ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.163 by root, Wed Dec 5 13:54:36 2007 UTC vs.
Revision 1.225 by root, Wed Apr 16 01:37:14 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 241
197#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
200#endif 245#endif
202#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
205#endif 250#endif
206 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
207#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 268# include <winsock.h>
209#endif 269#endif
210 270
211#if !EV_STAT_ENABLE 271#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
213#endif 276# endif
214 277int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 278# ifdef __cplusplus
216# include <sys/inotify.h> 279}
280# endif
217#endif 281#endif
218 282
219/**/ 283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 294
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 298
225#if __GNUC__ >= 3 299#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 301# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 302#else
236# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
240#endif 308#endif
241 309
242#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
244 319
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 322
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 323#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 324#define EMPTY2(a,b) /* used to suppress some warnings */
250 325
251typedef ev_watcher *W; 326typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
254 329
330#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
334#endif
256 335
257#ifdef _WIN32 336#ifdef _WIN32
258# include "ev_win32.c" 337# include "ev_win32.c"
259#endif 338#endif
260 339
281 perror (msg); 360 perror (msg);
282 abort (); 361 abort ();
283 } 362 }
284} 363}
285 364
365static void *
366ev_realloc_emul (void *ptr, long size)
367{
368 /* some systems, notably openbsd and darwin, fail to properly
369 * implement realloc (x, 0) (as required by both ansi c-98 and
370 * the single unix specification, so work around them here.
371 */
372
373 if (size)
374 return realloc (ptr, size);
375
376 free (ptr);
377 return 0;
378}
379
286static void *(*alloc)(void *ptr, long size); 380static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 381
288void 382void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 383ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 384{
291 alloc = cb; 385 alloc = cb;
292} 386}
293 387
294inline_speed void * 388inline_speed void *
295ev_realloc (void *ptr, long size) 389ev_realloc (void *ptr, long size)
296{ 390{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 391 ptr = alloc (ptr, size);
298 392
299 if (!ptr && size) 393 if (!ptr && size)
300 { 394 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 395 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 396 abort ();
396{ 490{
397 return ev_rt_now; 491 return ev_rt_now;
398} 492}
399#endif 493#endif
400 494
495void
496ev_sleep (ev_tstamp delay)
497{
498 if (delay > 0.)
499 {
500#if EV_USE_NANOSLEEP
501 struct timespec ts;
502
503 ts.tv_sec = (time_t)delay;
504 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
505
506 nanosleep (&ts, 0);
507#elif defined(_WIN32)
508 Sleep ((unsigned long)(delay * 1e3));
509#else
510 struct timeval tv;
511
512 tv.tv_sec = (time_t)delay;
513 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
514
515 select (0, 0, 0, 0, &tv);
516#endif
517 }
518}
519
520/*****************************************************************************/
521
401int inline_size 522int inline_size
402array_nextsize (int elem, int cur, int cnt) 523array_nextsize (int elem, int cur, int cnt)
403{ 524{
404 int ncur = cur + 1; 525 int ncur = cur + 1;
405 526
417 } 538 }
418 539
419 return ncur; 540 return ncur;
420} 541}
421 542
422inline_speed void * 543static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 544array_realloc (int elem, void *base, int *cur, int cnt)
424{ 545{
425 *cur = array_nextsize (elem, *cur, cnt); 546 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 547 return ev_realloc (base, elem * *cur);
427} 548}
452 573
453void noinline 574void noinline
454ev_feed_event (EV_P_ void *w, int revents) 575ev_feed_event (EV_P_ void *w, int revents)
455{ 576{
456 W w_ = (W)w; 577 W w_ = (W)w;
578 int pri = ABSPRI (w_);
457 579
458 if (expect_false (w_->pending)) 580 if (expect_false (w_->pending))
581 pendings [pri][w_->pending - 1].events |= revents;
582 else
459 { 583 {
584 w_->pending = ++pendingcnt [pri];
585 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
586 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 587 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 588 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 589}
469 590
470void inline_size 591void inline_speed
471queue_events (EV_P_ W *events, int eventcnt, int type) 592queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 593{
473 int i; 594 int i;
474 595
475 for (i = 0; i < eventcnt; ++i) 596 for (i = 0; i < eventcnt; ++i)
507} 628}
508 629
509void 630void
510ev_feed_fd_event (EV_P_ int fd, int revents) 631ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 632{
633 if (fd >= 0 && fd < anfdmax)
512 fd_event (EV_A_ fd, revents); 634 fd_event (EV_A_ fd, revents);
513} 635}
514 636
515void inline_size 637void inline_size
516fd_reify (EV_P) 638fd_reify (EV_P)
517{ 639{
521 { 643 {
522 int fd = fdchanges [i]; 644 int fd = fdchanges [i];
523 ANFD *anfd = anfds + fd; 645 ANFD *anfd = anfds + fd;
524 ev_io *w; 646 ev_io *w;
525 647
526 int events = 0; 648 unsigned char events = 0;
527 649
528 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 650 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
529 events |= w->events; 651 events |= (unsigned char)w->events;
530 652
531#if EV_SELECT_IS_WINSOCKET 653#if EV_SELECT_IS_WINSOCKET
532 if (events) 654 if (events)
533 { 655 {
534 unsigned long argp; 656 unsigned long argp;
657 #ifdef EV_FD_TO_WIN32_HANDLE
658 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
659 #else
535 anfd->handle = _get_osfhandle (fd); 660 anfd->handle = _get_osfhandle (fd);
661 #endif
536 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 662 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
537 } 663 }
538#endif 664#endif
539 665
666 {
667 unsigned char o_events = anfd->events;
668 unsigned char o_reify = anfd->reify;
669
540 anfd->reify = 0; 670 anfd->reify = 0;
541
542 backend_modify (EV_A_ fd, anfd->events, events);
543 anfd->events = events; 671 anfd->events = events;
672
673 if (o_events != events || o_reify & EV_IOFDSET)
674 backend_modify (EV_A_ fd, o_events, events);
675 }
544 } 676 }
545 677
546 fdchangecnt = 0; 678 fdchangecnt = 0;
547} 679}
548 680
549void inline_size 681void inline_size
550fd_change (EV_P_ int fd) 682fd_change (EV_P_ int fd, int flags)
551{ 683{
552 if (expect_false (anfds [fd].reify)) 684 unsigned char reify = anfds [fd].reify;
553 return;
554
555 anfds [fd].reify = 1; 685 anfds [fd].reify |= flags;
556 686
687 if (expect_true (!reify))
688 {
557 ++fdchangecnt; 689 ++fdchangecnt;
558 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 690 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
559 fdchanges [fdchangecnt - 1] = fd; 691 fdchanges [fdchangecnt - 1] = fd;
692 }
560} 693}
561 694
562void inline_speed 695void inline_speed
563fd_kill (EV_P_ int fd) 696fd_kill (EV_P_ int fd)
564{ 697{
615 748
616 for (fd = 0; fd < anfdmax; ++fd) 749 for (fd = 0; fd < anfdmax; ++fd)
617 if (anfds [fd].events) 750 if (anfds [fd].events)
618 { 751 {
619 anfds [fd].events = 0; 752 anfds [fd].events = 0;
620 fd_change (EV_A_ fd); 753 fd_change (EV_A_ fd, EV_IOFDSET | 1);
621 } 754 }
622} 755}
623 756
624/*****************************************************************************/ 757/*****************************************************************************/
625 758
626void inline_speed 759void inline_speed
627upheap (WT *heap, int k) 760upheap (WT *heap, int k)
628{ 761{
629 WT w = heap [k]; 762 WT w = heap [k];
630 763
631 while (k && heap [k >> 1]->at > w->at) 764 while (k)
632 { 765 {
766 int p = (k - 1) >> 1;
767
768 if (heap [p]->at <= w->at)
769 break;
770
633 heap [k] = heap [k >> 1]; 771 heap [k] = heap [p];
634 ((W)heap [k])->active = k + 1; 772 ((W)heap [k])->active = k + 1;
635 k >>= 1; 773 k = p;
636 } 774 }
637 775
638 heap [k] = w; 776 heap [k] = w;
639 ((W)heap [k])->active = k + 1; 777 ((W)heap [k])->active = k + 1;
640
641} 778}
642 779
643void inline_speed 780void inline_speed
644downheap (WT *heap, int N, int k) 781downheap (WT *heap, int N, int k)
645{ 782{
646 WT w = heap [k]; 783 WT w = heap [k];
647 784
648 while (k < (N >> 1)) 785 for (;;)
649 { 786 {
650 int j = k << 1; 787 int c = (k << 1) + 1;
651 788
652 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 789 if (c >= N)
653 ++j;
654
655 if (w->at <= heap [j]->at)
656 break; 790 break;
657 791
792 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
793 ? 1 : 0;
794
795 if (w->at <= heap [c]->at)
796 break;
797
658 heap [k] = heap [j]; 798 heap [k] = heap [c];
659 ((W)heap [k])->active = k + 1; 799 ((W)heap [k])->active = k + 1;
800
660 k = j; 801 k = c;
661 } 802 }
662 803
663 heap [k] = w; 804 heap [k] = w;
664 ((W)heap [k])->active = k + 1; 805 ((W)heap [k])->active = k + 1;
665} 806}
674/*****************************************************************************/ 815/*****************************************************************************/
675 816
676typedef struct 817typedef struct
677{ 818{
678 WL head; 819 WL head;
679 sig_atomic_t volatile gotsig; 820 EV_ATOMIC_T gotsig;
680} ANSIG; 821} ANSIG;
681 822
682static ANSIG *signals; 823static ANSIG *signals;
683static int signalmax; 824static int signalmax;
684 825
685static int sigpipe [2]; 826static EV_ATOMIC_T gotsig;
686static sig_atomic_t volatile gotsig;
687static ev_io sigev;
688 827
689void inline_size 828void inline_size
690signals_init (ANSIG *base, int count) 829signals_init (ANSIG *base, int count)
691{ 830{
692 while (count--) 831 while (count--)
696 835
697 ++base; 836 ++base;
698 } 837 }
699} 838}
700 839
701static void 840/*****************************************************************************/
702sighandler (int signum)
703{
704#if _WIN32
705 signal (signum, sighandler);
706#endif
707 841
708 signals [signum - 1].gotsig = 1;
709
710 if (!gotsig)
711 {
712 int old_errno = errno;
713 gotsig = 1;
714 write (sigpipe [1], &signum, 1);
715 errno = old_errno;
716 }
717}
718
719void noinline
720ev_feed_signal_event (EV_P_ int signum)
721{
722 WL w;
723
724#if EV_MULTIPLICITY
725 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
726#endif
727
728 --signum;
729
730 if (signum < 0 || signum >= signalmax)
731 return;
732
733 signals [signum].gotsig = 0;
734
735 for (w = signals [signum].head; w; w = w->next)
736 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
737}
738
739static void
740sigcb (EV_P_ ev_io *iow, int revents)
741{
742 int signum;
743
744 read (sigpipe [0], &revents, 1);
745 gotsig = 0;
746
747 for (signum = signalmax; signum--; )
748 if (signals [signum].gotsig)
749 ev_feed_signal_event (EV_A_ signum + 1);
750}
751
752void inline_size 842void inline_speed
753fd_intern (int fd) 843fd_intern (int fd)
754{ 844{
755#ifdef _WIN32 845#ifdef _WIN32
756 int arg = 1; 846 int arg = 1;
757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 847 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
760 fcntl (fd, F_SETFL, O_NONBLOCK); 850 fcntl (fd, F_SETFL, O_NONBLOCK);
761#endif 851#endif
762} 852}
763 853
764static void noinline 854static void noinline
765siginit (EV_P) 855evpipe_init (EV_P)
766{ 856{
857 if (!ev_is_active (&pipeev))
858 {
859#if EV_USE_EVENTFD
860 if ((evfd = eventfd (0, 0)) >= 0)
861 {
862 evpipe [0] = -1;
863 fd_intern (evfd);
864 ev_io_set (&pipeev, evfd, EV_READ);
865 }
866 else
867#endif
868 {
869 while (pipe (evpipe))
870 syserr ("(libev) error creating signal/async pipe");
871
767 fd_intern (sigpipe [0]); 872 fd_intern (evpipe [0]);
768 fd_intern (sigpipe [1]); 873 fd_intern (evpipe [1]);
874 ev_io_set (&pipeev, evpipe [0], EV_READ);
875 }
769 876
770 ev_io_set (&sigev, sigpipe [0], EV_READ);
771 ev_io_start (EV_A_ &sigev); 877 ev_io_start (EV_A_ &pipeev);
772 ev_unref (EV_A); /* child watcher should not keep loop alive */ 878 ev_unref (EV_A); /* watcher should not keep loop alive */
879 }
880}
881
882void inline_size
883evpipe_write (EV_P_ EV_ATOMIC_T *flag)
884{
885 if (!*flag)
886 {
887 int old_errno = errno; /* save errno because write might clobber it */
888
889 *flag = 1;
890
891#if EV_USE_EVENTFD
892 if (evfd >= 0)
893 {
894 uint64_t counter = 1;
895 write (evfd, &counter, sizeof (uint64_t));
896 }
897 else
898#endif
899 write (evpipe [1], &old_errno, 1);
900
901 errno = old_errno;
902 }
903}
904
905static void
906pipecb (EV_P_ ev_io *iow, int revents)
907{
908#if EV_USE_EVENTFD
909 if (evfd >= 0)
910 {
911 uint64_t counter = 1;
912 read (evfd, &counter, sizeof (uint64_t));
913 }
914 else
915#endif
916 {
917 char dummy;
918 read (evpipe [0], &dummy, 1);
919 }
920
921 if (gotsig && ev_is_default_loop (EV_A))
922 {
923 int signum;
924 gotsig = 0;
925
926 for (signum = signalmax; signum--; )
927 if (signals [signum].gotsig)
928 ev_feed_signal_event (EV_A_ signum + 1);
929 }
930
931#if EV_ASYNC_ENABLE
932 if (gotasync)
933 {
934 int i;
935 gotasync = 0;
936
937 for (i = asynccnt; i--; )
938 if (asyncs [i]->sent)
939 {
940 asyncs [i]->sent = 0;
941 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
942 }
943 }
944#endif
773} 945}
774 946
775/*****************************************************************************/ 947/*****************************************************************************/
776 948
949static void
950ev_sighandler (int signum)
951{
952#if EV_MULTIPLICITY
953 struct ev_loop *loop = &default_loop_struct;
954#endif
955
956#if _WIN32
957 signal (signum, ev_sighandler);
958#endif
959
960 signals [signum - 1].gotsig = 1;
961 evpipe_write (EV_A_ &gotsig);
962}
963
964void noinline
965ev_feed_signal_event (EV_P_ int signum)
966{
967 WL w;
968
969#if EV_MULTIPLICITY
970 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
971#endif
972
973 --signum;
974
975 if (signum < 0 || signum >= signalmax)
976 return;
977
978 signals [signum].gotsig = 0;
979
980 for (w = signals [signum].head; w; w = w->next)
981 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
982}
983
984/*****************************************************************************/
985
777static ev_child *childs [EV_PID_HASHSIZE]; 986static WL childs [EV_PID_HASHSIZE];
778 987
779#ifndef _WIN32 988#ifndef _WIN32
780 989
781static ev_signal childev; 990static ev_signal childev;
782 991
992#ifndef WIFCONTINUED
993# define WIFCONTINUED(status) 0
994#endif
995
783void inline_speed 996void inline_speed
784child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 997child_reap (EV_P_ int chain, int pid, int status)
785{ 998{
786 ev_child *w; 999 ev_child *w;
1000 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
787 1001
788 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1002 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1003 {
789 if (w->pid == pid || !w->pid) 1004 if ((w->pid == pid || !w->pid)
1005 && (!traced || (w->flags & 1)))
790 { 1006 {
791 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1007 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
792 w->rpid = pid; 1008 w->rpid = pid;
793 w->rstatus = status; 1009 w->rstatus = status;
794 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1010 ev_feed_event (EV_A_ (W)w, EV_CHILD);
795 } 1011 }
1012 }
796} 1013}
797 1014
798#ifndef WCONTINUED 1015#ifndef WCONTINUED
799# define WCONTINUED 0 1016# define WCONTINUED 0
800#endif 1017#endif
809 if (!WCONTINUED 1026 if (!WCONTINUED
810 || errno != EINVAL 1027 || errno != EINVAL
811 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1028 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
812 return; 1029 return;
813 1030
814 /* make sure we are called again until all childs have been reaped */ 1031 /* make sure we are called again until all children have been reaped */
815 /* we need to do it this way so that the callback gets called before we continue */ 1032 /* we need to do it this way so that the callback gets called before we continue */
816 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1033 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
817 1034
818 child_reap (EV_A_ sw, pid, pid, status); 1035 child_reap (EV_A_ pid, pid, status);
819 if (EV_PID_HASHSIZE > 1) 1036 if (EV_PID_HASHSIZE > 1)
820 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1037 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
821} 1038}
822 1039
823#endif 1040#endif
824 1041
825/*****************************************************************************/ 1042/*****************************************************************************/
897} 1114}
898 1115
899unsigned int 1116unsigned int
900ev_embeddable_backends (void) 1117ev_embeddable_backends (void)
901{ 1118{
902 return EVBACKEND_EPOLL 1119 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
903 | EVBACKEND_KQUEUE 1120
904 | EVBACKEND_PORT; 1121 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1122 /* please fix it and tell me how to detect the fix */
1123 flags &= ~EVBACKEND_EPOLL;
1124
1125 return flags;
905} 1126}
906 1127
907unsigned int 1128unsigned int
908ev_backend (EV_P) 1129ev_backend (EV_P)
909{ 1130{
912 1133
913unsigned int 1134unsigned int
914ev_loop_count (EV_P) 1135ev_loop_count (EV_P)
915{ 1136{
916 return loop_count; 1137 return loop_count;
1138}
1139
1140void
1141ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1142{
1143 io_blocktime = interval;
1144}
1145
1146void
1147ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1148{
1149 timeout_blocktime = interval;
917} 1150}
918 1151
919static void noinline 1152static void noinline
920loop_init (EV_P_ unsigned int flags) 1153loop_init (EV_P_ unsigned int flags)
921{ 1154{
927 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1160 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
928 have_monotonic = 1; 1161 have_monotonic = 1;
929 } 1162 }
930#endif 1163#endif
931 1164
932 ev_rt_now = ev_time (); 1165 ev_rt_now = ev_time ();
933 mn_now = get_clock (); 1166 mn_now = get_clock ();
934 now_floor = mn_now; 1167 now_floor = mn_now;
935 rtmn_diff = ev_rt_now - mn_now; 1168 rtmn_diff = ev_rt_now - mn_now;
1169
1170 io_blocktime = 0.;
1171 timeout_blocktime = 0.;
1172 backend = 0;
1173 backend_fd = -1;
1174 gotasync = 0;
1175#if EV_USE_INOTIFY
1176 fs_fd = -2;
1177#endif
936 1178
937 /* pid check not overridable via env */ 1179 /* pid check not overridable via env */
938#ifndef _WIN32 1180#ifndef _WIN32
939 if (flags & EVFLAG_FORKCHECK) 1181 if (flags & EVFLAG_FORKCHECK)
940 curpid = getpid (); 1182 curpid = getpid ();
943 if (!(flags & EVFLAG_NOENV) 1185 if (!(flags & EVFLAG_NOENV)
944 && !enable_secure () 1186 && !enable_secure ()
945 && getenv ("LIBEV_FLAGS")) 1187 && getenv ("LIBEV_FLAGS"))
946 flags = atoi (getenv ("LIBEV_FLAGS")); 1188 flags = atoi (getenv ("LIBEV_FLAGS"));
947 1189
948 if (!(flags & 0x0000ffffUL)) 1190 if (!(flags & 0x0000ffffU))
949 flags |= ev_recommended_backends (); 1191 flags |= ev_recommended_backends ();
950
951 backend = 0;
952 backend_fd = -1;
953#if EV_USE_INOTIFY
954 fs_fd = -2;
955#endif
956 1192
957#if EV_USE_PORT 1193#if EV_USE_PORT
958 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1194 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
959#endif 1195#endif
960#if EV_USE_KQUEUE 1196#if EV_USE_KQUEUE
968#endif 1204#endif
969#if EV_USE_SELECT 1205#if EV_USE_SELECT
970 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1206 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
971#endif 1207#endif
972 1208
973 ev_init (&sigev, sigcb); 1209 ev_init (&pipeev, pipecb);
974 ev_set_priority (&sigev, EV_MAXPRI); 1210 ev_set_priority (&pipeev, EV_MAXPRI);
975 } 1211 }
976} 1212}
977 1213
978static void noinline 1214static void noinline
979loop_destroy (EV_P) 1215loop_destroy (EV_P)
980{ 1216{
981 int i; 1217 int i;
1218
1219 if (ev_is_active (&pipeev))
1220 {
1221 ev_ref (EV_A); /* signal watcher */
1222 ev_io_stop (EV_A_ &pipeev);
1223
1224#if EV_USE_EVENTFD
1225 if (evfd >= 0)
1226 close (evfd);
1227#endif
1228
1229 if (evpipe [0] >= 0)
1230 {
1231 close (evpipe [0]);
1232 close (evpipe [1]);
1233 }
1234 }
982 1235
983#if EV_USE_INOTIFY 1236#if EV_USE_INOTIFY
984 if (fs_fd >= 0) 1237 if (fs_fd >= 0)
985 close (fs_fd); 1238 close (fs_fd);
986#endif 1239#endif
1003#if EV_USE_SELECT 1256#if EV_USE_SELECT
1004 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1257 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1005#endif 1258#endif
1006 1259
1007 for (i = NUMPRI; i--; ) 1260 for (i = NUMPRI; i--; )
1261 {
1008 array_free (pending, [i]); 1262 array_free (pending, [i]);
1263#if EV_IDLE_ENABLE
1264 array_free (idle, [i]);
1265#endif
1266 }
1267
1268 ev_free (anfds); anfdmax = 0;
1009 1269
1010 /* have to use the microsoft-never-gets-it-right macro */ 1270 /* have to use the microsoft-never-gets-it-right macro */
1011 array_free (fdchange, EMPTY0); 1271 array_free (fdchange, EMPTY);
1012 array_free (timer, EMPTY0); 1272 array_free (timer, EMPTY);
1013#if EV_PERIODIC_ENABLE 1273#if EV_PERIODIC_ENABLE
1014 array_free (periodic, EMPTY0); 1274 array_free (periodic, EMPTY);
1015#endif 1275#endif
1276#if EV_FORK_ENABLE
1016 array_free (idle, EMPTY0); 1277 array_free (fork, EMPTY);
1278#endif
1017 array_free (prepare, EMPTY0); 1279 array_free (prepare, EMPTY);
1018 array_free (check, EMPTY0); 1280 array_free (check, EMPTY);
1281#if EV_ASYNC_ENABLE
1282 array_free (async, EMPTY);
1283#endif
1019 1284
1020 backend = 0; 1285 backend = 0;
1021} 1286}
1022 1287
1023void inline_size infy_fork (EV_P); 1288void inline_size infy_fork (EV_P);
1036#endif 1301#endif
1037#if EV_USE_INOTIFY 1302#if EV_USE_INOTIFY
1038 infy_fork (EV_A); 1303 infy_fork (EV_A);
1039#endif 1304#endif
1040 1305
1041 if (ev_is_active (&sigev)) 1306 if (ev_is_active (&pipeev))
1042 { 1307 {
1043 /* default loop */ 1308 /* this "locks" the handlers against writing to the pipe */
1309 /* while we modify the fd vars */
1310 gotsig = 1;
1311#if EV_ASYNC_ENABLE
1312 gotasync = 1;
1313#endif
1044 1314
1045 ev_ref (EV_A); 1315 ev_ref (EV_A);
1046 ev_io_stop (EV_A_ &sigev); 1316 ev_io_stop (EV_A_ &pipeev);
1317
1318#if EV_USE_EVENTFD
1319 if (evfd >= 0)
1320 close (evfd);
1321#endif
1322
1323 if (evpipe [0] >= 0)
1324 {
1047 close (sigpipe [0]); 1325 close (evpipe [0]);
1048 close (sigpipe [1]); 1326 close (evpipe [1]);
1327 }
1049 1328
1050 while (pipe (sigpipe))
1051 syserr ("(libev) error creating pipe");
1052
1053 siginit (EV_A); 1329 evpipe_init (EV_A);
1330 /* now iterate over everything, in case we missed something */
1331 pipecb (EV_A_ &pipeev, EV_READ);
1054 } 1332 }
1055 1333
1056 postfork = 0; 1334 postfork = 0;
1057} 1335}
1058 1336
1080} 1358}
1081 1359
1082void 1360void
1083ev_loop_fork (EV_P) 1361ev_loop_fork (EV_P)
1084{ 1362{
1085 postfork = 1; 1363 postfork = 1; /* must be in line with ev_default_fork */
1086} 1364}
1087 1365
1088#endif 1366#endif
1089 1367
1090#if EV_MULTIPLICITY 1368#if EV_MULTIPLICITY
1093#else 1371#else
1094int 1372int
1095ev_default_loop (unsigned int flags) 1373ev_default_loop (unsigned int flags)
1096#endif 1374#endif
1097{ 1375{
1098 if (sigpipe [0] == sigpipe [1])
1099 if (pipe (sigpipe))
1100 return 0;
1101
1102 if (!ev_default_loop_ptr) 1376 if (!ev_default_loop_ptr)
1103 { 1377 {
1104#if EV_MULTIPLICITY 1378#if EV_MULTIPLICITY
1105 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1379 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1106#else 1380#else
1109 1383
1110 loop_init (EV_A_ flags); 1384 loop_init (EV_A_ flags);
1111 1385
1112 if (ev_backend (EV_A)) 1386 if (ev_backend (EV_A))
1113 { 1387 {
1114 siginit (EV_A);
1115
1116#ifndef _WIN32 1388#ifndef _WIN32
1117 ev_signal_init (&childev, childcb, SIGCHLD); 1389 ev_signal_init (&childev, childcb, SIGCHLD);
1118 ev_set_priority (&childev, EV_MAXPRI); 1390 ev_set_priority (&childev, EV_MAXPRI);
1119 ev_signal_start (EV_A_ &childev); 1391 ev_signal_start (EV_A_ &childev);
1120 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1392 ev_unref (EV_A); /* child watcher should not keep loop alive */
1137#ifndef _WIN32 1409#ifndef _WIN32
1138 ev_ref (EV_A); /* child watcher */ 1410 ev_ref (EV_A); /* child watcher */
1139 ev_signal_stop (EV_A_ &childev); 1411 ev_signal_stop (EV_A_ &childev);
1140#endif 1412#endif
1141 1413
1142 ev_ref (EV_A); /* signal watcher */
1143 ev_io_stop (EV_A_ &sigev);
1144
1145 close (sigpipe [0]); sigpipe [0] = 0;
1146 close (sigpipe [1]); sigpipe [1] = 0;
1147
1148 loop_destroy (EV_A); 1414 loop_destroy (EV_A);
1149} 1415}
1150 1416
1151void 1417void
1152ev_default_fork (void) 1418ev_default_fork (void)
1154#if EV_MULTIPLICITY 1420#if EV_MULTIPLICITY
1155 struct ev_loop *loop = ev_default_loop_ptr; 1421 struct ev_loop *loop = ev_default_loop_ptr;
1156#endif 1422#endif
1157 1423
1158 if (backend) 1424 if (backend)
1159 postfork = 1; 1425 postfork = 1; /* must be in line with ev_loop_fork */
1160} 1426}
1161 1427
1162/*****************************************************************************/ 1428/*****************************************************************************/
1163 1429
1164int inline_size 1430void
1165any_pending (EV_P) 1431ev_invoke (EV_P_ void *w, int revents)
1166{ 1432{
1167 int pri; 1433 EV_CB_INVOKE ((W)w, revents);
1168
1169 for (pri = NUMPRI; pri--; )
1170 if (pendingcnt [pri])
1171 return 1;
1172
1173 return 0;
1174} 1434}
1175 1435
1176void inline_speed 1436void inline_speed
1177call_pending (EV_P) 1437call_pending (EV_P)
1178{ 1438{
1196void inline_size 1456void inline_size
1197timers_reify (EV_P) 1457timers_reify (EV_P)
1198{ 1458{
1199 while (timercnt && ((WT)timers [0])->at <= mn_now) 1459 while (timercnt && ((WT)timers [0])->at <= mn_now)
1200 { 1460 {
1201 ev_timer *w = timers [0]; 1461 ev_timer *w = (ev_timer *)timers [0];
1202 1462
1203 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1463 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1204 1464
1205 /* first reschedule or stop timer */ 1465 /* first reschedule or stop timer */
1206 if (w->repeat) 1466 if (w->repeat)
1209 1469
1210 ((WT)w)->at += w->repeat; 1470 ((WT)w)->at += w->repeat;
1211 if (((WT)w)->at < mn_now) 1471 if (((WT)w)->at < mn_now)
1212 ((WT)w)->at = mn_now; 1472 ((WT)w)->at = mn_now;
1213 1473
1214 downheap ((WT *)timers, timercnt, 0); 1474 downheap (timers, timercnt, 0);
1215 } 1475 }
1216 else 1476 else
1217 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1477 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1218 1478
1219 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1479 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1224void inline_size 1484void inline_size
1225periodics_reify (EV_P) 1485periodics_reify (EV_P)
1226{ 1486{
1227 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1487 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1228 { 1488 {
1229 ev_periodic *w = periodics [0]; 1489 ev_periodic *w = (ev_periodic *)periodics [0];
1230 1490
1231 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1491 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1232 1492
1233 /* first reschedule or stop timer */ 1493 /* first reschedule or stop timer */
1234 if (w->reschedule_cb) 1494 if (w->reschedule_cb)
1235 { 1495 {
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1496 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1237 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1497 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1238 downheap ((WT *)periodics, periodiccnt, 0); 1498 downheap (periodics, periodiccnt, 0);
1239 } 1499 }
1240 else if (w->interval) 1500 else if (w->interval)
1241 { 1501 {
1242 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1502 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1503 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1243 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1504 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1244 downheap ((WT *)periodics, periodiccnt, 0); 1505 downheap (periodics, periodiccnt, 0);
1245 } 1506 }
1246 else 1507 else
1247 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1508 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1248 1509
1249 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1510 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1256 int i; 1517 int i;
1257 1518
1258 /* adjust periodics after time jump */ 1519 /* adjust periodics after time jump */
1259 for (i = 0; i < periodiccnt; ++i) 1520 for (i = 0; i < periodiccnt; ++i)
1260 { 1521 {
1261 ev_periodic *w = periodics [i]; 1522 ev_periodic *w = (ev_periodic *)periodics [i];
1262 1523
1263 if (w->reschedule_cb) 1524 if (w->reschedule_cb)
1264 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1525 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1265 else if (w->interval) 1526 else if (w->interval)
1266 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1527 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1267 } 1528 }
1268 1529
1269 /* now rebuild the heap */ 1530 /* now rebuild the heap */
1270 for (i = periodiccnt >> 1; i--; ) 1531 for (i = periodiccnt >> 1; i--; )
1271 downheap ((WT *)periodics, periodiccnt, i); 1532 downheap (periodics, periodiccnt, i);
1272} 1533}
1273#endif 1534#endif
1274 1535
1536#if EV_IDLE_ENABLE
1275int inline_size 1537void inline_size
1276time_update_monotonic (EV_P) 1538idle_reify (EV_P)
1277{ 1539{
1540 if (expect_false (idleall))
1541 {
1542 int pri;
1543
1544 for (pri = NUMPRI; pri--; )
1545 {
1546 if (pendingcnt [pri])
1547 break;
1548
1549 if (idlecnt [pri])
1550 {
1551 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1552 break;
1553 }
1554 }
1555 }
1556}
1557#endif
1558
1559void inline_speed
1560time_update (EV_P_ ev_tstamp max_block)
1561{
1562 int i;
1563
1564#if EV_USE_MONOTONIC
1565 if (expect_true (have_monotonic))
1566 {
1567 ev_tstamp odiff = rtmn_diff;
1568
1278 mn_now = get_clock (); 1569 mn_now = get_clock ();
1279 1570
1571 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1572 /* interpolate in the meantime */
1280 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1573 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1281 { 1574 {
1282 ev_rt_now = rtmn_diff + mn_now; 1575 ev_rt_now = rtmn_diff + mn_now;
1283 return 0; 1576 return;
1284 } 1577 }
1285 else 1578
1286 {
1287 now_floor = mn_now; 1579 now_floor = mn_now;
1288 ev_rt_now = ev_time (); 1580 ev_rt_now = ev_time ();
1289 return 1;
1290 }
1291}
1292 1581
1293void inline_size 1582 /* loop a few times, before making important decisions.
1294time_update (EV_P) 1583 * on the choice of "4": one iteration isn't enough,
1295{ 1584 * in case we get preempted during the calls to
1296 int i; 1585 * ev_time and get_clock. a second call is almost guaranteed
1297 1586 * to succeed in that case, though. and looping a few more times
1298#if EV_USE_MONOTONIC 1587 * doesn't hurt either as we only do this on time-jumps or
1299 if (expect_true (have_monotonic)) 1588 * in the unlikely event of having been preempted here.
1300 { 1589 */
1301 if (time_update_monotonic (EV_A)) 1590 for (i = 4; --i; )
1302 { 1591 {
1303 ev_tstamp odiff = rtmn_diff;
1304
1305 /* loop a few times, before making important decisions.
1306 * on the choice of "4": one iteration isn't enough,
1307 * in case we get preempted during the calls to
1308 * ev_time and get_clock. a second call is almost guaranteed
1309 * to succeed in that case, though. and looping a few more times
1310 * doesn't hurt either as we only do this on time-jumps or
1311 * in the unlikely event of having been preempted here.
1312 */
1313 for (i = 4; --i; )
1314 {
1315 rtmn_diff = ev_rt_now - mn_now; 1592 rtmn_diff = ev_rt_now - mn_now;
1316 1593
1317 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1594 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1318 return; /* all is well */ 1595 return; /* all is well */
1319 1596
1320 ev_rt_now = ev_time (); 1597 ev_rt_now = ev_time ();
1321 mn_now = get_clock (); 1598 mn_now = get_clock ();
1322 now_floor = mn_now; 1599 now_floor = mn_now;
1323 } 1600 }
1324 1601
1325# if EV_PERIODIC_ENABLE 1602# if EV_PERIODIC_ENABLE
1326 periodics_reschedule (EV_A); 1603 periodics_reschedule (EV_A);
1327# endif 1604# endif
1328 /* no timer adjustment, as the monotonic clock doesn't jump */ 1605 /* no timer adjustment, as the monotonic clock doesn't jump */
1329 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1606 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1330 }
1331 } 1607 }
1332 else 1608 else
1333#endif 1609#endif
1334 { 1610 {
1335 ev_rt_now = ev_time (); 1611 ev_rt_now = ev_time ();
1336 1612
1337 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1613 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1338 { 1614 {
1339#if EV_PERIODIC_ENABLE 1615#if EV_PERIODIC_ENABLE
1340 periodics_reschedule (EV_A); 1616 periodics_reschedule (EV_A);
1341#endif 1617#endif
1342
1343 /* adjust timers. this is easy, as the offset is the same for all of them */ 1618 /* adjust timers. this is easy, as the offset is the same for all of them */
1344 for (i = 0; i < timercnt; ++i) 1619 for (i = 0; i < timercnt; ++i)
1345 ((WT)timers [i])->at += ev_rt_now - mn_now; 1620 ((WT)timers [i])->at += ev_rt_now - mn_now;
1346 } 1621 }
1347 1622
1364static int loop_done; 1639static int loop_done;
1365 1640
1366void 1641void
1367ev_loop (EV_P_ int flags) 1642ev_loop (EV_P_ int flags)
1368{ 1643{
1369 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1644 loop_done = EVUNLOOP_CANCEL;
1370 ? EVUNLOOP_ONE
1371 : EVUNLOOP_CANCEL;
1372 1645
1373 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1646 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1374 1647
1375 do 1648 do
1376 { 1649 {
1391 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1664 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1392 call_pending (EV_A); 1665 call_pending (EV_A);
1393 } 1666 }
1394#endif 1667#endif
1395 1668
1396 /* queue check watchers (and execute them) */ 1669 /* queue prepare watchers (and execute them) */
1397 if (expect_false (preparecnt)) 1670 if (expect_false (preparecnt))
1398 { 1671 {
1399 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1672 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1400 call_pending (EV_A); 1673 call_pending (EV_A);
1401 } 1674 }
1410 /* update fd-related kernel structures */ 1683 /* update fd-related kernel structures */
1411 fd_reify (EV_A); 1684 fd_reify (EV_A);
1412 1685
1413 /* calculate blocking time */ 1686 /* calculate blocking time */
1414 { 1687 {
1415 ev_tstamp block; 1688 ev_tstamp waittime = 0.;
1689 ev_tstamp sleeptime = 0.;
1416 1690
1417 if (expect_false (flags & EVLOOP_NONBLOCK || idlecnt || !activecnt)) 1691 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1418 block = 0.; /* do not block at all */
1419 else
1420 { 1692 {
1421 /* update time to cancel out callback processing overhead */ 1693 /* update time to cancel out callback processing overhead */
1422#if EV_USE_MONOTONIC
1423 if (expect_true (have_monotonic))
1424 time_update_monotonic (EV_A); 1694 time_update (EV_A_ 1e100);
1425 else
1426#endif
1427 {
1428 ev_rt_now = ev_time ();
1429 mn_now = ev_rt_now;
1430 }
1431 1695
1432 block = MAX_BLOCKTIME; 1696 waittime = MAX_BLOCKTIME;
1433 1697
1434 if (timercnt) 1698 if (timercnt)
1435 { 1699 {
1436 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1700 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1437 if (block > to) block = to; 1701 if (waittime > to) waittime = to;
1438 } 1702 }
1439 1703
1440#if EV_PERIODIC_ENABLE 1704#if EV_PERIODIC_ENABLE
1441 if (periodiccnt) 1705 if (periodiccnt)
1442 { 1706 {
1443 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1707 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1444 if (block > to) block = to; 1708 if (waittime > to) waittime = to;
1445 } 1709 }
1446#endif 1710#endif
1447 1711
1448 if (expect_false (block < 0.)) block = 0.; 1712 if (expect_false (waittime < timeout_blocktime))
1713 waittime = timeout_blocktime;
1714
1715 sleeptime = waittime - backend_fudge;
1716
1717 if (expect_true (sleeptime > io_blocktime))
1718 sleeptime = io_blocktime;
1719
1720 if (sleeptime)
1721 {
1722 ev_sleep (sleeptime);
1723 waittime -= sleeptime;
1724 }
1449 } 1725 }
1450 1726
1451 ++loop_count; 1727 ++loop_count;
1452 backend_poll (EV_A_ block); 1728 backend_poll (EV_A_ waittime);
1729
1730 /* update ev_rt_now, do magic */
1731 time_update (EV_A_ waittime + sleeptime);
1453 } 1732 }
1454
1455 /* update ev_rt_now, do magic */
1456 time_update (EV_A);
1457 1733
1458 /* queue pending timers and reschedule them */ 1734 /* queue pending timers and reschedule them */
1459 timers_reify (EV_A); /* relative timers called last */ 1735 timers_reify (EV_A); /* relative timers called last */
1460#if EV_PERIODIC_ENABLE 1736#if EV_PERIODIC_ENABLE
1461 periodics_reify (EV_A); /* absolute timers called first */ 1737 periodics_reify (EV_A); /* absolute timers called first */
1462#endif 1738#endif
1463 1739
1740#if EV_IDLE_ENABLE
1464 /* queue idle watchers unless other events are pending */ 1741 /* queue idle watchers unless other events are pending */
1465 if (idlecnt && !any_pending (EV_A)) 1742 idle_reify (EV_A);
1466 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1743#endif
1467 1744
1468 /* queue check watchers, to be executed first */ 1745 /* queue check watchers, to be executed first */
1469 if (expect_false (checkcnt)) 1746 if (expect_false (checkcnt))
1470 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1747 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1471 1748
1472 call_pending (EV_A); 1749 call_pending (EV_A);
1473
1474 } 1750 }
1475 while (expect_true (activecnt && !loop_done)); 1751 while (expect_true (
1752 activecnt
1753 && !loop_done
1754 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1755 ));
1476 1756
1477 if (loop_done == EVUNLOOP_ONE) 1757 if (loop_done == EVUNLOOP_ONE)
1478 loop_done = EVUNLOOP_CANCEL; 1758 loop_done = EVUNLOOP_CANCEL;
1479} 1759}
1480 1760
1507 head = &(*head)->next; 1787 head = &(*head)->next;
1508 } 1788 }
1509} 1789}
1510 1790
1511void inline_speed 1791void inline_speed
1512ev_clear_pending (EV_P_ W w) 1792clear_pending (EV_P_ W w)
1513{ 1793{
1514 if (w->pending) 1794 if (w->pending)
1515 { 1795 {
1516 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1796 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1517 w->pending = 0; 1797 w->pending = 0;
1518 } 1798 }
1519} 1799}
1520 1800
1801int
1802ev_clear_pending (EV_P_ void *w)
1803{
1804 W w_ = (W)w;
1805 int pending = w_->pending;
1806
1807 if (expect_true (pending))
1808 {
1809 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1810 w_->pending = 0;
1811 p->w = 0;
1812 return p->events;
1813 }
1814 else
1815 return 0;
1816}
1817
1818void inline_size
1819pri_adjust (EV_P_ W w)
1820{
1821 int pri = w->priority;
1822 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1823 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1824 w->priority = pri;
1825}
1826
1521void inline_speed 1827void inline_speed
1522ev_start (EV_P_ W w, int active) 1828ev_start (EV_P_ W w, int active)
1523{ 1829{
1524 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1830 pri_adjust (EV_A_ w);
1525 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1526
1527 w->active = active; 1831 w->active = active;
1528 ev_ref (EV_A); 1832 ev_ref (EV_A);
1529} 1833}
1530 1834
1531void inline_size 1835void inline_size
1535 w->active = 0; 1839 w->active = 0;
1536} 1840}
1537 1841
1538/*****************************************************************************/ 1842/*****************************************************************************/
1539 1843
1540void 1844void noinline
1541ev_io_start (EV_P_ ev_io *w) 1845ev_io_start (EV_P_ ev_io *w)
1542{ 1846{
1543 int fd = w->fd; 1847 int fd = w->fd;
1544 1848
1545 if (expect_false (ev_is_active (w))) 1849 if (expect_false (ev_is_active (w)))
1547 1851
1548 assert (("ev_io_start called with negative fd", fd >= 0)); 1852 assert (("ev_io_start called with negative fd", fd >= 0));
1549 1853
1550 ev_start (EV_A_ (W)w, 1); 1854 ev_start (EV_A_ (W)w, 1);
1551 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1855 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1552 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1856 wlist_add (&anfds[fd].head, (WL)w);
1553 1857
1554 fd_change (EV_A_ fd); 1858 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1859 w->events &= ~EV_IOFDSET;
1555} 1860}
1556 1861
1557void 1862void noinline
1558ev_io_stop (EV_P_ ev_io *w) 1863ev_io_stop (EV_P_ ev_io *w)
1559{ 1864{
1560 ev_clear_pending (EV_A_ (W)w); 1865 clear_pending (EV_A_ (W)w);
1561 if (expect_false (!ev_is_active (w))) 1866 if (expect_false (!ev_is_active (w)))
1562 return; 1867 return;
1563 1868
1564 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1869 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1565 1870
1566 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1871 wlist_del (&anfds[w->fd].head, (WL)w);
1567 ev_stop (EV_A_ (W)w); 1872 ev_stop (EV_A_ (W)w);
1568 1873
1569 fd_change (EV_A_ w->fd); 1874 fd_change (EV_A_ w->fd, 1);
1570} 1875}
1571 1876
1572void 1877void noinline
1573ev_timer_start (EV_P_ ev_timer *w) 1878ev_timer_start (EV_P_ ev_timer *w)
1574{ 1879{
1575 if (expect_false (ev_is_active (w))) 1880 if (expect_false (ev_is_active (w)))
1576 return; 1881 return;
1577 1882
1578 ((WT)w)->at += mn_now; 1883 ((WT)w)->at += mn_now;
1579 1884
1580 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1885 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1581 1886
1582 ev_start (EV_A_ (W)w, ++timercnt); 1887 ev_start (EV_A_ (W)w, ++timercnt);
1583 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1888 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1584 timers [timercnt - 1] = w; 1889 timers [timercnt - 1] = (WT)w;
1585 upheap ((WT *)timers, timercnt - 1); 1890 upheap (timers, timercnt - 1);
1586 1891
1587 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1892 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1588} 1893}
1589 1894
1590void 1895void noinline
1591ev_timer_stop (EV_P_ ev_timer *w) 1896ev_timer_stop (EV_P_ ev_timer *w)
1592{ 1897{
1593 ev_clear_pending (EV_A_ (W)w); 1898 clear_pending (EV_A_ (W)w);
1594 if (expect_false (!ev_is_active (w))) 1899 if (expect_false (!ev_is_active (w)))
1595 return; 1900 return;
1596 1901
1597 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1902 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1598 1903
1599 { 1904 {
1600 int active = ((W)w)->active; 1905 int active = ((W)w)->active;
1601 1906
1602 if (expect_true (--active < --timercnt)) 1907 if (expect_true (--active < --timercnt))
1603 { 1908 {
1604 timers [active] = timers [timercnt]; 1909 timers [active] = timers [timercnt];
1605 adjustheap ((WT *)timers, timercnt, active); 1910 adjustheap (timers, timercnt, active);
1606 } 1911 }
1607 } 1912 }
1608 1913
1609 ((WT)w)->at -= mn_now; 1914 ((WT)w)->at -= mn_now;
1610 1915
1611 ev_stop (EV_A_ (W)w); 1916 ev_stop (EV_A_ (W)w);
1612} 1917}
1613 1918
1614void 1919void noinline
1615ev_timer_again (EV_P_ ev_timer *w) 1920ev_timer_again (EV_P_ ev_timer *w)
1616{ 1921{
1617 if (ev_is_active (w)) 1922 if (ev_is_active (w))
1618 { 1923 {
1619 if (w->repeat) 1924 if (w->repeat)
1620 { 1925 {
1621 ((WT)w)->at = mn_now + w->repeat; 1926 ((WT)w)->at = mn_now + w->repeat;
1622 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1927 adjustheap (timers, timercnt, ((W)w)->active - 1);
1623 } 1928 }
1624 else 1929 else
1625 ev_timer_stop (EV_A_ w); 1930 ev_timer_stop (EV_A_ w);
1626 } 1931 }
1627 else if (w->repeat) 1932 else if (w->repeat)
1630 ev_timer_start (EV_A_ w); 1935 ev_timer_start (EV_A_ w);
1631 } 1936 }
1632} 1937}
1633 1938
1634#if EV_PERIODIC_ENABLE 1939#if EV_PERIODIC_ENABLE
1635void 1940void noinline
1636ev_periodic_start (EV_P_ ev_periodic *w) 1941ev_periodic_start (EV_P_ ev_periodic *w)
1637{ 1942{
1638 if (expect_false (ev_is_active (w))) 1943 if (expect_false (ev_is_active (w)))
1639 return; 1944 return;
1640 1945
1642 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1947 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1643 else if (w->interval) 1948 else if (w->interval)
1644 { 1949 {
1645 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1950 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1646 /* this formula differs from the one in periodic_reify because we do not always round up */ 1951 /* this formula differs from the one in periodic_reify because we do not always round up */
1647 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1952 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1648 } 1953 }
1954 else
1955 ((WT)w)->at = w->offset;
1649 1956
1650 ev_start (EV_A_ (W)w, ++periodiccnt); 1957 ev_start (EV_A_ (W)w, ++periodiccnt);
1651 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1958 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1652 periodics [periodiccnt - 1] = w; 1959 periodics [periodiccnt - 1] = (WT)w;
1653 upheap ((WT *)periodics, periodiccnt - 1); 1960 upheap (periodics, periodiccnt - 1);
1654 1961
1655 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1962 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1656} 1963}
1657 1964
1658void 1965void noinline
1659ev_periodic_stop (EV_P_ ev_periodic *w) 1966ev_periodic_stop (EV_P_ ev_periodic *w)
1660{ 1967{
1661 ev_clear_pending (EV_A_ (W)w); 1968 clear_pending (EV_A_ (W)w);
1662 if (expect_false (!ev_is_active (w))) 1969 if (expect_false (!ev_is_active (w)))
1663 return; 1970 return;
1664 1971
1665 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1972 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1666 1973
1667 { 1974 {
1668 int active = ((W)w)->active; 1975 int active = ((W)w)->active;
1669 1976
1670 if (expect_true (--active < --periodiccnt)) 1977 if (expect_true (--active < --periodiccnt))
1671 { 1978 {
1672 periodics [active] = periodics [periodiccnt]; 1979 periodics [active] = periodics [periodiccnt];
1673 adjustheap ((WT *)periodics, periodiccnt, active); 1980 adjustheap (periodics, periodiccnt, active);
1674 } 1981 }
1675 } 1982 }
1676 1983
1677 ev_stop (EV_A_ (W)w); 1984 ev_stop (EV_A_ (W)w);
1678} 1985}
1679 1986
1680void 1987void noinline
1681ev_periodic_again (EV_P_ ev_periodic *w) 1988ev_periodic_again (EV_P_ ev_periodic *w)
1682{ 1989{
1683 /* TODO: use adjustheap and recalculation */ 1990 /* TODO: use adjustheap and recalculation */
1684 ev_periodic_stop (EV_A_ w); 1991 ev_periodic_stop (EV_A_ w);
1685 ev_periodic_start (EV_A_ w); 1992 ev_periodic_start (EV_A_ w);
1688 1995
1689#ifndef SA_RESTART 1996#ifndef SA_RESTART
1690# define SA_RESTART 0 1997# define SA_RESTART 0
1691#endif 1998#endif
1692 1999
1693void 2000void noinline
1694ev_signal_start (EV_P_ ev_signal *w) 2001ev_signal_start (EV_P_ ev_signal *w)
1695{ 2002{
1696#if EV_MULTIPLICITY 2003#if EV_MULTIPLICITY
1697 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2004 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1698#endif 2005#endif
1699 if (expect_false (ev_is_active (w))) 2006 if (expect_false (ev_is_active (w)))
1700 return; 2007 return;
1701 2008
1702 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2009 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1703 2010
2011 evpipe_init (EV_A);
2012
2013 {
2014#ifndef _WIN32
2015 sigset_t full, prev;
2016 sigfillset (&full);
2017 sigprocmask (SIG_SETMASK, &full, &prev);
2018#endif
2019
2020 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2021
2022#ifndef _WIN32
2023 sigprocmask (SIG_SETMASK, &prev, 0);
2024#endif
2025 }
2026
1704 ev_start (EV_A_ (W)w, 1); 2027 ev_start (EV_A_ (W)w, 1);
1705 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1706 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2028 wlist_add (&signals [w->signum - 1].head, (WL)w);
1707 2029
1708 if (!((WL)w)->next) 2030 if (!((WL)w)->next)
1709 { 2031 {
1710#if _WIN32 2032#if _WIN32
1711 signal (w->signum, sighandler); 2033 signal (w->signum, ev_sighandler);
1712#else 2034#else
1713 struct sigaction sa; 2035 struct sigaction sa;
1714 sa.sa_handler = sighandler; 2036 sa.sa_handler = ev_sighandler;
1715 sigfillset (&sa.sa_mask); 2037 sigfillset (&sa.sa_mask);
1716 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2038 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1717 sigaction (w->signum, &sa, 0); 2039 sigaction (w->signum, &sa, 0);
1718#endif 2040#endif
1719 } 2041 }
1720} 2042}
1721 2043
1722void 2044void noinline
1723ev_signal_stop (EV_P_ ev_signal *w) 2045ev_signal_stop (EV_P_ ev_signal *w)
1724{ 2046{
1725 ev_clear_pending (EV_A_ (W)w); 2047 clear_pending (EV_A_ (W)w);
1726 if (expect_false (!ev_is_active (w))) 2048 if (expect_false (!ev_is_active (w)))
1727 return; 2049 return;
1728 2050
1729 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2051 wlist_del (&signals [w->signum - 1].head, (WL)w);
1730 ev_stop (EV_A_ (W)w); 2052 ev_stop (EV_A_ (W)w);
1731 2053
1732 if (!signals [w->signum - 1].head) 2054 if (!signals [w->signum - 1].head)
1733 signal (w->signum, SIG_DFL); 2055 signal (w->signum, SIG_DFL);
1734} 2056}
1741#endif 2063#endif
1742 if (expect_false (ev_is_active (w))) 2064 if (expect_false (ev_is_active (w)))
1743 return; 2065 return;
1744 2066
1745 ev_start (EV_A_ (W)w, 1); 2067 ev_start (EV_A_ (W)w, 1);
1746 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2068 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1747} 2069}
1748 2070
1749void 2071void
1750ev_child_stop (EV_P_ ev_child *w) 2072ev_child_stop (EV_P_ ev_child *w)
1751{ 2073{
1752 ev_clear_pending (EV_A_ (W)w); 2074 clear_pending (EV_A_ (W)w);
1753 if (expect_false (!ev_is_active (w))) 2075 if (expect_false (!ev_is_active (w)))
1754 return; 2076 return;
1755 2077
1756 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2078 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1757 ev_stop (EV_A_ (W)w); 2079 ev_stop (EV_A_ (W)w);
1758} 2080}
1759 2081
1760#if EV_STAT_ENABLE 2082#if EV_STAT_ENABLE
1761 2083
1993} 2315}
1994 2316
1995void 2317void
1996ev_stat_stop (EV_P_ ev_stat *w) 2318ev_stat_stop (EV_P_ ev_stat *w)
1997{ 2319{
1998 ev_clear_pending (EV_A_ (W)w); 2320 clear_pending (EV_A_ (W)w);
1999 if (expect_false (!ev_is_active (w))) 2321 if (expect_false (!ev_is_active (w)))
2000 return; 2322 return;
2001 2323
2002#if EV_USE_INOTIFY 2324#if EV_USE_INOTIFY
2003 infy_del (EV_A_ w); 2325 infy_del (EV_A_ w);
2006 2328
2007 ev_stop (EV_A_ (W)w); 2329 ev_stop (EV_A_ (W)w);
2008} 2330}
2009#endif 2331#endif
2010 2332
2333#if EV_IDLE_ENABLE
2011void 2334void
2012ev_idle_start (EV_P_ ev_idle *w) 2335ev_idle_start (EV_P_ ev_idle *w)
2013{ 2336{
2014 if (expect_false (ev_is_active (w))) 2337 if (expect_false (ev_is_active (w)))
2015 return; 2338 return;
2016 2339
2340 pri_adjust (EV_A_ (W)w);
2341
2342 {
2343 int active = ++idlecnt [ABSPRI (w)];
2344
2345 ++idleall;
2017 ev_start (EV_A_ (W)w, ++idlecnt); 2346 ev_start (EV_A_ (W)w, active);
2347
2018 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2348 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2019 idles [idlecnt - 1] = w; 2349 idles [ABSPRI (w)][active - 1] = w;
2350 }
2020} 2351}
2021 2352
2022void 2353void
2023ev_idle_stop (EV_P_ ev_idle *w) 2354ev_idle_stop (EV_P_ ev_idle *w)
2024{ 2355{
2025 ev_clear_pending (EV_A_ (W)w); 2356 clear_pending (EV_A_ (W)w);
2026 if (expect_false (!ev_is_active (w))) 2357 if (expect_false (!ev_is_active (w)))
2027 return; 2358 return;
2028 2359
2029 { 2360 {
2030 int active = ((W)w)->active; 2361 int active = ((W)w)->active;
2031 idles [active - 1] = idles [--idlecnt]; 2362
2363 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2032 ((W)idles [active - 1])->active = active; 2364 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2365
2366 ev_stop (EV_A_ (W)w);
2367 --idleall;
2033 } 2368 }
2034
2035 ev_stop (EV_A_ (W)w);
2036} 2369}
2370#endif
2037 2371
2038void 2372void
2039ev_prepare_start (EV_P_ ev_prepare *w) 2373ev_prepare_start (EV_P_ ev_prepare *w)
2040{ 2374{
2041 if (expect_false (ev_is_active (w))) 2375 if (expect_false (ev_is_active (w)))
2047} 2381}
2048 2382
2049void 2383void
2050ev_prepare_stop (EV_P_ ev_prepare *w) 2384ev_prepare_stop (EV_P_ ev_prepare *w)
2051{ 2385{
2052 ev_clear_pending (EV_A_ (W)w); 2386 clear_pending (EV_A_ (W)w);
2053 if (expect_false (!ev_is_active (w))) 2387 if (expect_false (!ev_is_active (w)))
2054 return; 2388 return;
2055 2389
2056 { 2390 {
2057 int active = ((W)w)->active; 2391 int active = ((W)w)->active;
2074} 2408}
2075 2409
2076void 2410void
2077ev_check_stop (EV_P_ ev_check *w) 2411ev_check_stop (EV_P_ ev_check *w)
2078{ 2412{
2079 ev_clear_pending (EV_A_ (W)w); 2413 clear_pending (EV_A_ (W)w);
2080 if (expect_false (!ev_is_active (w))) 2414 if (expect_false (!ev_is_active (w)))
2081 return; 2415 return;
2082 2416
2083 { 2417 {
2084 int active = ((W)w)->active; 2418 int active = ((W)w)->active;
2091 2425
2092#if EV_EMBED_ENABLE 2426#if EV_EMBED_ENABLE
2093void noinline 2427void noinline
2094ev_embed_sweep (EV_P_ ev_embed *w) 2428ev_embed_sweep (EV_P_ ev_embed *w)
2095{ 2429{
2096 ev_loop (w->loop, EVLOOP_NONBLOCK); 2430 ev_loop (w->other, EVLOOP_NONBLOCK);
2097} 2431}
2098 2432
2099static void 2433static void
2100embed_cb (EV_P_ ev_io *io, int revents) 2434embed_io_cb (EV_P_ ev_io *io, int revents)
2101{ 2435{
2102 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2436 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2103 2437
2104 if (ev_cb (w)) 2438 if (ev_cb (w))
2105 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2439 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2106 else 2440 else
2107 ev_embed_sweep (loop, w); 2441 ev_loop (w->other, EVLOOP_NONBLOCK);
2108} 2442}
2443
2444static void
2445embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2446{
2447 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2448
2449 {
2450 struct ev_loop *loop = w->other;
2451
2452 while (fdchangecnt)
2453 {
2454 fd_reify (EV_A);
2455 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2456 }
2457 }
2458}
2459
2460#if 0
2461static void
2462embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2463{
2464 ev_idle_stop (EV_A_ idle);
2465}
2466#endif
2109 2467
2110void 2468void
2111ev_embed_start (EV_P_ ev_embed *w) 2469ev_embed_start (EV_P_ ev_embed *w)
2112{ 2470{
2113 if (expect_false (ev_is_active (w))) 2471 if (expect_false (ev_is_active (w)))
2114 return; 2472 return;
2115 2473
2116 { 2474 {
2117 struct ev_loop *loop = w->loop; 2475 struct ev_loop *loop = w->other;
2118 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2476 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2119 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2477 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2120 } 2478 }
2121 2479
2122 ev_set_priority (&w->io, ev_priority (w)); 2480 ev_set_priority (&w->io, ev_priority (w));
2123 ev_io_start (EV_A_ &w->io); 2481 ev_io_start (EV_A_ &w->io);
2124 2482
2483 ev_prepare_init (&w->prepare, embed_prepare_cb);
2484 ev_set_priority (&w->prepare, EV_MINPRI);
2485 ev_prepare_start (EV_A_ &w->prepare);
2486
2487 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2488
2125 ev_start (EV_A_ (W)w, 1); 2489 ev_start (EV_A_ (W)w, 1);
2126} 2490}
2127 2491
2128void 2492void
2129ev_embed_stop (EV_P_ ev_embed *w) 2493ev_embed_stop (EV_P_ ev_embed *w)
2130{ 2494{
2131 ev_clear_pending (EV_A_ (W)w); 2495 clear_pending (EV_A_ (W)w);
2132 if (expect_false (!ev_is_active (w))) 2496 if (expect_false (!ev_is_active (w)))
2133 return; 2497 return;
2134 2498
2135 ev_io_stop (EV_A_ &w->io); 2499 ev_io_stop (EV_A_ &w->io);
2500 ev_prepare_stop (EV_A_ &w->prepare);
2136 2501
2137 ev_stop (EV_A_ (W)w); 2502 ev_stop (EV_A_ (W)w);
2138} 2503}
2139#endif 2504#endif
2140 2505
2151} 2516}
2152 2517
2153void 2518void
2154ev_fork_stop (EV_P_ ev_fork *w) 2519ev_fork_stop (EV_P_ ev_fork *w)
2155{ 2520{
2156 ev_clear_pending (EV_A_ (W)w); 2521 clear_pending (EV_A_ (W)w);
2157 if (expect_false (!ev_is_active (w))) 2522 if (expect_false (!ev_is_active (w)))
2158 return; 2523 return;
2159 2524
2160 { 2525 {
2161 int active = ((W)w)->active; 2526 int active = ((W)w)->active;
2165 2530
2166 ev_stop (EV_A_ (W)w); 2531 ev_stop (EV_A_ (W)w);
2167} 2532}
2168#endif 2533#endif
2169 2534
2535#if EV_ASYNC_ENABLE
2536void
2537ev_async_start (EV_P_ ev_async *w)
2538{
2539 if (expect_false (ev_is_active (w)))
2540 return;
2541
2542 evpipe_init (EV_A);
2543
2544 ev_start (EV_A_ (W)w, ++asynccnt);
2545 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2546 asyncs [asynccnt - 1] = w;
2547}
2548
2549void
2550ev_async_stop (EV_P_ ev_async *w)
2551{
2552 clear_pending (EV_A_ (W)w);
2553 if (expect_false (!ev_is_active (w)))
2554 return;
2555
2556 {
2557 int active = ((W)w)->active;
2558 asyncs [active - 1] = asyncs [--asynccnt];
2559 ((W)asyncs [active - 1])->active = active;
2560 }
2561
2562 ev_stop (EV_A_ (W)w);
2563}
2564
2565void
2566ev_async_send (EV_P_ ev_async *w)
2567{
2568 w->sent = 1;
2569 evpipe_write (EV_A_ &gotasync);
2570}
2571#endif
2572
2170/*****************************************************************************/ 2573/*****************************************************************************/
2171 2574
2172struct ev_once 2575struct ev_once
2173{ 2576{
2174 ev_io io; 2577 ev_io io;
2229 ev_timer_set (&once->to, timeout, 0.); 2632 ev_timer_set (&once->to, timeout, 0.);
2230 ev_timer_start (EV_A_ &once->to); 2633 ev_timer_start (EV_A_ &once->to);
2231 } 2634 }
2232} 2635}
2233 2636
2637#if EV_MULTIPLICITY
2638 #include "ev_wrap.h"
2639#endif
2640
2234#ifdef __cplusplus 2641#ifdef __cplusplus
2235} 2642}
2236#endif 2643#endif
2237 2644

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines