ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.163 by root, Wed Dec 5 13:54:36 2007 UTC vs.
Revision 1.217 by root, Sat Mar 22 13:42:45 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
51# ifndef EV_USE_MONOTONIC 59# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 60# define EV_USE_MONOTONIC 0
53# endif 61# endif
54# ifndef EV_USE_REALTIME 62# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 63# define EV_USE_REALTIME 0
64# endif
65# endif
66
67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
56# endif 72# endif
57# endif 73# endif
58 74
59# ifndef EV_USE_SELECT 75# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 76# if HAVE_SELECT && HAVE_SYS_SELECT_H
146 162
147#ifndef EV_USE_REALTIME 163#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 164# define EV_USE_REALTIME 0
149#endif 165#endif
150 166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
169#endif
170
151#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
153#endif 173#endif
154 174
155#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
202#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
205#endif 225#endif
206 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
207#if EV_SELECT_IS_WINSOCKET 242#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 243# include <winsock.h>
209#endif 244#endif
210 245
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
219/**/ 246/**/
247
248/*
249 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 257
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 261
225#if __GNUC__ >= 3 262#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 264# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 265#else
236# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif
240#endif 271#endif
241 272
242#define expect_false(expr) expect ((expr) != 0, 0) 273#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 274#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline
276
277#if EV_MINIMAL
278# define inline_speed static noinline
279#else
280# define inline_speed static inline
281#endif
244 282
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 285
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 286#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 287#define EMPTY2(a,b) /* used to suppress some warnings */
250 288
251typedef ev_watcher *W; 289typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
254 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
256 298
257#ifdef _WIN32 299#ifdef _WIN32
258# include "ev_win32.c" 300# include "ev_win32.c"
259#endif 301#endif
260 302
396{ 438{
397 return ev_rt_now; 439 return ev_rt_now;
398} 440}
399#endif 441#endif
400 442
443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep ((unsigned long)(delay * 1e3));
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
401int inline_size 470int inline_size
402array_nextsize (int elem, int cur, int cnt) 471array_nextsize (int elem, int cur, int cnt)
403{ 472{
404 int ncur = cur + 1; 473 int ncur = cur + 1;
405 474
417 } 486 }
418 487
419 return ncur; 488 return ncur;
420} 489}
421 490
422inline_speed void * 491static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 492array_realloc (int elem, void *base, int *cur, int cnt)
424{ 493{
425 *cur = array_nextsize (elem, *cur, cnt); 494 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 495 return ev_realloc (base, elem * *cur);
427} 496}
452 521
453void noinline 522void noinline
454ev_feed_event (EV_P_ void *w, int revents) 523ev_feed_event (EV_P_ void *w, int revents)
455{ 524{
456 W w_ = (W)w; 525 W w_ = (W)w;
526 int pri = ABSPRI (w_);
457 527
458 if (expect_false (w_->pending)) 528 if (expect_false (w_->pending))
529 pendings [pri][w_->pending - 1].events |= revents;
530 else
459 { 531 {
532 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 535 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 536 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 537}
469 538
470void inline_size 539void inline_speed
471queue_events (EV_P_ W *events, int eventcnt, int type) 540queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 541{
473 int i; 542 int i;
474 543
475 for (i = 0; i < eventcnt; ++i) 544 for (i = 0; i < eventcnt; ++i)
507} 576}
508 577
509void 578void
510ev_feed_fd_event (EV_P_ int fd, int revents) 579ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 580{
581 if (fd >= 0 && fd < anfdmax)
512 fd_event (EV_A_ fd, revents); 582 fd_event (EV_A_ fd, revents);
513} 583}
514 584
515void inline_size 585void inline_size
516fd_reify (EV_P) 586fd_reify (EV_P)
517{ 587{
521 { 591 {
522 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
523 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
524 ev_io *w; 594 ev_io *w;
525 595
526 int events = 0; 596 unsigned char events = 0;
527 597
528 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
529 events |= w->events; 599 events |= (unsigned char)w->events;
530 600
531#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
532 if (events) 602 if (events)
533 { 603 {
534 unsigned long argp; 604 unsigned long argp;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
535 anfd->handle = _get_osfhandle (fd); 608 anfd->handle = _get_osfhandle (fd);
609 #endif
536 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
537 } 611 }
538#endif 612#endif
539 613
614 {
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
540 anfd->reify = 0; 618 anfd->reify = 0;
541
542 backend_modify (EV_A_ fd, anfd->events, events);
543 anfd->events = events; 619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events);
623 }
544 } 624 }
545 625
546 fdchangecnt = 0; 626 fdchangecnt = 0;
547} 627}
548 628
549void inline_size 629void inline_size
550fd_change (EV_P_ int fd) 630fd_change (EV_P_ int fd, int flags)
551{ 631{
552 if (expect_false (anfds [fd].reify)) 632 unsigned char reify = anfds [fd].reify;
553 return;
554
555 anfds [fd].reify = 1; 633 anfds [fd].reify |= flags;
556 634
635 if (expect_true (!reify))
636 {
557 ++fdchangecnt; 637 ++fdchangecnt;
558 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
559 fdchanges [fdchangecnt - 1] = fd; 639 fdchanges [fdchangecnt - 1] = fd;
640 }
560} 641}
561 642
562void inline_speed 643void inline_speed
563fd_kill (EV_P_ int fd) 644fd_kill (EV_P_ int fd)
564{ 645{
615 696
616 for (fd = 0; fd < anfdmax; ++fd) 697 for (fd = 0; fd < anfdmax; ++fd)
617 if (anfds [fd].events) 698 if (anfds [fd].events)
618 { 699 {
619 anfds [fd].events = 0; 700 anfds [fd].events = 0;
620 fd_change (EV_A_ fd); 701 fd_change (EV_A_ fd, EV_IOFDSET | 1);
621 } 702 }
622} 703}
623 704
624/*****************************************************************************/ 705/*****************************************************************************/
625 706
626void inline_speed 707void inline_speed
627upheap (WT *heap, int k) 708upheap (WT *heap, int k)
628{ 709{
629 WT w = heap [k]; 710 WT w = heap [k];
630 711
631 while (k && heap [k >> 1]->at > w->at) 712 while (k)
632 { 713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
633 heap [k] = heap [k >> 1]; 719 heap [k] = heap [p];
634 ((W)heap [k])->active = k + 1; 720 ((W)heap [k])->active = k + 1;
635 k >>= 1; 721 k = p;
636 } 722 }
637 723
638 heap [k] = w; 724 heap [k] = w;
639 ((W)heap [k])->active = k + 1; 725 ((W)heap [k])->active = k + 1;
640
641} 726}
642 727
643void inline_speed 728void inline_speed
644downheap (WT *heap, int N, int k) 729downheap (WT *heap, int N, int k)
645{ 730{
646 WT w = heap [k]; 731 WT w = heap [k];
647 732
648 while (k < (N >> 1)) 733 for (;;)
649 { 734 {
650 int j = k << 1; 735 int c = (k << 1) + 1;
651 736
652 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 737 if (c >= N)
653 ++j;
654
655 if (w->at <= heap [j]->at)
656 break; 738 break;
657 739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
658 heap [k] = heap [j]; 746 heap [k] = heap [c];
659 ((W)heap [k])->active = k + 1; 747 ((W)heap [k])->active = k + 1;
748
660 k = j; 749 k = c;
661 } 750 }
662 751
663 heap [k] = w; 752 heap [k] = w;
664 ((W)heap [k])->active = k + 1; 753 ((W)heap [k])->active = k + 1;
665} 754}
674/*****************************************************************************/ 763/*****************************************************************************/
675 764
676typedef struct 765typedef struct
677{ 766{
678 WL head; 767 WL head;
679 sig_atomic_t volatile gotsig; 768 EV_ATOMIC_T gotsig;
680} ANSIG; 769} ANSIG;
681 770
682static ANSIG *signals; 771static ANSIG *signals;
683static int signalmax; 772static int signalmax;
684 773
685static int sigpipe [2]; 774static EV_ATOMIC_T gotsig;
686static sig_atomic_t volatile gotsig;
687static ev_io sigev;
688 775
689void inline_size 776void inline_size
690signals_init (ANSIG *base, int count) 777signals_init (ANSIG *base, int count)
691{ 778{
692 while (count--) 779 while (count--)
696 783
697 ++base; 784 ++base;
698 } 785 }
699} 786}
700 787
701static void 788/*****************************************************************************/
702sighandler (int signum)
703{
704#if _WIN32
705 signal (signum, sighandler);
706#endif
707 789
708 signals [signum - 1].gotsig = 1;
709
710 if (!gotsig)
711 {
712 int old_errno = errno;
713 gotsig = 1;
714 write (sigpipe [1], &signum, 1);
715 errno = old_errno;
716 }
717}
718
719void noinline
720ev_feed_signal_event (EV_P_ int signum)
721{
722 WL w;
723
724#if EV_MULTIPLICITY
725 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
726#endif
727
728 --signum;
729
730 if (signum < 0 || signum >= signalmax)
731 return;
732
733 signals [signum].gotsig = 0;
734
735 for (w = signals [signum].head; w; w = w->next)
736 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
737}
738
739static void
740sigcb (EV_P_ ev_io *iow, int revents)
741{
742 int signum;
743
744 read (sigpipe [0], &revents, 1);
745 gotsig = 0;
746
747 for (signum = signalmax; signum--; )
748 if (signals [signum].gotsig)
749 ev_feed_signal_event (EV_A_ signum + 1);
750}
751
752void inline_size 790void inline_speed
753fd_intern (int fd) 791fd_intern (int fd)
754{ 792{
755#ifdef _WIN32 793#ifdef _WIN32
756 int arg = 1; 794 int arg = 1;
757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
760 fcntl (fd, F_SETFL, O_NONBLOCK); 798 fcntl (fd, F_SETFL, O_NONBLOCK);
761#endif 799#endif
762} 800}
763 801
764static void noinline 802static void noinline
765siginit (EV_P) 803evpipe_init (EV_P)
766{ 804{
805 if (!ev_is_active (&pipeev))
806 {
807 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe");
809
767 fd_intern (sigpipe [0]); 810 fd_intern (evpipe [0]);
768 fd_intern (sigpipe [1]); 811 fd_intern (evpipe [1]);
769 812
770 ev_io_set (&sigev, sigpipe [0], EV_READ); 813 ev_io_set (&pipeev, evpipe [0], EV_READ);
771 ev_io_start (EV_A_ &sigev); 814 ev_io_start (EV_A_ &pipeev);
772 ev_unref (EV_A); /* child watcher should not keep loop alive */ 815 ev_unref (EV_A); /* watcher should not keep loop alive */
816 }
817}
818
819void inline_size
820evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{
822 if (!*flag)
823 {
824 int old_errno = errno; /* save errno because write might clobber it */
825
826 *flag = 1;
827 write (evpipe [1], &old_errno, 1);
828
829 errno = old_errno;
830 }
831}
832
833static void
834pipecb (EV_P_ ev_io *iow, int revents)
835{
836 {
837 int dummy;
838 read (evpipe [0], &dummy, 1);
839 }
840
841 if (gotsig && ev_is_default_loop (EV_A))
842 {
843 int signum;
844 gotsig = 0;
845
846 for (signum = signalmax; signum--; )
847 if (signals [signum].gotsig)
848 ev_feed_signal_event (EV_A_ signum + 1);
849 }
850
851#if EV_ASYNC_ENABLE
852 if (gotasync)
853 {
854 int i;
855 gotasync = 0;
856
857 for (i = asynccnt; i--; )
858 if (asyncs [i]->sent)
859 {
860 asyncs [i]->sent = 0;
861 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
862 }
863 }
864#endif
773} 865}
774 866
775/*****************************************************************************/ 867/*****************************************************************************/
776 868
869static void
870sighandler (int signum)
871{
872#if EV_MULTIPLICITY
873 struct ev_loop *loop = &default_loop_struct;
874#endif
875
876#if _WIN32
877 signal (signum, sighandler);
878#endif
879
880 signals [signum - 1].gotsig = 1;
881 evpipe_write (EV_A_ &gotsig);
882}
883
884void noinline
885ev_feed_signal_event (EV_P_ int signum)
886{
887 WL w;
888
889#if EV_MULTIPLICITY
890 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
891#endif
892
893 --signum;
894
895 if (signum < 0 || signum >= signalmax)
896 return;
897
898 signals [signum].gotsig = 0;
899
900 for (w = signals [signum].head; w; w = w->next)
901 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
902}
903
904/*****************************************************************************/
905
777static ev_child *childs [EV_PID_HASHSIZE]; 906static WL childs [EV_PID_HASHSIZE];
778 907
779#ifndef _WIN32 908#ifndef _WIN32
780 909
781static ev_signal childev; 910static ev_signal childev;
782 911
912#ifndef WIFCONTINUED
913# define WIFCONTINUED(status) 0
914#endif
915
783void inline_speed 916void inline_speed
784child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 917child_reap (EV_P_ int chain, int pid, int status)
785{ 918{
786 ev_child *w; 919 ev_child *w;
920 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
787 921
788 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 922 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
923 {
789 if (w->pid == pid || !w->pid) 924 if ((w->pid == pid || !w->pid)
925 && (!traced || (w->flags & 1)))
790 { 926 {
791 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 927 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
792 w->rpid = pid; 928 w->rpid = pid;
793 w->rstatus = status; 929 w->rstatus = status;
794 ev_feed_event (EV_A_ (W)w, EV_CHILD); 930 ev_feed_event (EV_A_ (W)w, EV_CHILD);
795 } 931 }
932 }
796} 933}
797 934
798#ifndef WCONTINUED 935#ifndef WCONTINUED
799# define WCONTINUED 0 936# define WCONTINUED 0
800#endif 937#endif
809 if (!WCONTINUED 946 if (!WCONTINUED
810 || errno != EINVAL 947 || errno != EINVAL
811 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 948 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
812 return; 949 return;
813 950
814 /* make sure we are called again until all childs have been reaped */ 951 /* make sure we are called again until all children have been reaped */
815 /* we need to do it this way so that the callback gets called before we continue */ 952 /* we need to do it this way so that the callback gets called before we continue */
816 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 953 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
817 954
818 child_reap (EV_A_ sw, pid, pid, status); 955 child_reap (EV_A_ pid, pid, status);
819 if (EV_PID_HASHSIZE > 1) 956 if (EV_PID_HASHSIZE > 1)
820 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 957 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
821} 958}
822 959
823#endif 960#endif
824 961
825/*****************************************************************************/ 962/*****************************************************************************/
897} 1034}
898 1035
899unsigned int 1036unsigned int
900ev_embeddable_backends (void) 1037ev_embeddable_backends (void)
901{ 1038{
902 return EVBACKEND_EPOLL 1039 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
903 | EVBACKEND_KQUEUE 1040
904 | EVBACKEND_PORT; 1041 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1042 /* please fix it and tell me how to detect the fix */
1043 flags &= ~EVBACKEND_EPOLL;
1044
1045 return flags;
905} 1046}
906 1047
907unsigned int 1048unsigned int
908ev_backend (EV_P) 1049ev_backend (EV_P)
909{ 1050{
912 1053
913unsigned int 1054unsigned int
914ev_loop_count (EV_P) 1055ev_loop_count (EV_P)
915{ 1056{
916 return loop_count; 1057 return loop_count;
1058}
1059
1060void
1061ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1062{
1063 io_blocktime = interval;
1064}
1065
1066void
1067ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1068{
1069 timeout_blocktime = interval;
917} 1070}
918 1071
919static void noinline 1072static void noinline
920loop_init (EV_P_ unsigned int flags) 1073loop_init (EV_P_ unsigned int flags)
921{ 1074{
927 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1080 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
928 have_monotonic = 1; 1081 have_monotonic = 1;
929 } 1082 }
930#endif 1083#endif
931 1084
932 ev_rt_now = ev_time (); 1085 ev_rt_now = ev_time ();
933 mn_now = get_clock (); 1086 mn_now = get_clock ();
934 now_floor = mn_now; 1087 now_floor = mn_now;
935 rtmn_diff = ev_rt_now - mn_now; 1088 rtmn_diff = ev_rt_now - mn_now;
1089
1090 io_blocktime = 0.;
1091 timeout_blocktime = 0.;
1092 backend = 0;
1093 backend_fd = -1;
1094 gotasync = 0;
1095#if EV_USE_INOTIFY
1096 fs_fd = -2;
1097#endif
936 1098
937 /* pid check not overridable via env */ 1099 /* pid check not overridable via env */
938#ifndef _WIN32 1100#ifndef _WIN32
939 if (flags & EVFLAG_FORKCHECK) 1101 if (flags & EVFLAG_FORKCHECK)
940 curpid = getpid (); 1102 curpid = getpid ();
946 flags = atoi (getenv ("LIBEV_FLAGS")); 1108 flags = atoi (getenv ("LIBEV_FLAGS"));
947 1109
948 if (!(flags & 0x0000ffffUL)) 1110 if (!(flags & 0x0000ffffUL))
949 flags |= ev_recommended_backends (); 1111 flags |= ev_recommended_backends ();
950 1112
951 backend = 0;
952 backend_fd = -1;
953#if EV_USE_INOTIFY
954 fs_fd = -2;
955#endif
956
957#if EV_USE_PORT 1113#if EV_USE_PORT
958 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1114 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
959#endif 1115#endif
960#if EV_USE_KQUEUE 1116#if EV_USE_KQUEUE
961 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1117 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
968#endif 1124#endif
969#if EV_USE_SELECT 1125#if EV_USE_SELECT
970 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1126 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
971#endif 1127#endif
972 1128
973 ev_init (&sigev, sigcb); 1129 ev_init (&pipeev, pipecb);
974 ev_set_priority (&sigev, EV_MAXPRI); 1130 ev_set_priority (&pipeev, EV_MAXPRI);
975 } 1131 }
976} 1132}
977 1133
978static void noinline 1134static void noinline
979loop_destroy (EV_P) 1135loop_destroy (EV_P)
980{ 1136{
981 int i; 1137 int i;
1138
1139 if (ev_is_active (&pipeev))
1140 {
1141 ev_ref (EV_A); /* signal watcher */
1142 ev_io_stop (EV_A_ &pipeev);
1143
1144 close (evpipe [0]); evpipe [0] = 0;
1145 close (evpipe [1]); evpipe [1] = 0;
1146 }
982 1147
983#if EV_USE_INOTIFY 1148#if EV_USE_INOTIFY
984 if (fs_fd >= 0) 1149 if (fs_fd >= 0)
985 close (fs_fd); 1150 close (fs_fd);
986#endif 1151#endif
1003#if EV_USE_SELECT 1168#if EV_USE_SELECT
1004 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1169 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1005#endif 1170#endif
1006 1171
1007 for (i = NUMPRI; i--; ) 1172 for (i = NUMPRI; i--; )
1173 {
1008 array_free (pending, [i]); 1174 array_free (pending, [i]);
1175#if EV_IDLE_ENABLE
1176 array_free (idle, [i]);
1177#endif
1178 }
1179
1180 ev_free (anfds); anfdmax = 0;
1009 1181
1010 /* have to use the microsoft-never-gets-it-right macro */ 1182 /* have to use the microsoft-never-gets-it-right macro */
1011 array_free (fdchange, EMPTY0); 1183 array_free (fdchange, EMPTY);
1012 array_free (timer, EMPTY0); 1184 array_free (timer, EMPTY);
1013#if EV_PERIODIC_ENABLE 1185#if EV_PERIODIC_ENABLE
1014 array_free (periodic, EMPTY0); 1186 array_free (periodic, EMPTY);
1015#endif 1187#endif
1188#if EV_FORK_ENABLE
1016 array_free (idle, EMPTY0); 1189 array_free (fork, EMPTY);
1190#endif
1017 array_free (prepare, EMPTY0); 1191 array_free (prepare, EMPTY);
1018 array_free (check, EMPTY0); 1192 array_free (check, EMPTY);
1193#if EV_ASYNC_ENABLE
1194 array_free (async, EMPTY);
1195#endif
1019 1196
1020 backend = 0; 1197 backend = 0;
1021} 1198}
1022 1199
1023void inline_size infy_fork (EV_P); 1200void inline_size infy_fork (EV_P);
1036#endif 1213#endif
1037#if EV_USE_INOTIFY 1214#if EV_USE_INOTIFY
1038 infy_fork (EV_A); 1215 infy_fork (EV_A);
1039#endif 1216#endif
1040 1217
1041 if (ev_is_active (&sigev)) 1218 if (ev_is_active (&pipeev))
1042 { 1219 {
1043 /* default loop */ 1220 /* this "locks" the handlers against writing to the pipe */
1221 /* while we modify the fd vars */
1222 gotsig = 1;
1223#if EV_ASYNC_ENABLE
1224 gotasync = 1;
1225#endif
1044 1226
1045 ev_ref (EV_A); 1227 ev_ref (EV_A);
1046 ev_io_stop (EV_A_ &sigev); 1228 ev_io_stop (EV_A_ &pipeev);
1047 close (sigpipe [0]); 1229 close (evpipe [0]);
1048 close (sigpipe [1]); 1230 close (evpipe [1]);
1049 1231
1050 while (pipe (sigpipe))
1051 syserr ("(libev) error creating pipe");
1052
1053 siginit (EV_A); 1232 evpipe_init (EV_A);
1233 /* now iterate over everything, in case we missed something */
1234 pipecb (EV_A_ &pipeev, EV_READ);
1054 } 1235 }
1055 1236
1056 postfork = 0; 1237 postfork = 0;
1057} 1238}
1058 1239
1080} 1261}
1081 1262
1082void 1263void
1083ev_loop_fork (EV_P) 1264ev_loop_fork (EV_P)
1084{ 1265{
1085 postfork = 1; 1266 postfork = 1; /* must be in line with ev_default_fork */
1086} 1267}
1087 1268
1088#endif 1269#endif
1089 1270
1090#if EV_MULTIPLICITY 1271#if EV_MULTIPLICITY
1093#else 1274#else
1094int 1275int
1095ev_default_loop (unsigned int flags) 1276ev_default_loop (unsigned int flags)
1096#endif 1277#endif
1097{ 1278{
1098 if (sigpipe [0] == sigpipe [1])
1099 if (pipe (sigpipe))
1100 return 0;
1101
1102 if (!ev_default_loop_ptr) 1279 if (!ev_default_loop_ptr)
1103 { 1280 {
1104#if EV_MULTIPLICITY 1281#if EV_MULTIPLICITY
1105 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1282 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1106#else 1283#else
1109 1286
1110 loop_init (EV_A_ flags); 1287 loop_init (EV_A_ flags);
1111 1288
1112 if (ev_backend (EV_A)) 1289 if (ev_backend (EV_A))
1113 { 1290 {
1114 siginit (EV_A);
1115
1116#ifndef _WIN32 1291#ifndef _WIN32
1117 ev_signal_init (&childev, childcb, SIGCHLD); 1292 ev_signal_init (&childev, childcb, SIGCHLD);
1118 ev_set_priority (&childev, EV_MAXPRI); 1293 ev_set_priority (&childev, EV_MAXPRI);
1119 ev_signal_start (EV_A_ &childev); 1294 ev_signal_start (EV_A_ &childev);
1120 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1295 ev_unref (EV_A); /* child watcher should not keep loop alive */
1137#ifndef _WIN32 1312#ifndef _WIN32
1138 ev_ref (EV_A); /* child watcher */ 1313 ev_ref (EV_A); /* child watcher */
1139 ev_signal_stop (EV_A_ &childev); 1314 ev_signal_stop (EV_A_ &childev);
1140#endif 1315#endif
1141 1316
1142 ev_ref (EV_A); /* signal watcher */
1143 ev_io_stop (EV_A_ &sigev);
1144
1145 close (sigpipe [0]); sigpipe [0] = 0;
1146 close (sigpipe [1]); sigpipe [1] = 0;
1147
1148 loop_destroy (EV_A); 1317 loop_destroy (EV_A);
1149} 1318}
1150 1319
1151void 1320void
1152ev_default_fork (void) 1321ev_default_fork (void)
1154#if EV_MULTIPLICITY 1323#if EV_MULTIPLICITY
1155 struct ev_loop *loop = ev_default_loop_ptr; 1324 struct ev_loop *loop = ev_default_loop_ptr;
1156#endif 1325#endif
1157 1326
1158 if (backend) 1327 if (backend)
1159 postfork = 1; 1328 postfork = 1; /* must be in line with ev_loop_fork */
1160} 1329}
1161 1330
1162/*****************************************************************************/ 1331/*****************************************************************************/
1163 1332
1164int inline_size 1333void
1165any_pending (EV_P) 1334ev_invoke (EV_P_ void *w, int revents)
1166{ 1335{
1167 int pri; 1336 EV_CB_INVOKE ((W)w, revents);
1168
1169 for (pri = NUMPRI; pri--; )
1170 if (pendingcnt [pri])
1171 return 1;
1172
1173 return 0;
1174} 1337}
1175 1338
1176void inline_speed 1339void inline_speed
1177call_pending (EV_P) 1340call_pending (EV_P)
1178{ 1341{
1196void inline_size 1359void inline_size
1197timers_reify (EV_P) 1360timers_reify (EV_P)
1198{ 1361{
1199 while (timercnt && ((WT)timers [0])->at <= mn_now) 1362 while (timercnt && ((WT)timers [0])->at <= mn_now)
1200 { 1363 {
1201 ev_timer *w = timers [0]; 1364 ev_timer *w = (ev_timer *)timers [0];
1202 1365
1203 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1366 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1204 1367
1205 /* first reschedule or stop timer */ 1368 /* first reschedule or stop timer */
1206 if (w->repeat) 1369 if (w->repeat)
1209 1372
1210 ((WT)w)->at += w->repeat; 1373 ((WT)w)->at += w->repeat;
1211 if (((WT)w)->at < mn_now) 1374 if (((WT)w)->at < mn_now)
1212 ((WT)w)->at = mn_now; 1375 ((WT)w)->at = mn_now;
1213 1376
1214 downheap ((WT *)timers, timercnt, 0); 1377 downheap (timers, timercnt, 0);
1215 } 1378 }
1216 else 1379 else
1217 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1380 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1218 1381
1219 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1382 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1224void inline_size 1387void inline_size
1225periodics_reify (EV_P) 1388periodics_reify (EV_P)
1226{ 1389{
1227 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1390 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1228 { 1391 {
1229 ev_periodic *w = periodics [0]; 1392 ev_periodic *w = (ev_periodic *)periodics [0];
1230 1393
1231 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1394 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1232 1395
1233 /* first reschedule or stop timer */ 1396 /* first reschedule or stop timer */
1234 if (w->reschedule_cb) 1397 if (w->reschedule_cb)
1235 { 1398 {
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1399 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1237 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1400 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1238 downheap ((WT *)periodics, periodiccnt, 0); 1401 downheap (periodics, periodiccnt, 0);
1239 } 1402 }
1240 else if (w->interval) 1403 else if (w->interval)
1241 { 1404 {
1242 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1405 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1406 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1243 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1407 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1244 downheap ((WT *)periodics, periodiccnt, 0); 1408 downheap (periodics, periodiccnt, 0);
1245 } 1409 }
1246 else 1410 else
1247 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1411 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1248 1412
1249 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1413 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1256 int i; 1420 int i;
1257 1421
1258 /* adjust periodics after time jump */ 1422 /* adjust periodics after time jump */
1259 for (i = 0; i < periodiccnt; ++i) 1423 for (i = 0; i < periodiccnt; ++i)
1260 { 1424 {
1261 ev_periodic *w = periodics [i]; 1425 ev_periodic *w = (ev_periodic *)periodics [i];
1262 1426
1263 if (w->reschedule_cb) 1427 if (w->reschedule_cb)
1264 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1428 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1265 else if (w->interval) 1429 else if (w->interval)
1266 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1430 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1267 } 1431 }
1268 1432
1269 /* now rebuild the heap */ 1433 /* now rebuild the heap */
1270 for (i = periodiccnt >> 1; i--; ) 1434 for (i = periodiccnt >> 1; i--; )
1271 downheap ((WT *)periodics, periodiccnt, i); 1435 downheap (periodics, periodiccnt, i);
1272} 1436}
1273#endif 1437#endif
1274 1438
1439#if EV_IDLE_ENABLE
1275int inline_size 1440void inline_size
1276time_update_monotonic (EV_P) 1441idle_reify (EV_P)
1277{ 1442{
1443 if (expect_false (idleall))
1444 {
1445 int pri;
1446
1447 for (pri = NUMPRI; pri--; )
1448 {
1449 if (pendingcnt [pri])
1450 break;
1451
1452 if (idlecnt [pri])
1453 {
1454 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1455 break;
1456 }
1457 }
1458 }
1459}
1460#endif
1461
1462void inline_speed
1463time_update (EV_P_ ev_tstamp max_block)
1464{
1465 int i;
1466
1467#if EV_USE_MONOTONIC
1468 if (expect_true (have_monotonic))
1469 {
1470 ev_tstamp odiff = rtmn_diff;
1471
1278 mn_now = get_clock (); 1472 mn_now = get_clock ();
1279 1473
1474 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1475 /* interpolate in the meantime */
1280 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1476 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1281 { 1477 {
1282 ev_rt_now = rtmn_diff + mn_now; 1478 ev_rt_now = rtmn_diff + mn_now;
1283 return 0; 1479 return;
1284 } 1480 }
1285 else 1481
1286 {
1287 now_floor = mn_now; 1482 now_floor = mn_now;
1288 ev_rt_now = ev_time (); 1483 ev_rt_now = ev_time ();
1289 return 1;
1290 }
1291}
1292 1484
1293void inline_size 1485 /* loop a few times, before making important decisions.
1294time_update (EV_P) 1486 * on the choice of "4": one iteration isn't enough,
1295{ 1487 * in case we get preempted during the calls to
1296 int i; 1488 * ev_time and get_clock. a second call is almost guaranteed
1297 1489 * to succeed in that case, though. and looping a few more times
1298#if EV_USE_MONOTONIC 1490 * doesn't hurt either as we only do this on time-jumps or
1299 if (expect_true (have_monotonic)) 1491 * in the unlikely event of having been preempted here.
1300 { 1492 */
1301 if (time_update_monotonic (EV_A)) 1493 for (i = 4; --i; )
1302 { 1494 {
1303 ev_tstamp odiff = rtmn_diff;
1304
1305 /* loop a few times, before making important decisions.
1306 * on the choice of "4": one iteration isn't enough,
1307 * in case we get preempted during the calls to
1308 * ev_time and get_clock. a second call is almost guaranteed
1309 * to succeed in that case, though. and looping a few more times
1310 * doesn't hurt either as we only do this on time-jumps or
1311 * in the unlikely event of having been preempted here.
1312 */
1313 for (i = 4; --i; )
1314 {
1315 rtmn_diff = ev_rt_now - mn_now; 1495 rtmn_diff = ev_rt_now - mn_now;
1316 1496
1317 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1497 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1318 return; /* all is well */ 1498 return; /* all is well */
1319 1499
1320 ev_rt_now = ev_time (); 1500 ev_rt_now = ev_time ();
1321 mn_now = get_clock (); 1501 mn_now = get_clock ();
1322 now_floor = mn_now; 1502 now_floor = mn_now;
1323 } 1503 }
1324 1504
1325# if EV_PERIODIC_ENABLE 1505# if EV_PERIODIC_ENABLE
1326 periodics_reschedule (EV_A); 1506 periodics_reschedule (EV_A);
1327# endif 1507# endif
1328 /* no timer adjustment, as the monotonic clock doesn't jump */ 1508 /* no timer adjustment, as the monotonic clock doesn't jump */
1329 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1509 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1330 }
1331 } 1510 }
1332 else 1511 else
1333#endif 1512#endif
1334 { 1513 {
1335 ev_rt_now = ev_time (); 1514 ev_rt_now = ev_time ();
1336 1515
1337 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1516 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1338 { 1517 {
1339#if EV_PERIODIC_ENABLE 1518#if EV_PERIODIC_ENABLE
1340 periodics_reschedule (EV_A); 1519 periodics_reschedule (EV_A);
1341#endif 1520#endif
1342
1343 /* adjust timers. this is easy, as the offset is the same for all of them */ 1521 /* adjust timers. this is easy, as the offset is the same for all of them */
1344 for (i = 0; i < timercnt; ++i) 1522 for (i = 0; i < timercnt; ++i)
1345 ((WT)timers [i])->at += ev_rt_now - mn_now; 1523 ((WT)timers [i])->at += ev_rt_now - mn_now;
1346 } 1524 }
1347 1525
1391 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1569 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1392 call_pending (EV_A); 1570 call_pending (EV_A);
1393 } 1571 }
1394#endif 1572#endif
1395 1573
1396 /* queue check watchers (and execute them) */ 1574 /* queue prepare watchers (and execute them) */
1397 if (expect_false (preparecnt)) 1575 if (expect_false (preparecnt))
1398 { 1576 {
1399 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1577 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1400 call_pending (EV_A); 1578 call_pending (EV_A);
1401 } 1579 }
1410 /* update fd-related kernel structures */ 1588 /* update fd-related kernel structures */
1411 fd_reify (EV_A); 1589 fd_reify (EV_A);
1412 1590
1413 /* calculate blocking time */ 1591 /* calculate blocking time */
1414 { 1592 {
1415 ev_tstamp block; 1593 ev_tstamp waittime = 0.;
1594 ev_tstamp sleeptime = 0.;
1416 1595
1417 if (expect_false (flags & EVLOOP_NONBLOCK || idlecnt || !activecnt)) 1596 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1418 block = 0.; /* do not block at all */
1419 else
1420 { 1597 {
1421 /* update time to cancel out callback processing overhead */ 1598 /* update time to cancel out callback processing overhead */
1422#if EV_USE_MONOTONIC
1423 if (expect_true (have_monotonic))
1424 time_update_monotonic (EV_A); 1599 time_update (EV_A_ 1e100);
1425 else
1426#endif
1427 {
1428 ev_rt_now = ev_time ();
1429 mn_now = ev_rt_now;
1430 }
1431 1600
1432 block = MAX_BLOCKTIME; 1601 waittime = MAX_BLOCKTIME;
1433 1602
1434 if (timercnt) 1603 if (timercnt)
1435 { 1604 {
1436 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1605 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1437 if (block > to) block = to; 1606 if (waittime > to) waittime = to;
1438 } 1607 }
1439 1608
1440#if EV_PERIODIC_ENABLE 1609#if EV_PERIODIC_ENABLE
1441 if (periodiccnt) 1610 if (periodiccnt)
1442 { 1611 {
1443 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1612 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1444 if (block > to) block = to; 1613 if (waittime > to) waittime = to;
1445 } 1614 }
1446#endif 1615#endif
1447 1616
1448 if (expect_false (block < 0.)) block = 0.; 1617 if (expect_false (waittime < timeout_blocktime))
1618 waittime = timeout_blocktime;
1619
1620 sleeptime = waittime - backend_fudge;
1621
1622 if (expect_true (sleeptime > io_blocktime))
1623 sleeptime = io_blocktime;
1624
1625 if (sleeptime)
1626 {
1627 ev_sleep (sleeptime);
1628 waittime -= sleeptime;
1629 }
1449 } 1630 }
1450 1631
1451 ++loop_count; 1632 ++loop_count;
1452 backend_poll (EV_A_ block); 1633 backend_poll (EV_A_ waittime);
1634
1635 /* update ev_rt_now, do magic */
1636 time_update (EV_A_ waittime + sleeptime);
1453 } 1637 }
1454
1455 /* update ev_rt_now, do magic */
1456 time_update (EV_A);
1457 1638
1458 /* queue pending timers and reschedule them */ 1639 /* queue pending timers and reschedule them */
1459 timers_reify (EV_A); /* relative timers called last */ 1640 timers_reify (EV_A); /* relative timers called last */
1460#if EV_PERIODIC_ENABLE 1641#if EV_PERIODIC_ENABLE
1461 periodics_reify (EV_A); /* absolute timers called first */ 1642 periodics_reify (EV_A); /* absolute timers called first */
1462#endif 1643#endif
1463 1644
1645#if EV_IDLE_ENABLE
1464 /* queue idle watchers unless other events are pending */ 1646 /* queue idle watchers unless other events are pending */
1465 if (idlecnt && !any_pending (EV_A)) 1647 idle_reify (EV_A);
1466 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1648#endif
1467 1649
1468 /* queue check watchers, to be executed first */ 1650 /* queue check watchers, to be executed first */
1469 if (expect_false (checkcnt)) 1651 if (expect_false (checkcnt))
1470 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1652 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1471 1653
1507 head = &(*head)->next; 1689 head = &(*head)->next;
1508 } 1690 }
1509} 1691}
1510 1692
1511void inline_speed 1693void inline_speed
1512ev_clear_pending (EV_P_ W w) 1694clear_pending (EV_P_ W w)
1513{ 1695{
1514 if (w->pending) 1696 if (w->pending)
1515 { 1697 {
1516 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1698 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1517 w->pending = 0; 1699 w->pending = 0;
1518 } 1700 }
1519} 1701}
1520 1702
1703int
1704ev_clear_pending (EV_P_ void *w)
1705{
1706 W w_ = (W)w;
1707 int pending = w_->pending;
1708
1709 if (expect_true (pending))
1710 {
1711 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1712 w_->pending = 0;
1713 p->w = 0;
1714 return p->events;
1715 }
1716 else
1717 return 0;
1718}
1719
1720void inline_size
1721pri_adjust (EV_P_ W w)
1722{
1723 int pri = w->priority;
1724 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1725 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1726 w->priority = pri;
1727}
1728
1521void inline_speed 1729void inline_speed
1522ev_start (EV_P_ W w, int active) 1730ev_start (EV_P_ W w, int active)
1523{ 1731{
1524 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1732 pri_adjust (EV_A_ w);
1525 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1526
1527 w->active = active; 1733 w->active = active;
1528 ev_ref (EV_A); 1734 ev_ref (EV_A);
1529} 1735}
1530 1736
1531void inline_size 1737void inline_size
1535 w->active = 0; 1741 w->active = 0;
1536} 1742}
1537 1743
1538/*****************************************************************************/ 1744/*****************************************************************************/
1539 1745
1540void 1746void noinline
1541ev_io_start (EV_P_ ev_io *w) 1747ev_io_start (EV_P_ ev_io *w)
1542{ 1748{
1543 int fd = w->fd; 1749 int fd = w->fd;
1544 1750
1545 if (expect_false (ev_is_active (w))) 1751 if (expect_false (ev_is_active (w)))
1547 1753
1548 assert (("ev_io_start called with negative fd", fd >= 0)); 1754 assert (("ev_io_start called with negative fd", fd >= 0));
1549 1755
1550 ev_start (EV_A_ (W)w, 1); 1756 ev_start (EV_A_ (W)w, 1);
1551 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1757 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1552 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1758 wlist_add (&anfds[fd].head, (WL)w);
1553 1759
1554 fd_change (EV_A_ fd); 1760 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1761 w->events &= ~EV_IOFDSET;
1555} 1762}
1556 1763
1557void 1764void noinline
1558ev_io_stop (EV_P_ ev_io *w) 1765ev_io_stop (EV_P_ ev_io *w)
1559{ 1766{
1560 ev_clear_pending (EV_A_ (W)w); 1767 clear_pending (EV_A_ (W)w);
1561 if (expect_false (!ev_is_active (w))) 1768 if (expect_false (!ev_is_active (w)))
1562 return; 1769 return;
1563 1770
1564 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1771 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1565 1772
1566 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1773 wlist_del (&anfds[w->fd].head, (WL)w);
1567 ev_stop (EV_A_ (W)w); 1774 ev_stop (EV_A_ (W)w);
1568 1775
1569 fd_change (EV_A_ w->fd); 1776 fd_change (EV_A_ w->fd, 1);
1570} 1777}
1571 1778
1572void 1779void noinline
1573ev_timer_start (EV_P_ ev_timer *w) 1780ev_timer_start (EV_P_ ev_timer *w)
1574{ 1781{
1575 if (expect_false (ev_is_active (w))) 1782 if (expect_false (ev_is_active (w)))
1576 return; 1783 return;
1577 1784
1578 ((WT)w)->at += mn_now; 1785 ((WT)w)->at += mn_now;
1579 1786
1580 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1787 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1581 1788
1582 ev_start (EV_A_ (W)w, ++timercnt); 1789 ev_start (EV_A_ (W)w, ++timercnt);
1583 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1790 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1584 timers [timercnt - 1] = w; 1791 timers [timercnt - 1] = (WT)w;
1585 upheap ((WT *)timers, timercnt - 1); 1792 upheap (timers, timercnt - 1);
1586 1793
1587 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1794 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1588} 1795}
1589 1796
1590void 1797void noinline
1591ev_timer_stop (EV_P_ ev_timer *w) 1798ev_timer_stop (EV_P_ ev_timer *w)
1592{ 1799{
1593 ev_clear_pending (EV_A_ (W)w); 1800 clear_pending (EV_A_ (W)w);
1594 if (expect_false (!ev_is_active (w))) 1801 if (expect_false (!ev_is_active (w)))
1595 return; 1802 return;
1596 1803
1597 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1804 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1598 1805
1599 { 1806 {
1600 int active = ((W)w)->active; 1807 int active = ((W)w)->active;
1601 1808
1602 if (expect_true (--active < --timercnt)) 1809 if (expect_true (--active < --timercnt))
1603 { 1810 {
1604 timers [active] = timers [timercnt]; 1811 timers [active] = timers [timercnt];
1605 adjustheap ((WT *)timers, timercnt, active); 1812 adjustheap (timers, timercnt, active);
1606 } 1813 }
1607 } 1814 }
1608 1815
1609 ((WT)w)->at -= mn_now; 1816 ((WT)w)->at -= mn_now;
1610 1817
1611 ev_stop (EV_A_ (W)w); 1818 ev_stop (EV_A_ (W)w);
1612} 1819}
1613 1820
1614void 1821void noinline
1615ev_timer_again (EV_P_ ev_timer *w) 1822ev_timer_again (EV_P_ ev_timer *w)
1616{ 1823{
1617 if (ev_is_active (w)) 1824 if (ev_is_active (w))
1618 { 1825 {
1619 if (w->repeat) 1826 if (w->repeat)
1620 { 1827 {
1621 ((WT)w)->at = mn_now + w->repeat; 1828 ((WT)w)->at = mn_now + w->repeat;
1622 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1829 adjustheap (timers, timercnt, ((W)w)->active - 1);
1623 } 1830 }
1624 else 1831 else
1625 ev_timer_stop (EV_A_ w); 1832 ev_timer_stop (EV_A_ w);
1626 } 1833 }
1627 else if (w->repeat) 1834 else if (w->repeat)
1630 ev_timer_start (EV_A_ w); 1837 ev_timer_start (EV_A_ w);
1631 } 1838 }
1632} 1839}
1633 1840
1634#if EV_PERIODIC_ENABLE 1841#if EV_PERIODIC_ENABLE
1635void 1842void noinline
1636ev_periodic_start (EV_P_ ev_periodic *w) 1843ev_periodic_start (EV_P_ ev_periodic *w)
1637{ 1844{
1638 if (expect_false (ev_is_active (w))) 1845 if (expect_false (ev_is_active (w)))
1639 return; 1846 return;
1640 1847
1642 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1849 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1643 else if (w->interval) 1850 else if (w->interval)
1644 { 1851 {
1645 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1852 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1646 /* this formula differs from the one in periodic_reify because we do not always round up */ 1853 /* this formula differs from the one in periodic_reify because we do not always round up */
1647 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1854 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1648 } 1855 }
1856 else
1857 ((WT)w)->at = w->offset;
1649 1858
1650 ev_start (EV_A_ (W)w, ++periodiccnt); 1859 ev_start (EV_A_ (W)w, ++periodiccnt);
1651 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1860 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1652 periodics [periodiccnt - 1] = w; 1861 periodics [periodiccnt - 1] = (WT)w;
1653 upheap ((WT *)periodics, periodiccnt - 1); 1862 upheap (periodics, periodiccnt - 1);
1654 1863
1655 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1864 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1656} 1865}
1657 1866
1658void 1867void noinline
1659ev_periodic_stop (EV_P_ ev_periodic *w) 1868ev_periodic_stop (EV_P_ ev_periodic *w)
1660{ 1869{
1661 ev_clear_pending (EV_A_ (W)w); 1870 clear_pending (EV_A_ (W)w);
1662 if (expect_false (!ev_is_active (w))) 1871 if (expect_false (!ev_is_active (w)))
1663 return; 1872 return;
1664 1873
1665 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1874 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1666 1875
1667 { 1876 {
1668 int active = ((W)w)->active; 1877 int active = ((W)w)->active;
1669 1878
1670 if (expect_true (--active < --periodiccnt)) 1879 if (expect_true (--active < --periodiccnt))
1671 { 1880 {
1672 periodics [active] = periodics [periodiccnt]; 1881 periodics [active] = periodics [periodiccnt];
1673 adjustheap ((WT *)periodics, periodiccnt, active); 1882 adjustheap (periodics, periodiccnt, active);
1674 } 1883 }
1675 } 1884 }
1676 1885
1677 ev_stop (EV_A_ (W)w); 1886 ev_stop (EV_A_ (W)w);
1678} 1887}
1679 1888
1680void 1889void noinline
1681ev_periodic_again (EV_P_ ev_periodic *w) 1890ev_periodic_again (EV_P_ ev_periodic *w)
1682{ 1891{
1683 /* TODO: use adjustheap and recalculation */ 1892 /* TODO: use adjustheap and recalculation */
1684 ev_periodic_stop (EV_A_ w); 1893 ev_periodic_stop (EV_A_ w);
1685 ev_periodic_start (EV_A_ w); 1894 ev_periodic_start (EV_A_ w);
1688 1897
1689#ifndef SA_RESTART 1898#ifndef SA_RESTART
1690# define SA_RESTART 0 1899# define SA_RESTART 0
1691#endif 1900#endif
1692 1901
1693void 1902void noinline
1694ev_signal_start (EV_P_ ev_signal *w) 1903ev_signal_start (EV_P_ ev_signal *w)
1695{ 1904{
1696#if EV_MULTIPLICITY 1905#if EV_MULTIPLICITY
1697 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1906 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1698#endif 1907#endif
1699 if (expect_false (ev_is_active (w))) 1908 if (expect_false (ev_is_active (w)))
1700 return; 1909 return;
1701 1910
1702 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1911 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1703 1912
1913 evpipe_init (EV_A);
1914
1915 {
1916#ifndef _WIN32
1917 sigset_t full, prev;
1918 sigfillset (&full);
1919 sigprocmask (SIG_SETMASK, &full, &prev);
1920#endif
1921
1922 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1923
1924#ifndef _WIN32
1925 sigprocmask (SIG_SETMASK, &prev, 0);
1926#endif
1927 }
1928
1704 ev_start (EV_A_ (W)w, 1); 1929 ev_start (EV_A_ (W)w, 1);
1705 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1706 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1930 wlist_add (&signals [w->signum - 1].head, (WL)w);
1707 1931
1708 if (!((WL)w)->next) 1932 if (!((WL)w)->next)
1709 { 1933 {
1710#if _WIN32 1934#if _WIN32
1711 signal (w->signum, sighandler); 1935 signal (w->signum, sighandler);
1717 sigaction (w->signum, &sa, 0); 1941 sigaction (w->signum, &sa, 0);
1718#endif 1942#endif
1719 } 1943 }
1720} 1944}
1721 1945
1722void 1946void noinline
1723ev_signal_stop (EV_P_ ev_signal *w) 1947ev_signal_stop (EV_P_ ev_signal *w)
1724{ 1948{
1725 ev_clear_pending (EV_A_ (W)w); 1949 clear_pending (EV_A_ (W)w);
1726 if (expect_false (!ev_is_active (w))) 1950 if (expect_false (!ev_is_active (w)))
1727 return; 1951 return;
1728 1952
1729 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1953 wlist_del (&signals [w->signum - 1].head, (WL)w);
1730 ev_stop (EV_A_ (W)w); 1954 ev_stop (EV_A_ (W)w);
1731 1955
1732 if (!signals [w->signum - 1].head) 1956 if (!signals [w->signum - 1].head)
1733 signal (w->signum, SIG_DFL); 1957 signal (w->signum, SIG_DFL);
1734} 1958}
1741#endif 1965#endif
1742 if (expect_false (ev_is_active (w))) 1966 if (expect_false (ev_is_active (w)))
1743 return; 1967 return;
1744 1968
1745 ev_start (EV_A_ (W)w, 1); 1969 ev_start (EV_A_ (W)w, 1);
1746 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1970 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1747} 1971}
1748 1972
1749void 1973void
1750ev_child_stop (EV_P_ ev_child *w) 1974ev_child_stop (EV_P_ ev_child *w)
1751{ 1975{
1752 ev_clear_pending (EV_A_ (W)w); 1976 clear_pending (EV_A_ (W)w);
1753 if (expect_false (!ev_is_active (w))) 1977 if (expect_false (!ev_is_active (w)))
1754 return; 1978 return;
1755 1979
1756 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1980 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1757 ev_stop (EV_A_ (W)w); 1981 ev_stop (EV_A_ (W)w);
1758} 1982}
1759 1983
1760#if EV_STAT_ENABLE 1984#if EV_STAT_ENABLE
1761 1985
1993} 2217}
1994 2218
1995void 2219void
1996ev_stat_stop (EV_P_ ev_stat *w) 2220ev_stat_stop (EV_P_ ev_stat *w)
1997{ 2221{
1998 ev_clear_pending (EV_A_ (W)w); 2222 clear_pending (EV_A_ (W)w);
1999 if (expect_false (!ev_is_active (w))) 2223 if (expect_false (!ev_is_active (w)))
2000 return; 2224 return;
2001 2225
2002#if EV_USE_INOTIFY 2226#if EV_USE_INOTIFY
2003 infy_del (EV_A_ w); 2227 infy_del (EV_A_ w);
2006 2230
2007 ev_stop (EV_A_ (W)w); 2231 ev_stop (EV_A_ (W)w);
2008} 2232}
2009#endif 2233#endif
2010 2234
2235#if EV_IDLE_ENABLE
2011void 2236void
2012ev_idle_start (EV_P_ ev_idle *w) 2237ev_idle_start (EV_P_ ev_idle *w)
2013{ 2238{
2014 if (expect_false (ev_is_active (w))) 2239 if (expect_false (ev_is_active (w)))
2015 return; 2240 return;
2016 2241
2242 pri_adjust (EV_A_ (W)w);
2243
2244 {
2245 int active = ++idlecnt [ABSPRI (w)];
2246
2247 ++idleall;
2017 ev_start (EV_A_ (W)w, ++idlecnt); 2248 ev_start (EV_A_ (W)w, active);
2249
2018 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2250 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2019 idles [idlecnt - 1] = w; 2251 idles [ABSPRI (w)][active - 1] = w;
2252 }
2020} 2253}
2021 2254
2022void 2255void
2023ev_idle_stop (EV_P_ ev_idle *w) 2256ev_idle_stop (EV_P_ ev_idle *w)
2024{ 2257{
2025 ev_clear_pending (EV_A_ (W)w); 2258 clear_pending (EV_A_ (W)w);
2026 if (expect_false (!ev_is_active (w))) 2259 if (expect_false (!ev_is_active (w)))
2027 return; 2260 return;
2028 2261
2029 { 2262 {
2030 int active = ((W)w)->active; 2263 int active = ((W)w)->active;
2031 idles [active - 1] = idles [--idlecnt]; 2264
2265 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2032 ((W)idles [active - 1])->active = active; 2266 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2267
2268 ev_stop (EV_A_ (W)w);
2269 --idleall;
2033 } 2270 }
2034
2035 ev_stop (EV_A_ (W)w);
2036} 2271}
2272#endif
2037 2273
2038void 2274void
2039ev_prepare_start (EV_P_ ev_prepare *w) 2275ev_prepare_start (EV_P_ ev_prepare *w)
2040{ 2276{
2041 if (expect_false (ev_is_active (w))) 2277 if (expect_false (ev_is_active (w)))
2047} 2283}
2048 2284
2049void 2285void
2050ev_prepare_stop (EV_P_ ev_prepare *w) 2286ev_prepare_stop (EV_P_ ev_prepare *w)
2051{ 2287{
2052 ev_clear_pending (EV_A_ (W)w); 2288 clear_pending (EV_A_ (W)w);
2053 if (expect_false (!ev_is_active (w))) 2289 if (expect_false (!ev_is_active (w)))
2054 return; 2290 return;
2055 2291
2056 { 2292 {
2057 int active = ((W)w)->active; 2293 int active = ((W)w)->active;
2074} 2310}
2075 2311
2076void 2312void
2077ev_check_stop (EV_P_ ev_check *w) 2313ev_check_stop (EV_P_ ev_check *w)
2078{ 2314{
2079 ev_clear_pending (EV_A_ (W)w); 2315 clear_pending (EV_A_ (W)w);
2080 if (expect_false (!ev_is_active (w))) 2316 if (expect_false (!ev_is_active (w)))
2081 return; 2317 return;
2082 2318
2083 { 2319 {
2084 int active = ((W)w)->active; 2320 int active = ((W)w)->active;
2091 2327
2092#if EV_EMBED_ENABLE 2328#if EV_EMBED_ENABLE
2093void noinline 2329void noinline
2094ev_embed_sweep (EV_P_ ev_embed *w) 2330ev_embed_sweep (EV_P_ ev_embed *w)
2095{ 2331{
2096 ev_loop (w->loop, EVLOOP_NONBLOCK); 2332 ev_loop (w->other, EVLOOP_NONBLOCK);
2097} 2333}
2098 2334
2099static void 2335static void
2100embed_cb (EV_P_ ev_io *io, int revents) 2336embed_io_cb (EV_P_ ev_io *io, int revents)
2101{ 2337{
2102 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2338 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2103 2339
2104 if (ev_cb (w)) 2340 if (ev_cb (w))
2105 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2341 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2106 else 2342 else
2107 ev_embed_sweep (loop, w); 2343 ev_loop (w->other, EVLOOP_NONBLOCK);
2108} 2344}
2345
2346static void
2347embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2348{
2349 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2350
2351 {
2352 struct ev_loop *loop = w->other;
2353
2354 while (fdchangecnt)
2355 {
2356 fd_reify (EV_A);
2357 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2358 }
2359 }
2360}
2361
2362#if 0
2363static void
2364embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2365{
2366 ev_idle_stop (EV_A_ idle);
2367}
2368#endif
2109 2369
2110void 2370void
2111ev_embed_start (EV_P_ ev_embed *w) 2371ev_embed_start (EV_P_ ev_embed *w)
2112{ 2372{
2113 if (expect_false (ev_is_active (w))) 2373 if (expect_false (ev_is_active (w)))
2114 return; 2374 return;
2115 2375
2116 { 2376 {
2117 struct ev_loop *loop = w->loop; 2377 struct ev_loop *loop = w->other;
2118 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2378 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2119 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2379 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2120 } 2380 }
2121 2381
2122 ev_set_priority (&w->io, ev_priority (w)); 2382 ev_set_priority (&w->io, ev_priority (w));
2123 ev_io_start (EV_A_ &w->io); 2383 ev_io_start (EV_A_ &w->io);
2124 2384
2385 ev_prepare_init (&w->prepare, embed_prepare_cb);
2386 ev_set_priority (&w->prepare, EV_MINPRI);
2387 ev_prepare_start (EV_A_ &w->prepare);
2388
2389 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2390
2125 ev_start (EV_A_ (W)w, 1); 2391 ev_start (EV_A_ (W)w, 1);
2126} 2392}
2127 2393
2128void 2394void
2129ev_embed_stop (EV_P_ ev_embed *w) 2395ev_embed_stop (EV_P_ ev_embed *w)
2130{ 2396{
2131 ev_clear_pending (EV_A_ (W)w); 2397 clear_pending (EV_A_ (W)w);
2132 if (expect_false (!ev_is_active (w))) 2398 if (expect_false (!ev_is_active (w)))
2133 return; 2399 return;
2134 2400
2135 ev_io_stop (EV_A_ &w->io); 2401 ev_io_stop (EV_A_ &w->io);
2402 ev_prepare_stop (EV_A_ &w->prepare);
2136 2403
2137 ev_stop (EV_A_ (W)w); 2404 ev_stop (EV_A_ (W)w);
2138} 2405}
2139#endif 2406#endif
2140 2407
2151} 2418}
2152 2419
2153void 2420void
2154ev_fork_stop (EV_P_ ev_fork *w) 2421ev_fork_stop (EV_P_ ev_fork *w)
2155{ 2422{
2156 ev_clear_pending (EV_A_ (W)w); 2423 clear_pending (EV_A_ (W)w);
2157 if (expect_false (!ev_is_active (w))) 2424 if (expect_false (!ev_is_active (w)))
2158 return; 2425 return;
2159 2426
2160 { 2427 {
2161 int active = ((W)w)->active; 2428 int active = ((W)w)->active;
2165 2432
2166 ev_stop (EV_A_ (W)w); 2433 ev_stop (EV_A_ (W)w);
2167} 2434}
2168#endif 2435#endif
2169 2436
2437#if EV_ASYNC_ENABLE
2438void
2439ev_async_start (EV_P_ ev_async *w)
2440{
2441 if (expect_false (ev_is_active (w)))
2442 return;
2443
2444 evpipe_init (EV_A);
2445
2446 ev_start (EV_A_ (W)w, ++asynccnt);
2447 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2448 asyncs [asynccnt - 1] = w;
2449}
2450
2451void
2452ev_async_stop (EV_P_ ev_async *w)
2453{
2454 clear_pending (EV_A_ (W)w);
2455 if (expect_false (!ev_is_active (w)))
2456 return;
2457
2458 {
2459 int active = ((W)w)->active;
2460 asyncs [active - 1] = asyncs [--asynccnt];
2461 ((W)asyncs [active - 1])->active = active;
2462 }
2463
2464 ev_stop (EV_A_ (W)w);
2465}
2466
2467void
2468ev_async_send (EV_P_ ev_async *w)
2469{
2470 w->sent = 1;
2471 evpipe_write (EV_A_ &gotasync);
2472}
2473#endif
2474
2170/*****************************************************************************/ 2475/*****************************************************************************/
2171 2476
2172struct ev_once 2477struct ev_once
2173{ 2478{
2174 ev_io io; 2479 ev_io io;
2229 ev_timer_set (&once->to, timeout, 0.); 2534 ev_timer_set (&once->to, timeout, 0.);
2230 ev_timer_start (EV_A_ &once->to); 2535 ev_timer_start (EV_A_ &once->to);
2231 } 2536 }
2232} 2537}
2233 2538
2539#if EV_MULTIPLICITY
2540 #include "ev_wrap.h"
2541#endif
2542
2234#ifdef __cplusplus 2543#ifdef __cplusplus
2235} 2544}
2236#endif 2545#endif
2237 2546

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines