ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.162 by root, Mon Dec 3 13:41:24 2007 UTC vs.
Revision 1.229 by root, Fri May 2 08:08:45 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 241
197#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
200#endif 245#endif
202#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
205#endif 250#endif
206 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
207#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 268# include <winsock.h>
209#endif 269#endif
210 270
211#if !EV_STAT_ENABLE 271#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
213#endif 276# endif
214 277int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 278# ifdef __cplusplus
216# include <sys/inotify.h> 279}
280# endif
217#endif 281#endif
218 282
219/**/ 283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 294
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 298
225#if __GNUC__ >= 3 299#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 301# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 302#else
236# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
240#endif 308#endif
241 309
242#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
244 319
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 322
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 323#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 324#define EMPTY2(a,b) /* used to suppress some warnings */
250 325
251typedef ev_watcher *W; 326typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
254 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
333#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif
256 338
257#ifdef _WIN32 339#ifdef _WIN32
258# include "ev_win32.c" 340# include "ev_win32.c"
259#endif 341#endif
260 342
281 perror (msg); 363 perror (msg);
282 abort (); 364 abort ();
283 } 365 }
284} 366}
285 367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
286static void *(*alloc)(void *ptr, long size); 383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 384
288void 385void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 386ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 387{
291 alloc = cb; 388 alloc = cb;
292} 389}
293 390
294inline_speed void * 391inline_speed void *
295ev_realloc (void *ptr, long size) 392ev_realloc (void *ptr, long size)
296{ 393{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 394 ptr = alloc (ptr, size);
298 395
299 if (!ptr && size) 396 if (!ptr && size)
300 { 397 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 399 abort ();
396{ 493{
397 return ev_rt_now; 494 return ev_rt_now;
398} 495}
399#endif 496#endif
400 497
401#define array_roundsize(type,n) (((n) | 4) & ~3) 498void
499ev_sleep (ev_tstamp delay)
500{
501 if (delay > 0.)
502 {
503#if EV_USE_NANOSLEEP
504 struct timespec ts;
505
506 ts.tv_sec = (time_t)delay;
507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
508
509 nanosleep (&ts, 0);
510#elif defined(_WIN32)
511 Sleep ((unsigned long)(delay * 1e3));
512#else
513 struct timeval tv;
514
515 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517
518 select (0, 0, 0, 0, &tv);
519#endif
520 }
521}
522
523/*****************************************************************************/
524
525int inline_size
526array_nextsize (int elem, int cur, int cnt)
527{
528 int ncur = cur + 1;
529
530 do
531 ncur <<= 1;
532 while (cnt > ncur);
533
534 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
535 if (elem * ncur > 4096)
536 {
537 ncur *= elem;
538 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
539 ncur = ncur - sizeof (void *) * 4;
540 ncur /= elem;
541 }
542
543 return ncur;
544}
545
546static noinline void *
547array_realloc (int elem, void *base, int *cur, int cnt)
548{
549 *cur = array_nextsize (elem, *cur, cnt);
550 return ev_realloc (base, elem * *cur);
551}
402 552
403#define array_needsize(type,base,cur,cnt,init) \ 553#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 554 if (expect_false ((cnt) > (cur))) \
405 { \ 555 { \
406 int newcnt = cur; \ 556 int ocur_ = (cur); \
407 do \ 557 (base) = (type *)array_realloc \
408 { \ 558 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 559 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 560 }
417 561
562#if 0
418#define array_slim(type,stem) \ 563#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 564 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 565 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 566 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 567 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 568 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 569 }
570#endif
425 571
426#define array_free(stem, idx) \ 572#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 573 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 574
429/*****************************************************************************/ 575/*****************************************************************************/
430 576
431void noinline 577void noinline
432ev_feed_event (EV_P_ void *w, int revents) 578ev_feed_event (EV_P_ void *w, int revents)
433{ 579{
434 W w_ = (W)w; 580 W w_ = (W)w;
581 int pri = ABSPRI (w_);
435 582
436 if (expect_false (w_->pending)) 583 if (expect_false (w_->pending))
584 pendings [pri][w_->pending - 1].events |= revents;
585 else
437 { 586 {
587 w_->pending = ++pendingcnt [pri];
588 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
589 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 590 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 591 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 592}
447 593
448void inline_size 594void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 595queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 596{
451 int i; 597 int i;
452 598
453 for (i = 0; i < eventcnt; ++i) 599 for (i = 0; i < eventcnt; ++i)
485} 631}
486 632
487void 633void
488ev_feed_fd_event (EV_P_ int fd, int revents) 634ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 635{
636 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 637 fd_event (EV_A_ fd, revents);
491} 638}
492 639
493void inline_size 640void inline_size
494fd_reify (EV_P) 641fd_reify (EV_P)
495{ 642{
499 { 646 {
500 int fd = fdchanges [i]; 647 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 648 ANFD *anfd = anfds + fd;
502 ev_io *w; 649 ev_io *w;
503 650
504 int events = 0; 651 unsigned char events = 0;
505 652
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 654 events |= (unsigned char)w->events;
508 655
509#if EV_SELECT_IS_WINSOCKET 656#if EV_SELECT_IS_WINSOCKET
510 if (events) 657 if (events)
511 { 658 {
512 unsigned long argp; 659 unsigned long argp;
660 #ifdef EV_FD_TO_WIN32_HANDLE
661 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
662 #else
513 anfd->handle = _get_osfhandle (fd); 663 anfd->handle = _get_osfhandle (fd);
664 #endif
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 665 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
515 } 666 }
516#endif 667#endif
517 668
669 {
670 unsigned char o_events = anfd->events;
671 unsigned char o_reify = anfd->reify;
672
518 anfd->reify = 0; 673 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 674 anfd->events = events;
675
676 if (o_events != events || o_reify & EV_IOFDSET)
677 backend_modify (EV_A_ fd, o_events, events);
678 }
522 } 679 }
523 680
524 fdchangecnt = 0; 681 fdchangecnt = 0;
525} 682}
526 683
527void inline_size 684void inline_size
528fd_change (EV_P_ int fd) 685fd_change (EV_P_ int fd, int flags)
529{ 686{
530 if (expect_false (anfds [fd].reify)) 687 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 688 anfds [fd].reify |= flags;
534 689
690 if (expect_true (!reify))
691 {
535 ++fdchangecnt; 692 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 693 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 694 fdchanges [fdchangecnt - 1] = fd;
695 }
538} 696}
539 697
540void inline_speed 698void inline_speed
541fd_kill (EV_P_ int fd) 699fd_kill (EV_P_ int fd)
542{ 700{
593 751
594 for (fd = 0; fd < anfdmax; ++fd) 752 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 753 if (anfds [fd].events)
596 { 754 {
597 anfds [fd].events = 0; 755 anfds [fd].events = 0;
598 fd_change (EV_A_ fd); 756 fd_change (EV_A_ fd, EV_IOFDSET | 1);
599 } 757 }
600} 758}
601 759
602/*****************************************************************************/ 760/*****************************************************************************/
603 761
762/* towards the root */
604void inline_speed 763void inline_speed
605upheap (WT *heap, int k) 764upheap (WT *heap, int k)
606{ 765{
607 WT w = heap [k]; 766 WT w = heap [k];
608 767
609 while (k && heap [k >> 1]->at > w->at) 768 for (;;)
610 { 769 {
770 int p = k >> 1;
771
772 /* maybe we could use a dummy element at heap [0]? */
773 if (!p || heap [p]->at <= w->at)
774 break;
775
611 heap [k] = heap [k >> 1]; 776 heap [k] = heap [p];
612 ((W)heap [k])->active = k + 1; 777 ((W)heap [k])->active = k;
613 k >>= 1; 778 k = p;
614 } 779 }
615 780
616 heap [k] = w; 781 heap [k] = w;
617 ((W)heap [k])->active = k + 1; 782 ((W)heap [k])->active = k;
618
619} 783}
620 784
785/* away from the root */
621void inline_speed 786void inline_speed
622downheap (WT *heap, int N, int k) 787downheap (WT *heap, int N, int k)
623{ 788{
624 WT w = heap [k]; 789 WT w = heap [k];
625 790
626 while (k < (N >> 1)) 791 for (;;)
627 { 792 {
628 int j = k << 1; 793 int c = k << 1;
629 794
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 795 if (c > N)
631 ++j;
632
633 if (w->at <= heap [j]->at)
634 break; 796 break;
635 797
798 c += c < N && heap [c]->at > heap [c + 1]->at
799 ? 1 : 0;
800
801 if (w->at <= heap [c]->at)
802 break;
803
636 heap [k] = heap [j]; 804 heap [k] = heap [c];
637 ((W)heap [k])->active = k + 1; 805 ((W)heap [k])->active = k;
806
638 k = j; 807 k = c;
639 } 808 }
640 809
641 heap [k] = w; 810 heap [k] = w;
642 ((W)heap [k])->active = k + 1; 811 ((W)heap [k])->active = k;
643} 812}
644 813
645void inline_size 814void inline_size
646adjustheap (WT *heap, int N, int k) 815adjustheap (WT *heap, int N, int k)
647{ 816{
652/*****************************************************************************/ 821/*****************************************************************************/
653 822
654typedef struct 823typedef struct
655{ 824{
656 WL head; 825 WL head;
657 sig_atomic_t volatile gotsig; 826 EV_ATOMIC_T gotsig;
658} ANSIG; 827} ANSIG;
659 828
660static ANSIG *signals; 829static ANSIG *signals;
661static int signalmax; 830static int signalmax;
662 831
663static int sigpipe [2]; 832static EV_ATOMIC_T gotsig;
664static sig_atomic_t volatile gotsig;
665static ev_io sigev;
666 833
667void inline_size 834void inline_size
668signals_init (ANSIG *base, int count) 835signals_init (ANSIG *base, int count)
669{ 836{
670 while (count--) 837 while (count--)
674 841
675 ++base; 842 ++base;
676 } 843 }
677} 844}
678 845
679static void 846/*****************************************************************************/
680sighandler (int signum)
681{
682#if _WIN32
683 signal (signum, sighandler);
684#endif
685 847
686 signals [signum - 1].gotsig = 1;
687
688 if (!gotsig)
689 {
690 int old_errno = errno;
691 gotsig = 1;
692 write (sigpipe [1], &signum, 1);
693 errno = old_errno;
694 }
695}
696
697void noinline
698ev_feed_signal_event (EV_P_ int signum)
699{
700 WL w;
701
702#if EV_MULTIPLICITY
703 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
704#endif
705
706 --signum;
707
708 if (signum < 0 || signum >= signalmax)
709 return;
710
711 signals [signum].gotsig = 0;
712
713 for (w = signals [signum].head; w; w = w->next)
714 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
715}
716
717static void
718sigcb (EV_P_ ev_io *iow, int revents)
719{
720 int signum;
721
722 read (sigpipe [0], &revents, 1);
723 gotsig = 0;
724
725 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1);
728}
729
730void inline_size 848void inline_speed
731fd_intern (int fd) 849fd_intern (int fd)
732{ 850{
733#ifdef _WIN32 851#ifdef _WIN32
734 int arg = 1; 852 int arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 853 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
738 fcntl (fd, F_SETFL, O_NONBLOCK); 856 fcntl (fd, F_SETFL, O_NONBLOCK);
739#endif 857#endif
740} 858}
741 859
742static void noinline 860static void noinline
743siginit (EV_P) 861evpipe_init (EV_P)
744{ 862{
863 if (!ev_is_active (&pipeev))
864 {
865#if EV_USE_EVENTFD
866 if ((evfd = eventfd (0, 0)) >= 0)
867 {
868 evpipe [0] = -1;
869 fd_intern (evfd);
870 ev_io_set (&pipeev, evfd, EV_READ);
871 }
872 else
873#endif
874 {
875 while (pipe (evpipe))
876 syserr ("(libev) error creating signal/async pipe");
877
745 fd_intern (sigpipe [0]); 878 fd_intern (evpipe [0]);
746 fd_intern (sigpipe [1]); 879 fd_intern (evpipe [1]);
880 ev_io_set (&pipeev, evpipe [0], EV_READ);
881 }
747 882
748 ev_io_set (&sigev, sigpipe [0], EV_READ);
749 ev_io_start (EV_A_ &sigev); 883 ev_io_start (EV_A_ &pipeev);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 884 ev_unref (EV_A); /* watcher should not keep loop alive */
885 }
886}
887
888void inline_size
889evpipe_write (EV_P_ EV_ATOMIC_T *flag)
890{
891 if (!*flag)
892 {
893 int old_errno = errno; /* save errno because write might clobber it */
894
895 *flag = 1;
896
897#if EV_USE_EVENTFD
898 if (evfd >= 0)
899 {
900 uint64_t counter = 1;
901 write (evfd, &counter, sizeof (uint64_t));
902 }
903 else
904#endif
905 write (evpipe [1], &old_errno, 1);
906
907 errno = old_errno;
908 }
909}
910
911static void
912pipecb (EV_P_ ev_io *iow, int revents)
913{
914#if EV_USE_EVENTFD
915 if (evfd >= 0)
916 {
917 uint64_t counter = 1;
918 read (evfd, &counter, sizeof (uint64_t));
919 }
920 else
921#endif
922 {
923 char dummy;
924 read (evpipe [0], &dummy, 1);
925 }
926
927 if (gotsig && ev_is_default_loop (EV_A))
928 {
929 int signum;
930 gotsig = 0;
931
932 for (signum = signalmax; signum--; )
933 if (signals [signum].gotsig)
934 ev_feed_signal_event (EV_A_ signum + 1);
935 }
936
937#if EV_ASYNC_ENABLE
938 if (gotasync)
939 {
940 int i;
941 gotasync = 0;
942
943 for (i = asynccnt; i--; )
944 if (asyncs [i]->sent)
945 {
946 asyncs [i]->sent = 0;
947 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
948 }
949 }
950#endif
751} 951}
752 952
753/*****************************************************************************/ 953/*****************************************************************************/
754 954
955static void
956ev_sighandler (int signum)
957{
958#if EV_MULTIPLICITY
959 struct ev_loop *loop = &default_loop_struct;
960#endif
961
962#if _WIN32
963 signal (signum, ev_sighandler);
964#endif
965
966 signals [signum - 1].gotsig = 1;
967 evpipe_write (EV_A_ &gotsig);
968}
969
970void noinline
971ev_feed_signal_event (EV_P_ int signum)
972{
973 WL w;
974
975#if EV_MULTIPLICITY
976 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
977#endif
978
979 --signum;
980
981 if (signum < 0 || signum >= signalmax)
982 return;
983
984 signals [signum].gotsig = 0;
985
986 for (w = signals [signum].head; w; w = w->next)
987 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
988}
989
990/*****************************************************************************/
991
755static ev_child *childs [EV_PID_HASHSIZE]; 992static WL childs [EV_PID_HASHSIZE];
756 993
757#ifndef _WIN32 994#ifndef _WIN32
758 995
759static ev_signal childev; 996static ev_signal childev;
760 997
998#ifndef WIFCONTINUED
999# define WIFCONTINUED(status) 0
1000#endif
1001
761void inline_speed 1002void inline_speed
762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1003child_reap (EV_P_ int chain, int pid, int status)
763{ 1004{
764 ev_child *w; 1005 ev_child *w;
1006 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
765 1007
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1008 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1009 {
767 if (w->pid == pid || !w->pid) 1010 if ((w->pid == pid || !w->pid)
1011 && (!traced || (w->flags & 1)))
768 { 1012 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1013 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
770 w->rpid = pid; 1014 w->rpid = pid;
771 w->rstatus = status; 1015 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1016 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 1017 }
1018 }
774} 1019}
775 1020
776#ifndef WCONTINUED 1021#ifndef WCONTINUED
777# define WCONTINUED 0 1022# define WCONTINUED 0
778#endif 1023#endif
787 if (!WCONTINUED 1032 if (!WCONTINUED
788 || errno != EINVAL 1033 || errno != EINVAL
789 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1034 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
790 return; 1035 return;
791 1036
792 /* make sure we are called again until all childs have been reaped */ 1037 /* make sure we are called again until all children have been reaped */
793 /* we need to do it this way so that the callback gets called before we continue */ 1038 /* we need to do it this way so that the callback gets called before we continue */
794 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1039 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
795 1040
796 child_reap (EV_A_ sw, pid, pid, status); 1041 child_reap (EV_A_ pid, pid, status);
797 if (EV_PID_HASHSIZE > 1) 1042 if (EV_PID_HASHSIZE > 1)
798 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1043 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
799} 1044}
800 1045
801#endif 1046#endif
802 1047
803/*****************************************************************************/ 1048/*****************************************************************************/
875} 1120}
876 1121
877unsigned int 1122unsigned int
878ev_embeddable_backends (void) 1123ev_embeddable_backends (void)
879{ 1124{
880 return EVBACKEND_EPOLL 1125 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 1126
882 | EVBACKEND_PORT; 1127 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1128 /* please fix it and tell me how to detect the fix */
1129 flags &= ~EVBACKEND_EPOLL;
1130
1131 return flags;
883} 1132}
884 1133
885unsigned int 1134unsigned int
886ev_backend (EV_P) 1135ev_backend (EV_P)
887{ 1136{
890 1139
891unsigned int 1140unsigned int
892ev_loop_count (EV_P) 1141ev_loop_count (EV_P)
893{ 1142{
894 return loop_count; 1143 return loop_count;
1144}
1145
1146void
1147ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1148{
1149 io_blocktime = interval;
1150}
1151
1152void
1153ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1154{
1155 timeout_blocktime = interval;
895} 1156}
896 1157
897static void noinline 1158static void noinline
898loop_init (EV_P_ unsigned int flags) 1159loop_init (EV_P_ unsigned int flags)
899{ 1160{
905 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1166 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
906 have_monotonic = 1; 1167 have_monotonic = 1;
907 } 1168 }
908#endif 1169#endif
909 1170
910 ev_rt_now = ev_time (); 1171 ev_rt_now = ev_time ();
911 mn_now = get_clock (); 1172 mn_now = get_clock ();
912 now_floor = mn_now; 1173 now_floor = mn_now;
913 rtmn_diff = ev_rt_now - mn_now; 1174 rtmn_diff = ev_rt_now - mn_now;
1175
1176 io_blocktime = 0.;
1177 timeout_blocktime = 0.;
1178 backend = 0;
1179 backend_fd = -1;
1180 gotasync = 0;
1181#if EV_USE_INOTIFY
1182 fs_fd = -2;
1183#endif
914 1184
915 /* pid check not overridable via env */ 1185 /* pid check not overridable via env */
916#ifndef _WIN32 1186#ifndef _WIN32
917 if (flags & EVFLAG_FORKCHECK) 1187 if (flags & EVFLAG_FORKCHECK)
918 curpid = getpid (); 1188 curpid = getpid ();
921 if (!(flags & EVFLAG_NOENV) 1191 if (!(flags & EVFLAG_NOENV)
922 && !enable_secure () 1192 && !enable_secure ()
923 && getenv ("LIBEV_FLAGS")) 1193 && getenv ("LIBEV_FLAGS"))
924 flags = atoi (getenv ("LIBEV_FLAGS")); 1194 flags = atoi (getenv ("LIBEV_FLAGS"));
925 1195
926 if (!(flags & 0x0000ffffUL)) 1196 if (!(flags & 0x0000ffffU))
927 flags |= ev_recommended_backends (); 1197 flags |= ev_recommended_backends ();
928
929 backend = 0;
930 backend_fd = -1;
931#if EV_USE_INOTIFY
932 fs_fd = -2;
933#endif
934 1198
935#if EV_USE_PORT 1199#if EV_USE_PORT
936 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1200 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
937#endif 1201#endif
938#if EV_USE_KQUEUE 1202#if EV_USE_KQUEUE
946#endif 1210#endif
947#if EV_USE_SELECT 1211#if EV_USE_SELECT
948 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1212 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
949#endif 1213#endif
950 1214
951 ev_init (&sigev, sigcb); 1215 ev_init (&pipeev, pipecb);
952 ev_set_priority (&sigev, EV_MAXPRI); 1216 ev_set_priority (&pipeev, EV_MAXPRI);
953 } 1217 }
954} 1218}
955 1219
956static void noinline 1220static void noinline
957loop_destroy (EV_P) 1221loop_destroy (EV_P)
958{ 1222{
959 int i; 1223 int i;
1224
1225 if (ev_is_active (&pipeev))
1226 {
1227 ev_ref (EV_A); /* signal watcher */
1228 ev_io_stop (EV_A_ &pipeev);
1229
1230#if EV_USE_EVENTFD
1231 if (evfd >= 0)
1232 close (evfd);
1233#endif
1234
1235 if (evpipe [0] >= 0)
1236 {
1237 close (evpipe [0]);
1238 close (evpipe [1]);
1239 }
1240 }
960 1241
961#if EV_USE_INOTIFY 1242#if EV_USE_INOTIFY
962 if (fs_fd >= 0) 1243 if (fs_fd >= 0)
963 close (fs_fd); 1244 close (fs_fd);
964#endif 1245#endif
981#if EV_USE_SELECT 1262#if EV_USE_SELECT
982 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1263 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
983#endif 1264#endif
984 1265
985 for (i = NUMPRI; i--; ) 1266 for (i = NUMPRI; i--; )
1267 {
986 array_free (pending, [i]); 1268 array_free (pending, [i]);
1269#if EV_IDLE_ENABLE
1270 array_free (idle, [i]);
1271#endif
1272 }
1273
1274 ev_free (anfds); anfdmax = 0;
987 1275
988 /* have to use the microsoft-never-gets-it-right macro */ 1276 /* have to use the microsoft-never-gets-it-right macro */
989 array_free (fdchange, EMPTY0); 1277 array_free (fdchange, EMPTY);
990 array_free (timer, EMPTY0); 1278 array_free (timer, EMPTY);
991#if EV_PERIODIC_ENABLE 1279#if EV_PERIODIC_ENABLE
992 array_free (periodic, EMPTY0); 1280 array_free (periodic, EMPTY);
993#endif 1281#endif
1282#if EV_FORK_ENABLE
994 array_free (idle, EMPTY0); 1283 array_free (fork, EMPTY);
1284#endif
995 array_free (prepare, EMPTY0); 1285 array_free (prepare, EMPTY);
996 array_free (check, EMPTY0); 1286 array_free (check, EMPTY);
1287#if EV_ASYNC_ENABLE
1288 array_free (async, EMPTY);
1289#endif
997 1290
998 backend = 0; 1291 backend = 0;
999} 1292}
1000 1293
1294#if EV_USE_INOTIFY
1001void inline_size infy_fork (EV_P); 1295void inline_size infy_fork (EV_P);
1296#endif
1002 1297
1003void inline_size 1298void inline_size
1004loop_fork (EV_P) 1299loop_fork (EV_P)
1005{ 1300{
1006#if EV_USE_PORT 1301#if EV_USE_PORT
1014#endif 1309#endif
1015#if EV_USE_INOTIFY 1310#if EV_USE_INOTIFY
1016 infy_fork (EV_A); 1311 infy_fork (EV_A);
1017#endif 1312#endif
1018 1313
1019 if (ev_is_active (&sigev)) 1314 if (ev_is_active (&pipeev))
1020 { 1315 {
1021 /* default loop */ 1316 /* this "locks" the handlers against writing to the pipe */
1317 /* while we modify the fd vars */
1318 gotsig = 1;
1319#if EV_ASYNC_ENABLE
1320 gotasync = 1;
1321#endif
1022 1322
1023 ev_ref (EV_A); 1323 ev_ref (EV_A);
1024 ev_io_stop (EV_A_ &sigev); 1324 ev_io_stop (EV_A_ &pipeev);
1325
1326#if EV_USE_EVENTFD
1327 if (evfd >= 0)
1328 close (evfd);
1329#endif
1330
1331 if (evpipe [0] >= 0)
1332 {
1025 close (sigpipe [0]); 1333 close (evpipe [0]);
1026 close (sigpipe [1]); 1334 close (evpipe [1]);
1335 }
1027 1336
1028 while (pipe (sigpipe))
1029 syserr ("(libev) error creating pipe");
1030
1031 siginit (EV_A); 1337 evpipe_init (EV_A);
1338 /* now iterate over everything, in case we missed something */
1339 pipecb (EV_A_ &pipeev, EV_READ);
1032 } 1340 }
1033 1341
1034 postfork = 0; 1342 postfork = 0;
1035} 1343}
1036 1344
1058} 1366}
1059 1367
1060void 1368void
1061ev_loop_fork (EV_P) 1369ev_loop_fork (EV_P)
1062{ 1370{
1063 postfork = 1; 1371 postfork = 1; /* must be in line with ev_default_fork */
1064} 1372}
1065 1373
1066#endif 1374#endif
1067 1375
1068#if EV_MULTIPLICITY 1376#if EV_MULTIPLICITY
1071#else 1379#else
1072int 1380int
1073ev_default_loop (unsigned int flags) 1381ev_default_loop (unsigned int flags)
1074#endif 1382#endif
1075{ 1383{
1076 if (sigpipe [0] == sigpipe [1])
1077 if (pipe (sigpipe))
1078 return 0;
1079
1080 if (!ev_default_loop_ptr) 1384 if (!ev_default_loop_ptr)
1081 { 1385 {
1082#if EV_MULTIPLICITY 1386#if EV_MULTIPLICITY
1083 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1387 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1084#else 1388#else
1087 1391
1088 loop_init (EV_A_ flags); 1392 loop_init (EV_A_ flags);
1089 1393
1090 if (ev_backend (EV_A)) 1394 if (ev_backend (EV_A))
1091 { 1395 {
1092 siginit (EV_A);
1093
1094#ifndef _WIN32 1396#ifndef _WIN32
1095 ev_signal_init (&childev, childcb, SIGCHLD); 1397 ev_signal_init (&childev, childcb, SIGCHLD);
1096 ev_set_priority (&childev, EV_MAXPRI); 1398 ev_set_priority (&childev, EV_MAXPRI);
1097 ev_signal_start (EV_A_ &childev); 1399 ev_signal_start (EV_A_ &childev);
1098 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1400 ev_unref (EV_A); /* child watcher should not keep loop alive */
1115#ifndef _WIN32 1417#ifndef _WIN32
1116 ev_ref (EV_A); /* child watcher */ 1418 ev_ref (EV_A); /* child watcher */
1117 ev_signal_stop (EV_A_ &childev); 1419 ev_signal_stop (EV_A_ &childev);
1118#endif 1420#endif
1119 1421
1120 ev_ref (EV_A); /* signal watcher */
1121 ev_io_stop (EV_A_ &sigev);
1122
1123 close (sigpipe [0]); sigpipe [0] = 0;
1124 close (sigpipe [1]); sigpipe [1] = 0;
1125
1126 loop_destroy (EV_A); 1422 loop_destroy (EV_A);
1127} 1423}
1128 1424
1129void 1425void
1130ev_default_fork (void) 1426ev_default_fork (void)
1132#if EV_MULTIPLICITY 1428#if EV_MULTIPLICITY
1133 struct ev_loop *loop = ev_default_loop_ptr; 1429 struct ev_loop *loop = ev_default_loop_ptr;
1134#endif 1430#endif
1135 1431
1136 if (backend) 1432 if (backend)
1137 postfork = 1; 1433 postfork = 1; /* must be in line with ev_loop_fork */
1138} 1434}
1139 1435
1140/*****************************************************************************/ 1436/*****************************************************************************/
1141 1437
1142int inline_size 1438void
1143any_pending (EV_P) 1439ev_invoke (EV_P_ void *w, int revents)
1144{ 1440{
1145 int pri; 1441 EV_CB_INVOKE ((W)w, revents);
1146
1147 for (pri = NUMPRI; pri--; )
1148 if (pendingcnt [pri])
1149 return 1;
1150
1151 return 0;
1152} 1442}
1153 1443
1154void inline_speed 1444void inline_speed
1155call_pending (EV_P) 1445call_pending (EV_P)
1156{ 1446{
1172} 1462}
1173 1463
1174void inline_size 1464void inline_size
1175timers_reify (EV_P) 1465timers_reify (EV_P)
1176{ 1466{
1177 while (timercnt && ((WT)timers [0])->at <= mn_now) 1467 while (timercnt && ev_at (timers [1]) <= mn_now)
1178 { 1468 {
1179 ev_timer *w = timers [0]; 1469 ev_timer *w = (ev_timer *)timers [1];
1180 1470
1181 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1471 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1182 1472
1183 /* first reschedule or stop timer */ 1473 /* first reschedule or stop timer */
1184 if (w->repeat) 1474 if (w->repeat)
1185 { 1475 {
1186 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1476 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1187 1477
1188 ((WT)w)->at += w->repeat; 1478 ev_at (w) += w->repeat;
1189 if (((WT)w)->at < mn_now) 1479 if (ev_at (w) < mn_now)
1190 ((WT)w)->at = mn_now; 1480 ev_at (w) = mn_now;
1191 1481
1192 downheap ((WT *)timers, timercnt, 0); 1482 downheap (timers, timercnt, 1);
1193 } 1483 }
1194 else 1484 else
1195 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1485 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1196 1486
1197 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1487 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1200 1490
1201#if EV_PERIODIC_ENABLE 1491#if EV_PERIODIC_ENABLE
1202void inline_size 1492void inline_size
1203periodics_reify (EV_P) 1493periodics_reify (EV_P)
1204{ 1494{
1205 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1495 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1206 { 1496 {
1207 ev_periodic *w = periodics [0]; 1497 ev_periodic *w = (ev_periodic *)periodics [1];
1208 1498
1209 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1499 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1210 1500
1211 /* first reschedule or stop timer */ 1501 /* first reschedule or stop timer */
1212 if (w->reschedule_cb) 1502 if (w->reschedule_cb)
1213 { 1503 {
1214 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1504 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1215 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1505 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1216 downheap ((WT *)periodics, periodiccnt, 0); 1506 downheap (periodics, periodiccnt, 1);
1217 } 1507 }
1218 else if (w->interval) 1508 else if (w->interval)
1219 { 1509 {
1220 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1510 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1511 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1221 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1512 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1222 downheap ((WT *)periodics, periodiccnt, 0); 1513 downheap (periodics, periodiccnt, 1);
1223 } 1514 }
1224 else 1515 else
1225 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1516 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1226 1517
1227 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1518 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1234 int i; 1525 int i;
1235 1526
1236 /* adjust periodics after time jump */ 1527 /* adjust periodics after time jump */
1237 for (i = 0; i < periodiccnt; ++i) 1528 for (i = 0; i < periodiccnt; ++i)
1238 { 1529 {
1239 ev_periodic *w = periodics [i]; 1530 ev_periodic *w = (ev_periodic *)periodics [i];
1240 1531
1241 if (w->reschedule_cb) 1532 if (w->reschedule_cb)
1242 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1533 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1243 else if (w->interval) 1534 else if (w->interval)
1244 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1535 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1245 } 1536 }
1246 1537
1247 /* now rebuild the heap */ 1538 /* now rebuild the heap */
1248 for (i = periodiccnt >> 1; i--; ) 1539 for (i = periodiccnt >> 1; i--; )
1249 downheap ((WT *)periodics, periodiccnt, i); 1540 downheap (periodics, periodiccnt, i);
1250} 1541}
1251#endif 1542#endif
1252 1543
1544#if EV_IDLE_ENABLE
1253int inline_size 1545void inline_size
1254time_update_monotonic (EV_P) 1546idle_reify (EV_P)
1255{ 1547{
1548 if (expect_false (idleall))
1549 {
1550 int pri;
1551
1552 for (pri = NUMPRI; pri--; )
1553 {
1554 if (pendingcnt [pri])
1555 break;
1556
1557 if (idlecnt [pri])
1558 {
1559 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1560 break;
1561 }
1562 }
1563 }
1564}
1565#endif
1566
1567void inline_speed
1568time_update (EV_P_ ev_tstamp max_block)
1569{
1570 int i;
1571
1572#if EV_USE_MONOTONIC
1573 if (expect_true (have_monotonic))
1574 {
1575 ev_tstamp odiff = rtmn_diff;
1576
1256 mn_now = get_clock (); 1577 mn_now = get_clock ();
1257 1578
1579 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1580 /* interpolate in the meantime */
1258 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1581 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1259 { 1582 {
1260 ev_rt_now = rtmn_diff + mn_now; 1583 ev_rt_now = rtmn_diff + mn_now;
1261 return 0; 1584 return;
1262 } 1585 }
1263 else 1586
1264 {
1265 now_floor = mn_now; 1587 now_floor = mn_now;
1266 ev_rt_now = ev_time (); 1588 ev_rt_now = ev_time ();
1267 return 1;
1268 }
1269}
1270 1589
1271void inline_size 1590 /* loop a few times, before making important decisions.
1272time_update (EV_P) 1591 * on the choice of "4": one iteration isn't enough,
1273{ 1592 * in case we get preempted during the calls to
1274 int i; 1593 * ev_time and get_clock. a second call is almost guaranteed
1275 1594 * to succeed in that case, though. and looping a few more times
1276#if EV_USE_MONOTONIC 1595 * doesn't hurt either as we only do this on time-jumps or
1277 if (expect_true (have_monotonic)) 1596 * in the unlikely event of having been preempted here.
1278 { 1597 */
1279 if (time_update_monotonic (EV_A)) 1598 for (i = 4; --i; )
1280 { 1599 {
1281 ev_tstamp odiff = rtmn_diff;
1282
1283 /* loop a few times, before making important decisions.
1284 * on the choice of "4": one iteration isn't enough,
1285 * in case we get preempted during the calls to
1286 * ev_time and get_clock. a second call is almost guaranteed
1287 * to succeed in that case, though. and looping a few more times
1288 * doesn't hurt either as we only do this on time-jumps or
1289 * in the unlikely event of having been preempted here.
1290 */
1291 for (i = 4; --i; )
1292 {
1293 rtmn_diff = ev_rt_now - mn_now; 1600 rtmn_diff = ev_rt_now - mn_now;
1294 1601
1295 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1602 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1296 return; /* all is well */ 1603 return; /* all is well */
1297 1604
1298 ev_rt_now = ev_time (); 1605 ev_rt_now = ev_time ();
1299 mn_now = get_clock (); 1606 mn_now = get_clock ();
1300 now_floor = mn_now; 1607 now_floor = mn_now;
1301 } 1608 }
1302 1609
1303# if EV_PERIODIC_ENABLE 1610# if EV_PERIODIC_ENABLE
1304 periodics_reschedule (EV_A); 1611 periodics_reschedule (EV_A);
1305# endif 1612# endif
1306 /* no timer adjustment, as the monotonic clock doesn't jump */ 1613 /* no timer adjustment, as the monotonic clock doesn't jump */
1307 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1614 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1308 }
1309 } 1615 }
1310 else 1616 else
1311#endif 1617#endif
1312 { 1618 {
1313 ev_rt_now = ev_time (); 1619 ev_rt_now = ev_time ();
1314 1620
1315 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1621 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1316 { 1622 {
1317#if EV_PERIODIC_ENABLE 1623#if EV_PERIODIC_ENABLE
1318 periodics_reschedule (EV_A); 1624 periodics_reschedule (EV_A);
1319#endif 1625#endif
1320
1321 /* adjust timers. this is easy, as the offset is the same for all of them */ 1626 /* adjust timers. this is easy, as the offset is the same for all of them */
1322 for (i = 0; i < timercnt; ++i) 1627 for (i = 1; i <= timercnt; ++i)
1323 ((WT)timers [i])->at += ev_rt_now - mn_now; 1628 ev_at (timers [i]) += ev_rt_now - mn_now;
1324 } 1629 }
1325 1630
1326 mn_now = ev_rt_now; 1631 mn_now = ev_rt_now;
1327 } 1632 }
1328} 1633}
1342static int loop_done; 1647static int loop_done;
1343 1648
1344void 1649void
1345ev_loop (EV_P_ int flags) 1650ev_loop (EV_P_ int flags)
1346{ 1651{
1347 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1652 loop_done = EVUNLOOP_CANCEL;
1348 ? EVUNLOOP_ONE
1349 : EVUNLOOP_CANCEL;
1350 1653
1351 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1654 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1352 1655
1353 do 1656 do
1354 { 1657 {
1369 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1672 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1370 call_pending (EV_A); 1673 call_pending (EV_A);
1371 } 1674 }
1372#endif 1675#endif
1373 1676
1374 /* queue check watchers (and execute them) */ 1677 /* queue prepare watchers (and execute them) */
1375 if (expect_false (preparecnt)) 1678 if (expect_false (preparecnt))
1376 { 1679 {
1377 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1680 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1378 call_pending (EV_A); 1681 call_pending (EV_A);
1379 } 1682 }
1388 /* update fd-related kernel structures */ 1691 /* update fd-related kernel structures */
1389 fd_reify (EV_A); 1692 fd_reify (EV_A);
1390 1693
1391 /* calculate blocking time */ 1694 /* calculate blocking time */
1392 { 1695 {
1393 ev_tstamp block; 1696 ev_tstamp waittime = 0.;
1697 ev_tstamp sleeptime = 0.;
1394 1698
1395 if (expect_false (flags & EVLOOP_NONBLOCK || idlecnt || !activecnt)) 1699 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1396 block = 0.; /* do not block at all */
1397 else
1398 { 1700 {
1399 /* update time to cancel out callback processing overhead */ 1701 /* update time to cancel out callback processing overhead */
1400#if EV_USE_MONOTONIC
1401 if (expect_true (have_monotonic))
1402 time_update_monotonic (EV_A); 1702 time_update (EV_A_ 1e100);
1403 else
1404#endif
1405 {
1406 ev_rt_now = ev_time ();
1407 mn_now = ev_rt_now;
1408 }
1409 1703
1410 block = MAX_BLOCKTIME; 1704 waittime = MAX_BLOCKTIME;
1411 1705
1412 if (timercnt) 1706 if (timercnt)
1413 { 1707 {
1414 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1708 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge;
1415 if (block > to) block = to; 1709 if (waittime > to) waittime = to;
1416 } 1710 }
1417 1711
1418#if EV_PERIODIC_ENABLE 1712#if EV_PERIODIC_ENABLE
1419 if (periodiccnt) 1713 if (periodiccnt)
1420 { 1714 {
1421 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1715 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge;
1422 if (block > to) block = to; 1716 if (waittime > to) waittime = to;
1423 } 1717 }
1424#endif 1718#endif
1425 1719
1426 if (expect_false (block < 0.)) block = 0.; 1720 if (expect_false (waittime < timeout_blocktime))
1721 waittime = timeout_blocktime;
1722
1723 sleeptime = waittime - backend_fudge;
1724
1725 if (expect_true (sleeptime > io_blocktime))
1726 sleeptime = io_blocktime;
1727
1728 if (sleeptime)
1729 {
1730 ev_sleep (sleeptime);
1731 waittime -= sleeptime;
1732 }
1427 } 1733 }
1428 1734
1429 ++loop_count; 1735 ++loop_count;
1430 backend_poll (EV_A_ block); 1736 backend_poll (EV_A_ waittime);
1737
1738 /* update ev_rt_now, do magic */
1739 time_update (EV_A_ waittime + sleeptime);
1431 } 1740 }
1432
1433 /* update ev_rt_now, do magic */
1434 time_update (EV_A);
1435 1741
1436 /* queue pending timers and reschedule them */ 1742 /* queue pending timers and reschedule them */
1437 timers_reify (EV_A); /* relative timers called last */ 1743 timers_reify (EV_A); /* relative timers called last */
1438#if EV_PERIODIC_ENABLE 1744#if EV_PERIODIC_ENABLE
1439 periodics_reify (EV_A); /* absolute timers called first */ 1745 periodics_reify (EV_A); /* absolute timers called first */
1440#endif 1746#endif
1441 1747
1748#if EV_IDLE_ENABLE
1442 /* queue idle watchers unless other events are pending */ 1749 /* queue idle watchers unless other events are pending */
1443 if (idlecnt && !any_pending (EV_A)) 1750 idle_reify (EV_A);
1444 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1751#endif
1445 1752
1446 /* queue check watchers, to be executed first */ 1753 /* queue check watchers, to be executed first */
1447 if (expect_false (checkcnt)) 1754 if (expect_false (checkcnt))
1448 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1755 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1449 1756
1450 call_pending (EV_A); 1757 call_pending (EV_A);
1451
1452 } 1758 }
1453 while (expect_true (activecnt && !loop_done)); 1759 while (expect_true (
1760 activecnt
1761 && !loop_done
1762 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1763 ));
1454 1764
1455 if (loop_done == EVUNLOOP_ONE) 1765 if (loop_done == EVUNLOOP_ONE)
1456 loop_done = EVUNLOOP_CANCEL; 1766 loop_done = EVUNLOOP_CANCEL;
1457} 1767}
1458 1768
1485 head = &(*head)->next; 1795 head = &(*head)->next;
1486 } 1796 }
1487} 1797}
1488 1798
1489void inline_speed 1799void inline_speed
1490ev_clear_pending (EV_P_ W w) 1800clear_pending (EV_P_ W w)
1491{ 1801{
1492 if (w->pending) 1802 if (w->pending)
1493 { 1803 {
1494 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1804 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1495 w->pending = 0; 1805 w->pending = 0;
1496 } 1806 }
1497} 1807}
1498 1808
1809int
1810ev_clear_pending (EV_P_ void *w)
1811{
1812 W w_ = (W)w;
1813 int pending = w_->pending;
1814
1815 if (expect_true (pending))
1816 {
1817 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1818 w_->pending = 0;
1819 p->w = 0;
1820 return p->events;
1821 }
1822 else
1823 return 0;
1824}
1825
1826void inline_size
1827pri_adjust (EV_P_ W w)
1828{
1829 int pri = w->priority;
1830 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1831 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1832 w->priority = pri;
1833}
1834
1499void inline_speed 1835void inline_speed
1500ev_start (EV_P_ W w, int active) 1836ev_start (EV_P_ W w, int active)
1501{ 1837{
1502 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1838 pri_adjust (EV_A_ w);
1503 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1504
1505 w->active = active; 1839 w->active = active;
1506 ev_ref (EV_A); 1840 ev_ref (EV_A);
1507} 1841}
1508 1842
1509void inline_size 1843void inline_size
1513 w->active = 0; 1847 w->active = 0;
1514} 1848}
1515 1849
1516/*****************************************************************************/ 1850/*****************************************************************************/
1517 1851
1518void 1852void noinline
1519ev_io_start (EV_P_ ev_io *w) 1853ev_io_start (EV_P_ ev_io *w)
1520{ 1854{
1521 int fd = w->fd; 1855 int fd = w->fd;
1522 1856
1523 if (expect_false (ev_is_active (w))) 1857 if (expect_false (ev_is_active (w)))
1525 1859
1526 assert (("ev_io_start called with negative fd", fd >= 0)); 1860 assert (("ev_io_start called with negative fd", fd >= 0));
1527 1861
1528 ev_start (EV_A_ (W)w, 1); 1862 ev_start (EV_A_ (W)w, 1);
1529 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1863 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1530 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1864 wlist_add (&anfds[fd].head, (WL)w);
1531 1865
1532 fd_change (EV_A_ fd); 1866 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1867 w->events &= ~EV_IOFDSET;
1533} 1868}
1534 1869
1535void 1870void noinline
1536ev_io_stop (EV_P_ ev_io *w) 1871ev_io_stop (EV_P_ ev_io *w)
1537{ 1872{
1538 ev_clear_pending (EV_A_ (W)w); 1873 clear_pending (EV_A_ (W)w);
1539 if (expect_false (!ev_is_active (w))) 1874 if (expect_false (!ev_is_active (w)))
1540 return; 1875 return;
1541 1876
1542 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1877 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1543 1878
1544 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1879 wlist_del (&anfds[w->fd].head, (WL)w);
1545 ev_stop (EV_A_ (W)w); 1880 ev_stop (EV_A_ (W)w);
1546 1881
1547 fd_change (EV_A_ w->fd); 1882 fd_change (EV_A_ w->fd, 1);
1548} 1883}
1549 1884
1550void 1885void noinline
1551ev_timer_start (EV_P_ ev_timer *w) 1886ev_timer_start (EV_P_ ev_timer *w)
1552{ 1887{
1553 if (expect_false (ev_is_active (w))) 1888 if (expect_false (ev_is_active (w)))
1554 return; 1889 return;
1555 1890
1556 ((WT)w)->at += mn_now; 1891 ev_at (w) += mn_now;
1557 1892
1558 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1893 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1559 1894
1560 ev_start (EV_A_ (W)w, ++timercnt); 1895 ev_start (EV_A_ (W)w, ++timercnt);
1561 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1896 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2);
1562 timers [timercnt - 1] = w; 1897 timers [timercnt] = (WT)w;
1563 upheap ((WT *)timers, timercnt - 1); 1898 upheap (timers, timercnt);
1564 1899
1565 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1900 /*assert (("internal timer heap corruption", timers [((W)w)->active] == w));*/
1566} 1901}
1567 1902
1568void 1903void noinline
1569ev_timer_stop (EV_P_ ev_timer *w) 1904ev_timer_stop (EV_P_ ev_timer *w)
1570{ 1905{
1571 ev_clear_pending (EV_A_ (W)w); 1906 clear_pending (EV_A_ (W)w);
1572 if (expect_false (!ev_is_active (w))) 1907 if (expect_false (!ev_is_active (w)))
1573 return; 1908 return;
1574 1909
1575 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1910 assert (("internal timer heap corruption", timers [((W)w)->active] == (WT)w));
1576 1911
1577 { 1912 {
1578 int active = ((W)w)->active; 1913 int active = ((W)w)->active;
1579 1914
1580 if (expect_true (--active < --timercnt)) 1915 if (expect_true (active < timercnt))
1581 { 1916 {
1582 timers [active] = timers [timercnt]; 1917 timers [active] = timers [timercnt];
1583 adjustheap ((WT *)timers, timercnt, active); 1918 adjustheap (timers, timercnt, active);
1584 } 1919 }
1920
1921 --timercnt;
1585 } 1922 }
1586 1923
1587 ((WT)w)->at -= mn_now; 1924 ev_at (w) -= mn_now;
1588 1925
1589 ev_stop (EV_A_ (W)w); 1926 ev_stop (EV_A_ (W)w);
1590} 1927}
1591 1928
1592void 1929void noinline
1593ev_timer_again (EV_P_ ev_timer *w) 1930ev_timer_again (EV_P_ ev_timer *w)
1594{ 1931{
1595 if (ev_is_active (w)) 1932 if (ev_is_active (w))
1596 { 1933 {
1597 if (w->repeat) 1934 if (w->repeat)
1598 { 1935 {
1599 ((WT)w)->at = mn_now + w->repeat; 1936 ev_at (w) = mn_now + w->repeat;
1600 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1937 adjustheap (timers, timercnt, ((W)w)->active);
1601 } 1938 }
1602 else 1939 else
1603 ev_timer_stop (EV_A_ w); 1940 ev_timer_stop (EV_A_ w);
1604 } 1941 }
1605 else if (w->repeat) 1942 else if (w->repeat)
1606 { 1943 {
1607 w->at = w->repeat; 1944 ev_at (w) = w->repeat;
1608 ev_timer_start (EV_A_ w); 1945 ev_timer_start (EV_A_ w);
1609 } 1946 }
1610} 1947}
1611 1948
1612#if EV_PERIODIC_ENABLE 1949#if EV_PERIODIC_ENABLE
1613void 1950void noinline
1614ev_periodic_start (EV_P_ ev_periodic *w) 1951ev_periodic_start (EV_P_ ev_periodic *w)
1615{ 1952{
1616 if (expect_false (ev_is_active (w))) 1953 if (expect_false (ev_is_active (w)))
1617 return; 1954 return;
1618 1955
1619 if (w->reschedule_cb) 1956 if (w->reschedule_cb)
1620 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1957 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1621 else if (w->interval) 1958 else if (w->interval)
1622 { 1959 {
1623 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1960 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1624 /* this formula differs from the one in periodic_reify because we do not always round up */ 1961 /* this formula differs from the one in periodic_reify because we do not always round up */
1625 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1962 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1626 } 1963 }
1964 else
1965 ev_at (w) = w->offset;
1627 1966
1628 ev_start (EV_A_ (W)w, ++periodiccnt); 1967 ev_start (EV_A_ (W)w, ++periodiccnt);
1629 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1968 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2);
1630 periodics [periodiccnt - 1] = w; 1969 periodics [periodiccnt] = (WT)w;
1631 upheap ((WT *)periodics, periodiccnt - 1); 1970 upheap (periodics, periodiccnt);
1632 1971
1633 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1972 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1634} 1973}
1635 1974
1636void 1975void noinline
1637ev_periodic_stop (EV_P_ ev_periodic *w) 1976ev_periodic_stop (EV_P_ ev_periodic *w)
1638{ 1977{
1639 ev_clear_pending (EV_A_ (W)w); 1978 clear_pending (EV_A_ (W)w);
1640 if (expect_false (!ev_is_active (w))) 1979 if (expect_false (!ev_is_active (w)))
1641 return; 1980 return;
1642 1981
1643 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1982 assert (("internal periodic heap corruption", periodics [((W)w)->active] == (WT)w));
1644 1983
1645 { 1984 {
1646 int active = ((W)w)->active; 1985 int active = ((W)w)->active;
1647 1986
1648 if (expect_true (--active < --periodiccnt)) 1987 if (expect_true (active < periodiccnt))
1649 { 1988 {
1650 periodics [active] = periodics [periodiccnt]; 1989 periodics [active] = periodics [periodiccnt];
1651 adjustheap ((WT *)periodics, periodiccnt, active); 1990 adjustheap (periodics, periodiccnt, active);
1652 } 1991 }
1992
1993 --periodiccnt;
1653 } 1994 }
1654 1995
1655 ev_stop (EV_A_ (W)w); 1996 ev_stop (EV_A_ (W)w);
1656} 1997}
1657 1998
1658void 1999void noinline
1659ev_periodic_again (EV_P_ ev_periodic *w) 2000ev_periodic_again (EV_P_ ev_periodic *w)
1660{ 2001{
1661 /* TODO: use adjustheap and recalculation */ 2002 /* TODO: use adjustheap and recalculation */
1662 ev_periodic_stop (EV_A_ w); 2003 ev_periodic_stop (EV_A_ w);
1663 ev_periodic_start (EV_A_ w); 2004 ev_periodic_start (EV_A_ w);
1666 2007
1667#ifndef SA_RESTART 2008#ifndef SA_RESTART
1668# define SA_RESTART 0 2009# define SA_RESTART 0
1669#endif 2010#endif
1670 2011
1671void 2012void noinline
1672ev_signal_start (EV_P_ ev_signal *w) 2013ev_signal_start (EV_P_ ev_signal *w)
1673{ 2014{
1674#if EV_MULTIPLICITY 2015#if EV_MULTIPLICITY
1675 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2016 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1676#endif 2017#endif
1677 if (expect_false (ev_is_active (w))) 2018 if (expect_false (ev_is_active (w)))
1678 return; 2019 return;
1679 2020
1680 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2021 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1681 2022
2023 evpipe_init (EV_A);
2024
2025 {
2026#ifndef _WIN32
2027 sigset_t full, prev;
2028 sigfillset (&full);
2029 sigprocmask (SIG_SETMASK, &full, &prev);
2030#endif
2031
2032 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2033
2034#ifndef _WIN32
2035 sigprocmask (SIG_SETMASK, &prev, 0);
2036#endif
2037 }
2038
1682 ev_start (EV_A_ (W)w, 1); 2039 ev_start (EV_A_ (W)w, 1);
1683 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1684 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2040 wlist_add (&signals [w->signum - 1].head, (WL)w);
1685 2041
1686 if (!((WL)w)->next) 2042 if (!((WL)w)->next)
1687 { 2043 {
1688#if _WIN32 2044#if _WIN32
1689 signal (w->signum, sighandler); 2045 signal (w->signum, ev_sighandler);
1690#else 2046#else
1691 struct sigaction sa; 2047 struct sigaction sa;
1692 sa.sa_handler = sighandler; 2048 sa.sa_handler = ev_sighandler;
1693 sigfillset (&sa.sa_mask); 2049 sigfillset (&sa.sa_mask);
1694 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2050 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1695 sigaction (w->signum, &sa, 0); 2051 sigaction (w->signum, &sa, 0);
1696#endif 2052#endif
1697 } 2053 }
1698} 2054}
1699 2055
1700void 2056void noinline
1701ev_signal_stop (EV_P_ ev_signal *w) 2057ev_signal_stop (EV_P_ ev_signal *w)
1702{ 2058{
1703 ev_clear_pending (EV_A_ (W)w); 2059 clear_pending (EV_A_ (W)w);
1704 if (expect_false (!ev_is_active (w))) 2060 if (expect_false (!ev_is_active (w)))
1705 return; 2061 return;
1706 2062
1707 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2063 wlist_del (&signals [w->signum - 1].head, (WL)w);
1708 ev_stop (EV_A_ (W)w); 2064 ev_stop (EV_A_ (W)w);
1709 2065
1710 if (!signals [w->signum - 1].head) 2066 if (!signals [w->signum - 1].head)
1711 signal (w->signum, SIG_DFL); 2067 signal (w->signum, SIG_DFL);
1712} 2068}
1719#endif 2075#endif
1720 if (expect_false (ev_is_active (w))) 2076 if (expect_false (ev_is_active (w)))
1721 return; 2077 return;
1722 2078
1723 ev_start (EV_A_ (W)w, 1); 2079 ev_start (EV_A_ (W)w, 1);
1724 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2080 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1725} 2081}
1726 2082
1727void 2083void
1728ev_child_stop (EV_P_ ev_child *w) 2084ev_child_stop (EV_P_ ev_child *w)
1729{ 2085{
1730 ev_clear_pending (EV_A_ (W)w); 2086 clear_pending (EV_A_ (W)w);
1731 if (expect_false (!ev_is_active (w))) 2087 if (expect_false (!ev_is_active (w)))
1732 return; 2088 return;
1733 2089
1734 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2090 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1735 ev_stop (EV_A_ (W)w); 2091 ev_stop (EV_A_ (W)w);
1736} 2092}
1737 2093
1738#if EV_STAT_ENABLE 2094#if EV_STAT_ENABLE
1739 2095
1971} 2327}
1972 2328
1973void 2329void
1974ev_stat_stop (EV_P_ ev_stat *w) 2330ev_stat_stop (EV_P_ ev_stat *w)
1975{ 2331{
1976 ev_clear_pending (EV_A_ (W)w); 2332 clear_pending (EV_A_ (W)w);
1977 if (expect_false (!ev_is_active (w))) 2333 if (expect_false (!ev_is_active (w)))
1978 return; 2334 return;
1979 2335
1980#if EV_USE_INOTIFY 2336#if EV_USE_INOTIFY
1981 infy_del (EV_A_ w); 2337 infy_del (EV_A_ w);
1984 2340
1985 ev_stop (EV_A_ (W)w); 2341 ev_stop (EV_A_ (W)w);
1986} 2342}
1987#endif 2343#endif
1988 2344
2345#if EV_IDLE_ENABLE
1989void 2346void
1990ev_idle_start (EV_P_ ev_idle *w) 2347ev_idle_start (EV_P_ ev_idle *w)
1991{ 2348{
1992 if (expect_false (ev_is_active (w))) 2349 if (expect_false (ev_is_active (w)))
1993 return; 2350 return;
1994 2351
2352 pri_adjust (EV_A_ (W)w);
2353
2354 {
2355 int active = ++idlecnt [ABSPRI (w)];
2356
2357 ++idleall;
1995 ev_start (EV_A_ (W)w, ++idlecnt); 2358 ev_start (EV_A_ (W)w, active);
2359
1996 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2360 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1997 idles [idlecnt - 1] = w; 2361 idles [ABSPRI (w)][active - 1] = w;
2362 }
1998} 2363}
1999 2364
2000void 2365void
2001ev_idle_stop (EV_P_ ev_idle *w) 2366ev_idle_stop (EV_P_ ev_idle *w)
2002{ 2367{
2003 ev_clear_pending (EV_A_ (W)w); 2368 clear_pending (EV_A_ (W)w);
2004 if (expect_false (!ev_is_active (w))) 2369 if (expect_false (!ev_is_active (w)))
2005 return; 2370 return;
2006 2371
2007 { 2372 {
2008 int active = ((W)w)->active; 2373 int active = ((W)w)->active;
2009 idles [active - 1] = idles [--idlecnt]; 2374
2375 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2010 ((W)idles [active - 1])->active = active; 2376 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2377
2378 ev_stop (EV_A_ (W)w);
2379 --idleall;
2011 } 2380 }
2012
2013 ev_stop (EV_A_ (W)w);
2014} 2381}
2382#endif
2015 2383
2016void 2384void
2017ev_prepare_start (EV_P_ ev_prepare *w) 2385ev_prepare_start (EV_P_ ev_prepare *w)
2018{ 2386{
2019 if (expect_false (ev_is_active (w))) 2387 if (expect_false (ev_is_active (w)))
2025} 2393}
2026 2394
2027void 2395void
2028ev_prepare_stop (EV_P_ ev_prepare *w) 2396ev_prepare_stop (EV_P_ ev_prepare *w)
2029{ 2397{
2030 ev_clear_pending (EV_A_ (W)w); 2398 clear_pending (EV_A_ (W)w);
2031 if (expect_false (!ev_is_active (w))) 2399 if (expect_false (!ev_is_active (w)))
2032 return; 2400 return;
2033 2401
2034 { 2402 {
2035 int active = ((W)w)->active; 2403 int active = ((W)w)->active;
2052} 2420}
2053 2421
2054void 2422void
2055ev_check_stop (EV_P_ ev_check *w) 2423ev_check_stop (EV_P_ ev_check *w)
2056{ 2424{
2057 ev_clear_pending (EV_A_ (W)w); 2425 clear_pending (EV_A_ (W)w);
2058 if (expect_false (!ev_is_active (w))) 2426 if (expect_false (!ev_is_active (w)))
2059 return; 2427 return;
2060 2428
2061 { 2429 {
2062 int active = ((W)w)->active; 2430 int active = ((W)w)->active;
2069 2437
2070#if EV_EMBED_ENABLE 2438#if EV_EMBED_ENABLE
2071void noinline 2439void noinline
2072ev_embed_sweep (EV_P_ ev_embed *w) 2440ev_embed_sweep (EV_P_ ev_embed *w)
2073{ 2441{
2074 ev_loop (w->loop, EVLOOP_NONBLOCK); 2442 ev_loop (w->other, EVLOOP_NONBLOCK);
2075} 2443}
2076 2444
2077static void 2445static void
2078embed_cb (EV_P_ ev_io *io, int revents) 2446embed_io_cb (EV_P_ ev_io *io, int revents)
2079{ 2447{
2080 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2448 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2081 2449
2082 if (ev_cb (w)) 2450 if (ev_cb (w))
2083 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2451 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2084 else 2452 else
2085 ev_embed_sweep (loop, w); 2453 ev_loop (w->other, EVLOOP_NONBLOCK);
2086} 2454}
2455
2456static void
2457embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2458{
2459 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2460
2461 {
2462 struct ev_loop *loop = w->other;
2463
2464 while (fdchangecnt)
2465 {
2466 fd_reify (EV_A);
2467 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2468 }
2469 }
2470}
2471
2472#if 0
2473static void
2474embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2475{
2476 ev_idle_stop (EV_A_ idle);
2477}
2478#endif
2087 2479
2088void 2480void
2089ev_embed_start (EV_P_ ev_embed *w) 2481ev_embed_start (EV_P_ ev_embed *w)
2090{ 2482{
2091 if (expect_false (ev_is_active (w))) 2483 if (expect_false (ev_is_active (w)))
2092 return; 2484 return;
2093 2485
2094 { 2486 {
2095 struct ev_loop *loop = w->loop; 2487 struct ev_loop *loop = w->other;
2096 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2488 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2097 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2489 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2098 } 2490 }
2099 2491
2100 ev_set_priority (&w->io, ev_priority (w)); 2492 ev_set_priority (&w->io, ev_priority (w));
2101 ev_io_start (EV_A_ &w->io); 2493 ev_io_start (EV_A_ &w->io);
2102 2494
2495 ev_prepare_init (&w->prepare, embed_prepare_cb);
2496 ev_set_priority (&w->prepare, EV_MINPRI);
2497 ev_prepare_start (EV_A_ &w->prepare);
2498
2499 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2500
2103 ev_start (EV_A_ (W)w, 1); 2501 ev_start (EV_A_ (W)w, 1);
2104} 2502}
2105 2503
2106void 2504void
2107ev_embed_stop (EV_P_ ev_embed *w) 2505ev_embed_stop (EV_P_ ev_embed *w)
2108{ 2506{
2109 ev_clear_pending (EV_A_ (W)w); 2507 clear_pending (EV_A_ (W)w);
2110 if (expect_false (!ev_is_active (w))) 2508 if (expect_false (!ev_is_active (w)))
2111 return; 2509 return;
2112 2510
2113 ev_io_stop (EV_A_ &w->io); 2511 ev_io_stop (EV_A_ &w->io);
2512 ev_prepare_stop (EV_A_ &w->prepare);
2114 2513
2115 ev_stop (EV_A_ (W)w); 2514 ev_stop (EV_A_ (W)w);
2116} 2515}
2117#endif 2516#endif
2118 2517
2129} 2528}
2130 2529
2131void 2530void
2132ev_fork_stop (EV_P_ ev_fork *w) 2531ev_fork_stop (EV_P_ ev_fork *w)
2133{ 2532{
2134 ev_clear_pending (EV_A_ (W)w); 2533 clear_pending (EV_A_ (W)w);
2135 if (expect_false (!ev_is_active (w))) 2534 if (expect_false (!ev_is_active (w)))
2136 return; 2535 return;
2137 2536
2138 { 2537 {
2139 int active = ((W)w)->active; 2538 int active = ((W)w)->active;
2143 2542
2144 ev_stop (EV_A_ (W)w); 2543 ev_stop (EV_A_ (W)w);
2145} 2544}
2146#endif 2545#endif
2147 2546
2547#if EV_ASYNC_ENABLE
2548void
2549ev_async_start (EV_P_ ev_async *w)
2550{
2551 if (expect_false (ev_is_active (w)))
2552 return;
2553
2554 evpipe_init (EV_A);
2555
2556 ev_start (EV_A_ (W)w, ++asynccnt);
2557 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2558 asyncs [asynccnt - 1] = w;
2559}
2560
2561void
2562ev_async_stop (EV_P_ ev_async *w)
2563{
2564 clear_pending (EV_A_ (W)w);
2565 if (expect_false (!ev_is_active (w)))
2566 return;
2567
2568 {
2569 int active = ((W)w)->active;
2570 asyncs [active - 1] = asyncs [--asynccnt];
2571 ((W)asyncs [active - 1])->active = active;
2572 }
2573
2574 ev_stop (EV_A_ (W)w);
2575}
2576
2577void
2578ev_async_send (EV_P_ ev_async *w)
2579{
2580 w->sent = 1;
2581 evpipe_write (EV_A_ &gotasync);
2582}
2583#endif
2584
2148/*****************************************************************************/ 2585/*****************************************************************************/
2149 2586
2150struct ev_once 2587struct ev_once
2151{ 2588{
2152 ev_io io; 2589 ev_io io;
2207 ev_timer_set (&once->to, timeout, 0.); 2644 ev_timer_set (&once->to, timeout, 0.);
2208 ev_timer_start (EV_A_ &once->to); 2645 ev_timer_start (EV_A_ &once->to);
2209 } 2646 }
2210} 2647}
2211 2648
2649#if EV_MULTIPLICITY
2650 #include "ev_wrap.h"
2651#endif
2652
2212#ifdef __cplusplus 2653#ifdef __cplusplus
2213} 2654}
2214#endif 2655#endif
2215 2656

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines