ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.162 by root, Mon Dec 3 13:41:24 2007 UTC vs.
Revision 1.246 by root, Wed May 21 12:51:38 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 249
197#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
200#endif 253#endif
202#ifndef CLOCK_REALTIME 255#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 256# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 257# define EV_USE_REALTIME 0
205#endif 258#endif
206 259
260#if !EV_STAT_ENABLE
261# undef EV_USE_INOTIFY
262# define EV_USE_INOTIFY 0
263#endif
264
265#if !EV_USE_NANOSLEEP
266# ifndef _WIN32
267# include <sys/select.h>
268# endif
269#endif
270
271#if EV_USE_INOTIFY
272# include <sys/inotify.h>
273#endif
274
207#if EV_SELECT_IS_WINSOCKET 275#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 276# include <winsock.h>
209#endif 277#endif
210 278
211#if !EV_STAT_ENABLE 279#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h>
282# ifdef __cplusplus
283extern "C" {
213#endif 284# endif
214 285int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 286# ifdef __cplusplus
216# include <sys/inotify.h> 287}
288# endif
217#endif 289#endif
218 290
219/**/ 291/**/
292
293/*
294 * This is used to avoid floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding
297 * errors are against us.
298 * This value is good at least till the year 4000.
299 * Better solutions welcome.
300 */
301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 302
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 306
225#if __GNUC__ >= 3 307#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 308# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 309# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 310#else
236# define expect(expr,value) (expr) 311# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 312# define noinline
313# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
314# define inline
315# endif
240#endif 316#endif
241 317
242#define expect_false(expr) expect ((expr) != 0, 0) 318#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 319#define expect_true(expr) expect ((expr) != 0, 1)
320#define inline_size static inline
321
322#if EV_MINIMAL
323# define inline_speed static noinline
324#else
325# define inline_speed static inline
326#endif
244 327
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 330
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 331#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 332#define EMPTY2(a,b) /* used to suppress some warnings */
250 333
251typedef ev_watcher *W; 334typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 335typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 336typedef ev_watcher_time *WT;
254 337
338#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at
340
341#if EV_USE_MONOTONIC
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
345#endif
256 346
257#ifdef _WIN32 347#ifdef _WIN32
258# include "ev_win32.c" 348# include "ev_win32.c"
259#endif 349#endif
260 350
281 perror (msg); 371 perror (msg);
282 abort (); 372 abort ();
283 } 373 }
284} 374}
285 375
376static void *
377ev_realloc_emul (void *ptr, long size)
378{
379 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and
381 * the single unix specification, so work around them here.
382 */
383
384 if (size)
385 return realloc (ptr, size);
386
387 free (ptr);
388 return 0;
389}
390
286static void *(*alloc)(void *ptr, long size); 391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 392
288void 393void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 394ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 395{
291 alloc = cb; 396 alloc = cb;
292} 397}
293 398
294inline_speed void * 399inline_speed void *
295ev_realloc (void *ptr, long size) 400ev_realloc (void *ptr, long size)
296{ 401{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 402 ptr = alloc (ptr, size);
298 403
299 if (!ptr && size) 404 if (!ptr && size)
300 { 405 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 407 abort ();
325 W w; 430 W w;
326 int events; 431 int events;
327} ANPENDING; 432} ANPENDING;
328 433
329#if EV_USE_INOTIFY 434#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */
330typedef struct 436typedef struct
331{ 437{
332 WL head; 438 WL head;
333} ANFS; 439} ANFS;
440#endif
441
442/* Heap Entry */
443#if EV_HEAP_CACHE_AT
444 typedef struct {
445 ev_tstamp at;
446 WT w;
447 } ANHE;
448
449 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
452#else
453 typedef WT ANHE;
454
455 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he)
334#endif 458#endif
335 459
336#if EV_MULTIPLICITY 460#if EV_MULTIPLICITY
337 461
338 struct ev_loop 462 struct ev_loop
396{ 520{
397 return ev_rt_now; 521 return ev_rt_now;
398} 522}
399#endif 523#endif
400 524
401#define array_roundsize(type,n) (((n) | 4) & ~3) 525void
526ev_sleep (ev_tstamp delay)
527{
528 if (delay > 0.)
529 {
530#if EV_USE_NANOSLEEP
531 struct timespec ts;
532
533 ts.tv_sec = (time_t)delay;
534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
535
536 nanosleep (&ts, 0);
537#elif defined(_WIN32)
538 Sleep ((unsigned long)(delay * 1e3));
539#else
540 struct timeval tv;
541
542 tv.tv_sec = (time_t)delay;
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
544
545 select (0, 0, 0, 0, &tv);
546#endif
547 }
548}
549
550/*****************************************************************************/
551
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553
554int inline_size
555array_nextsize (int elem, int cur, int cnt)
556{
557 int ncur = cur + 1;
558
559 do
560 ncur <<= 1;
561 while (cnt > ncur);
562
563 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
564 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
565 {
566 ncur *= elem;
567 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
568 ncur = ncur - sizeof (void *) * 4;
569 ncur /= elem;
570 }
571
572 return ncur;
573}
574
575static noinline void *
576array_realloc (int elem, void *base, int *cur, int cnt)
577{
578 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur);
580}
402 581
403#define array_needsize(type,base,cur,cnt,init) \ 582#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 583 if (expect_false ((cnt) > (cur))) \
405 { \ 584 { \
406 int newcnt = cur; \ 585 int ocur_ = (cur); \
407 do \ 586 (base) = (type *)array_realloc \
408 { \ 587 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 588 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 589 }
417 590
591#if 0
418#define array_slim(type,stem) \ 592#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 593 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 594 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 595 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 596 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 598 }
599#endif
425 600
426#define array_free(stem, idx) \ 601#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 603
429/*****************************************************************************/ 604/*****************************************************************************/
430 605
431void noinline 606void noinline
432ev_feed_event (EV_P_ void *w, int revents) 607ev_feed_event (EV_P_ void *w, int revents)
433{ 608{
434 W w_ = (W)w; 609 W w_ = (W)w;
610 int pri = ABSPRI (w_);
435 611
436 if (expect_false (w_->pending)) 612 if (expect_false (w_->pending))
613 pendings [pri][w_->pending - 1].events |= revents;
614 else
437 { 615 {
616 w_->pending = ++pendingcnt [pri];
617 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
618 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 619 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 620 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 621}
447 622
448void inline_size 623void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 624queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 625{
451 int i; 626 int i;
452 627
453 for (i = 0; i < eventcnt; ++i) 628 for (i = 0; i < eventcnt; ++i)
485} 660}
486 661
487void 662void
488ev_feed_fd_event (EV_P_ int fd, int revents) 663ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 664{
665 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 666 fd_event (EV_A_ fd, revents);
491} 667}
492 668
493void inline_size 669void inline_size
494fd_reify (EV_P) 670fd_reify (EV_P)
495{ 671{
499 { 675 {
500 int fd = fdchanges [i]; 676 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 677 ANFD *anfd = anfds + fd;
502 ev_io *w; 678 ev_io *w;
503 679
504 int events = 0; 680 unsigned char events = 0;
505 681
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 683 events |= (unsigned char)w->events;
508 684
509#if EV_SELECT_IS_WINSOCKET 685#if EV_SELECT_IS_WINSOCKET
510 if (events) 686 if (events)
511 { 687 {
512 unsigned long argp; 688 unsigned long argp;
689 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else
513 anfd->handle = _get_osfhandle (fd); 692 anfd->handle = _get_osfhandle (fd);
693 #endif
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
515 } 695 }
516#endif 696#endif
517 697
698 {
699 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify;
701
518 anfd->reify = 0; 702 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 703 anfd->events = events;
704
705 if (o_events != events || o_reify & EV_IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events);
707 }
522 } 708 }
523 709
524 fdchangecnt = 0; 710 fdchangecnt = 0;
525} 711}
526 712
527void inline_size 713void inline_size
528fd_change (EV_P_ int fd) 714fd_change (EV_P_ int fd, int flags)
529{ 715{
530 if (expect_false (anfds [fd].reify)) 716 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 717 anfds [fd].reify |= flags;
534 718
719 if (expect_true (!reify))
720 {
535 ++fdchangecnt; 721 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 723 fdchanges [fdchangecnt - 1] = fd;
724 }
538} 725}
539 726
540void inline_speed 727void inline_speed
541fd_kill (EV_P_ int fd) 728fd_kill (EV_P_ int fd)
542{ 729{
593 780
594 for (fd = 0; fd < anfdmax; ++fd) 781 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 782 if (anfds [fd].events)
596 { 783 {
597 anfds [fd].events = 0; 784 anfds [fd].events = 0;
598 fd_change (EV_A_ fd); 785 fd_change (EV_A_ fd, EV_IOFDSET | 1);
599 } 786 }
600} 787}
601 788
602/*****************************************************************************/ 789/*****************************************************************************/
603 790
791/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree.
795 */
796
797/*
798 * at the moment we allow libev the luxury of two heaps,
799 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
800 * which is more cache-efficient.
801 * the difference is about 5% with 50000+ watchers.
802 */
803#if EV_USE_4HEAP
804
805#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807
808/* towards the root */
604void inline_speed 809void inline_speed
605upheap (WT *heap, int k) 810upheap (ANHE *heap, int k)
606{ 811{
607 WT w = heap [k]; 812 ANHE he = heap [k];
608 813
609 while (k && heap [k >> 1]->at > w->at) 814 for (;;)
610 { 815 {
816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
817
818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
819 break;
820
611 heap [k] = heap [k >> 1]; 821 heap [k] = heap [p];
612 ((W)heap [k])->active = k + 1; 822 ev_active (ANHE_w (heap [k])) = k;
613 k >>= 1; 823 k = p;
614 } 824 }
615 825
826 ev_active (ANHE_w (he)) = k;
616 heap [k] = w; 827 heap [k] = he;
617 ((W)heap [k])->active = k + 1;
618
619} 828}
620 829
830/* away from the root */
621void inline_speed 831void inline_speed
622downheap (WT *heap, int N, int k) 832downheap (ANHE *heap, int N, int k)
623{ 833{
624 WT w = heap [k]; 834 ANHE he = heap [k];
835 ANHE *E = heap + N + HEAP0;
625 836
626 while (k < (N >> 1)) 837 for (;;)
627 { 838 {
628 int j = k << 1; 839 ev_tstamp minat;
840 ANHE *minpos;
841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
629 842
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 843 // find minimum child
844 if (expect_true (pos + DHEAP - 1 < E))
631 ++j; 845 {
632 846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
633 if (w->at <= heap [j]->at) 847 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
850 }
851 else if (pos < E)
852 {
853 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
854 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
855 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
856 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
857 }
858 else
634 break; 859 break;
635 860
861 if (ANHE_at (he) <= minat)
862 break;
863
864 ev_active (ANHE_w (*minpos)) = k;
865 heap [k] = *minpos;
866
867 k = minpos - heap;
868 }
869
870 ev_active (ANHE_w (he)) = k;
871 heap [k] = he;
872}
873
874#else // 4HEAP
875
876#define HEAP0 1
877
878/* towards the root */
879void inline_speed
880upheap (ANHE *heap, int k)
881{
882 ANHE he = heap [k];
883
884 for (;;)
885 {
886 int p = k >> 1;
887
888 /* maybe we could use a dummy element at heap [0]? */
889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
890 break;
891
636 heap [k] = heap [j]; 892 heap [k] = heap [p];
637 ((W)heap [k])->active = k + 1; 893 ev_active (ANHE_w (heap [k])) = k;
638 k = j; 894 k = p;
639 } 895 }
640 896
641 heap [k] = w; 897 heap [k] = he;
642 ((W)heap [k])->active = k + 1; 898 ev_active (ANHE_w (heap [k])) = k;
643} 899}
900
901/* away from the root */
902void inline_speed
903downheap (ANHE *heap, int N, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int c = k << 1;
910
911 if (c > N)
912 break;
913
914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
915 ? 1 : 0;
916
917 if (ANHE_at (he) <= ANHE_at (heap [c]))
918 break;
919
920 heap [k] = heap [c];
921 ev_active (ANHE_w (heap [k])) = k;
922
923 k = c;
924 }
925
926 heap [k] = he;
927 ev_active (ANHE_w (he)) = k;
928}
929#endif
644 930
645void inline_size 931void inline_size
646adjustheap (WT *heap, int N, int k) 932adjustheap (ANHE *heap, int N, int k)
647{ 933{
648 upheap (heap, k); 934 upheap (heap, k);
649 downheap (heap, N, k); 935 downheap (heap, N, k);
650} 936}
651 937
652/*****************************************************************************/ 938/*****************************************************************************/
653 939
654typedef struct 940typedef struct
655{ 941{
656 WL head; 942 WL head;
657 sig_atomic_t volatile gotsig; 943 EV_ATOMIC_T gotsig;
658} ANSIG; 944} ANSIG;
659 945
660static ANSIG *signals; 946static ANSIG *signals;
661static int signalmax; 947static int signalmax;
662 948
663static int sigpipe [2]; 949static EV_ATOMIC_T gotsig;
664static sig_atomic_t volatile gotsig;
665static ev_io sigev;
666 950
667void inline_size 951void inline_size
668signals_init (ANSIG *base, int count) 952signals_init (ANSIG *base, int count)
669{ 953{
670 while (count--) 954 while (count--)
674 958
675 ++base; 959 ++base;
676 } 960 }
677} 961}
678 962
679static void 963/*****************************************************************************/
680sighandler (int signum)
681{
682#if _WIN32
683 signal (signum, sighandler);
684#endif
685 964
686 signals [signum - 1].gotsig = 1;
687
688 if (!gotsig)
689 {
690 int old_errno = errno;
691 gotsig = 1;
692 write (sigpipe [1], &signum, 1);
693 errno = old_errno;
694 }
695}
696
697void noinline
698ev_feed_signal_event (EV_P_ int signum)
699{
700 WL w;
701
702#if EV_MULTIPLICITY
703 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
704#endif
705
706 --signum;
707
708 if (signum < 0 || signum >= signalmax)
709 return;
710
711 signals [signum].gotsig = 0;
712
713 for (w = signals [signum].head; w; w = w->next)
714 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
715}
716
717static void
718sigcb (EV_P_ ev_io *iow, int revents)
719{
720 int signum;
721
722 read (sigpipe [0], &revents, 1);
723 gotsig = 0;
724
725 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1);
728}
729
730void inline_size 965void inline_speed
731fd_intern (int fd) 966fd_intern (int fd)
732{ 967{
733#ifdef _WIN32 968#ifdef _WIN32
734 int arg = 1; 969 int arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 970 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
738 fcntl (fd, F_SETFL, O_NONBLOCK); 973 fcntl (fd, F_SETFL, O_NONBLOCK);
739#endif 974#endif
740} 975}
741 976
742static void noinline 977static void noinline
743siginit (EV_P) 978evpipe_init (EV_P)
744{ 979{
980 if (!ev_is_active (&pipeev))
981 {
982#if EV_USE_EVENTFD
983 if ((evfd = eventfd (0, 0)) >= 0)
984 {
985 evpipe [0] = -1;
986 fd_intern (evfd);
987 ev_io_set (&pipeev, evfd, EV_READ);
988 }
989 else
990#endif
991 {
992 while (pipe (evpipe))
993 syserr ("(libev) error creating signal/async pipe");
994
745 fd_intern (sigpipe [0]); 995 fd_intern (evpipe [0]);
746 fd_intern (sigpipe [1]); 996 fd_intern (evpipe [1]);
997 ev_io_set (&pipeev, evpipe [0], EV_READ);
998 }
747 999
748 ev_io_set (&sigev, sigpipe [0], EV_READ);
749 ev_io_start (EV_A_ &sigev); 1000 ev_io_start (EV_A_ &pipeev);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1001 ev_unref (EV_A); /* watcher should not keep loop alive */
1002 }
1003}
1004
1005void inline_size
1006evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1007{
1008 if (!*flag)
1009 {
1010 int old_errno = errno; /* save errno because write might clobber it */
1011
1012 *flag = 1;
1013
1014#if EV_USE_EVENTFD
1015 if (evfd >= 0)
1016 {
1017 uint64_t counter = 1;
1018 write (evfd, &counter, sizeof (uint64_t));
1019 }
1020 else
1021#endif
1022 write (evpipe [1], &old_errno, 1);
1023
1024 errno = old_errno;
1025 }
1026}
1027
1028static void
1029pipecb (EV_P_ ev_io *iow, int revents)
1030{
1031#if EV_USE_EVENTFD
1032 if (evfd >= 0)
1033 {
1034 uint64_t counter;
1035 read (evfd, &counter, sizeof (uint64_t));
1036 }
1037 else
1038#endif
1039 {
1040 char dummy;
1041 read (evpipe [0], &dummy, 1);
1042 }
1043
1044 if (gotsig && ev_is_default_loop (EV_A))
1045 {
1046 int signum;
1047 gotsig = 0;
1048
1049 for (signum = signalmax; signum--; )
1050 if (signals [signum].gotsig)
1051 ev_feed_signal_event (EV_A_ signum + 1);
1052 }
1053
1054#if EV_ASYNC_ENABLE
1055 if (gotasync)
1056 {
1057 int i;
1058 gotasync = 0;
1059
1060 for (i = asynccnt; i--; )
1061 if (asyncs [i]->sent)
1062 {
1063 asyncs [i]->sent = 0;
1064 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1065 }
1066 }
1067#endif
751} 1068}
752 1069
753/*****************************************************************************/ 1070/*****************************************************************************/
754 1071
1072static void
1073ev_sighandler (int signum)
1074{
1075#if EV_MULTIPLICITY
1076 struct ev_loop *loop = &default_loop_struct;
1077#endif
1078
1079#if _WIN32
1080 signal (signum, ev_sighandler);
1081#endif
1082
1083 signals [signum - 1].gotsig = 1;
1084 evpipe_write (EV_A_ &gotsig);
1085}
1086
1087void noinline
1088ev_feed_signal_event (EV_P_ int signum)
1089{
1090 WL w;
1091
1092#if EV_MULTIPLICITY
1093 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1094#endif
1095
1096 --signum;
1097
1098 if (signum < 0 || signum >= signalmax)
1099 return;
1100
1101 signals [signum].gotsig = 0;
1102
1103 for (w = signals [signum].head; w; w = w->next)
1104 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1105}
1106
1107/*****************************************************************************/
1108
755static ev_child *childs [EV_PID_HASHSIZE]; 1109static WL childs [EV_PID_HASHSIZE];
756 1110
757#ifndef _WIN32 1111#ifndef _WIN32
758 1112
759static ev_signal childev; 1113static ev_signal childev;
760 1114
1115#ifndef WIFCONTINUED
1116# define WIFCONTINUED(status) 0
1117#endif
1118
761void inline_speed 1119void inline_speed
762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1120child_reap (EV_P_ int chain, int pid, int status)
763{ 1121{
764 ev_child *w; 1122 ev_child *w;
1123 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
765 1124
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1125 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1126 {
767 if (w->pid == pid || !w->pid) 1127 if ((w->pid == pid || !w->pid)
1128 && (!traced || (w->flags & 1)))
768 { 1129 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1130 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
770 w->rpid = pid; 1131 w->rpid = pid;
771 w->rstatus = status; 1132 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1133 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 1134 }
1135 }
774} 1136}
775 1137
776#ifndef WCONTINUED 1138#ifndef WCONTINUED
777# define WCONTINUED 0 1139# define WCONTINUED 0
778#endif 1140#endif
787 if (!WCONTINUED 1149 if (!WCONTINUED
788 || errno != EINVAL 1150 || errno != EINVAL
789 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1151 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
790 return; 1152 return;
791 1153
792 /* make sure we are called again until all childs have been reaped */ 1154 /* make sure we are called again until all children have been reaped */
793 /* we need to do it this way so that the callback gets called before we continue */ 1155 /* we need to do it this way so that the callback gets called before we continue */
794 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1156 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
795 1157
796 child_reap (EV_A_ sw, pid, pid, status); 1158 child_reap (EV_A_ pid, pid, status);
797 if (EV_PID_HASHSIZE > 1) 1159 if (EV_PID_HASHSIZE > 1)
798 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1160 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
799} 1161}
800 1162
801#endif 1163#endif
802 1164
803/*****************************************************************************/ 1165/*****************************************************************************/
875} 1237}
876 1238
877unsigned int 1239unsigned int
878ev_embeddable_backends (void) 1240ev_embeddable_backends (void)
879{ 1241{
880 return EVBACKEND_EPOLL 1242 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 1243
882 | EVBACKEND_PORT; 1244 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1245 /* please fix it and tell me how to detect the fix */
1246 flags &= ~EVBACKEND_EPOLL;
1247
1248 return flags;
883} 1249}
884 1250
885unsigned int 1251unsigned int
886ev_backend (EV_P) 1252ev_backend (EV_P)
887{ 1253{
890 1256
891unsigned int 1257unsigned int
892ev_loop_count (EV_P) 1258ev_loop_count (EV_P)
893{ 1259{
894 return loop_count; 1260 return loop_count;
1261}
1262
1263void
1264ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1265{
1266 io_blocktime = interval;
1267}
1268
1269void
1270ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1271{
1272 timeout_blocktime = interval;
895} 1273}
896 1274
897static void noinline 1275static void noinline
898loop_init (EV_P_ unsigned int flags) 1276loop_init (EV_P_ unsigned int flags)
899{ 1277{
905 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1283 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
906 have_monotonic = 1; 1284 have_monotonic = 1;
907 } 1285 }
908#endif 1286#endif
909 1287
910 ev_rt_now = ev_time (); 1288 ev_rt_now = ev_time ();
911 mn_now = get_clock (); 1289 mn_now = get_clock ();
912 now_floor = mn_now; 1290 now_floor = mn_now;
913 rtmn_diff = ev_rt_now - mn_now; 1291 rtmn_diff = ev_rt_now - mn_now;
1292
1293 io_blocktime = 0.;
1294 timeout_blocktime = 0.;
1295 backend = 0;
1296 backend_fd = -1;
1297 gotasync = 0;
1298#if EV_USE_INOTIFY
1299 fs_fd = -2;
1300#endif
914 1301
915 /* pid check not overridable via env */ 1302 /* pid check not overridable via env */
916#ifndef _WIN32 1303#ifndef _WIN32
917 if (flags & EVFLAG_FORKCHECK) 1304 if (flags & EVFLAG_FORKCHECK)
918 curpid = getpid (); 1305 curpid = getpid ();
921 if (!(flags & EVFLAG_NOENV) 1308 if (!(flags & EVFLAG_NOENV)
922 && !enable_secure () 1309 && !enable_secure ()
923 && getenv ("LIBEV_FLAGS")) 1310 && getenv ("LIBEV_FLAGS"))
924 flags = atoi (getenv ("LIBEV_FLAGS")); 1311 flags = atoi (getenv ("LIBEV_FLAGS"));
925 1312
926 if (!(flags & 0x0000ffffUL)) 1313 if (!(flags & 0x0000ffffU))
927 flags |= ev_recommended_backends (); 1314 flags |= ev_recommended_backends ();
928
929 backend = 0;
930 backend_fd = -1;
931#if EV_USE_INOTIFY
932 fs_fd = -2;
933#endif
934 1315
935#if EV_USE_PORT 1316#if EV_USE_PORT
936 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1317 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
937#endif 1318#endif
938#if EV_USE_KQUEUE 1319#if EV_USE_KQUEUE
946#endif 1327#endif
947#if EV_USE_SELECT 1328#if EV_USE_SELECT
948 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1329 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
949#endif 1330#endif
950 1331
951 ev_init (&sigev, sigcb); 1332 ev_init (&pipeev, pipecb);
952 ev_set_priority (&sigev, EV_MAXPRI); 1333 ev_set_priority (&pipeev, EV_MAXPRI);
953 } 1334 }
954} 1335}
955 1336
956static void noinline 1337static void noinline
957loop_destroy (EV_P) 1338loop_destroy (EV_P)
958{ 1339{
959 int i; 1340 int i;
1341
1342 if (ev_is_active (&pipeev))
1343 {
1344 ev_ref (EV_A); /* signal watcher */
1345 ev_io_stop (EV_A_ &pipeev);
1346
1347#if EV_USE_EVENTFD
1348 if (evfd >= 0)
1349 close (evfd);
1350#endif
1351
1352 if (evpipe [0] >= 0)
1353 {
1354 close (evpipe [0]);
1355 close (evpipe [1]);
1356 }
1357 }
960 1358
961#if EV_USE_INOTIFY 1359#if EV_USE_INOTIFY
962 if (fs_fd >= 0) 1360 if (fs_fd >= 0)
963 close (fs_fd); 1361 close (fs_fd);
964#endif 1362#endif
981#if EV_USE_SELECT 1379#if EV_USE_SELECT
982 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1380 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
983#endif 1381#endif
984 1382
985 for (i = NUMPRI; i--; ) 1383 for (i = NUMPRI; i--; )
1384 {
986 array_free (pending, [i]); 1385 array_free (pending, [i]);
1386#if EV_IDLE_ENABLE
1387 array_free (idle, [i]);
1388#endif
1389 }
1390
1391 ev_free (anfds); anfdmax = 0;
987 1392
988 /* have to use the microsoft-never-gets-it-right macro */ 1393 /* have to use the microsoft-never-gets-it-right macro */
989 array_free (fdchange, EMPTY0); 1394 array_free (fdchange, EMPTY);
990 array_free (timer, EMPTY0); 1395 array_free (timer, EMPTY);
991#if EV_PERIODIC_ENABLE 1396#if EV_PERIODIC_ENABLE
992 array_free (periodic, EMPTY0); 1397 array_free (periodic, EMPTY);
993#endif 1398#endif
1399#if EV_FORK_ENABLE
994 array_free (idle, EMPTY0); 1400 array_free (fork, EMPTY);
1401#endif
995 array_free (prepare, EMPTY0); 1402 array_free (prepare, EMPTY);
996 array_free (check, EMPTY0); 1403 array_free (check, EMPTY);
1404#if EV_ASYNC_ENABLE
1405 array_free (async, EMPTY);
1406#endif
997 1407
998 backend = 0; 1408 backend = 0;
999} 1409}
1000 1410
1411#if EV_USE_INOTIFY
1001void inline_size infy_fork (EV_P); 1412void inline_size infy_fork (EV_P);
1413#endif
1002 1414
1003void inline_size 1415void inline_size
1004loop_fork (EV_P) 1416loop_fork (EV_P)
1005{ 1417{
1006#if EV_USE_PORT 1418#if EV_USE_PORT
1014#endif 1426#endif
1015#if EV_USE_INOTIFY 1427#if EV_USE_INOTIFY
1016 infy_fork (EV_A); 1428 infy_fork (EV_A);
1017#endif 1429#endif
1018 1430
1019 if (ev_is_active (&sigev)) 1431 if (ev_is_active (&pipeev))
1020 { 1432 {
1021 /* default loop */ 1433 /* this "locks" the handlers against writing to the pipe */
1434 /* while we modify the fd vars */
1435 gotsig = 1;
1436#if EV_ASYNC_ENABLE
1437 gotasync = 1;
1438#endif
1022 1439
1023 ev_ref (EV_A); 1440 ev_ref (EV_A);
1024 ev_io_stop (EV_A_ &sigev); 1441 ev_io_stop (EV_A_ &pipeev);
1442
1443#if EV_USE_EVENTFD
1444 if (evfd >= 0)
1445 close (evfd);
1446#endif
1447
1448 if (evpipe [0] >= 0)
1449 {
1025 close (sigpipe [0]); 1450 close (evpipe [0]);
1026 close (sigpipe [1]); 1451 close (evpipe [1]);
1452 }
1027 1453
1028 while (pipe (sigpipe))
1029 syserr ("(libev) error creating pipe");
1030
1031 siginit (EV_A); 1454 evpipe_init (EV_A);
1455 /* now iterate over everything, in case we missed something */
1456 pipecb (EV_A_ &pipeev, EV_READ);
1032 } 1457 }
1033 1458
1034 postfork = 0; 1459 postfork = 0;
1035} 1460}
1036 1461
1058} 1483}
1059 1484
1060void 1485void
1061ev_loop_fork (EV_P) 1486ev_loop_fork (EV_P)
1062{ 1487{
1063 postfork = 1; 1488 postfork = 1; /* must be in line with ev_default_fork */
1064} 1489}
1065
1066#endif 1490#endif
1067 1491
1068#if EV_MULTIPLICITY 1492#if EV_MULTIPLICITY
1069struct ev_loop * 1493struct ev_loop *
1070ev_default_loop_init (unsigned int flags) 1494ev_default_loop_init (unsigned int flags)
1071#else 1495#else
1072int 1496int
1073ev_default_loop (unsigned int flags) 1497ev_default_loop (unsigned int flags)
1074#endif 1498#endif
1075{ 1499{
1076 if (sigpipe [0] == sigpipe [1])
1077 if (pipe (sigpipe))
1078 return 0;
1079
1080 if (!ev_default_loop_ptr) 1500 if (!ev_default_loop_ptr)
1081 { 1501 {
1082#if EV_MULTIPLICITY 1502#if EV_MULTIPLICITY
1083 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1503 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1084#else 1504#else
1087 1507
1088 loop_init (EV_A_ flags); 1508 loop_init (EV_A_ flags);
1089 1509
1090 if (ev_backend (EV_A)) 1510 if (ev_backend (EV_A))
1091 { 1511 {
1092 siginit (EV_A);
1093
1094#ifndef _WIN32 1512#ifndef _WIN32
1095 ev_signal_init (&childev, childcb, SIGCHLD); 1513 ev_signal_init (&childev, childcb, SIGCHLD);
1096 ev_set_priority (&childev, EV_MAXPRI); 1514 ev_set_priority (&childev, EV_MAXPRI);
1097 ev_signal_start (EV_A_ &childev); 1515 ev_signal_start (EV_A_ &childev);
1098 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1516 ev_unref (EV_A); /* child watcher should not keep loop alive */
1115#ifndef _WIN32 1533#ifndef _WIN32
1116 ev_ref (EV_A); /* child watcher */ 1534 ev_ref (EV_A); /* child watcher */
1117 ev_signal_stop (EV_A_ &childev); 1535 ev_signal_stop (EV_A_ &childev);
1118#endif 1536#endif
1119 1537
1120 ev_ref (EV_A); /* signal watcher */
1121 ev_io_stop (EV_A_ &sigev);
1122
1123 close (sigpipe [0]); sigpipe [0] = 0;
1124 close (sigpipe [1]); sigpipe [1] = 0;
1125
1126 loop_destroy (EV_A); 1538 loop_destroy (EV_A);
1127} 1539}
1128 1540
1129void 1541void
1130ev_default_fork (void) 1542ev_default_fork (void)
1132#if EV_MULTIPLICITY 1544#if EV_MULTIPLICITY
1133 struct ev_loop *loop = ev_default_loop_ptr; 1545 struct ev_loop *loop = ev_default_loop_ptr;
1134#endif 1546#endif
1135 1547
1136 if (backend) 1548 if (backend)
1137 postfork = 1; 1549 postfork = 1; /* must be in line with ev_loop_fork */
1138} 1550}
1139 1551
1140/*****************************************************************************/ 1552/*****************************************************************************/
1141 1553
1142int inline_size 1554void
1143any_pending (EV_P) 1555ev_invoke (EV_P_ void *w, int revents)
1144{ 1556{
1145 int pri; 1557 EV_CB_INVOKE ((W)w, revents);
1146
1147 for (pri = NUMPRI; pri--; )
1148 if (pendingcnt [pri])
1149 return 1;
1150
1151 return 0;
1152} 1558}
1153 1559
1154void inline_speed 1560void inline_speed
1155call_pending (EV_P) 1561call_pending (EV_P)
1156{ 1562{
1169 EV_CB_INVOKE (p->w, p->events); 1575 EV_CB_INVOKE (p->w, p->events);
1170 } 1576 }
1171 } 1577 }
1172} 1578}
1173 1579
1580#if EV_IDLE_ENABLE
1581void inline_size
1582idle_reify (EV_P)
1583{
1584 if (expect_false (idleall))
1585 {
1586 int pri;
1587
1588 for (pri = NUMPRI; pri--; )
1589 {
1590 if (pendingcnt [pri])
1591 break;
1592
1593 if (idlecnt [pri])
1594 {
1595 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1596 break;
1597 }
1598 }
1599 }
1600}
1601#endif
1602
1174void inline_size 1603void inline_size
1175timers_reify (EV_P) 1604timers_reify (EV_P)
1176{ 1605{
1177 while (timercnt && ((WT)timers [0])->at <= mn_now) 1606 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1178 { 1607 {
1179 ev_timer *w = timers [0]; 1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1180 1609
1181 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1182 1611
1183 /* first reschedule or stop timer */ 1612 /* first reschedule or stop timer */
1184 if (w->repeat) 1613 if (w->repeat)
1185 { 1614 {
1615 ev_at (w) += w->repeat;
1616 if (ev_at (w) < mn_now)
1617 ev_at (w) = mn_now;
1618
1186 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1187 1620
1188 ((WT)w)->at += w->repeat; 1621 ANHE_at_set (timers [HEAP0]);
1189 if (((WT)w)->at < mn_now)
1190 ((WT)w)->at = mn_now;
1191
1192 downheap ((WT *)timers, timercnt, 0); 1622 downheap (timers, timercnt, HEAP0);
1193 } 1623 }
1194 else 1624 else
1195 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1196 1626
1197 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1627 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1200 1630
1201#if EV_PERIODIC_ENABLE 1631#if EV_PERIODIC_ENABLE
1202void inline_size 1632void inline_size
1203periodics_reify (EV_P) 1633periodics_reify (EV_P)
1204{ 1634{
1205 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1206 { 1636 {
1207 ev_periodic *w = periodics [0]; 1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1208 1638
1209 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1210 1640
1211 /* first reschedule or stop timer */ 1641 /* first reschedule or stop timer */
1212 if (w->reschedule_cb) 1642 if (w->reschedule_cb)
1213 { 1643 {
1214 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1645
1215 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1647
1648 ANHE_at_set (periodics [HEAP0]);
1216 downheap ((WT *)periodics, periodiccnt, 0); 1649 downheap (periodics, periodiccnt, HEAP0);
1217 } 1650 }
1218 else if (w->interval) 1651 else if (w->interval)
1219 { 1652 {
1220 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1221 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1654 /* if next trigger time is not sufficiently in the future, put it there */
1655 /* this might happen because of floating point inexactness */
1656 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1657 {
1658 ev_at (w) += w->interval;
1659
1660 /* if interval is unreasonably low we might still have a time in the past */
1661 /* so correct this. this will make the periodic very inexact, but the user */
1662 /* has effectively asked to get triggered more often than possible */
1663 if (ev_at (w) < ev_rt_now)
1664 ev_at (w) = ev_rt_now;
1665 }
1666
1667 ANHE_at_set (periodics [HEAP0]);
1222 downheap ((WT *)periodics, periodiccnt, 0); 1668 downheap (periodics, periodiccnt, HEAP0);
1223 } 1669 }
1224 else 1670 else
1225 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1671 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1226 1672
1227 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1673 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1232periodics_reschedule (EV_P) 1678periodics_reschedule (EV_P)
1233{ 1679{
1234 int i; 1680 int i;
1235 1681
1236 /* adjust periodics after time jump */ 1682 /* adjust periodics after time jump */
1683 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1684 {
1685 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1686
1687 if (w->reschedule_cb)
1688 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1689 else if (w->interval)
1690 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1691
1692 ANHE_at_set (periodics [i]);
1693 }
1694
1695 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */
1696 /* also, this is easy and corretc for both 2-heaps and 4-heaps */
1237 for (i = 0; i < periodiccnt; ++i) 1697 for (i = 0; i < periodiccnt; ++i)
1238 { 1698 upheap (periodics, i + HEAP0);
1239 ev_periodic *w = periodics [i]; 1699}
1700#endif
1240 1701
1241 if (w->reschedule_cb) 1702void inline_speed
1242 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1703time_update (EV_P_ ev_tstamp max_block)
1243 else if (w->interval) 1704{
1244 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1705 int i;
1706
1707#if EV_USE_MONOTONIC
1708 if (expect_true (have_monotonic))
1245 } 1709 {
1710 ev_tstamp odiff = rtmn_diff;
1246 1711
1247 /* now rebuild the heap */
1248 for (i = periodiccnt >> 1; i--; )
1249 downheap ((WT *)periodics, periodiccnt, i);
1250}
1251#endif
1252
1253int inline_size
1254time_update_monotonic (EV_P)
1255{
1256 mn_now = get_clock (); 1712 mn_now = get_clock ();
1257 1713
1714 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1715 /* interpolate in the meantime */
1258 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1716 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1259 { 1717 {
1260 ev_rt_now = rtmn_diff + mn_now; 1718 ev_rt_now = rtmn_diff + mn_now;
1261 return 0; 1719 return;
1262 } 1720 }
1263 else 1721
1264 {
1265 now_floor = mn_now; 1722 now_floor = mn_now;
1266 ev_rt_now = ev_time (); 1723 ev_rt_now = ev_time ();
1267 return 1;
1268 }
1269}
1270 1724
1271void inline_size 1725 /* loop a few times, before making important decisions.
1272time_update (EV_P) 1726 * on the choice of "4": one iteration isn't enough,
1273{ 1727 * in case we get preempted during the calls to
1274 int i; 1728 * ev_time and get_clock. a second call is almost guaranteed
1275 1729 * to succeed in that case, though. and looping a few more times
1276#if EV_USE_MONOTONIC 1730 * doesn't hurt either as we only do this on time-jumps or
1277 if (expect_true (have_monotonic)) 1731 * in the unlikely event of having been preempted here.
1278 { 1732 */
1279 if (time_update_monotonic (EV_A)) 1733 for (i = 4; --i; )
1280 { 1734 {
1281 ev_tstamp odiff = rtmn_diff;
1282
1283 /* loop a few times, before making important decisions.
1284 * on the choice of "4": one iteration isn't enough,
1285 * in case we get preempted during the calls to
1286 * ev_time and get_clock. a second call is almost guaranteed
1287 * to succeed in that case, though. and looping a few more times
1288 * doesn't hurt either as we only do this on time-jumps or
1289 * in the unlikely event of having been preempted here.
1290 */
1291 for (i = 4; --i; )
1292 {
1293 rtmn_diff = ev_rt_now - mn_now; 1735 rtmn_diff = ev_rt_now - mn_now;
1294 1736
1295 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1737 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1296 return; /* all is well */ 1738 return; /* all is well */
1297 1739
1298 ev_rt_now = ev_time (); 1740 ev_rt_now = ev_time ();
1299 mn_now = get_clock (); 1741 mn_now = get_clock ();
1300 now_floor = mn_now; 1742 now_floor = mn_now;
1301 } 1743 }
1302 1744
1303# if EV_PERIODIC_ENABLE 1745# if EV_PERIODIC_ENABLE
1304 periodics_reschedule (EV_A); 1746 periodics_reschedule (EV_A);
1305# endif 1747# endif
1306 /* no timer adjustment, as the monotonic clock doesn't jump */ 1748 /* no timer adjustment, as the monotonic clock doesn't jump */
1307 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1749 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1308 }
1309 } 1750 }
1310 else 1751 else
1311#endif 1752#endif
1312 { 1753 {
1313 ev_rt_now = ev_time (); 1754 ev_rt_now = ev_time ();
1314 1755
1315 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1756 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1316 { 1757 {
1317#if EV_PERIODIC_ENABLE 1758#if EV_PERIODIC_ENABLE
1318 periodics_reschedule (EV_A); 1759 periodics_reschedule (EV_A);
1319#endif 1760#endif
1320
1321 /* adjust timers. this is easy, as the offset is the same for all of them */ 1761 /* adjust timers. this is easy, as the offset is the same for all of them */
1322 for (i = 0; i < timercnt; ++i) 1762 for (i = 0; i < timercnt; ++i)
1763 {
1764 ANHE *he = timers + i + HEAP0;
1323 ((WT)timers [i])->at += ev_rt_now - mn_now; 1765 ANHE_w (*he)->at += ev_rt_now - mn_now;
1766 ANHE_at_set (*he);
1767 }
1324 } 1768 }
1325 1769
1326 mn_now = ev_rt_now; 1770 mn_now = ev_rt_now;
1327 } 1771 }
1328} 1772}
1342static int loop_done; 1786static int loop_done;
1343 1787
1344void 1788void
1345ev_loop (EV_P_ int flags) 1789ev_loop (EV_P_ int flags)
1346{ 1790{
1347 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1791 loop_done = EVUNLOOP_CANCEL;
1348 ? EVUNLOOP_ONE
1349 : EVUNLOOP_CANCEL;
1350 1792
1351 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1793 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1352 1794
1353 do 1795 do
1354 { 1796 {
1369 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1811 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1370 call_pending (EV_A); 1812 call_pending (EV_A);
1371 } 1813 }
1372#endif 1814#endif
1373 1815
1374 /* queue check watchers (and execute them) */ 1816 /* queue prepare watchers (and execute them) */
1375 if (expect_false (preparecnt)) 1817 if (expect_false (preparecnt))
1376 { 1818 {
1377 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1819 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1378 call_pending (EV_A); 1820 call_pending (EV_A);
1379 } 1821 }
1388 /* update fd-related kernel structures */ 1830 /* update fd-related kernel structures */
1389 fd_reify (EV_A); 1831 fd_reify (EV_A);
1390 1832
1391 /* calculate blocking time */ 1833 /* calculate blocking time */
1392 { 1834 {
1393 ev_tstamp block; 1835 ev_tstamp waittime = 0.;
1836 ev_tstamp sleeptime = 0.;
1394 1837
1395 if (expect_false (flags & EVLOOP_NONBLOCK || idlecnt || !activecnt)) 1838 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1396 block = 0.; /* do not block at all */
1397 else
1398 { 1839 {
1399 /* update time to cancel out callback processing overhead */ 1840 /* update time to cancel out callback processing overhead */
1400#if EV_USE_MONOTONIC
1401 if (expect_true (have_monotonic))
1402 time_update_monotonic (EV_A); 1841 time_update (EV_A_ 1e100);
1403 else
1404#endif
1405 {
1406 ev_rt_now = ev_time ();
1407 mn_now = ev_rt_now;
1408 }
1409 1842
1410 block = MAX_BLOCKTIME; 1843 waittime = MAX_BLOCKTIME;
1411 1844
1412 if (timercnt) 1845 if (timercnt)
1413 { 1846 {
1414 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1847 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1415 if (block > to) block = to; 1848 if (waittime > to) waittime = to;
1416 } 1849 }
1417 1850
1418#if EV_PERIODIC_ENABLE 1851#if EV_PERIODIC_ENABLE
1419 if (periodiccnt) 1852 if (periodiccnt)
1420 { 1853 {
1421 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1854 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1422 if (block > to) block = to; 1855 if (waittime > to) waittime = to;
1423 } 1856 }
1424#endif 1857#endif
1425 1858
1426 if (expect_false (block < 0.)) block = 0.; 1859 if (expect_false (waittime < timeout_blocktime))
1860 waittime = timeout_blocktime;
1861
1862 sleeptime = waittime - backend_fudge;
1863
1864 if (expect_true (sleeptime > io_blocktime))
1865 sleeptime = io_blocktime;
1866
1867 if (sleeptime)
1868 {
1869 ev_sleep (sleeptime);
1870 waittime -= sleeptime;
1871 }
1427 } 1872 }
1428 1873
1429 ++loop_count; 1874 ++loop_count;
1430 backend_poll (EV_A_ block); 1875 backend_poll (EV_A_ waittime);
1876
1877 /* update ev_rt_now, do magic */
1878 time_update (EV_A_ waittime + sleeptime);
1431 } 1879 }
1432
1433 /* update ev_rt_now, do magic */
1434 time_update (EV_A);
1435 1880
1436 /* queue pending timers and reschedule them */ 1881 /* queue pending timers and reschedule them */
1437 timers_reify (EV_A); /* relative timers called last */ 1882 timers_reify (EV_A); /* relative timers called last */
1438#if EV_PERIODIC_ENABLE 1883#if EV_PERIODIC_ENABLE
1439 periodics_reify (EV_A); /* absolute timers called first */ 1884 periodics_reify (EV_A); /* absolute timers called first */
1440#endif 1885#endif
1441 1886
1887#if EV_IDLE_ENABLE
1442 /* queue idle watchers unless other events are pending */ 1888 /* queue idle watchers unless other events are pending */
1443 if (idlecnt && !any_pending (EV_A)) 1889 idle_reify (EV_A);
1444 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1890#endif
1445 1891
1446 /* queue check watchers, to be executed first */ 1892 /* queue check watchers, to be executed first */
1447 if (expect_false (checkcnt)) 1893 if (expect_false (checkcnt))
1448 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1894 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1449 1895
1450 call_pending (EV_A); 1896 call_pending (EV_A);
1451
1452 } 1897 }
1453 while (expect_true (activecnt && !loop_done)); 1898 while (expect_true (
1899 activecnt
1900 && !loop_done
1901 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1902 ));
1454 1903
1455 if (loop_done == EVUNLOOP_ONE) 1904 if (loop_done == EVUNLOOP_ONE)
1456 loop_done = EVUNLOOP_CANCEL; 1905 loop_done = EVUNLOOP_CANCEL;
1457} 1906}
1458 1907
1485 head = &(*head)->next; 1934 head = &(*head)->next;
1486 } 1935 }
1487} 1936}
1488 1937
1489void inline_speed 1938void inline_speed
1490ev_clear_pending (EV_P_ W w) 1939clear_pending (EV_P_ W w)
1491{ 1940{
1492 if (w->pending) 1941 if (w->pending)
1493 { 1942 {
1494 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1943 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1495 w->pending = 0; 1944 w->pending = 0;
1496 } 1945 }
1497} 1946}
1498 1947
1948int
1949ev_clear_pending (EV_P_ void *w)
1950{
1951 W w_ = (W)w;
1952 int pending = w_->pending;
1953
1954 if (expect_true (pending))
1955 {
1956 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1957 w_->pending = 0;
1958 p->w = 0;
1959 return p->events;
1960 }
1961 else
1962 return 0;
1963}
1964
1965void inline_size
1966pri_adjust (EV_P_ W w)
1967{
1968 int pri = w->priority;
1969 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1970 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1971 w->priority = pri;
1972}
1973
1499void inline_speed 1974void inline_speed
1500ev_start (EV_P_ W w, int active) 1975ev_start (EV_P_ W w, int active)
1501{ 1976{
1502 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1977 pri_adjust (EV_A_ w);
1503 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1504
1505 w->active = active; 1978 w->active = active;
1506 ev_ref (EV_A); 1979 ev_ref (EV_A);
1507} 1980}
1508 1981
1509void inline_size 1982void inline_size
1513 w->active = 0; 1986 w->active = 0;
1514} 1987}
1515 1988
1516/*****************************************************************************/ 1989/*****************************************************************************/
1517 1990
1518void 1991void noinline
1519ev_io_start (EV_P_ ev_io *w) 1992ev_io_start (EV_P_ ev_io *w)
1520{ 1993{
1521 int fd = w->fd; 1994 int fd = w->fd;
1522 1995
1523 if (expect_false (ev_is_active (w))) 1996 if (expect_false (ev_is_active (w)))
1525 1998
1526 assert (("ev_io_start called with negative fd", fd >= 0)); 1999 assert (("ev_io_start called with negative fd", fd >= 0));
1527 2000
1528 ev_start (EV_A_ (W)w, 1); 2001 ev_start (EV_A_ (W)w, 1);
1529 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2002 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1530 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2003 wlist_add (&anfds[fd].head, (WL)w);
1531 2004
1532 fd_change (EV_A_ fd); 2005 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
2006 w->events &= ~EV_IOFDSET;
1533} 2007}
1534 2008
1535void 2009void noinline
1536ev_io_stop (EV_P_ ev_io *w) 2010ev_io_stop (EV_P_ ev_io *w)
1537{ 2011{
1538 ev_clear_pending (EV_A_ (W)w); 2012 clear_pending (EV_A_ (W)w);
1539 if (expect_false (!ev_is_active (w))) 2013 if (expect_false (!ev_is_active (w)))
1540 return; 2014 return;
1541 2015
1542 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2016 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1543 2017
1544 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2018 wlist_del (&anfds[w->fd].head, (WL)w);
1545 ev_stop (EV_A_ (W)w); 2019 ev_stop (EV_A_ (W)w);
1546 2020
1547 fd_change (EV_A_ w->fd); 2021 fd_change (EV_A_ w->fd, 1);
1548} 2022}
1549 2023
1550void 2024void noinline
1551ev_timer_start (EV_P_ ev_timer *w) 2025ev_timer_start (EV_P_ ev_timer *w)
1552{ 2026{
1553 if (expect_false (ev_is_active (w))) 2027 if (expect_false (ev_is_active (w)))
1554 return; 2028 return;
1555 2029
1556 ((WT)w)->at += mn_now; 2030 ev_at (w) += mn_now;
1557 2031
1558 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2032 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1559 2033
1560 ev_start (EV_A_ (W)w, ++timercnt); 2034 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1561 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2035 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1562 timers [timercnt - 1] = w; 2036 ANHE_w (timers [ev_active (w)]) = (WT)w;
1563 upheap ((WT *)timers, timercnt - 1); 2037 ANHE_at_set (timers [ev_active (w)]);
2038 upheap (timers, ev_active (w));
1564 2039
1565 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2040 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1566} 2041}
1567 2042
1568void 2043void noinline
1569ev_timer_stop (EV_P_ ev_timer *w) 2044ev_timer_stop (EV_P_ ev_timer *w)
1570{ 2045{
1571 ev_clear_pending (EV_A_ (W)w); 2046 clear_pending (EV_A_ (W)w);
1572 if (expect_false (!ev_is_active (w))) 2047 if (expect_false (!ev_is_active (w)))
1573 return; 2048 return;
1574 2049
1575 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1576
1577 { 2050 {
1578 int active = ((W)w)->active; 2051 int active = ev_active (w);
1579 2052
2053 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2054
1580 if (expect_true (--active < --timercnt)) 2055 if (expect_true (active < timercnt + HEAP0 - 1))
1581 { 2056 {
1582 timers [active] = timers [timercnt]; 2057 timers [active] = timers [timercnt + HEAP0 - 1];
1583 adjustheap ((WT *)timers, timercnt, active); 2058 adjustheap (timers, timercnt, active);
1584 } 2059 }
2060
2061 --timercnt;
1585 } 2062 }
1586 2063
1587 ((WT)w)->at -= mn_now; 2064 ev_at (w) -= mn_now;
1588 2065
1589 ev_stop (EV_A_ (W)w); 2066 ev_stop (EV_A_ (W)w);
1590} 2067}
1591 2068
1592void 2069void noinline
1593ev_timer_again (EV_P_ ev_timer *w) 2070ev_timer_again (EV_P_ ev_timer *w)
1594{ 2071{
1595 if (ev_is_active (w)) 2072 if (ev_is_active (w))
1596 { 2073 {
1597 if (w->repeat) 2074 if (w->repeat)
1598 { 2075 {
1599 ((WT)w)->at = mn_now + w->repeat; 2076 ev_at (w) = mn_now + w->repeat;
2077 ANHE_at_set (timers [ev_active (w)]);
1600 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2078 adjustheap (timers, timercnt, ev_active (w));
1601 } 2079 }
1602 else 2080 else
1603 ev_timer_stop (EV_A_ w); 2081 ev_timer_stop (EV_A_ w);
1604 } 2082 }
1605 else if (w->repeat) 2083 else if (w->repeat)
1606 { 2084 {
1607 w->at = w->repeat; 2085 ev_at (w) = w->repeat;
1608 ev_timer_start (EV_A_ w); 2086 ev_timer_start (EV_A_ w);
1609 } 2087 }
1610} 2088}
1611 2089
1612#if EV_PERIODIC_ENABLE 2090#if EV_PERIODIC_ENABLE
1613void 2091void noinline
1614ev_periodic_start (EV_P_ ev_periodic *w) 2092ev_periodic_start (EV_P_ ev_periodic *w)
1615{ 2093{
1616 if (expect_false (ev_is_active (w))) 2094 if (expect_false (ev_is_active (w)))
1617 return; 2095 return;
1618 2096
1619 if (w->reschedule_cb) 2097 if (w->reschedule_cb)
1620 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2098 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1621 else if (w->interval) 2099 else if (w->interval)
1622 { 2100 {
1623 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2101 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1624 /* this formula differs from the one in periodic_reify because we do not always round up */ 2102 /* this formula differs from the one in periodic_reify because we do not always round up */
1625 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2103 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1626 } 2104 }
2105 else
2106 ev_at (w) = w->offset;
1627 2107
1628 ev_start (EV_A_ (W)w, ++periodiccnt); 2108 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1629 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2109 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1630 periodics [periodiccnt - 1] = w; 2110 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1631 upheap ((WT *)periodics, periodiccnt - 1); 2111 ANHE_at_set (periodics [ev_active (w)]);
2112 upheap (periodics, ev_active (w));
1632 2113
1633 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2114 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1634} 2115}
1635 2116
1636void 2117void noinline
1637ev_periodic_stop (EV_P_ ev_periodic *w) 2118ev_periodic_stop (EV_P_ ev_periodic *w)
1638{ 2119{
1639 ev_clear_pending (EV_A_ (W)w); 2120 clear_pending (EV_A_ (W)w);
1640 if (expect_false (!ev_is_active (w))) 2121 if (expect_false (!ev_is_active (w)))
1641 return; 2122 return;
1642 2123
1643 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1644
1645 { 2124 {
1646 int active = ((W)w)->active; 2125 int active = ev_active (w);
1647 2126
2127 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2128
1648 if (expect_true (--active < --periodiccnt)) 2129 if (expect_true (active < periodiccnt + HEAP0 - 1))
1649 { 2130 {
1650 periodics [active] = periodics [periodiccnt]; 2131 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1651 adjustheap ((WT *)periodics, periodiccnt, active); 2132 adjustheap (periodics, periodiccnt, active);
1652 } 2133 }
2134
2135 --periodiccnt;
1653 } 2136 }
1654 2137
1655 ev_stop (EV_A_ (W)w); 2138 ev_stop (EV_A_ (W)w);
1656} 2139}
1657 2140
1658void 2141void noinline
1659ev_periodic_again (EV_P_ ev_periodic *w) 2142ev_periodic_again (EV_P_ ev_periodic *w)
1660{ 2143{
1661 /* TODO: use adjustheap and recalculation */ 2144 /* TODO: use adjustheap and recalculation */
1662 ev_periodic_stop (EV_A_ w); 2145 ev_periodic_stop (EV_A_ w);
1663 ev_periodic_start (EV_A_ w); 2146 ev_periodic_start (EV_A_ w);
1666 2149
1667#ifndef SA_RESTART 2150#ifndef SA_RESTART
1668# define SA_RESTART 0 2151# define SA_RESTART 0
1669#endif 2152#endif
1670 2153
1671void 2154void noinline
1672ev_signal_start (EV_P_ ev_signal *w) 2155ev_signal_start (EV_P_ ev_signal *w)
1673{ 2156{
1674#if EV_MULTIPLICITY 2157#if EV_MULTIPLICITY
1675 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2158 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1676#endif 2159#endif
1677 if (expect_false (ev_is_active (w))) 2160 if (expect_false (ev_is_active (w)))
1678 return; 2161 return;
1679 2162
1680 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2163 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1681 2164
2165 evpipe_init (EV_A);
2166
2167 {
2168#ifndef _WIN32
2169 sigset_t full, prev;
2170 sigfillset (&full);
2171 sigprocmask (SIG_SETMASK, &full, &prev);
2172#endif
2173
2174 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2175
2176#ifndef _WIN32
2177 sigprocmask (SIG_SETMASK, &prev, 0);
2178#endif
2179 }
2180
1682 ev_start (EV_A_ (W)w, 1); 2181 ev_start (EV_A_ (W)w, 1);
1683 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1684 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2182 wlist_add (&signals [w->signum - 1].head, (WL)w);
1685 2183
1686 if (!((WL)w)->next) 2184 if (!((WL)w)->next)
1687 { 2185 {
1688#if _WIN32 2186#if _WIN32
1689 signal (w->signum, sighandler); 2187 signal (w->signum, ev_sighandler);
1690#else 2188#else
1691 struct sigaction sa; 2189 struct sigaction sa;
1692 sa.sa_handler = sighandler; 2190 sa.sa_handler = ev_sighandler;
1693 sigfillset (&sa.sa_mask); 2191 sigfillset (&sa.sa_mask);
1694 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2192 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1695 sigaction (w->signum, &sa, 0); 2193 sigaction (w->signum, &sa, 0);
1696#endif 2194#endif
1697 } 2195 }
1698} 2196}
1699 2197
1700void 2198void noinline
1701ev_signal_stop (EV_P_ ev_signal *w) 2199ev_signal_stop (EV_P_ ev_signal *w)
1702{ 2200{
1703 ev_clear_pending (EV_A_ (W)w); 2201 clear_pending (EV_A_ (W)w);
1704 if (expect_false (!ev_is_active (w))) 2202 if (expect_false (!ev_is_active (w)))
1705 return; 2203 return;
1706 2204
1707 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2205 wlist_del (&signals [w->signum - 1].head, (WL)w);
1708 ev_stop (EV_A_ (W)w); 2206 ev_stop (EV_A_ (W)w);
1709 2207
1710 if (!signals [w->signum - 1].head) 2208 if (!signals [w->signum - 1].head)
1711 signal (w->signum, SIG_DFL); 2209 signal (w->signum, SIG_DFL);
1712} 2210}
1719#endif 2217#endif
1720 if (expect_false (ev_is_active (w))) 2218 if (expect_false (ev_is_active (w)))
1721 return; 2219 return;
1722 2220
1723 ev_start (EV_A_ (W)w, 1); 2221 ev_start (EV_A_ (W)w, 1);
1724 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2222 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1725} 2223}
1726 2224
1727void 2225void
1728ev_child_stop (EV_P_ ev_child *w) 2226ev_child_stop (EV_P_ ev_child *w)
1729{ 2227{
1730 ev_clear_pending (EV_A_ (W)w); 2228 clear_pending (EV_A_ (W)w);
1731 if (expect_false (!ev_is_active (w))) 2229 if (expect_false (!ev_is_active (w)))
1732 return; 2230 return;
1733 2231
1734 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2232 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1735 ev_stop (EV_A_ (W)w); 2233 ev_stop (EV_A_ (W)w);
1736} 2234}
1737 2235
1738#if EV_STAT_ENABLE 2236#if EV_STAT_ENABLE
1739 2237
1758 if (w->wd < 0) 2256 if (w->wd < 0)
1759 { 2257 {
1760 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2258 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1761 2259
1762 /* monitor some parent directory for speedup hints */ 2260 /* monitor some parent directory for speedup hints */
2261 /* note that exceeding the hardcoded limit is not a correctness issue, */
2262 /* but an efficiency issue only */
1763 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2263 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1764 { 2264 {
1765 char path [4096]; 2265 char path [4096];
1766 strcpy (path, w->path); 2266 strcpy (path, w->path);
1767 2267
1971} 2471}
1972 2472
1973void 2473void
1974ev_stat_stop (EV_P_ ev_stat *w) 2474ev_stat_stop (EV_P_ ev_stat *w)
1975{ 2475{
1976 ev_clear_pending (EV_A_ (W)w); 2476 clear_pending (EV_A_ (W)w);
1977 if (expect_false (!ev_is_active (w))) 2477 if (expect_false (!ev_is_active (w)))
1978 return; 2478 return;
1979 2479
1980#if EV_USE_INOTIFY 2480#if EV_USE_INOTIFY
1981 infy_del (EV_A_ w); 2481 infy_del (EV_A_ w);
1984 2484
1985 ev_stop (EV_A_ (W)w); 2485 ev_stop (EV_A_ (W)w);
1986} 2486}
1987#endif 2487#endif
1988 2488
2489#if EV_IDLE_ENABLE
1989void 2490void
1990ev_idle_start (EV_P_ ev_idle *w) 2491ev_idle_start (EV_P_ ev_idle *w)
1991{ 2492{
1992 if (expect_false (ev_is_active (w))) 2493 if (expect_false (ev_is_active (w)))
1993 return; 2494 return;
1994 2495
2496 pri_adjust (EV_A_ (W)w);
2497
2498 {
2499 int active = ++idlecnt [ABSPRI (w)];
2500
2501 ++idleall;
1995 ev_start (EV_A_ (W)w, ++idlecnt); 2502 ev_start (EV_A_ (W)w, active);
2503
1996 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2504 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1997 idles [idlecnt - 1] = w; 2505 idles [ABSPRI (w)][active - 1] = w;
2506 }
1998} 2507}
1999 2508
2000void 2509void
2001ev_idle_stop (EV_P_ ev_idle *w) 2510ev_idle_stop (EV_P_ ev_idle *w)
2002{ 2511{
2003 ev_clear_pending (EV_A_ (W)w); 2512 clear_pending (EV_A_ (W)w);
2004 if (expect_false (!ev_is_active (w))) 2513 if (expect_false (!ev_is_active (w)))
2005 return; 2514 return;
2006 2515
2007 { 2516 {
2008 int active = ((W)w)->active; 2517 int active = ev_active (w);
2009 idles [active - 1] = idles [--idlecnt]; 2518
2010 ((W)idles [active - 1])->active = active; 2519 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2520 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2521
2522 ev_stop (EV_A_ (W)w);
2523 --idleall;
2011 } 2524 }
2012
2013 ev_stop (EV_A_ (W)w);
2014} 2525}
2526#endif
2015 2527
2016void 2528void
2017ev_prepare_start (EV_P_ ev_prepare *w) 2529ev_prepare_start (EV_P_ ev_prepare *w)
2018{ 2530{
2019 if (expect_false (ev_is_active (w))) 2531 if (expect_false (ev_is_active (w)))
2025} 2537}
2026 2538
2027void 2539void
2028ev_prepare_stop (EV_P_ ev_prepare *w) 2540ev_prepare_stop (EV_P_ ev_prepare *w)
2029{ 2541{
2030 ev_clear_pending (EV_A_ (W)w); 2542 clear_pending (EV_A_ (W)w);
2031 if (expect_false (!ev_is_active (w))) 2543 if (expect_false (!ev_is_active (w)))
2032 return; 2544 return;
2033 2545
2034 { 2546 {
2035 int active = ((W)w)->active; 2547 int active = ev_active (w);
2548
2036 prepares [active - 1] = prepares [--preparecnt]; 2549 prepares [active - 1] = prepares [--preparecnt];
2037 ((W)prepares [active - 1])->active = active; 2550 ev_active (prepares [active - 1]) = active;
2038 } 2551 }
2039 2552
2040 ev_stop (EV_A_ (W)w); 2553 ev_stop (EV_A_ (W)w);
2041} 2554}
2042 2555
2052} 2565}
2053 2566
2054void 2567void
2055ev_check_stop (EV_P_ ev_check *w) 2568ev_check_stop (EV_P_ ev_check *w)
2056{ 2569{
2057 ev_clear_pending (EV_A_ (W)w); 2570 clear_pending (EV_A_ (W)w);
2058 if (expect_false (!ev_is_active (w))) 2571 if (expect_false (!ev_is_active (w)))
2059 return; 2572 return;
2060 2573
2061 { 2574 {
2062 int active = ((W)w)->active; 2575 int active = ev_active (w);
2576
2063 checks [active - 1] = checks [--checkcnt]; 2577 checks [active - 1] = checks [--checkcnt];
2064 ((W)checks [active - 1])->active = active; 2578 ev_active (checks [active - 1]) = active;
2065 } 2579 }
2066 2580
2067 ev_stop (EV_A_ (W)w); 2581 ev_stop (EV_A_ (W)w);
2068} 2582}
2069 2583
2070#if EV_EMBED_ENABLE 2584#if EV_EMBED_ENABLE
2071void noinline 2585void noinline
2072ev_embed_sweep (EV_P_ ev_embed *w) 2586ev_embed_sweep (EV_P_ ev_embed *w)
2073{ 2587{
2074 ev_loop (w->loop, EVLOOP_NONBLOCK); 2588 ev_loop (w->other, EVLOOP_NONBLOCK);
2075} 2589}
2076 2590
2077static void 2591static void
2078embed_cb (EV_P_ ev_io *io, int revents) 2592embed_io_cb (EV_P_ ev_io *io, int revents)
2079{ 2593{
2080 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2594 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2081 2595
2082 if (ev_cb (w)) 2596 if (ev_cb (w))
2083 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2597 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2084 else 2598 else
2085 ev_embed_sweep (loop, w); 2599 ev_loop (w->other, EVLOOP_NONBLOCK);
2086} 2600}
2601
2602static void
2603embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2604{
2605 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2606
2607 {
2608 struct ev_loop *loop = w->other;
2609
2610 while (fdchangecnt)
2611 {
2612 fd_reify (EV_A);
2613 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2614 }
2615 }
2616}
2617
2618#if 0
2619static void
2620embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2621{
2622 ev_idle_stop (EV_A_ idle);
2623}
2624#endif
2087 2625
2088void 2626void
2089ev_embed_start (EV_P_ ev_embed *w) 2627ev_embed_start (EV_P_ ev_embed *w)
2090{ 2628{
2091 if (expect_false (ev_is_active (w))) 2629 if (expect_false (ev_is_active (w)))
2092 return; 2630 return;
2093 2631
2094 { 2632 {
2095 struct ev_loop *loop = w->loop; 2633 struct ev_loop *loop = w->other;
2096 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2634 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2097 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2635 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2098 } 2636 }
2099 2637
2100 ev_set_priority (&w->io, ev_priority (w)); 2638 ev_set_priority (&w->io, ev_priority (w));
2101 ev_io_start (EV_A_ &w->io); 2639 ev_io_start (EV_A_ &w->io);
2102 2640
2641 ev_prepare_init (&w->prepare, embed_prepare_cb);
2642 ev_set_priority (&w->prepare, EV_MINPRI);
2643 ev_prepare_start (EV_A_ &w->prepare);
2644
2645 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2646
2103 ev_start (EV_A_ (W)w, 1); 2647 ev_start (EV_A_ (W)w, 1);
2104} 2648}
2105 2649
2106void 2650void
2107ev_embed_stop (EV_P_ ev_embed *w) 2651ev_embed_stop (EV_P_ ev_embed *w)
2108{ 2652{
2109 ev_clear_pending (EV_A_ (W)w); 2653 clear_pending (EV_A_ (W)w);
2110 if (expect_false (!ev_is_active (w))) 2654 if (expect_false (!ev_is_active (w)))
2111 return; 2655 return;
2112 2656
2113 ev_io_stop (EV_A_ &w->io); 2657 ev_io_stop (EV_A_ &w->io);
2658 ev_prepare_stop (EV_A_ &w->prepare);
2114 2659
2115 ev_stop (EV_A_ (W)w); 2660 ev_stop (EV_A_ (W)w);
2116} 2661}
2117#endif 2662#endif
2118 2663
2129} 2674}
2130 2675
2131void 2676void
2132ev_fork_stop (EV_P_ ev_fork *w) 2677ev_fork_stop (EV_P_ ev_fork *w)
2133{ 2678{
2134 ev_clear_pending (EV_A_ (W)w); 2679 clear_pending (EV_A_ (W)w);
2135 if (expect_false (!ev_is_active (w))) 2680 if (expect_false (!ev_is_active (w)))
2136 return; 2681 return;
2137 2682
2138 { 2683 {
2139 int active = ((W)w)->active; 2684 int active = ev_active (w);
2685
2140 forks [active - 1] = forks [--forkcnt]; 2686 forks [active - 1] = forks [--forkcnt];
2141 ((W)forks [active - 1])->active = active; 2687 ev_active (forks [active - 1]) = active;
2142 } 2688 }
2143 2689
2144 ev_stop (EV_A_ (W)w); 2690 ev_stop (EV_A_ (W)w);
2691}
2692#endif
2693
2694#if EV_ASYNC_ENABLE
2695void
2696ev_async_start (EV_P_ ev_async *w)
2697{
2698 if (expect_false (ev_is_active (w)))
2699 return;
2700
2701 evpipe_init (EV_A);
2702
2703 ev_start (EV_A_ (W)w, ++asynccnt);
2704 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2705 asyncs [asynccnt - 1] = w;
2706}
2707
2708void
2709ev_async_stop (EV_P_ ev_async *w)
2710{
2711 clear_pending (EV_A_ (W)w);
2712 if (expect_false (!ev_is_active (w)))
2713 return;
2714
2715 {
2716 int active = ev_active (w);
2717
2718 asyncs [active - 1] = asyncs [--asynccnt];
2719 ev_active (asyncs [active - 1]) = active;
2720 }
2721
2722 ev_stop (EV_A_ (W)w);
2723}
2724
2725void
2726ev_async_send (EV_P_ ev_async *w)
2727{
2728 w->sent = 1;
2729 evpipe_write (EV_A_ &gotasync);
2145} 2730}
2146#endif 2731#endif
2147 2732
2148/*****************************************************************************/ 2733/*****************************************************************************/
2149 2734
2207 ev_timer_set (&once->to, timeout, 0.); 2792 ev_timer_set (&once->to, timeout, 0.);
2208 ev_timer_start (EV_A_ &once->to); 2793 ev_timer_start (EV_A_ &once->to);
2209 } 2794 }
2210} 2795}
2211 2796
2797#if EV_MULTIPLICITY
2798 #include "ev_wrap.h"
2799#endif
2800
2212#ifdef __cplusplus 2801#ifdef __cplusplus
2213} 2802}
2214#endif 2803#endif
2215 2804

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines