ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.162 by root, Mon Dec 3 13:41:24 2007 UTC vs.
Revision 1.180 by root, Tue Dec 11 22:04:55 2007 UTC

216# include <sys/inotify.h> 216# include <sys/inotify.h>
217#endif 217#endif
218 218
219/**/ 219/**/
220 220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000.
227 * Better solutions welcome.
228 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
230
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 234
225#if __GNUC__ >= 3 235#if __GNUC__ >= 3
226# define expect(expr,value) __builtin_expect ((expr),(value)) 236# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 237# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 238#else
236# define expect(expr,value) (expr) 239# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 240# define noinline
241# if __STDC_VERSION__ < 199901L
242# define inline
243# endif
240#endif 244#endif
241 245
242#define expect_false(expr) expect ((expr) != 0, 0) 246#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 247#define expect_true(expr) expect ((expr) != 0, 1)
248#define inline_size static inline
249
250#if EV_MINIMAL
251# define inline_speed static noinline
252#else
253# define inline_speed static inline
254#endif
244 255
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 258
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 259#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 260#define EMPTY2(a,b) /* used to suppress some warnings */
250 261
251typedef ev_watcher *W; 262typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 263typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 264typedef ev_watcher_time *WT;
396{ 407{
397 return ev_rt_now; 408 return ev_rt_now;
398} 409}
399#endif 410#endif
400 411
401#define array_roundsize(type,n) (((n) | 4) & ~3) 412int inline_size
413array_nextsize (int elem, int cur, int cnt)
414{
415 int ncur = cur + 1;
416
417 do
418 ncur <<= 1;
419 while (cnt > ncur);
420
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096)
423 {
424 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
426 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem;
428 }
429
430 return ncur;
431}
432
433static noinline void *
434array_realloc (int elem, void *base, int *cur, int cnt)
435{
436 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur);
438}
402 439
403#define array_needsize(type,base,cur,cnt,init) \ 440#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 441 if (expect_false ((cnt) > (cur))) \
405 { \ 442 { \
406 int newcnt = cur; \ 443 int ocur_ = (cur); \
407 do \ 444 (base) = (type *)array_realloc \
408 { \ 445 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 446 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 447 }
417 448
449#if 0
418#define array_slim(type,stem) \ 450#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 451 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 452 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 453 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 454 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 456 }
457#endif
425 458
426#define array_free(stem, idx) \ 459#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 461
429/*****************************************************************************/ 462/*****************************************************************************/
430 463
431void noinline 464void noinline
432ev_feed_event (EV_P_ void *w, int revents) 465ev_feed_event (EV_P_ void *w, int revents)
433{ 466{
434 W w_ = (W)w; 467 W w_ = (W)w;
468 int pri = ABSPRI (w_);
435 469
436 if (expect_false (w_->pending)) 470 if (expect_false (w_->pending))
471 pendings [pri][w_->pending - 1].events |= revents;
472 else
437 { 473 {
474 w_->pending = ++pendingcnt [pri];
475 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
476 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 477 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 478 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 479}
447 480
448void inline_size 481void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 482queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 483{
451 int i; 484 int i;
452 485
453 for (i = 0; i < eventcnt; ++i) 486 for (i = 0; i < eventcnt; ++i)
485} 518}
486 519
487void 520void
488ev_feed_fd_event (EV_P_ int fd, int revents) 521ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 522{
523 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 524 fd_event (EV_A_ fd, revents);
491} 525}
492 526
493void inline_size 527void inline_size
494fd_reify (EV_P) 528fd_reify (EV_P)
495{ 529{
604void inline_speed 638void inline_speed
605upheap (WT *heap, int k) 639upheap (WT *heap, int k)
606{ 640{
607 WT w = heap [k]; 641 WT w = heap [k];
608 642
609 while (k && heap [k >> 1]->at > w->at) 643 while (k)
610 { 644 {
645 int p = (k - 1) >> 1;
646
647 if (heap [p]->at <= w->at)
648 break;
649
611 heap [k] = heap [k >> 1]; 650 heap [k] = heap [p];
612 ((W)heap [k])->active = k + 1; 651 ((W)heap [k])->active = k + 1;
613 k >>= 1; 652 k = p;
614 } 653 }
615 654
616 heap [k] = w; 655 heap [k] = w;
617 ((W)heap [k])->active = k + 1; 656 ((W)heap [k])->active = k + 1;
618 657
621void inline_speed 660void inline_speed
622downheap (WT *heap, int N, int k) 661downheap (WT *heap, int N, int k)
623{ 662{
624 WT w = heap [k]; 663 WT w = heap [k];
625 664
626 while (k < (N >> 1)) 665 for (;;)
627 { 666 {
628 int j = k << 1; 667 int c = (k << 1) + 1;
629 668
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 669 if (c >= N)
631 ++j;
632
633 if (w->at <= heap [j]->at)
634 break; 670 break;
635 671
672 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
673 ? 1 : 0;
674
675 if (w->at <= heap [c]->at)
676 break;
677
636 heap [k] = heap [j]; 678 heap [k] = heap [c];
637 ((W)heap [k])->active = k + 1; 679 ((W)heap [k])->active = k + 1;
680
638 k = j; 681 k = c;
639 } 682 }
640 683
641 heap [k] = w; 684 heap [k] = w;
642 ((W)heap [k])->active = k + 1; 685 ((W)heap [k])->active = k + 1;
643} 686}
725 for (signum = signalmax; signum--; ) 768 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig) 769 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1); 770 ev_feed_signal_event (EV_A_ signum + 1);
728} 771}
729 772
730void inline_size 773void inline_speed
731fd_intern (int fd) 774fd_intern (int fd)
732{ 775{
733#ifdef _WIN32 776#ifdef _WIN32
734 int arg = 1; 777 int arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 778 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
764 ev_child *w; 807 ev_child *w;
765 808
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 809 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
767 if (w->pid == pid || !w->pid) 810 if (w->pid == pid || !w->pid)
768 { 811 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 812 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
770 w->rpid = pid; 813 w->rpid = pid;
771 w->rstatus = status; 814 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 815 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 816 }
774} 817}
775 818
776#ifndef WCONTINUED 819#ifndef WCONTINUED
981#if EV_USE_SELECT 1024#if EV_USE_SELECT
982 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1025 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
983#endif 1026#endif
984 1027
985 for (i = NUMPRI; i--; ) 1028 for (i = NUMPRI; i--; )
1029 {
986 array_free (pending, [i]); 1030 array_free (pending, [i]);
1031#if EV_IDLE_ENABLE
1032 array_free (idle, [i]);
1033#endif
1034 }
987 1035
988 /* have to use the microsoft-never-gets-it-right macro */ 1036 /* have to use the microsoft-never-gets-it-right macro */
989 array_free (fdchange, EMPTY0); 1037 array_free (fdchange, EMPTY);
990 array_free (timer, EMPTY0); 1038 array_free (timer, EMPTY);
991#if EV_PERIODIC_ENABLE 1039#if EV_PERIODIC_ENABLE
992 array_free (periodic, EMPTY0); 1040 array_free (periodic, EMPTY);
993#endif 1041#endif
994 array_free (idle, EMPTY0);
995 array_free (prepare, EMPTY0); 1042 array_free (prepare, EMPTY);
996 array_free (check, EMPTY0); 1043 array_free (check, EMPTY);
997 1044
998 backend = 0; 1045 backend = 0;
999} 1046}
1000 1047
1001void inline_size infy_fork (EV_P); 1048void inline_size infy_fork (EV_P);
1137 postfork = 1; 1184 postfork = 1;
1138} 1185}
1139 1186
1140/*****************************************************************************/ 1187/*****************************************************************************/
1141 1188
1142int inline_size 1189void
1143any_pending (EV_P) 1190ev_invoke (EV_P_ void *w, int revents)
1144{ 1191{
1145 int pri; 1192 EV_CB_INVOKE ((W)w, revents);
1146
1147 for (pri = NUMPRI; pri--; )
1148 if (pendingcnt [pri])
1149 return 1;
1150
1151 return 0;
1152} 1193}
1153 1194
1154void inline_speed 1195void inline_speed
1155call_pending (EV_P) 1196call_pending (EV_P)
1156{ 1197{
1209 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1250 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1210 1251
1211 /* first reschedule or stop timer */ 1252 /* first reschedule or stop timer */
1212 if (w->reschedule_cb) 1253 if (w->reschedule_cb)
1213 { 1254 {
1214 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1255 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1215 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1256 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1216 downheap ((WT *)periodics, periodiccnt, 0); 1257 downheap ((WT *)periodics, periodiccnt, 0);
1217 } 1258 }
1218 else if (w->interval) 1259 else if (w->interval)
1219 { 1260 {
1220 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1261 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1262 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1221 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1263 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1222 downheap ((WT *)periodics, periodiccnt, 0); 1264 downheap ((WT *)periodics, periodiccnt, 0);
1223 } 1265 }
1224 else 1266 else
1225 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1267 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1239 ev_periodic *w = periodics [i]; 1281 ev_periodic *w = periodics [i];
1240 1282
1241 if (w->reschedule_cb) 1283 if (w->reschedule_cb)
1242 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1284 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1243 else if (w->interval) 1285 else if (w->interval)
1244 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1286 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1245 } 1287 }
1246 1288
1247 /* now rebuild the heap */ 1289 /* now rebuild the heap */
1248 for (i = periodiccnt >> 1; i--; ) 1290 for (i = periodiccnt >> 1; i--; )
1249 downheap ((WT *)periodics, periodiccnt, i); 1291 downheap ((WT *)periodics, periodiccnt, i);
1250} 1292}
1251#endif 1293#endif
1252 1294
1295#if EV_IDLE_ENABLE
1253int inline_size 1296void inline_size
1254time_update_monotonic (EV_P) 1297idle_reify (EV_P)
1255{ 1298{
1299 if (expect_false (idleall))
1300 {
1301 int pri;
1302
1303 for (pri = NUMPRI; pri--; )
1304 {
1305 if (pendingcnt [pri])
1306 break;
1307
1308 if (idlecnt [pri])
1309 {
1310 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1311 break;
1312 }
1313 }
1314 }
1315}
1316#endif
1317
1318void inline_speed
1319time_update (EV_P_ ev_tstamp max_block)
1320{
1321 int i;
1322
1323#if EV_USE_MONOTONIC
1324 if (expect_true (have_monotonic))
1325 {
1326 ev_tstamp odiff = rtmn_diff;
1327
1256 mn_now = get_clock (); 1328 mn_now = get_clock ();
1257 1329
1330 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1331 /* interpolate in the meantime */
1258 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1332 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1259 { 1333 {
1260 ev_rt_now = rtmn_diff + mn_now; 1334 ev_rt_now = rtmn_diff + mn_now;
1261 return 0; 1335 return;
1262 } 1336 }
1263 else 1337
1264 {
1265 now_floor = mn_now; 1338 now_floor = mn_now;
1266 ev_rt_now = ev_time (); 1339 ev_rt_now = ev_time ();
1267 return 1;
1268 }
1269}
1270 1340
1271void inline_size 1341 /* loop a few times, before making important decisions.
1272time_update (EV_P) 1342 * on the choice of "4": one iteration isn't enough,
1273{ 1343 * in case we get preempted during the calls to
1274 int i; 1344 * ev_time and get_clock. a second call is almost guaranteed
1275 1345 * to succeed in that case, though. and looping a few more times
1276#if EV_USE_MONOTONIC 1346 * doesn't hurt either as we only do this on time-jumps or
1277 if (expect_true (have_monotonic)) 1347 * in the unlikely event of having been preempted here.
1278 { 1348 */
1279 if (time_update_monotonic (EV_A)) 1349 for (i = 4; --i; )
1280 { 1350 {
1281 ev_tstamp odiff = rtmn_diff;
1282
1283 /* loop a few times, before making important decisions.
1284 * on the choice of "4": one iteration isn't enough,
1285 * in case we get preempted during the calls to
1286 * ev_time and get_clock. a second call is almost guaranteed
1287 * to succeed in that case, though. and looping a few more times
1288 * doesn't hurt either as we only do this on time-jumps or
1289 * in the unlikely event of having been preempted here.
1290 */
1291 for (i = 4; --i; )
1292 {
1293 rtmn_diff = ev_rt_now - mn_now; 1351 rtmn_diff = ev_rt_now - mn_now;
1294 1352
1295 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1353 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1296 return; /* all is well */ 1354 return; /* all is well */
1297 1355
1298 ev_rt_now = ev_time (); 1356 ev_rt_now = ev_time ();
1299 mn_now = get_clock (); 1357 mn_now = get_clock ();
1300 now_floor = mn_now; 1358 now_floor = mn_now;
1301 } 1359 }
1302 1360
1303# if EV_PERIODIC_ENABLE 1361# if EV_PERIODIC_ENABLE
1304 periodics_reschedule (EV_A); 1362 periodics_reschedule (EV_A);
1305# endif 1363# endif
1306 /* no timer adjustment, as the monotonic clock doesn't jump */ 1364 /* no timer adjustment, as the monotonic clock doesn't jump */
1307 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1365 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1308 }
1309 } 1366 }
1310 else 1367 else
1311#endif 1368#endif
1312 { 1369 {
1313 ev_rt_now = ev_time (); 1370 ev_rt_now = ev_time ();
1314 1371
1315 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1372 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1316 { 1373 {
1317#if EV_PERIODIC_ENABLE 1374#if EV_PERIODIC_ENABLE
1318 periodics_reschedule (EV_A); 1375 periodics_reschedule (EV_A);
1319#endif 1376#endif
1320
1321 /* adjust timers. this is easy, as the offset is the same for all of them */ 1377 /* adjust timers. this is easy, as the offset is the same for all of them */
1322 for (i = 0; i < timercnt; ++i) 1378 for (i = 0; i < timercnt; ++i)
1323 ((WT)timers [i])->at += ev_rt_now - mn_now; 1379 ((WT)timers [i])->at += ev_rt_now - mn_now;
1324 } 1380 }
1325 1381
1369 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1425 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1370 call_pending (EV_A); 1426 call_pending (EV_A);
1371 } 1427 }
1372#endif 1428#endif
1373 1429
1374 /* queue check watchers (and execute them) */ 1430 /* queue prepare watchers (and execute them) */
1375 if (expect_false (preparecnt)) 1431 if (expect_false (preparecnt))
1376 { 1432 {
1377 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1433 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1378 call_pending (EV_A); 1434 call_pending (EV_A);
1379 } 1435 }
1390 1446
1391 /* calculate blocking time */ 1447 /* calculate blocking time */
1392 { 1448 {
1393 ev_tstamp block; 1449 ev_tstamp block;
1394 1450
1395 if (expect_false (flags & EVLOOP_NONBLOCK || idlecnt || !activecnt)) 1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1396 block = 0.; /* do not block at all */ 1452 block = 0.; /* do not block at all */
1397 else 1453 else
1398 { 1454 {
1399 /* update time to cancel out callback processing overhead */ 1455 /* update time to cancel out callback processing overhead */
1400#if EV_USE_MONOTONIC
1401 if (expect_true (have_monotonic))
1402 time_update_monotonic (EV_A); 1456 time_update (EV_A_ 1e100);
1403 else
1404#endif
1405 {
1406 ev_rt_now = ev_time ();
1407 mn_now = ev_rt_now;
1408 }
1409 1457
1410 block = MAX_BLOCKTIME; 1458 block = MAX_BLOCKTIME;
1411 1459
1412 if (timercnt) 1460 if (timercnt)
1413 { 1461 {
1426 if (expect_false (block < 0.)) block = 0.; 1474 if (expect_false (block < 0.)) block = 0.;
1427 } 1475 }
1428 1476
1429 ++loop_count; 1477 ++loop_count;
1430 backend_poll (EV_A_ block); 1478 backend_poll (EV_A_ block);
1479
1480 /* update ev_rt_now, do magic */
1481 time_update (EV_A_ block);
1431 } 1482 }
1432
1433 /* update ev_rt_now, do magic */
1434 time_update (EV_A);
1435 1483
1436 /* queue pending timers and reschedule them */ 1484 /* queue pending timers and reschedule them */
1437 timers_reify (EV_A); /* relative timers called last */ 1485 timers_reify (EV_A); /* relative timers called last */
1438#if EV_PERIODIC_ENABLE 1486#if EV_PERIODIC_ENABLE
1439 periodics_reify (EV_A); /* absolute timers called first */ 1487 periodics_reify (EV_A); /* absolute timers called first */
1440#endif 1488#endif
1441 1489
1490#if EV_IDLE_ENABLE
1442 /* queue idle watchers unless other events are pending */ 1491 /* queue idle watchers unless other events are pending */
1443 if (idlecnt && !any_pending (EV_A)) 1492 idle_reify (EV_A);
1444 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1493#endif
1445 1494
1446 /* queue check watchers, to be executed first */ 1495 /* queue check watchers, to be executed first */
1447 if (expect_false (checkcnt)) 1496 if (expect_false (checkcnt))
1448 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1497 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1449 1498
1485 head = &(*head)->next; 1534 head = &(*head)->next;
1486 } 1535 }
1487} 1536}
1488 1537
1489void inline_speed 1538void inline_speed
1490ev_clear_pending (EV_P_ W w) 1539clear_pending (EV_P_ W w)
1491{ 1540{
1492 if (w->pending) 1541 if (w->pending)
1493 { 1542 {
1494 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1543 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1495 w->pending = 0; 1544 w->pending = 0;
1496 } 1545 }
1497} 1546}
1498 1547
1548int
1549ev_clear_pending (EV_P_ void *w)
1550{
1551 W w_ = (W)w;
1552 int pending = w_->pending;
1553
1554 if (expect_true (pending))
1555 {
1556 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1557 w_->pending = 0;
1558 p->w = 0;
1559 return p->events;
1560 }
1561 else
1562 return 0;
1563}
1564
1565void inline_size
1566pri_adjust (EV_P_ W w)
1567{
1568 int pri = w->priority;
1569 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1570 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1571 w->priority = pri;
1572}
1573
1499void inline_speed 1574void inline_speed
1500ev_start (EV_P_ W w, int active) 1575ev_start (EV_P_ W w, int active)
1501{ 1576{
1502 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1577 pri_adjust (EV_A_ w);
1503 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1504
1505 w->active = active; 1578 w->active = active;
1506 ev_ref (EV_A); 1579 ev_ref (EV_A);
1507} 1580}
1508 1581
1509void inline_size 1582void inline_size
1513 w->active = 0; 1586 w->active = 0;
1514} 1587}
1515 1588
1516/*****************************************************************************/ 1589/*****************************************************************************/
1517 1590
1518void 1591void noinline
1519ev_io_start (EV_P_ ev_io *w) 1592ev_io_start (EV_P_ ev_io *w)
1520{ 1593{
1521 int fd = w->fd; 1594 int fd = w->fd;
1522 1595
1523 if (expect_false (ev_is_active (w))) 1596 if (expect_false (ev_is_active (w)))
1530 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1603 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1531 1604
1532 fd_change (EV_A_ fd); 1605 fd_change (EV_A_ fd);
1533} 1606}
1534 1607
1535void 1608void noinline
1536ev_io_stop (EV_P_ ev_io *w) 1609ev_io_stop (EV_P_ ev_io *w)
1537{ 1610{
1538 ev_clear_pending (EV_A_ (W)w); 1611 clear_pending (EV_A_ (W)w);
1539 if (expect_false (!ev_is_active (w))) 1612 if (expect_false (!ev_is_active (w)))
1540 return; 1613 return;
1541 1614
1542 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1615 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1543 1616
1545 ev_stop (EV_A_ (W)w); 1618 ev_stop (EV_A_ (W)w);
1546 1619
1547 fd_change (EV_A_ w->fd); 1620 fd_change (EV_A_ w->fd);
1548} 1621}
1549 1622
1550void 1623void noinline
1551ev_timer_start (EV_P_ ev_timer *w) 1624ev_timer_start (EV_P_ ev_timer *w)
1552{ 1625{
1553 if (expect_false (ev_is_active (w))) 1626 if (expect_false (ev_is_active (w)))
1554 return; 1627 return;
1555 1628
1563 upheap ((WT *)timers, timercnt - 1); 1636 upheap ((WT *)timers, timercnt - 1);
1564 1637
1565 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1638 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1566} 1639}
1567 1640
1568void 1641void noinline
1569ev_timer_stop (EV_P_ ev_timer *w) 1642ev_timer_stop (EV_P_ ev_timer *w)
1570{ 1643{
1571 ev_clear_pending (EV_A_ (W)w); 1644 clear_pending (EV_A_ (W)w);
1572 if (expect_false (!ev_is_active (w))) 1645 if (expect_false (!ev_is_active (w)))
1573 return; 1646 return;
1574 1647
1575 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1648 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1576 1649
1587 ((WT)w)->at -= mn_now; 1660 ((WT)w)->at -= mn_now;
1588 1661
1589 ev_stop (EV_A_ (W)w); 1662 ev_stop (EV_A_ (W)w);
1590} 1663}
1591 1664
1592void 1665void noinline
1593ev_timer_again (EV_P_ ev_timer *w) 1666ev_timer_again (EV_P_ ev_timer *w)
1594{ 1667{
1595 if (ev_is_active (w)) 1668 if (ev_is_active (w))
1596 { 1669 {
1597 if (w->repeat) 1670 if (w->repeat)
1608 ev_timer_start (EV_A_ w); 1681 ev_timer_start (EV_A_ w);
1609 } 1682 }
1610} 1683}
1611 1684
1612#if EV_PERIODIC_ENABLE 1685#if EV_PERIODIC_ENABLE
1613void 1686void noinline
1614ev_periodic_start (EV_P_ ev_periodic *w) 1687ev_periodic_start (EV_P_ ev_periodic *w)
1615{ 1688{
1616 if (expect_false (ev_is_active (w))) 1689 if (expect_false (ev_is_active (w)))
1617 return; 1690 return;
1618 1691
1620 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1693 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1621 else if (w->interval) 1694 else if (w->interval)
1622 { 1695 {
1623 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1696 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1624 /* this formula differs from the one in periodic_reify because we do not always round up */ 1697 /* this formula differs from the one in periodic_reify because we do not always round up */
1625 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1698 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1626 } 1699 }
1700 else
1701 ((WT)w)->at = w->offset;
1627 1702
1628 ev_start (EV_A_ (W)w, ++periodiccnt); 1703 ev_start (EV_A_ (W)w, ++periodiccnt);
1629 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1704 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1630 periodics [periodiccnt - 1] = w; 1705 periodics [periodiccnt - 1] = w;
1631 upheap ((WT *)periodics, periodiccnt - 1); 1706 upheap ((WT *)periodics, periodiccnt - 1);
1632 1707
1633 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1708 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1634} 1709}
1635 1710
1636void 1711void noinline
1637ev_periodic_stop (EV_P_ ev_periodic *w) 1712ev_periodic_stop (EV_P_ ev_periodic *w)
1638{ 1713{
1639 ev_clear_pending (EV_A_ (W)w); 1714 clear_pending (EV_A_ (W)w);
1640 if (expect_false (!ev_is_active (w))) 1715 if (expect_false (!ev_is_active (w)))
1641 return; 1716 return;
1642 1717
1643 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1718 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1644 1719
1653 } 1728 }
1654 1729
1655 ev_stop (EV_A_ (W)w); 1730 ev_stop (EV_A_ (W)w);
1656} 1731}
1657 1732
1658void 1733void noinline
1659ev_periodic_again (EV_P_ ev_periodic *w) 1734ev_periodic_again (EV_P_ ev_periodic *w)
1660{ 1735{
1661 /* TODO: use adjustheap and recalculation */ 1736 /* TODO: use adjustheap and recalculation */
1662 ev_periodic_stop (EV_A_ w); 1737 ev_periodic_stop (EV_A_ w);
1663 ev_periodic_start (EV_A_ w); 1738 ev_periodic_start (EV_A_ w);
1666 1741
1667#ifndef SA_RESTART 1742#ifndef SA_RESTART
1668# define SA_RESTART 0 1743# define SA_RESTART 0
1669#endif 1744#endif
1670 1745
1671void 1746void noinline
1672ev_signal_start (EV_P_ ev_signal *w) 1747ev_signal_start (EV_P_ ev_signal *w)
1673{ 1748{
1674#if EV_MULTIPLICITY 1749#if EV_MULTIPLICITY
1675 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1750 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1676#endif 1751#endif
1677 if (expect_false (ev_is_active (w))) 1752 if (expect_false (ev_is_active (w)))
1678 return; 1753 return;
1679 1754
1680 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1755 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1681 1756
1757 {
1758#ifndef _WIN32
1759 sigset_t full, prev;
1760 sigfillset (&full);
1761 sigprocmask (SIG_SETMASK, &full, &prev);
1762#endif
1763
1764 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1765
1766#ifndef _WIN32
1767 sigprocmask (SIG_SETMASK, &prev, 0);
1768#endif
1769 }
1770
1682 ev_start (EV_A_ (W)w, 1); 1771 ev_start (EV_A_ (W)w, 1);
1683 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1684 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1772 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1685 1773
1686 if (!((WL)w)->next) 1774 if (!((WL)w)->next)
1687 { 1775 {
1688#if _WIN32 1776#if _WIN32
1695 sigaction (w->signum, &sa, 0); 1783 sigaction (w->signum, &sa, 0);
1696#endif 1784#endif
1697 } 1785 }
1698} 1786}
1699 1787
1700void 1788void noinline
1701ev_signal_stop (EV_P_ ev_signal *w) 1789ev_signal_stop (EV_P_ ev_signal *w)
1702{ 1790{
1703 ev_clear_pending (EV_A_ (W)w); 1791 clear_pending (EV_A_ (W)w);
1704 if (expect_false (!ev_is_active (w))) 1792 if (expect_false (!ev_is_active (w)))
1705 return; 1793 return;
1706 1794
1707 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1795 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1708 ev_stop (EV_A_ (W)w); 1796 ev_stop (EV_A_ (W)w);
1725} 1813}
1726 1814
1727void 1815void
1728ev_child_stop (EV_P_ ev_child *w) 1816ev_child_stop (EV_P_ ev_child *w)
1729{ 1817{
1730 ev_clear_pending (EV_A_ (W)w); 1818 clear_pending (EV_A_ (W)w);
1731 if (expect_false (!ev_is_active (w))) 1819 if (expect_false (!ev_is_active (w)))
1732 return; 1820 return;
1733 1821
1734 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1822 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1735 ev_stop (EV_A_ (W)w); 1823 ev_stop (EV_A_ (W)w);
1971} 2059}
1972 2060
1973void 2061void
1974ev_stat_stop (EV_P_ ev_stat *w) 2062ev_stat_stop (EV_P_ ev_stat *w)
1975{ 2063{
1976 ev_clear_pending (EV_A_ (W)w); 2064 clear_pending (EV_A_ (W)w);
1977 if (expect_false (!ev_is_active (w))) 2065 if (expect_false (!ev_is_active (w)))
1978 return; 2066 return;
1979 2067
1980#if EV_USE_INOTIFY 2068#if EV_USE_INOTIFY
1981 infy_del (EV_A_ w); 2069 infy_del (EV_A_ w);
1984 2072
1985 ev_stop (EV_A_ (W)w); 2073 ev_stop (EV_A_ (W)w);
1986} 2074}
1987#endif 2075#endif
1988 2076
2077#if EV_IDLE_ENABLE
1989void 2078void
1990ev_idle_start (EV_P_ ev_idle *w) 2079ev_idle_start (EV_P_ ev_idle *w)
1991{ 2080{
1992 if (expect_false (ev_is_active (w))) 2081 if (expect_false (ev_is_active (w)))
1993 return; 2082 return;
1994 2083
2084 pri_adjust (EV_A_ (W)w);
2085
2086 {
2087 int active = ++idlecnt [ABSPRI (w)];
2088
2089 ++idleall;
1995 ev_start (EV_A_ (W)w, ++idlecnt); 2090 ev_start (EV_A_ (W)w, active);
2091
1996 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2092 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1997 idles [idlecnt - 1] = w; 2093 idles [ABSPRI (w)][active - 1] = w;
2094 }
1998} 2095}
1999 2096
2000void 2097void
2001ev_idle_stop (EV_P_ ev_idle *w) 2098ev_idle_stop (EV_P_ ev_idle *w)
2002{ 2099{
2003 ev_clear_pending (EV_A_ (W)w); 2100 clear_pending (EV_A_ (W)w);
2004 if (expect_false (!ev_is_active (w))) 2101 if (expect_false (!ev_is_active (w)))
2005 return; 2102 return;
2006 2103
2007 { 2104 {
2008 int active = ((W)w)->active; 2105 int active = ((W)w)->active;
2009 idles [active - 1] = idles [--idlecnt]; 2106
2107 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2010 ((W)idles [active - 1])->active = active; 2108 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2109
2110 ev_stop (EV_A_ (W)w);
2111 --idleall;
2011 } 2112 }
2012
2013 ev_stop (EV_A_ (W)w);
2014} 2113}
2114#endif
2015 2115
2016void 2116void
2017ev_prepare_start (EV_P_ ev_prepare *w) 2117ev_prepare_start (EV_P_ ev_prepare *w)
2018{ 2118{
2019 if (expect_false (ev_is_active (w))) 2119 if (expect_false (ev_is_active (w)))
2025} 2125}
2026 2126
2027void 2127void
2028ev_prepare_stop (EV_P_ ev_prepare *w) 2128ev_prepare_stop (EV_P_ ev_prepare *w)
2029{ 2129{
2030 ev_clear_pending (EV_A_ (W)w); 2130 clear_pending (EV_A_ (W)w);
2031 if (expect_false (!ev_is_active (w))) 2131 if (expect_false (!ev_is_active (w)))
2032 return; 2132 return;
2033 2133
2034 { 2134 {
2035 int active = ((W)w)->active; 2135 int active = ((W)w)->active;
2052} 2152}
2053 2153
2054void 2154void
2055ev_check_stop (EV_P_ ev_check *w) 2155ev_check_stop (EV_P_ ev_check *w)
2056{ 2156{
2057 ev_clear_pending (EV_A_ (W)w); 2157 clear_pending (EV_A_ (W)w);
2058 if (expect_false (!ev_is_active (w))) 2158 if (expect_false (!ev_is_active (w)))
2059 return; 2159 return;
2060 2160
2061 { 2161 {
2062 int active = ((W)w)->active; 2162 int active = ((W)w)->active;
2104} 2204}
2105 2205
2106void 2206void
2107ev_embed_stop (EV_P_ ev_embed *w) 2207ev_embed_stop (EV_P_ ev_embed *w)
2108{ 2208{
2109 ev_clear_pending (EV_A_ (W)w); 2209 clear_pending (EV_A_ (W)w);
2110 if (expect_false (!ev_is_active (w))) 2210 if (expect_false (!ev_is_active (w)))
2111 return; 2211 return;
2112 2212
2113 ev_io_stop (EV_A_ &w->io); 2213 ev_io_stop (EV_A_ &w->io);
2114 2214
2129} 2229}
2130 2230
2131void 2231void
2132ev_fork_stop (EV_P_ ev_fork *w) 2232ev_fork_stop (EV_P_ ev_fork *w)
2133{ 2233{
2134 ev_clear_pending (EV_A_ (W)w); 2234 clear_pending (EV_A_ (W)w);
2135 if (expect_false (!ev_is_active (w))) 2235 if (expect_false (!ev_is_active (w)))
2136 return; 2236 return;
2137 2237
2138 { 2238 {
2139 int active = ((W)w)->active; 2239 int active = ((W)w)->active;

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines