ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.163 by root, Wed Dec 5 13:54:36 2007 UTC vs.
Revision 1.210 by root, Sat Feb 9 00:34:11 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
51# ifndef EV_USE_MONOTONIC 59# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 60# define EV_USE_MONOTONIC 0
53# endif 61# endif
54# ifndef EV_USE_REALTIME 62# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 63# define EV_USE_REALTIME 0
64# endif
65# endif
66
67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
56# endif 72# endif
57# endif 73# endif
58 74
59# ifndef EV_USE_SELECT 75# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 76# if HAVE_SELECT && HAVE_SYS_SELECT_H
146 162
147#ifndef EV_USE_REALTIME 163#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 164# define EV_USE_REALTIME 0
149#endif 165#endif
150 166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
169#endif
170
151#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
153#endif 173#endif
154 174
155#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
202#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
205#endif 225#endif
206 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
207#if EV_SELECT_IS_WINSOCKET 242#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 243# include <winsock.h>
209#endif 244#endif
210 245
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
219/**/ 246/**/
247
248/*
249 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 257
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 261
225#if __GNUC__ >= 3 262#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 264# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 265#else
236# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif
240#endif 271#endif
241 272
242#define expect_false(expr) expect ((expr) != 0, 0) 273#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 274#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline
276
277#if EV_MINIMAL
278# define inline_speed static noinline
279#else
280# define inline_speed static inline
281#endif
244 282
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 285
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 286#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 287#define EMPTY2(a,b) /* used to suppress some warnings */
250 288
251typedef ev_watcher *W; 289typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
254 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
256 298
257#ifdef _WIN32 299#ifdef _WIN32
258# include "ev_win32.c" 300# include "ev_win32.c"
259#endif 301#endif
260 302
396{ 438{
397 return ev_rt_now; 439 return ev_rt_now;
398} 440}
399#endif 441#endif
400 442
443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep (delay * 1e3);
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
401int inline_size 470int inline_size
402array_nextsize (int elem, int cur, int cnt) 471array_nextsize (int elem, int cur, int cnt)
403{ 472{
404 int ncur = cur + 1; 473 int ncur = cur + 1;
405 474
417 } 486 }
418 487
419 return ncur; 488 return ncur;
420} 489}
421 490
422inline_speed void * 491static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 492array_realloc (int elem, void *base, int *cur, int cnt)
424{ 493{
425 *cur = array_nextsize (elem, *cur, cnt); 494 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 495 return ev_realloc (base, elem * *cur);
427} 496}
452 521
453void noinline 522void noinline
454ev_feed_event (EV_P_ void *w, int revents) 523ev_feed_event (EV_P_ void *w, int revents)
455{ 524{
456 W w_ = (W)w; 525 W w_ = (W)w;
526 int pri = ABSPRI (w_);
457 527
458 if (expect_false (w_->pending)) 528 if (expect_false (w_->pending))
529 pendings [pri][w_->pending - 1].events |= revents;
530 else
459 { 531 {
532 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 535 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 536 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 537}
469 538
470void inline_size 539void inline_speed
471queue_events (EV_P_ W *events, int eventcnt, int type) 540queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 541{
473 int i; 542 int i;
474 543
475 for (i = 0; i < eventcnt; ++i) 544 for (i = 0; i < eventcnt; ++i)
507} 576}
508 577
509void 578void
510ev_feed_fd_event (EV_P_ int fd, int revents) 579ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 580{
581 if (fd >= 0 && fd < anfdmax)
512 fd_event (EV_A_ fd, revents); 582 fd_event (EV_A_ fd, revents);
513} 583}
514 584
515void inline_size 585void inline_size
516fd_reify (EV_P) 586fd_reify (EV_P)
517{ 587{
521 { 591 {
522 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
523 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
524 ev_io *w; 594 ev_io *w;
525 595
526 int events = 0; 596 unsigned char events = 0;
527 597
528 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
529 events |= w->events; 599 events |= (unsigned char)w->events;
530 600
531#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
532 if (events) 602 if (events)
533 { 603 {
534 unsigned long argp; 604 unsigned long argp;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
535 anfd->handle = _get_osfhandle (fd); 608 anfd->handle = _get_osfhandle (fd);
609 #endif
536 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
537 } 611 }
538#endif 612#endif
539 613
614 {
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
540 anfd->reify = 0; 618 anfd->reify = 0;
541
542 backend_modify (EV_A_ fd, anfd->events, events);
543 anfd->events = events; 619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events);
623 }
544 } 624 }
545 625
546 fdchangecnt = 0; 626 fdchangecnt = 0;
547} 627}
548 628
549void inline_size 629void inline_size
550fd_change (EV_P_ int fd) 630fd_change (EV_P_ int fd, int flags)
551{ 631{
552 if (expect_false (anfds [fd].reify)) 632 unsigned char reify = anfds [fd].reify;
553 return;
554
555 anfds [fd].reify = 1; 633 anfds [fd].reify |= flags;
556 634
635 if (expect_true (!reify))
636 {
557 ++fdchangecnt; 637 ++fdchangecnt;
558 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
559 fdchanges [fdchangecnt - 1] = fd; 639 fdchanges [fdchangecnt - 1] = fd;
640 }
560} 641}
561 642
562void inline_speed 643void inline_speed
563fd_kill (EV_P_ int fd) 644fd_kill (EV_P_ int fd)
564{ 645{
615 696
616 for (fd = 0; fd < anfdmax; ++fd) 697 for (fd = 0; fd < anfdmax; ++fd)
617 if (anfds [fd].events) 698 if (anfds [fd].events)
618 { 699 {
619 anfds [fd].events = 0; 700 anfds [fd].events = 0;
620 fd_change (EV_A_ fd); 701 fd_change (EV_A_ fd, EV_IOFDSET | 1);
621 } 702 }
622} 703}
623 704
624/*****************************************************************************/ 705/*****************************************************************************/
625 706
626void inline_speed 707void inline_speed
627upheap (WT *heap, int k) 708upheap (WT *heap, int k)
628{ 709{
629 WT w = heap [k]; 710 WT w = heap [k];
630 711
631 while (k && heap [k >> 1]->at > w->at) 712 while (k)
632 { 713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
633 heap [k] = heap [k >> 1]; 719 heap [k] = heap [p];
634 ((W)heap [k])->active = k + 1; 720 ((W)heap [k])->active = k + 1;
635 k >>= 1; 721 k = p;
636 } 722 }
637 723
638 heap [k] = w; 724 heap [k] = w;
639 ((W)heap [k])->active = k + 1; 725 ((W)heap [k])->active = k + 1;
640
641} 726}
642 727
643void inline_speed 728void inline_speed
644downheap (WT *heap, int N, int k) 729downheap (WT *heap, int N, int k)
645{ 730{
646 WT w = heap [k]; 731 WT w = heap [k];
647 732
648 while (k < (N >> 1)) 733 for (;;)
649 { 734 {
650 int j = k << 1; 735 int c = (k << 1) + 1;
651 736
652 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 737 if (c >= N)
653 ++j;
654
655 if (w->at <= heap [j]->at)
656 break; 738 break;
657 739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
658 heap [k] = heap [j]; 746 heap [k] = heap [c];
659 ((W)heap [k])->active = k + 1; 747 ((W)heap [k])->active = k + 1;
748
660 k = j; 749 k = c;
661 } 750 }
662 751
663 heap [k] = w; 752 heap [k] = w;
664 ((W)heap [k])->active = k + 1; 753 ((W)heap [k])->active = k + 1;
665} 754}
674/*****************************************************************************/ 763/*****************************************************************************/
675 764
676typedef struct 765typedef struct
677{ 766{
678 WL head; 767 WL head;
679 sig_atomic_t volatile gotsig; 768 EV_ATOMIC_T gotsig;
680} ANSIG; 769} ANSIG;
681 770
682static ANSIG *signals; 771static ANSIG *signals;
683static int signalmax; 772static int signalmax;
684 773
685static int sigpipe [2]; 774static EV_ATOMIC_T gotsig;
686static sig_atomic_t volatile gotsig;
687static ev_io sigev;
688 775
689void inline_size 776void inline_size
690signals_init (ANSIG *base, int count) 777signals_init (ANSIG *base, int count)
691{ 778{
692 while (count--) 779 while (count--)
696 783
697 ++base; 784 ++base;
698 } 785 }
699} 786}
700 787
701static void 788/*****************************************************************************/
702sighandler (int signum)
703{
704#if _WIN32
705 signal (signum, sighandler);
706#endif
707 789
708 signals [signum - 1].gotsig = 1;
709
710 if (!gotsig)
711 {
712 int old_errno = errno;
713 gotsig = 1;
714 write (sigpipe [1], &signum, 1);
715 errno = old_errno;
716 }
717}
718
719void noinline
720ev_feed_signal_event (EV_P_ int signum)
721{
722 WL w;
723
724#if EV_MULTIPLICITY
725 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
726#endif
727
728 --signum;
729
730 if (signum < 0 || signum >= signalmax)
731 return;
732
733 signals [signum].gotsig = 0;
734
735 for (w = signals [signum].head; w; w = w->next)
736 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
737}
738
739static void
740sigcb (EV_P_ ev_io *iow, int revents)
741{
742 int signum;
743
744 read (sigpipe [0], &revents, 1);
745 gotsig = 0;
746
747 for (signum = signalmax; signum--; )
748 if (signals [signum].gotsig)
749 ev_feed_signal_event (EV_A_ signum + 1);
750}
751
752void inline_size 790void inline_speed
753fd_intern (int fd) 791fd_intern (int fd)
754{ 792{
755#ifdef _WIN32 793#ifdef _WIN32
756 int arg = 1; 794 int arg = 1;
757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
760 fcntl (fd, F_SETFL, O_NONBLOCK); 798 fcntl (fd, F_SETFL, O_NONBLOCK);
761#endif 799#endif
762} 800}
763 801
764static void noinline 802static void noinline
765siginit (EV_P) 803evpipe_init (EV_P)
766{ 804{
805 if (!ev_is_active (&pipeev))
806 {
807 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe");
809
767 fd_intern (sigpipe [0]); 810 fd_intern (evpipe [0]);
768 fd_intern (sigpipe [1]); 811 fd_intern (evpipe [1]);
769 812
770 ev_io_set (&sigev, sigpipe [0], EV_READ); 813 ev_io_set (&pipeev, evpipe [0], EV_READ);
771 ev_io_start (EV_A_ &sigev); 814 ev_io_start (EV_A_ &pipeev);
772 ev_unref (EV_A); /* child watcher should not keep loop alive */ 815 ev_unref (EV_A); /* watcher should not keep loop alive */
816 }
817}
818
819void inline_size
820evpipe_write (EV_P_ int sig, int async)
821{
822 if (!(gotasync || gotsig))
823 {
824 int old_errno = errno; /* save errno becaue write might clobber it */
825
826 if (sig) gotsig = 1;
827 if (async) gotasync = 1;
828
829 write (evpipe [1], &old_errno, 1);
830
831 errno = old_errno;
832 }
833}
834
835static void
836pipecb (EV_P_ ev_io *iow, int revents)
837{
838 {
839 int dummy;
840 read (evpipe [0], &dummy, 1);
841 }
842
843 if (gotsig)
844 {
845 int signum;
846 gotsig = 0;
847
848 for (signum = signalmax; signum--; )
849 if (signals [signum].gotsig)
850 ev_feed_signal_event (EV_A_ signum + 1);
851 }
852
853#if EV_ASYNC_ENABLE
854 if (gotasync)
855 {
856 int i;
857 gotasync = 0;
858
859 for (i = asynccnt; i--; )
860 if (asyncs [i]->sent)
861 {
862 asyncs [i]->sent = 0;
863 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
864 }
865 }
866#endif
773} 867}
774 868
775/*****************************************************************************/ 869/*****************************************************************************/
776 870
871static void
872sighandler (int signum)
873{
874#if EV_MULTIPLICITY
875 struct ev_loop *loop = &default_loop_struct;
876#endif
877
878#if _WIN32
879 signal (signum, sighandler);
880#endif
881
882 signals [signum - 1].gotsig = 1;
883 evpipe_write (EV_A_ 1, 0);
884}
885
886void noinline
887ev_feed_signal_event (EV_P_ int signum)
888{
889 WL w;
890
891#if EV_MULTIPLICITY
892 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
893#endif
894
895 --signum;
896
897 if (signum < 0 || signum >= signalmax)
898 return;
899
900 signals [signum].gotsig = 0;
901
902 for (w = signals [signum].head; w; w = w->next)
903 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
904}
905
906/*****************************************************************************/
907
777static ev_child *childs [EV_PID_HASHSIZE]; 908static WL childs [EV_PID_HASHSIZE];
778 909
779#ifndef _WIN32 910#ifndef _WIN32
780 911
781static ev_signal childev; 912static ev_signal childev;
913
914#ifndef WIFCONTINUED
915# define WIFCONTINUED(status) 0
916#endif
782 917
783void inline_speed 918void inline_speed
784child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 919child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
785{ 920{
786 ev_child *w; 921 ev_child *w;
922 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
787 923
788 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 924 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
925 {
789 if (w->pid == pid || !w->pid) 926 if ((w->pid == pid || !w->pid)
927 && (!traced || (w->flags & 1)))
790 { 928 {
791 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 929 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
792 w->rpid = pid; 930 w->rpid = pid;
793 w->rstatus = status; 931 w->rstatus = status;
794 ev_feed_event (EV_A_ (W)w, EV_CHILD); 932 ev_feed_event (EV_A_ (W)w, EV_CHILD);
795 } 933 }
934 }
796} 935}
797 936
798#ifndef WCONTINUED 937#ifndef WCONTINUED
799# define WCONTINUED 0 938# define WCONTINUED 0
800#endif 939#endif
897} 1036}
898 1037
899unsigned int 1038unsigned int
900ev_embeddable_backends (void) 1039ev_embeddable_backends (void)
901{ 1040{
902 return EVBACKEND_EPOLL 1041 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
903 | EVBACKEND_KQUEUE 1042
904 | EVBACKEND_PORT; 1043 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1044 /* please fix it and tell me how to detect the fix */
1045 flags &= ~EVBACKEND_EPOLL;
1046
1047 return flags;
905} 1048}
906 1049
907unsigned int 1050unsigned int
908ev_backend (EV_P) 1051ev_backend (EV_P)
909{ 1052{
912 1055
913unsigned int 1056unsigned int
914ev_loop_count (EV_P) 1057ev_loop_count (EV_P)
915{ 1058{
916 return loop_count; 1059 return loop_count;
1060}
1061
1062void
1063ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1064{
1065 io_blocktime = interval;
1066}
1067
1068void
1069ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1070{
1071 timeout_blocktime = interval;
917} 1072}
918 1073
919static void noinline 1074static void noinline
920loop_init (EV_P_ unsigned int flags) 1075loop_init (EV_P_ unsigned int flags)
921{ 1076{
927 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1082 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
928 have_monotonic = 1; 1083 have_monotonic = 1;
929 } 1084 }
930#endif 1085#endif
931 1086
932 ev_rt_now = ev_time (); 1087 ev_rt_now = ev_time ();
933 mn_now = get_clock (); 1088 mn_now = get_clock ();
934 now_floor = mn_now; 1089 now_floor = mn_now;
935 rtmn_diff = ev_rt_now - mn_now; 1090 rtmn_diff = ev_rt_now - mn_now;
1091
1092 io_blocktime = 0.;
1093 timeout_blocktime = 0.;
1094 backend = 0;
1095 backend_fd = -1;
1096 gotasync = 0;
1097#if EV_USE_INOTIFY
1098 fs_fd = -2;
1099#endif
936 1100
937 /* pid check not overridable via env */ 1101 /* pid check not overridable via env */
938#ifndef _WIN32 1102#ifndef _WIN32
939 if (flags & EVFLAG_FORKCHECK) 1103 if (flags & EVFLAG_FORKCHECK)
940 curpid = getpid (); 1104 curpid = getpid ();
946 flags = atoi (getenv ("LIBEV_FLAGS")); 1110 flags = atoi (getenv ("LIBEV_FLAGS"));
947 1111
948 if (!(flags & 0x0000ffffUL)) 1112 if (!(flags & 0x0000ffffUL))
949 flags |= ev_recommended_backends (); 1113 flags |= ev_recommended_backends ();
950 1114
951 backend = 0;
952 backend_fd = -1;
953#if EV_USE_INOTIFY
954 fs_fd = -2;
955#endif
956
957#if EV_USE_PORT 1115#if EV_USE_PORT
958 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1116 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
959#endif 1117#endif
960#if EV_USE_KQUEUE 1118#if EV_USE_KQUEUE
961 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1119 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
968#endif 1126#endif
969#if EV_USE_SELECT 1127#if EV_USE_SELECT
970 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1128 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
971#endif 1129#endif
972 1130
973 ev_init (&sigev, sigcb); 1131 ev_init (&pipeev, pipecb);
974 ev_set_priority (&sigev, EV_MAXPRI); 1132 ev_set_priority (&pipeev, EV_MAXPRI);
975 } 1133 }
976} 1134}
977 1135
978static void noinline 1136static void noinline
979loop_destroy (EV_P) 1137loop_destroy (EV_P)
980{ 1138{
981 int i; 1139 int i;
1140
1141 if (ev_is_active (&pipeev))
1142 {
1143 ev_ref (EV_A); /* signal watcher */
1144 ev_io_stop (EV_A_ &pipeev);
1145
1146 close (evpipe [0]); evpipe [0] = 0;
1147 close (evpipe [1]); evpipe [1] = 0;
1148 }
982 1149
983#if EV_USE_INOTIFY 1150#if EV_USE_INOTIFY
984 if (fs_fd >= 0) 1151 if (fs_fd >= 0)
985 close (fs_fd); 1152 close (fs_fd);
986#endif 1153#endif
1003#if EV_USE_SELECT 1170#if EV_USE_SELECT
1004 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1171 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1005#endif 1172#endif
1006 1173
1007 for (i = NUMPRI; i--; ) 1174 for (i = NUMPRI; i--; )
1175 {
1008 array_free (pending, [i]); 1176 array_free (pending, [i]);
1177#if EV_IDLE_ENABLE
1178 array_free (idle, [i]);
1179#endif
1180 }
1181
1182 ev_free (anfds); anfdmax = 0;
1009 1183
1010 /* have to use the microsoft-never-gets-it-right macro */ 1184 /* have to use the microsoft-never-gets-it-right macro */
1011 array_free (fdchange, EMPTY0); 1185 array_free (fdchange, EMPTY);
1012 array_free (timer, EMPTY0); 1186 array_free (timer, EMPTY);
1013#if EV_PERIODIC_ENABLE 1187#if EV_PERIODIC_ENABLE
1014 array_free (periodic, EMPTY0); 1188 array_free (periodic, EMPTY);
1015#endif 1189#endif
1190#if EV_FORK_ENABLE
1016 array_free (idle, EMPTY0); 1191 array_free (fork, EMPTY);
1192#endif
1017 array_free (prepare, EMPTY0); 1193 array_free (prepare, EMPTY);
1018 array_free (check, EMPTY0); 1194 array_free (check, EMPTY);
1195#if EV_ASYNC_ENABLE
1196 array_free (async, EMPTY);
1197#endif
1019 1198
1020 backend = 0; 1199 backend = 0;
1021} 1200}
1022 1201
1023void inline_size infy_fork (EV_P); 1202void inline_size infy_fork (EV_P);
1036#endif 1215#endif
1037#if EV_USE_INOTIFY 1216#if EV_USE_INOTIFY
1038 infy_fork (EV_A); 1217 infy_fork (EV_A);
1039#endif 1218#endif
1040 1219
1041 if (ev_is_active (&sigev)) 1220 if (ev_is_active (&pipeev))
1042 { 1221 {
1043 /* default loop */ 1222 /* this "locks" the handlers against writing to the pipe */
1223 gotsig = gotasync = 1;
1044 1224
1045 ev_ref (EV_A); 1225 ev_ref (EV_A);
1046 ev_io_stop (EV_A_ &sigev); 1226 ev_io_stop (EV_A_ &pipeev);
1047 close (sigpipe [0]); 1227 close (evpipe [0]);
1048 close (sigpipe [1]); 1228 close (evpipe [1]);
1049 1229
1050 while (pipe (sigpipe))
1051 syserr ("(libev) error creating pipe");
1052
1053 siginit (EV_A); 1230 evpipe_init (EV_A);
1231 /* now iterate over everything, in case we missed something */
1232 pipecb (EV_A_ &pipeev, EV_READ);
1054 } 1233 }
1055 1234
1056 postfork = 0; 1235 postfork = 0;
1057} 1236}
1058 1237
1080} 1259}
1081 1260
1082void 1261void
1083ev_loop_fork (EV_P) 1262ev_loop_fork (EV_P)
1084{ 1263{
1085 postfork = 1; 1264 postfork = 1; /* must be in line with ev_default_fork */
1086} 1265}
1087 1266
1088#endif 1267#endif
1089 1268
1090#if EV_MULTIPLICITY 1269#if EV_MULTIPLICITY
1093#else 1272#else
1094int 1273int
1095ev_default_loop (unsigned int flags) 1274ev_default_loop (unsigned int flags)
1096#endif 1275#endif
1097{ 1276{
1098 if (sigpipe [0] == sigpipe [1])
1099 if (pipe (sigpipe))
1100 return 0;
1101
1102 if (!ev_default_loop_ptr) 1277 if (!ev_default_loop_ptr)
1103 { 1278 {
1104#if EV_MULTIPLICITY 1279#if EV_MULTIPLICITY
1105 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1280 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1106#else 1281#else
1109 1284
1110 loop_init (EV_A_ flags); 1285 loop_init (EV_A_ flags);
1111 1286
1112 if (ev_backend (EV_A)) 1287 if (ev_backend (EV_A))
1113 { 1288 {
1114 siginit (EV_A);
1115
1116#ifndef _WIN32 1289#ifndef _WIN32
1117 ev_signal_init (&childev, childcb, SIGCHLD); 1290 ev_signal_init (&childev, childcb, SIGCHLD);
1118 ev_set_priority (&childev, EV_MAXPRI); 1291 ev_set_priority (&childev, EV_MAXPRI);
1119 ev_signal_start (EV_A_ &childev); 1292 ev_signal_start (EV_A_ &childev);
1120 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1293 ev_unref (EV_A); /* child watcher should not keep loop alive */
1137#ifndef _WIN32 1310#ifndef _WIN32
1138 ev_ref (EV_A); /* child watcher */ 1311 ev_ref (EV_A); /* child watcher */
1139 ev_signal_stop (EV_A_ &childev); 1312 ev_signal_stop (EV_A_ &childev);
1140#endif 1313#endif
1141 1314
1142 ev_ref (EV_A); /* signal watcher */
1143 ev_io_stop (EV_A_ &sigev);
1144
1145 close (sigpipe [0]); sigpipe [0] = 0;
1146 close (sigpipe [1]); sigpipe [1] = 0;
1147
1148 loop_destroy (EV_A); 1315 loop_destroy (EV_A);
1149} 1316}
1150 1317
1151void 1318void
1152ev_default_fork (void) 1319ev_default_fork (void)
1154#if EV_MULTIPLICITY 1321#if EV_MULTIPLICITY
1155 struct ev_loop *loop = ev_default_loop_ptr; 1322 struct ev_loop *loop = ev_default_loop_ptr;
1156#endif 1323#endif
1157 1324
1158 if (backend) 1325 if (backend)
1159 postfork = 1; 1326 postfork = 1; /* must be in line with ev_loop_fork */
1160} 1327}
1161 1328
1162/*****************************************************************************/ 1329/*****************************************************************************/
1163 1330
1164int inline_size 1331void
1165any_pending (EV_P) 1332ev_invoke (EV_P_ void *w, int revents)
1166{ 1333{
1167 int pri; 1334 EV_CB_INVOKE ((W)w, revents);
1168
1169 for (pri = NUMPRI; pri--; )
1170 if (pendingcnt [pri])
1171 return 1;
1172
1173 return 0;
1174} 1335}
1175 1336
1176void inline_speed 1337void inline_speed
1177call_pending (EV_P) 1338call_pending (EV_P)
1178{ 1339{
1196void inline_size 1357void inline_size
1197timers_reify (EV_P) 1358timers_reify (EV_P)
1198{ 1359{
1199 while (timercnt && ((WT)timers [0])->at <= mn_now) 1360 while (timercnt && ((WT)timers [0])->at <= mn_now)
1200 { 1361 {
1201 ev_timer *w = timers [0]; 1362 ev_timer *w = (ev_timer *)timers [0];
1202 1363
1203 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1364 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1204 1365
1205 /* first reschedule or stop timer */ 1366 /* first reschedule or stop timer */
1206 if (w->repeat) 1367 if (w->repeat)
1209 1370
1210 ((WT)w)->at += w->repeat; 1371 ((WT)w)->at += w->repeat;
1211 if (((WT)w)->at < mn_now) 1372 if (((WT)w)->at < mn_now)
1212 ((WT)w)->at = mn_now; 1373 ((WT)w)->at = mn_now;
1213 1374
1214 downheap ((WT *)timers, timercnt, 0); 1375 downheap (timers, timercnt, 0);
1215 } 1376 }
1216 else 1377 else
1217 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1378 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1218 1379
1219 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1380 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1224void inline_size 1385void inline_size
1225periodics_reify (EV_P) 1386periodics_reify (EV_P)
1226{ 1387{
1227 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1388 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1228 { 1389 {
1229 ev_periodic *w = periodics [0]; 1390 ev_periodic *w = (ev_periodic *)periodics [0];
1230 1391
1231 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1392 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1232 1393
1233 /* first reschedule or stop timer */ 1394 /* first reschedule or stop timer */
1234 if (w->reschedule_cb) 1395 if (w->reschedule_cb)
1235 { 1396 {
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1397 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1237 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1398 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1238 downheap ((WT *)periodics, periodiccnt, 0); 1399 downheap (periodics, periodiccnt, 0);
1239 } 1400 }
1240 else if (w->interval) 1401 else if (w->interval)
1241 { 1402 {
1242 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1403 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1404 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1243 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1405 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1244 downheap ((WT *)periodics, periodiccnt, 0); 1406 downheap (periodics, periodiccnt, 0);
1245 } 1407 }
1246 else 1408 else
1247 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1409 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1248 1410
1249 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1411 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1256 int i; 1418 int i;
1257 1419
1258 /* adjust periodics after time jump */ 1420 /* adjust periodics after time jump */
1259 for (i = 0; i < periodiccnt; ++i) 1421 for (i = 0; i < periodiccnt; ++i)
1260 { 1422 {
1261 ev_periodic *w = periodics [i]; 1423 ev_periodic *w = (ev_periodic *)periodics [i];
1262 1424
1263 if (w->reschedule_cb) 1425 if (w->reschedule_cb)
1264 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1426 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1265 else if (w->interval) 1427 else if (w->interval)
1266 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1428 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1267 } 1429 }
1268 1430
1269 /* now rebuild the heap */ 1431 /* now rebuild the heap */
1270 for (i = periodiccnt >> 1; i--; ) 1432 for (i = periodiccnt >> 1; i--; )
1271 downheap ((WT *)periodics, periodiccnt, i); 1433 downheap (periodics, periodiccnt, i);
1272} 1434}
1273#endif 1435#endif
1274 1436
1437#if EV_IDLE_ENABLE
1275int inline_size 1438void inline_size
1276time_update_monotonic (EV_P) 1439idle_reify (EV_P)
1277{ 1440{
1441 if (expect_false (idleall))
1442 {
1443 int pri;
1444
1445 for (pri = NUMPRI; pri--; )
1446 {
1447 if (pendingcnt [pri])
1448 break;
1449
1450 if (idlecnt [pri])
1451 {
1452 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1453 break;
1454 }
1455 }
1456 }
1457}
1458#endif
1459
1460void inline_speed
1461time_update (EV_P_ ev_tstamp max_block)
1462{
1463 int i;
1464
1465#if EV_USE_MONOTONIC
1466 if (expect_true (have_monotonic))
1467 {
1468 ev_tstamp odiff = rtmn_diff;
1469
1278 mn_now = get_clock (); 1470 mn_now = get_clock ();
1279 1471
1472 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1473 /* interpolate in the meantime */
1280 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1474 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1281 { 1475 {
1282 ev_rt_now = rtmn_diff + mn_now; 1476 ev_rt_now = rtmn_diff + mn_now;
1283 return 0; 1477 return;
1284 } 1478 }
1285 else 1479
1286 {
1287 now_floor = mn_now; 1480 now_floor = mn_now;
1288 ev_rt_now = ev_time (); 1481 ev_rt_now = ev_time ();
1289 return 1;
1290 }
1291}
1292 1482
1293void inline_size 1483 /* loop a few times, before making important decisions.
1294time_update (EV_P) 1484 * on the choice of "4": one iteration isn't enough,
1295{ 1485 * in case we get preempted during the calls to
1296 int i; 1486 * ev_time and get_clock. a second call is almost guaranteed
1297 1487 * to succeed in that case, though. and looping a few more times
1298#if EV_USE_MONOTONIC 1488 * doesn't hurt either as we only do this on time-jumps or
1299 if (expect_true (have_monotonic)) 1489 * in the unlikely event of having been preempted here.
1300 { 1490 */
1301 if (time_update_monotonic (EV_A)) 1491 for (i = 4; --i; )
1302 { 1492 {
1303 ev_tstamp odiff = rtmn_diff;
1304
1305 /* loop a few times, before making important decisions.
1306 * on the choice of "4": one iteration isn't enough,
1307 * in case we get preempted during the calls to
1308 * ev_time and get_clock. a second call is almost guaranteed
1309 * to succeed in that case, though. and looping a few more times
1310 * doesn't hurt either as we only do this on time-jumps or
1311 * in the unlikely event of having been preempted here.
1312 */
1313 for (i = 4; --i; )
1314 {
1315 rtmn_diff = ev_rt_now - mn_now; 1493 rtmn_diff = ev_rt_now - mn_now;
1316 1494
1317 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1495 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1318 return; /* all is well */ 1496 return; /* all is well */
1319 1497
1320 ev_rt_now = ev_time (); 1498 ev_rt_now = ev_time ();
1321 mn_now = get_clock (); 1499 mn_now = get_clock ();
1322 now_floor = mn_now; 1500 now_floor = mn_now;
1323 } 1501 }
1324 1502
1325# if EV_PERIODIC_ENABLE 1503# if EV_PERIODIC_ENABLE
1326 periodics_reschedule (EV_A); 1504 periodics_reschedule (EV_A);
1327# endif 1505# endif
1328 /* no timer adjustment, as the monotonic clock doesn't jump */ 1506 /* no timer adjustment, as the monotonic clock doesn't jump */
1329 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1507 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1330 }
1331 } 1508 }
1332 else 1509 else
1333#endif 1510#endif
1334 { 1511 {
1335 ev_rt_now = ev_time (); 1512 ev_rt_now = ev_time ();
1336 1513
1337 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1514 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1338 { 1515 {
1339#if EV_PERIODIC_ENABLE 1516#if EV_PERIODIC_ENABLE
1340 periodics_reschedule (EV_A); 1517 periodics_reschedule (EV_A);
1341#endif 1518#endif
1342
1343 /* adjust timers. this is easy, as the offset is the same for all of them */ 1519 /* adjust timers. this is easy, as the offset is the same for all of them */
1344 for (i = 0; i < timercnt; ++i) 1520 for (i = 0; i < timercnt; ++i)
1345 ((WT)timers [i])->at += ev_rt_now - mn_now; 1521 ((WT)timers [i])->at += ev_rt_now - mn_now;
1346 } 1522 }
1347 1523
1391 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1567 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1392 call_pending (EV_A); 1568 call_pending (EV_A);
1393 } 1569 }
1394#endif 1570#endif
1395 1571
1396 /* queue check watchers (and execute them) */ 1572 /* queue prepare watchers (and execute them) */
1397 if (expect_false (preparecnt)) 1573 if (expect_false (preparecnt))
1398 { 1574 {
1399 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1575 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1400 call_pending (EV_A); 1576 call_pending (EV_A);
1401 } 1577 }
1410 /* update fd-related kernel structures */ 1586 /* update fd-related kernel structures */
1411 fd_reify (EV_A); 1587 fd_reify (EV_A);
1412 1588
1413 /* calculate blocking time */ 1589 /* calculate blocking time */
1414 { 1590 {
1415 ev_tstamp block; 1591 ev_tstamp waittime = 0.;
1592 ev_tstamp sleeptime = 0.;
1416 1593
1417 if (expect_false (flags & EVLOOP_NONBLOCK || idlecnt || !activecnt)) 1594 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1418 block = 0.; /* do not block at all */
1419 else
1420 { 1595 {
1421 /* update time to cancel out callback processing overhead */ 1596 /* update time to cancel out callback processing overhead */
1422#if EV_USE_MONOTONIC
1423 if (expect_true (have_monotonic))
1424 time_update_monotonic (EV_A); 1597 time_update (EV_A_ 1e100);
1425 else
1426#endif
1427 {
1428 ev_rt_now = ev_time ();
1429 mn_now = ev_rt_now;
1430 }
1431 1598
1432 block = MAX_BLOCKTIME; 1599 waittime = MAX_BLOCKTIME;
1433 1600
1434 if (timercnt) 1601 if (timercnt)
1435 { 1602 {
1436 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1603 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1437 if (block > to) block = to; 1604 if (waittime > to) waittime = to;
1438 } 1605 }
1439 1606
1440#if EV_PERIODIC_ENABLE 1607#if EV_PERIODIC_ENABLE
1441 if (periodiccnt) 1608 if (periodiccnt)
1442 { 1609 {
1443 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1610 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1444 if (block > to) block = to; 1611 if (waittime > to) waittime = to;
1445 } 1612 }
1446#endif 1613#endif
1447 1614
1448 if (expect_false (block < 0.)) block = 0.; 1615 if (expect_false (waittime < timeout_blocktime))
1616 waittime = timeout_blocktime;
1617
1618 sleeptime = waittime - backend_fudge;
1619
1620 if (expect_true (sleeptime > io_blocktime))
1621 sleeptime = io_blocktime;
1622
1623 if (sleeptime)
1624 {
1625 ev_sleep (sleeptime);
1626 waittime -= sleeptime;
1627 }
1449 } 1628 }
1450 1629
1451 ++loop_count; 1630 ++loop_count;
1452 backend_poll (EV_A_ block); 1631 backend_poll (EV_A_ waittime);
1632
1633 /* update ev_rt_now, do magic */
1634 time_update (EV_A_ waittime + sleeptime);
1453 } 1635 }
1454
1455 /* update ev_rt_now, do magic */
1456 time_update (EV_A);
1457 1636
1458 /* queue pending timers and reschedule them */ 1637 /* queue pending timers and reschedule them */
1459 timers_reify (EV_A); /* relative timers called last */ 1638 timers_reify (EV_A); /* relative timers called last */
1460#if EV_PERIODIC_ENABLE 1639#if EV_PERIODIC_ENABLE
1461 periodics_reify (EV_A); /* absolute timers called first */ 1640 periodics_reify (EV_A); /* absolute timers called first */
1462#endif 1641#endif
1463 1642
1643#if EV_IDLE_ENABLE
1464 /* queue idle watchers unless other events are pending */ 1644 /* queue idle watchers unless other events are pending */
1465 if (idlecnt && !any_pending (EV_A)) 1645 idle_reify (EV_A);
1466 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1646#endif
1467 1647
1468 /* queue check watchers, to be executed first */ 1648 /* queue check watchers, to be executed first */
1469 if (expect_false (checkcnt)) 1649 if (expect_false (checkcnt))
1470 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1650 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1471 1651
1507 head = &(*head)->next; 1687 head = &(*head)->next;
1508 } 1688 }
1509} 1689}
1510 1690
1511void inline_speed 1691void inline_speed
1512ev_clear_pending (EV_P_ W w) 1692clear_pending (EV_P_ W w)
1513{ 1693{
1514 if (w->pending) 1694 if (w->pending)
1515 { 1695 {
1516 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1696 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1517 w->pending = 0; 1697 w->pending = 0;
1518 } 1698 }
1519} 1699}
1520 1700
1701int
1702ev_clear_pending (EV_P_ void *w)
1703{
1704 W w_ = (W)w;
1705 int pending = w_->pending;
1706
1707 if (expect_true (pending))
1708 {
1709 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1710 w_->pending = 0;
1711 p->w = 0;
1712 return p->events;
1713 }
1714 else
1715 return 0;
1716}
1717
1718void inline_size
1719pri_adjust (EV_P_ W w)
1720{
1721 int pri = w->priority;
1722 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1723 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1724 w->priority = pri;
1725}
1726
1521void inline_speed 1727void inline_speed
1522ev_start (EV_P_ W w, int active) 1728ev_start (EV_P_ W w, int active)
1523{ 1729{
1524 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1730 pri_adjust (EV_A_ w);
1525 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1526
1527 w->active = active; 1731 w->active = active;
1528 ev_ref (EV_A); 1732 ev_ref (EV_A);
1529} 1733}
1530 1734
1531void inline_size 1735void inline_size
1535 w->active = 0; 1739 w->active = 0;
1536} 1740}
1537 1741
1538/*****************************************************************************/ 1742/*****************************************************************************/
1539 1743
1540void 1744void noinline
1541ev_io_start (EV_P_ ev_io *w) 1745ev_io_start (EV_P_ ev_io *w)
1542{ 1746{
1543 int fd = w->fd; 1747 int fd = w->fd;
1544 1748
1545 if (expect_false (ev_is_active (w))) 1749 if (expect_false (ev_is_active (w)))
1547 1751
1548 assert (("ev_io_start called with negative fd", fd >= 0)); 1752 assert (("ev_io_start called with negative fd", fd >= 0));
1549 1753
1550 ev_start (EV_A_ (W)w, 1); 1754 ev_start (EV_A_ (W)w, 1);
1551 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1755 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1552 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1756 wlist_add (&anfds[fd].head, (WL)w);
1553 1757
1554 fd_change (EV_A_ fd); 1758 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1759 w->events &= ~EV_IOFDSET;
1555} 1760}
1556 1761
1557void 1762void noinline
1558ev_io_stop (EV_P_ ev_io *w) 1763ev_io_stop (EV_P_ ev_io *w)
1559{ 1764{
1560 ev_clear_pending (EV_A_ (W)w); 1765 clear_pending (EV_A_ (W)w);
1561 if (expect_false (!ev_is_active (w))) 1766 if (expect_false (!ev_is_active (w)))
1562 return; 1767 return;
1563 1768
1564 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1769 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1565 1770
1566 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1771 wlist_del (&anfds[w->fd].head, (WL)w);
1567 ev_stop (EV_A_ (W)w); 1772 ev_stop (EV_A_ (W)w);
1568 1773
1569 fd_change (EV_A_ w->fd); 1774 fd_change (EV_A_ w->fd, 1);
1570} 1775}
1571 1776
1572void 1777void noinline
1573ev_timer_start (EV_P_ ev_timer *w) 1778ev_timer_start (EV_P_ ev_timer *w)
1574{ 1779{
1575 if (expect_false (ev_is_active (w))) 1780 if (expect_false (ev_is_active (w)))
1576 return; 1781 return;
1577 1782
1578 ((WT)w)->at += mn_now; 1783 ((WT)w)->at += mn_now;
1579 1784
1580 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1785 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1581 1786
1582 ev_start (EV_A_ (W)w, ++timercnt); 1787 ev_start (EV_A_ (W)w, ++timercnt);
1583 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1788 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1584 timers [timercnt - 1] = w; 1789 timers [timercnt - 1] = (WT)w;
1585 upheap ((WT *)timers, timercnt - 1); 1790 upheap (timers, timercnt - 1);
1586 1791
1587 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1792 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1588} 1793}
1589 1794
1590void 1795void noinline
1591ev_timer_stop (EV_P_ ev_timer *w) 1796ev_timer_stop (EV_P_ ev_timer *w)
1592{ 1797{
1593 ev_clear_pending (EV_A_ (W)w); 1798 clear_pending (EV_A_ (W)w);
1594 if (expect_false (!ev_is_active (w))) 1799 if (expect_false (!ev_is_active (w)))
1595 return; 1800 return;
1596 1801
1597 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1802 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1598 1803
1599 { 1804 {
1600 int active = ((W)w)->active; 1805 int active = ((W)w)->active;
1601 1806
1602 if (expect_true (--active < --timercnt)) 1807 if (expect_true (--active < --timercnt))
1603 { 1808 {
1604 timers [active] = timers [timercnt]; 1809 timers [active] = timers [timercnt];
1605 adjustheap ((WT *)timers, timercnt, active); 1810 adjustheap (timers, timercnt, active);
1606 } 1811 }
1607 } 1812 }
1608 1813
1609 ((WT)w)->at -= mn_now; 1814 ((WT)w)->at -= mn_now;
1610 1815
1611 ev_stop (EV_A_ (W)w); 1816 ev_stop (EV_A_ (W)w);
1612} 1817}
1613 1818
1614void 1819void noinline
1615ev_timer_again (EV_P_ ev_timer *w) 1820ev_timer_again (EV_P_ ev_timer *w)
1616{ 1821{
1617 if (ev_is_active (w)) 1822 if (ev_is_active (w))
1618 { 1823 {
1619 if (w->repeat) 1824 if (w->repeat)
1620 { 1825 {
1621 ((WT)w)->at = mn_now + w->repeat; 1826 ((WT)w)->at = mn_now + w->repeat;
1622 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1827 adjustheap (timers, timercnt, ((W)w)->active - 1);
1623 } 1828 }
1624 else 1829 else
1625 ev_timer_stop (EV_A_ w); 1830 ev_timer_stop (EV_A_ w);
1626 } 1831 }
1627 else if (w->repeat) 1832 else if (w->repeat)
1630 ev_timer_start (EV_A_ w); 1835 ev_timer_start (EV_A_ w);
1631 } 1836 }
1632} 1837}
1633 1838
1634#if EV_PERIODIC_ENABLE 1839#if EV_PERIODIC_ENABLE
1635void 1840void noinline
1636ev_periodic_start (EV_P_ ev_periodic *w) 1841ev_periodic_start (EV_P_ ev_periodic *w)
1637{ 1842{
1638 if (expect_false (ev_is_active (w))) 1843 if (expect_false (ev_is_active (w)))
1639 return; 1844 return;
1640 1845
1642 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1847 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1643 else if (w->interval) 1848 else if (w->interval)
1644 { 1849 {
1645 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1850 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1646 /* this formula differs from the one in periodic_reify because we do not always round up */ 1851 /* this formula differs from the one in periodic_reify because we do not always round up */
1647 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1852 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1648 } 1853 }
1854 else
1855 ((WT)w)->at = w->offset;
1649 1856
1650 ev_start (EV_A_ (W)w, ++periodiccnt); 1857 ev_start (EV_A_ (W)w, ++periodiccnt);
1651 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1858 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1652 periodics [periodiccnt - 1] = w; 1859 periodics [periodiccnt - 1] = (WT)w;
1653 upheap ((WT *)periodics, periodiccnt - 1); 1860 upheap (periodics, periodiccnt - 1);
1654 1861
1655 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1862 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1656} 1863}
1657 1864
1658void 1865void noinline
1659ev_periodic_stop (EV_P_ ev_periodic *w) 1866ev_periodic_stop (EV_P_ ev_periodic *w)
1660{ 1867{
1661 ev_clear_pending (EV_A_ (W)w); 1868 clear_pending (EV_A_ (W)w);
1662 if (expect_false (!ev_is_active (w))) 1869 if (expect_false (!ev_is_active (w)))
1663 return; 1870 return;
1664 1871
1665 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1872 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1666 1873
1667 { 1874 {
1668 int active = ((W)w)->active; 1875 int active = ((W)w)->active;
1669 1876
1670 if (expect_true (--active < --periodiccnt)) 1877 if (expect_true (--active < --periodiccnt))
1671 { 1878 {
1672 periodics [active] = periodics [periodiccnt]; 1879 periodics [active] = periodics [periodiccnt];
1673 adjustheap ((WT *)periodics, periodiccnt, active); 1880 adjustheap (periodics, periodiccnt, active);
1674 } 1881 }
1675 } 1882 }
1676 1883
1677 ev_stop (EV_A_ (W)w); 1884 ev_stop (EV_A_ (W)w);
1678} 1885}
1679 1886
1680void 1887void noinline
1681ev_periodic_again (EV_P_ ev_periodic *w) 1888ev_periodic_again (EV_P_ ev_periodic *w)
1682{ 1889{
1683 /* TODO: use adjustheap and recalculation */ 1890 /* TODO: use adjustheap and recalculation */
1684 ev_periodic_stop (EV_A_ w); 1891 ev_periodic_stop (EV_A_ w);
1685 ev_periodic_start (EV_A_ w); 1892 ev_periodic_start (EV_A_ w);
1688 1895
1689#ifndef SA_RESTART 1896#ifndef SA_RESTART
1690# define SA_RESTART 0 1897# define SA_RESTART 0
1691#endif 1898#endif
1692 1899
1693void 1900void noinline
1694ev_signal_start (EV_P_ ev_signal *w) 1901ev_signal_start (EV_P_ ev_signal *w)
1695{ 1902{
1696#if EV_MULTIPLICITY 1903#if EV_MULTIPLICITY
1697 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1904 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1698#endif 1905#endif
1699 if (expect_false (ev_is_active (w))) 1906 if (expect_false (ev_is_active (w)))
1700 return; 1907 return;
1701 1908
1702 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1909 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1703 1910
1911 evpipe_init (EV_A);
1912
1913 {
1914#ifndef _WIN32
1915 sigset_t full, prev;
1916 sigfillset (&full);
1917 sigprocmask (SIG_SETMASK, &full, &prev);
1918#endif
1919
1920 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1921
1922#ifndef _WIN32
1923 sigprocmask (SIG_SETMASK, &prev, 0);
1924#endif
1925 }
1926
1704 ev_start (EV_A_ (W)w, 1); 1927 ev_start (EV_A_ (W)w, 1);
1705 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1706 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1928 wlist_add (&signals [w->signum - 1].head, (WL)w);
1707 1929
1708 if (!((WL)w)->next) 1930 if (!((WL)w)->next)
1709 { 1931 {
1710#if _WIN32 1932#if _WIN32
1711 signal (w->signum, sighandler); 1933 signal (w->signum, sighandler);
1717 sigaction (w->signum, &sa, 0); 1939 sigaction (w->signum, &sa, 0);
1718#endif 1940#endif
1719 } 1941 }
1720} 1942}
1721 1943
1722void 1944void noinline
1723ev_signal_stop (EV_P_ ev_signal *w) 1945ev_signal_stop (EV_P_ ev_signal *w)
1724{ 1946{
1725 ev_clear_pending (EV_A_ (W)w); 1947 clear_pending (EV_A_ (W)w);
1726 if (expect_false (!ev_is_active (w))) 1948 if (expect_false (!ev_is_active (w)))
1727 return; 1949 return;
1728 1950
1729 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1951 wlist_del (&signals [w->signum - 1].head, (WL)w);
1730 ev_stop (EV_A_ (W)w); 1952 ev_stop (EV_A_ (W)w);
1731 1953
1732 if (!signals [w->signum - 1].head) 1954 if (!signals [w->signum - 1].head)
1733 signal (w->signum, SIG_DFL); 1955 signal (w->signum, SIG_DFL);
1734} 1956}
1741#endif 1963#endif
1742 if (expect_false (ev_is_active (w))) 1964 if (expect_false (ev_is_active (w)))
1743 return; 1965 return;
1744 1966
1745 ev_start (EV_A_ (W)w, 1); 1967 ev_start (EV_A_ (W)w, 1);
1746 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1968 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1747} 1969}
1748 1970
1749void 1971void
1750ev_child_stop (EV_P_ ev_child *w) 1972ev_child_stop (EV_P_ ev_child *w)
1751{ 1973{
1752 ev_clear_pending (EV_A_ (W)w); 1974 clear_pending (EV_A_ (W)w);
1753 if (expect_false (!ev_is_active (w))) 1975 if (expect_false (!ev_is_active (w)))
1754 return; 1976 return;
1755 1977
1756 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1978 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1757 ev_stop (EV_A_ (W)w); 1979 ev_stop (EV_A_ (W)w);
1758} 1980}
1759 1981
1760#if EV_STAT_ENABLE 1982#if EV_STAT_ENABLE
1761 1983
1993} 2215}
1994 2216
1995void 2217void
1996ev_stat_stop (EV_P_ ev_stat *w) 2218ev_stat_stop (EV_P_ ev_stat *w)
1997{ 2219{
1998 ev_clear_pending (EV_A_ (W)w); 2220 clear_pending (EV_A_ (W)w);
1999 if (expect_false (!ev_is_active (w))) 2221 if (expect_false (!ev_is_active (w)))
2000 return; 2222 return;
2001 2223
2002#if EV_USE_INOTIFY 2224#if EV_USE_INOTIFY
2003 infy_del (EV_A_ w); 2225 infy_del (EV_A_ w);
2006 2228
2007 ev_stop (EV_A_ (W)w); 2229 ev_stop (EV_A_ (W)w);
2008} 2230}
2009#endif 2231#endif
2010 2232
2233#if EV_IDLE_ENABLE
2011void 2234void
2012ev_idle_start (EV_P_ ev_idle *w) 2235ev_idle_start (EV_P_ ev_idle *w)
2013{ 2236{
2014 if (expect_false (ev_is_active (w))) 2237 if (expect_false (ev_is_active (w)))
2015 return; 2238 return;
2016 2239
2240 pri_adjust (EV_A_ (W)w);
2241
2242 {
2243 int active = ++idlecnt [ABSPRI (w)];
2244
2245 ++idleall;
2017 ev_start (EV_A_ (W)w, ++idlecnt); 2246 ev_start (EV_A_ (W)w, active);
2247
2018 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2248 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2019 idles [idlecnt - 1] = w; 2249 idles [ABSPRI (w)][active - 1] = w;
2250 }
2020} 2251}
2021 2252
2022void 2253void
2023ev_idle_stop (EV_P_ ev_idle *w) 2254ev_idle_stop (EV_P_ ev_idle *w)
2024{ 2255{
2025 ev_clear_pending (EV_A_ (W)w); 2256 clear_pending (EV_A_ (W)w);
2026 if (expect_false (!ev_is_active (w))) 2257 if (expect_false (!ev_is_active (w)))
2027 return; 2258 return;
2028 2259
2029 { 2260 {
2030 int active = ((W)w)->active; 2261 int active = ((W)w)->active;
2031 idles [active - 1] = idles [--idlecnt]; 2262
2263 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2032 ((W)idles [active - 1])->active = active; 2264 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2265
2266 ev_stop (EV_A_ (W)w);
2267 --idleall;
2033 } 2268 }
2034
2035 ev_stop (EV_A_ (W)w);
2036} 2269}
2270#endif
2037 2271
2038void 2272void
2039ev_prepare_start (EV_P_ ev_prepare *w) 2273ev_prepare_start (EV_P_ ev_prepare *w)
2040{ 2274{
2041 if (expect_false (ev_is_active (w))) 2275 if (expect_false (ev_is_active (w)))
2047} 2281}
2048 2282
2049void 2283void
2050ev_prepare_stop (EV_P_ ev_prepare *w) 2284ev_prepare_stop (EV_P_ ev_prepare *w)
2051{ 2285{
2052 ev_clear_pending (EV_A_ (W)w); 2286 clear_pending (EV_A_ (W)w);
2053 if (expect_false (!ev_is_active (w))) 2287 if (expect_false (!ev_is_active (w)))
2054 return; 2288 return;
2055 2289
2056 { 2290 {
2057 int active = ((W)w)->active; 2291 int active = ((W)w)->active;
2074} 2308}
2075 2309
2076void 2310void
2077ev_check_stop (EV_P_ ev_check *w) 2311ev_check_stop (EV_P_ ev_check *w)
2078{ 2312{
2079 ev_clear_pending (EV_A_ (W)w); 2313 clear_pending (EV_A_ (W)w);
2080 if (expect_false (!ev_is_active (w))) 2314 if (expect_false (!ev_is_active (w)))
2081 return; 2315 return;
2082 2316
2083 { 2317 {
2084 int active = ((W)w)->active; 2318 int active = ((W)w)->active;
2091 2325
2092#if EV_EMBED_ENABLE 2326#if EV_EMBED_ENABLE
2093void noinline 2327void noinline
2094ev_embed_sweep (EV_P_ ev_embed *w) 2328ev_embed_sweep (EV_P_ ev_embed *w)
2095{ 2329{
2096 ev_loop (w->loop, EVLOOP_NONBLOCK); 2330 ev_loop (w->other, EVLOOP_NONBLOCK);
2097} 2331}
2098 2332
2099static void 2333static void
2100embed_cb (EV_P_ ev_io *io, int revents) 2334embed_io_cb (EV_P_ ev_io *io, int revents)
2101{ 2335{
2102 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2336 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2103 2337
2104 if (ev_cb (w)) 2338 if (ev_cb (w))
2105 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2339 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2106 else 2340 else
2107 ev_embed_sweep (loop, w); 2341 ev_loop (w->other, EVLOOP_NONBLOCK);
2108} 2342}
2343
2344static void
2345embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2346{
2347 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2348
2349 {
2350 struct ev_loop *loop = w->other;
2351
2352 while (fdchangecnt)
2353 {
2354 fd_reify (EV_A);
2355 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2356 }
2357 }
2358}
2359
2360#if 0
2361static void
2362embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2363{
2364 ev_idle_stop (EV_A_ idle);
2365}
2366#endif
2109 2367
2110void 2368void
2111ev_embed_start (EV_P_ ev_embed *w) 2369ev_embed_start (EV_P_ ev_embed *w)
2112{ 2370{
2113 if (expect_false (ev_is_active (w))) 2371 if (expect_false (ev_is_active (w)))
2114 return; 2372 return;
2115 2373
2116 { 2374 {
2117 struct ev_loop *loop = w->loop; 2375 struct ev_loop *loop = w->other;
2118 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2376 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2119 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2377 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2120 } 2378 }
2121 2379
2122 ev_set_priority (&w->io, ev_priority (w)); 2380 ev_set_priority (&w->io, ev_priority (w));
2123 ev_io_start (EV_A_ &w->io); 2381 ev_io_start (EV_A_ &w->io);
2124 2382
2383 ev_prepare_init (&w->prepare, embed_prepare_cb);
2384 ev_set_priority (&w->prepare, EV_MINPRI);
2385 ev_prepare_start (EV_A_ &w->prepare);
2386
2387 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2388
2125 ev_start (EV_A_ (W)w, 1); 2389 ev_start (EV_A_ (W)w, 1);
2126} 2390}
2127 2391
2128void 2392void
2129ev_embed_stop (EV_P_ ev_embed *w) 2393ev_embed_stop (EV_P_ ev_embed *w)
2130{ 2394{
2131 ev_clear_pending (EV_A_ (W)w); 2395 clear_pending (EV_A_ (W)w);
2132 if (expect_false (!ev_is_active (w))) 2396 if (expect_false (!ev_is_active (w)))
2133 return; 2397 return;
2134 2398
2135 ev_io_stop (EV_A_ &w->io); 2399 ev_io_stop (EV_A_ &w->io);
2400 ev_prepare_stop (EV_A_ &w->prepare);
2136 2401
2137 ev_stop (EV_A_ (W)w); 2402 ev_stop (EV_A_ (W)w);
2138} 2403}
2139#endif 2404#endif
2140 2405
2151} 2416}
2152 2417
2153void 2418void
2154ev_fork_stop (EV_P_ ev_fork *w) 2419ev_fork_stop (EV_P_ ev_fork *w)
2155{ 2420{
2156 ev_clear_pending (EV_A_ (W)w); 2421 clear_pending (EV_A_ (W)w);
2157 if (expect_false (!ev_is_active (w))) 2422 if (expect_false (!ev_is_active (w)))
2158 return; 2423 return;
2159 2424
2160 { 2425 {
2161 int active = ((W)w)->active; 2426 int active = ((W)w)->active;
2165 2430
2166 ev_stop (EV_A_ (W)w); 2431 ev_stop (EV_A_ (W)w);
2167} 2432}
2168#endif 2433#endif
2169 2434
2435#if EV_ASYNC_ENABLE
2436void
2437ev_async_start (EV_P_ ev_async *w)
2438{
2439 if (expect_false (ev_is_active (w)))
2440 return;
2441
2442 evpipe_init (EV_A);
2443
2444 ev_start (EV_A_ (W)w, ++asynccnt);
2445 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2446 asyncs [asynccnt - 1] = w;
2447}
2448
2449void
2450ev_async_stop (EV_P_ ev_async *w)
2451{
2452 clear_pending (EV_A_ (W)w);
2453 if (expect_false (!ev_is_active (w)))
2454 return;
2455
2456 {
2457 int active = ((W)w)->active;
2458 asyncs [active - 1] = asyncs [--asynccnt];
2459 ((W)asyncs [active - 1])->active = active;
2460 }
2461
2462 ev_stop (EV_A_ (W)w);
2463}
2464
2465void
2466ev_async_send (EV_P_ ev_async *w)
2467{
2468 w->sent = 1;
2469 evpipe_write (EV_A_ 0, 1);
2470}
2471#endif
2472
2170/*****************************************************************************/ 2473/*****************************************************************************/
2171 2474
2172struct ev_once 2475struct ev_once
2173{ 2476{
2174 ev_io io; 2477 ev_io io;
2229 ev_timer_set (&once->to, timeout, 0.); 2532 ev_timer_set (&once->to, timeout, 0.);
2230 ev_timer_start (EV_A_ &once->to); 2533 ev_timer_start (EV_A_ &once->to);
2231 } 2534 }
2232} 2535}
2233 2536
2537#if EV_MULTIPLICITY
2538 #include "ev_wrap.h"
2539#endif
2540
2234#ifdef __cplusplus 2541#ifdef __cplusplus
2235} 2542}
2236#endif 2543#endif
2237 2544

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines