ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.163 by root, Wed Dec 5 13:54:36 2007 UTC vs.
Revision 1.246 by root, Wed May 21 12:51:38 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 249
197#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
200#endif 253#endif
202#ifndef CLOCK_REALTIME 255#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 256# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 257# define EV_USE_REALTIME 0
205#endif 258#endif
206 259
260#if !EV_STAT_ENABLE
261# undef EV_USE_INOTIFY
262# define EV_USE_INOTIFY 0
263#endif
264
265#if !EV_USE_NANOSLEEP
266# ifndef _WIN32
267# include <sys/select.h>
268# endif
269#endif
270
271#if EV_USE_INOTIFY
272# include <sys/inotify.h>
273#endif
274
207#if EV_SELECT_IS_WINSOCKET 275#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 276# include <winsock.h>
209#endif 277#endif
210 278
211#if !EV_STAT_ENABLE 279#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h>
282# ifdef __cplusplus
283extern "C" {
213#endif 284# endif
214 285int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 286# ifdef __cplusplus
216# include <sys/inotify.h> 287}
288# endif
217#endif 289#endif
218 290
219/**/ 291/**/
292
293/*
294 * This is used to avoid floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding
297 * errors are against us.
298 * This value is good at least till the year 4000.
299 * Better solutions welcome.
300 */
301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 302
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 306
225#if __GNUC__ >= 3 307#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 308# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 309# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 310#else
236# define expect(expr,value) (expr) 311# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 312# define noinline
313# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
314# define inline
315# endif
240#endif 316#endif
241 317
242#define expect_false(expr) expect ((expr) != 0, 0) 318#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 319#define expect_true(expr) expect ((expr) != 0, 1)
320#define inline_size static inline
321
322#if EV_MINIMAL
323# define inline_speed static noinline
324#else
325# define inline_speed static inline
326#endif
244 327
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 330
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 331#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 332#define EMPTY2(a,b) /* used to suppress some warnings */
250 333
251typedef ev_watcher *W; 334typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 335typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 336typedef ev_watcher_time *WT;
254 337
338#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at
340
341#if EV_USE_MONOTONIC
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
345#endif
256 346
257#ifdef _WIN32 347#ifdef _WIN32
258# include "ev_win32.c" 348# include "ev_win32.c"
259#endif 349#endif
260 350
281 perror (msg); 371 perror (msg);
282 abort (); 372 abort ();
283 } 373 }
284} 374}
285 375
376static void *
377ev_realloc_emul (void *ptr, long size)
378{
379 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and
381 * the single unix specification, so work around them here.
382 */
383
384 if (size)
385 return realloc (ptr, size);
386
387 free (ptr);
388 return 0;
389}
390
286static void *(*alloc)(void *ptr, long size); 391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 392
288void 393void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 394ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 395{
291 alloc = cb; 396 alloc = cb;
292} 397}
293 398
294inline_speed void * 399inline_speed void *
295ev_realloc (void *ptr, long size) 400ev_realloc (void *ptr, long size)
296{ 401{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 402 ptr = alloc (ptr, size);
298 403
299 if (!ptr && size) 404 if (!ptr && size)
300 { 405 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 407 abort ();
325 W w; 430 W w;
326 int events; 431 int events;
327} ANPENDING; 432} ANPENDING;
328 433
329#if EV_USE_INOTIFY 434#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */
330typedef struct 436typedef struct
331{ 437{
332 WL head; 438 WL head;
333} ANFS; 439} ANFS;
440#endif
441
442/* Heap Entry */
443#if EV_HEAP_CACHE_AT
444 typedef struct {
445 ev_tstamp at;
446 WT w;
447 } ANHE;
448
449 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
452#else
453 typedef WT ANHE;
454
455 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he)
334#endif 458#endif
335 459
336#if EV_MULTIPLICITY 460#if EV_MULTIPLICITY
337 461
338 struct ev_loop 462 struct ev_loop
396{ 520{
397 return ev_rt_now; 521 return ev_rt_now;
398} 522}
399#endif 523#endif
400 524
525void
526ev_sleep (ev_tstamp delay)
527{
528 if (delay > 0.)
529 {
530#if EV_USE_NANOSLEEP
531 struct timespec ts;
532
533 ts.tv_sec = (time_t)delay;
534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
535
536 nanosleep (&ts, 0);
537#elif defined(_WIN32)
538 Sleep ((unsigned long)(delay * 1e3));
539#else
540 struct timeval tv;
541
542 tv.tv_sec = (time_t)delay;
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
544
545 select (0, 0, 0, 0, &tv);
546#endif
547 }
548}
549
550/*****************************************************************************/
551
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553
401int inline_size 554int inline_size
402array_nextsize (int elem, int cur, int cnt) 555array_nextsize (int elem, int cur, int cnt)
403{ 556{
404 int ncur = cur + 1; 557 int ncur = cur + 1;
405 558
406 do 559 do
407 ncur <<= 1; 560 ncur <<= 1;
408 while (cnt > ncur); 561 while (cnt > ncur);
409 562
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 563 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
411 if (elem * ncur > 4096) 564 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
412 { 565 {
413 ncur *= elem; 566 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 567 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
415 ncur = ncur - sizeof (void *) * 4; 568 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem; 569 ncur /= elem;
417 } 570 }
418 571
419 return ncur; 572 return ncur;
420} 573}
421 574
422inline_speed void * 575static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 576array_realloc (int elem, void *base, int *cur, int cnt)
424{ 577{
425 *cur = array_nextsize (elem, *cur, cnt); 578 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 579 return ev_realloc (base, elem * *cur);
427} 580}
452 605
453void noinline 606void noinline
454ev_feed_event (EV_P_ void *w, int revents) 607ev_feed_event (EV_P_ void *w, int revents)
455{ 608{
456 W w_ = (W)w; 609 W w_ = (W)w;
610 int pri = ABSPRI (w_);
457 611
458 if (expect_false (w_->pending)) 612 if (expect_false (w_->pending))
613 pendings [pri][w_->pending - 1].events |= revents;
614 else
459 { 615 {
616 w_->pending = ++pendingcnt [pri];
617 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
618 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 619 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 620 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 621}
469 622
470void inline_size 623void inline_speed
471queue_events (EV_P_ W *events, int eventcnt, int type) 624queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 625{
473 int i; 626 int i;
474 627
475 for (i = 0; i < eventcnt; ++i) 628 for (i = 0; i < eventcnt; ++i)
507} 660}
508 661
509void 662void
510ev_feed_fd_event (EV_P_ int fd, int revents) 663ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 664{
665 if (fd >= 0 && fd < anfdmax)
512 fd_event (EV_A_ fd, revents); 666 fd_event (EV_A_ fd, revents);
513} 667}
514 668
515void inline_size 669void inline_size
516fd_reify (EV_P) 670fd_reify (EV_P)
517{ 671{
521 { 675 {
522 int fd = fdchanges [i]; 676 int fd = fdchanges [i];
523 ANFD *anfd = anfds + fd; 677 ANFD *anfd = anfds + fd;
524 ev_io *w; 678 ev_io *w;
525 679
526 int events = 0; 680 unsigned char events = 0;
527 681
528 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
529 events |= w->events; 683 events |= (unsigned char)w->events;
530 684
531#if EV_SELECT_IS_WINSOCKET 685#if EV_SELECT_IS_WINSOCKET
532 if (events) 686 if (events)
533 { 687 {
534 unsigned long argp; 688 unsigned long argp;
689 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else
535 anfd->handle = _get_osfhandle (fd); 692 anfd->handle = _get_osfhandle (fd);
693 #endif
536 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
537 } 695 }
538#endif 696#endif
539 697
698 {
699 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify;
701
540 anfd->reify = 0; 702 anfd->reify = 0;
541
542 backend_modify (EV_A_ fd, anfd->events, events);
543 anfd->events = events; 703 anfd->events = events;
704
705 if (o_events != events || o_reify & EV_IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events);
707 }
544 } 708 }
545 709
546 fdchangecnt = 0; 710 fdchangecnt = 0;
547} 711}
548 712
549void inline_size 713void inline_size
550fd_change (EV_P_ int fd) 714fd_change (EV_P_ int fd, int flags)
551{ 715{
552 if (expect_false (anfds [fd].reify)) 716 unsigned char reify = anfds [fd].reify;
553 return;
554
555 anfds [fd].reify = 1; 717 anfds [fd].reify |= flags;
556 718
719 if (expect_true (!reify))
720 {
557 ++fdchangecnt; 721 ++fdchangecnt;
558 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
559 fdchanges [fdchangecnt - 1] = fd; 723 fdchanges [fdchangecnt - 1] = fd;
724 }
560} 725}
561 726
562void inline_speed 727void inline_speed
563fd_kill (EV_P_ int fd) 728fd_kill (EV_P_ int fd)
564{ 729{
615 780
616 for (fd = 0; fd < anfdmax; ++fd) 781 for (fd = 0; fd < anfdmax; ++fd)
617 if (anfds [fd].events) 782 if (anfds [fd].events)
618 { 783 {
619 anfds [fd].events = 0; 784 anfds [fd].events = 0;
620 fd_change (EV_A_ fd); 785 fd_change (EV_A_ fd, EV_IOFDSET | 1);
621 } 786 }
622} 787}
623 788
624/*****************************************************************************/ 789/*****************************************************************************/
625 790
791/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree.
795 */
796
797/*
798 * at the moment we allow libev the luxury of two heaps,
799 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
800 * which is more cache-efficient.
801 * the difference is about 5% with 50000+ watchers.
802 */
803#if EV_USE_4HEAP
804
805#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807
808/* towards the root */
626void inline_speed 809void inline_speed
627upheap (WT *heap, int k) 810upheap (ANHE *heap, int k)
628{ 811{
629 WT w = heap [k]; 812 ANHE he = heap [k];
630 813
631 while (k && heap [k >> 1]->at > w->at) 814 for (;;)
632 { 815 {
816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
817
818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
819 break;
820
633 heap [k] = heap [k >> 1]; 821 heap [k] = heap [p];
634 ((W)heap [k])->active = k + 1; 822 ev_active (ANHE_w (heap [k])) = k;
635 k >>= 1; 823 k = p;
636 } 824 }
637 825
826 ev_active (ANHE_w (he)) = k;
638 heap [k] = w; 827 heap [k] = he;
639 ((W)heap [k])->active = k + 1;
640
641} 828}
642 829
830/* away from the root */
643void inline_speed 831void inline_speed
644downheap (WT *heap, int N, int k) 832downheap (ANHE *heap, int N, int k)
645{ 833{
646 WT w = heap [k]; 834 ANHE he = heap [k];
835 ANHE *E = heap + N + HEAP0;
647 836
648 while (k < (N >> 1)) 837 for (;;)
649 { 838 {
650 int j = k << 1; 839 ev_tstamp minat;
840 ANHE *minpos;
841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
651 842
652 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 843 // find minimum child
844 if (expect_true (pos + DHEAP - 1 < E))
653 ++j; 845 {
654 846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
655 if (w->at <= heap [j]->at) 847 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
850 }
851 else if (pos < E)
852 {
853 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
854 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
855 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
856 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
857 }
858 else
656 break; 859 break;
657 860
861 if (ANHE_at (he) <= minat)
862 break;
863
864 ev_active (ANHE_w (*minpos)) = k;
865 heap [k] = *minpos;
866
867 k = minpos - heap;
868 }
869
870 ev_active (ANHE_w (he)) = k;
871 heap [k] = he;
872}
873
874#else // 4HEAP
875
876#define HEAP0 1
877
878/* towards the root */
879void inline_speed
880upheap (ANHE *heap, int k)
881{
882 ANHE he = heap [k];
883
884 for (;;)
885 {
886 int p = k >> 1;
887
888 /* maybe we could use a dummy element at heap [0]? */
889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
890 break;
891
658 heap [k] = heap [j]; 892 heap [k] = heap [p];
659 ((W)heap [k])->active = k + 1; 893 ev_active (ANHE_w (heap [k])) = k;
660 k = j; 894 k = p;
661 } 895 }
662 896
663 heap [k] = w; 897 heap [k] = he;
664 ((W)heap [k])->active = k + 1; 898 ev_active (ANHE_w (heap [k])) = k;
665} 899}
900
901/* away from the root */
902void inline_speed
903downheap (ANHE *heap, int N, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int c = k << 1;
910
911 if (c > N)
912 break;
913
914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
915 ? 1 : 0;
916
917 if (ANHE_at (he) <= ANHE_at (heap [c]))
918 break;
919
920 heap [k] = heap [c];
921 ev_active (ANHE_w (heap [k])) = k;
922
923 k = c;
924 }
925
926 heap [k] = he;
927 ev_active (ANHE_w (he)) = k;
928}
929#endif
666 930
667void inline_size 931void inline_size
668adjustheap (WT *heap, int N, int k) 932adjustheap (ANHE *heap, int N, int k)
669{ 933{
670 upheap (heap, k); 934 upheap (heap, k);
671 downheap (heap, N, k); 935 downheap (heap, N, k);
672} 936}
673 937
674/*****************************************************************************/ 938/*****************************************************************************/
675 939
676typedef struct 940typedef struct
677{ 941{
678 WL head; 942 WL head;
679 sig_atomic_t volatile gotsig; 943 EV_ATOMIC_T gotsig;
680} ANSIG; 944} ANSIG;
681 945
682static ANSIG *signals; 946static ANSIG *signals;
683static int signalmax; 947static int signalmax;
684 948
685static int sigpipe [2]; 949static EV_ATOMIC_T gotsig;
686static sig_atomic_t volatile gotsig;
687static ev_io sigev;
688 950
689void inline_size 951void inline_size
690signals_init (ANSIG *base, int count) 952signals_init (ANSIG *base, int count)
691{ 953{
692 while (count--) 954 while (count--)
696 958
697 ++base; 959 ++base;
698 } 960 }
699} 961}
700 962
701static void 963/*****************************************************************************/
702sighandler (int signum)
703{
704#if _WIN32
705 signal (signum, sighandler);
706#endif
707 964
708 signals [signum - 1].gotsig = 1;
709
710 if (!gotsig)
711 {
712 int old_errno = errno;
713 gotsig = 1;
714 write (sigpipe [1], &signum, 1);
715 errno = old_errno;
716 }
717}
718
719void noinline
720ev_feed_signal_event (EV_P_ int signum)
721{
722 WL w;
723
724#if EV_MULTIPLICITY
725 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
726#endif
727
728 --signum;
729
730 if (signum < 0 || signum >= signalmax)
731 return;
732
733 signals [signum].gotsig = 0;
734
735 for (w = signals [signum].head; w; w = w->next)
736 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
737}
738
739static void
740sigcb (EV_P_ ev_io *iow, int revents)
741{
742 int signum;
743
744 read (sigpipe [0], &revents, 1);
745 gotsig = 0;
746
747 for (signum = signalmax; signum--; )
748 if (signals [signum].gotsig)
749 ev_feed_signal_event (EV_A_ signum + 1);
750}
751
752void inline_size 965void inline_speed
753fd_intern (int fd) 966fd_intern (int fd)
754{ 967{
755#ifdef _WIN32 968#ifdef _WIN32
756 int arg = 1; 969 int arg = 1;
757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 970 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
760 fcntl (fd, F_SETFL, O_NONBLOCK); 973 fcntl (fd, F_SETFL, O_NONBLOCK);
761#endif 974#endif
762} 975}
763 976
764static void noinline 977static void noinline
765siginit (EV_P) 978evpipe_init (EV_P)
766{ 979{
980 if (!ev_is_active (&pipeev))
981 {
982#if EV_USE_EVENTFD
983 if ((evfd = eventfd (0, 0)) >= 0)
984 {
985 evpipe [0] = -1;
986 fd_intern (evfd);
987 ev_io_set (&pipeev, evfd, EV_READ);
988 }
989 else
990#endif
991 {
992 while (pipe (evpipe))
993 syserr ("(libev) error creating signal/async pipe");
994
767 fd_intern (sigpipe [0]); 995 fd_intern (evpipe [0]);
768 fd_intern (sigpipe [1]); 996 fd_intern (evpipe [1]);
997 ev_io_set (&pipeev, evpipe [0], EV_READ);
998 }
769 999
770 ev_io_set (&sigev, sigpipe [0], EV_READ);
771 ev_io_start (EV_A_ &sigev); 1000 ev_io_start (EV_A_ &pipeev);
772 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1001 ev_unref (EV_A); /* watcher should not keep loop alive */
1002 }
1003}
1004
1005void inline_size
1006evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1007{
1008 if (!*flag)
1009 {
1010 int old_errno = errno; /* save errno because write might clobber it */
1011
1012 *flag = 1;
1013
1014#if EV_USE_EVENTFD
1015 if (evfd >= 0)
1016 {
1017 uint64_t counter = 1;
1018 write (evfd, &counter, sizeof (uint64_t));
1019 }
1020 else
1021#endif
1022 write (evpipe [1], &old_errno, 1);
1023
1024 errno = old_errno;
1025 }
1026}
1027
1028static void
1029pipecb (EV_P_ ev_io *iow, int revents)
1030{
1031#if EV_USE_EVENTFD
1032 if (evfd >= 0)
1033 {
1034 uint64_t counter;
1035 read (evfd, &counter, sizeof (uint64_t));
1036 }
1037 else
1038#endif
1039 {
1040 char dummy;
1041 read (evpipe [0], &dummy, 1);
1042 }
1043
1044 if (gotsig && ev_is_default_loop (EV_A))
1045 {
1046 int signum;
1047 gotsig = 0;
1048
1049 for (signum = signalmax; signum--; )
1050 if (signals [signum].gotsig)
1051 ev_feed_signal_event (EV_A_ signum + 1);
1052 }
1053
1054#if EV_ASYNC_ENABLE
1055 if (gotasync)
1056 {
1057 int i;
1058 gotasync = 0;
1059
1060 for (i = asynccnt; i--; )
1061 if (asyncs [i]->sent)
1062 {
1063 asyncs [i]->sent = 0;
1064 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1065 }
1066 }
1067#endif
773} 1068}
774 1069
775/*****************************************************************************/ 1070/*****************************************************************************/
776 1071
1072static void
1073ev_sighandler (int signum)
1074{
1075#if EV_MULTIPLICITY
1076 struct ev_loop *loop = &default_loop_struct;
1077#endif
1078
1079#if _WIN32
1080 signal (signum, ev_sighandler);
1081#endif
1082
1083 signals [signum - 1].gotsig = 1;
1084 evpipe_write (EV_A_ &gotsig);
1085}
1086
1087void noinline
1088ev_feed_signal_event (EV_P_ int signum)
1089{
1090 WL w;
1091
1092#if EV_MULTIPLICITY
1093 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1094#endif
1095
1096 --signum;
1097
1098 if (signum < 0 || signum >= signalmax)
1099 return;
1100
1101 signals [signum].gotsig = 0;
1102
1103 for (w = signals [signum].head; w; w = w->next)
1104 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1105}
1106
1107/*****************************************************************************/
1108
777static ev_child *childs [EV_PID_HASHSIZE]; 1109static WL childs [EV_PID_HASHSIZE];
778 1110
779#ifndef _WIN32 1111#ifndef _WIN32
780 1112
781static ev_signal childev; 1113static ev_signal childev;
782 1114
1115#ifndef WIFCONTINUED
1116# define WIFCONTINUED(status) 0
1117#endif
1118
783void inline_speed 1119void inline_speed
784child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1120child_reap (EV_P_ int chain, int pid, int status)
785{ 1121{
786 ev_child *w; 1122 ev_child *w;
1123 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
787 1124
788 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1125 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1126 {
789 if (w->pid == pid || !w->pid) 1127 if ((w->pid == pid || !w->pid)
1128 && (!traced || (w->flags & 1)))
790 { 1129 {
791 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1130 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
792 w->rpid = pid; 1131 w->rpid = pid;
793 w->rstatus = status; 1132 w->rstatus = status;
794 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1133 ev_feed_event (EV_A_ (W)w, EV_CHILD);
795 } 1134 }
1135 }
796} 1136}
797 1137
798#ifndef WCONTINUED 1138#ifndef WCONTINUED
799# define WCONTINUED 0 1139# define WCONTINUED 0
800#endif 1140#endif
809 if (!WCONTINUED 1149 if (!WCONTINUED
810 || errno != EINVAL 1150 || errno != EINVAL
811 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1151 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
812 return; 1152 return;
813 1153
814 /* make sure we are called again until all childs have been reaped */ 1154 /* make sure we are called again until all children have been reaped */
815 /* we need to do it this way so that the callback gets called before we continue */ 1155 /* we need to do it this way so that the callback gets called before we continue */
816 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1156 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
817 1157
818 child_reap (EV_A_ sw, pid, pid, status); 1158 child_reap (EV_A_ pid, pid, status);
819 if (EV_PID_HASHSIZE > 1) 1159 if (EV_PID_HASHSIZE > 1)
820 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1160 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
821} 1161}
822 1162
823#endif 1163#endif
824 1164
825/*****************************************************************************/ 1165/*****************************************************************************/
897} 1237}
898 1238
899unsigned int 1239unsigned int
900ev_embeddable_backends (void) 1240ev_embeddable_backends (void)
901{ 1241{
902 return EVBACKEND_EPOLL 1242 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
903 | EVBACKEND_KQUEUE 1243
904 | EVBACKEND_PORT; 1244 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1245 /* please fix it and tell me how to detect the fix */
1246 flags &= ~EVBACKEND_EPOLL;
1247
1248 return flags;
905} 1249}
906 1250
907unsigned int 1251unsigned int
908ev_backend (EV_P) 1252ev_backend (EV_P)
909{ 1253{
912 1256
913unsigned int 1257unsigned int
914ev_loop_count (EV_P) 1258ev_loop_count (EV_P)
915{ 1259{
916 return loop_count; 1260 return loop_count;
1261}
1262
1263void
1264ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1265{
1266 io_blocktime = interval;
1267}
1268
1269void
1270ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1271{
1272 timeout_blocktime = interval;
917} 1273}
918 1274
919static void noinline 1275static void noinline
920loop_init (EV_P_ unsigned int flags) 1276loop_init (EV_P_ unsigned int flags)
921{ 1277{
927 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1283 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
928 have_monotonic = 1; 1284 have_monotonic = 1;
929 } 1285 }
930#endif 1286#endif
931 1287
932 ev_rt_now = ev_time (); 1288 ev_rt_now = ev_time ();
933 mn_now = get_clock (); 1289 mn_now = get_clock ();
934 now_floor = mn_now; 1290 now_floor = mn_now;
935 rtmn_diff = ev_rt_now - mn_now; 1291 rtmn_diff = ev_rt_now - mn_now;
1292
1293 io_blocktime = 0.;
1294 timeout_blocktime = 0.;
1295 backend = 0;
1296 backend_fd = -1;
1297 gotasync = 0;
1298#if EV_USE_INOTIFY
1299 fs_fd = -2;
1300#endif
936 1301
937 /* pid check not overridable via env */ 1302 /* pid check not overridable via env */
938#ifndef _WIN32 1303#ifndef _WIN32
939 if (flags & EVFLAG_FORKCHECK) 1304 if (flags & EVFLAG_FORKCHECK)
940 curpid = getpid (); 1305 curpid = getpid ();
943 if (!(flags & EVFLAG_NOENV) 1308 if (!(flags & EVFLAG_NOENV)
944 && !enable_secure () 1309 && !enable_secure ()
945 && getenv ("LIBEV_FLAGS")) 1310 && getenv ("LIBEV_FLAGS"))
946 flags = atoi (getenv ("LIBEV_FLAGS")); 1311 flags = atoi (getenv ("LIBEV_FLAGS"));
947 1312
948 if (!(flags & 0x0000ffffUL)) 1313 if (!(flags & 0x0000ffffU))
949 flags |= ev_recommended_backends (); 1314 flags |= ev_recommended_backends ();
950
951 backend = 0;
952 backend_fd = -1;
953#if EV_USE_INOTIFY
954 fs_fd = -2;
955#endif
956 1315
957#if EV_USE_PORT 1316#if EV_USE_PORT
958 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1317 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
959#endif 1318#endif
960#if EV_USE_KQUEUE 1319#if EV_USE_KQUEUE
968#endif 1327#endif
969#if EV_USE_SELECT 1328#if EV_USE_SELECT
970 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1329 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
971#endif 1330#endif
972 1331
973 ev_init (&sigev, sigcb); 1332 ev_init (&pipeev, pipecb);
974 ev_set_priority (&sigev, EV_MAXPRI); 1333 ev_set_priority (&pipeev, EV_MAXPRI);
975 } 1334 }
976} 1335}
977 1336
978static void noinline 1337static void noinline
979loop_destroy (EV_P) 1338loop_destroy (EV_P)
980{ 1339{
981 int i; 1340 int i;
1341
1342 if (ev_is_active (&pipeev))
1343 {
1344 ev_ref (EV_A); /* signal watcher */
1345 ev_io_stop (EV_A_ &pipeev);
1346
1347#if EV_USE_EVENTFD
1348 if (evfd >= 0)
1349 close (evfd);
1350#endif
1351
1352 if (evpipe [0] >= 0)
1353 {
1354 close (evpipe [0]);
1355 close (evpipe [1]);
1356 }
1357 }
982 1358
983#if EV_USE_INOTIFY 1359#if EV_USE_INOTIFY
984 if (fs_fd >= 0) 1360 if (fs_fd >= 0)
985 close (fs_fd); 1361 close (fs_fd);
986#endif 1362#endif
1003#if EV_USE_SELECT 1379#if EV_USE_SELECT
1004 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1380 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1005#endif 1381#endif
1006 1382
1007 for (i = NUMPRI; i--; ) 1383 for (i = NUMPRI; i--; )
1384 {
1008 array_free (pending, [i]); 1385 array_free (pending, [i]);
1386#if EV_IDLE_ENABLE
1387 array_free (idle, [i]);
1388#endif
1389 }
1390
1391 ev_free (anfds); anfdmax = 0;
1009 1392
1010 /* have to use the microsoft-never-gets-it-right macro */ 1393 /* have to use the microsoft-never-gets-it-right macro */
1011 array_free (fdchange, EMPTY0); 1394 array_free (fdchange, EMPTY);
1012 array_free (timer, EMPTY0); 1395 array_free (timer, EMPTY);
1013#if EV_PERIODIC_ENABLE 1396#if EV_PERIODIC_ENABLE
1014 array_free (periodic, EMPTY0); 1397 array_free (periodic, EMPTY);
1015#endif 1398#endif
1399#if EV_FORK_ENABLE
1016 array_free (idle, EMPTY0); 1400 array_free (fork, EMPTY);
1401#endif
1017 array_free (prepare, EMPTY0); 1402 array_free (prepare, EMPTY);
1018 array_free (check, EMPTY0); 1403 array_free (check, EMPTY);
1404#if EV_ASYNC_ENABLE
1405 array_free (async, EMPTY);
1406#endif
1019 1407
1020 backend = 0; 1408 backend = 0;
1021} 1409}
1022 1410
1411#if EV_USE_INOTIFY
1023void inline_size infy_fork (EV_P); 1412void inline_size infy_fork (EV_P);
1413#endif
1024 1414
1025void inline_size 1415void inline_size
1026loop_fork (EV_P) 1416loop_fork (EV_P)
1027{ 1417{
1028#if EV_USE_PORT 1418#if EV_USE_PORT
1036#endif 1426#endif
1037#if EV_USE_INOTIFY 1427#if EV_USE_INOTIFY
1038 infy_fork (EV_A); 1428 infy_fork (EV_A);
1039#endif 1429#endif
1040 1430
1041 if (ev_is_active (&sigev)) 1431 if (ev_is_active (&pipeev))
1042 { 1432 {
1043 /* default loop */ 1433 /* this "locks" the handlers against writing to the pipe */
1434 /* while we modify the fd vars */
1435 gotsig = 1;
1436#if EV_ASYNC_ENABLE
1437 gotasync = 1;
1438#endif
1044 1439
1045 ev_ref (EV_A); 1440 ev_ref (EV_A);
1046 ev_io_stop (EV_A_ &sigev); 1441 ev_io_stop (EV_A_ &pipeev);
1442
1443#if EV_USE_EVENTFD
1444 if (evfd >= 0)
1445 close (evfd);
1446#endif
1447
1448 if (evpipe [0] >= 0)
1449 {
1047 close (sigpipe [0]); 1450 close (evpipe [0]);
1048 close (sigpipe [1]); 1451 close (evpipe [1]);
1452 }
1049 1453
1050 while (pipe (sigpipe))
1051 syserr ("(libev) error creating pipe");
1052
1053 siginit (EV_A); 1454 evpipe_init (EV_A);
1455 /* now iterate over everything, in case we missed something */
1456 pipecb (EV_A_ &pipeev, EV_READ);
1054 } 1457 }
1055 1458
1056 postfork = 0; 1459 postfork = 0;
1057} 1460}
1058 1461
1080} 1483}
1081 1484
1082void 1485void
1083ev_loop_fork (EV_P) 1486ev_loop_fork (EV_P)
1084{ 1487{
1085 postfork = 1; 1488 postfork = 1; /* must be in line with ev_default_fork */
1086} 1489}
1087
1088#endif 1490#endif
1089 1491
1090#if EV_MULTIPLICITY 1492#if EV_MULTIPLICITY
1091struct ev_loop * 1493struct ev_loop *
1092ev_default_loop_init (unsigned int flags) 1494ev_default_loop_init (unsigned int flags)
1093#else 1495#else
1094int 1496int
1095ev_default_loop (unsigned int flags) 1497ev_default_loop (unsigned int flags)
1096#endif 1498#endif
1097{ 1499{
1098 if (sigpipe [0] == sigpipe [1])
1099 if (pipe (sigpipe))
1100 return 0;
1101
1102 if (!ev_default_loop_ptr) 1500 if (!ev_default_loop_ptr)
1103 { 1501 {
1104#if EV_MULTIPLICITY 1502#if EV_MULTIPLICITY
1105 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1503 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1106#else 1504#else
1109 1507
1110 loop_init (EV_A_ flags); 1508 loop_init (EV_A_ flags);
1111 1509
1112 if (ev_backend (EV_A)) 1510 if (ev_backend (EV_A))
1113 { 1511 {
1114 siginit (EV_A);
1115
1116#ifndef _WIN32 1512#ifndef _WIN32
1117 ev_signal_init (&childev, childcb, SIGCHLD); 1513 ev_signal_init (&childev, childcb, SIGCHLD);
1118 ev_set_priority (&childev, EV_MAXPRI); 1514 ev_set_priority (&childev, EV_MAXPRI);
1119 ev_signal_start (EV_A_ &childev); 1515 ev_signal_start (EV_A_ &childev);
1120 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1516 ev_unref (EV_A); /* child watcher should not keep loop alive */
1137#ifndef _WIN32 1533#ifndef _WIN32
1138 ev_ref (EV_A); /* child watcher */ 1534 ev_ref (EV_A); /* child watcher */
1139 ev_signal_stop (EV_A_ &childev); 1535 ev_signal_stop (EV_A_ &childev);
1140#endif 1536#endif
1141 1537
1142 ev_ref (EV_A); /* signal watcher */
1143 ev_io_stop (EV_A_ &sigev);
1144
1145 close (sigpipe [0]); sigpipe [0] = 0;
1146 close (sigpipe [1]); sigpipe [1] = 0;
1147
1148 loop_destroy (EV_A); 1538 loop_destroy (EV_A);
1149} 1539}
1150 1540
1151void 1541void
1152ev_default_fork (void) 1542ev_default_fork (void)
1154#if EV_MULTIPLICITY 1544#if EV_MULTIPLICITY
1155 struct ev_loop *loop = ev_default_loop_ptr; 1545 struct ev_loop *loop = ev_default_loop_ptr;
1156#endif 1546#endif
1157 1547
1158 if (backend) 1548 if (backend)
1159 postfork = 1; 1549 postfork = 1; /* must be in line with ev_loop_fork */
1160} 1550}
1161 1551
1162/*****************************************************************************/ 1552/*****************************************************************************/
1163 1553
1164int inline_size 1554void
1165any_pending (EV_P) 1555ev_invoke (EV_P_ void *w, int revents)
1166{ 1556{
1167 int pri; 1557 EV_CB_INVOKE ((W)w, revents);
1168
1169 for (pri = NUMPRI; pri--; )
1170 if (pendingcnt [pri])
1171 return 1;
1172
1173 return 0;
1174} 1558}
1175 1559
1176void inline_speed 1560void inline_speed
1177call_pending (EV_P) 1561call_pending (EV_P)
1178{ 1562{
1191 EV_CB_INVOKE (p->w, p->events); 1575 EV_CB_INVOKE (p->w, p->events);
1192 } 1576 }
1193 } 1577 }
1194} 1578}
1195 1579
1580#if EV_IDLE_ENABLE
1581void inline_size
1582idle_reify (EV_P)
1583{
1584 if (expect_false (idleall))
1585 {
1586 int pri;
1587
1588 for (pri = NUMPRI; pri--; )
1589 {
1590 if (pendingcnt [pri])
1591 break;
1592
1593 if (idlecnt [pri])
1594 {
1595 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1596 break;
1597 }
1598 }
1599 }
1600}
1601#endif
1602
1196void inline_size 1603void inline_size
1197timers_reify (EV_P) 1604timers_reify (EV_P)
1198{ 1605{
1199 while (timercnt && ((WT)timers [0])->at <= mn_now) 1606 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1200 { 1607 {
1201 ev_timer *w = timers [0]; 1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1202 1609
1203 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1204 1611
1205 /* first reschedule or stop timer */ 1612 /* first reschedule or stop timer */
1206 if (w->repeat) 1613 if (w->repeat)
1207 { 1614 {
1615 ev_at (w) += w->repeat;
1616 if (ev_at (w) < mn_now)
1617 ev_at (w) = mn_now;
1618
1208 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1209 1620
1210 ((WT)w)->at += w->repeat; 1621 ANHE_at_set (timers [HEAP0]);
1211 if (((WT)w)->at < mn_now)
1212 ((WT)w)->at = mn_now;
1213
1214 downheap ((WT *)timers, timercnt, 0); 1622 downheap (timers, timercnt, HEAP0);
1215 } 1623 }
1216 else 1624 else
1217 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1218 1626
1219 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1627 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1222 1630
1223#if EV_PERIODIC_ENABLE 1631#if EV_PERIODIC_ENABLE
1224void inline_size 1632void inline_size
1225periodics_reify (EV_P) 1633periodics_reify (EV_P)
1226{ 1634{
1227 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1228 { 1636 {
1229 ev_periodic *w = periodics [0]; 1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1230 1638
1231 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1232 1640
1233 /* first reschedule or stop timer */ 1641 /* first reschedule or stop timer */
1234 if (w->reschedule_cb) 1642 if (w->reschedule_cb)
1235 { 1643 {
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1645
1237 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1647
1648 ANHE_at_set (periodics [HEAP0]);
1238 downheap ((WT *)periodics, periodiccnt, 0); 1649 downheap (periodics, periodiccnt, HEAP0);
1239 } 1650 }
1240 else if (w->interval) 1651 else if (w->interval)
1241 { 1652 {
1242 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1243 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1654 /* if next trigger time is not sufficiently in the future, put it there */
1655 /* this might happen because of floating point inexactness */
1656 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1657 {
1658 ev_at (w) += w->interval;
1659
1660 /* if interval is unreasonably low we might still have a time in the past */
1661 /* so correct this. this will make the periodic very inexact, but the user */
1662 /* has effectively asked to get triggered more often than possible */
1663 if (ev_at (w) < ev_rt_now)
1664 ev_at (w) = ev_rt_now;
1665 }
1666
1667 ANHE_at_set (periodics [HEAP0]);
1244 downheap ((WT *)periodics, periodiccnt, 0); 1668 downheap (periodics, periodiccnt, HEAP0);
1245 } 1669 }
1246 else 1670 else
1247 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1671 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1248 1672
1249 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1673 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1254periodics_reschedule (EV_P) 1678periodics_reschedule (EV_P)
1255{ 1679{
1256 int i; 1680 int i;
1257 1681
1258 /* adjust periodics after time jump */ 1682 /* adjust periodics after time jump */
1683 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1684 {
1685 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1686
1687 if (w->reschedule_cb)
1688 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1689 else if (w->interval)
1690 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1691
1692 ANHE_at_set (periodics [i]);
1693 }
1694
1695 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */
1696 /* also, this is easy and corretc for both 2-heaps and 4-heaps */
1259 for (i = 0; i < periodiccnt; ++i) 1697 for (i = 0; i < periodiccnt; ++i)
1260 { 1698 upheap (periodics, i + HEAP0);
1261 ev_periodic *w = periodics [i]; 1699}
1700#endif
1262 1701
1263 if (w->reschedule_cb) 1702void inline_speed
1264 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1703time_update (EV_P_ ev_tstamp max_block)
1265 else if (w->interval) 1704{
1266 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1705 int i;
1706
1707#if EV_USE_MONOTONIC
1708 if (expect_true (have_monotonic))
1267 } 1709 {
1710 ev_tstamp odiff = rtmn_diff;
1268 1711
1269 /* now rebuild the heap */
1270 for (i = periodiccnt >> 1; i--; )
1271 downheap ((WT *)periodics, periodiccnt, i);
1272}
1273#endif
1274
1275int inline_size
1276time_update_monotonic (EV_P)
1277{
1278 mn_now = get_clock (); 1712 mn_now = get_clock ();
1279 1713
1714 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1715 /* interpolate in the meantime */
1280 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1716 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1281 { 1717 {
1282 ev_rt_now = rtmn_diff + mn_now; 1718 ev_rt_now = rtmn_diff + mn_now;
1283 return 0; 1719 return;
1284 } 1720 }
1285 else 1721
1286 {
1287 now_floor = mn_now; 1722 now_floor = mn_now;
1288 ev_rt_now = ev_time (); 1723 ev_rt_now = ev_time ();
1289 return 1;
1290 }
1291}
1292 1724
1293void inline_size 1725 /* loop a few times, before making important decisions.
1294time_update (EV_P) 1726 * on the choice of "4": one iteration isn't enough,
1295{ 1727 * in case we get preempted during the calls to
1296 int i; 1728 * ev_time and get_clock. a second call is almost guaranteed
1297 1729 * to succeed in that case, though. and looping a few more times
1298#if EV_USE_MONOTONIC 1730 * doesn't hurt either as we only do this on time-jumps or
1299 if (expect_true (have_monotonic)) 1731 * in the unlikely event of having been preempted here.
1300 { 1732 */
1301 if (time_update_monotonic (EV_A)) 1733 for (i = 4; --i; )
1302 { 1734 {
1303 ev_tstamp odiff = rtmn_diff;
1304
1305 /* loop a few times, before making important decisions.
1306 * on the choice of "4": one iteration isn't enough,
1307 * in case we get preempted during the calls to
1308 * ev_time and get_clock. a second call is almost guaranteed
1309 * to succeed in that case, though. and looping a few more times
1310 * doesn't hurt either as we only do this on time-jumps or
1311 * in the unlikely event of having been preempted here.
1312 */
1313 for (i = 4; --i; )
1314 {
1315 rtmn_diff = ev_rt_now - mn_now; 1735 rtmn_diff = ev_rt_now - mn_now;
1316 1736
1317 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1737 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1318 return; /* all is well */ 1738 return; /* all is well */
1319 1739
1320 ev_rt_now = ev_time (); 1740 ev_rt_now = ev_time ();
1321 mn_now = get_clock (); 1741 mn_now = get_clock ();
1322 now_floor = mn_now; 1742 now_floor = mn_now;
1323 } 1743 }
1324 1744
1325# if EV_PERIODIC_ENABLE 1745# if EV_PERIODIC_ENABLE
1326 periodics_reschedule (EV_A); 1746 periodics_reschedule (EV_A);
1327# endif 1747# endif
1328 /* no timer adjustment, as the monotonic clock doesn't jump */ 1748 /* no timer adjustment, as the monotonic clock doesn't jump */
1329 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1749 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1330 }
1331 } 1750 }
1332 else 1751 else
1333#endif 1752#endif
1334 { 1753 {
1335 ev_rt_now = ev_time (); 1754 ev_rt_now = ev_time ();
1336 1755
1337 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1756 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1338 { 1757 {
1339#if EV_PERIODIC_ENABLE 1758#if EV_PERIODIC_ENABLE
1340 periodics_reschedule (EV_A); 1759 periodics_reschedule (EV_A);
1341#endif 1760#endif
1342
1343 /* adjust timers. this is easy, as the offset is the same for all of them */ 1761 /* adjust timers. this is easy, as the offset is the same for all of them */
1344 for (i = 0; i < timercnt; ++i) 1762 for (i = 0; i < timercnt; ++i)
1763 {
1764 ANHE *he = timers + i + HEAP0;
1345 ((WT)timers [i])->at += ev_rt_now - mn_now; 1765 ANHE_w (*he)->at += ev_rt_now - mn_now;
1766 ANHE_at_set (*he);
1767 }
1346 } 1768 }
1347 1769
1348 mn_now = ev_rt_now; 1770 mn_now = ev_rt_now;
1349 } 1771 }
1350} 1772}
1364static int loop_done; 1786static int loop_done;
1365 1787
1366void 1788void
1367ev_loop (EV_P_ int flags) 1789ev_loop (EV_P_ int flags)
1368{ 1790{
1369 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1791 loop_done = EVUNLOOP_CANCEL;
1370 ? EVUNLOOP_ONE
1371 : EVUNLOOP_CANCEL;
1372 1792
1373 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1793 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1374 1794
1375 do 1795 do
1376 { 1796 {
1391 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1811 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1392 call_pending (EV_A); 1812 call_pending (EV_A);
1393 } 1813 }
1394#endif 1814#endif
1395 1815
1396 /* queue check watchers (and execute them) */ 1816 /* queue prepare watchers (and execute them) */
1397 if (expect_false (preparecnt)) 1817 if (expect_false (preparecnt))
1398 { 1818 {
1399 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1819 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1400 call_pending (EV_A); 1820 call_pending (EV_A);
1401 } 1821 }
1410 /* update fd-related kernel structures */ 1830 /* update fd-related kernel structures */
1411 fd_reify (EV_A); 1831 fd_reify (EV_A);
1412 1832
1413 /* calculate blocking time */ 1833 /* calculate blocking time */
1414 { 1834 {
1415 ev_tstamp block; 1835 ev_tstamp waittime = 0.;
1836 ev_tstamp sleeptime = 0.;
1416 1837
1417 if (expect_false (flags & EVLOOP_NONBLOCK || idlecnt || !activecnt)) 1838 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1418 block = 0.; /* do not block at all */
1419 else
1420 { 1839 {
1421 /* update time to cancel out callback processing overhead */ 1840 /* update time to cancel out callback processing overhead */
1422#if EV_USE_MONOTONIC
1423 if (expect_true (have_monotonic))
1424 time_update_monotonic (EV_A); 1841 time_update (EV_A_ 1e100);
1425 else
1426#endif
1427 {
1428 ev_rt_now = ev_time ();
1429 mn_now = ev_rt_now;
1430 }
1431 1842
1432 block = MAX_BLOCKTIME; 1843 waittime = MAX_BLOCKTIME;
1433 1844
1434 if (timercnt) 1845 if (timercnt)
1435 { 1846 {
1436 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1847 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1437 if (block > to) block = to; 1848 if (waittime > to) waittime = to;
1438 } 1849 }
1439 1850
1440#if EV_PERIODIC_ENABLE 1851#if EV_PERIODIC_ENABLE
1441 if (periodiccnt) 1852 if (periodiccnt)
1442 { 1853 {
1443 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1854 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1444 if (block > to) block = to; 1855 if (waittime > to) waittime = to;
1445 } 1856 }
1446#endif 1857#endif
1447 1858
1448 if (expect_false (block < 0.)) block = 0.; 1859 if (expect_false (waittime < timeout_blocktime))
1860 waittime = timeout_blocktime;
1861
1862 sleeptime = waittime - backend_fudge;
1863
1864 if (expect_true (sleeptime > io_blocktime))
1865 sleeptime = io_blocktime;
1866
1867 if (sleeptime)
1868 {
1869 ev_sleep (sleeptime);
1870 waittime -= sleeptime;
1871 }
1449 } 1872 }
1450 1873
1451 ++loop_count; 1874 ++loop_count;
1452 backend_poll (EV_A_ block); 1875 backend_poll (EV_A_ waittime);
1876
1877 /* update ev_rt_now, do magic */
1878 time_update (EV_A_ waittime + sleeptime);
1453 } 1879 }
1454
1455 /* update ev_rt_now, do magic */
1456 time_update (EV_A);
1457 1880
1458 /* queue pending timers and reschedule them */ 1881 /* queue pending timers and reschedule them */
1459 timers_reify (EV_A); /* relative timers called last */ 1882 timers_reify (EV_A); /* relative timers called last */
1460#if EV_PERIODIC_ENABLE 1883#if EV_PERIODIC_ENABLE
1461 periodics_reify (EV_A); /* absolute timers called first */ 1884 periodics_reify (EV_A); /* absolute timers called first */
1462#endif 1885#endif
1463 1886
1887#if EV_IDLE_ENABLE
1464 /* queue idle watchers unless other events are pending */ 1888 /* queue idle watchers unless other events are pending */
1465 if (idlecnt && !any_pending (EV_A)) 1889 idle_reify (EV_A);
1466 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1890#endif
1467 1891
1468 /* queue check watchers, to be executed first */ 1892 /* queue check watchers, to be executed first */
1469 if (expect_false (checkcnt)) 1893 if (expect_false (checkcnt))
1470 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1894 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1471 1895
1472 call_pending (EV_A); 1896 call_pending (EV_A);
1473
1474 } 1897 }
1475 while (expect_true (activecnt && !loop_done)); 1898 while (expect_true (
1899 activecnt
1900 && !loop_done
1901 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1902 ));
1476 1903
1477 if (loop_done == EVUNLOOP_ONE) 1904 if (loop_done == EVUNLOOP_ONE)
1478 loop_done = EVUNLOOP_CANCEL; 1905 loop_done = EVUNLOOP_CANCEL;
1479} 1906}
1480 1907
1507 head = &(*head)->next; 1934 head = &(*head)->next;
1508 } 1935 }
1509} 1936}
1510 1937
1511void inline_speed 1938void inline_speed
1512ev_clear_pending (EV_P_ W w) 1939clear_pending (EV_P_ W w)
1513{ 1940{
1514 if (w->pending) 1941 if (w->pending)
1515 { 1942 {
1516 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1943 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1517 w->pending = 0; 1944 w->pending = 0;
1518 } 1945 }
1519} 1946}
1520 1947
1948int
1949ev_clear_pending (EV_P_ void *w)
1950{
1951 W w_ = (W)w;
1952 int pending = w_->pending;
1953
1954 if (expect_true (pending))
1955 {
1956 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1957 w_->pending = 0;
1958 p->w = 0;
1959 return p->events;
1960 }
1961 else
1962 return 0;
1963}
1964
1965void inline_size
1966pri_adjust (EV_P_ W w)
1967{
1968 int pri = w->priority;
1969 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1970 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1971 w->priority = pri;
1972}
1973
1521void inline_speed 1974void inline_speed
1522ev_start (EV_P_ W w, int active) 1975ev_start (EV_P_ W w, int active)
1523{ 1976{
1524 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1977 pri_adjust (EV_A_ w);
1525 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1526
1527 w->active = active; 1978 w->active = active;
1528 ev_ref (EV_A); 1979 ev_ref (EV_A);
1529} 1980}
1530 1981
1531void inline_size 1982void inline_size
1535 w->active = 0; 1986 w->active = 0;
1536} 1987}
1537 1988
1538/*****************************************************************************/ 1989/*****************************************************************************/
1539 1990
1540void 1991void noinline
1541ev_io_start (EV_P_ ev_io *w) 1992ev_io_start (EV_P_ ev_io *w)
1542{ 1993{
1543 int fd = w->fd; 1994 int fd = w->fd;
1544 1995
1545 if (expect_false (ev_is_active (w))) 1996 if (expect_false (ev_is_active (w)))
1547 1998
1548 assert (("ev_io_start called with negative fd", fd >= 0)); 1999 assert (("ev_io_start called with negative fd", fd >= 0));
1549 2000
1550 ev_start (EV_A_ (W)w, 1); 2001 ev_start (EV_A_ (W)w, 1);
1551 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2002 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1552 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2003 wlist_add (&anfds[fd].head, (WL)w);
1553 2004
1554 fd_change (EV_A_ fd); 2005 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
2006 w->events &= ~EV_IOFDSET;
1555} 2007}
1556 2008
1557void 2009void noinline
1558ev_io_stop (EV_P_ ev_io *w) 2010ev_io_stop (EV_P_ ev_io *w)
1559{ 2011{
1560 ev_clear_pending (EV_A_ (W)w); 2012 clear_pending (EV_A_ (W)w);
1561 if (expect_false (!ev_is_active (w))) 2013 if (expect_false (!ev_is_active (w)))
1562 return; 2014 return;
1563 2015
1564 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2016 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1565 2017
1566 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2018 wlist_del (&anfds[w->fd].head, (WL)w);
1567 ev_stop (EV_A_ (W)w); 2019 ev_stop (EV_A_ (W)w);
1568 2020
1569 fd_change (EV_A_ w->fd); 2021 fd_change (EV_A_ w->fd, 1);
1570} 2022}
1571 2023
1572void 2024void noinline
1573ev_timer_start (EV_P_ ev_timer *w) 2025ev_timer_start (EV_P_ ev_timer *w)
1574{ 2026{
1575 if (expect_false (ev_is_active (w))) 2027 if (expect_false (ev_is_active (w)))
1576 return; 2028 return;
1577 2029
1578 ((WT)w)->at += mn_now; 2030 ev_at (w) += mn_now;
1579 2031
1580 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2032 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1581 2033
1582 ev_start (EV_A_ (W)w, ++timercnt); 2034 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1583 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2035 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1584 timers [timercnt - 1] = w; 2036 ANHE_w (timers [ev_active (w)]) = (WT)w;
1585 upheap ((WT *)timers, timercnt - 1); 2037 ANHE_at_set (timers [ev_active (w)]);
2038 upheap (timers, ev_active (w));
1586 2039
1587 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2040 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1588} 2041}
1589 2042
1590void 2043void noinline
1591ev_timer_stop (EV_P_ ev_timer *w) 2044ev_timer_stop (EV_P_ ev_timer *w)
1592{ 2045{
1593 ev_clear_pending (EV_A_ (W)w); 2046 clear_pending (EV_A_ (W)w);
1594 if (expect_false (!ev_is_active (w))) 2047 if (expect_false (!ev_is_active (w)))
1595 return; 2048 return;
1596 2049
1597 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1598
1599 { 2050 {
1600 int active = ((W)w)->active; 2051 int active = ev_active (w);
1601 2052
2053 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2054
1602 if (expect_true (--active < --timercnt)) 2055 if (expect_true (active < timercnt + HEAP0 - 1))
1603 { 2056 {
1604 timers [active] = timers [timercnt]; 2057 timers [active] = timers [timercnt + HEAP0 - 1];
1605 adjustheap ((WT *)timers, timercnt, active); 2058 adjustheap (timers, timercnt, active);
1606 } 2059 }
2060
2061 --timercnt;
1607 } 2062 }
1608 2063
1609 ((WT)w)->at -= mn_now; 2064 ev_at (w) -= mn_now;
1610 2065
1611 ev_stop (EV_A_ (W)w); 2066 ev_stop (EV_A_ (W)w);
1612} 2067}
1613 2068
1614void 2069void noinline
1615ev_timer_again (EV_P_ ev_timer *w) 2070ev_timer_again (EV_P_ ev_timer *w)
1616{ 2071{
1617 if (ev_is_active (w)) 2072 if (ev_is_active (w))
1618 { 2073 {
1619 if (w->repeat) 2074 if (w->repeat)
1620 { 2075 {
1621 ((WT)w)->at = mn_now + w->repeat; 2076 ev_at (w) = mn_now + w->repeat;
2077 ANHE_at_set (timers [ev_active (w)]);
1622 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2078 adjustheap (timers, timercnt, ev_active (w));
1623 } 2079 }
1624 else 2080 else
1625 ev_timer_stop (EV_A_ w); 2081 ev_timer_stop (EV_A_ w);
1626 } 2082 }
1627 else if (w->repeat) 2083 else if (w->repeat)
1628 { 2084 {
1629 w->at = w->repeat; 2085 ev_at (w) = w->repeat;
1630 ev_timer_start (EV_A_ w); 2086 ev_timer_start (EV_A_ w);
1631 } 2087 }
1632} 2088}
1633 2089
1634#if EV_PERIODIC_ENABLE 2090#if EV_PERIODIC_ENABLE
1635void 2091void noinline
1636ev_periodic_start (EV_P_ ev_periodic *w) 2092ev_periodic_start (EV_P_ ev_periodic *w)
1637{ 2093{
1638 if (expect_false (ev_is_active (w))) 2094 if (expect_false (ev_is_active (w)))
1639 return; 2095 return;
1640 2096
1641 if (w->reschedule_cb) 2097 if (w->reschedule_cb)
1642 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2098 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1643 else if (w->interval) 2099 else if (w->interval)
1644 { 2100 {
1645 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2101 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1646 /* this formula differs from the one in periodic_reify because we do not always round up */ 2102 /* this formula differs from the one in periodic_reify because we do not always round up */
1647 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2103 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1648 } 2104 }
2105 else
2106 ev_at (w) = w->offset;
1649 2107
1650 ev_start (EV_A_ (W)w, ++periodiccnt); 2108 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1651 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2109 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1652 periodics [periodiccnt - 1] = w; 2110 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1653 upheap ((WT *)periodics, periodiccnt - 1); 2111 ANHE_at_set (periodics [ev_active (w)]);
2112 upheap (periodics, ev_active (w));
1654 2113
1655 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2114 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1656} 2115}
1657 2116
1658void 2117void noinline
1659ev_periodic_stop (EV_P_ ev_periodic *w) 2118ev_periodic_stop (EV_P_ ev_periodic *w)
1660{ 2119{
1661 ev_clear_pending (EV_A_ (W)w); 2120 clear_pending (EV_A_ (W)w);
1662 if (expect_false (!ev_is_active (w))) 2121 if (expect_false (!ev_is_active (w)))
1663 return; 2122 return;
1664 2123
1665 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1666
1667 { 2124 {
1668 int active = ((W)w)->active; 2125 int active = ev_active (w);
1669 2126
2127 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2128
1670 if (expect_true (--active < --periodiccnt)) 2129 if (expect_true (active < periodiccnt + HEAP0 - 1))
1671 { 2130 {
1672 periodics [active] = periodics [periodiccnt]; 2131 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1673 adjustheap ((WT *)periodics, periodiccnt, active); 2132 adjustheap (periodics, periodiccnt, active);
1674 } 2133 }
2134
2135 --periodiccnt;
1675 } 2136 }
1676 2137
1677 ev_stop (EV_A_ (W)w); 2138 ev_stop (EV_A_ (W)w);
1678} 2139}
1679 2140
1680void 2141void noinline
1681ev_periodic_again (EV_P_ ev_periodic *w) 2142ev_periodic_again (EV_P_ ev_periodic *w)
1682{ 2143{
1683 /* TODO: use adjustheap and recalculation */ 2144 /* TODO: use adjustheap and recalculation */
1684 ev_periodic_stop (EV_A_ w); 2145 ev_periodic_stop (EV_A_ w);
1685 ev_periodic_start (EV_A_ w); 2146 ev_periodic_start (EV_A_ w);
1688 2149
1689#ifndef SA_RESTART 2150#ifndef SA_RESTART
1690# define SA_RESTART 0 2151# define SA_RESTART 0
1691#endif 2152#endif
1692 2153
1693void 2154void noinline
1694ev_signal_start (EV_P_ ev_signal *w) 2155ev_signal_start (EV_P_ ev_signal *w)
1695{ 2156{
1696#if EV_MULTIPLICITY 2157#if EV_MULTIPLICITY
1697 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2158 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1698#endif 2159#endif
1699 if (expect_false (ev_is_active (w))) 2160 if (expect_false (ev_is_active (w)))
1700 return; 2161 return;
1701 2162
1702 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2163 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1703 2164
2165 evpipe_init (EV_A);
2166
2167 {
2168#ifndef _WIN32
2169 sigset_t full, prev;
2170 sigfillset (&full);
2171 sigprocmask (SIG_SETMASK, &full, &prev);
2172#endif
2173
2174 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2175
2176#ifndef _WIN32
2177 sigprocmask (SIG_SETMASK, &prev, 0);
2178#endif
2179 }
2180
1704 ev_start (EV_A_ (W)w, 1); 2181 ev_start (EV_A_ (W)w, 1);
1705 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1706 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2182 wlist_add (&signals [w->signum - 1].head, (WL)w);
1707 2183
1708 if (!((WL)w)->next) 2184 if (!((WL)w)->next)
1709 { 2185 {
1710#if _WIN32 2186#if _WIN32
1711 signal (w->signum, sighandler); 2187 signal (w->signum, ev_sighandler);
1712#else 2188#else
1713 struct sigaction sa; 2189 struct sigaction sa;
1714 sa.sa_handler = sighandler; 2190 sa.sa_handler = ev_sighandler;
1715 sigfillset (&sa.sa_mask); 2191 sigfillset (&sa.sa_mask);
1716 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2192 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1717 sigaction (w->signum, &sa, 0); 2193 sigaction (w->signum, &sa, 0);
1718#endif 2194#endif
1719 } 2195 }
1720} 2196}
1721 2197
1722void 2198void noinline
1723ev_signal_stop (EV_P_ ev_signal *w) 2199ev_signal_stop (EV_P_ ev_signal *w)
1724{ 2200{
1725 ev_clear_pending (EV_A_ (W)w); 2201 clear_pending (EV_A_ (W)w);
1726 if (expect_false (!ev_is_active (w))) 2202 if (expect_false (!ev_is_active (w)))
1727 return; 2203 return;
1728 2204
1729 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2205 wlist_del (&signals [w->signum - 1].head, (WL)w);
1730 ev_stop (EV_A_ (W)w); 2206 ev_stop (EV_A_ (W)w);
1731 2207
1732 if (!signals [w->signum - 1].head) 2208 if (!signals [w->signum - 1].head)
1733 signal (w->signum, SIG_DFL); 2209 signal (w->signum, SIG_DFL);
1734} 2210}
1741#endif 2217#endif
1742 if (expect_false (ev_is_active (w))) 2218 if (expect_false (ev_is_active (w)))
1743 return; 2219 return;
1744 2220
1745 ev_start (EV_A_ (W)w, 1); 2221 ev_start (EV_A_ (W)w, 1);
1746 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2222 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1747} 2223}
1748 2224
1749void 2225void
1750ev_child_stop (EV_P_ ev_child *w) 2226ev_child_stop (EV_P_ ev_child *w)
1751{ 2227{
1752 ev_clear_pending (EV_A_ (W)w); 2228 clear_pending (EV_A_ (W)w);
1753 if (expect_false (!ev_is_active (w))) 2229 if (expect_false (!ev_is_active (w)))
1754 return; 2230 return;
1755 2231
1756 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2232 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1757 ev_stop (EV_A_ (W)w); 2233 ev_stop (EV_A_ (W)w);
1758} 2234}
1759 2235
1760#if EV_STAT_ENABLE 2236#if EV_STAT_ENABLE
1761 2237
1780 if (w->wd < 0) 2256 if (w->wd < 0)
1781 { 2257 {
1782 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2258 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1783 2259
1784 /* monitor some parent directory for speedup hints */ 2260 /* monitor some parent directory for speedup hints */
2261 /* note that exceeding the hardcoded limit is not a correctness issue, */
2262 /* but an efficiency issue only */
1785 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2263 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1786 { 2264 {
1787 char path [4096]; 2265 char path [4096];
1788 strcpy (path, w->path); 2266 strcpy (path, w->path);
1789 2267
1993} 2471}
1994 2472
1995void 2473void
1996ev_stat_stop (EV_P_ ev_stat *w) 2474ev_stat_stop (EV_P_ ev_stat *w)
1997{ 2475{
1998 ev_clear_pending (EV_A_ (W)w); 2476 clear_pending (EV_A_ (W)w);
1999 if (expect_false (!ev_is_active (w))) 2477 if (expect_false (!ev_is_active (w)))
2000 return; 2478 return;
2001 2479
2002#if EV_USE_INOTIFY 2480#if EV_USE_INOTIFY
2003 infy_del (EV_A_ w); 2481 infy_del (EV_A_ w);
2006 2484
2007 ev_stop (EV_A_ (W)w); 2485 ev_stop (EV_A_ (W)w);
2008} 2486}
2009#endif 2487#endif
2010 2488
2489#if EV_IDLE_ENABLE
2011void 2490void
2012ev_idle_start (EV_P_ ev_idle *w) 2491ev_idle_start (EV_P_ ev_idle *w)
2013{ 2492{
2014 if (expect_false (ev_is_active (w))) 2493 if (expect_false (ev_is_active (w)))
2015 return; 2494 return;
2016 2495
2496 pri_adjust (EV_A_ (W)w);
2497
2498 {
2499 int active = ++idlecnt [ABSPRI (w)];
2500
2501 ++idleall;
2017 ev_start (EV_A_ (W)w, ++idlecnt); 2502 ev_start (EV_A_ (W)w, active);
2503
2018 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2504 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2019 idles [idlecnt - 1] = w; 2505 idles [ABSPRI (w)][active - 1] = w;
2506 }
2020} 2507}
2021 2508
2022void 2509void
2023ev_idle_stop (EV_P_ ev_idle *w) 2510ev_idle_stop (EV_P_ ev_idle *w)
2024{ 2511{
2025 ev_clear_pending (EV_A_ (W)w); 2512 clear_pending (EV_A_ (W)w);
2026 if (expect_false (!ev_is_active (w))) 2513 if (expect_false (!ev_is_active (w)))
2027 return; 2514 return;
2028 2515
2029 { 2516 {
2030 int active = ((W)w)->active; 2517 int active = ev_active (w);
2031 idles [active - 1] = idles [--idlecnt]; 2518
2032 ((W)idles [active - 1])->active = active; 2519 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2520 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2521
2522 ev_stop (EV_A_ (W)w);
2523 --idleall;
2033 } 2524 }
2034
2035 ev_stop (EV_A_ (W)w);
2036} 2525}
2526#endif
2037 2527
2038void 2528void
2039ev_prepare_start (EV_P_ ev_prepare *w) 2529ev_prepare_start (EV_P_ ev_prepare *w)
2040{ 2530{
2041 if (expect_false (ev_is_active (w))) 2531 if (expect_false (ev_is_active (w)))
2047} 2537}
2048 2538
2049void 2539void
2050ev_prepare_stop (EV_P_ ev_prepare *w) 2540ev_prepare_stop (EV_P_ ev_prepare *w)
2051{ 2541{
2052 ev_clear_pending (EV_A_ (W)w); 2542 clear_pending (EV_A_ (W)w);
2053 if (expect_false (!ev_is_active (w))) 2543 if (expect_false (!ev_is_active (w)))
2054 return; 2544 return;
2055 2545
2056 { 2546 {
2057 int active = ((W)w)->active; 2547 int active = ev_active (w);
2548
2058 prepares [active - 1] = prepares [--preparecnt]; 2549 prepares [active - 1] = prepares [--preparecnt];
2059 ((W)prepares [active - 1])->active = active; 2550 ev_active (prepares [active - 1]) = active;
2060 } 2551 }
2061 2552
2062 ev_stop (EV_A_ (W)w); 2553 ev_stop (EV_A_ (W)w);
2063} 2554}
2064 2555
2074} 2565}
2075 2566
2076void 2567void
2077ev_check_stop (EV_P_ ev_check *w) 2568ev_check_stop (EV_P_ ev_check *w)
2078{ 2569{
2079 ev_clear_pending (EV_A_ (W)w); 2570 clear_pending (EV_A_ (W)w);
2080 if (expect_false (!ev_is_active (w))) 2571 if (expect_false (!ev_is_active (w)))
2081 return; 2572 return;
2082 2573
2083 { 2574 {
2084 int active = ((W)w)->active; 2575 int active = ev_active (w);
2576
2085 checks [active - 1] = checks [--checkcnt]; 2577 checks [active - 1] = checks [--checkcnt];
2086 ((W)checks [active - 1])->active = active; 2578 ev_active (checks [active - 1]) = active;
2087 } 2579 }
2088 2580
2089 ev_stop (EV_A_ (W)w); 2581 ev_stop (EV_A_ (W)w);
2090} 2582}
2091 2583
2092#if EV_EMBED_ENABLE 2584#if EV_EMBED_ENABLE
2093void noinline 2585void noinline
2094ev_embed_sweep (EV_P_ ev_embed *w) 2586ev_embed_sweep (EV_P_ ev_embed *w)
2095{ 2587{
2096 ev_loop (w->loop, EVLOOP_NONBLOCK); 2588 ev_loop (w->other, EVLOOP_NONBLOCK);
2097} 2589}
2098 2590
2099static void 2591static void
2100embed_cb (EV_P_ ev_io *io, int revents) 2592embed_io_cb (EV_P_ ev_io *io, int revents)
2101{ 2593{
2102 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2594 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2103 2595
2104 if (ev_cb (w)) 2596 if (ev_cb (w))
2105 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2597 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2106 else 2598 else
2107 ev_embed_sweep (loop, w); 2599 ev_loop (w->other, EVLOOP_NONBLOCK);
2108} 2600}
2601
2602static void
2603embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2604{
2605 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2606
2607 {
2608 struct ev_loop *loop = w->other;
2609
2610 while (fdchangecnt)
2611 {
2612 fd_reify (EV_A);
2613 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2614 }
2615 }
2616}
2617
2618#if 0
2619static void
2620embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2621{
2622 ev_idle_stop (EV_A_ idle);
2623}
2624#endif
2109 2625
2110void 2626void
2111ev_embed_start (EV_P_ ev_embed *w) 2627ev_embed_start (EV_P_ ev_embed *w)
2112{ 2628{
2113 if (expect_false (ev_is_active (w))) 2629 if (expect_false (ev_is_active (w)))
2114 return; 2630 return;
2115 2631
2116 { 2632 {
2117 struct ev_loop *loop = w->loop; 2633 struct ev_loop *loop = w->other;
2118 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2634 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2119 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2635 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2120 } 2636 }
2121 2637
2122 ev_set_priority (&w->io, ev_priority (w)); 2638 ev_set_priority (&w->io, ev_priority (w));
2123 ev_io_start (EV_A_ &w->io); 2639 ev_io_start (EV_A_ &w->io);
2124 2640
2641 ev_prepare_init (&w->prepare, embed_prepare_cb);
2642 ev_set_priority (&w->prepare, EV_MINPRI);
2643 ev_prepare_start (EV_A_ &w->prepare);
2644
2645 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2646
2125 ev_start (EV_A_ (W)w, 1); 2647 ev_start (EV_A_ (W)w, 1);
2126} 2648}
2127 2649
2128void 2650void
2129ev_embed_stop (EV_P_ ev_embed *w) 2651ev_embed_stop (EV_P_ ev_embed *w)
2130{ 2652{
2131 ev_clear_pending (EV_A_ (W)w); 2653 clear_pending (EV_A_ (W)w);
2132 if (expect_false (!ev_is_active (w))) 2654 if (expect_false (!ev_is_active (w)))
2133 return; 2655 return;
2134 2656
2135 ev_io_stop (EV_A_ &w->io); 2657 ev_io_stop (EV_A_ &w->io);
2658 ev_prepare_stop (EV_A_ &w->prepare);
2136 2659
2137 ev_stop (EV_A_ (W)w); 2660 ev_stop (EV_A_ (W)w);
2138} 2661}
2139#endif 2662#endif
2140 2663
2151} 2674}
2152 2675
2153void 2676void
2154ev_fork_stop (EV_P_ ev_fork *w) 2677ev_fork_stop (EV_P_ ev_fork *w)
2155{ 2678{
2156 ev_clear_pending (EV_A_ (W)w); 2679 clear_pending (EV_A_ (W)w);
2157 if (expect_false (!ev_is_active (w))) 2680 if (expect_false (!ev_is_active (w)))
2158 return; 2681 return;
2159 2682
2160 { 2683 {
2161 int active = ((W)w)->active; 2684 int active = ev_active (w);
2685
2162 forks [active - 1] = forks [--forkcnt]; 2686 forks [active - 1] = forks [--forkcnt];
2163 ((W)forks [active - 1])->active = active; 2687 ev_active (forks [active - 1]) = active;
2164 } 2688 }
2165 2689
2166 ev_stop (EV_A_ (W)w); 2690 ev_stop (EV_A_ (W)w);
2691}
2692#endif
2693
2694#if EV_ASYNC_ENABLE
2695void
2696ev_async_start (EV_P_ ev_async *w)
2697{
2698 if (expect_false (ev_is_active (w)))
2699 return;
2700
2701 evpipe_init (EV_A);
2702
2703 ev_start (EV_A_ (W)w, ++asynccnt);
2704 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2705 asyncs [asynccnt - 1] = w;
2706}
2707
2708void
2709ev_async_stop (EV_P_ ev_async *w)
2710{
2711 clear_pending (EV_A_ (W)w);
2712 if (expect_false (!ev_is_active (w)))
2713 return;
2714
2715 {
2716 int active = ev_active (w);
2717
2718 asyncs [active - 1] = asyncs [--asynccnt];
2719 ev_active (asyncs [active - 1]) = active;
2720 }
2721
2722 ev_stop (EV_A_ (W)w);
2723}
2724
2725void
2726ev_async_send (EV_P_ ev_async *w)
2727{
2728 w->sent = 1;
2729 evpipe_write (EV_A_ &gotasync);
2167} 2730}
2168#endif 2731#endif
2169 2732
2170/*****************************************************************************/ 2733/*****************************************************************************/
2171 2734
2229 ev_timer_set (&once->to, timeout, 0.); 2792 ev_timer_set (&once->to, timeout, 0.);
2230 ev_timer_start (EV_A_ &once->to); 2793 ev_timer_start (EV_A_ &once->to);
2231 } 2794 }
2232} 2795}
2233 2796
2797#if EV_MULTIPLICITY
2798 #include "ev_wrap.h"
2799#endif
2800
2234#ifdef __cplusplus 2801#ifdef __cplusplus
2235} 2802}
2236#endif 2803#endif
2237 2804

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines