ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.162 by root, Mon Dec 3 13:41:24 2007 UTC vs.
Revision 1.294 by root, Wed Jul 8 02:46:05 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
56# endif 87# endif
57# endif 88# endif
58 89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
107#endif 146#endif
108 147
109#include <math.h> 148#include <math.h>
110#include <stdlib.h> 149#include <stdlib.h>
111#include <fcntl.h> 150#include <fcntl.h>
129#ifndef _WIN32 168#ifndef _WIN32
130# include <sys/time.h> 169# include <sys/time.h>
131# include <sys/wait.h> 170# include <sys/wait.h>
132# include <unistd.h> 171# include <unistd.h>
133#else 172#else
173# include <io.h>
134# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 175# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
138# endif 178# endif
139#endif 179#endif
140 180
141/**/ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
142 190
143#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
144# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
145#endif 197#endif
146 198
147#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
201#endif
202
203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
207# define EV_USE_NANOSLEEP 0
208# endif
149#endif 209#endif
150 210
151#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
153#endif 213#endif
159# define EV_USE_POLL 1 219# define EV_USE_POLL 1
160# endif 220# endif
161#endif 221#endif
162 222
163#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
164# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
228# endif
165#endif 229#endif
166 230
167#ifndef EV_USE_KQUEUE 231#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 232# define EV_USE_KQUEUE 0
169#endif 233#endif
171#ifndef EV_USE_PORT 235#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 236# define EV_USE_PORT 0
173#endif 237#endif
174 238
175#ifndef EV_USE_INOTIFY 239#ifndef EV_USE_INOTIFY
240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
241# define EV_USE_INOTIFY 1
242# else
176# define EV_USE_INOTIFY 0 243# define EV_USE_INOTIFY 0
244# endif
177#endif 245#endif
178 246
179#ifndef EV_PID_HASHSIZE 247#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 248# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 249# define EV_PID_HASHSIZE 1
190# else 258# else
191# define EV_INOTIFY_HASHSIZE 16 259# define EV_INOTIFY_HASHSIZE 16
192# endif 260# endif
193#endif 261#endif
194 262
195/**/ 263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 304
197#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
200#endif 308#endif
202#ifndef CLOCK_REALTIME 310#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 311# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 312# define EV_USE_REALTIME 0
205#endif 313#endif
206 314
315#if !EV_STAT_ENABLE
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318#endif
319
320#if !EV_USE_NANOSLEEP
321# ifndef _WIN32
322# include <sys/select.h>
323# endif
324#endif
325
326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
335#endif
336
207#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 338# include <winsock.h>
209#endif 339#endif
210 340
211#if !EV_STAT_ENABLE 341#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
213#endif 346# endif
214 347int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 348# ifdef __cplusplus
216# include <sys/inotify.h> 349}
350# endif
217#endif 351#endif
218 352
219/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
360
361/*
362 * This is used to avoid floating point rounding problems.
363 * It is added to ev_rt_now when scheduling periodics
364 * to ensure progress, time-wise, even when rounding
365 * errors are against us.
366 * This value is good at least till the year 4000.
367 * Better solutions welcome.
368 */
369#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 370
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 371#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 372#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 373/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 374
225#if __GNUC__ >= 3 375#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 376# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 377# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 378#else
236# define expect(expr,value) (expr) 379# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 380# define noinline
381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
382# define inline
383# endif
240#endif 384#endif
241 385
242#define expect_false(expr) expect ((expr) != 0, 0) 386#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 387#define expect_true(expr) expect ((expr) != 0, 1)
388#define inline_size static inline
389
390#if EV_MINIMAL
391# define inline_speed static noinline
392#else
393# define inline_speed static inline
394#endif
244 395
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 397#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 398
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 399#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 400#define EMPTY2(a,b) /* used to suppress some warnings */
250 401
251typedef ev_watcher *W; 402typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 403typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 404typedef ev_watcher_time *WT;
254 405
406#define ev_active(w) ((W)(w))->active
407#define ev_at(w) ((WT)(w))->at
408
409#if EV_USE_REALTIME
410/* sig_atomic_t is used to avoid per-thread variables or locking but still */
411/* giving it a reasonably high chance of working on typical architetcures */
412static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
413#endif
414
415#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 416static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
417#endif
256 418
257#ifdef _WIN32 419#ifdef _WIN32
258# include "ev_win32.c" 420# include "ev_win32.c"
259#endif 421#endif
260 422
267{ 429{
268 syserr_cb = cb; 430 syserr_cb = cb;
269} 431}
270 432
271static void noinline 433static void noinline
272syserr (const char *msg) 434ev_syserr (const char *msg)
273{ 435{
274 if (!msg) 436 if (!msg)
275 msg = "(libev) system error"; 437 msg = "(libev) system error";
276 438
277 if (syserr_cb) 439 if (syserr_cb)
281 perror (msg); 443 perror (msg);
282 abort (); 444 abort ();
283 } 445 }
284} 446}
285 447
448static void *
449ev_realloc_emul (void *ptr, long size)
450{
451 /* some systems, notably openbsd and darwin, fail to properly
452 * implement realloc (x, 0) (as required by both ansi c-98 and
453 * the single unix specification, so work around them here.
454 */
455
456 if (size)
457 return realloc (ptr, size);
458
459 free (ptr);
460 return 0;
461}
462
286static void *(*alloc)(void *ptr, long size); 463static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 464
288void 465void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 466ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 467{
291 alloc = cb; 468 alloc = cb;
292} 469}
293 470
294inline_speed void * 471inline_speed void *
295ev_realloc (void *ptr, long size) 472ev_realloc (void *ptr, long size)
296{ 473{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 474 ptr = alloc (ptr, size);
298 475
299 if (!ptr && size) 476 if (!ptr && size)
300 { 477 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 478 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 479 abort ();
308#define ev_malloc(size) ev_realloc (0, (size)) 485#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 486#define ev_free(ptr) ev_realloc ((ptr), 0)
310 487
311/*****************************************************************************/ 488/*****************************************************************************/
312 489
490/* file descriptor info structure */
313typedef struct 491typedef struct
314{ 492{
315 WL head; 493 WL head;
316 unsigned char events; 494 unsigned char events; /* the events watched for */
495 unsigned char reify; /* flag set when this ANFD needs reification */
496 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 497 unsigned char unused;
498#if EV_USE_EPOLL
499 unsigned int egen; /* generation counter to counter epoll bugs */
500#endif
318#if EV_SELECT_IS_WINSOCKET 501#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 502 SOCKET handle;
320#endif 503#endif
321} ANFD; 504} ANFD;
322 505
506/* stores the pending event set for a given watcher */
323typedef struct 507typedef struct
324{ 508{
325 W w; 509 W w;
326 int events; 510 int events; /* the pending event set for the given watcher */
327} ANPENDING; 511} ANPENDING;
328 512
329#if EV_USE_INOTIFY 513#if EV_USE_INOTIFY
514/* hash table entry per inotify-id */
330typedef struct 515typedef struct
331{ 516{
332 WL head; 517 WL head;
333} ANFS; 518} ANFS;
519#endif
520
521/* Heap Entry */
522#if EV_HEAP_CACHE_AT
523 /* a heap element */
524 typedef struct {
525 ev_tstamp at;
526 WT w;
527 } ANHE;
528
529 #define ANHE_w(he) (he).w /* access watcher, read-write */
530 #define ANHE_at(he) (he).at /* access cached at, read-only */
531 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
532#else
533 /* a heap element */
534 typedef WT ANHE;
535
536 #define ANHE_w(he) (he)
537 #define ANHE_at(he) (he)->at
538 #define ANHE_at_cache(he)
334#endif 539#endif
335 540
336#if EV_MULTIPLICITY 541#if EV_MULTIPLICITY
337 542
338 struct ev_loop 543 struct ev_loop
359 564
360#endif 565#endif
361 566
362/*****************************************************************************/ 567/*****************************************************************************/
363 568
569#ifndef EV_HAVE_EV_TIME
364ev_tstamp 570ev_tstamp
365ev_time (void) 571ev_time (void)
366{ 572{
367#if EV_USE_REALTIME 573#if EV_USE_REALTIME
574 if (expect_true (have_realtime))
575 {
368 struct timespec ts; 576 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 577 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 578 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 579 }
580#endif
581
372 struct timeval tv; 582 struct timeval tv;
373 gettimeofday (&tv, 0); 583 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 584 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 585}
586#endif
377 587
378ev_tstamp inline_size 588inline_size ev_tstamp
379get_clock (void) 589get_clock (void)
380{ 590{
381#if EV_USE_MONOTONIC 591#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 592 if (expect_true (have_monotonic))
383 { 593 {
396{ 606{
397 return ev_rt_now; 607 return ev_rt_now;
398} 608}
399#endif 609#endif
400 610
401#define array_roundsize(type,n) (((n) | 4) & ~3) 611void
612ev_sleep (ev_tstamp delay)
613{
614 if (delay > 0.)
615 {
616#if EV_USE_NANOSLEEP
617 struct timespec ts;
618
619 ts.tv_sec = (time_t)delay;
620 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
621
622 nanosleep (&ts, 0);
623#elif defined(_WIN32)
624 Sleep ((unsigned long)(delay * 1e3));
625#else
626 struct timeval tv;
627
628 tv.tv_sec = (time_t)delay;
629 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
630
631 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
632 /* somehting not guaranteed by newer posix versions, but guaranteed */
633 /* by older ones */
634 select (0, 0, 0, 0, &tv);
635#endif
636 }
637}
638
639/*****************************************************************************/
640
641#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
642
643/* find a suitable new size for the given array, */
644/* hopefully by rounding to a ncie-to-malloc size */
645inline_size int
646array_nextsize (int elem, int cur, int cnt)
647{
648 int ncur = cur + 1;
649
650 do
651 ncur <<= 1;
652 while (cnt > ncur);
653
654 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
655 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
656 {
657 ncur *= elem;
658 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
659 ncur = ncur - sizeof (void *) * 4;
660 ncur /= elem;
661 }
662
663 return ncur;
664}
665
666static noinline void *
667array_realloc (int elem, void *base, int *cur, int cnt)
668{
669 *cur = array_nextsize (elem, *cur, cnt);
670 return ev_realloc (base, elem * *cur);
671}
672
673#define array_init_zero(base,count) \
674 memset ((void *)(base), 0, sizeof (*(base)) * (count))
402 675
403#define array_needsize(type,base,cur,cnt,init) \ 676#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 677 if (expect_false ((cnt) > (cur))) \
405 { \ 678 { \
406 int newcnt = cur; \ 679 int ocur_ = (cur); \
407 do \ 680 (base) = (type *)array_realloc \
408 { \ 681 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 682 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 683 }
417 684
685#if 0
418#define array_slim(type,stem) \ 686#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 687 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 688 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 689 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 690 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 691 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 692 }
693#endif
425 694
426#define array_free(stem, idx) \ 695#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 696 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
428 697
429/*****************************************************************************/ 698/*****************************************************************************/
699
700/* dummy callback for pending events */
701static void noinline
702pendingcb (EV_P_ ev_prepare *w, int revents)
703{
704}
430 705
431void noinline 706void noinline
432ev_feed_event (EV_P_ void *w, int revents) 707ev_feed_event (EV_P_ void *w, int revents)
433{ 708{
434 W w_ = (W)w; 709 W w_ = (W)w;
710 int pri = ABSPRI (w_);
435 711
436 if (expect_false (w_->pending)) 712 if (expect_false (w_->pending))
713 pendings [pri][w_->pending - 1].events |= revents;
714 else
437 { 715 {
716 w_->pending = ++pendingcnt [pri];
717 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
718 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 719 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 720 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 721}
447 722
448void inline_size 723inline_speed void
724feed_reverse (EV_P_ W w)
725{
726 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
727 rfeeds [rfeedcnt++] = w;
728}
729
730inline_size void
731feed_reverse_done (EV_P_ int revents)
732{
733 do
734 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
735 while (rfeedcnt);
736}
737
738inline_speed void
449queue_events (EV_P_ W *events, int eventcnt, int type) 739queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 740{
451 int i; 741 int i;
452 742
453 for (i = 0; i < eventcnt; ++i) 743 for (i = 0; i < eventcnt; ++i)
454 ev_feed_event (EV_A_ events [i], type); 744 ev_feed_event (EV_A_ events [i], type);
455} 745}
456 746
457/*****************************************************************************/ 747/*****************************************************************************/
458 748
459void inline_size 749inline_speed void
460anfds_init (ANFD *base, int count)
461{
462 while (count--)
463 {
464 base->head = 0;
465 base->events = EV_NONE;
466 base->reify = 0;
467
468 ++base;
469 }
470}
471
472void inline_speed
473fd_event (EV_P_ int fd, int revents) 750fd_event (EV_P_ int fd, int revents)
474{ 751{
475 ANFD *anfd = anfds + fd; 752 ANFD *anfd = anfds + fd;
476 ev_io *w; 753 ev_io *w;
477 754
485} 762}
486 763
487void 764void
488ev_feed_fd_event (EV_P_ int fd, int revents) 765ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 766{
767 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 768 fd_event (EV_A_ fd, revents);
491} 769}
492 770
493void inline_size 771/* make sure the external fd watch events are in-sync */
772/* with the kernel/libev internal state */
773inline_size void
494fd_reify (EV_P) 774fd_reify (EV_P)
495{ 775{
496 int i; 776 int i;
497 777
498 for (i = 0; i < fdchangecnt; ++i) 778 for (i = 0; i < fdchangecnt; ++i)
499 { 779 {
500 int fd = fdchanges [i]; 780 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 781 ANFD *anfd = anfds + fd;
502 ev_io *w; 782 ev_io *w;
503 783
504 int events = 0; 784 unsigned char events = 0;
505 785
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 786 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 787 events |= (unsigned char)w->events;
508 788
509#if EV_SELECT_IS_WINSOCKET 789#if EV_SELECT_IS_WINSOCKET
510 if (events) 790 if (events)
511 { 791 {
512 unsigned long argp; 792 unsigned long arg;
793 #ifdef EV_FD_TO_WIN32_HANDLE
794 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
795 #else
513 anfd->handle = _get_osfhandle (fd); 796 anfd->handle = _get_osfhandle (fd);
797 #endif
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 798 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
515 } 799 }
516#endif 800#endif
517 801
802 {
803 unsigned char o_events = anfd->events;
804 unsigned char o_reify = anfd->reify;
805
518 anfd->reify = 0; 806 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 807 anfd->events = events;
808
809 if (o_events != events || o_reify & EV__IOFDSET)
810 backend_modify (EV_A_ fd, o_events, events);
811 }
522 } 812 }
523 813
524 fdchangecnt = 0; 814 fdchangecnt = 0;
525} 815}
526 816
527void inline_size 817/* something about the given fd changed */
818inline_size void
528fd_change (EV_P_ int fd) 819fd_change (EV_P_ int fd, int flags)
529{ 820{
530 if (expect_false (anfds [fd].reify)) 821 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 822 anfds [fd].reify |= flags;
534 823
824 if (expect_true (!reify))
825 {
535 ++fdchangecnt; 826 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 827 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 828 fdchanges [fdchangecnt - 1] = fd;
829 }
538} 830}
539 831
540void inline_speed 832/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
833inline_speed void
541fd_kill (EV_P_ int fd) 834fd_kill (EV_P_ int fd)
542{ 835{
543 ev_io *w; 836 ev_io *w;
544 837
545 while ((w = (ev_io *)anfds [fd].head)) 838 while ((w = (ev_io *)anfds [fd].head))
547 ev_io_stop (EV_A_ w); 840 ev_io_stop (EV_A_ w);
548 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 841 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
549 } 842 }
550} 843}
551 844
552int inline_size 845/* check whether the given fd is atcually valid, for error recovery */
846inline_size int
553fd_valid (int fd) 847fd_valid (int fd)
554{ 848{
555#ifdef _WIN32 849#ifdef _WIN32
556 return _get_osfhandle (fd) != -1; 850 return _get_osfhandle (fd) != -1;
557#else 851#else
565{ 859{
566 int fd; 860 int fd;
567 861
568 for (fd = 0; fd < anfdmax; ++fd) 862 for (fd = 0; fd < anfdmax; ++fd)
569 if (anfds [fd].events) 863 if (anfds [fd].events)
570 if (!fd_valid (fd) == -1 && errno == EBADF) 864 if (!fd_valid (fd) && errno == EBADF)
571 fd_kill (EV_A_ fd); 865 fd_kill (EV_A_ fd);
572} 866}
573 867
574/* called on ENOMEM in select/poll to kill some fds and retry */ 868/* called on ENOMEM in select/poll to kill some fds and retry */
575static void noinline 869static void noinline
593 887
594 for (fd = 0; fd < anfdmax; ++fd) 888 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 889 if (anfds [fd].events)
596 { 890 {
597 anfds [fd].events = 0; 891 anfds [fd].events = 0;
892 anfds [fd].emask = 0;
598 fd_change (EV_A_ fd); 893 fd_change (EV_A_ fd, EV__IOFDSET | 1);
599 } 894 }
600} 895}
601 896
602/*****************************************************************************/ 897/*****************************************************************************/
603 898
604void inline_speed 899/*
605upheap (WT *heap, int k) 900 * the heap functions want a real array index. array index 0 uis guaranteed to not
606{ 901 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
607 WT w = heap [k]; 902 * the branching factor of the d-tree.
903 */
608 904
609 while (k && heap [k >> 1]->at > w->at) 905/*
610 { 906 * at the moment we allow libev the luxury of two heaps,
611 heap [k] = heap [k >> 1]; 907 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
612 ((W)heap [k])->active = k + 1; 908 * which is more cache-efficient.
613 k >>= 1; 909 * the difference is about 5% with 50000+ watchers.
614 } 910 */
911#if EV_USE_4HEAP
615 912
616 heap [k] = w; 913#define DHEAP 4
617 ((W)heap [k])->active = k + 1; 914#define HEAP0 (DHEAP - 1) /* index of first element in heap */
915#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
916#define UPHEAP_DONE(p,k) ((p) == (k))
618 917
619} 918/* away from the root */
620 919inline_speed void
621void inline_speed
622downheap (WT *heap, int N, int k) 920downheap (ANHE *heap, int N, int k)
623{ 921{
624 WT w = heap [k]; 922 ANHE he = heap [k];
923 ANHE *E = heap + N + HEAP0;
625 924
626 while (k < (N >> 1)) 925 for (;;)
627 { 926 {
628 int j = k << 1; 927 ev_tstamp minat;
928 ANHE *minpos;
929 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
629 930
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 931 /* find minimum child */
932 if (expect_true (pos + DHEAP - 1 < E))
631 ++j; 933 {
632 934 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
633 if (w->at <= heap [j]->at) 935 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
936 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
937 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
938 }
939 else if (pos < E)
940 {
941 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
942 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
943 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
944 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
945 }
946 else
634 break; 947 break;
635 948
949 if (ANHE_at (he) <= minat)
950 break;
951
952 heap [k] = *minpos;
953 ev_active (ANHE_w (*minpos)) = k;
954
955 k = minpos - heap;
956 }
957
958 heap [k] = he;
959 ev_active (ANHE_w (he)) = k;
960}
961
962#else /* 4HEAP */
963
964#define HEAP0 1
965#define HPARENT(k) ((k) >> 1)
966#define UPHEAP_DONE(p,k) (!(p))
967
968/* away from the root */
969inline_speed void
970downheap (ANHE *heap, int N, int k)
971{
972 ANHE he = heap [k];
973
974 for (;;)
975 {
976 int c = k << 1;
977
978 if (c > N + HEAP0 - 1)
979 break;
980
981 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
982 ? 1 : 0;
983
984 if (ANHE_at (he) <= ANHE_at (heap [c]))
985 break;
986
636 heap [k] = heap [j]; 987 heap [k] = heap [c];
637 ((W)heap [k])->active = k + 1; 988 ev_active (ANHE_w (heap [k])) = k;
989
638 k = j; 990 k = c;
639 } 991 }
640 992
641 heap [k] = w; 993 heap [k] = he;
642 ((W)heap [k])->active = k + 1; 994 ev_active (ANHE_w (he)) = k;
643} 995}
996#endif
644 997
645void inline_size 998/* towards the root */
999inline_speed void
1000upheap (ANHE *heap, int k)
1001{
1002 ANHE he = heap [k];
1003
1004 for (;;)
1005 {
1006 int p = HPARENT (k);
1007
1008 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1009 break;
1010
1011 heap [k] = heap [p];
1012 ev_active (ANHE_w (heap [k])) = k;
1013 k = p;
1014 }
1015
1016 heap [k] = he;
1017 ev_active (ANHE_w (he)) = k;
1018}
1019
1020/* move an element suitably so it is in a correct place */
1021inline_size void
646adjustheap (WT *heap, int N, int k) 1022adjustheap (ANHE *heap, int N, int k)
647{ 1023{
1024 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
648 upheap (heap, k); 1025 upheap (heap, k);
1026 else
649 downheap (heap, N, k); 1027 downheap (heap, N, k);
1028}
1029
1030/* rebuild the heap: this function is used only once and executed rarely */
1031inline_size void
1032reheap (ANHE *heap, int N)
1033{
1034 int i;
1035
1036 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1037 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1038 for (i = 0; i < N; ++i)
1039 upheap (heap, i + HEAP0);
650} 1040}
651 1041
652/*****************************************************************************/ 1042/*****************************************************************************/
653 1043
1044/* associate signal watchers to a signal signal */
654typedef struct 1045typedef struct
655{ 1046{
656 WL head; 1047 WL head;
657 sig_atomic_t volatile gotsig; 1048 EV_ATOMIC_T gotsig;
658} ANSIG; 1049} ANSIG;
659 1050
660static ANSIG *signals; 1051static ANSIG *signals;
661static int signalmax; 1052static int signalmax;
662 1053
663static int sigpipe [2]; 1054static EV_ATOMIC_T gotsig;
664static sig_atomic_t volatile gotsig;
665static ev_io sigev;
666 1055
667void inline_size 1056/*****************************************************************************/
668signals_init (ANSIG *base, int count)
669{
670 while (count--)
671 {
672 base->head = 0;
673 base->gotsig = 0;
674 1057
675 ++base; 1058/* used to prepare libev internal fd's */
676 } 1059/* this is not fork-safe */
677} 1060inline_speed void
678
679static void
680sighandler (int signum)
681{
682#if _WIN32
683 signal (signum, sighandler);
684#endif
685
686 signals [signum - 1].gotsig = 1;
687
688 if (!gotsig)
689 {
690 int old_errno = errno;
691 gotsig = 1;
692 write (sigpipe [1], &signum, 1);
693 errno = old_errno;
694 }
695}
696
697void noinline
698ev_feed_signal_event (EV_P_ int signum)
699{
700 WL w;
701
702#if EV_MULTIPLICITY
703 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
704#endif
705
706 --signum;
707
708 if (signum < 0 || signum >= signalmax)
709 return;
710
711 signals [signum].gotsig = 0;
712
713 for (w = signals [signum].head; w; w = w->next)
714 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
715}
716
717static void
718sigcb (EV_P_ ev_io *iow, int revents)
719{
720 int signum;
721
722 read (sigpipe [0], &revents, 1);
723 gotsig = 0;
724
725 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1);
728}
729
730void inline_size
731fd_intern (int fd) 1061fd_intern (int fd)
732{ 1062{
733#ifdef _WIN32 1063#ifdef _WIN32
734 int arg = 1; 1064 unsigned long arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1065 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
736#else 1066#else
737 fcntl (fd, F_SETFD, FD_CLOEXEC); 1067 fcntl (fd, F_SETFD, FD_CLOEXEC);
738 fcntl (fd, F_SETFL, O_NONBLOCK); 1068 fcntl (fd, F_SETFL, O_NONBLOCK);
739#endif 1069#endif
740} 1070}
741 1071
742static void noinline 1072static void noinline
743siginit (EV_P) 1073evpipe_init (EV_P)
744{ 1074{
1075 if (!ev_is_active (&pipe_w))
1076 {
1077#if EV_USE_EVENTFD
1078 if ((evfd = eventfd (0, 0)) >= 0)
1079 {
1080 evpipe [0] = -1;
1081 fd_intern (evfd);
1082 ev_io_set (&pipe_w, evfd, EV_READ);
1083 }
1084 else
1085#endif
1086 {
1087 while (pipe (evpipe))
1088 ev_syserr ("(libev) error creating signal/async pipe");
1089
745 fd_intern (sigpipe [0]); 1090 fd_intern (evpipe [0]);
746 fd_intern (sigpipe [1]); 1091 fd_intern (evpipe [1]);
1092 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1093 }
747 1094
748 ev_io_set (&sigev, sigpipe [0], EV_READ);
749 ev_io_start (EV_A_ &sigev); 1095 ev_io_start (EV_A_ &pipe_w);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1096 ev_unref (EV_A); /* watcher should not keep loop alive */
1097 }
1098}
1099
1100inline_size void
1101evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1102{
1103 if (!*flag)
1104 {
1105 int old_errno = errno; /* save errno because write might clobber it */
1106
1107 *flag = 1;
1108
1109#if EV_USE_EVENTFD
1110 if (evfd >= 0)
1111 {
1112 uint64_t counter = 1;
1113 write (evfd, &counter, sizeof (uint64_t));
1114 }
1115 else
1116#endif
1117 write (evpipe [1], &old_errno, 1);
1118
1119 errno = old_errno;
1120 }
1121}
1122
1123/* called whenever the libev signal pipe */
1124/* got some events (signal, async) */
1125static void
1126pipecb (EV_P_ ev_io *iow, int revents)
1127{
1128#if EV_USE_EVENTFD
1129 if (evfd >= 0)
1130 {
1131 uint64_t counter;
1132 read (evfd, &counter, sizeof (uint64_t));
1133 }
1134 else
1135#endif
1136 {
1137 char dummy;
1138 read (evpipe [0], &dummy, 1);
1139 }
1140
1141 if (gotsig && ev_is_default_loop (EV_A))
1142 {
1143 int signum;
1144 gotsig = 0;
1145
1146 for (signum = signalmax; signum--; )
1147 if (signals [signum].gotsig)
1148 ev_feed_signal_event (EV_A_ signum + 1);
1149 }
1150
1151#if EV_ASYNC_ENABLE
1152 if (gotasync)
1153 {
1154 int i;
1155 gotasync = 0;
1156
1157 for (i = asynccnt; i--; )
1158 if (asyncs [i]->sent)
1159 {
1160 asyncs [i]->sent = 0;
1161 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1162 }
1163 }
1164#endif
751} 1165}
752 1166
753/*****************************************************************************/ 1167/*****************************************************************************/
754 1168
1169static void
1170ev_sighandler (int signum)
1171{
1172#if EV_MULTIPLICITY
1173 struct ev_loop *loop = &default_loop_struct;
1174#endif
1175
1176#if _WIN32
1177 signal (signum, ev_sighandler);
1178#endif
1179
1180 signals [signum - 1].gotsig = 1;
1181 evpipe_write (EV_A_ &gotsig);
1182}
1183
1184void noinline
1185ev_feed_signal_event (EV_P_ int signum)
1186{
1187 WL w;
1188
1189#if EV_MULTIPLICITY
1190 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1191#endif
1192
1193 --signum;
1194
1195 if (signum < 0 || signum >= signalmax)
1196 return;
1197
1198 signals [signum].gotsig = 0;
1199
1200 for (w = signals [signum].head; w; w = w->next)
1201 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1202}
1203
1204/*****************************************************************************/
1205
755static ev_child *childs [EV_PID_HASHSIZE]; 1206static WL childs [EV_PID_HASHSIZE];
756 1207
757#ifndef _WIN32 1208#ifndef _WIN32
758 1209
759static ev_signal childev; 1210static ev_signal childev;
760 1211
761void inline_speed 1212#ifndef WIFCONTINUED
1213# define WIFCONTINUED(status) 0
1214#endif
1215
1216/* handle a single child status event */
1217inline_speed void
762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1218child_reap (EV_P_ int chain, int pid, int status)
763{ 1219{
764 ev_child *w; 1220 ev_child *w;
1221 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
765 1222
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1223 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1224 {
767 if (w->pid == pid || !w->pid) 1225 if ((w->pid == pid || !w->pid)
1226 && (!traced || (w->flags & 1)))
768 { 1227 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1228 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
770 w->rpid = pid; 1229 w->rpid = pid;
771 w->rstatus = status; 1230 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1231 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 1232 }
1233 }
774} 1234}
775 1235
776#ifndef WCONTINUED 1236#ifndef WCONTINUED
777# define WCONTINUED 0 1237# define WCONTINUED 0
778#endif 1238#endif
779 1239
1240/* called on sigchld etc., calls waitpid */
780static void 1241static void
781childcb (EV_P_ ev_signal *sw, int revents) 1242childcb (EV_P_ ev_signal *sw, int revents)
782{ 1243{
783 int pid, status; 1244 int pid, status;
784 1245
787 if (!WCONTINUED 1248 if (!WCONTINUED
788 || errno != EINVAL 1249 || errno != EINVAL
789 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1250 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
790 return; 1251 return;
791 1252
792 /* make sure we are called again until all childs have been reaped */ 1253 /* make sure we are called again until all children have been reaped */
793 /* we need to do it this way so that the callback gets called before we continue */ 1254 /* we need to do it this way so that the callback gets called before we continue */
794 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1255 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
795 1256
796 child_reap (EV_A_ sw, pid, pid, status); 1257 child_reap (EV_A_ pid, pid, status);
797 if (EV_PID_HASHSIZE > 1) 1258 if (EV_PID_HASHSIZE > 1)
798 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1259 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
799} 1260}
800 1261
801#endif 1262#endif
802 1263
803/*****************************************************************************/ 1264/*****************************************************************************/
865 /* kqueue is borked on everything but netbsd apparently */ 1326 /* kqueue is borked on everything but netbsd apparently */
866 /* it usually doesn't work correctly on anything but sockets and pipes */ 1327 /* it usually doesn't work correctly on anything but sockets and pipes */
867 flags &= ~EVBACKEND_KQUEUE; 1328 flags &= ~EVBACKEND_KQUEUE;
868#endif 1329#endif
869#ifdef __APPLE__ 1330#ifdef __APPLE__
870 // flags &= ~EVBACKEND_KQUEUE; for documentation 1331 /* only select works correctly on that "unix-certified" platform */
871 flags &= ~EVBACKEND_POLL; 1332 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1333 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
872#endif 1334#endif
873 1335
874 return flags; 1336 return flags;
875} 1337}
876 1338
877unsigned int 1339unsigned int
878ev_embeddable_backends (void) 1340ev_embeddable_backends (void)
879{ 1341{
880 return EVBACKEND_EPOLL 1342 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 1343
882 | EVBACKEND_PORT; 1344 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1345 /* please fix it and tell me how to detect the fix */
1346 flags &= ~EVBACKEND_EPOLL;
1347
1348 return flags;
883} 1349}
884 1350
885unsigned int 1351unsigned int
886ev_backend (EV_P) 1352ev_backend (EV_P)
887{ 1353{
892ev_loop_count (EV_P) 1358ev_loop_count (EV_P)
893{ 1359{
894 return loop_count; 1360 return loop_count;
895} 1361}
896 1362
1363unsigned int
1364ev_loop_depth (EV_P)
1365{
1366 return loop_depth;
1367}
1368
1369void
1370ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1371{
1372 io_blocktime = interval;
1373}
1374
1375void
1376ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1377{
1378 timeout_blocktime = interval;
1379}
1380
1381/* initialise a loop structure, must be zero-initialised */
897static void noinline 1382static void noinline
898loop_init (EV_P_ unsigned int flags) 1383loop_init (EV_P_ unsigned int flags)
899{ 1384{
900 if (!backend) 1385 if (!backend)
901 { 1386 {
1387#if EV_USE_REALTIME
1388 if (!have_realtime)
1389 {
1390 struct timespec ts;
1391
1392 if (!clock_gettime (CLOCK_REALTIME, &ts))
1393 have_realtime = 1;
1394 }
1395#endif
1396
902#if EV_USE_MONOTONIC 1397#if EV_USE_MONOTONIC
1398 if (!have_monotonic)
903 { 1399 {
904 struct timespec ts; 1400 struct timespec ts;
1401
905 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1402 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
906 have_monotonic = 1; 1403 have_monotonic = 1;
907 } 1404 }
908#endif 1405#endif
909 1406
910 ev_rt_now = ev_time (); 1407 ev_rt_now = ev_time ();
911 mn_now = get_clock (); 1408 mn_now = get_clock ();
912 now_floor = mn_now; 1409 now_floor = mn_now;
913 rtmn_diff = ev_rt_now - mn_now; 1410 rtmn_diff = ev_rt_now - mn_now;
1411
1412 io_blocktime = 0.;
1413 timeout_blocktime = 0.;
1414 backend = 0;
1415 backend_fd = -1;
1416 gotasync = 0;
1417#if EV_USE_INOTIFY
1418 fs_fd = -2;
1419#endif
914 1420
915 /* pid check not overridable via env */ 1421 /* pid check not overridable via env */
916#ifndef _WIN32 1422#ifndef _WIN32
917 if (flags & EVFLAG_FORKCHECK) 1423 if (flags & EVFLAG_FORKCHECK)
918 curpid = getpid (); 1424 curpid = getpid ();
921 if (!(flags & EVFLAG_NOENV) 1427 if (!(flags & EVFLAG_NOENV)
922 && !enable_secure () 1428 && !enable_secure ()
923 && getenv ("LIBEV_FLAGS")) 1429 && getenv ("LIBEV_FLAGS"))
924 flags = atoi (getenv ("LIBEV_FLAGS")); 1430 flags = atoi (getenv ("LIBEV_FLAGS"));
925 1431
926 if (!(flags & 0x0000ffffUL)) 1432 if (!(flags & 0x0000ffffU))
927 flags |= ev_recommended_backends (); 1433 flags |= ev_recommended_backends ();
928
929 backend = 0;
930 backend_fd = -1;
931#if EV_USE_INOTIFY
932 fs_fd = -2;
933#endif
934 1434
935#if EV_USE_PORT 1435#if EV_USE_PORT
936 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1436 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
937#endif 1437#endif
938#if EV_USE_KQUEUE 1438#if EV_USE_KQUEUE
946#endif 1446#endif
947#if EV_USE_SELECT 1447#if EV_USE_SELECT
948 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1448 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
949#endif 1449#endif
950 1450
1451 ev_prepare_init (&pending_w, pendingcb);
1452
951 ev_init (&sigev, sigcb); 1453 ev_init (&pipe_w, pipecb);
952 ev_set_priority (&sigev, EV_MAXPRI); 1454 ev_set_priority (&pipe_w, EV_MAXPRI);
953 } 1455 }
954} 1456}
955 1457
1458/* free up a loop structure */
956static void noinline 1459static void noinline
957loop_destroy (EV_P) 1460loop_destroy (EV_P)
958{ 1461{
959 int i; 1462 int i;
1463
1464 if (ev_is_active (&pipe_w))
1465 {
1466 ev_ref (EV_A); /* signal watcher */
1467 ev_io_stop (EV_A_ &pipe_w);
1468
1469#if EV_USE_EVENTFD
1470 if (evfd >= 0)
1471 close (evfd);
1472#endif
1473
1474 if (evpipe [0] >= 0)
1475 {
1476 close (evpipe [0]);
1477 close (evpipe [1]);
1478 }
1479 }
960 1480
961#if EV_USE_INOTIFY 1481#if EV_USE_INOTIFY
962 if (fs_fd >= 0) 1482 if (fs_fd >= 0)
963 close (fs_fd); 1483 close (fs_fd);
964#endif 1484#endif
981#if EV_USE_SELECT 1501#if EV_USE_SELECT
982 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1502 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
983#endif 1503#endif
984 1504
985 for (i = NUMPRI; i--; ) 1505 for (i = NUMPRI; i--; )
1506 {
986 array_free (pending, [i]); 1507 array_free (pending, [i]);
1508#if EV_IDLE_ENABLE
1509 array_free (idle, [i]);
1510#endif
1511 }
1512
1513 ev_free (anfds); anfdmax = 0;
987 1514
988 /* have to use the microsoft-never-gets-it-right macro */ 1515 /* have to use the microsoft-never-gets-it-right macro */
1516 array_free (rfeed, EMPTY);
989 array_free (fdchange, EMPTY0); 1517 array_free (fdchange, EMPTY);
990 array_free (timer, EMPTY0); 1518 array_free (timer, EMPTY);
991#if EV_PERIODIC_ENABLE 1519#if EV_PERIODIC_ENABLE
992 array_free (periodic, EMPTY0); 1520 array_free (periodic, EMPTY);
993#endif 1521#endif
1522#if EV_FORK_ENABLE
994 array_free (idle, EMPTY0); 1523 array_free (fork, EMPTY);
1524#endif
995 array_free (prepare, EMPTY0); 1525 array_free (prepare, EMPTY);
996 array_free (check, EMPTY0); 1526 array_free (check, EMPTY);
1527#if EV_ASYNC_ENABLE
1528 array_free (async, EMPTY);
1529#endif
997 1530
998 backend = 0; 1531 backend = 0;
999} 1532}
1000 1533
1534#if EV_USE_INOTIFY
1001void inline_size infy_fork (EV_P); 1535inline_size void infy_fork (EV_P);
1536#endif
1002 1537
1003void inline_size 1538inline_size void
1004loop_fork (EV_P) 1539loop_fork (EV_P)
1005{ 1540{
1006#if EV_USE_PORT 1541#if EV_USE_PORT
1007 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1542 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1008#endif 1543#endif
1014#endif 1549#endif
1015#if EV_USE_INOTIFY 1550#if EV_USE_INOTIFY
1016 infy_fork (EV_A); 1551 infy_fork (EV_A);
1017#endif 1552#endif
1018 1553
1019 if (ev_is_active (&sigev)) 1554 if (ev_is_active (&pipe_w))
1020 { 1555 {
1021 /* default loop */ 1556 /* this "locks" the handlers against writing to the pipe */
1557 /* while we modify the fd vars */
1558 gotsig = 1;
1559#if EV_ASYNC_ENABLE
1560 gotasync = 1;
1561#endif
1022 1562
1023 ev_ref (EV_A); 1563 ev_ref (EV_A);
1024 ev_io_stop (EV_A_ &sigev); 1564 ev_io_stop (EV_A_ &pipe_w);
1565
1566#if EV_USE_EVENTFD
1567 if (evfd >= 0)
1568 close (evfd);
1569#endif
1570
1571 if (evpipe [0] >= 0)
1572 {
1025 close (sigpipe [0]); 1573 close (evpipe [0]);
1026 close (sigpipe [1]); 1574 close (evpipe [1]);
1575 }
1027 1576
1028 while (pipe (sigpipe))
1029 syserr ("(libev) error creating pipe");
1030
1031 siginit (EV_A); 1577 evpipe_init (EV_A);
1578 /* now iterate over everything, in case we missed something */
1579 pipecb (EV_A_ &pipe_w, EV_READ);
1032 } 1580 }
1033 1581
1034 postfork = 0; 1582 postfork = 0;
1035} 1583}
1036 1584
1037#if EV_MULTIPLICITY 1585#if EV_MULTIPLICITY
1586
1038struct ev_loop * 1587struct ev_loop *
1039ev_loop_new (unsigned int flags) 1588ev_loop_new (unsigned int flags)
1040{ 1589{
1041 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1590 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1042 1591
1058} 1607}
1059 1608
1060void 1609void
1061ev_loop_fork (EV_P) 1610ev_loop_fork (EV_P)
1062{ 1611{
1063 postfork = 1; 1612 postfork = 1; /* must be in line with ev_default_fork */
1064} 1613}
1065 1614
1615#if EV_VERIFY
1616static void noinline
1617verify_watcher (EV_P_ W w)
1618{
1619 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1620
1621 if (w->pending)
1622 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1623}
1624
1625static void noinline
1626verify_heap (EV_P_ ANHE *heap, int N)
1627{
1628 int i;
1629
1630 for (i = HEAP0; i < N + HEAP0; ++i)
1631 {
1632 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1633 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1634 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1635
1636 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1637 }
1638}
1639
1640static void noinline
1641array_verify (EV_P_ W *ws, int cnt)
1642{
1643 while (cnt--)
1644 {
1645 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1646 verify_watcher (EV_A_ ws [cnt]);
1647 }
1648}
1649#endif
1650
1651void
1652ev_loop_verify (EV_P)
1653{
1654#if EV_VERIFY
1655 int i;
1656 WL w;
1657
1658 assert (activecnt >= -1);
1659
1660 assert (fdchangemax >= fdchangecnt);
1661 for (i = 0; i < fdchangecnt; ++i)
1662 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1663
1664 assert (anfdmax >= 0);
1665 for (i = 0; i < anfdmax; ++i)
1666 for (w = anfds [i].head; w; w = w->next)
1667 {
1668 verify_watcher (EV_A_ (W)w);
1669 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1670 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1671 }
1672
1673 assert (timermax >= timercnt);
1674 verify_heap (EV_A_ timers, timercnt);
1675
1676#if EV_PERIODIC_ENABLE
1677 assert (periodicmax >= periodiccnt);
1678 verify_heap (EV_A_ periodics, periodiccnt);
1679#endif
1680
1681 for (i = NUMPRI; i--; )
1682 {
1683 assert (pendingmax [i] >= pendingcnt [i]);
1684#if EV_IDLE_ENABLE
1685 assert (idleall >= 0);
1686 assert (idlemax [i] >= idlecnt [i]);
1687 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1688#endif
1689 }
1690
1691#if EV_FORK_ENABLE
1692 assert (forkmax >= forkcnt);
1693 array_verify (EV_A_ (W *)forks, forkcnt);
1694#endif
1695
1696#if EV_ASYNC_ENABLE
1697 assert (asyncmax >= asynccnt);
1698 array_verify (EV_A_ (W *)asyncs, asynccnt);
1699#endif
1700
1701 assert (preparemax >= preparecnt);
1702 array_verify (EV_A_ (W *)prepares, preparecnt);
1703
1704 assert (checkmax >= checkcnt);
1705 array_verify (EV_A_ (W *)checks, checkcnt);
1706
1707# if 0
1708 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1709 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1066#endif 1710# endif
1711#endif
1712}
1713
1714#endif /* multiplicity */
1067 1715
1068#if EV_MULTIPLICITY 1716#if EV_MULTIPLICITY
1069struct ev_loop * 1717struct ev_loop *
1070ev_default_loop_init (unsigned int flags) 1718ev_default_loop_init (unsigned int flags)
1071#else 1719#else
1072int 1720int
1073ev_default_loop (unsigned int flags) 1721ev_default_loop (unsigned int flags)
1074#endif 1722#endif
1075{ 1723{
1076 if (sigpipe [0] == sigpipe [1])
1077 if (pipe (sigpipe))
1078 return 0;
1079
1080 if (!ev_default_loop_ptr) 1724 if (!ev_default_loop_ptr)
1081 { 1725 {
1082#if EV_MULTIPLICITY 1726#if EV_MULTIPLICITY
1083 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1727 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1084#else 1728#else
1087 1731
1088 loop_init (EV_A_ flags); 1732 loop_init (EV_A_ flags);
1089 1733
1090 if (ev_backend (EV_A)) 1734 if (ev_backend (EV_A))
1091 { 1735 {
1092 siginit (EV_A);
1093
1094#ifndef _WIN32 1736#ifndef _WIN32
1095 ev_signal_init (&childev, childcb, SIGCHLD); 1737 ev_signal_init (&childev, childcb, SIGCHLD);
1096 ev_set_priority (&childev, EV_MAXPRI); 1738 ev_set_priority (&childev, EV_MAXPRI);
1097 ev_signal_start (EV_A_ &childev); 1739 ev_signal_start (EV_A_ &childev);
1098 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1740 ev_unref (EV_A); /* child watcher should not keep loop alive */
1110{ 1752{
1111#if EV_MULTIPLICITY 1753#if EV_MULTIPLICITY
1112 struct ev_loop *loop = ev_default_loop_ptr; 1754 struct ev_loop *loop = ev_default_loop_ptr;
1113#endif 1755#endif
1114 1756
1757 ev_default_loop_ptr = 0;
1758
1115#ifndef _WIN32 1759#ifndef _WIN32
1116 ev_ref (EV_A); /* child watcher */ 1760 ev_ref (EV_A); /* child watcher */
1117 ev_signal_stop (EV_A_ &childev); 1761 ev_signal_stop (EV_A_ &childev);
1118#endif 1762#endif
1119 1763
1120 ev_ref (EV_A); /* signal watcher */
1121 ev_io_stop (EV_A_ &sigev);
1122
1123 close (sigpipe [0]); sigpipe [0] = 0;
1124 close (sigpipe [1]); sigpipe [1] = 0;
1125
1126 loop_destroy (EV_A); 1764 loop_destroy (EV_A);
1127} 1765}
1128 1766
1129void 1767void
1130ev_default_fork (void) 1768ev_default_fork (void)
1131{ 1769{
1132#if EV_MULTIPLICITY 1770#if EV_MULTIPLICITY
1133 struct ev_loop *loop = ev_default_loop_ptr; 1771 struct ev_loop *loop = ev_default_loop_ptr;
1134#endif 1772#endif
1135 1773
1136 if (backend) 1774 postfork = 1; /* must be in line with ev_loop_fork */
1137 postfork = 1;
1138} 1775}
1139 1776
1140/*****************************************************************************/ 1777/*****************************************************************************/
1141 1778
1142int inline_size 1779void
1143any_pending (EV_P) 1780ev_invoke (EV_P_ void *w, int revents)
1144{ 1781{
1145 int pri; 1782 EV_CB_INVOKE ((W)w, revents);
1146
1147 for (pri = NUMPRI; pri--; )
1148 if (pendingcnt [pri])
1149 return 1;
1150
1151 return 0;
1152} 1783}
1153 1784
1154void inline_speed 1785inline_speed void
1155call_pending (EV_P) 1786call_pending (EV_P)
1156{ 1787{
1157 int pri; 1788 int pri;
1158 1789
1159 for (pri = NUMPRI; pri--; ) 1790 for (pri = NUMPRI; pri--; )
1160 while (pendingcnt [pri]) 1791 while (pendingcnt [pri])
1161 { 1792 {
1162 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1793 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1163 1794
1164 if (expect_true (p->w))
1165 {
1166 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1795 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1796 /* ^ this is no longer true, as pending_w could be here */
1167 1797
1168 p->w->pending = 0; 1798 p->w->pending = 0;
1169 EV_CB_INVOKE (p->w, p->events); 1799 EV_CB_INVOKE (p->w, p->events);
1170 } 1800 EV_FREQUENT_CHECK;
1171 } 1801 }
1172} 1802}
1173 1803
1174void inline_size 1804#if EV_IDLE_ENABLE
1805/* make idle watchers pending. this handles the "call-idle */
1806/* only when higher priorities are idle" logic */
1807inline_size void
1808idle_reify (EV_P)
1809{
1810 if (expect_false (idleall))
1811 {
1812 int pri;
1813
1814 for (pri = NUMPRI; pri--; )
1815 {
1816 if (pendingcnt [pri])
1817 break;
1818
1819 if (idlecnt [pri])
1820 {
1821 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1822 break;
1823 }
1824 }
1825 }
1826}
1827#endif
1828
1829/* make timers pending */
1830inline_size void
1175timers_reify (EV_P) 1831timers_reify (EV_P)
1176{ 1832{
1833 EV_FREQUENT_CHECK;
1834
1177 while (timercnt && ((WT)timers [0])->at <= mn_now) 1835 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1178 { 1836 {
1179 ev_timer *w = timers [0]; 1837 do
1180
1181 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1182
1183 /* first reschedule or stop timer */
1184 if (w->repeat)
1185 { 1838 {
1839 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1840
1841 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1842
1843 /* first reschedule or stop timer */
1844 if (w->repeat)
1845 {
1846 ev_at (w) += w->repeat;
1847 if (ev_at (w) < mn_now)
1848 ev_at (w) = mn_now;
1849
1186 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1850 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1187 1851
1188 ((WT)w)->at += w->repeat; 1852 ANHE_at_cache (timers [HEAP0]);
1189 if (((WT)w)->at < mn_now)
1190 ((WT)w)->at = mn_now;
1191
1192 downheap ((WT *)timers, timercnt, 0); 1853 downheap (timers, timercnt, HEAP0);
1854 }
1855 else
1856 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1857
1858 EV_FREQUENT_CHECK;
1859 feed_reverse (EV_A_ (W)w);
1193 } 1860 }
1194 else 1861 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1195 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1196 1862
1197 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1863 feed_reverse_done (EV_A_ EV_TIMEOUT);
1198 } 1864 }
1199} 1865}
1200 1866
1201#if EV_PERIODIC_ENABLE 1867#if EV_PERIODIC_ENABLE
1202void inline_size 1868/* make periodics pending */
1869inline_size void
1203periodics_reify (EV_P) 1870periodics_reify (EV_P)
1204{ 1871{
1872 EV_FREQUENT_CHECK;
1873
1205 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1874 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1206 { 1875 {
1207 ev_periodic *w = periodics [0]; 1876 int feed_count = 0;
1208 1877
1209 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1878 do
1210
1211 /* first reschedule or stop timer */
1212 if (w->reschedule_cb)
1213 { 1879 {
1880 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1881
1882 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1883
1884 /* first reschedule or stop timer */
1885 if (w->reschedule_cb)
1886 {
1214 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1887 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1888
1215 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1889 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1890
1891 ANHE_at_cache (periodics [HEAP0]);
1216 downheap ((WT *)periodics, periodiccnt, 0); 1892 downheap (periodics, periodiccnt, HEAP0);
1893 }
1894 else if (w->interval)
1895 {
1896 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1897 /* if next trigger time is not sufficiently in the future, put it there */
1898 /* this might happen because of floating point inexactness */
1899 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1900 {
1901 ev_at (w) += w->interval;
1902
1903 /* if interval is unreasonably low we might still have a time in the past */
1904 /* so correct this. this will make the periodic very inexact, but the user */
1905 /* has effectively asked to get triggered more often than possible */
1906 if (ev_at (w) < ev_rt_now)
1907 ev_at (w) = ev_rt_now;
1908 }
1909
1910 ANHE_at_cache (periodics [HEAP0]);
1911 downheap (periodics, periodiccnt, HEAP0);
1912 }
1913 else
1914 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1915
1916 EV_FREQUENT_CHECK;
1917 feed_reverse (EV_A_ (W)w);
1217 } 1918 }
1218 else if (w->interval) 1919 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1219 {
1220 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1221 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1222 downheap ((WT *)periodics, periodiccnt, 0);
1223 }
1224 else
1225 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1226 1920
1227 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1921 feed_reverse_done (EV_A_ EV_PERIODIC);
1228 } 1922 }
1229} 1923}
1230 1924
1925/* simply recalculate all periodics */
1926/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1231static void noinline 1927static void noinline
1232periodics_reschedule (EV_P) 1928periodics_reschedule (EV_P)
1233{ 1929{
1234 int i; 1930 int i;
1235 1931
1236 /* adjust periodics after time jump */ 1932 /* adjust periodics after time jump */
1237 for (i = 0; i < periodiccnt; ++i) 1933 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1238 { 1934 {
1239 ev_periodic *w = periodics [i]; 1935 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1240 1936
1241 if (w->reschedule_cb) 1937 if (w->reschedule_cb)
1242 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1938 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1243 else if (w->interval) 1939 else if (w->interval)
1244 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1940 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1941
1942 ANHE_at_cache (periodics [i]);
1943 }
1944
1945 reheap (periodics, periodiccnt);
1946}
1947#endif
1948
1949/* adjust all timers by a given offset */
1950static void noinline
1951timers_reschedule (EV_P_ ev_tstamp adjust)
1952{
1953 int i;
1954
1955 for (i = 0; i < timercnt; ++i)
1245 } 1956 {
1246 1957 ANHE *he = timers + i + HEAP0;
1247 /* now rebuild the heap */ 1958 ANHE_w (*he)->at += adjust;
1248 for (i = periodiccnt >> 1; i--; ) 1959 ANHE_at_cache (*he);
1249 downheap ((WT *)periodics, periodiccnt, i); 1960 }
1250} 1961}
1251#endif
1252 1962
1253int inline_size 1963/* fetch new monotonic and realtime times from the kernel */
1254time_update_monotonic (EV_P) 1964/* also detetc if there was a timejump, and act accordingly */
1965inline_speed void
1966time_update (EV_P_ ev_tstamp max_block)
1255{ 1967{
1968#if EV_USE_MONOTONIC
1969 if (expect_true (have_monotonic))
1970 {
1971 int i;
1972 ev_tstamp odiff = rtmn_diff;
1973
1256 mn_now = get_clock (); 1974 mn_now = get_clock ();
1257 1975
1976 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1977 /* interpolate in the meantime */
1258 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1978 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1259 { 1979 {
1260 ev_rt_now = rtmn_diff + mn_now; 1980 ev_rt_now = rtmn_diff + mn_now;
1261 return 0; 1981 return;
1262 } 1982 }
1263 else 1983
1264 {
1265 now_floor = mn_now; 1984 now_floor = mn_now;
1266 ev_rt_now = ev_time (); 1985 ev_rt_now = ev_time ();
1267 return 1;
1268 }
1269}
1270 1986
1271void inline_size 1987 /* loop a few times, before making important decisions.
1272time_update (EV_P) 1988 * on the choice of "4": one iteration isn't enough,
1273{ 1989 * in case we get preempted during the calls to
1274 int i; 1990 * ev_time and get_clock. a second call is almost guaranteed
1275 1991 * to succeed in that case, though. and looping a few more times
1276#if EV_USE_MONOTONIC 1992 * doesn't hurt either as we only do this on time-jumps or
1277 if (expect_true (have_monotonic)) 1993 * in the unlikely event of having been preempted here.
1278 { 1994 */
1279 if (time_update_monotonic (EV_A)) 1995 for (i = 4; --i; )
1280 { 1996 {
1281 ev_tstamp odiff = rtmn_diff;
1282
1283 /* loop a few times, before making important decisions.
1284 * on the choice of "4": one iteration isn't enough,
1285 * in case we get preempted during the calls to
1286 * ev_time and get_clock. a second call is almost guaranteed
1287 * to succeed in that case, though. and looping a few more times
1288 * doesn't hurt either as we only do this on time-jumps or
1289 * in the unlikely event of having been preempted here.
1290 */
1291 for (i = 4; --i; )
1292 {
1293 rtmn_diff = ev_rt_now - mn_now; 1997 rtmn_diff = ev_rt_now - mn_now;
1294 1998
1295 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1999 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1296 return; /* all is well */ 2000 return; /* all is well */
1297 2001
1298 ev_rt_now = ev_time (); 2002 ev_rt_now = ev_time ();
1299 mn_now = get_clock (); 2003 mn_now = get_clock ();
1300 now_floor = mn_now; 2004 now_floor = mn_now;
1301 } 2005 }
1302 2006
2007 /* no timer adjustment, as the monotonic clock doesn't jump */
2008 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1303# if EV_PERIODIC_ENABLE 2009# if EV_PERIODIC_ENABLE
1304 periodics_reschedule (EV_A); 2010 periodics_reschedule (EV_A);
1305# endif 2011# endif
1306 /* no timer adjustment, as the monotonic clock doesn't jump */
1307 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1308 }
1309 } 2012 }
1310 else 2013 else
1311#endif 2014#endif
1312 { 2015 {
1313 ev_rt_now = ev_time (); 2016 ev_rt_now = ev_time ();
1314 2017
1315 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2018 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1316 { 2019 {
2020 /* adjust timers. this is easy, as the offset is the same for all of them */
2021 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1317#if EV_PERIODIC_ENABLE 2022#if EV_PERIODIC_ENABLE
1318 periodics_reschedule (EV_A); 2023 periodics_reschedule (EV_A);
1319#endif 2024#endif
1320
1321 /* adjust timers. this is easy, as the offset is the same for all of them */
1322 for (i = 0; i < timercnt; ++i)
1323 ((WT)timers [i])->at += ev_rt_now - mn_now;
1324 } 2025 }
1325 2026
1326 mn_now = ev_rt_now; 2027 mn_now = ev_rt_now;
1327 } 2028 }
1328} 2029}
1329 2030
1330void 2031void
1331ev_ref (EV_P)
1332{
1333 ++activecnt;
1334}
1335
1336void
1337ev_unref (EV_P)
1338{
1339 --activecnt;
1340}
1341
1342static int loop_done;
1343
1344void
1345ev_loop (EV_P_ int flags) 2032ev_loop (EV_P_ int flags)
1346{ 2033{
1347 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2034 ++loop_depth;
1348 ? EVUNLOOP_ONE 2035
1349 : EVUNLOOP_CANCEL; 2036 loop_done = EVUNLOOP_CANCEL;
1350 2037
1351 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2038 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1352 2039
1353 do 2040 do
1354 { 2041 {
2042#if EV_VERIFY >= 2
2043 ev_loop_verify (EV_A);
2044#endif
2045
1355#ifndef _WIN32 2046#ifndef _WIN32
1356 if (expect_false (curpid)) /* penalise the forking check even more */ 2047 if (expect_false (curpid)) /* penalise the forking check even more */
1357 if (expect_false (getpid () != curpid)) 2048 if (expect_false (getpid () != curpid))
1358 { 2049 {
1359 curpid = getpid (); 2050 curpid = getpid ();
1369 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2060 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1370 call_pending (EV_A); 2061 call_pending (EV_A);
1371 } 2062 }
1372#endif 2063#endif
1373 2064
1374 /* queue check watchers (and execute them) */ 2065 /* queue prepare watchers (and execute them) */
1375 if (expect_false (preparecnt)) 2066 if (expect_false (preparecnt))
1376 { 2067 {
1377 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2068 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1378 call_pending (EV_A); 2069 call_pending (EV_A);
1379 } 2070 }
1380 2071
1381 if (expect_false (!activecnt))
1382 break;
1383
1384 /* we might have forked, so reify kernel state if necessary */ 2072 /* we might have forked, so reify kernel state if necessary */
1385 if (expect_false (postfork)) 2073 if (expect_false (postfork))
1386 loop_fork (EV_A); 2074 loop_fork (EV_A);
1387 2075
1388 /* update fd-related kernel structures */ 2076 /* update fd-related kernel structures */
1389 fd_reify (EV_A); 2077 fd_reify (EV_A);
1390 2078
1391 /* calculate blocking time */ 2079 /* calculate blocking time */
1392 { 2080 {
1393 ev_tstamp block; 2081 ev_tstamp waittime = 0.;
2082 ev_tstamp sleeptime = 0.;
1394 2083
1395 if (expect_false (flags & EVLOOP_NONBLOCK || idlecnt || !activecnt)) 2084 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1396 block = 0.; /* do not block at all */
1397 else
1398 { 2085 {
2086 /* remember old timestamp for io_blocktime calculation */
2087 ev_tstamp prev_mn_now = mn_now;
2088
1399 /* update time to cancel out callback processing overhead */ 2089 /* update time to cancel out callback processing overhead */
1400#if EV_USE_MONOTONIC
1401 if (expect_true (have_monotonic))
1402 time_update_monotonic (EV_A); 2090 time_update (EV_A_ 1e100);
1403 else
1404#endif
1405 {
1406 ev_rt_now = ev_time ();
1407 mn_now = ev_rt_now;
1408 }
1409 2091
1410 block = MAX_BLOCKTIME; 2092 waittime = MAX_BLOCKTIME;
1411 2093
1412 if (timercnt) 2094 if (timercnt)
1413 { 2095 {
1414 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2096 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1415 if (block > to) block = to; 2097 if (waittime > to) waittime = to;
1416 } 2098 }
1417 2099
1418#if EV_PERIODIC_ENABLE 2100#if EV_PERIODIC_ENABLE
1419 if (periodiccnt) 2101 if (periodiccnt)
1420 { 2102 {
1421 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2103 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1422 if (block > to) block = to; 2104 if (waittime > to) waittime = to;
1423 } 2105 }
1424#endif 2106#endif
1425 2107
2108 /* don't let timeouts decrease the waittime below timeout_blocktime */
2109 if (expect_false (waittime < timeout_blocktime))
2110 waittime = timeout_blocktime;
2111
2112 /* extra check because io_blocktime is commonly 0 */
1426 if (expect_false (block < 0.)) block = 0.; 2113 if (expect_false (io_blocktime))
2114 {
2115 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2116
2117 if (sleeptime > waittime - backend_fudge)
2118 sleeptime = waittime - backend_fudge;
2119
2120 if (expect_true (sleeptime > 0.))
2121 {
2122 ev_sleep (sleeptime);
2123 waittime -= sleeptime;
2124 }
2125 }
1427 } 2126 }
1428 2127
1429 ++loop_count; 2128 ++loop_count;
1430 backend_poll (EV_A_ block); 2129 backend_poll (EV_A_ waittime);
2130
2131 /* update ev_rt_now, do magic */
2132 time_update (EV_A_ waittime + sleeptime);
1431 } 2133 }
1432
1433 /* update ev_rt_now, do magic */
1434 time_update (EV_A);
1435 2134
1436 /* queue pending timers and reschedule them */ 2135 /* queue pending timers and reschedule them */
1437 timers_reify (EV_A); /* relative timers called last */ 2136 timers_reify (EV_A); /* relative timers called last */
1438#if EV_PERIODIC_ENABLE 2137#if EV_PERIODIC_ENABLE
1439 periodics_reify (EV_A); /* absolute timers called first */ 2138 periodics_reify (EV_A); /* absolute timers called first */
1440#endif 2139#endif
1441 2140
2141#if EV_IDLE_ENABLE
1442 /* queue idle watchers unless other events are pending */ 2142 /* queue idle watchers unless other events are pending */
1443 if (idlecnt && !any_pending (EV_A)) 2143 idle_reify (EV_A);
1444 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2144#endif
1445 2145
1446 /* queue check watchers, to be executed first */ 2146 /* queue check watchers, to be executed first */
1447 if (expect_false (checkcnt)) 2147 if (expect_false (checkcnt))
1448 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2148 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1449 2149
1450 call_pending (EV_A); 2150 call_pending (EV_A);
1451
1452 } 2151 }
1453 while (expect_true (activecnt && !loop_done)); 2152 while (expect_true (
2153 activecnt
2154 && !loop_done
2155 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2156 ));
1454 2157
1455 if (loop_done == EVUNLOOP_ONE) 2158 if (loop_done == EVUNLOOP_ONE)
1456 loop_done = EVUNLOOP_CANCEL; 2159 loop_done = EVUNLOOP_CANCEL;
2160
2161 --loop_depth;
1457} 2162}
1458 2163
1459void 2164void
1460ev_unloop (EV_P_ int how) 2165ev_unloop (EV_P_ int how)
1461{ 2166{
1462 loop_done = how; 2167 loop_done = how;
1463} 2168}
1464 2169
2170void
2171ev_ref (EV_P)
2172{
2173 ++activecnt;
2174}
2175
2176void
2177ev_unref (EV_P)
2178{
2179 --activecnt;
2180}
2181
2182void
2183ev_now_update (EV_P)
2184{
2185 time_update (EV_A_ 1e100);
2186}
2187
2188void
2189ev_suspend (EV_P)
2190{
2191 ev_now_update (EV_A);
2192}
2193
2194void
2195ev_resume (EV_P)
2196{
2197 ev_tstamp mn_prev = mn_now;
2198
2199 ev_now_update (EV_A);
2200 timers_reschedule (EV_A_ mn_now - mn_prev);
2201#if EV_PERIODIC_ENABLE
2202 /* TODO: really do this? */
2203 periodics_reschedule (EV_A);
2204#endif
2205}
2206
1465/*****************************************************************************/ 2207/*****************************************************************************/
2208/* singly-linked list management, used when the expected list length is short */
1466 2209
1467void inline_size 2210inline_size void
1468wlist_add (WL *head, WL elem) 2211wlist_add (WL *head, WL elem)
1469{ 2212{
1470 elem->next = *head; 2213 elem->next = *head;
1471 *head = elem; 2214 *head = elem;
1472} 2215}
1473 2216
1474void inline_size 2217inline_size void
1475wlist_del (WL *head, WL elem) 2218wlist_del (WL *head, WL elem)
1476{ 2219{
1477 while (*head) 2220 while (*head)
1478 { 2221 {
1479 if (*head == elem) 2222 if (*head == elem)
1484 2227
1485 head = &(*head)->next; 2228 head = &(*head)->next;
1486 } 2229 }
1487} 2230}
1488 2231
1489void inline_speed 2232/* internal, faster, version of ev_clear_pending */
2233inline_speed void
1490ev_clear_pending (EV_P_ W w) 2234clear_pending (EV_P_ W w)
1491{ 2235{
1492 if (w->pending) 2236 if (w->pending)
1493 { 2237 {
1494 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2238 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1495 w->pending = 0; 2239 w->pending = 0;
1496 } 2240 }
1497} 2241}
1498 2242
1499void inline_speed 2243int
2244ev_clear_pending (EV_P_ void *w)
2245{
2246 W w_ = (W)w;
2247 int pending = w_->pending;
2248
2249 if (expect_true (pending))
2250 {
2251 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2252 p->w = (W)&pending_w;
2253 w_->pending = 0;
2254 return p->events;
2255 }
2256 else
2257 return 0;
2258}
2259
2260inline_size void
2261pri_adjust (EV_P_ W w)
2262{
2263 int pri = w->priority;
2264 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2265 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2266 w->priority = pri;
2267}
2268
2269inline_speed void
1500ev_start (EV_P_ W w, int active) 2270ev_start (EV_P_ W w, int active)
1501{ 2271{
1502 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2272 pri_adjust (EV_A_ w);
1503 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1504
1505 w->active = active; 2273 w->active = active;
1506 ev_ref (EV_A); 2274 ev_ref (EV_A);
1507} 2275}
1508 2276
1509void inline_size 2277inline_size void
1510ev_stop (EV_P_ W w) 2278ev_stop (EV_P_ W w)
1511{ 2279{
1512 ev_unref (EV_A); 2280 ev_unref (EV_A);
1513 w->active = 0; 2281 w->active = 0;
1514} 2282}
1515 2283
1516/*****************************************************************************/ 2284/*****************************************************************************/
1517 2285
1518void 2286void noinline
1519ev_io_start (EV_P_ ev_io *w) 2287ev_io_start (EV_P_ ev_io *w)
1520{ 2288{
1521 int fd = w->fd; 2289 int fd = w->fd;
1522 2290
1523 if (expect_false (ev_is_active (w))) 2291 if (expect_false (ev_is_active (w)))
1524 return; 2292 return;
1525 2293
1526 assert (("ev_io_start called with negative fd", fd >= 0)); 2294 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2295 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2296
2297 EV_FREQUENT_CHECK;
1527 2298
1528 ev_start (EV_A_ (W)w, 1); 2299 ev_start (EV_A_ (W)w, 1);
1529 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2300 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1530 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2301 wlist_add (&anfds[fd].head, (WL)w);
1531 2302
1532 fd_change (EV_A_ fd); 2303 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1533} 2304 w->events &= ~EV__IOFDSET;
1534 2305
1535void 2306 EV_FREQUENT_CHECK;
2307}
2308
2309void noinline
1536ev_io_stop (EV_P_ ev_io *w) 2310ev_io_stop (EV_P_ ev_io *w)
1537{ 2311{
1538 ev_clear_pending (EV_A_ (W)w); 2312 clear_pending (EV_A_ (W)w);
1539 if (expect_false (!ev_is_active (w))) 2313 if (expect_false (!ev_is_active (w)))
1540 return; 2314 return;
1541 2315
1542 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2316 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1543 2317
2318 EV_FREQUENT_CHECK;
2319
1544 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2320 wlist_del (&anfds[w->fd].head, (WL)w);
1545 ev_stop (EV_A_ (W)w); 2321 ev_stop (EV_A_ (W)w);
1546 2322
1547 fd_change (EV_A_ w->fd); 2323 fd_change (EV_A_ w->fd, 1);
1548}
1549 2324
1550void 2325 EV_FREQUENT_CHECK;
2326}
2327
2328void noinline
1551ev_timer_start (EV_P_ ev_timer *w) 2329ev_timer_start (EV_P_ ev_timer *w)
1552{ 2330{
1553 if (expect_false (ev_is_active (w))) 2331 if (expect_false (ev_is_active (w)))
1554 return; 2332 return;
1555 2333
1556 ((WT)w)->at += mn_now; 2334 ev_at (w) += mn_now;
1557 2335
1558 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2336 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1559 2337
2338 EV_FREQUENT_CHECK;
2339
2340 ++timercnt;
1560 ev_start (EV_A_ (W)w, ++timercnt); 2341 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1561 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2342 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1562 timers [timercnt - 1] = w; 2343 ANHE_w (timers [ev_active (w)]) = (WT)w;
1563 upheap ((WT *)timers, timercnt - 1); 2344 ANHE_at_cache (timers [ev_active (w)]);
2345 upheap (timers, ev_active (w));
1564 2346
2347 EV_FREQUENT_CHECK;
2348
1565 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2349 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1566} 2350}
1567 2351
1568void 2352void noinline
1569ev_timer_stop (EV_P_ ev_timer *w) 2353ev_timer_stop (EV_P_ ev_timer *w)
1570{ 2354{
1571 ev_clear_pending (EV_A_ (W)w); 2355 clear_pending (EV_A_ (W)w);
1572 if (expect_false (!ev_is_active (w))) 2356 if (expect_false (!ev_is_active (w)))
1573 return; 2357 return;
1574 2358
1575 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2359 EV_FREQUENT_CHECK;
1576 2360
1577 { 2361 {
1578 int active = ((W)w)->active; 2362 int active = ev_active (w);
1579 2363
2364 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2365
2366 --timercnt;
2367
1580 if (expect_true (--active < --timercnt)) 2368 if (expect_true (active < timercnt + HEAP0))
1581 { 2369 {
1582 timers [active] = timers [timercnt]; 2370 timers [active] = timers [timercnt + HEAP0];
1583 adjustheap ((WT *)timers, timercnt, active); 2371 adjustheap (timers, timercnt, active);
1584 } 2372 }
1585 } 2373 }
1586 2374
1587 ((WT)w)->at -= mn_now; 2375 EV_FREQUENT_CHECK;
2376
2377 ev_at (w) -= mn_now;
1588 2378
1589 ev_stop (EV_A_ (W)w); 2379 ev_stop (EV_A_ (W)w);
1590} 2380}
1591 2381
1592void 2382void noinline
1593ev_timer_again (EV_P_ ev_timer *w) 2383ev_timer_again (EV_P_ ev_timer *w)
1594{ 2384{
2385 EV_FREQUENT_CHECK;
2386
1595 if (ev_is_active (w)) 2387 if (ev_is_active (w))
1596 { 2388 {
1597 if (w->repeat) 2389 if (w->repeat)
1598 { 2390 {
1599 ((WT)w)->at = mn_now + w->repeat; 2391 ev_at (w) = mn_now + w->repeat;
2392 ANHE_at_cache (timers [ev_active (w)]);
1600 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2393 adjustheap (timers, timercnt, ev_active (w));
1601 } 2394 }
1602 else 2395 else
1603 ev_timer_stop (EV_A_ w); 2396 ev_timer_stop (EV_A_ w);
1604 } 2397 }
1605 else if (w->repeat) 2398 else if (w->repeat)
1606 { 2399 {
1607 w->at = w->repeat; 2400 ev_at (w) = w->repeat;
1608 ev_timer_start (EV_A_ w); 2401 ev_timer_start (EV_A_ w);
1609 } 2402 }
2403
2404 EV_FREQUENT_CHECK;
1610} 2405}
1611 2406
1612#if EV_PERIODIC_ENABLE 2407#if EV_PERIODIC_ENABLE
1613void 2408void noinline
1614ev_periodic_start (EV_P_ ev_periodic *w) 2409ev_periodic_start (EV_P_ ev_periodic *w)
1615{ 2410{
1616 if (expect_false (ev_is_active (w))) 2411 if (expect_false (ev_is_active (w)))
1617 return; 2412 return;
1618 2413
1619 if (w->reschedule_cb) 2414 if (w->reschedule_cb)
1620 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2415 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1621 else if (w->interval) 2416 else if (w->interval)
1622 { 2417 {
1623 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2418 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1624 /* this formula differs from the one in periodic_reify because we do not always round up */ 2419 /* this formula differs from the one in periodic_reify because we do not always round up */
1625 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2420 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1626 } 2421 }
2422 else
2423 ev_at (w) = w->offset;
1627 2424
2425 EV_FREQUENT_CHECK;
2426
2427 ++periodiccnt;
1628 ev_start (EV_A_ (W)w, ++periodiccnt); 2428 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1629 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2429 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1630 periodics [periodiccnt - 1] = w; 2430 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1631 upheap ((WT *)periodics, periodiccnt - 1); 2431 ANHE_at_cache (periodics [ev_active (w)]);
2432 upheap (periodics, ev_active (w));
1632 2433
2434 EV_FREQUENT_CHECK;
2435
1633 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2436 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1634} 2437}
1635 2438
1636void 2439void noinline
1637ev_periodic_stop (EV_P_ ev_periodic *w) 2440ev_periodic_stop (EV_P_ ev_periodic *w)
1638{ 2441{
1639 ev_clear_pending (EV_A_ (W)w); 2442 clear_pending (EV_A_ (W)w);
1640 if (expect_false (!ev_is_active (w))) 2443 if (expect_false (!ev_is_active (w)))
1641 return; 2444 return;
1642 2445
1643 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2446 EV_FREQUENT_CHECK;
1644 2447
1645 { 2448 {
1646 int active = ((W)w)->active; 2449 int active = ev_active (w);
1647 2450
2451 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2452
2453 --periodiccnt;
2454
1648 if (expect_true (--active < --periodiccnt)) 2455 if (expect_true (active < periodiccnt + HEAP0))
1649 { 2456 {
1650 periodics [active] = periodics [periodiccnt]; 2457 periodics [active] = periodics [periodiccnt + HEAP0];
1651 adjustheap ((WT *)periodics, periodiccnt, active); 2458 adjustheap (periodics, periodiccnt, active);
1652 } 2459 }
1653 } 2460 }
1654 2461
2462 EV_FREQUENT_CHECK;
2463
1655 ev_stop (EV_A_ (W)w); 2464 ev_stop (EV_A_ (W)w);
1656} 2465}
1657 2466
1658void 2467void noinline
1659ev_periodic_again (EV_P_ ev_periodic *w) 2468ev_periodic_again (EV_P_ ev_periodic *w)
1660{ 2469{
1661 /* TODO: use adjustheap and recalculation */ 2470 /* TODO: use adjustheap and recalculation */
1662 ev_periodic_stop (EV_A_ w); 2471 ev_periodic_stop (EV_A_ w);
1663 ev_periodic_start (EV_A_ w); 2472 ev_periodic_start (EV_A_ w);
1666 2475
1667#ifndef SA_RESTART 2476#ifndef SA_RESTART
1668# define SA_RESTART 0 2477# define SA_RESTART 0
1669#endif 2478#endif
1670 2479
1671void 2480void noinline
1672ev_signal_start (EV_P_ ev_signal *w) 2481ev_signal_start (EV_P_ ev_signal *w)
1673{ 2482{
1674#if EV_MULTIPLICITY 2483#if EV_MULTIPLICITY
1675 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2484 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1676#endif 2485#endif
1677 if (expect_false (ev_is_active (w))) 2486 if (expect_false (ev_is_active (w)))
1678 return; 2487 return;
1679 2488
1680 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2489 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2490
2491 evpipe_init (EV_A);
2492
2493 EV_FREQUENT_CHECK;
2494
2495 {
2496#ifndef _WIN32
2497 sigset_t full, prev;
2498 sigfillset (&full);
2499 sigprocmask (SIG_SETMASK, &full, &prev);
2500#endif
2501
2502 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2503
2504#ifndef _WIN32
2505 sigprocmask (SIG_SETMASK, &prev, 0);
2506#endif
2507 }
1681 2508
1682 ev_start (EV_A_ (W)w, 1); 2509 ev_start (EV_A_ (W)w, 1);
1683 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1684 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2510 wlist_add (&signals [w->signum - 1].head, (WL)w);
1685 2511
1686 if (!((WL)w)->next) 2512 if (!((WL)w)->next)
1687 { 2513 {
1688#if _WIN32 2514#if _WIN32
1689 signal (w->signum, sighandler); 2515 signal (w->signum, ev_sighandler);
1690#else 2516#else
1691 struct sigaction sa; 2517 struct sigaction sa;
1692 sa.sa_handler = sighandler; 2518 sa.sa_handler = ev_sighandler;
1693 sigfillset (&sa.sa_mask); 2519 sigfillset (&sa.sa_mask);
1694 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2520 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1695 sigaction (w->signum, &sa, 0); 2521 sigaction (w->signum, &sa, 0);
1696#endif 2522#endif
1697 } 2523 }
1698}
1699 2524
1700void 2525 EV_FREQUENT_CHECK;
2526}
2527
2528void noinline
1701ev_signal_stop (EV_P_ ev_signal *w) 2529ev_signal_stop (EV_P_ ev_signal *w)
1702{ 2530{
1703 ev_clear_pending (EV_A_ (W)w); 2531 clear_pending (EV_A_ (W)w);
1704 if (expect_false (!ev_is_active (w))) 2532 if (expect_false (!ev_is_active (w)))
1705 return; 2533 return;
1706 2534
2535 EV_FREQUENT_CHECK;
2536
1707 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2537 wlist_del (&signals [w->signum - 1].head, (WL)w);
1708 ev_stop (EV_A_ (W)w); 2538 ev_stop (EV_A_ (W)w);
1709 2539
1710 if (!signals [w->signum - 1].head) 2540 if (!signals [w->signum - 1].head)
1711 signal (w->signum, SIG_DFL); 2541 signal (w->signum, SIG_DFL);
2542
2543 EV_FREQUENT_CHECK;
1712} 2544}
1713 2545
1714void 2546void
1715ev_child_start (EV_P_ ev_child *w) 2547ev_child_start (EV_P_ ev_child *w)
1716{ 2548{
1717#if EV_MULTIPLICITY 2549#if EV_MULTIPLICITY
1718 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2550 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1719#endif 2551#endif
1720 if (expect_false (ev_is_active (w))) 2552 if (expect_false (ev_is_active (w)))
1721 return; 2553 return;
1722 2554
2555 EV_FREQUENT_CHECK;
2556
1723 ev_start (EV_A_ (W)w, 1); 2557 ev_start (EV_A_ (W)w, 1);
1724 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2558 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2559
2560 EV_FREQUENT_CHECK;
1725} 2561}
1726 2562
1727void 2563void
1728ev_child_stop (EV_P_ ev_child *w) 2564ev_child_stop (EV_P_ ev_child *w)
1729{ 2565{
1730 ev_clear_pending (EV_A_ (W)w); 2566 clear_pending (EV_A_ (W)w);
1731 if (expect_false (!ev_is_active (w))) 2567 if (expect_false (!ev_is_active (w)))
1732 return; 2568 return;
1733 2569
2570 EV_FREQUENT_CHECK;
2571
1734 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2572 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1735 ev_stop (EV_A_ (W)w); 2573 ev_stop (EV_A_ (W)w);
2574
2575 EV_FREQUENT_CHECK;
1736} 2576}
1737 2577
1738#if EV_STAT_ENABLE 2578#if EV_STAT_ENABLE
1739 2579
1740# ifdef _WIN32 2580# ifdef _WIN32
1741# undef lstat 2581# undef lstat
1742# define lstat(a,b) _stati64 (a,b) 2582# define lstat(a,b) _stati64 (a,b)
1743# endif 2583# endif
1744 2584
1745#define DEF_STAT_INTERVAL 5.0074891 2585#define DEF_STAT_INTERVAL 5.0074891
2586#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1746#define MIN_STAT_INTERVAL 0.1074891 2587#define MIN_STAT_INTERVAL 0.1074891
1747 2588
1748static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2589static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1749 2590
1750#if EV_USE_INOTIFY 2591#if EV_USE_INOTIFY
1751# define EV_INOTIFY_BUFSIZE 8192 2592# define EV_INOTIFY_BUFSIZE 8192
1755{ 2596{
1756 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2597 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1757 2598
1758 if (w->wd < 0) 2599 if (w->wd < 0)
1759 { 2600 {
2601 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1760 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2602 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1761 2603
1762 /* monitor some parent directory for speedup hints */ 2604 /* monitor some parent directory for speedup hints */
2605 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2606 /* but an efficiency issue only */
1763 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2607 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1764 { 2608 {
1765 char path [4096]; 2609 char path [4096];
1766 strcpy (path, w->path); 2610 strcpy (path, w->path);
1767 2611
1770 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2614 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1771 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2615 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1772 2616
1773 char *pend = strrchr (path, '/'); 2617 char *pend = strrchr (path, '/');
1774 2618
1775 if (!pend) 2619 if (!pend || pend == path)
1776 break; /* whoops, no '/', complain to your admin */ 2620 break;
1777 2621
1778 *pend = 0; 2622 *pend = 0;
1779 w->wd = inotify_add_watch (fs_fd, path, mask); 2623 w->wd = inotify_add_watch (fs_fd, path, mask);
1780 } 2624 }
1781 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2625 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1782 } 2626 }
1783 } 2627 }
1784 else
1785 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1786 2628
1787 if (w->wd >= 0) 2629 if (w->wd >= 0)
2630 {
1788 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2631 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2632
2633 /* now local changes will be tracked by inotify, but remote changes won't */
2634 /* unless the filesystem it known to be local, we therefore still poll */
2635 /* also do poll on <2.6.25, but with normal frequency */
2636 struct statfs sfs;
2637
2638 if (fs_2625 && !statfs (w->path, &sfs))
2639 if (sfs.f_type == 0x1373 /* devfs */
2640 || sfs.f_type == 0xEF53 /* ext2/3 */
2641 || sfs.f_type == 0x3153464a /* jfs */
2642 || sfs.f_type == 0x52654973 /* reiser3 */
2643 || sfs.f_type == 0x01021994 /* tempfs */
2644 || sfs.f_type == 0x58465342 /* xfs */)
2645 return;
2646
2647 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2648 ev_timer_again (EV_A_ &w->timer);
2649 }
1789} 2650}
1790 2651
1791static void noinline 2652static void noinline
1792infy_del (EV_P_ ev_stat *w) 2653infy_del (EV_P_ ev_stat *w)
1793{ 2654{
1807 2668
1808static void noinline 2669static void noinline
1809infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2670infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1810{ 2671{
1811 if (slot < 0) 2672 if (slot < 0)
1812 /* overflow, need to check for all hahs slots */ 2673 /* overflow, need to check for all hash slots */
1813 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2674 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1814 infy_wd (EV_A_ slot, wd, ev); 2675 infy_wd (EV_A_ slot, wd, ev);
1815 else 2676 else
1816 { 2677 {
1817 WL w_; 2678 WL w_;
1823 2684
1824 if (w->wd == wd || wd == -1) 2685 if (w->wd == wd || wd == -1)
1825 { 2686 {
1826 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2687 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1827 { 2688 {
2689 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1828 w->wd = -1; 2690 w->wd = -1;
1829 infy_add (EV_A_ w); /* re-add, no matter what */ 2691 infy_add (EV_A_ w); /* re-add, no matter what */
1830 } 2692 }
1831 2693
1832 stat_timer_cb (EV_A_ &w->timer, 0); 2694 stat_timer_cb (EV_A_ &w->timer, 0);
1845 2707
1846 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2708 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1847 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2709 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1848} 2710}
1849 2711
1850void inline_size 2712inline_size void
2713check_2625 (EV_P)
2714{
2715 /* kernels < 2.6.25 are borked
2716 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2717 */
2718 struct utsname buf;
2719 int major, minor, micro;
2720
2721 if (uname (&buf))
2722 return;
2723
2724 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2725 return;
2726
2727 if (major < 2
2728 || (major == 2 && minor < 6)
2729 || (major == 2 && minor == 6 && micro < 25))
2730 return;
2731
2732 fs_2625 = 1;
2733}
2734
2735inline_size void
1851infy_init (EV_P) 2736infy_init (EV_P)
1852{ 2737{
1853 if (fs_fd != -2) 2738 if (fs_fd != -2)
1854 return; 2739 return;
2740
2741 fs_fd = -1;
2742
2743 check_2625 (EV_A);
1855 2744
1856 fs_fd = inotify_init (); 2745 fs_fd = inotify_init ();
1857 2746
1858 if (fs_fd >= 0) 2747 if (fs_fd >= 0)
1859 { 2748 {
1861 ev_set_priority (&fs_w, EV_MAXPRI); 2750 ev_set_priority (&fs_w, EV_MAXPRI);
1862 ev_io_start (EV_A_ &fs_w); 2751 ev_io_start (EV_A_ &fs_w);
1863 } 2752 }
1864} 2753}
1865 2754
1866void inline_size 2755inline_size void
1867infy_fork (EV_P) 2756infy_fork (EV_P)
1868{ 2757{
1869 int slot; 2758 int slot;
1870 2759
1871 if (fs_fd < 0) 2760 if (fs_fd < 0)
1887 w->wd = -1; 2776 w->wd = -1;
1888 2777
1889 if (fs_fd >= 0) 2778 if (fs_fd >= 0)
1890 infy_add (EV_A_ w); /* re-add, no matter what */ 2779 infy_add (EV_A_ w); /* re-add, no matter what */
1891 else 2780 else
1892 ev_timer_start (EV_A_ &w->timer); 2781 ev_timer_again (EV_A_ &w->timer);
1893 } 2782 }
1894
1895 } 2783 }
1896} 2784}
1897 2785
2786#endif
2787
2788#ifdef _WIN32
2789# define EV_LSTAT(p,b) _stati64 (p, b)
2790#else
2791# define EV_LSTAT(p,b) lstat (p, b)
1898#endif 2792#endif
1899 2793
1900void 2794void
1901ev_stat_stat (EV_P_ ev_stat *w) 2795ev_stat_stat (EV_P_ ev_stat *w)
1902{ 2796{
1929 || w->prev.st_atime != w->attr.st_atime 2823 || w->prev.st_atime != w->attr.st_atime
1930 || w->prev.st_mtime != w->attr.st_mtime 2824 || w->prev.st_mtime != w->attr.st_mtime
1931 || w->prev.st_ctime != w->attr.st_ctime 2825 || w->prev.st_ctime != w->attr.st_ctime
1932 ) { 2826 ) {
1933 #if EV_USE_INOTIFY 2827 #if EV_USE_INOTIFY
2828 if (fs_fd >= 0)
2829 {
1934 infy_del (EV_A_ w); 2830 infy_del (EV_A_ w);
1935 infy_add (EV_A_ w); 2831 infy_add (EV_A_ w);
1936 ev_stat_stat (EV_A_ w); /* avoid race... */ 2832 ev_stat_stat (EV_A_ w); /* avoid race... */
2833 }
1937 #endif 2834 #endif
1938 2835
1939 ev_feed_event (EV_A_ w, EV_STAT); 2836 ev_feed_event (EV_A_ w, EV_STAT);
1940 } 2837 }
1941} 2838}
1944ev_stat_start (EV_P_ ev_stat *w) 2841ev_stat_start (EV_P_ ev_stat *w)
1945{ 2842{
1946 if (expect_false (ev_is_active (w))) 2843 if (expect_false (ev_is_active (w)))
1947 return; 2844 return;
1948 2845
1949 /* since we use memcmp, we need to clear any padding data etc. */
1950 memset (&w->prev, 0, sizeof (ev_statdata));
1951 memset (&w->attr, 0, sizeof (ev_statdata));
1952
1953 ev_stat_stat (EV_A_ w); 2846 ev_stat_stat (EV_A_ w);
1954 2847
2848 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1955 if (w->interval < MIN_STAT_INTERVAL) 2849 w->interval = MIN_STAT_INTERVAL;
1956 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1957 2850
1958 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2851 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1959 ev_set_priority (&w->timer, ev_priority (w)); 2852 ev_set_priority (&w->timer, ev_priority (w));
1960 2853
1961#if EV_USE_INOTIFY 2854#if EV_USE_INOTIFY
1962 infy_init (EV_A); 2855 infy_init (EV_A);
1963 2856
1964 if (fs_fd >= 0) 2857 if (fs_fd >= 0)
1965 infy_add (EV_A_ w); 2858 infy_add (EV_A_ w);
1966 else 2859 else
1967#endif 2860#endif
1968 ev_timer_start (EV_A_ &w->timer); 2861 ev_timer_again (EV_A_ &w->timer);
1969 2862
1970 ev_start (EV_A_ (W)w, 1); 2863 ev_start (EV_A_ (W)w, 1);
2864
2865 EV_FREQUENT_CHECK;
1971} 2866}
1972 2867
1973void 2868void
1974ev_stat_stop (EV_P_ ev_stat *w) 2869ev_stat_stop (EV_P_ ev_stat *w)
1975{ 2870{
1976 ev_clear_pending (EV_A_ (W)w); 2871 clear_pending (EV_A_ (W)w);
1977 if (expect_false (!ev_is_active (w))) 2872 if (expect_false (!ev_is_active (w)))
1978 return; 2873 return;
1979 2874
2875 EV_FREQUENT_CHECK;
2876
1980#if EV_USE_INOTIFY 2877#if EV_USE_INOTIFY
1981 infy_del (EV_A_ w); 2878 infy_del (EV_A_ w);
1982#endif 2879#endif
1983 ev_timer_stop (EV_A_ &w->timer); 2880 ev_timer_stop (EV_A_ &w->timer);
1984 2881
1985 ev_stop (EV_A_ (W)w); 2882 ev_stop (EV_A_ (W)w);
1986}
1987#endif
1988 2883
2884 EV_FREQUENT_CHECK;
2885}
2886#endif
2887
2888#if EV_IDLE_ENABLE
1989void 2889void
1990ev_idle_start (EV_P_ ev_idle *w) 2890ev_idle_start (EV_P_ ev_idle *w)
1991{ 2891{
1992 if (expect_false (ev_is_active (w))) 2892 if (expect_false (ev_is_active (w)))
1993 return; 2893 return;
1994 2894
2895 pri_adjust (EV_A_ (W)w);
2896
2897 EV_FREQUENT_CHECK;
2898
2899 {
2900 int active = ++idlecnt [ABSPRI (w)];
2901
2902 ++idleall;
1995 ev_start (EV_A_ (W)w, ++idlecnt); 2903 ev_start (EV_A_ (W)w, active);
2904
1996 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2905 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1997 idles [idlecnt - 1] = w; 2906 idles [ABSPRI (w)][active - 1] = w;
2907 }
2908
2909 EV_FREQUENT_CHECK;
1998} 2910}
1999 2911
2000void 2912void
2001ev_idle_stop (EV_P_ ev_idle *w) 2913ev_idle_stop (EV_P_ ev_idle *w)
2002{ 2914{
2003 ev_clear_pending (EV_A_ (W)w); 2915 clear_pending (EV_A_ (W)w);
2004 if (expect_false (!ev_is_active (w))) 2916 if (expect_false (!ev_is_active (w)))
2005 return; 2917 return;
2006 2918
2919 EV_FREQUENT_CHECK;
2920
2007 { 2921 {
2008 int active = ((W)w)->active; 2922 int active = ev_active (w);
2009 idles [active - 1] = idles [--idlecnt]; 2923
2010 ((W)idles [active - 1])->active = active; 2924 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2925 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2926
2927 ev_stop (EV_A_ (W)w);
2928 --idleall;
2011 } 2929 }
2012 2930
2013 ev_stop (EV_A_ (W)w); 2931 EV_FREQUENT_CHECK;
2014} 2932}
2933#endif
2015 2934
2016void 2935void
2017ev_prepare_start (EV_P_ ev_prepare *w) 2936ev_prepare_start (EV_P_ ev_prepare *w)
2018{ 2937{
2019 if (expect_false (ev_is_active (w))) 2938 if (expect_false (ev_is_active (w)))
2020 return; 2939 return;
2940
2941 EV_FREQUENT_CHECK;
2021 2942
2022 ev_start (EV_A_ (W)w, ++preparecnt); 2943 ev_start (EV_A_ (W)w, ++preparecnt);
2023 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2944 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2024 prepares [preparecnt - 1] = w; 2945 prepares [preparecnt - 1] = w;
2946
2947 EV_FREQUENT_CHECK;
2025} 2948}
2026 2949
2027void 2950void
2028ev_prepare_stop (EV_P_ ev_prepare *w) 2951ev_prepare_stop (EV_P_ ev_prepare *w)
2029{ 2952{
2030 ev_clear_pending (EV_A_ (W)w); 2953 clear_pending (EV_A_ (W)w);
2031 if (expect_false (!ev_is_active (w))) 2954 if (expect_false (!ev_is_active (w)))
2032 return; 2955 return;
2033 2956
2957 EV_FREQUENT_CHECK;
2958
2034 { 2959 {
2035 int active = ((W)w)->active; 2960 int active = ev_active (w);
2961
2036 prepares [active - 1] = prepares [--preparecnt]; 2962 prepares [active - 1] = prepares [--preparecnt];
2037 ((W)prepares [active - 1])->active = active; 2963 ev_active (prepares [active - 1]) = active;
2038 } 2964 }
2039 2965
2040 ev_stop (EV_A_ (W)w); 2966 ev_stop (EV_A_ (W)w);
2967
2968 EV_FREQUENT_CHECK;
2041} 2969}
2042 2970
2043void 2971void
2044ev_check_start (EV_P_ ev_check *w) 2972ev_check_start (EV_P_ ev_check *w)
2045{ 2973{
2046 if (expect_false (ev_is_active (w))) 2974 if (expect_false (ev_is_active (w)))
2047 return; 2975 return;
2976
2977 EV_FREQUENT_CHECK;
2048 2978
2049 ev_start (EV_A_ (W)w, ++checkcnt); 2979 ev_start (EV_A_ (W)w, ++checkcnt);
2050 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2980 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2051 checks [checkcnt - 1] = w; 2981 checks [checkcnt - 1] = w;
2982
2983 EV_FREQUENT_CHECK;
2052} 2984}
2053 2985
2054void 2986void
2055ev_check_stop (EV_P_ ev_check *w) 2987ev_check_stop (EV_P_ ev_check *w)
2056{ 2988{
2057 ev_clear_pending (EV_A_ (W)w); 2989 clear_pending (EV_A_ (W)w);
2058 if (expect_false (!ev_is_active (w))) 2990 if (expect_false (!ev_is_active (w)))
2059 return; 2991 return;
2060 2992
2993 EV_FREQUENT_CHECK;
2994
2061 { 2995 {
2062 int active = ((W)w)->active; 2996 int active = ev_active (w);
2997
2063 checks [active - 1] = checks [--checkcnt]; 2998 checks [active - 1] = checks [--checkcnt];
2064 ((W)checks [active - 1])->active = active; 2999 ev_active (checks [active - 1]) = active;
2065 } 3000 }
2066 3001
2067 ev_stop (EV_A_ (W)w); 3002 ev_stop (EV_A_ (W)w);
3003
3004 EV_FREQUENT_CHECK;
2068} 3005}
2069 3006
2070#if EV_EMBED_ENABLE 3007#if EV_EMBED_ENABLE
2071void noinline 3008void noinline
2072ev_embed_sweep (EV_P_ ev_embed *w) 3009ev_embed_sweep (EV_P_ ev_embed *w)
2073{ 3010{
2074 ev_loop (w->loop, EVLOOP_NONBLOCK); 3011 ev_loop (w->other, EVLOOP_NONBLOCK);
2075} 3012}
2076 3013
2077static void 3014static void
2078embed_cb (EV_P_ ev_io *io, int revents) 3015embed_io_cb (EV_P_ ev_io *io, int revents)
2079{ 3016{
2080 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3017 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2081 3018
2082 if (ev_cb (w)) 3019 if (ev_cb (w))
2083 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3020 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2084 else 3021 else
2085 ev_embed_sweep (loop, w); 3022 ev_loop (w->other, EVLOOP_NONBLOCK);
2086} 3023}
3024
3025static void
3026embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3027{
3028 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3029
3030 {
3031 struct ev_loop *loop = w->other;
3032
3033 while (fdchangecnt)
3034 {
3035 fd_reify (EV_A);
3036 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3037 }
3038 }
3039}
3040
3041static void
3042embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3043{
3044 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3045
3046 ev_embed_stop (EV_A_ w);
3047
3048 {
3049 struct ev_loop *loop = w->other;
3050
3051 ev_loop_fork (EV_A);
3052 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3053 }
3054
3055 ev_embed_start (EV_A_ w);
3056}
3057
3058#if 0
3059static void
3060embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3061{
3062 ev_idle_stop (EV_A_ idle);
3063}
3064#endif
2087 3065
2088void 3066void
2089ev_embed_start (EV_P_ ev_embed *w) 3067ev_embed_start (EV_P_ ev_embed *w)
2090{ 3068{
2091 if (expect_false (ev_is_active (w))) 3069 if (expect_false (ev_is_active (w)))
2092 return; 3070 return;
2093 3071
2094 { 3072 {
2095 struct ev_loop *loop = w->loop; 3073 struct ev_loop *loop = w->other;
2096 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3074 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2097 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3075 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2098 } 3076 }
3077
3078 EV_FREQUENT_CHECK;
2099 3079
2100 ev_set_priority (&w->io, ev_priority (w)); 3080 ev_set_priority (&w->io, ev_priority (w));
2101 ev_io_start (EV_A_ &w->io); 3081 ev_io_start (EV_A_ &w->io);
2102 3082
3083 ev_prepare_init (&w->prepare, embed_prepare_cb);
3084 ev_set_priority (&w->prepare, EV_MINPRI);
3085 ev_prepare_start (EV_A_ &w->prepare);
3086
3087 ev_fork_init (&w->fork, embed_fork_cb);
3088 ev_fork_start (EV_A_ &w->fork);
3089
3090 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3091
2103 ev_start (EV_A_ (W)w, 1); 3092 ev_start (EV_A_ (W)w, 1);
3093
3094 EV_FREQUENT_CHECK;
2104} 3095}
2105 3096
2106void 3097void
2107ev_embed_stop (EV_P_ ev_embed *w) 3098ev_embed_stop (EV_P_ ev_embed *w)
2108{ 3099{
2109 ev_clear_pending (EV_A_ (W)w); 3100 clear_pending (EV_A_ (W)w);
2110 if (expect_false (!ev_is_active (w))) 3101 if (expect_false (!ev_is_active (w)))
2111 return; 3102 return;
2112 3103
3104 EV_FREQUENT_CHECK;
3105
2113 ev_io_stop (EV_A_ &w->io); 3106 ev_io_stop (EV_A_ &w->io);
3107 ev_prepare_stop (EV_A_ &w->prepare);
3108 ev_fork_stop (EV_A_ &w->fork);
2114 3109
2115 ev_stop (EV_A_ (W)w); 3110 EV_FREQUENT_CHECK;
2116} 3111}
2117#endif 3112#endif
2118 3113
2119#if EV_FORK_ENABLE 3114#if EV_FORK_ENABLE
2120void 3115void
2121ev_fork_start (EV_P_ ev_fork *w) 3116ev_fork_start (EV_P_ ev_fork *w)
2122{ 3117{
2123 if (expect_false (ev_is_active (w))) 3118 if (expect_false (ev_is_active (w)))
2124 return; 3119 return;
3120
3121 EV_FREQUENT_CHECK;
2125 3122
2126 ev_start (EV_A_ (W)w, ++forkcnt); 3123 ev_start (EV_A_ (W)w, ++forkcnt);
2127 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3124 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2128 forks [forkcnt - 1] = w; 3125 forks [forkcnt - 1] = w;
3126
3127 EV_FREQUENT_CHECK;
2129} 3128}
2130 3129
2131void 3130void
2132ev_fork_stop (EV_P_ ev_fork *w) 3131ev_fork_stop (EV_P_ ev_fork *w)
2133{ 3132{
2134 ev_clear_pending (EV_A_ (W)w); 3133 clear_pending (EV_A_ (W)w);
2135 if (expect_false (!ev_is_active (w))) 3134 if (expect_false (!ev_is_active (w)))
2136 return; 3135 return;
2137 3136
3137 EV_FREQUENT_CHECK;
3138
2138 { 3139 {
2139 int active = ((W)w)->active; 3140 int active = ev_active (w);
3141
2140 forks [active - 1] = forks [--forkcnt]; 3142 forks [active - 1] = forks [--forkcnt];
2141 ((W)forks [active - 1])->active = active; 3143 ev_active (forks [active - 1]) = active;
2142 } 3144 }
2143 3145
2144 ev_stop (EV_A_ (W)w); 3146 ev_stop (EV_A_ (W)w);
3147
3148 EV_FREQUENT_CHECK;
3149}
3150#endif
3151
3152#if EV_ASYNC_ENABLE
3153void
3154ev_async_start (EV_P_ ev_async *w)
3155{
3156 if (expect_false (ev_is_active (w)))
3157 return;
3158
3159 evpipe_init (EV_A);
3160
3161 EV_FREQUENT_CHECK;
3162
3163 ev_start (EV_A_ (W)w, ++asynccnt);
3164 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3165 asyncs [asynccnt - 1] = w;
3166
3167 EV_FREQUENT_CHECK;
3168}
3169
3170void
3171ev_async_stop (EV_P_ ev_async *w)
3172{
3173 clear_pending (EV_A_ (W)w);
3174 if (expect_false (!ev_is_active (w)))
3175 return;
3176
3177 EV_FREQUENT_CHECK;
3178
3179 {
3180 int active = ev_active (w);
3181
3182 asyncs [active - 1] = asyncs [--asynccnt];
3183 ev_active (asyncs [active - 1]) = active;
3184 }
3185
3186 ev_stop (EV_A_ (W)w);
3187
3188 EV_FREQUENT_CHECK;
3189}
3190
3191void
3192ev_async_send (EV_P_ ev_async *w)
3193{
3194 w->sent = 1;
3195 evpipe_write (EV_A_ &gotasync);
2145} 3196}
2146#endif 3197#endif
2147 3198
2148/*****************************************************************************/ 3199/*****************************************************************************/
2149 3200
2159once_cb (EV_P_ struct ev_once *once, int revents) 3210once_cb (EV_P_ struct ev_once *once, int revents)
2160{ 3211{
2161 void (*cb)(int revents, void *arg) = once->cb; 3212 void (*cb)(int revents, void *arg) = once->cb;
2162 void *arg = once->arg; 3213 void *arg = once->arg;
2163 3214
2164 ev_io_stop (EV_A_ &once->io); 3215 ev_io_stop (EV_A_ &once->io);
2165 ev_timer_stop (EV_A_ &once->to); 3216 ev_timer_stop (EV_A_ &once->to);
2166 ev_free (once); 3217 ev_free (once);
2167 3218
2168 cb (revents, arg); 3219 cb (revents, arg);
2169} 3220}
2170 3221
2171static void 3222static void
2172once_cb_io (EV_P_ ev_io *w, int revents) 3223once_cb_io (EV_P_ ev_io *w, int revents)
2173{ 3224{
2174 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3225 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3226
3227 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2175} 3228}
2176 3229
2177static void 3230static void
2178once_cb_to (EV_P_ ev_timer *w, int revents) 3231once_cb_to (EV_P_ ev_timer *w, int revents)
2179{ 3232{
2180 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3233 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3234
3235 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2181} 3236}
2182 3237
2183void 3238void
2184ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3239ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2185{ 3240{
2207 ev_timer_set (&once->to, timeout, 0.); 3262 ev_timer_set (&once->to, timeout, 0.);
2208 ev_timer_start (EV_A_ &once->to); 3263 ev_timer_start (EV_A_ &once->to);
2209 } 3264 }
2210} 3265}
2211 3266
3267/*****************************************************************************/
3268
3269#if EV_WALK_ENABLE
3270void
3271ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3272{
3273 int i, j;
3274 ev_watcher_list *wl, *wn;
3275
3276 if (types & (EV_IO | EV_EMBED))
3277 for (i = 0; i < anfdmax; ++i)
3278 for (wl = anfds [i].head; wl; )
3279 {
3280 wn = wl->next;
3281
3282#if EV_EMBED_ENABLE
3283 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3284 {
3285 if (types & EV_EMBED)
3286 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3287 }
3288 else
3289#endif
3290#if EV_USE_INOTIFY
3291 if (ev_cb ((ev_io *)wl) == infy_cb)
3292 ;
3293 else
3294#endif
3295 if ((ev_io *)wl != &pipe_w)
3296 if (types & EV_IO)
3297 cb (EV_A_ EV_IO, wl);
3298
3299 wl = wn;
3300 }
3301
3302 if (types & (EV_TIMER | EV_STAT))
3303 for (i = timercnt + HEAP0; i-- > HEAP0; )
3304#if EV_STAT_ENABLE
3305 /*TODO: timer is not always active*/
3306 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3307 {
3308 if (types & EV_STAT)
3309 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3310 }
3311 else
3312#endif
3313 if (types & EV_TIMER)
3314 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3315
3316#if EV_PERIODIC_ENABLE
3317 if (types & EV_PERIODIC)
3318 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3319 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3320#endif
3321
3322#if EV_IDLE_ENABLE
3323 if (types & EV_IDLE)
3324 for (j = NUMPRI; i--; )
3325 for (i = idlecnt [j]; i--; )
3326 cb (EV_A_ EV_IDLE, idles [j][i]);
3327#endif
3328
3329#if EV_FORK_ENABLE
3330 if (types & EV_FORK)
3331 for (i = forkcnt; i--; )
3332 if (ev_cb (forks [i]) != embed_fork_cb)
3333 cb (EV_A_ EV_FORK, forks [i]);
3334#endif
3335
3336#if EV_ASYNC_ENABLE
3337 if (types & EV_ASYNC)
3338 for (i = asynccnt; i--; )
3339 cb (EV_A_ EV_ASYNC, asyncs [i]);
3340#endif
3341
3342 if (types & EV_PREPARE)
3343 for (i = preparecnt; i--; )
3344#if EV_EMBED_ENABLE
3345 if (ev_cb (prepares [i]) != embed_prepare_cb)
3346#endif
3347 cb (EV_A_ EV_PREPARE, prepares [i]);
3348
3349 if (types & EV_CHECK)
3350 for (i = checkcnt; i--; )
3351 cb (EV_A_ EV_CHECK, checks [i]);
3352
3353 if (types & EV_SIGNAL)
3354 for (i = 0; i < signalmax; ++i)
3355 for (wl = signals [i].head; wl; )
3356 {
3357 wn = wl->next;
3358 cb (EV_A_ EV_SIGNAL, wl);
3359 wl = wn;
3360 }
3361
3362 if (types & EV_CHILD)
3363 for (i = EV_PID_HASHSIZE; i--; )
3364 for (wl = childs [i]; wl; )
3365 {
3366 wn = wl->next;
3367 cb (EV_A_ EV_CHILD, wl);
3368 wl = wn;
3369 }
3370/* EV_STAT 0x00001000 /* stat data changed */
3371/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3372}
3373#endif
3374
3375#if EV_MULTIPLICITY
3376 #include "ev_wrap.h"
3377#endif
3378
2212#ifdef __cplusplus 3379#ifdef __cplusplus
2213} 3380}
2214#endif 3381#endif
2215 3382

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines