ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.162 by root, Mon Dec 3 13:41:24 2007 UTC vs.
Revision 1.199 by root, Tue Dec 25 07:05:45 2007 UTC

2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
51# ifndef EV_USE_MONOTONIC 59# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 60# define EV_USE_MONOTONIC 0
53# endif 61# endif
54# ifndef EV_USE_REALTIME 62# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 63# define EV_USE_REALTIME 0
64# endif
65# endif
66
67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
56# endif 72# endif
57# endif 73# endif
58 74
59# ifndef EV_USE_SELECT 75# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 76# if HAVE_SELECT && HAVE_SYS_SELECT_H
146 162
147#ifndef EV_USE_REALTIME 163#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 164# define EV_USE_REALTIME 0
149#endif 165#endif
150 166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
169#endif
170
151#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
153#endif 173#endif
154 174
155#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
202#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
205#endif 225#endif
206 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
207#if EV_SELECT_IS_WINSOCKET 242#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 243# include <winsock.h>
209#endif 244#endif
210 245
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
219/**/ 246/**/
247
248/*
249 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 257
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 261
225#if __GNUC__ >= 3 262#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 264# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 265#else
236# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif
240#endif 271#endif
241 272
242#define expect_false(expr) expect ((expr) != 0, 0) 273#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 274#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline
276
277#if EV_MINIMAL
278# define inline_speed static noinline
279#else
280# define inline_speed static inline
281#endif
244 282
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 285
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 286#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 287#define EMPTY2(a,b) /* used to suppress some warnings */
250 288
251typedef ev_watcher *W; 289typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
254 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
256 298
257#ifdef _WIN32 299#ifdef _WIN32
258# include "ev_win32.c" 300# include "ev_win32.c"
259#endif 301#endif
260 302
396{ 438{
397 return ev_rt_now; 439 return ev_rt_now;
398} 440}
399#endif 441#endif
400 442
401#define array_roundsize(type,n) (((n) | 4) & ~3) 443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep (delay * 1e3);
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
470int inline_size
471array_nextsize (int elem, int cur, int cnt)
472{
473 int ncur = cur + 1;
474
475 do
476 ncur <<= 1;
477 while (cnt > ncur);
478
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096)
481 {
482 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
484 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem;
486 }
487
488 return ncur;
489}
490
491static noinline void *
492array_realloc (int elem, void *base, int *cur, int cnt)
493{
494 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur);
496}
402 497
403#define array_needsize(type,base,cur,cnt,init) \ 498#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 499 if (expect_false ((cnt) > (cur))) \
405 { \ 500 { \
406 int newcnt = cur; \ 501 int ocur_ = (cur); \
407 do \ 502 (base) = (type *)array_realloc \
408 { \ 503 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 504 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 505 }
417 506
507#if 0
418#define array_slim(type,stem) \ 508#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 509 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 510 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 511 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 512 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 514 }
515#endif
425 516
426#define array_free(stem, idx) \ 517#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 519
429/*****************************************************************************/ 520/*****************************************************************************/
430 521
431void noinline 522void noinline
432ev_feed_event (EV_P_ void *w, int revents) 523ev_feed_event (EV_P_ void *w, int revents)
433{ 524{
434 W w_ = (W)w; 525 W w_ = (W)w;
526 int pri = ABSPRI (w_);
435 527
436 if (expect_false (w_->pending)) 528 if (expect_false (w_->pending))
529 pendings [pri][w_->pending - 1].events |= revents;
530 else
437 { 531 {
532 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 535 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 536 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 537}
447 538
448void inline_size 539void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 540queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 541{
451 int i; 542 int i;
452 543
453 for (i = 0; i < eventcnt; ++i) 544 for (i = 0; i < eventcnt; ++i)
485} 576}
486 577
487void 578void
488ev_feed_fd_event (EV_P_ int fd, int revents) 579ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 580{
581 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 582 fd_event (EV_A_ fd, revents);
491} 583}
492 584
493void inline_size 585void inline_size
494fd_reify (EV_P) 586fd_reify (EV_P)
495{ 587{
499 { 591 {
500 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
502 ev_io *w; 594 ev_io *w;
503 595
504 int events = 0; 596 unsigned char events = 0;
505 597
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 599 events |= (unsigned char)w->events;
508 600
509#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
510 if (events) 602 if (events)
511 { 603 {
512 unsigned long argp; 604 unsigned long argp;
513 anfd->handle = _get_osfhandle (fd); 605 anfd->handle = _get_osfhandle (fd);
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 606 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
515 } 607 }
516#endif 608#endif
517 609
610 {
611 unsigned char o_events = anfd->events;
612 unsigned char o_reify = anfd->reify;
613
518 anfd->reify = 0; 614 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 615 anfd->events = events;
616
617 if (o_events != events || o_reify & EV_IOFDSET)
618 backend_modify (EV_A_ fd, o_events, events);
619 }
522 } 620 }
523 621
524 fdchangecnt = 0; 622 fdchangecnt = 0;
525} 623}
526 624
527void inline_size 625void inline_size
528fd_change (EV_P_ int fd) 626fd_change (EV_P_ int fd, int flags)
529{ 627{
530 if (expect_false (anfds [fd].reify)) 628 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 629 anfds [fd].reify |= flags;
534 630
631 if (expect_true (!reify))
632 {
535 ++fdchangecnt; 633 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 634 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 635 fdchanges [fdchangecnt - 1] = fd;
636 }
538} 637}
539 638
540void inline_speed 639void inline_speed
541fd_kill (EV_P_ int fd) 640fd_kill (EV_P_ int fd)
542{ 641{
593 692
594 for (fd = 0; fd < anfdmax; ++fd) 693 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 694 if (anfds [fd].events)
596 { 695 {
597 anfds [fd].events = 0; 696 anfds [fd].events = 0;
598 fd_change (EV_A_ fd); 697 fd_change (EV_A_ fd, EV_IOFDSET | 1);
599 } 698 }
600} 699}
601 700
602/*****************************************************************************/ 701/*****************************************************************************/
603 702
604void inline_speed 703void inline_speed
605upheap (WT *heap, int k) 704upheap (WT *heap, int k)
606{ 705{
607 WT w = heap [k]; 706 WT w = heap [k];
608 707
609 while (k && heap [k >> 1]->at > w->at) 708 while (k)
610 { 709 {
710 int p = (k - 1) >> 1;
711
712 if (heap [p]->at <= w->at)
713 break;
714
611 heap [k] = heap [k >> 1]; 715 heap [k] = heap [p];
612 ((W)heap [k])->active = k + 1; 716 ((W)heap [k])->active = k + 1;
613 k >>= 1; 717 k = p;
614 } 718 }
615 719
616 heap [k] = w; 720 heap [k] = w;
617 ((W)heap [k])->active = k + 1; 721 ((W)heap [k])->active = k + 1;
618
619} 722}
620 723
621void inline_speed 724void inline_speed
622downheap (WT *heap, int N, int k) 725downheap (WT *heap, int N, int k)
623{ 726{
624 WT w = heap [k]; 727 WT w = heap [k];
625 728
626 while (k < (N >> 1)) 729 for (;;)
627 { 730 {
628 int j = k << 1; 731 int c = (k << 1) + 1;
629 732
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 733 if (c >= N)
631 ++j;
632
633 if (w->at <= heap [j]->at)
634 break; 734 break;
635 735
736 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
737 ? 1 : 0;
738
739 if (w->at <= heap [c]->at)
740 break;
741
636 heap [k] = heap [j]; 742 heap [k] = heap [c];
637 ((W)heap [k])->active = k + 1; 743 ((W)heap [k])->active = k + 1;
744
638 k = j; 745 k = c;
639 } 746 }
640 747
641 heap [k] = w; 748 heap [k] = w;
642 ((W)heap [k])->active = k + 1; 749 ((W)heap [k])->active = k + 1;
643} 750}
725 for (signum = signalmax; signum--; ) 832 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig) 833 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1); 834 ev_feed_signal_event (EV_A_ signum + 1);
728} 835}
729 836
730void inline_size 837void inline_speed
731fd_intern (int fd) 838fd_intern (int fd)
732{ 839{
733#ifdef _WIN32 840#ifdef _WIN32
734 int arg = 1; 841 int arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 842 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 857 ev_unref (EV_A); /* child watcher should not keep loop alive */
751} 858}
752 859
753/*****************************************************************************/ 860/*****************************************************************************/
754 861
755static ev_child *childs [EV_PID_HASHSIZE]; 862static WL childs [EV_PID_HASHSIZE];
756 863
757#ifndef _WIN32 864#ifndef _WIN32
758 865
759static ev_signal childev; 866static ev_signal childev;
760 867
764 ev_child *w; 871 ev_child *w;
765 872
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 873 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
767 if (w->pid == pid || !w->pid) 874 if (w->pid == pid || !w->pid)
768 { 875 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 876 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
770 w->rpid = pid; 877 w->rpid = pid;
771 w->rstatus = status; 878 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 879 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 880 }
774} 881}
775 882
776#ifndef WCONTINUED 883#ifndef WCONTINUED
875} 982}
876 983
877unsigned int 984unsigned int
878ev_embeddable_backends (void) 985ev_embeddable_backends (void)
879{ 986{
880 return EVBACKEND_EPOLL 987 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 988
882 | EVBACKEND_PORT; 989 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
990 /* please fix it and tell me how to detect the fix */
991 flags &= ~EVBACKEND_EPOLL;
992
993 return flags;
883} 994}
884 995
885unsigned int 996unsigned int
886ev_backend (EV_P) 997ev_backend (EV_P)
887{ 998{
890 1001
891unsigned int 1002unsigned int
892ev_loop_count (EV_P) 1003ev_loop_count (EV_P)
893{ 1004{
894 return loop_count; 1005 return loop_count;
1006}
1007
1008void
1009ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1010{
1011 io_blocktime = interval;
1012}
1013
1014void
1015ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1016{
1017 timeout_blocktime = interval;
895} 1018}
896 1019
897static void noinline 1020static void noinline
898loop_init (EV_P_ unsigned int flags) 1021loop_init (EV_P_ unsigned int flags)
899{ 1022{
910 ev_rt_now = ev_time (); 1033 ev_rt_now = ev_time ();
911 mn_now = get_clock (); 1034 mn_now = get_clock ();
912 now_floor = mn_now; 1035 now_floor = mn_now;
913 rtmn_diff = ev_rt_now - mn_now; 1036 rtmn_diff = ev_rt_now - mn_now;
914 1037
1038 io_blocktime = 0.;
1039 timeout_blocktime = 0.;
1040
915 /* pid check not overridable via env */ 1041 /* pid check not overridable via env */
916#ifndef _WIN32 1042#ifndef _WIN32
917 if (flags & EVFLAG_FORKCHECK) 1043 if (flags & EVFLAG_FORKCHECK)
918 curpid = getpid (); 1044 curpid = getpid ();
919#endif 1045#endif
981#if EV_USE_SELECT 1107#if EV_USE_SELECT
982 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1108 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
983#endif 1109#endif
984 1110
985 for (i = NUMPRI; i--; ) 1111 for (i = NUMPRI; i--; )
1112 {
986 array_free (pending, [i]); 1113 array_free (pending, [i]);
1114#if EV_IDLE_ENABLE
1115 array_free (idle, [i]);
1116#endif
1117 }
1118
1119 ev_free (anfds); anfdmax = 0;
987 1120
988 /* have to use the microsoft-never-gets-it-right macro */ 1121 /* have to use the microsoft-never-gets-it-right macro */
989 array_free (fdchange, EMPTY0); 1122 array_free (fdchange, EMPTY);
990 array_free (timer, EMPTY0); 1123 array_free (timer, EMPTY);
991#if EV_PERIODIC_ENABLE 1124#if EV_PERIODIC_ENABLE
992 array_free (periodic, EMPTY0); 1125 array_free (periodic, EMPTY);
993#endif 1126#endif
1127#if EV_FORK_ENABLE
994 array_free (idle, EMPTY0); 1128 array_free (fork, EMPTY);
1129#endif
995 array_free (prepare, EMPTY0); 1130 array_free (prepare, EMPTY);
996 array_free (check, EMPTY0); 1131 array_free (check, EMPTY);
997 1132
998 backend = 0; 1133 backend = 0;
999} 1134}
1000 1135
1001void inline_size infy_fork (EV_P); 1136void inline_size infy_fork (EV_P);
1137 postfork = 1; 1272 postfork = 1;
1138} 1273}
1139 1274
1140/*****************************************************************************/ 1275/*****************************************************************************/
1141 1276
1142int inline_size 1277void
1143any_pending (EV_P) 1278ev_invoke (EV_P_ void *w, int revents)
1144{ 1279{
1145 int pri; 1280 EV_CB_INVOKE ((W)w, revents);
1146
1147 for (pri = NUMPRI; pri--; )
1148 if (pendingcnt [pri])
1149 return 1;
1150
1151 return 0;
1152} 1281}
1153 1282
1154void inline_speed 1283void inline_speed
1155call_pending (EV_P) 1284call_pending (EV_P)
1156{ 1285{
1174void inline_size 1303void inline_size
1175timers_reify (EV_P) 1304timers_reify (EV_P)
1176{ 1305{
1177 while (timercnt && ((WT)timers [0])->at <= mn_now) 1306 while (timercnt && ((WT)timers [0])->at <= mn_now)
1178 { 1307 {
1179 ev_timer *w = timers [0]; 1308 ev_timer *w = (ev_timer *)timers [0];
1180 1309
1181 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1310 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1182 1311
1183 /* first reschedule or stop timer */ 1312 /* first reschedule or stop timer */
1184 if (w->repeat) 1313 if (w->repeat)
1187 1316
1188 ((WT)w)->at += w->repeat; 1317 ((WT)w)->at += w->repeat;
1189 if (((WT)w)->at < mn_now) 1318 if (((WT)w)->at < mn_now)
1190 ((WT)w)->at = mn_now; 1319 ((WT)w)->at = mn_now;
1191 1320
1192 downheap ((WT *)timers, timercnt, 0); 1321 downheap (timers, timercnt, 0);
1193 } 1322 }
1194 else 1323 else
1195 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1324 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1196 1325
1197 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1326 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1202void inline_size 1331void inline_size
1203periodics_reify (EV_P) 1332periodics_reify (EV_P)
1204{ 1333{
1205 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1334 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1206 { 1335 {
1207 ev_periodic *w = periodics [0]; 1336 ev_periodic *w = (ev_periodic *)periodics [0];
1208 1337
1209 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1338 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1210 1339
1211 /* first reschedule or stop timer */ 1340 /* first reschedule or stop timer */
1212 if (w->reschedule_cb) 1341 if (w->reschedule_cb)
1213 { 1342 {
1214 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1343 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1215 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1344 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1216 downheap ((WT *)periodics, periodiccnt, 0); 1345 downheap (periodics, periodiccnt, 0);
1217 } 1346 }
1218 else if (w->interval) 1347 else if (w->interval)
1219 { 1348 {
1220 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1349 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1350 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1221 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1351 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1222 downheap ((WT *)periodics, periodiccnt, 0); 1352 downheap (periodics, periodiccnt, 0);
1223 } 1353 }
1224 else 1354 else
1225 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1355 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1226 1356
1227 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1357 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1234 int i; 1364 int i;
1235 1365
1236 /* adjust periodics after time jump */ 1366 /* adjust periodics after time jump */
1237 for (i = 0; i < periodiccnt; ++i) 1367 for (i = 0; i < periodiccnt; ++i)
1238 { 1368 {
1239 ev_periodic *w = periodics [i]; 1369 ev_periodic *w = (ev_periodic *)periodics [i];
1240 1370
1241 if (w->reschedule_cb) 1371 if (w->reschedule_cb)
1242 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1372 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1243 else if (w->interval) 1373 else if (w->interval)
1244 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1374 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1245 } 1375 }
1246 1376
1247 /* now rebuild the heap */ 1377 /* now rebuild the heap */
1248 for (i = periodiccnt >> 1; i--; ) 1378 for (i = periodiccnt >> 1; i--; )
1249 downheap ((WT *)periodics, periodiccnt, i); 1379 downheap (periodics, periodiccnt, i);
1250} 1380}
1251#endif 1381#endif
1252 1382
1383#if EV_IDLE_ENABLE
1253int inline_size 1384void inline_size
1254time_update_monotonic (EV_P) 1385idle_reify (EV_P)
1255{ 1386{
1387 if (expect_false (idleall))
1388 {
1389 int pri;
1390
1391 for (pri = NUMPRI; pri--; )
1392 {
1393 if (pendingcnt [pri])
1394 break;
1395
1396 if (idlecnt [pri])
1397 {
1398 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1399 break;
1400 }
1401 }
1402 }
1403}
1404#endif
1405
1406void inline_speed
1407time_update (EV_P_ ev_tstamp max_block)
1408{
1409 int i;
1410
1411#if EV_USE_MONOTONIC
1412 if (expect_true (have_monotonic))
1413 {
1414 ev_tstamp odiff = rtmn_diff;
1415
1256 mn_now = get_clock (); 1416 mn_now = get_clock ();
1257 1417
1418 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1419 /* interpolate in the meantime */
1258 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1420 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1259 { 1421 {
1260 ev_rt_now = rtmn_diff + mn_now; 1422 ev_rt_now = rtmn_diff + mn_now;
1261 return 0; 1423 return;
1262 } 1424 }
1263 else 1425
1264 {
1265 now_floor = mn_now; 1426 now_floor = mn_now;
1266 ev_rt_now = ev_time (); 1427 ev_rt_now = ev_time ();
1267 return 1;
1268 }
1269}
1270 1428
1271void inline_size 1429 /* loop a few times, before making important decisions.
1272time_update (EV_P) 1430 * on the choice of "4": one iteration isn't enough,
1273{ 1431 * in case we get preempted during the calls to
1274 int i; 1432 * ev_time and get_clock. a second call is almost guaranteed
1275 1433 * to succeed in that case, though. and looping a few more times
1276#if EV_USE_MONOTONIC 1434 * doesn't hurt either as we only do this on time-jumps or
1277 if (expect_true (have_monotonic)) 1435 * in the unlikely event of having been preempted here.
1278 { 1436 */
1279 if (time_update_monotonic (EV_A)) 1437 for (i = 4; --i; )
1280 { 1438 {
1281 ev_tstamp odiff = rtmn_diff;
1282
1283 /* loop a few times, before making important decisions.
1284 * on the choice of "4": one iteration isn't enough,
1285 * in case we get preempted during the calls to
1286 * ev_time and get_clock. a second call is almost guaranteed
1287 * to succeed in that case, though. and looping a few more times
1288 * doesn't hurt either as we only do this on time-jumps or
1289 * in the unlikely event of having been preempted here.
1290 */
1291 for (i = 4; --i; )
1292 {
1293 rtmn_diff = ev_rt_now - mn_now; 1439 rtmn_diff = ev_rt_now - mn_now;
1294 1440
1295 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1441 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1296 return; /* all is well */ 1442 return; /* all is well */
1297 1443
1298 ev_rt_now = ev_time (); 1444 ev_rt_now = ev_time ();
1299 mn_now = get_clock (); 1445 mn_now = get_clock ();
1300 now_floor = mn_now; 1446 now_floor = mn_now;
1301 } 1447 }
1302 1448
1303# if EV_PERIODIC_ENABLE 1449# if EV_PERIODIC_ENABLE
1304 periodics_reschedule (EV_A); 1450 periodics_reschedule (EV_A);
1305# endif 1451# endif
1306 /* no timer adjustment, as the monotonic clock doesn't jump */ 1452 /* no timer adjustment, as the monotonic clock doesn't jump */
1307 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1453 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1308 }
1309 } 1454 }
1310 else 1455 else
1311#endif 1456#endif
1312 { 1457 {
1313 ev_rt_now = ev_time (); 1458 ev_rt_now = ev_time ();
1314 1459
1315 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1460 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1316 { 1461 {
1317#if EV_PERIODIC_ENABLE 1462#if EV_PERIODIC_ENABLE
1318 periodics_reschedule (EV_A); 1463 periodics_reschedule (EV_A);
1319#endif 1464#endif
1320
1321 /* adjust timers. this is easy, as the offset is the same for all of them */ 1465 /* adjust timers. this is easy, as the offset is the same for all of them */
1322 for (i = 0; i < timercnt; ++i) 1466 for (i = 0; i < timercnt; ++i)
1323 ((WT)timers [i])->at += ev_rt_now - mn_now; 1467 ((WT)timers [i])->at += ev_rt_now - mn_now;
1324 } 1468 }
1325 1469
1369 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1513 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1370 call_pending (EV_A); 1514 call_pending (EV_A);
1371 } 1515 }
1372#endif 1516#endif
1373 1517
1374 /* queue check watchers (and execute them) */ 1518 /* queue prepare watchers (and execute them) */
1375 if (expect_false (preparecnt)) 1519 if (expect_false (preparecnt))
1376 { 1520 {
1377 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1521 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1378 call_pending (EV_A); 1522 call_pending (EV_A);
1379 } 1523 }
1388 /* update fd-related kernel structures */ 1532 /* update fd-related kernel structures */
1389 fd_reify (EV_A); 1533 fd_reify (EV_A);
1390 1534
1391 /* calculate blocking time */ 1535 /* calculate blocking time */
1392 { 1536 {
1393 ev_tstamp block; 1537 ev_tstamp waittime = 0.;
1538 ev_tstamp sleeptime = 0.;
1394 1539
1395 if (expect_false (flags & EVLOOP_NONBLOCK || idlecnt || !activecnt)) 1540 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1396 block = 0.; /* do not block at all */
1397 else
1398 { 1541 {
1399 /* update time to cancel out callback processing overhead */ 1542 /* update time to cancel out callback processing overhead */
1400#if EV_USE_MONOTONIC
1401 if (expect_true (have_monotonic))
1402 time_update_monotonic (EV_A); 1543 time_update (EV_A_ 1e100);
1403 else
1404#endif
1405 {
1406 ev_rt_now = ev_time ();
1407 mn_now = ev_rt_now;
1408 }
1409 1544
1410 block = MAX_BLOCKTIME; 1545 waittime = MAX_BLOCKTIME;
1411 1546
1412 if (timercnt) 1547 if (timercnt)
1413 { 1548 {
1414 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1549 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1415 if (block > to) block = to; 1550 if (waittime > to) waittime = to;
1416 } 1551 }
1417 1552
1418#if EV_PERIODIC_ENABLE 1553#if EV_PERIODIC_ENABLE
1419 if (periodiccnt) 1554 if (periodiccnt)
1420 { 1555 {
1421 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1556 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1422 if (block > to) block = to; 1557 if (waittime > to) waittime = to;
1423 } 1558 }
1424#endif 1559#endif
1425 1560
1426 if (expect_false (block < 0.)) block = 0.; 1561 if (expect_false (waittime < timeout_blocktime))
1562 waittime = timeout_blocktime;
1563
1564 sleeptime = waittime - backend_fudge;
1565
1566 if (expect_true (sleeptime > io_blocktime))
1567 sleeptime = io_blocktime;
1568
1569 if (sleeptime)
1570 {
1571 ev_sleep (sleeptime);
1572 waittime -= sleeptime;
1573 }
1427 } 1574 }
1428 1575
1429 ++loop_count; 1576 ++loop_count;
1430 backend_poll (EV_A_ block); 1577 backend_poll (EV_A_ waittime);
1578
1579 /* update ev_rt_now, do magic */
1580 time_update (EV_A_ waittime + sleeptime);
1431 } 1581 }
1432
1433 /* update ev_rt_now, do magic */
1434 time_update (EV_A);
1435 1582
1436 /* queue pending timers and reschedule them */ 1583 /* queue pending timers and reschedule them */
1437 timers_reify (EV_A); /* relative timers called last */ 1584 timers_reify (EV_A); /* relative timers called last */
1438#if EV_PERIODIC_ENABLE 1585#if EV_PERIODIC_ENABLE
1439 periodics_reify (EV_A); /* absolute timers called first */ 1586 periodics_reify (EV_A); /* absolute timers called first */
1440#endif 1587#endif
1441 1588
1589#if EV_IDLE_ENABLE
1442 /* queue idle watchers unless other events are pending */ 1590 /* queue idle watchers unless other events are pending */
1443 if (idlecnt && !any_pending (EV_A)) 1591 idle_reify (EV_A);
1444 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1592#endif
1445 1593
1446 /* queue check watchers, to be executed first */ 1594 /* queue check watchers, to be executed first */
1447 if (expect_false (checkcnt)) 1595 if (expect_false (checkcnt))
1448 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1596 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1449 1597
1485 head = &(*head)->next; 1633 head = &(*head)->next;
1486 } 1634 }
1487} 1635}
1488 1636
1489void inline_speed 1637void inline_speed
1490ev_clear_pending (EV_P_ W w) 1638clear_pending (EV_P_ W w)
1491{ 1639{
1492 if (w->pending) 1640 if (w->pending)
1493 { 1641 {
1494 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1642 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1495 w->pending = 0; 1643 w->pending = 0;
1496 } 1644 }
1497} 1645}
1498 1646
1647int
1648ev_clear_pending (EV_P_ void *w)
1649{
1650 W w_ = (W)w;
1651 int pending = w_->pending;
1652
1653 if (expect_true (pending))
1654 {
1655 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1656 w_->pending = 0;
1657 p->w = 0;
1658 return p->events;
1659 }
1660 else
1661 return 0;
1662}
1663
1664void inline_size
1665pri_adjust (EV_P_ W w)
1666{
1667 int pri = w->priority;
1668 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1669 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1670 w->priority = pri;
1671}
1672
1499void inline_speed 1673void inline_speed
1500ev_start (EV_P_ W w, int active) 1674ev_start (EV_P_ W w, int active)
1501{ 1675{
1502 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1676 pri_adjust (EV_A_ w);
1503 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1504
1505 w->active = active; 1677 w->active = active;
1506 ev_ref (EV_A); 1678 ev_ref (EV_A);
1507} 1679}
1508 1680
1509void inline_size 1681void inline_size
1513 w->active = 0; 1685 w->active = 0;
1514} 1686}
1515 1687
1516/*****************************************************************************/ 1688/*****************************************************************************/
1517 1689
1518void 1690void noinline
1519ev_io_start (EV_P_ ev_io *w) 1691ev_io_start (EV_P_ ev_io *w)
1520{ 1692{
1521 int fd = w->fd; 1693 int fd = w->fd;
1522 1694
1523 if (expect_false (ev_is_active (w))) 1695 if (expect_false (ev_is_active (w)))
1525 1697
1526 assert (("ev_io_start called with negative fd", fd >= 0)); 1698 assert (("ev_io_start called with negative fd", fd >= 0));
1527 1699
1528 ev_start (EV_A_ (W)w, 1); 1700 ev_start (EV_A_ (W)w, 1);
1529 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1701 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1530 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1702 wlist_add (&anfds[fd].head, (WL)w);
1531 1703
1532 fd_change (EV_A_ fd); 1704 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1705 w->events &= ~EV_IOFDSET;
1533} 1706}
1534 1707
1535void 1708void noinline
1536ev_io_stop (EV_P_ ev_io *w) 1709ev_io_stop (EV_P_ ev_io *w)
1537{ 1710{
1538 ev_clear_pending (EV_A_ (W)w); 1711 clear_pending (EV_A_ (W)w);
1539 if (expect_false (!ev_is_active (w))) 1712 if (expect_false (!ev_is_active (w)))
1540 return; 1713 return;
1541 1714
1542 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1715 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1543 1716
1544 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1717 wlist_del (&anfds[w->fd].head, (WL)w);
1545 ev_stop (EV_A_ (W)w); 1718 ev_stop (EV_A_ (W)w);
1546 1719
1547 fd_change (EV_A_ w->fd); 1720 fd_change (EV_A_ w->fd, 1);
1548} 1721}
1549 1722
1550void 1723void noinline
1551ev_timer_start (EV_P_ ev_timer *w) 1724ev_timer_start (EV_P_ ev_timer *w)
1552{ 1725{
1553 if (expect_false (ev_is_active (w))) 1726 if (expect_false (ev_is_active (w)))
1554 return; 1727 return;
1555 1728
1556 ((WT)w)->at += mn_now; 1729 ((WT)w)->at += mn_now;
1557 1730
1558 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1731 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1559 1732
1560 ev_start (EV_A_ (W)w, ++timercnt); 1733 ev_start (EV_A_ (W)w, ++timercnt);
1561 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1734 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1562 timers [timercnt - 1] = w; 1735 timers [timercnt - 1] = (WT)w;
1563 upheap ((WT *)timers, timercnt - 1); 1736 upheap (timers, timercnt - 1);
1564 1737
1565 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1738 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1566} 1739}
1567 1740
1568void 1741void noinline
1569ev_timer_stop (EV_P_ ev_timer *w) 1742ev_timer_stop (EV_P_ ev_timer *w)
1570{ 1743{
1571 ev_clear_pending (EV_A_ (W)w); 1744 clear_pending (EV_A_ (W)w);
1572 if (expect_false (!ev_is_active (w))) 1745 if (expect_false (!ev_is_active (w)))
1573 return; 1746 return;
1574 1747
1575 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1748 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1576 1749
1577 { 1750 {
1578 int active = ((W)w)->active; 1751 int active = ((W)w)->active;
1579 1752
1580 if (expect_true (--active < --timercnt)) 1753 if (expect_true (--active < --timercnt))
1581 { 1754 {
1582 timers [active] = timers [timercnt]; 1755 timers [active] = timers [timercnt];
1583 adjustheap ((WT *)timers, timercnt, active); 1756 adjustheap (timers, timercnt, active);
1584 } 1757 }
1585 } 1758 }
1586 1759
1587 ((WT)w)->at -= mn_now; 1760 ((WT)w)->at -= mn_now;
1588 1761
1589 ev_stop (EV_A_ (W)w); 1762 ev_stop (EV_A_ (W)w);
1590} 1763}
1591 1764
1592void 1765void noinline
1593ev_timer_again (EV_P_ ev_timer *w) 1766ev_timer_again (EV_P_ ev_timer *w)
1594{ 1767{
1595 if (ev_is_active (w)) 1768 if (ev_is_active (w))
1596 { 1769 {
1597 if (w->repeat) 1770 if (w->repeat)
1598 { 1771 {
1599 ((WT)w)->at = mn_now + w->repeat; 1772 ((WT)w)->at = mn_now + w->repeat;
1600 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1773 adjustheap (timers, timercnt, ((W)w)->active - 1);
1601 } 1774 }
1602 else 1775 else
1603 ev_timer_stop (EV_A_ w); 1776 ev_timer_stop (EV_A_ w);
1604 } 1777 }
1605 else if (w->repeat) 1778 else if (w->repeat)
1608 ev_timer_start (EV_A_ w); 1781 ev_timer_start (EV_A_ w);
1609 } 1782 }
1610} 1783}
1611 1784
1612#if EV_PERIODIC_ENABLE 1785#if EV_PERIODIC_ENABLE
1613void 1786void noinline
1614ev_periodic_start (EV_P_ ev_periodic *w) 1787ev_periodic_start (EV_P_ ev_periodic *w)
1615{ 1788{
1616 if (expect_false (ev_is_active (w))) 1789 if (expect_false (ev_is_active (w)))
1617 return; 1790 return;
1618 1791
1620 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1793 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1621 else if (w->interval) 1794 else if (w->interval)
1622 { 1795 {
1623 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1796 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1624 /* this formula differs from the one in periodic_reify because we do not always round up */ 1797 /* this formula differs from the one in periodic_reify because we do not always round up */
1625 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1798 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1626 } 1799 }
1800 else
1801 ((WT)w)->at = w->offset;
1627 1802
1628 ev_start (EV_A_ (W)w, ++periodiccnt); 1803 ev_start (EV_A_ (W)w, ++periodiccnt);
1629 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1804 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1630 periodics [periodiccnt - 1] = w; 1805 periodics [periodiccnt - 1] = (WT)w;
1631 upheap ((WT *)periodics, periodiccnt - 1); 1806 upheap (periodics, periodiccnt - 1);
1632 1807
1633 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1808 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1634} 1809}
1635 1810
1636void 1811void noinline
1637ev_periodic_stop (EV_P_ ev_periodic *w) 1812ev_periodic_stop (EV_P_ ev_periodic *w)
1638{ 1813{
1639 ev_clear_pending (EV_A_ (W)w); 1814 clear_pending (EV_A_ (W)w);
1640 if (expect_false (!ev_is_active (w))) 1815 if (expect_false (!ev_is_active (w)))
1641 return; 1816 return;
1642 1817
1643 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1818 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1644 1819
1645 { 1820 {
1646 int active = ((W)w)->active; 1821 int active = ((W)w)->active;
1647 1822
1648 if (expect_true (--active < --periodiccnt)) 1823 if (expect_true (--active < --periodiccnt))
1649 { 1824 {
1650 periodics [active] = periodics [periodiccnt]; 1825 periodics [active] = periodics [periodiccnt];
1651 adjustheap ((WT *)periodics, periodiccnt, active); 1826 adjustheap (periodics, periodiccnt, active);
1652 } 1827 }
1653 } 1828 }
1654 1829
1655 ev_stop (EV_A_ (W)w); 1830 ev_stop (EV_A_ (W)w);
1656} 1831}
1657 1832
1658void 1833void noinline
1659ev_periodic_again (EV_P_ ev_periodic *w) 1834ev_periodic_again (EV_P_ ev_periodic *w)
1660{ 1835{
1661 /* TODO: use adjustheap and recalculation */ 1836 /* TODO: use adjustheap and recalculation */
1662 ev_periodic_stop (EV_A_ w); 1837 ev_periodic_stop (EV_A_ w);
1663 ev_periodic_start (EV_A_ w); 1838 ev_periodic_start (EV_A_ w);
1666 1841
1667#ifndef SA_RESTART 1842#ifndef SA_RESTART
1668# define SA_RESTART 0 1843# define SA_RESTART 0
1669#endif 1844#endif
1670 1845
1671void 1846void noinline
1672ev_signal_start (EV_P_ ev_signal *w) 1847ev_signal_start (EV_P_ ev_signal *w)
1673{ 1848{
1674#if EV_MULTIPLICITY 1849#if EV_MULTIPLICITY
1675 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1850 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1676#endif 1851#endif
1677 if (expect_false (ev_is_active (w))) 1852 if (expect_false (ev_is_active (w)))
1678 return; 1853 return;
1679 1854
1680 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1855 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1681 1856
1857 {
1858#ifndef _WIN32
1859 sigset_t full, prev;
1860 sigfillset (&full);
1861 sigprocmask (SIG_SETMASK, &full, &prev);
1862#endif
1863
1864 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1865
1866#ifndef _WIN32
1867 sigprocmask (SIG_SETMASK, &prev, 0);
1868#endif
1869 }
1870
1682 ev_start (EV_A_ (W)w, 1); 1871 ev_start (EV_A_ (W)w, 1);
1683 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1684 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1872 wlist_add (&signals [w->signum - 1].head, (WL)w);
1685 1873
1686 if (!((WL)w)->next) 1874 if (!((WL)w)->next)
1687 { 1875 {
1688#if _WIN32 1876#if _WIN32
1689 signal (w->signum, sighandler); 1877 signal (w->signum, sighandler);
1695 sigaction (w->signum, &sa, 0); 1883 sigaction (w->signum, &sa, 0);
1696#endif 1884#endif
1697 } 1885 }
1698} 1886}
1699 1887
1700void 1888void noinline
1701ev_signal_stop (EV_P_ ev_signal *w) 1889ev_signal_stop (EV_P_ ev_signal *w)
1702{ 1890{
1703 ev_clear_pending (EV_A_ (W)w); 1891 clear_pending (EV_A_ (W)w);
1704 if (expect_false (!ev_is_active (w))) 1892 if (expect_false (!ev_is_active (w)))
1705 return; 1893 return;
1706 1894
1707 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1895 wlist_del (&signals [w->signum - 1].head, (WL)w);
1708 ev_stop (EV_A_ (W)w); 1896 ev_stop (EV_A_ (W)w);
1709 1897
1710 if (!signals [w->signum - 1].head) 1898 if (!signals [w->signum - 1].head)
1711 signal (w->signum, SIG_DFL); 1899 signal (w->signum, SIG_DFL);
1712} 1900}
1719#endif 1907#endif
1720 if (expect_false (ev_is_active (w))) 1908 if (expect_false (ev_is_active (w)))
1721 return; 1909 return;
1722 1910
1723 ev_start (EV_A_ (W)w, 1); 1911 ev_start (EV_A_ (W)w, 1);
1724 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1912 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1725} 1913}
1726 1914
1727void 1915void
1728ev_child_stop (EV_P_ ev_child *w) 1916ev_child_stop (EV_P_ ev_child *w)
1729{ 1917{
1730 ev_clear_pending (EV_A_ (W)w); 1918 clear_pending (EV_A_ (W)w);
1731 if (expect_false (!ev_is_active (w))) 1919 if (expect_false (!ev_is_active (w)))
1732 return; 1920 return;
1733 1921
1734 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1922 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1735 ev_stop (EV_A_ (W)w); 1923 ev_stop (EV_A_ (W)w);
1736} 1924}
1737 1925
1738#if EV_STAT_ENABLE 1926#if EV_STAT_ENABLE
1739 1927
1971} 2159}
1972 2160
1973void 2161void
1974ev_stat_stop (EV_P_ ev_stat *w) 2162ev_stat_stop (EV_P_ ev_stat *w)
1975{ 2163{
1976 ev_clear_pending (EV_A_ (W)w); 2164 clear_pending (EV_A_ (W)w);
1977 if (expect_false (!ev_is_active (w))) 2165 if (expect_false (!ev_is_active (w)))
1978 return; 2166 return;
1979 2167
1980#if EV_USE_INOTIFY 2168#if EV_USE_INOTIFY
1981 infy_del (EV_A_ w); 2169 infy_del (EV_A_ w);
1984 2172
1985 ev_stop (EV_A_ (W)w); 2173 ev_stop (EV_A_ (W)w);
1986} 2174}
1987#endif 2175#endif
1988 2176
2177#if EV_IDLE_ENABLE
1989void 2178void
1990ev_idle_start (EV_P_ ev_idle *w) 2179ev_idle_start (EV_P_ ev_idle *w)
1991{ 2180{
1992 if (expect_false (ev_is_active (w))) 2181 if (expect_false (ev_is_active (w)))
1993 return; 2182 return;
1994 2183
2184 pri_adjust (EV_A_ (W)w);
2185
2186 {
2187 int active = ++idlecnt [ABSPRI (w)];
2188
2189 ++idleall;
1995 ev_start (EV_A_ (W)w, ++idlecnt); 2190 ev_start (EV_A_ (W)w, active);
2191
1996 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2192 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1997 idles [idlecnt - 1] = w; 2193 idles [ABSPRI (w)][active - 1] = w;
2194 }
1998} 2195}
1999 2196
2000void 2197void
2001ev_idle_stop (EV_P_ ev_idle *w) 2198ev_idle_stop (EV_P_ ev_idle *w)
2002{ 2199{
2003 ev_clear_pending (EV_A_ (W)w); 2200 clear_pending (EV_A_ (W)w);
2004 if (expect_false (!ev_is_active (w))) 2201 if (expect_false (!ev_is_active (w)))
2005 return; 2202 return;
2006 2203
2007 { 2204 {
2008 int active = ((W)w)->active; 2205 int active = ((W)w)->active;
2009 idles [active - 1] = idles [--idlecnt]; 2206
2207 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2010 ((W)idles [active - 1])->active = active; 2208 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2209
2210 ev_stop (EV_A_ (W)w);
2211 --idleall;
2011 } 2212 }
2012
2013 ev_stop (EV_A_ (W)w);
2014} 2213}
2214#endif
2015 2215
2016void 2216void
2017ev_prepare_start (EV_P_ ev_prepare *w) 2217ev_prepare_start (EV_P_ ev_prepare *w)
2018{ 2218{
2019 if (expect_false (ev_is_active (w))) 2219 if (expect_false (ev_is_active (w)))
2025} 2225}
2026 2226
2027void 2227void
2028ev_prepare_stop (EV_P_ ev_prepare *w) 2228ev_prepare_stop (EV_P_ ev_prepare *w)
2029{ 2229{
2030 ev_clear_pending (EV_A_ (W)w); 2230 clear_pending (EV_A_ (W)w);
2031 if (expect_false (!ev_is_active (w))) 2231 if (expect_false (!ev_is_active (w)))
2032 return; 2232 return;
2033 2233
2034 { 2234 {
2035 int active = ((W)w)->active; 2235 int active = ((W)w)->active;
2052} 2252}
2053 2253
2054void 2254void
2055ev_check_stop (EV_P_ ev_check *w) 2255ev_check_stop (EV_P_ ev_check *w)
2056{ 2256{
2057 ev_clear_pending (EV_A_ (W)w); 2257 clear_pending (EV_A_ (W)w);
2058 if (expect_false (!ev_is_active (w))) 2258 if (expect_false (!ev_is_active (w)))
2059 return; 2259 return;
2060 2260
2061 { 2261 {
2062 int active = ((W)w)->active; 2262 int active = ((W)w)->active;
2069 2269
2070#if EV_EMBED_ENABLE 2270#if EV_EMBED_ENABLE
2071void noinline 2271void noinline
2072ev_embed_sweep (EV_P_ ev_embed *w) 2272ev_embed_sweep (EV_P_ ev_embed *w)
2073{ 2273{
2074 ev_loop (w->loop, EVLOOP_NONBLOCK); 2274 ev_loop (w->other, EVLOOP_NONBLOCK);
2075} 2275}
2076 2276
2077static void 2277static void
2078embed_cb (EV_P_ ev_io *io, int revents) 2278embed_io_cb (EV_P_ ev_io *io, int revents)
2079{ 2279{
2080 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2280 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2081 2281
2082 if (ev_cb (w)) 2282 if (ev_cb (w))
2083 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2283 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2084 else 2284 else
2085 ev_embed_sweep (loop, w); 2285 ev_loop (w->other, EVLOOP_NONBLOCK);
2086} 2286}
2287
2288static void
2289embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2290{
2291 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2292
2293 {
2294 struct ev_loop *loop = w->other;
2295
2296 while (fdchangecnt)
2297 {
2298 fd_reify (EV_A);
2299 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2300 }
2301 }
2302}
2303
2304#if 0
2305static void
2306embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2307{
2308 ev_idle_stop (EV_A_ idle);
2309}
2310#endif
2087 2311
2088void 2312void
2089ev_embed_start (EV_P_ ev_embed *w) 2313ev_embed_start (EV_P_ ev_embed *w)
2090{ 2314{
2091 if (expect_false (ev_is_active (w))) 2315 if (expect_false (ev_is_active (w)))
2092 return; 2316 return;
2093 2317
2094 { 2318 {
2095 struct ev_loop *loop = w->loop; 2319 struct ev_loop *loop = w->other;
2096 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2320 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2097 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2321 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2098 } 2322 }
2099 2323
2100 ev_set_priority (&w->io, ev_priority (w)); 2324 ev_set_priority (&w->io, ev_priority (w));
2101 ev_io_start (EV_A_ &w->io); 2325 ev_io_start (EV_A_ &w->io);
2102 2326
2327 ev_prepare_init (&w->prepare, embed_prepare_cb);
2328 ev_set_priority (&w->prepare, EV_MINPRI);
2329 ev_prepare_start (EV_A_ &w->prepare);
2330
2331 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2332
2103 ev_start (EV_A_ (W)w, 1); 2333 ev_start (EV_A_ (W)w, 1);
2104} 2334}
2105 2335
2106void 2336void
2107ev_embed_stop (EV_P_ ev_embed *w) 2337ev_embed_stop (EV_P_ ev_embed *w)
2108{ 2338{
2109 ev_clear_pending (EV_A_ (W)w); 2339 clear_pending (EV_A_ (W)w);
2110 if (expect_false (!ev_is_active (w))) 2340 if (expect_false (!ev_is_active (w)))
2111 return; 2341 return;
2112 2342
2113 ev_io_stop (EV_A_ &w->io); 2343 ev_io_stop (EV_A_ &w->io);
2344 ev_prepare_stop (EV_A_ &w->prepare);
2114 2345
2115 ev_stop (EV_A_ (W)w); 2346 ev_stop (EV_A_ (W)w);
2116} 2347}
2117#endif 2348#endif
2118 2349
2129} 2360}
2130 2361
2131void 2362void
2132ev_fork_stop (EV_P_ ev_fork *w) 2363ev_fork_stop (EV_P_ ev_fork *w)
2133{ 2364{
2134 ev_clear_pending (EV_A_ (W)w); 2365 clear_pending (EV_A_ (W)w);
2135 if (expect_false (!ev_is_active (w))) 2366 if (expect_false (!ev_is_active (w)))
2136 return; 2367 return;
2137 2368
2138 { 2369 {
2139 int active = ((W)w)->active; 2370 int active = ((W)w)->active;
2207 ev_timer_set (&once->to, timeout, 0.); 2438 ev_timer_set (&once->to, timeout, 0.);
2208 ev_timer_start (EV_A_ &once->to); 2439 ev_timer_start (EV_A_ &once->to);
2209 } 2440 }
2210} 2441}
2211 2442
2443#if EV_MULTIPLICITY
2444 #include "ev_wrap.h"
2445#endif
2446
2212#ifdef __cplusplus 2447#ifdef __cplusplus
2213} 2448}
2214#endif 2449#endif
2215 2450

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines