
5111 cleanups [active - 1] = cleanups [--cleanupcnt];
5112 ev_active (cleanups [active - 1]) = active;
5113 }
5114
5115 ev_stop (EV_A_ (W)w);
5116
5117 EV_FREQUENT_CHECK;
5118}
5119#endif
5120
5121#if EV_ASYNC_ENABLE
5122void
5123ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
5124{
5125 if (ecb_expect_false (ev_is_active (w)))
5126 return;
5127
5128 w->sent = 0;
5129
5130 evpipe_init (EV_A);
5131
5132 EV_FREQUENT_CHECK;
5133
5134 ev_start (EV_A_ (W)w, ++asynccnt);
5135 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
5136 asyncs [asynccnt - 1] = w;
5137
5138 EV_FREQUENT_CHECK;
5139}
5140
5141void
5142ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
5143{
5144 clear_pending (EV_A_ (W)w);
5145 if (ecb_expect_false (!ev_is_active (w)))
5146 return;
5147
5148 EV_FREQUENT_CHECK;
5149
5150 {
5151 int active = ev_active (w);
5152
5153 asyncs [active - 1] = asyncs [--asynccnt];
5154 ev_active (asyncs [active - 1]) = active;
5155 }
5156
5157 ev_stop (EV_A_ (W)w);
5158
5159 EV_FREQUENT_CHECK;
5160}
5161
5162void
5163ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5164{
5165 w->sent = 1;
5166 evpipe_write (EV_A_ &async_pending);
2138} 5167}
2139#endif 5168#endif
2140 5169
2141/*****************************************************************************/ 5170/*****************************************************************************/
2142 5171
2152once_cb (EV_P_ struct ev_once *once, int revents) 5181once_cb (EV_P_ struct ev_once *once, int revents)
2153{ 5182{
2154 void (*cb)(int revents, void *arg) = once->cb; 5183 void (*cb)(int revents, void *arg) = once->cb;
2155 void *arg = once->arg; 5184 void *arg = once->arg;
2156 5185
2157 ev_io_stop (EV_A_ &once->io); 5186 ev_io_stop (EV_A_ &once->io);
2158 ev_timer_stop (EV_A_ &once->to); 5187 ev_timer_stop (EV_A_ &once->to);
2159 ev_free (once); 5188 ev_free (once);
2160 5189
2161 cb (revents, arg); 5190 cb (revents, arg);
2162} 5191}
2163 5192
2164static void 5193static void
2165once_cb_io (EV_P_ ev_io *w, int revents) 5194once_cb_io (EV_P_ ev_io *w, int revents)
2166{ 5195{
2167 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 5196 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5197
5198 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2168} 5199}
2169 5200
2170static void 5201static void
2171once_cb_to (EV_P_ ev_timer *w, int revents) 5202once_cb_to (EV_P_ ev_timer *w, int revents)
2172{ 5203{
2173 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 5204 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
2174}
2175 5205
5206 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5207}
5208
2176void 5209void
2177ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5210ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
2178{ 5211{
2179 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5212 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2180
2181 if (expect_false (!once))
2182 {
2183 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
2184 return;
2185 }
2186 5213
2187 once->cb = cb; 5214 once->cb = cb;
2188 once->arg = arg; 5215 once->arg = arg;
2189 5216
2190 ev_init (&once->io, once_cb_io); 5217 ev_init (&once->io, once_cb_io);
2200 ev_timer_set (&once->to, timeout, 0.); 5227 ev_timer_set (&once->to, timeout, 0.);
2201 ev_timer_start (EV_A_ &once->to); 5228 ev_timer_start (EV_A_ &once->to);
2202 } 5229 }
2203} 5230}
2204 5231
2205#ifdef __cplusplus 5232/*****************************************************************************/
2206} 5233
5234#if EV_WALK_ENABLE
5235ecb_cold
5236void
5237ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5238{
5239 int i, j;
5240 ev_watcher_list *wl, *wn;
5241
5242 if (types & (EV_IO | EV_EMBED))
5243 for (i = 0; i < anfdmax; ++i)
5244 for (wl = anfds [i].head; wl; )
5245 {
5246 wn = wl->next;
5247
5248#if EV_EMBED_ENABLE
5249 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5250 {
5251 if (types & EV_EMBED)
5252 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5253 }
5254 else
5255#endif
5256#if EV_USE_INOTIFY
5257 if (ev_cb ((ev_io *)wl) == infy_cb)
5258 ;
5259 else
5260#endif
5261 if ((ev_io *)wl != &pipe_w)
5262 if (types & EV_IO)
5263 cb (EV_A_ EV_IO, wl);
5264
5265 wl = wn;
5266 }
5267
5268 if (types & (EV_TIMER | EV_STAT))
5269 for (i = timercnt + HEAP0; i-- > HEAP0; )
5270#if EV_STAT_ENABLE
5271 /*TODO: timer is not always active*/
5272 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5273 {
5274 if (types & EV_STAT)
5275 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5276 }
5277 else
5278#endif
5279 if (types & EV_TIMER)
5280 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5281
5282#if EV_PERIODIC_ENABLE
5283 if (types & EV_PERIODIC)
5284 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5285 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5286#endif
5287
5288#if EV_IDLE_ENABLE
5289 if (types & EV_IDLE)
5290 for (j = NUMPRI; j--; )
5291 for (i = idlecnt [j]; i--; )
5292 cb (EV_A_ EV_IDLE, idles [j][i]);
5293#endif
5294
5295#if EV_FORK_ENABLE
5296 if (types & EV_FORK)
5297 for (i = forkcnt; i--; )
5298 if (ev_cb (forks [i]) != embed_fork_cb)
5299 cb (EV_A_ EV_FORK, forks [i]);
5300#endif
5301
5302#if EV_ASYNC_ENABLE
5303 if (types & EV_ASYNC)
5304 for (i = asynccnt; i--; )
5305 cb (EV_A_ EV_ASYNC, asyncs [i]);
5306#endif
5307
5308#if EV_PREPARE_ENABLE
5309 if (types & EV_PREPARE)
5310 for (i = preparecnt; i--; )
5311# if EV_EMBED_ENABLE
5312 if (ev_cb (prepares [i]) != embed_prepare_cb)
2207#endif 5313# endif
5314 cb (EV_A_ EV_PREPARE, prepares [i]);
5315#endif
2208 5316
5317#if EV_CHECK_ENABLE
5318 if (types & EV_CHECK)
5319 for (i = checkcnt; i--; )
5320 cb (EV_A_ EV_CHECK, checks [i]);
5321#endif
5322
5323#if EV_SIGNAL_ENABLE
5324 if (types & EV_SIGNAL)
5325 for (i = 0; i < EV_NSIG - 1; ++i)
5326 for (wl = signals [i].head; wl; )
5327 {
5328 wn = wl->next;
5329 cb (EV_A_ EV_SIGNAL, wl);
5330 wl = wn;
5331 }
5332#endif
5333
5334#if EV_CHILD_ENABLE
5335 if (types & EV_CHILD)
5336 for (i = (EV_PID_HASHSIZE); i--; )
5337 for (wl = childs [i]; wl; )
5338 {
5339 wn = wl->next;
5340 cb (EV_A_ EV_CHILD, wl);
5341 wl = wn;
5342 }
5343#endif
5344/* EV_STAT 0x00001000 /* stat data changed */
5345/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5346}
5347#endif
5348
5349#if EV_MULTIPLICITY
5350 #include "ev_wrap.h"
5351#endif
5352

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines