ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.163 by root, Wed Dec 5 13:54:36 2007 UTC vs.
Revision 1.228 by root, Fri May 2 08:07:37 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 241
197#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
200#endif 245#endif
202#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
205#endif 250#endif
206 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
207#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 268# include <winsock.h>
209#endif 269#endif
210 270
211#if !EV_STAT_ENABLE 271#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
213#endif 276# endif
214 277int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 278# ifdef __cplusplus
216# include <sys/inotify.h> 279}
280# endif
217#endif 281#endif
218 282
219/**/ 283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 294
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 298
225#if __GNUC__ >= 3 299#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 301# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 302#else
236# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
240#endif 308#endif
241 309
242#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
244 319
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 322
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 323#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 324#define EMPTY2(a,b) /* used to suppress some warnings */
250 325
251typedef ev_watcher *W; 326typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
254 329
330#define ev_at(w) ((WT)(w))->at
331
332#if EV_USE_MONOTONIC
333/* sig_atomic_t is used to avoid per-thread variables or locking but still */
334/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 335static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
336#endif
256 337
257#ifdef _WIN32 338#ifdef _WIN32
258# include "ev_win32.c" 339# include "ev_win32.c"
259#endif 340#endif
260 341
281 perror (msg); 362 perror (msg);
282 abort (); 363 abort ();
283 } 364 }
284} 365}
285 366
367static void *
368ev_realloc_emul (void *ptr, long size)
369{
370 /* some systems, notably openbsd and darwin, fail to properly
371 * implement realloc (x, 0) (as required by both ansi c-98 and
372 * the single unix specification, so work around them here.
373 */
374
375 if (size)
376 return realloc (ptr, size);
377
378 free (ptr);
379 return 0;
380}
381
286static void *(*alloc)(void *ptr, long size); 382static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 383
288void 384void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 385ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 386{
291 alloc = cb; 387 alloc = cb;
292} 388}
293 389
294inline_speed void * 390inline_speed void *
295ev_realloc (void *ptr, long size) 391ev_realloc (void *ptr, long size)
296{ 392{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 393 ptr = alloc (ptr, size);
298 394
299 if (!ptr && size) 395 if (!ptr && size)
300 { 396 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 397 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 398 abort ();
396{ 492{
397 return ev_rt_now; 493 return ev_rt_now;
398} 494}
399#endif 495#endif
400 496
497void
498ev_sleep (ev_tstamp delay)
499{
500 if (delay > 0.)
501 {
502#if EV_USE_NANOSLEEP
503 struct timespec ts;
504
505 ts.tv_sec = (time_t)delay;
506 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
507
508 nanosleep (&ts, 0);
509#elif defined(_WIN32)
510 Sleep ((unsigned long)(delay * 1e3));
511#else
512 struct timeval tv;
513
514 tv.tv_sec = (time_t)delay;
515 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
516
517 select (0, 0, 0, 0, &tv);
518#endif
519 }
520}
521
522/*****************************************************************************/
523
401int inline_size 524int inline_size
402array_nextsize (int elem, int cur, int cnt) 525array_nextsize (int elem, int cur, int cnt)
403{ 526{
404 int ncur = cur + 1; 527 int ncur = cur + 1;
405 528
417 } 540 }
418 541
419 return ncur; 542 return ncur;
420} 543}
421 544
422inline_speed void * 545static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 546array_realloc (int elem, void *base, int *cur, int cnt)
424{ 547{
425 *cur = array_nextsize (elem, *cur, cnt); 548 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 549 return ev_realloc (base, elem * *cur);
427} 550}
452 575
453void noinline 576void noinline
454ev_feed_event (EV_P_ void *w, int revents) 577ev_feed_event (EV_P_ void *w, int revents)
455{ 578{
456 W w_ = (W)w; 579 W w_ = (W)w;
580 int pri = ABSPRI (w_);
457 581
458 if (expect_false (w_->pending)) 582 if (expect_false (w_->pending))
583 pendings [pri][w_->pending - 1].events |= revents;
584 else
459 { 585 {
586 w_->pending = ++pendingcnt [pri];
587 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
588 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 589 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 590 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 591}
469 592
470void inline_size 593void inline_speed
471queue_events (EV_P_ W *events, int eventcnt, int type) 594queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 595{
473 int i; 596 int i;
474 597
475 for (i = 0; i < eventcnt; ++i) 598 for (i = 0; i < eventcnt; ++i)
507} 630}
508 631
509void 632void
510ev_feed_fd_event (EV_P_ int fd, int revents) 633ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 634{
635 if (fd >= 0 && fd < anfdmax)
512 fd_event (EV_A_ fd, revents); 636 fd_event (EV_A_ fd, revents);
513} 637}
514 638
515void inline_size 639void inline_size
516fd_reify (EV_P) 640fd_reify (EV_P)
517{ 641{
521 { 645 {
522 int fd = fdchanges [i]; 646 int fd = fdchanges [i];
523 ANFD *anfd = anfds + fd; 647 ANFD *anfd = anfds + fd;
524 ev_io *w; 648 ev_io *w;
525 649
526 int events = 0; 650 unsigned char events = 0;
527 651
528 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 652 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
529 events |= w->events; 653 events |= (unsigned char)w->events;
530 654
531#if EV_SELECT_IS_WINSOCKET 655#if EV_SELECT_IS_WINSOCKET
532 if (events) 656 if (events)
533 { 657 {
534 unsigned long argp; 658 unsigned long argp;
659 #ifdef EV_FD_TO_WIN32_HANDLE
660 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
661 #else
535 anfd->handle = _get_osfhandle (fd); 662 anfd->handle = _get_osfhandle (fd);
663 #endif
536 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 664 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
537 } 665 }
538#endif 666#endif
539 667
668 {
669 unsigned char o_events = anfd->events;
670 unsigned char o_reify = anfd->reify;
671
540 anfd->reify = 0; 672 anfd->reify = 0;
541
542 backend_modify (EV_A_ fd, anfd->events, events);
543 anfd->events = events; 673 anfd->events = events;
674
675 if (o_events != events || o_reify & EV_IOFDSET)
676 backend_modify (EV_A_ fd, o_events, events);
677 }
544 } 678 }
545 679
546 fdchangecnt = 0; 680 fdchangecnt = 0;
547} 681}
548 682
549void inline_size 683void inline_size
550fd_change (EV_P_ int fd) 684fd_change (EV_P_ int fd, int flags)
551{ 685{
552 if (expect_false (anfds [fd].reify)) 686 unsigned char reify = anfds [fd].reify;
553 return;
554
555 anfds [fd].reify = 1; 687 anfds [fd].reify |= flags;
556 688
689 if (expect_true (!reify))
690 {
557 ++fdchangecnt; 691 ++fdchangecnt;
558 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 692 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
559 fdchanges [fdchangecnt - 1] = fd; 693 fdchanges [fdchangecnt - 1] = fd;
694 }
560} 695}
561 696
562void inline_speed 697void inline_speed
563fd_kill (EV_P_ int fd) 698fd_kill (EV_P_ int fd)
564{ 699{
615 750
616 for (fd = 0; fd < anfdmax; ++fd) 751 for (fd = 0; fd < anfdmax; ++fd)
617 if (anfds [fd].events) 752 if (anfds [fd].events)
618 { 753 {
619 anfds [fd].events = 0; 754 anfds [fd].events = 0;
620 fd_change (EV_A_ fd); 755 fd_change (EV_A_ fd, EV_IOFDSET | 1);
621 } 756 }
622} 757}
623 758
624/*****************************************************************************/ 759/*****************************************************************************/
625 760
761/* towards the root */
626void inline_speed 762void inline_speed
627upheap (WT *heap, int k) 763upheap (WT *heap, int k)
628{ 764{
629 WT w = heap [k]; 765 WT w = heap [k];
630 766
631 while (k && heap [k >> 1]->at > w->at) 767 for (;;)
632 { 768 {
769 int p = k >> 1;
770
771 /* maybe we could use a dummy element at heap [0]? */
772 if (!p || heap [p]->at <= w->at)
773 break;
774
633 heap [k] = heap [k >> 1]; 775 heap [k] = heap [p];
634 ((W)heap [k])->active = k + 1; 776 ((W)heap [k])->active = k;
635 k >>= 1; 777 k = p;
636 } 778 }
637 779
638 heap [k] = w; 780 heap [k] = w;
639 ((W)heap [k])->active = k + 1; 781 ((W)heap [k])->active = k;
640
641} 782}
642 783
784/* away from the root */
643void inline_speed 785void inline_speed
644downheap (WT *heap, int N, int k) 786downheap (WT *heap, int N, int k)
645{ 787{
646 WT w = heap [k]; 788 WT w = heap [k];
647 789
648 while (k < (N >> 1)) 790 for (;;)
649 { 791 {
650 int j = k << 1; 792 int c = k << 1;
651 793
652 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 794 if (c > N)
653 ++j;
654
655 if (w->at <= heap [j]->at)
656 break; 795 break;
657 796
797 c += c < N && heap [c]->at > heap [c + 1]->at
798 ? 1 : 0;
799
800 if (w->at <= heap [c]->at)
801 break;
802
658 heap [k] = heap [j]; 803 heap [k] = heap [c];
659 ((W)heap [k])->active = k + 1; 804 ((W)heap [k])->active = k;
805
660 k = j; 806 k = c;
661 } 807 }
662 808
663 heap [k] = w; 809 heap [k] = w;
664 ((W)heap [k])->active = k + 1; 810 ((W)heap [k])->active = k;
665} 811}
666 812
667void inline_size 813void inline_size
668adjustheap (WT *heap, int N, int k) 814adjustheap (WT *heap, int N, int k)
669{ 815{
674/*****************************************************************************/ 820/*****************************************************************************/
675 821
676typedef struct 822typedef struct
677{ 823{
678 WL head; 824 WL head;
679 sig_atomic_t volatile gotsig; 825 EV_ATOMIC_T gotsig;
680} ANSIG; 826} ANSIG;
681 827
682static ANSIG *signals; 828static ANSIG *signals;
683static int signalmax; 829static int signalmax;
684 830
685static int sigpipe [2]; 831static EV_ATOMIC_T gotsig;
686static sig_atomic_t volatile gotsig;
687static ev_io sigev;
688 832
689void inline_size 833void inline_size
690signals_init (ANSIG *base, int count) 834signals_init (ANSIG *base, int count)
691{ 835{
692 while (count--) 836 while (count--)
696 840
697 ++base; 841 ++base;
698 } 842 }
699} 843}
700 844
701static void 845/*****************************************************************************/
702sighandler (int signum)
703{
704#if _WIN32
705 signal (signum, sighandler);
706#endif
707 846
708 signals [signum - 1].gotsig = 1;
709
710 if (!gotsig)
711 {
712 int old_errno = errno;
713 gotsig = 1;
714 write (sigpipe [1], &signum, 1);
715 errno = old_errno;
716 }
717}
718
719void noinline
720ev_feed_signal_event (EV_P_ int signum)
721{
722 WL w;
723
724#if EV_MULTIPLICITY
725 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
726#endif
727
728 --signum;
729
730 if (signum < 0 || signum >= signalmax)
731 return;
732
733 signals [signum].gotsig = 0;
734
735 for (w = signals [signum].head; w; w = w->next)
736 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
737}
738
739static void
740sigcb (EV_P_ ev_io *iow, int revents)
741{
742 int signum;
743
744 read (sigpipe [0], &revents, 1);
745 gotsig = 0;
746
747 for (signum = signalmax; signum--; )
748 if (signals [signum].gotsig)
749 ev_feed_signal_event (EV_A_ signum + 1);
750}
751
752void inline_size 847void inline_speed
753fd_intern (int fd) 848fd_intern (int fd)
754{ 849{
755#ifdef _WIN32 850#ifdef _WIN32
756 int arg = 1; 851 int arg = 1;
757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 852 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
760 fcntl (fd, F_SETFL, O_NONBLOCK); 855 fcntl (fd, F_SETFL, O_NONBLOCK);
761#endif 856#endif
762} 857}
763 858
764static void noinline 859static void noinline
765siginit (EV_P) 860evpipe_init (EV_P)
766{ 861{
862 if (!ev_is_active (&pipeev))
863 {
864#if EV_USE_EVENTFD
865 if ((evfd = eventfd (0, 0)) >= 0)
866 {
867 evpipe [0] = -1;
868 fd_intern (evfd);
869 ev_io_set (&pipeev, evfd, EV_READ);
870 }
871 else
872#endif
873 {
874 while (pipe (evpipe))
875 syserr ("(libev) error creating signal/async pipe");
876
767 fd_intern (sigpipe [0]); 877 fd_intern (evpipe [0]);
768 fd_intern (sigpipe [1]); 878 fd_intern (evpipe [1]);
879 ev_io_set (&pipeev, evpipe [0], EV_READ);
880 }
769 881
770 ev_io_set (&sigev, sigpipe [0], EV_READ);
771 ev_io_start (EV_A_ &sigev); 882 ev_io_start (EV_A_ &pipeev);
772 ev_unref (EV_A); /* child watcher should not keep loop alive */ 883 ev_unref (EV_A); /* watcher should not keep loop alive */
884 }
885}
886
887void inline_size
888evpipe_write (EV_P_ EV_ATOMIC_T *flag)
889{
890 if (!*flag)
891 {
892 int old_errno = errno; /* save errno because write might clobber it */
893
894 *flag = 1;
895
896#if EV_USE_EVENTFD
897 if (evfd >= 0)
898 {
899 uint64_t counter = 1;
900 write (evfd, &counter, sizeof (uint64_t));
901 }
902 else
903#endif
904 write (evpipe [1], &old_errno, 1);
905
906 errno = old_errno;
907 }
908}
909
910static void
911pipecb (EV_P_ ev_io *iow, int revents)
912{
913#if EV_USE_EVENTFD
914 if (evfd >= 0)
915 {
916 uint64_t counter = 1;
917 read (evfd, &counter, sizeof (uint64_t));
918 }
919 else
920#endif
921 {
922 char dummy;
923 read (evpipe [0], &dummy, 1);
924 }
925
926 if (gotsig && ev_is_default_loop (EV_A))
927 {
928 int signum;
929 gotsig = 0;
930
931 for (signum = signalmax; signum--; )
932 if (signals [signum].gotsig)
933 ev_feed_signal_event (EV_A_ signum + 1);
934 }
935
936#if EV_ASYNC_ENABLE
937 if (gotasync)
938 {
939 int i;
940 gotasync = 0;
941
942 for (i = asynccnt; i--; )
943 if (asyncs [i]->sent)
944 {
945 asyncs [i]->sent = 0;
946 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
947 }
948 }
949#endif
773} 950}
774 951
775/*****************************************************************************/ 952/*****************************************************************************/
776 953
954static void
955ev_sighandler (int signum)
956{
957#if EV_MULTIPLICITY
958 struct ev_loop *loop = &default_loop_struct;
959#endif
960
961#if _WIN32
962 signal (signum, ev_sighandler);
963#endif
964
965 signals [signum - 1].gotsig = 1;
966 evpipe_write (EV_A_ &gotsig);
967}
968
969void noinline
970ev_feed_signal_event (EV_P_ int signum)
971{
972 WL w;
973
974#if EV_MULTIPLICITY
975 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
976#endif
977
978 --signum;
979
980 if (signum < 0 || signum >= signalmax)
981 return;
982
983 signals [signum].gotsig = 0;
984
985 for (w = signals [signum].head; w; w = w->next)
986 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
987}
988
989/*****************************************************************************/
990
777static ev_child *childs [EV_PID_HASHSIZE]; 991static WL childs [EV_PID_HASHSIZE];
778 992
779#ifndef _WIN32 993#ifndef _WIN32
780 994
781static ev_signal childev; 995static ev_signal childev;
782 996
997#ifndef WIFCONTINUED
998# define WIFCONTINUED(status) 0
999#endif
1000
783void inline_speed 1001void inline_speed
784child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1002child_reap (EV_P_ int chain, int pid, int status)
785{ 1003{
786 ev_child *w; 1004 ev_child *w;
1005 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
787 1006
788 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1007 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1008 {
789 if (w->pid == pid || !w->pid) 1009 if ((w->pid == pid || !w->pid)
1010 && (!traced || (w->flags & 1)))
790 { 1011 {
791 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1012 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
792 w->rpid = pid; 1013 w->rpid = pid;
793 w->rstatus = status; 1014 w->rstatus = status;
794 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1015 ev_feed_event (EV_A_ (W)w, EV_CHILD);
795 } 1016 }
1017 }
796} 1018}
797 1019
798#ifndef WCONTINUED 1020#ifndef WCONTINUED
799# define WCONTINUED 0 1021# define WCONTINUED 0
800#endif 1022#endif
809 if (!WCONTINUED 1031 if (!WCONTINUED
810 || errno != EINVAL 1032 || errno != EINVAL
811 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1033 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
812 return; 1034 return;
813 1035
814 /* make sure we are called again until all childs have been reaped */ 1036 /* make sure we are called again until all children have been reaped */
815 /* we need to do it this way so that the callback gets called before we continue */ 1037 /* we need to do it this way so that the callback gets called before we continue */
816 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1038 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
817 1039
818 child_reap (EV_A_ sw, pid, pid, status); 1040 child_reap (EV_A_ pid, pid, status);
819 if (EV_PID_HASHSIZE > 1) 1041 if (EV_PID_HASHSIZE > 1)
820 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1042 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
821} 1043}
822 1044
823#endif 1045#endif
824 1046
825/*****************************************************************************/ 1047/*****************************************************************************/
897} 1119}
898 1120
899unsigned int 1121unsigned int
900ev_embeddable_backends (void) 1122ev_embeddable_backends (void)
901{ 1123{
902 return EVBACKEND_EPOLL 1124 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
903 | EVBACKEND_KQUEUE 1125
904 | EVBACKEND_PORT; 1126 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1127 /* please fix it and tell me how to detect the fix */
1128 flags &= ~EVBACKEND_EPOLL;
1129
1130 return flags;
905} 1131}
906 1132
907unsigned int 1133unsigned int
908ev_backend (EV_P) 1134ev_backend (EV_P)
909{ 1135{
912 1138
913unsigned int 1139unsigned int
914ev_loop_count (EV_P) 1140ev_loop_count (EV_P)
915{ 1141{
916 return loop_count; 1142 return loop_count;
1143}
1144
1145void
1146ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1147{
1148 io_blocktime = interval;
1149}
1150
1151void
1152ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1153{
1154 timeout_blocktime = interval;
917} 1155}
918 1156
919static void noinline 1157static void noinline
920loop_init (EV_P_ unsigned int flags) 1158loop_init (EV_P_ unsigned int flags)
921{ 1159{
927 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1165 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
928 have_monotonic = 1; 1166 have_monotonic = 1;
929 } 1167 }
930#endif 1168#endif
931 1169
932 ev_rt_now = ev_time (); 1170 ev_rt_now = ev_time ();
933 mn_now = get_clock (); 1171 mn_now = get_clock ();
934 now_floor = mn_now; 1172 now_floor = mn_now;
935 rtmn_diff = ev_rt_now - mn_now; 1173 rtmn_diff = ev_rt_now - mn_now;
1174
1175 io_blocktime = 0.;
1176 timeout_blocktime = 0.;
1177 backend = 0;
1178 backend_fd = -1;
1179 gotasync = 0;
1180#if EV_USE_INOTIFY
1181 fs_fd = -2;
1182#endif
936 1183
937 /* pid check not overridable via env */ 1184 /* pid check not overridable via env */
938#ifndef _WIN32 1185#ifndef _WIN32
939 if (flags & EVFLAG_FORKCHECK) 1186 if (flags & EVFLAG_FORKCHECK)
940 curpid = getpid (); 1187 curpid = getpid ();
943 if (!(flags & EVFLAG_NOENV) 1190 if (!(flags & EVFLAG_NOENV)
944 && !enable_secure () 1191 && !enable_secure ()
945 && getenv ("LIBEV_FLAGS")) 1192 && getenv ("LIBEV_FLAGS"))
946 flags = atoi (getenv ("LIBEV_FLAGS")); 1193 flags = atoi (getenv ("LIBEV_FLAGS"));
947 1194
948 if (!(flags & 0x0000ffffUL)) 1195 if (!(flags & 0x0000ffffU))
949 flags |= ev_recommended_backends (); 1196 flags |= ev_recommended_backends ();
950
951 backend = 0;
952 backend_fd = -1;
953#if EV_USE_INOTIFY
954 fs_fd = -2;
955#endif
956 1197
957#if EV_USE_PORT 1198#if EV_USE_PORT
958 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1199 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
959#endif 1200#endif
960#if EV_USE_KQUEUE 1201#if EV_USE_KQUEUE
968#endif 1209#endif
969#if EV_USE_SELECT 1210#if EV_USE_SELECT
970 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1211 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
971#endif 1212#endif
972 1213
973 ev_init (&sigev, sigcb); 1214 ev_init (&pipeev, pipecb);
974 ev_set_priority (&sigev, EV_MAXPRI); 1215 ev_set_priority (&pipeev, EV_MAXPRI);
975 } 1216 }
976} 1217}
977 1218
978static void noinline 1219static void noinline
979loop_destroy (EV_P) 1220loop_destroy (EV_P)
980{ 1221{
981 int i; 1222 int i;
1223
1224 if (ev_is_active (&pipeev))
1225 {
1226 ev_ref (EV_A); /* signal watcher */
1227 ev_io_stop (EV_A_ &pipeev);
1228
1229#if EV_USE_EVENTFD
1230 if (evfd >= 0)
1231 close (evfd);
1232#endif
1233
1234 if (evpipe [0] >= 0)
1235 {
1236 close (evpipe [0]);
1237 close (evpipe [1]);
1238 }
1239 }
982 1240
983#if EV_USE_INOTIFY 1241#if EV_USE_INOTIFY
984 if (fs_fd >= 0) 1242 if (fs_fd >= 0)
985 close (fs_fd); 1243 close (fs_fd);
986#endif 1244#endif
1003#if EV_USE_SELECT 1261#if EV_USE_SELECT
1004 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1262 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1005#endif 1263#endif
1006 1264
1007 for (i = NUMPRI; i--; ) 1265 for (i = NUMPRI; i--; )
1266 {
1008 array_free (pending, [i]); 1267 array_free (pending, [i]);
1268#if EV_IDLE_ENABLE
1269 array_free (idle, [i]);
1270#endif
1271 }
1272
1273 ev_free (anfds); anfdmax = 0;
1009 1274
1010 /* have to use the microsoft-never-gets-it-right macro */ 1275 /* have to use the microsoft-never-gets-it-right macro */
1011 array_free (fdchange, EMPTY0); 1276 array_free (fdchange, EMPTY);
1012 array_free (timer, EMPTY0); 1277 array_free (timer, EMPTY);
1013#if EV_PERIODIC_ENABLE 1278#if EV_PERIODIC_ENABLE
1014 array_free (periodic, EMPTY0); 1279 array_free (periodic, EMPTY);
1015#endif 1280#endif
1281#if EV_FORK_ENABLE
1016 array_free (idle, EMPTY0); 1282 array_free (fork, EMPTY);
1283#endif
1017 array_free (prepare, EMPTY0); 1284 array_free (prepare, EMPTY);
1018 array_free (check, EMPTY0); 1285 array_free (check, EMPTY);
1286#if EV_ASYNC_ENABLE
1287 array_free (async, EMPTY);
1288#endif
1019 1289
1020 backend = 0; 1290 backend = 0;
1021} 1291}
1022 1292
1293#if EV_USE_INOTIFY
1023void inline_size infy_fork (EV_P); 1294void inline_size infy_fork (EV_P);
1295#endif
1024 1296
1025void inline_size 1297void inline_size
1026loop_fork (EV_P) 1298loop_fork (EV_P)
1027{ 1299{
1028#if EV_USE_PORT 1300#if EV_USE_PORT
1036#endif 1308#endif
1037#if EV_USE_INOTIFY 1309#if EV_USE_INOTIFY
1038 infy_fork (EV_A); 1310 infy_fork (EV_A);
1039#endif 1311#endif
1040 1312
1041 if (ev_is_active (&sigev)) 1313 if (ev_is_active (&pipeev))
1042 { 1314 {
1043 /* default loop */ 1315 /* this "locks" the handlers against writing to the pipe */
1316 /* while we modify the fd vars */
1317 gotsig = 1;
1318#if EV_ASYNC_ENABLE
1319 gotasync = 1;
1320#endif
1044 1321
1045 ev_ref (EV_A); 1322 ev_ref (EV_A);
1046 ev_io_stop (EV_A_ &sigev); 1323 ev_io_stop (EV_A_ &pipeev);
1324
1325#if EV_USE_EVENTFD
1326 if (evfd >= 0)
1327 close (evfd);
1328#endif
1329
1330 if (evpipe [0] >= 0)
1331 {
1047 close (sigpipe [0]); 1332 close (evpipe [0]);
1048 close (sigpipe [1]); 1333 close (evpipe [1]);
1334 }
1049 1335
1050 while (pipe (sigpipe))
1051 syserr ("(libev) error creating pipe");
1052
1053 siginit (EV_A); 1336 evpipe_init (EV_A);
1337 /* now iterate over everything, in case we missed something */
1338 pipecb (EV_A_ &pipeev, EV_READ);
1054 } 1339 }
1055 1340
1056 postfork = 0; 1341 postfork = 0;
1057} 1342}
1058 1343
1080} 1365}
1081 1366
1082void 1367void
1083ev_loop_fork (EV_P) 1368ev_loop_fork (EV_P)
1084{ 1369{
1085 postfork = 1; 1370 postfork = 1; /* must be in line with ev_default_fork */
1086} 1371}
1087 1372
1088#endif 1373#endif
1089 1374
1090#if EV_MULTIPLICITY 1375#if EV_MULTIPLICITY
1093#else 1378#else
1094int 1379int
1095ev_default_loop (unsigned int flags) 1380ev_default_loop (unsigned int flags)
1096#endif 1381#endif
1097{ 1382{
1098 if (sigpipe [0] == sigpipe [1])
1099 if (pipe (sigpipe))
1100 return 0;
1101
1102 if (!ev_default_loop_ptr) 1383 if (!ev_default_loop_ptr)
1103 { 1384 {
1104#if EV_MULTIPLICITY 1385#if EV_MULTIPLICITY
1105 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1386 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1106#else 1387#else
1109 1390
1110 loop_init (EV_A_ flags); 1391 loop_init (EV_A_ flags);
1111 1392
1112 if (ev_backend (EV_A)) 1393 if (ev_backend (EV_A))
1113 { 1394 {
1114 siginit (EV_A);
1115
1116#ifndef _WIN32 1395#ifndef _WIN32
1117 ev_signal_init (&childev, childcb, SIGCHLD); 1396 ev_signal_init (&childev, childcb, SIGCHLD);
1118 ev_set_priority (&childev, EV_MAXPRI); 1397 ev_set_priority (&childev, EV_MAXPRI);
1119 ev_signal_start (EV_A_ &childev); 1398 ev_signal_start (EV_A_ &childev);
1120 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1399 ev_unref (EV_A); /* child watcher should not keep loop alive */
1137#ifndef _WIN32 1416#ifndef _WIN32
1138 ev_ref (EV_A); /* child watcher */ 1417 ev_ref (EV_A); /* child watcher */
1139 ev_signal_stop (EV_A_ &childev); 1418 ev_signal_stop (EV_A_ &childev);
1140#endif 1419#endif
1141 1420
1142 ev_ref (EV_A); /* signal watcher */
1143 ev_io_stop (EV_A_ &sigev);
1144
1145 close (sigpipe [0]); sigpipe [0] = 0;
1146 close (sigpipe [1]); sigpipe [1] = 0;
1147
1148 loop_destroy (EV_A); 1421 loop_destroy (EV_A);
1149} 1422}
1150 1423
1151void 1424void
1152ev_default_fork (void) 1425ev_default_fork (void)
1154#if EV_MULTIPLICITY 1427#if EV_MULTIPLICITY
1155 struct ev_loop *loop = ev_default_loop_ptr; 1428 struct ev_loop *loop = ev_default_loop_ptr;
1156#endif 1429#endif
1157 1430
1158 if (backend) 1431 if (backend)
1159 postfork = 1; 1432 postfork = 1; /* must be in line with ev_loop_fork */
1160} 1433}
1161 1434
1162/*****************************************************************************/ 1435/*****************************************************************************/
1163 1436
1164int inline_size 1437void
1165any_pending (EV_P) 1438ev_invoke (EV_P_ void *w, int revents)
1166{ 1439{
1167 int pri; 1440 EV_CB_INVOKE ((W)w, revents);
1168
1169 for (pri = NUMPRI; pri--; )
1170 if (pendingcnt [pri])
1171 return 1;
1172
1173 return 0;
1174} 1441}
1175 1442
1176void inline_speed 1443void inline_speed
1177call_pending (EV_P) 1444call_pending (EV_P)
1178{ 1445{
1194} 1461}
1195 1462
1196void inline_size 1463void inline_size
1197timers_reify (EV_P) 1464timers_reify (EV_P)
1198{ 1465{
1199 while (timercnt && ((WT)timers [0])->at <= mn_now) 1466 while (timercnt && ev_at (timers [1]) <= mn_now)
1200 { 1467 {
1201 ev_timer *w = timers [0]; 1468 ev_timer *w = (ev_timer *)timers [1];
1202 1469
1203 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1470 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1204 1471
1205 /* first reschedule or stop timer */ 1472 /* first reschedule or stop timer */
1206 if (w->repeat) 1473 if (w->repeat)
1207 { 1474 {
1208 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1475 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1209 1476
1210 ((WT)w)->at += w->repeat; 1477 ev_at (w) += w->repeat;
1211 if (((WT)w)->at < mn_now) 1478 if (ev_at (w) < mn_now)
1212 ((WT)w)->at = mn_now; 1479 ev_at (w) = mn_now;
1213 1480
1214 downheap ((WT *)timers, timercnt, 0); 1481 downheap (timers, timercnt, 1);
1215 } 1482 }
1216 else 1483 else
1217 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1484 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1218 1485
1219 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1486 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1222 1489
1223#if EV_PERIODIC_ENABLE 1490#if EV_PERIODIC_ENABLE
1224void inline_size 1491void inline_size
1225periodics_reify (EV_P) 1492periodics_reify (EV_P)
1226{ 1493{
1227 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1494 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1228 { 1495 {
1229 ev_periodic *w = periodics [0]; 1496 ev_periodic *w = (ev_periodic *)periodics [1];
1230 1497
1231 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1498 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1232 1499
1233 /* first reschedule or stop timer */ 1500 /* first reschedule or stop timer */
1234 if (w->reschedule_cb) 1501 if (w->reschedule_cb)
1235 { 1502 {
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1503 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1237 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1504 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1238 downheap ((WT *)periodics, periodiccnt, 0); 1505 downheap (periodics, periodiccnt, 1);
1239 } 1506 }
1240 else if (w->interval) 1507 else if (w->interval)
1241 { 1508 {
1242 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1509 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1510 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1243 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1511 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1244 downheap ((WT *)periodics, periodiccnt, 0); 1512 downheap (periodics, periodiccnt, 1);
1245 } 1513 }
1246 else 1514 else
1247 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1515 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1248 1516
1249 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1517 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1256 int i; 1524 int i;
1257 1525
1258 /* adjust periodics after time jump */ 1526 /* adjust periodics after time jump */
1259 for (i = 0; i < periodiccnt; ++i) 1527 for (i = 0; i < periodiccnt; ++i)
1260 { 1528 {
1261 ev_periodic *w = periodics [i]; 1529 ev_periodic *w = (ev_periodic *)periodics [i];
1262 1530
1263 if (w->reschedule_cb) 1531 if (w->reschedule_cb)
1264 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1532 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1265 else if (w->interval) 1533 else if (w->interval)
1266 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1534 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1267 } 1535 }
1268 1536
1269 /* now rebuild the heap */ 1537 /* now rebuild the heap */
1270 for (i = periodiccnt >> 1; i--; ) 1538 for (i = periodiccnt >> 1; i--; )
1271 downheap ((WT *)periodics, periodiccnt, i); 1539 downheap (periodics, periodiccnt, i);
1272} 1540}
1273#endif 1541#endif
1274 1542
1543#if EV_IDLE_ENABLE
1275int inline_size 1544void inline_size
1276time_update_monotonic (EV_P) 1545idle_reify (EV_P)
1277{ 1546{
1547 if (expect_false (idleall))
1548 {
1549 int pri;
1550
1551 for (pri = NUMPRI; pri--; )
1552 {
1553 if (pendingcnt [pri])
1554 break;
1555
1556 if (idlecnt [pri])
1557 {
1558 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1559 break;
1560 }
1561 }
1562 }
1563}
1564#endif
1565
1566void inline_speed
1567time_update (EV_P_ ev_tstamp max_block)
1568{
1569 int i;
1570
1571#if EV_USE_MONOTONIC
1572 if (expect_true (have_monotonic))
1573 {
1574 ev_tstamp odiff = rtmn_diff;
1575
1278 mn_now = get_clock (); 1576 mn_now = get_clock ();
1279 1577
1578 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1579 /* interpolate in the meantime */
1280 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1580 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1281 { 1581 {
1282 ev_rt_now = rtmn_diff + mn_now; 1582 ev_rt_now = rtmn_diff + mn_now;
1283 return 0; 1583 return;
1284 } 1584 }
1285 else 1585
1286 {
1287 now_floor = mn_now; 1586 now_floor = mn_now;
1288 ev_rt_now = ev_time (); 1587 ev_rt_now = ev_time ();
1289 return 1;
1290 }
1291}
1292 1588
1293void inline_size 1589 /* loop a few times, before making important decisions.
1294time_update (EV_P) 1590 * on the choice of "4": one iteration isn't enough,
1295{ 1591 * in case we get preempted during the calls to
1296 int i; 1592 * ev_time and get_clock. a second call is almost guaranteed
1297 1593 * to succeed in that case, though. and looping a few more times
1298#if EV_USE_MONOTONIC 1594 * doesn't hurt either as we only do this on time-jumps or
1299 if (expect_true (have_monotonic)) 1595 * in the unlikely event of having been preempted here.
1300 { 1596 */
1301 if (time_update_monotonic (EV_A)) 1597 for (i = 4; --i; )
1302 { 1598 {
1303 ev_tstamp odiff = rtmn_diff;
1304
1305 /* loop a few times, before making important decisions.
1306 * on the choice of "4": one iteration isn't enough,
1307 * in case we get preempted during the calls to
1308 * ev_time and get_clock. a second call is almost guaranteed
1309 * to succeed in that case, though. and looping a few more times
1310 * doesn't hurt either as we only do this on time-jumps or
1311 * in the unlikely event of having been preempted here.
1312 */
1313 for (i = 4; --i; )
1314 {
1315 rtmn_diff = ev_rt_now - mn_now; 1599 rtmn_diff = ev_rt_now - mn_now;
1316 1600
1317 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1601 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1318 return; /* all is well */ 1602 return; /* all is well */
1319 1603
1320 ev_rt_now = ev_time (); 1604 ev_rt_now = ev_time ();
1321 mn_now = get_clock (); 1605 mn_now = get_clock ();
1322 now_floor = mn_now; 1606 now_floor = mn_now;
1323 } 1607 }
1324 1608
1325# if EV_PERIODIC_ENABLE 1609# if EV_PERIODIC_ENABLE
1326 periodics_reschedule (EV_A); 1610 periodics_reschedule (EV_A);
1327# endif 1611# endif
1328 /* no timer adjustment, as the monotonic clock doesn't jump */ 1612 /* no timer adjustment, as the monotonic clock doesn't jump */
1329 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1613 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1330 }
1331 } 1614 }
1332 else 1615 else
1333#endif 1616#endif
1334 { 1617 {
1335 ev_rt_now = ev_time (); 1618 ev_rt_now = ev_time ();
1336 1619
1337 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1620 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1338 { 1621 {
1339#if EV_PERIODIC_ENABLE 1622#if EV_PERIODIC_ENABLE
1340 periodics_reschedule (EV_A); 1623 periodics_reschedule (EV_A);
1341#endif 1624#endif
1342
1343 /* adjust timers. this is easy, as the offset is the same for all of them */ 1625 /* adjust timers. this is easy, as the offset is the same for all of them */
1344 for (i = 0; i < timercnt; ++i) 1626 for (i = 1; i <= timercnt; ++i)
1345 ((WT)timers [i])->at += ev_rt_now - mn_now; 1627 ev_at (timers [i]) += ev_rt_now - mn_now;
1346 } 1628 }
1347 1629
1348 mn_now = ev_rt_now; 1630 mn_now = ev_rt_now;
1349 } 1631 }
1350} 1632}
1364static int loop_done; 1646static int loop_done;
1365 1647
1366void 1648void
1367ev_loop (EV_P_ int flags) 1649ev_loop (EV_P_ int flags)
1368{ 1650{
1369 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1651 loop_done = EVUNLOOP_CANCEL;
1370 ? EVUNLOOP_ONE
1371 : EVUNLOOP_CANCEL;
1372 1652
1373 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1653 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1374 1654
1375 do 1655 do
1376 { 1656 {
1391 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1671 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1392 call_pending (EV_A); 1672 call_pending (EV_A);
1393 } 1673 }
1394#endif 1674#endif
1395 1675
1396 /* queue check watchers (and execute them) */ 1676 /* queue prepare watchers (and execute them) */
1397 if (expect_false (preparecnt)) 1677 if (expect_false (preparecnt))
1398 { 1678 {
1399 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1679 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1400 call_pending (EV_A); 1680 call_pending (EV_A);
1401 } 1681 }
1410 /* update fd-related kernel structures */ 1690 /* update fd-related kernel structures */
1411 fd_reify (EV_A); 1691 fd_reify (EV_A);
1412 1692
1413 /* calculate blocking time */ 1693 /* calculate blocking time */
1414 { 1694 {
1415 ev_tstamp block; 1695 ev_tstamp waittime = 0.;
1696 ev_tstamp sleeptime = 0.;
1416 1697
1417 if (expect_false (flags & EVLOOP_NONBLOCK || idlecnt || !activecnt)) 1698 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1418 block = 0.; /* do not block at all */
1419 else
1420 { 1699 {
1421 /* update time to cancel out callback processing overhead */ 1700 /* update time to cancel out callback processing overhead */
1422#if EV_USE_MONOTONIC
1423 if (expect_true (have_monotonic))
1424 time_update_monotonic (EV_A); 1701 time_update (EV_A_ 1e100);
1425 else
1426#endif
1427 {
1428 ev_rt_now = ev_time ();
1429 mn_now = ev_rt_now;
1430 }
1431 1702
1432 block = MAX_BLOCKTIME; 1703 waittime = MAX_BLOCKTIME;
1433 1704
1434 if (timercnt) 1705 if (timercnt)
1435 { 1706 {
1436 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1707 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge;
1437 if (block > to) block = to; 1708 if (waittime > to) waittime = to;
1438 } 1709 }
1439 1710
1440#if EV_PERIODIC_ENABLE 1711#if EV_PERIODIC_ENABLE
1441 if (periodiccnt) 1712 if (periodiccnt)
1442 { 1713 {
1443 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1714 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge;
1444 if (block > to) block = to; 1715 if (waittime > to) waittime = to;
1445 } 1716 }
1446#endif 1717#endif
1447 1718
1448 if (expect_false (block < 0.)) block = 0.; 1719 if (expect_false (waittime < timeout_blocktime))
1720 waittime = timeout_blocktime;
1721
1722 sleeptime = waittime - backend_fudge;
1723
1724 if (expect_true (sleeptime > io_blocktime))
1725 sleeptime = io_blocktime;
1726
1727 if (sleeptime)
1728 {
1729 ev_sleep (sleeptime);
1730 waittime -= sleeptime;
1731 }
1449 } 1732 }
1450 1733
1451 ++loop_count; 1734 ++loop_count;
1452 backend_poll (EV_A_ block); 1735 backend_poll (EV_A_ waittime);
1736
1737 /* update ev_rt_now, do magic */
1738 time_update (EV_A_ waittime + sleeptime);
1453 } 1739 }
1454
1455 /* update ev_rt_now, do magic */
1456 time_update (EV_A);
1457 1740
1458 /* queue pending timers and reschedule them */ 1741 /* queue pending timers and reschedule them */
1459 timers_reify (EV_A); /* relative timers called last */ 1742 timers_reify (EV_A); /* relative timers called last */
1460#if EV_PERIODIC_ENABLE 1743#if EV_PERIODIC_ENABLE
1461 periodics_reify (EV_A); /* absolute timers called first */ 1744 periodics_reify (EV_A); /* absolute timers called first */
1462#endif 1745#endif
1463 1746
1747#if EV_IDLE_ENABLE
1464 /* queue idle watchers unless other events are pending */ 1748 /* queue idle watchers unless other events are pending */
1465 if (idlecnt && !any_pending (EV_A)) 1749 idle_reify (EV_A);
1466 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1750#endif
1467 1751
1468 /* queue check watchers, to be executed first */ 1752 /* queue check watchers, to be executed first */
1469 if (expect_false (checkcnt)) 1753 if (expect_false (checkcnt))
1470 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1754 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1471 1755
1472 call_pending (EV_A); 1756 call_pending (EV_A);
1473
1474 } 1757 }
1475 while (expect_true (activecnt && !loop_done)); 1758 while (expect_true (
1759 activecnt
1760 && !loop_done
1761 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1762 ));
1476 1763
1477 if (loop_done == EVUNLOOP_ONE) 1764 if (loop_done == EVUNLOOP_ONE)
1478 loop_done = EVUNLOOP_CANCEL; 1765 loop_done = EVUNLOOP_CANCEL;
1479} 1766}
1480 1767
1507 head = &(*head)->next; 1794 head = &(*head)->next;
1508 } 1795 }
1509} 1796}
1510 1797
1511void inline_speed 1798void inline_speed
1512ev_clear_pending (EV_P_ W w) 1799clear_pending (EV_P_ W w)
1513{ 1800{
1514 if (w->pending) 1801 if (w->pending)
1515 { 1802 {
1516 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1803 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1517 w->pending = 0; 1804 w->pending = 0;
1518 } 1805 }
1519} 1806}
1520 1807
1808int
1809ev_clear_pending (EV_P_ void *w)
1810{
1811 W w_ = (W)w;
1812 int pending = w_->pending;
1813
1814 if (expect_true (pending))
1815 {
1816 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1817 w_->pending = 0;
1818 p->w = 0;
1819 return p->events;
1820 }
1821 else
1822 return 0;
1823}
1824
1825void inline_size
1826pri_adjust (EV_P_ W w)
1827{
1828 int pri = w->priority;
1829 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1830 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1831 w->priority = pri;
1832}
1833
1521void inline_speed 1834void inline_speed
1522ev_start (EV_P_ W w, int active) 1835ev_start (EV_P_ W w, int active)
1523{ 1836{
1524 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1837 pri_adjust (EV_A_ w);
1525 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1526
1527 w->active = active; 1838 w->active = active;
1528 ev_ref (EV_A); 1839 ev_ref (EV_A);
1529} 1840}
1530 1841
1531void inline_size 1842void inline_size
1535 w->active = 0; 1846 w->active = 0;
1536} 1847}
1537 1848
1538/*****************************************************************************/ 1849/*****************************************************************************/
1539 1850
1540void 1851void noinline
1541ev_io_start (EV_P_ ev_io *w) 1852ev_io_start (EV_P_ ev_io *w)
1542{ 1853{
1543 int fd = w->fd; 1854 int fd = w->fd;
1544 1855
1545 if (expect_false (ev_is_active (w))) 1856 if (expect_false (ev_is_active (w)))
1547 1858
1548 assert (("ev_io_start called with negative fd", fd >= 0)); 1859 assert (("ev_io_start called with negative fd", fd >= 0));
1549 1860
1550 ev_start (EV_A_ (W)w, 1); 1861 ev_start (EV_A_ (W)w, 1);
1551 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1862 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1552 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1863 wlist_add (&anfds[fd].head, (WL)w);
1553 1864
1554 fd_change (EV_A_ fd); 1865 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1866 w->events &= ~EV_IOFDSET;
1555} 1867}
1556 1868
1557void 1869void noinline
1558ev_io_stop (EV_P_ ev_io *w) 1870ev_io_stop (EV_P_ ev_io *w)
1559{ 1871{
1560 ev_clear_pending (EV_A_ (W)w); 1872 clear_pending (EV_A_ (W)w);
1561 if (expect_false (!ev_is_active (w))) 1873 if (expect_false (!ev_is_active (w)))
1562 return; 1874 return;
1563 1875
1564 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1876 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1565 1877
1566 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1878 wlist_del (&anfds[w->fd].head, (WL)w);
1567 ev_stop (EV_A_ (W)w); 1879 ev_stop (EV_A_ (W)w);
1568 1880
1569 fd_change (EV_A_ w->fd); 1881 fd_change (EV_A_ w->fd, 1);
1570} 1882}
1571 1883
1572void 1884void noinline
1573ev_timer_start (EV_P_ ev_timer *w) 1885ev_timer_start (EV_P_ ev_timer *w)
1574{ 1886{
1575 if (expect_false (ev_is_active (w))) 1887 if (expect_false (ev_is_active (w)))
1576 return; 1888 return;
1577 1889
1578 ((WT)w)->at += mn_now; 1890 ev_at (w) += mn_now;
1579 1891
1580 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1892 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1581 1893
1582 ev_start (EV_A_ (W)w, ++timercnt); 1894 ev_start (EV_A_ (W)w, ++timercnt);
1583 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1895 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2);
1584 timers [timercnt - 1] = w; 1896 timers [timercnt] = (WT)w;
1585 upheap ((WT *)timers, timercnt - 1); 1897 upheap (timers, timercnt);
1586 1898
1587 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1899 /*assert (("internal timer heap corruption", timers [((W)w)->active] == w));*/
1588} 1900}
1589 1901
1590void 1902void noinline
1591ev_timer_stop (EV_P_ ev_timer *w) 1903ev_timer_stop (EV_P_ ev_timer *w)
1592{ 1904{
1593 ev_clear_pending (EV_A_ (W)w); 1905 clear_pending (EV_A_ (W)w);
1594 if (expect_false (!ev_is_active (w))) 1906 if (expect_false (!ev_is_active (w)))
1595 return; 1907 return;
1596 1908
1597 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1909 assert (("internal timer heap corruption", timers [((W)w)->active] == (WT)w));
1598 1910
1599 { 1911 {
1600 int active = ((W)w)->active; 1912 int active = ((W)w)->active;
1601 1913
1602 if (expect_true (--active < --timercnt)) 1914 if (expect_true (active < timercnt))
1603 { 1915 {
1604 timers [active] = timers [timercnt]; 1916 timers [active] = timers [timercnt];
1605 adjustheap ((WT *)timers, timercnt, active); 1917 adjustheap (timers, timercnt, active);
1606 } 1918 }
1919
1920 --timercnt;
1607 } 1921 }
1608 1922
1609 ((WT)w)->at -= mn_now; 1923 ev_at (w) -= mn_now;
1610 1924
1611 ev_stop (EV_A_ (W)w); 1925 ev_stop (EV_A_ (W)w);
1612} 1926}
1613 1927
1614void 1928void noinline
1615ev_timer_again (EV_P_ ev_timer *w) 1929ev_timer_again (EV_P_ ev_timer *w)
1616{ 1930{
1617 if (ev_is_active (w)) 1931 if (ev_is_active (w))
1618 { 1932 {
1619 if (w->repeat) 1933 if (w->repeat)
1620 { 1934 {
1621 ((WT)w)->at = mn_now + w->repeat; 1935 ev_at (w) = mn_now + w->repeat;
1622 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1936 adjustheap (timers, timercnt, ((W)w)->active);
1623 } 1937 }
1624 else 1938 else
1625 ev_timer_stop (EV_A_ w); 1939 ev_timer_stop (EV_A_ w);
1626 } 1940 }
1627 else if (w->repeat) 1941 else if (w->repeat)
1630 ev_timer_start (EV_A_ w); 1944 ev_timer_start (EV_A_ w);
1631 } 1945 }
1632} 1946}
1633 1947
1634#if EV_PERIODIC_ENABLE 1948#if EV_PERIODIC_ENABLE
1635void 1949void noinline
1636ev_periodic_start (EV_P_ ev_periodic *w) 1950ev_periodic_start (EV_P_ ev_periodic *w)
1637{ 1951{
1638 if (expect_false (ev_is_active (w))) 1952 if (expect_false (ev_is_active (w)))
1639 return; 1953 return;
1640 1954
1641 if (w->reschedule_cb) 1955 if (w->reschedule_cb)
1642 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1956 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1643 else if (w->interval) 1957 else if (w->interval)
1644 { 1958 {
1645 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1959 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1646 /* this formula differs from the one in periodic_reify because we do not always round up */ 1960 /* this formula differs from the one in periodic_reify because we do not always round up */
1647 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1961 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1648 } 1962 }
1963 else
1964 ev_at (w) = w->offset;
1649 1965
1650 ev_start (EV_A_ (W)w, ++periodiccnt); 1966 ev_start (EV_A_ (W)w, ++periodiccnt);
1651 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1967 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2);
1652 periodics [periodiccnt - 1] = w; 1968 periodics [periodiccnt] = (WT)w;
1653 upheap ((WT *)periodics, periodiccnt - 1); 1969 upheap (periodics, periodiccnt);
1654 1970
1655 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1971 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1656} 1972}
1657 1973
1658void 1974void noinline
1659ev_periodic_stop (EV_P_ ev_periodic *w) 1975ev_periodic_stop (EV_P_ ev_periodic *w)
1660{ 1976{
1661 ev_clear_pending (EV_A_ (W)w); 1977 clear_pending (EV_A_ (W)w);
1662 if (expect_false (!ev_is_active (w))) 1978 if (expect_false (!ev_is_active (w)))
1663 return; 1979 return;
1664 1980
1665 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1981 assert (("internal periodic heap corruption", periodics [((W)w)->active] == (WT)w));
1666 1982
1667 { 1983 {
1668 int active = ((W)w)->active; 1984 int active = ((W)w)->active;
1669 1985
1670 if (expect_true (--active < --periodiccnt)) 1986 if (expect_true (active < periodiccnt))
1671 { 1987 {
1672 periodics [active] = periodics [periodiccnt]; 1988 periodics [active] = periodics [periodiccnt];
1673 adjustheap ((WT *)periodics, periodiccnt, active); 1989 adjustheap (periodics, periodiccnt, active);
1674 } 1990 }
1991
1992 --periodiccnt;
1675 } 1993 }
1676 1994
1677 ev_stop (EV_A_ (W)w); 1995 ev_stop (EV_A_ (W)w);
1678} 1996}
1679 1997
1680void 1998void noinline
1681ev_periodic_again (EV_P_ ev_periodic *w) 1999ev_periodic_again (EV_P_ ev_periodic *w)
1682{ 2000{
1683 /* TODO: use adjustheap and recalculation */ 2001 /* TODO: use adjustheap and recalculation */
1684 ev_periodic_stop (EV_A_ w); 2002 ev_periodic_stop (EV_A_ w);
1685 ev_periodic_start (EV_A_ w); 2003 ev_periodic_start (EV_A_ w);
1688 2006
1689#ifndef SA_RESTART 2007#ifndef SA_RESTART
1690# define SA_RESTART 0 2008# define SA_RESTART 0
1691#endif 2009#endif
1692 2010
1693void 2011void noinline
1694ev_signal_start (EV_P_ ev_signal *w) 2012ev_signal_start (EV_P_ ev_signal *w)
1695{ 2013{
1696#if EV_MULTIPLICITY 2014#if EV_MULTIPLICITY
1697 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2015 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1698#endif 2016#endif
1699 if (expect_false (ev_is_active (w))) 2017 if (expect_false (ev_is_active (w)))
1700 return; 2018 return;
1701 2019
1702 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2020 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1703 2021
2022 evpipe_init (EV_A);
2023
2024 {
2025#ifndef _WIN32
2026 sigset_t full, prev;
2027 sigfillset (&full);
2028 sigprocmask (SIG_SETMASK, &full, &prev);
2029#endif
2030
2031 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2032
2033#ifndef _WIN32
2034 sigprocmask (SIG_SETMASK, &prev, 0);
2035#endif
2036 }
2037
1704 ev_start (EV_A_ (W)w, 1); 2038 ev_start (EV_A_ (W)w, 1);
1705 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1706 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2039 wlist_add (&signals [w->signum - 1].head, (WL)w);
1707 2040
1708 if (!((WL)w)->next) 2041 if (!((WL)w)->next)
1709 { 2042 {
1710#if _WIN32 2043#if _WIN32
1711 signal (w->signum, sighandler); 2044 signal (w->signum, ev_sighandler);
1712#else 2045#else
1713 struct sigaction sa; 2046 struct sigaction sa;
1714 sa.sa_handler = sighandler; 2047 sa.sa_handler = ev_sighandler;
1715 sigfillset (&sa.sa_mask); 2048 sigfillset (&sa.sa_mask);
1716 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2049 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1717 sigaction (w->signum, &sa, 0); 2050 sigaction (w->signum, &sa, 0);
1718#endif 2051#endif
1719 } 2052 }
1720} 2053}
1721 2054
1722void 2055void noinline
1723ev_signal_stop (EV_P_ ev_signal *w) 2056ev_signal_stop (EV_P_ ev_signal *w)
1724{ 2057{
1725 ev_clear_pending (EV_A_ (W)w); 2058 clear_pending (EV_A_ (W)w);
1726 if (expect_false (!ev_is_active (w))) 2059 if (expect_false (!ev_is_active (w)))
1727 return; 2060 return;
1728 2061
1729 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2062 wlist_del (&signals [w->signum - 1].head, (WL)w);
1730 ev_stop (EV_A_ (W)w); 2063 ev_stop (EV_A_ (W)w);
1731 2064
1732 if (!signals [w->signum - 1].head) 2065 if (!signals [w->signum - 1].head)
1733 signal (w->signum, SIG_DFL); 2066 signal (w->signum, SIG_DFL);
1734} 2067}
1741#endif 2074#endif
1742 if (expect_false (ev_is_active (w))) 2075 if (expect_false (ev_is_active (w)))
1743 return; 2076 return;
1744 2077
1745 ev_start (EV_A_ (W)w, 1); 2078 ev_start (EV_A_ (W)w, 1);
1746 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2079 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1747} 2080}
1748 2081
1749void 2082void
1750ev_child_stop (EV_P_ ev_child *w) 2083ev_child_stop (EV_P_ ev_child *w)
1751{ 2084{
1752 ev_clear_pending (EV_A_ (W)w); 2085 clear_pending (EV_A_ (W)w);
1753 if (expect_false (!ev_is_active (w))) 2086 if (expect_false (!ev_is_active (w)))
1754 return; 2087 return;
1755 2088
1756 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2089 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1757 ev_stop (EV_A_ (W)w); 2090 ev_stop (EV_A_ (W)w);
1758} 2091}
1759 2092
1760#if EV_STAT_ENABLE 2093#if EV_STAT_ENABLE
1761 2094
1993} 2326}
1994 2327
1995void 2328void
1996ev_stat_stop (EV_P_ ev_stat *w) 2329ev_stat_stop (EV_P_ ev_stat *w)
1997{ 2330{
1998 ev_clear_pending (EV_A_ (W)w); 2331 clear_pending (EV_A_ (W)w);
1999 if (expect_false (!ev_is_active (w))) 2332 if (expect_false (!ev_is_active (w)))
2000 return; 2333 return;
2001 2334
2002#if EV_USE_INOTIFY 2335#if EV_USE_INOTIFY
2003 infy_del (EV_A_ w); 2336 infy_del (EV_A_ w);
2006 2339
2007 ev_stop (EV_A_ (W)w); 2340 ev_stop (EV_A_ (W)w);
2008} 2341}
2009#endif 2342#endif
2010 2343
2344#if EV_IDLE_ENABLE
2011void 2345void
2012ev_idle_start (EV_P_ ev_idle *w) 2346ev_idle_start (EV_P_ ev_idle *w)
2013{ 2347{
2014 if (expect_false (ev_is_active (w))) 2348 if (expect_false (ev_is_active (w)))
2015 return; 2349 return;
2016 2350
2351 pri_adjust (EV_A_ (W)w);
2352
2353 {
2354 int active = ++idlecnt [ABSPRI (w)];
2355
2356 ++idleall;
2017 ev_start (EV_A_ (W)w, ++idlecnt); 2357 ev_start (EV_A_ (W)w, active);
2358
2018 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2359 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2019 idles [idlecnt - 1] = w; 2360 idles [ABSPRI (w)][active - 1] = w;
2361 }
2020} 2362}
2021 2363
2022void 2364void
2023ev_idle_stop (EV_P_ ev_idle *w) 2365ev_idle_stop (EV_P_ ev_idle *w)
2024{ 2366{
2025 ev_clear_pending (EV_A_ (W)w); 2367 clear_pending (EV_A_ (W)w);
2026 if (expect_false (!ev_is_active (w))) 2368 if (expect_false (!ev_is_active (w)))
2027 return; 2369 return;
2028 2370
2029 { 2371 {
2030 int active = ((W)w)->active; 2372 int active = ((W)w)->active;
2031 idles [active - 1] = idles [--idlecnt]; 2373
2374 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2032 ((W)idles [active - 1])->active = active; 2375 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2376
2377 ev_stop (EV_A_ (W)w);
2378 --idleall;
2033 } 2379 }
2034
2035 ev_stop (EV_A_ (W)w);
2036} 2380}
2381#endif
2037 2382
2038void 2383void
2039ev_prepare_start (EV_P_ ev_prepare *w) 2384ev_prepare_start (EV_P_ ev_prepare *w)
2040{ 2385{
2041 if (expect_false (ev_is_active (w))) 2386 if (expect_false (ev_is_active (w)))
2047} 2392}
2048 2393
2049void 2394void
2050ev_prepare_stop (EV_P_ ev_prepare *w) 2395ev_prepare_stop (EV_P_ ev_prepare *w)
2051{ 2396{
2052 ev_clear_pending (EV_A_ (W)w); 2397 clear_pending (EV_A_ (W)w);
2053 if (expect_false (!ev_is_active (w))) 2398 if (expect_false (!ev_is_active (w)))
2054 return; 2399 return;
2055 2400
2056 { 2401 {
2057 int active = ((W)w)->active; 2402 int active = ((W)w)->active;
2074} 2419}
2075 2420
2076void 2421void
2077ev_check_stop (EV_P_ ev_check *w) 2422ev_check_stop (EV_P_ ev_check *w)
2078{ 2423{
2079 ev_clear_pending (EV_A_ (W)w); 2424 clear_pending (EV_A_ (W)w);
2080 if (expect_false (!ev_is_active (w))) 2425 if (expect_false (!ev_is_active (w)))
2081 return; 2426 return;
2082 2427
2083 { 2428 {
2084 int active = ((W)w)->active; 2429 int active = ((W)w)->active;
2091 2436
2092#if EV_EMBED_ENABLE 2437#if EV_EMBED_ENABLE
2093void noinline 2438void noinline
2094ev_embed_sweep (EV_P_ ev_embed *w) 2439ev_embed_sweep (EV_P_ ev_embed *w)
2095{ 2440{
2096 ev_loop (w->loop, EVLOOP_NONBLOCK); 2441 ev_loop (w->other, EVLOOP_NONBLOCK);
2097} 2442}
2098 2443
2099static void 2444static void
2100embed_cb (EV_P_ ev_io *io, int revents) 2445embed_io_cb (EV_P_ ev_io *io, int revents)
2101{ 2446{
2102 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2447 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2103 2448
2104 if (ev_cb (w)) 2449 if (ev_cb (w))
2105 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2450 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2106 else 2451 else
2107 ev_embed_sweep (loop, w); 2452 ev_loop (w->other, EVLOOP_NONBLOCK);
2108} 2453}
2454
2455static void
2456embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2457{
2458 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2459
2460 {
2461 struct ev_loop *loop = w->other;
2462
2463 while (fdchangecnt)
2464 {
2465 fd_reify (EV_A);
2466 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2467 }
2468 }
2469}
2470
2471#if 0
2472static void
2473embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2474{
2475 ev_idle_stop (EV_A_ idle);
2476}
2477#endif
2109 2478
2110void 2479void
2111ev_embed_start (EV_P_ ev_embed *w) 2480ev_embed_start (EV_P_ ev_embed *w)
2112{ 2481{
2113 if (expect_false (ev_is_active (w))) 2482 if (expect_false (ev_is_active (w)))
2114 return; 2483 return;
2115 2484
2116 { 2485 {
2117 struct ev_loop *loop = w->loop; 2486 struct ev_loop *loop = w->other;
2118 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2487 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2119 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2488 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2120 } 2489 }
2121 2490
2122 ev_set_priority (&w->io, ev_priority (w)); 2491 ev_set_priority (&w->io, ev_priority (w));
2123 ev_io_start (EV_A_ &w->io); 2492 ev_io_start (EV_A_ &w->io);
2124 2493
2494 ev_prepare_init (&w->prepare, embed_prepare_cb);
2495 ev_set_priority (&w->prepare, EV_MINPRI);
2496 ev_prepare_start (EV_A_ &w->prepare);
2497
2498 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2499
2125 ev_start (EV_A_ (W)w, 1); 2500 ev_start (EV_A_ (W)w, 1);
2126} 2501}
2127 2502
2128void 2503void
2129ev_embed_stop (EV_P_ ev_embed *w) 2504ev_embed_stop (EV_P_ ev_embed *w)
2130{ 2505{
2131 ev_clear_pending (EV_A_ (W)w); 2506 clear_pending (EV_A_ (W)w);
2132 if (expect_false (!ev_is_active (w))) 2507 if (expect_false (!ev_is_active (w)))
2133 return; 2508 return;
2134 2509
2135 ev_io_stop (EV_A_ &w->io); 2510 ev_io_stop (EV_A_ &w->io);
2511 ev_prepare_stop (EV_A_ &w->prepare);
2136 2512
2137 ev_stop (EV_A_ (W)w); 2513 ev_stop (EV_A_ (W)w);
2138} 2514}
2139#endif 2515#endif
2140 2516
2151} 2527}
2152 2528
2153void 2529void
2154ev_fork_stop (EV_P_ ev_fork *w) 2530ev_fork_stop (EV_P_ ev_fork *w)
2155{ 2531{
2156 ev_clear_pending (EV_A_ (W)w); 2532 clear_pending (EV_A_ (W)w);
2157 if (expect_false (!ev_is_active (w))) 2533 if (expect_false (!ev_is_active (w)))
2158 return; 2534 return;
2159 2535
2160 { 2536 {
2161 int active = ((W)w)->active; 2537 int active = ((W)w)->active;
2165 2541
2166 ev_stop (EV_A_ (W)w); 2542 ev_stop (EV_A_ (W)w);
2167} 2543}
2168#endif 2544#endif
2169 2545
2546#if EV_ASYNC_ENABLE
2547void
2548ev_async_start (EV_P_ ev_async *w)
2549{
2550 if (expect_false (ev_is_active (w)))
2551 return;
2552
2553 evpipe_init (EV_A);
2554
2555 ev_start (EV_A_ (W)w, ++asynccnt);
2556 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2557 asyncs [asynccnt - 1] = w;
2558}
2559
2560void
2561ev_async_stop (EV_P_ ev_async *w)
2562{
2563 clear_pending (EV_A_ (W)w);
2564 if (expect_false (!ev_is_active (w)))
2565 return;
2566
2567 {
2568 int active = ((W)w)->active;
2569 asyncs [active - 1] = asyncs [--asynccnt];
2570 ((W)asyncs [active - 1])->active = active;
2571 }
2572
2573 ev_stop (EV_A_ (W)w);
2574}
2575
2576void
2577ev_async_send (EV_P_ ev_async *w)
2578{
2579 w->sent = 1;
2580 evpipe_write (EV_A_ &gotasync);
2581}
2582#endif
2583
2170/*****************************************************************************/ 2584/*****************************************************************************/
2171 2585
2172struct ev_once 2586struct ev_once
2173{ 2587{
2174 ev_io io; 2588 ev_io io;
2229 ev_timer_set (&once->to, timeout, 0.); 2643 ev_timer_set (&once->to, timeout, 0.);
2230 ev_timer_start (EV_A_ &once->to); 2644 ev_timer_start (EV_A_ &once->to);
2231 } 2645 }
2232} 2646}
2233 2647
2648#if EV_MULTIPLICITY
2649 #include "ev_wrap.h"
2650#endif
2651
2234#ifdef __cplusplus 2652#ifdef __cplusplus
2235} 2653}
2236#endif 2654#endif
2237 2655

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines