ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.163 by root, Wed Dec 5 13:54:36 2007 UTC vs.
Revision 1.247 by root, Wed May 21 21:22:10 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 249
197#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
200#endif 253#endif
202#ifndef CLOCK_REALTIME 255#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 256# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 257# define EV_USE_REALTIME 0
205#endif 258#endif
206 259
260#if !EV_STAT_ENABLE
261# undef EV_USE_INOTIFY
262# define EV_USE_INOTIFY 0
263#endif
264
265#if !EV_USE_NANOSLEEP
266# ifndef _WIN32
267# include <sys/select.h>
268# endif
269#endif
270
271#if EV_USE_INOTIFY
272# include <sys/inotify.h>
273#endif
274
207#if EV_SELECT_IS_WINSOCKET 275#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 276# include <winsock.h>
209#endif 277#endif
210 278
211#if !EV_STAT_ENABLE 279#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h>
282# ifdef __cplusplus
283extern "C" {
213#endif 284# endif
214 285int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 286# ifdef __cplusplus
216# include <sys/inotify.h> 287}
288# endif
217#endif 289#endif
218 290
219/**/ 291/**/
292
293/*
294 * This is used to avoid floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding
297 * errors are against us.
298 * This value is good at least till the year 4000.
299 * Better solutions welcome.
300 */
301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 302
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 306
225#if __GNUC__ >= 3 307#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 308# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 309# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 310#else
236# define expect(expr,value) (expr) 311# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 312# define noinline
313# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
314# define inline
315# endif
240#endif 316#endif
241 317
242#define expect_false(expr) expect ((expr) != 0, 0) 318#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 319#define expect_true(expr) expect ((expr) != 0, 1)
320#define inline_size static inline
321
322#if EV_MINIMAL
323# define inline_speed static noinline
324#else
325# define inline_speed static inline
326#endif
244 327
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 330
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 331#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 332#define EMPTY2(a,b) /* used to suppress some warnings */
250 333
251typedef ev_watcher *W; 334typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 335typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 336typedef ev_watcher_time *WT;
254 337
338#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at
340
341#if EV_USE_MONOTONIC
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
345#endif
256 346
257#ifdef _WIN32 347#ifdef _WIN32
258# include "ev_win32.c" 348# include "ev_win32.c"
259#endif 349#endif
260 350
281 perror (msg); 371 perror (msg);
282 abort (); 372 abort ();
283 } 373 }
284} 374}
285 375
376static void *
377ev_realloc_emul (void *ptr, long size)
378{
379 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and
381 * the single unix specification, so work around them here.
382 */
383
384 if (size)
385 return realloc (ptr, size);
386
387 free (ptr);
388 return 0;
389}
390
286static void *(*alloc)(void *ptr, long size); 391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 392
288void 393void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 394ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 395{
291 alloc = cb; 396 alloc = cb;
292} 397}
293 398
294inline_speed void * 399inline_speed void *
295ev_realloc (void *ptr, long size) 400ev_realloc (void *ptr, long size)
296{ 401{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 402 ptr = alloc (ptr, size);
298 403
299 if (!ptr && size) 404 if (!ptr && size)
300 { 405 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 407 abort ();
325 W w; 430 W w;
326 int events; 431 int events;
327} ANPENDING; 432} ANPENDING;
328 433
329#if EV_USE_INOTIFY 434#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */
330typedef struct 436typedef struct
331{ 437{
332 WL head; 438 WL head;
333} ANFS; 439} ANFS;
440#endif
441
442/* Heap Entry */
443#if EV_HEAP_CACHE_AT
444 typedef struct {
445 ev_tstamp at;
446 WT w;
447 } ANHE;
448
449 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
452#else
453 typedef WT ANHE;
454
455 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he)
334#endif 458#endif
335 459
336#if EV_MULTIPLICITY 460#if EV_MULTIPLICITY
337 461
338 struct ev_loop 462 struct ev_loop
396{ 520{
397 return ev_rt_now; 521 return ev_rt_now;
398} 522}
399#endif 523#endif
400 524
525void
526ev_sleep (ev_tstamp delay)
527{
528 if (delay > 0.)
529 {
530#if EV_USE_NANOSLEEP
531 struct timespec ts;
532
533 ts.tv_sec = (time_t)delay;
534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
535
536 nanosleep (&ts, 0);
537#elif defined(_WIN32)
538 Sleep ((unsigned long)(delay * 1e3));
539#else
540 struct timeval tv;
541
542 tv.tv_sec = (time_t)delay;
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
544
545 select (0, 0, 0, 0, &tv);
546#endif
547 }
548}
549
550/*****************************************************************************/
551
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553
401int inline_size 554int inline_size
402array_nextsize (int elem, int cur, int cnt) 555array_nextsize (int elem, int cur, int cnt)
403{ 556{
404 int ncur = cur + 1; 557 int ncur = cur + 1;
405 558
406 do 559 do
407 ncur <<= 1; 560 ncur <<= 1;
408 while (cnt > ncur); 561 while (cnt > ncur);
409 562
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 563 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
411 if (elem * ncur > 4096) 564 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
412 { 565 {
413 ncur *= elem; 566 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 567 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
415 ncur = ncur - sizeof (void *) * 4; 568 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem; 569 ncur /= elem;
417 } 570 }
418 571
419 return ncur; 572 return ncur;
420} 573}
421 574
422inline_speed void * 575static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 576array_realloc (int elem, void *base, int *cur, int cnt)
424{ 577{
425 *cur = array_nextsize (elem, *cur, cnt); 578 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 579 return ev_realloc (base, elem * *cur);
427} 580}
452 605
453void noinline 606void noinline
454ev_feed_event (EV_P_ void *w, int revents) 607ev_feed_event (EV_P_ void *w, int revents)
455{ 608{
456 W w_ = (W)w; 609 W w_ = (W)w;
610 int pri = ABSPRI (w_);
457 611
458 if (expect_false (w_->pending)) 612 if (expect_false (w_->pending))
613 pendings [pri][w_->pending - 1].events |= revents;
614 else
459 { 615 {
616 w_->pending = ++pendingcnt [pri];
617 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
618 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 619 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 620 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 621}
469 622
470void inline_size 623void inline_speed
471queue_events (EV_P_ W *events, int eventcnt, int type) 624queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 625{
473 int i; 626 int i;
474 627
475 for (i = 0; i < eventcnt; ++i) 628 for (i = 0; i < eventcnt; ++i)
507} 660}
508 661
509void 662void
510ev_feed_fd_event (EV_P_ int fd, int revents) 663ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 664{
665 if (fd >= 0 && fd < anfdmax)
512 fd_event (EV_A_ fd, revents); 666 fd_event (EV_A_ fd, revents);
513} 667}
514 668
515void inline_size 669void inline_size
516fd_reify (EV_P) 670fd_reify (EV_P)
517{ 671{
521 { 675 {
522 int fd = fdchanges [i]; 676 int fd = fdchanges [i];
523 ANFD *anfd = anfds + fd; 677 ANFD *anfd = anfds + fd;
524 ev_io *w; 678 ev_io *w;
525 679
526 int events = 0; 680 unsigned char events = 0;
527 681
528 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
529 events |= w->events; 683 events |= (unsigned char)w->events;
530 684
531#if EV_SELECT_IS_WINSOCKET 685#if EV_SELECT_IS_WINSOCKET
532 if (events) 686 if (events)
533 { 687 {
534 unsigned long argp; 688 unsigned long argp;
689 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else
535 anfd->handle = _get_osfhandle (fd); 692 anfd->handle = _get_osfhandle (fd);
693 #endif
536 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
537 } 695 }
538#endif 696#endif
539 697
698 {
699 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify;
701
540 anfd->reify = 0; 702 anfd->reify = 0;
541
542 backend_modify (EV_A_ fd, anfd->events, events);
543 anfd->events = events; 703 anfd->events = events;
704
705 if (o_events != events || o_reify & EV_IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events);
707 }
544 } 708 }
545 709
546 fdchangecnt = 0; 710 fdchangecnt = 0;
547} 711}
548 712
549void inline_size 713void inline_size
550fd_change (EV_P_ int fd) 714fd_change (EV_P_ int fd, int flags)
551{ 715{
552 if (expect_false (anfds [fd].reify)) 716 unsigned char reify = anfds [fd].reify;
553 return;
554
555 anfds [fd].reify = 1; 717 anfds [fd].reify |= flags;
556 718
719 if (expect_true (!reify))
720 {
557 ++fdchangecnt; 721 ++fdchangecnt;
558 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
559 fdchanges [fdchangecnt - 1] = fd; 723 fdchanges [fdchangecnt - 1] = fd;
724 }
560} 725}
561 726
562void inline_speed 727void inline_speed
563fd_kill (EV_P_ int fd) 728fd_kill (EV_P_ int fd)
564{ 729{
615 780
616 for (fd = 0; fd < anfdmax; ++fd) 781 for (fd = 0; fd < anfdmax; ++fd)
617 if (anfds [fd].events) 782 if (anfds [fd].events)
618 { 783 {
619 anfds [fd].events = 0; 784 anfds [fd].events = 0;
620 fd_change (EV_A_ fd); 785 fd_change (EV_A_ fd, EV_IOFDSET | 1);
621 } 786 }
622} 787}
623 788
624/*****************************************************************************/ 789/*****************************************************************************/
625 790
791/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree.
795 */
796
797/*
798 * at the moment we allow libev the luxury of two heaps,
799 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
800 * which is more cache-efficient.
801 * the difference is about 5% with 50000+ watchers.
802 */
803#if EV_USE_4HEAP
804
805#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808
809/* towards the root */
626void inline_speed 810void inline_speed
627upheap (WT *heap, int k) 811upheap (ANHE *heap, int k)
628{ 812{
629 WT w = heap [k]; 813 ANHE he = heap [k];
630 814
631 while (k && heap [k >> 1]->at > w->at) 815 for (;;)
632 { 816 {
817 int p = HPARENT (k);
818
819 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
820 break;
821
633 heap [k] = heap [k >> 1]; 822 heap [k] = heap [p];
634 ((W)heap [k])->active = k + 1; 823 ev_active (ANHE_w (heap [k])) = k;
635 k >>= 1; 824 k = p;
636 } 825 }
637 826
638 heap [k] = w; 827 heap [k] = he;
639 ((W)heap [k])->active = k + 1; 828 ev_active (ANHE_w (he)) = k;
640
641} 829}
642 830
831/* away from the root */
643void inline_speed 832void inline_speed
644downheap (WT *heap, int N, int k) 833downheap (ANHE *heap, int N, int k)
645{ 834{
646 WT w = heap [k]; 835 ANHE he = heap [k];
836 ANHE *E = heap + N + HEAP0;
647 837
648 while (k < (N >> 1)) 838 for (;;)
649 { 839 {
650 int j = k << 1; 840 ev_tstamp minat;
841 ANHE *minpos;
842 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
651 843
652 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 844 // find minimum child
845 if (expect_true (pos + DHEAP - 1 < E))
653 ++j; 846 {
654 847 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
655 if (w->at <= heap [j]->at) 848 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
850 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
851 }
852 else if (pos < E)
853 {
854 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
855 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
856 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
857 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
858 }
859 else
656 break; 860 break;
657 861
862 if (ANHE_at (he) <= minat)
863 break;
864
865 heap [k] = *minpos;
866 ev_active (ANHE_w (*minpos)) = k;
867
868 k = minpos - heap;
869 }
870
871 heap [k] = he;
872 ev_active (ANHE_w (he)) = k;
873}
874
875#else // 4HEAP
876
877#define HEAP0 1
878#define HPARENT(k) ((k) >> 1)
879
880/* towards the root */
881void inline_speed
882upheap (ANHE *heap, int k)
883{
884 ANHE he = heap [k];
885
886 for (;;)
887 {
888 int p = HPARENT (k);
889
890 /* maybe we could use a dummy element at heap [0]? */
891 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
892 break;
893
658 heap [k] = heap [j]; 894 heap [k] = heap [p];
659 ((W)heap [k])->active = k + 1; 895 ev_active (ANHE_w (heap [k])) = k;
660 k = j; 896 k = p;
661 } 897 }
662 898
663 heap [k] = w; 899 heap [k] = he;
664 ((W)heap [k])->active = k + 1; 900 ev_active (ANHE_w (heap [k])) = k;
665} 901}
902
903/* away from the root */
904void inline_speed
905downheap (ANHE *heap, int N, int k)
906{
907 ANHE he = heap [k];
908
909 for (;;)
910 {
911 int c = k << 1;
912
913 if (c > N)
914 break;
915
916 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
917 ? 1 : 0;
918
919 if (ANHE_at (he) <= ANHE_at (heap [c]))
920 break;
921
922 heap [k] = heap [c];
923 ev_active (ANHE_w (heap [k])) = k;
924
925 k = c;
926 }
927
928 heap [k] = he;
929 ev_active (ANHE_w (he)) = k;
930}
931#endif
666 932
667void inline_size 933void inline_size
668adjustheap (WT *heap, int N, int k) 934adjustheap (ANHE *heap, int N, int k)
669{ 935{
936 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
670 upheap (heap, k); 937 upheap (heap, k);
938 else
671 downheap (heap, N, k); 939 downheap (heap, N, k);
672} 940}
673 941
674/*****************************************************************************/ 942/*****************************************************************************/
675 943
676typedef struct 944typedef struct
677{ 945{
678 WL head; 946 WL head;
679 sig_atomic_t volatile gotsig; 947 EV_ATOMIC_T gotsig;
680} ANSIG; 948} ANSIG;
681 949
682static ANSIG *signals; 950static ANSIG *signals;
683static int signalmax; 951static int signalmax;
684 952
685static int sigpipe [2]; 953static EV_ATOMIC_T gotsig;
686static sig_atomic_t volatile gotsig;
687static ev_io sigev;
688 954
689void inline_size 955void inline_size
690signals_init (ANSIG *base, int count) 956signals_init (ANSIG *base, int count)
691{ 957{
692 while (count--) 958 while (count--)
696 962
697 ++base; 963 ++base;
698 } 964 }
699} 965}
700 966
701static void 967/*****************************************************************************/
702sighandler (int signum)
703{
704#if _WIN32
705 signal (signum, sighandler);
706#endif
707 968
708 signals [signum - 1].gotsig = 1;
709
710 if (!gotsig)
711 {
712 int old_errno = errno;
713 gotsig = 1;
714 write (sigpipe [1], &signum, 1);
715 errno = old_errno;
716 }
717}
718
719void noinline
720ev_feed_signal_event (EV_P_ int signum)
721{
722 WL w;
723
724#if EV_MULTIPLICITY
725 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
726#endif
727
728 --signum;
729
730 if (signum < 0 || signum >= signalmax)
731 return;
732
733 signals [signum].gotsig = 0;
734
735 for (w = signals [signum].head; w; w = w->next)
736 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
737}
738
739static void
740sigcb (EV_P_ ev_io *iow, int revents)
741{
742 int signum;
743
744 read (sigpipe [0], &revents, 1);
745 gotsig = 0;
746
747 for (signum = signalmax; signum--; )
748 if (signals [signum].gotsig)
749 ev_feed_signal_event (EV_A_ signum + 1);
750}
751
752void inline_size 969void inline_speed
753fd_intern (int fd) 970fd_intern (int fd)
754{ 971{
755#ifdef _WIN32 972#ifdef _WIN32
756 int arg = 1; 973 int arg = 1;
757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 974 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
760 fcntl (fd, F_SETFL, O_NONBLOCK); 977 fcntl (fd, F_SETFL, O_NONBLOCK);
761#endif 978#endif
762} 979}
763 980
764static void noinline 981static void noinline
765siginit (EV_P) 982evpipe_init (EV_P)
766{ 983{
984 if (!ev_is_active (&pipeev))
985 {
986#if EV_USE_EVENTFD
987 if ((evfd = eventfd (0, 0)) >= 0)
988 {
989 evpipe [0] = -1;
990 fd_intern (evfd);
991 ev_io_set (&pipeev, evfd, EV_READ);
992 }
993 else
994#endif
995 {
996 while (pipe (evpipe))
997 syserr ("(libev) error creating signal/async pipe");
998
767 fd_intern (sigpipe [0]); 999 fd_intern (evpipe [0]);
768 fd_intern (sigpipe [1]); 1000 fd_intern (evpipe [1]);
1001 ev_io_set (&pipeev, evpipe [0], EV_READ);
1002 }
769 1003
770 ev_io_set (&sigev, sigpipe [0], EV_READ);
771 ev_io_start (EV_A_ &sigev); 1004 ev_io_start (EV_A_ &pipeev);
772 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1005 ev_unref (EV_A); /* watcher should not keep loop alive */
1006 }
1007}
1008
1009void inline_size
1010evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1011{
1012 if (!*flag)
1013 {
1014 int old_errno = errno; /* save errno because write might clobber it */
1015
1016 *flag = 1;
1017
1018#if EV_USE_EVENTFD
1019 if (evfd >= 0)
1020 {
1021 uint64_t counter = 1;
1022 write (evfd, &counter, sizeof (uint64_t));
1023 }
1024 else
1025#endif
1026 write (evpipe [1], &old_errno, 1);
1027
1028 errno = old_errno;
1029 }
1030}
1031
1032static void
1033pipecb (EV_P_ ev_io *iow, int revents)
1034{
1035#if EV_USE_EVENTFD
1036 if (evfd >= 0)
1037 {
1038 uint64_t counter;
1039 read (evfd, &counter, sizeof (uint64_t));
1040 }
1041 else
1042#endif
1043 {
1044 char dummy;
1045 read (evpipe [0], &dummy, 1);
1046 }
1047
1048 if (gotsig && ev_is_default_loop (EV_A))
1049 {
1050 int signum;
1051 gotsig = 0;
1052
1053 for (signum = signalmax; signum--; )
1054 if (signals [signum].gotsig)
1055 ev_feed_signal_event (EV_A_ signum + 1);
1056 }
1057
1058#if EV_ASYNC_ENABLE
1059 if (gotasync)
1060 {
1061 int i;
1062 gotasync = 0;
1063
1064 for (i = asynccnt; i--; )
1065 if (asyncs [i]->sent)
1066 {
1067 asyncs [i]->sent = 0;
1068 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1069 }
1070 }
1071#endif
773} 1072}
774 1073
775/*****************************************************************************/ 1074/*****************************************************************************/
776 1075
1076static void
1077ev_sighandler (int signum)
1078{
1079#if EV_MULTIPLICITY
1080 struct ev_loop *loop = &default_loop_struct;
1081#endif
1082
1083#if _WIN32
1084 signal (signum, ev_sighandler);
1085#endif
1086
1087 signals [signum - 1].gotsig = 1;
1088 evpipe_write (EV_A_ &gotsig);
1089}
1090
1091void noinline
1092ev_feed_signal_event (EV_P_ int signum)
1093{
1094 WL w;
1095
1096#if EV_MULTIPLICITY
1097 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1098#endif
1099
1100 --signum;
1101
1102 if (signum < 0 || signum >= signalmax)
1103 return;
1104
1105 signals [signum].gotsig = 0;
1106
1107 for (w = signals [signum].head; w; w = w->next)
1108 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1109}
1110
1111/*****************************************************************************/
1112
777static ev_child *childs [EV_PID_HASHSIZE]; 1113static WL childs [EV_PID_HASHSIZE];
778 1114
779#ifndef _WIN32 1115#ifndef _WIN32
780 1116
781static ev_signal childev; 1117static ev_signal childev;
782 1118
1119#ifndef WIFCONTINUED
1120# define WIFCONTINUED(status) 0
1121#endif
1122
783void inline_speed 1123void inline_speed
784child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1124child_reap (EV_P_ int chain, int pid, int status)
785{ 1125{
786 ev_child *w; 1126 ev_child *w;
1127 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
787 1128
788 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1129 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1130 {
789 if (w->pid == pid || !w->pid) 1131 if ((w->pid == pid || !w->pid)
1132 && (!traced || (w->flags & 1)))
790 { 1133 {
791 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1134 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
792 w->rpid = pid; 1135 w->rpid = pid;
793 w->rstatus = status; 1136 w->rstatus = status;
794 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1137 ev_feed_event (EV_A_ (W)w, EV_CHILD);
795 } 1138 }
1139 }
796} 1140}
797 1141
798#ifndef WCONTINUED 1142#ifndef WCONTINUED
799# define WCONTINUED 0 1143# define WCONTINUED 0
800#endif 1144#endif
809 if (!WCONTINUED 1153 if (!WCONTINUED
810 || errno != EINVAL 1154 || errno != EINVAL
811 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1155 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
812 return; 1156 return;
813 1157
814 /* make sure we are called again until all childs have been reaped */ 1158 /* make sure we are called again until all children have been reaped */
815 /* we need to do it this way so that the callback gets called before we continue */ 1159 /* we need to do it this way so that the callback gets called before we continue */
816 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1160 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
817 1161
818 child_reap (EV_A_ sw, pid, pid, status); 1162 child_reap (EV_A_ pid, pid, status);
819 if (EV_PID_HASHSIZE > 1) 1163 if (EV_PID_HASHSIZE > 1)
820 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1164 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
821} 1165}
822 1166
823#endif 1167#endif
824 1168
825/*****************************************************************************/ 1169/*****************************************************************************/
897} 1241}
898 1242
899unsigned int 1243unsigned int
900ev_embeddable_backends (void) 1244ev_embeddable_backends (void)
901{ 1245{
902 return EVBACKEND_EPOLL 1246 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
903 | EVBACKEND_KQUEUE 1247
904 | EVBACKEND_PORT; 1248 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1249 /* please fix it and tell me how to detect the fix */
1250 flags &= ~EVBACKEND_EPOLL;
1251
1252 return flags;
905} 1253}
906 1254
907unsigned int 1255unsigned int
908ev_backend (EV_P) 1256ev_backend (EV_P)
909{ 1257{
912 1260
913unsigned int 1261unsigned int
914ev_loop_count (EV_P) 1262ev_loop_count (EV_P)
915{ 1263{
916 return loop_count; 1264 return loop_count;
1265}
1266
1267void
1268ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1269{
1270 io_blocktime = interval;
1271}
1272
1273void
1274ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1275{
1276 timeout_blocktime = interval;
917} 1277}
918 1278
919static void noinline 1279static void noinline
920loop_init (EV_P_ unsigned int flags) 1280loop_init (EV_P_ unsigned int flags)
921{ 1281{
927 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1287 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
928 have_monotonic = 1; 1288 have_monotonic = 1;
929 } 1289 }
930#endif 1290#endif
931 1291
932 ev_rt_now = ev_time (); 1292 ev_rt_now = ev_time ();
933 mn_now = get_clock (); 1293 mn_now = get_clock ();
934 now_floor = mn_now; 1294 now_floor = mn_now;
935 rtmn_diff = ev_rt_now - mn_now; 1295 rtmn_diff = ev_rt_now - mn_now;
1296
1297 io_blocktime = 0.;
1298 timeout_blocktime = 0.;
1299 backend = 0;
1300 backend_fd = -1;
1301 gotasync = 0;
1302#if EV_USE_INOTIFY
1303 fs_fd = -2;
1304#endif
936 1305
937 /* pid check not overridable via env */ 1306 /* pid check not overridable via env */
938#ifndef _WIN32 1307#ifndef _WIN32
939 if (flags & EVFLAG_FORKCHECK) 1308 if (flags & EVFLAG_FORKCHECK)
940 curpid = getpid (); 1309 curpid = getpid ();
943 if (!(flags & EVFLAG_NOENV) 1312 if (!(flags & EVFLAG_NOENV)
944 && !enable_secure () 1313 && !enable_secure ()
945 && getenv ("LIBEV_FLAGS")) 1314 && getenv ("LIBEV_FLAGS"))
946 flags = atoi (getenv ("LIBEV_FLAGS")); 1315 flags = atoi (getenv ("LIBEV_FLAGS"));
947 1316
948 if (!(flags & 0x0000ffffUL)) 1317 if (!(flags & 0x0000ffffU))
949 flags |= ev_recommended_backends (); 1318 flags |= ev_recommended_backends ();
950
951 backend = 0;
952 backend_fd = -1;
953#if EV_USE_INOTIFY
954 fs_fd = -2;
955#endif
956 1319
957#if EV_USE_PORT 1320#if EV_USE_PORT
958 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1321 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
959#endif 1322#endif
960#if EV_USE_KQUEUE 1323#if EV_USE_KQUEUE
968#endif 1331#endif
969#if EV_USE_SELECT 1332#if EV_USE_SELECT
970 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1333 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
971#endif 1334#endif
972 1335
973 ev_init (&sigev, sigcb); 1336 ev_init (&pipeev, pipecb);
974 ev_set_priority (&sigev, EV_MAXPRI); 1337 ev_set_priority (&pipeev, EV_MAXPRI);
975 } 1338 }
976} 1339}
977 1340
978static void noinline 1341static void noinline
979loop_destroy (EV_P) 1342loop_destroy (EV_P)
980{ 1343{
981 int i; 1344 int i;
1345
1346 if (ev_is_active (&pipeev))
1347 {
1348 ev_ref (EV_A); /* signal watcher */
1349 ev_io_stop (EV_A_ &pipeev);
1350
1351#if EV_USE_EVENTFD
1352 if (evfd >= 0)
1353 close (evfd);
1354#endif
1355
1356 if (evpipe [0] >= 0)
1357 {
1358 close (evpipe [0]);
1359 close (evpipe [1]);
1360 }
1361 }
982 1362
983#if EV_USE_INOTIFY 1363#if EV_USE_INOTIFY
984 if (fs_fd >= 0) 1364 if (fs_fd >= 0)
985 close (fs_fd); 1365 close (fs_fd);
986#endif 1366#endif
1003#if EV_USE_SELECT 1383#if EV_USE_SELECT
1004 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1384 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1005#endif 1385#endif
1006 1386
1007 for (i = NUMPRI; i--; ) 1387 for (i = NUMPRI; i--; )
1388 {
1008 array_free (pending, [i]); 1389 array_free (pending, [i]);
1390#if EV_IDLE_ENABLE
1391 array_free (idle, [i]);
1392#endif
1393 }
1394
1395 ev_free (anfds); anfdmax = 0;
1009 1396
1010 /* have to use the microsoft-never-gets-it-right macro */ 1397 /* have to use the microsoft-never-gets-it-right macro */
1011 array_free (fdchange, EMPTY0); 1398 array_free (fdchange, EMPTY);
1012 array_free (timer, EMPTY0); 1399 array_free (timer, EMPTY);
1013#if EV_PERIODIC_ENABLE 1400#if EV_PERIODIC_ENABLE
1014 array_free (periodic, EMPTY0); 1401 array_free (periodic, EMPTY);
1015#endif 1402#endif
1403#if EV_FORK_ENABLE
1016 array_free (idle, EMPTY0); 1404 array_free (fork, EMPTY);
1405#endif
1017 array_free (prepare, EMPTY0); 1406 array_free (prepare, EMPTY);
1018 array_free (check, EMPTY0); 1407 array_free (check, EMPTY);
1408#if EV_ASYNC_ENABLE
1409 array_free (async, EMPTY);
1410#endif
1019 1411
1020 backend = 0; 1412 backend = 0;
1021} 1413}
1022 1414
1415#if EV_USE_INOTIFY
1023void inline_size infy_fork (EV_P); 1416void inline_size infy_fork (EV_P);
1417#endif
1024 1418
1025void inline_size 1419void inline_size
1026loop_fork (EV_P) 1420loop_fork (EV_P)
1027{ 1421{
1028#if EV_USE_PORT 1422#if EV_USE_PORT
1036#endif 1430#endif
1037#if EV_USE_INOTIFY 1431#if EV_USE_INOTIFY
1038 infy_fork (EV_A); 1432 infy_fork (EV_A);
1039#endif 1433#endif
1040 1434
1041 if (ev_is_active (&sigev)) 1435 if (ev_is_active (&pipeev))
1042 { 1436 {
1043 /* default loop */ 1437 /* this "locks" the handlers against writing to the pipe */
1438 /* while we modify the fd vars */
1439 gotsig = 1;
1440#if EV_ASYNC_ENABLE
1441 gotasync = 1;
1442#endif
1044 1443
1045 ev_ref (EV_A); 1444 ev_ref (EV_A);
1046 ev_io_stop (EV_A_ &sigev); 1445 ev_io_stop (EV_A_ &pipeev);
1446
1447#if EV_USE_EVENTFD
1448 if (evfd >= 0)
1449 close (evfd);
1450#endif
1451
1452 if (evpipe [0] >= 0)
1453 {
1047 close (sigpipe [0]); 1454 close (evpipe [0]);
1048 close (sigpipe [1]); 1455 close (evpipe [1]);
1456 }
1049 1457
1050 while (pipe (sigpipe))
1051 syserr ("(libev) error creating pipe");
1052
1053 siginit (EV_A); 1458 evpipe_init (EV_A);
1459 /* now iterate over everything, in case we missed something */
1460 pipecb (EV_A_ &pipeev, EV_READ);
1054 } 1461 }
1055 1462
1056 postfork = 0; 1463 postfork = 0;
1057} 1464}
1058 1465
1080} 1487}
1081 1488
1082void 1489void
1083ev_loop_fork (EV_P) 1490ev_loop_fork (EV_P)
1084{ 1491{
1085 postfork = 1; 1492 postfork = 1; /* must be in line with ev_default_fork */
1086} 1493}
1087
1088#endif 1494#endif
1089 1495
1090#if EV_MULTIPLICITY 1496#if EV_MULTIPLICITY
1091struct ev_loop * 1497struct ev_loop *
1092ev_default_loop_init (unsigned int flags) 1498ev_default_loop_init (unsigned int flags)
1093#else 1499#else
1094int 1500int
1095ev_default_loop (unsigned int flags) 1501ev_default_loop (unsigned int flags)
1096#endif 1502#endif
1097{ 1503{
1098 if (sigpipe [0] == sigpipe [1])
1099 if (pipe (sigpipe))
1100 return 0;
1101
1102 if (!ev_default_loop_ptr) 1504 if (!ev_default_loop_ptr)
1103 { 1505 {
1104#if EV_MULTIPLICITY 1506#if EV_MULTIPLICITY
1105 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1507 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1106#else 1508#else
1109 1511
1110 loop_init (EV_A_ flags); 1512 loop_init (EV_A_ flags);
1111 1513
1112 if (ev_backend (EV_A)) 1514 if (ev_backend (EV_A))
1113 { 1515 {
1114 siginit (EV_A);
1115
1116#ifndef _WIN32 1516#ifndef _WIN32
1117 ev_signal_init (&childev, childcb, SIGCHLD); 1517 ev_signal_init (&childev, childcb, SIGCHLD);
1118 ev_set_priority (&childev, EV_MAXPRI); 1518 ev_set_priority (&childev, EV_MAXPRI);
1119 ev_signal_start (EV_A_ &childev); 1519 ev_signal_start (EV_A_ &childev);
1120 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1520 ev_unref (EV_A); /* child watcher should not keep loop alive */
1137#ifndef _WIN32 1537#ifndef _WIN32
1138 ev_ref (EV_A); /* child watcher */ 1538 ev_ref (EV_A); /* child watcher */
1139 ev_signal_stop (EV_A_ &childev); 1539 ev_signal_stop (EV_A_ &childev);
1140#endif 1540#endif
1141 1541
1142 ev_ref (EV_A); /* signal watcher */
1143 ev_io_stop (EV_A_ &sigev);
1144
1145 close (sigpipe [0]); sigpipe [0] = 0;
1146 close (sigpipe [1]); sigpipe [1] = 0;
1147
1148 loop_destroy (EV_A); 1542 loop_destroy (EV_A);
1149} 1543}
1150 1544
1151void 1545void
1152ev_default_fork (void) 1546ev_default_fork (void)
1154#if EV_MULTIPLICITY 1548#if EV_MULTIPLICITY
1155 struct ev_loop *loop = ev_default_loop_ptr; 1549 struct ev_loop *loop = ev_default_loop_ptr;
1156#endif 1550#endif
1157 1551
1158 if (backend) 1552 if (backend)
1159 postfork = 1; 1553 postfork = 1; /* must be in line with ev_loop_fork */
1160} 1554}
1161 1555
1162/*****************************************************************************/ 1556/*****************************************************************************/
1163 1557
1164int inline_size 1558void
1165any_pending (EV_P) 1559ev_invoke (EV_P_ void *w, int revents)
1166{ 1560{
1167 int pri; 1561 EV_CB_INVOKE ((W)w, revents);
1168
1169 for (pri = NUMPRI; pri--; )
1170 if (pendingcnt [pri])
1171 return 1;
1172
1173 return 0;
1174} 1562}
1175 1563
1176void inline_speed 1564void inline_speed
1177call_pending (EV_P) 1565call_pending (EV_P)
1178{ 1566{
1191 EV_CB_INVOKE (p->w, p->events); 1579 EV_CB_INVOKE (p->w, p->events);
1192 } 1580 }
1193 } 1581 }
1194} 1582}
1195 1583
1584#if EV_IDLE_ENABLE
1585void inline_size
1586idle_reify (EV_P)
1587{
1588 if (expect_false (idleall))
1589 {
1590 int pri;
1591
1592 for (pri = NUMPRI; pri--; )
1593 {
1594 if (pendingcnt [pri])
1595 break;
1596
1597 if (idlecnt [pri])
1598 {
1599 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1600 break;
1601 }
1602 }
1603 }
1604}
1605#endif
1606
1196void inline_size 1607void inline_size
1197timers_reify (EV_P) 1608timers_reify (EV_P)
1198{ 1609{
1199 while (timercnt && ((WT)timers [0])->at <= mn_now) 1610 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1200 { 1611 {
1201 ev_timer *w = timers [0]; 1612 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1202 1613
1203 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1614 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1204 1615
1205 /* first reschedule or stop timer */ 1616 /* first reschedule or stop timer */
1206 if (w->repeat) 1617 if (w->repeat)
1207 { 1618 {
1619 ev_at (w) += w->repeat;
1620 if (ev_at (w) < mn_now)
1621 ev_at (w) = mn_now;
1622
1208 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1623 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1209 1624
1210 ((WT)w)->at += w->repeat; 1625 ANHE_at_set (timers [HEAP0]);
1211 if (((WT)w)->at < mn_now)
1212 ((WT)w)->at = mn_now;
1213
1214 downheap ((WT *)timers, timercnt, 0); 1626 downheap (timers, timercnt, HEAP0);
1215 } 1627 }
1216 else 1628 else
1217 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1629 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1218 1630
1219 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1631 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1222 1634
1223#if EV_PERIODIC_ENABLE 1635#if EV_PERIODIC_ENABLE
1224void inline_size 1636void inline_size
1225periodics_reify (EV_P) 1637periodics_reify (EV_P)
1226{ 1638{
1227 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1639 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1228 { 1640 {
1229 ev_periodic *w = periodics [0]; 1641 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1230 1642
1231 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1643 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1232 1644
1233 /* first reschedule or stop timer */ 1645 /* first reschedule or stop timer */
1234 if (w->reschedule_cb) 1646 if (w->reschedule_cb)
1235 { 1647 {
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1648 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1649
1237 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1650 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1651
1652 ANHE_at_set (periodics [HEAP0]);
1238 downheap ((WT *)periodics, periodiccnt, 0); 1653 downheap (periodics, periodiccnt, HEAP0);
1239 } 1654 }
1240 else if (w->interval) 1655 else if (w->interval)
1241 { 1656 {
1242 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1657 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1243 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1658 /* if next trigger time is not sufficiently in the future, put it there */
1659 /* this might happen because of floating point inexactness */
1660 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1661 {
1662 ev_at (w) += w->interval;
1663
1664 /* if interval is unreasonably low we might still have a time in the past */
1665 /* so correct this. this will make the periodic very inexact, but the user */
1666 /* has effectively asked to get triggered more often than possible */
1667 if (ev_at (w) < ev_rt_now)
1668 ev_at (w) = ev_rt_now;
1669 }
1670
1671 ANHE_at_set (periodics [HEAP0]);
1244 downheap ((WT *)periodics, periodiccnt, 0); 1672 downheap (periodics, periodiccnt, HEAP0);
1245 } 1673 }
1246 else 1674 else
1247 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1675 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1248 1676
1249 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1677 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1254periodics_reschedule (EV_P) 1682periodics_reschedule (EV_P)
1255{ 1683{
1256 int i; 1684 int i;
1257 1685
1258 /* adjust periodics after time jump */ 1686 /* adjust periodics after time jump */
1687 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1688 {
1689 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1690
1691 if (w->reschedule_cb)
1692 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1693 else if (w->interval)
1694 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1695
1696 ANHE_at_set (periodics [i]);
1697 }
1698
1699 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */
1700 /* also, this is easy and corretc for both 2-heaps and 4-heaps */
1259 for (i = 0; i < periodiccnt; ++i) 1701 for (i = 0; i < periodiccnt; ++i)
1260 { 1702 upheap (periodics, i + HEAP0);
1261 ev_periodic *w = periodics [i]; 1703}
1704#endif
1262 1705
1263 if (w->reschedule_cb) 1706void inline_speed
1264 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1707time_update (EV_P_ ev_tstamp max_block)
1265 else if (w->interval) 1708{
1266 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1709 int i;
1710
1711#if EV_USE_MONOTONIC
1712 if (expect_true (have_monotonic))
1267 } 1713 {
1714 ev_tstamp odiff = rtmn_diff;
1268 1715
1269 /* now rebuild the heap */
1270 for (i = periodiccnt >> 1; i--; )
1271 downheap ((WT *)periodics, periodiccnt, i);
1272}
1273#endif
1274
1275int inline_size
1276time_update_monotonic (EV_P)
1277{
1278 mn_now = get_clock (); 1716 mn_now = get_clock ();
1279 1717
1718 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1719 /* interpolate in the meantime */
1280 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1720 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1281 { 1721 {
1282 ev_rt_now = rtmn_diff + mn_now; 1722 ev_rt_now = rtmn_diff + mn_now;
1283 return 0; 1723 return;
1284 } 1724 }
1285 else 1725
1286 {
1287 now_floor = mn_now; 1726 now_floor = mn_now;
1288 ev_rt_now = ev_time (); 1727 ev_rt_now = ev_time ();
1289 return 1;
1290 }
1291}
1292 1728
1293void inline_size 1729 /* loop a few times, before making important decisions.
1294time_update (EV_P) 1730 * on the choice of "4": one iteration isn't enough,
1295{ 1731 * in case we get preempted during the calls to
1296 int i; 1732 * ev_time and get_clock. a second call is almost guaranteed
1297 1733 * to succeed in that case, though. and looping a few more times
1298#if EV_USE_MONOTONIC 1734 * doesn't hurt either as we only do this on time-jumps or
1299 if (expect_true (have_monotonic)) 1735 * in the unlikely event of having been preempted here.
1300 { 1736 */
1301 if (time_update_monotonic (EV_A)) 1737 for (i = 4; --i; )
1302 { 1738 {
1303 ev_tstamp odiff = rtmn_diff;
1304
1305 /* loop a few times, before making important decisions.
1306 * on the choice of "4": one iteration isn't enough,
1307 * in case we get preempted during the calls to
1308 * ev_time and get_clock. a second call is almost guaranteed
1309 * to succeed in that case, though. and looping a few more times
1310 * doesn't hurt either as we only do this on time-jumps or
1311 * in the unlikely event of having been preempted here.
1312 */
1313 for (i = 4; --i; )
1314 {
1315 rtmn_diff = ev_rt_now - mn_now; 1739 rtmn_diff = ev_rt_now - mn_now;
1316 1740
1317 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1741 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1318 return; /* all is well */ 1742 return; /* all is well */
1319 1743
1320 ev_rt_now = ev_time (); 1744 ev_rt_now = ev_time ();
1321 mn_now = get_clock (); 1745 mn_now = get_clock ();
1322 now_floor = mn_now; 1746 now_floor = mn_now;
1323 } 1747 }
1324 1748
1325# if EV_PERIODIC_ENABLE 1749# if EV_PERIODIC_ENABLE
1326 periodics_reschedule (EV_A); 1750 periodics_reschedule (EV_A);
1327# endif 1751# endif
1328 /* no timer adjustment, as the monotonic clock doesn't jump */ 1752 /* no timer adjustment, as the monotonic clock doesn't jump */
1329 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1753 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1330 }
1331 } 1754 }
1332 else 1755 else
1333#endif 1756#endif
1334 { 1757 {
1335 ev_rt_now = ev_time (); 1758 ev_rt_now = ev_time ();
1336 1759
1337 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1760 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1338 { 1761 {
1339#if EV_PERIODIC_ENABLE 1762#if EV_PERIODIC_ENABLE
1340 periodics_reschedule (EV_A); 1763 periodics_reschedule (EV_A);
1341#endif 1764#endif
1342
1343 /* adjust timers. this is easy, as the offset is the same for all of them */ 1765 /* adjust timers. this is easy, as the offset is the same for all of them */
1344 for (i = 0; i < timercnt; ++i) 1766 for (i = 0; i < timercnt; ++i)
1767 {
1768 ANHE *he = timers + i + HEAP0;
1345 ((WT)timers [i])->at += ev_rt_now - mn_now; 1769 ANHE_w (*he)->at += ev_rt_now - mn_now;
1770 ANHE_at_set (*he);
1771 }
1346 } 1772 }
1347 1773
1348 mn_now = ev_rt_now; 1774 mn_now = ev_rt_now;
1349 } 1775 }
1350} 1776}
1364static int loop_done; 1790static int loop_done;
1365 1791
1366void 1792void
1367ev_loop (EV_P_ int flags) 1793ev_loop (EV_P_ int flags)
1368{ 1794{
1369 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1795 loop_done = EVUNLOOP_CANCEL;
1370 ? EVUNLOOP_ONE
1371 : EVUNLOOP_CANCEL;
1372 1796
1373 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1797 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1374 1798
1375 do 1799 do
1376 { 1800 {
1391 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1815 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1392 call_pending (EV_A); 1816 call_pending (EV_A);
1393 } 1817 }
1394#endif 1818#endif
1395 1819
1396 /* queue check watchers (and execute them) */ 1820 /* queue prepare watchers (and execute them) */
1397 if (expect_false (preparecnt)) 1821 if (expect_false (preparecnt))
1398 { 1822 {
1399 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1823 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1400 call_pending (EV_A); 1824 call_pending (EV_A);
1401 } 1825 }
1410 /* update fd-related kernel structures */ 1834 /* update fd-related kernel structures */
1411 fd_reify (EV_A); 1835 fd_reify (EV_A);
1412 1836
1413 /* calculate blocking time */ 1837 /* calculate blocking time */
1414 { 1838 {
1415 ev_tstamp block; 1839 ev_tstamp waittime = 0.;
1840 ev_tstamp sleeptime = 0.;
1416 1841
1417 if (expect_false (flags & EVLOOP_NONBLOCK || idlecnt || !activecnt)) 1842 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1418 block = 0.; /* do not block at all */
1419 else
1420 { 1843 {
1421 /* update time to cancel out callback processing overhead */ 1844 /* update time to cancel out callback processing overhead */
1422#if EV_USE_MONOTONIC
1423 if (expect_true (have_monotonic))
1424 time_update_monotonic (EV_A); 1845 time_update (EV_A_ 1e100);
1425 else
1426#endif
1427 {
1428 ev_rt_now = ev_time ();
1429 mn_now = ev_rt_now;
1430 }
1431 1846
1432 block = MAX_BLOCKTIME; 1847 waittime = MAX_BLOCKTIME;
1433 1848
1434 if (timercnt) 1849 if (timercnt)
1435 { 1850 {
1436 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1851 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1437 if (block > to) block = to; 1852 if (waittime > to) waittime = to;
1438 } 1853 }
1439 1854
1440#if EV_PERIODIC_ENABLE 1855#if EV_PERIODIC_ENABLE
1441 if (periodiccnt) 1856 if (periodiccnt)
1442 { 1857 {
1443 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1858 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1444 if (block > to) block = to; 1859 if (waittime > to) waittime = to;
1445 } 1860 }
1446#endif 1861#endif
1447 1862
1448 if (expect_false (block < 0.)) block = 0.; 1863 if (expect_false (waittime < timeout_blocktime))
1864 waittime = timeout_blocktime;
1865
1866 sleeptime = waittime - backend_fudge;
1867
1868 if (expect_true (sleeptime > io_blocktime))
1869 sleeptime = io_blocktime;
1870
1871 if (sleeptime)
1872 {
1873 ev_sleep (sleeptime);
1874 waittime -= sleeptime;
1875 }
1449 } 1876 }
1450 1877
1451 ++loop_count; 1878 ++loop_count;
1452 backend_poll (EV_A_ block); 1879 backend_poll (EV_A_ waittime);
1880
1881 /* update ev_rt_now, do magic */
1882 time_update (EV_A_ waittime + sleeptime);
1453 } 1883 }
1454
1455 /* update ev_rt_now, do magic */
1456 time_update (EV_A);
1457 1884
1458 /* queue pending timers and reschedule them */ 1885 /* queue pending timers and reschedule them */
1459 timers_reify (EV_A); /* relative timers called last */ 1886 timers_reify (EV_A); /* relative timers called last */
1460#if EV_PERIODIC_ENABLE 1887#if EV_PERIODIC_ENABLE
1461 periodics_reify (EV_A); /* absolute timers called first */ 1888 periodics_reify (EV_A); /* absolute timers called first */
1462#endif 1889#endif
1463 1890
1891#if EV_IDLE_ENABLE
1464 /* queue idle watchers unless other events are pending */ 1892 /* queue idle watchers unless other events are pending */
1465 if (idlecnt && !any_pending (EV_A)) 1893 idle_reify (EV_A);
1466 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1894#endif
1467 1895
1468 /* queue check watchers, to be executed first */ 1896 /* queue check watchers, to be executed first */
1469 if (expect_false (checkcnt)) 1897 if (expect_false (checkcnt))
1470 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1898 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1471 1899
1472 call_pending (EV_A); 1900 call_pending (EV_A);
1473
1474 } 1901 }
1475 while (expect_true (activecnt && !loop_done)); 1902 while (expect_true (
1903 activecnt
1904 && !loop_done
1905 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1906 ));
1476 1907
1477 if (loop_done == EVUNLOOP_ONE) 1908 if (loop_done == EVUNLOOP_ONE)
1478 loop_done = EVUNLOOP_CANCEL; 1909 loop_done = EVUNLOOP_CANCEL;
1479} 1910}
1480 1911
1507 head = &(*head)->next; 1938 head = &(*head)->next;
1508 } 1939 }
1509} 1940}
1510 1941
1511void inline_speed 1942void inline_speed
1512ev_clear_pending (EV_P_ W w) 1943clear_pending (EV_P_ W w)
1513{ 1944{
1514 if (w->pending) 1945 if (w->pending)
1515 { 1946 {
1516 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1947 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1517 w->pending = 0; 1948 w->pending = 0;
1518 } 1949 }
1519} 1950}
1520 1951
1952int
1953ev_clear_pending (EV_P_ void *w)
1954{
1955 W w_ = (W)w;
1956 int pending = w_->pending;
1957
1958 if (expect_true (pending))
1959 {
1960 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1961 w_->pending = 0;
1962 p->w = 0;
1963 return p->events;
1964 }
1965 else
1966 return 0;
1967}
1968
1969void inline_size
1970pri_adjust (EV_P_ W w)
1971{
1972 int pri = w->priority;
1973 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1974 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1975 w->priority = pri;
1976}
1977
1521void inline_speed 1978void inline_speed
1522ev_start (EV_P_ W w, int active) 1979ev_start (EV_P_ W w, int active)
1523{ 1980{
1524 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1981 pri_adjust (EV_A_ w);
1525 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1526
1527 w->active = active; 1982 w->active = active;
1528 ev_ref (EV_A); 1983 ev_ref (EV_A);
1529} 1984}
1530 1985
1531void inline_size 1986void inline_size
1535 w->active = 0; 1990 w->active = 0;
1536} 1991}
1537 1992
1538/*****************************************************************************/ 1993/*****************************************************************************/
1539 1994
1540void 1995void noinline
1541ev_io_start (EV_P_ ev_io *w) 1996ev_io_start (EV_P_ ev_io *w)
1542{ 1997{
1543 int fd = w->fd; 1998 int fd = w->fd;
1544 1999
1545 if (expect_false (ev_is_active (w))) 2000 if (expect_false (ev_is_active (w)))
1547 2002
1548 assert (("ev_io_start called with negative fd", fd >= 0)); 2003 assert (("ev_io_start called with negative fd", fd >= 0));
1549 2004
1550 ev_start (EV_A_ (W)w, 1); 2005 ev_start (EV_A_ (W)w, 1);
1551 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2006 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1552 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2007 wlist_add (&anfds[fd].head, (WL)w);
1553 2008
1554 fd_change (EV_A_ fd); 2009 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
2010 w->events &= ~EV_IOFDSET;
1555} 2011}
1556 2012
1557void 2013void noinline
1558ev_io_stop (EV_P_ ev_io *w) 2014ev_io_stop (EV_P_ ev_io *w)
1559{ 2015{
1560 ev_clear_pending (EV_A_ (W)w); 2016 clear_pending (EV_A_ (W)w);
1561 if (expect_false (!ev_is_active (w))) 2017 if (expect_false (!ev_is_active (w)))
1562 return; 2018 return;
1563 2019
1564 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2020 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1565 2021
1566 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2022 wlist_del (&anfds[w->fd].head, (WL)w);
1567 ev_stop (EV_A_ (W)w); 2023 ev_stop (EV_A_ (W)w);
1568 2024
1569 fd_change (EV_A_ w->fd); 2025 fd_change (EV_A_ w->fd, 1);
1570} 2026}
1571 2027
1572void 2028void noinline
1573ev_timer_start (EV_P_ ev_timer *w) 2029ev_timer_start (EV_P_ ev_timer *w)
1574{ 2030{
1575 if (expect_false (ev_is_active (w))) 2031 if (expect_false (ev_is_active (w)))
1576 return; 2032 return;
1577 2033
1578 ((WT)w)->at += mn_now; 2034 ev_at (w) += mn_now;
1579 2035
1580 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2036 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1581 2037
1582 ev_start (EV_A_ (W)w, ++timercnt); 2038 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1583 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2039 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1584 timers [timercnt - 1] = w; 2040 ANHE_w (timers [ev_active (w)]) = (WT)w;
1585 upheap ((WT *)timers, timercnt - 1); 2041 ANHE_at_set (timers [ev_active (w)]);
2042 upheap (timers, ev_active (w));
1586 2043
1587 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2044 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1588} 2045}
1589 2046
1590void 2047void noinline
1591ev_timer_stop (EV_P_ ev_timer *w) 2048ev_timer_stop (EV_P_ ev_timer *w)
1592{ 2049{
1593 ev_clear_pending (EV_A_ (W)w); 2050 clear_pending (EV_A_ (W)w);
1594 if (expect_false (!ev_is_active (w))) 2051 if (expect_false (!ev_is_active (w)))
1595 return; 2052 return;
1596 2053
1597 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1598
1599 { 2054 {
1600 int active = ((W)w)->active; 2055 int active = ev_active (w);
1601 2056
2057 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2058
1602 if (expect_true (--active < --timercnt)) 2059 if (expect_true (active < timercnt + HEAP0 - 1))
1603 { 2060 {
1604 timers [active] = timers [timercnt]; 2061 timers [active] = timers [timercnt + HEAP0 - 1];
1605 adjustheap ((WT *)timers, timercnt, active); 2062 adjustheap (timers, timercnt, active);
1606 } 2063 }
2064
2065 --timercnt;
1607 } 2066 }
1608 2067
1609 ((WT)w)->at -= mn_now; 2068 ev_at (w) -= mn_now;
1610 2069
1611 ev_stop (EV_A_ (W)w); 2070 ev_stop (EV_A_ (W)w);
1612} 2071}
1613 2072
1614void 2073void noinline
1615ev_timer_again (EV_P_ ev_timer *w) 2074ev_timer_again (EV_P_ ev_timer *w)
1616{ 2075{
1617 if (ev_is_active (w)) 2076 if (ev_is_active (w))
1618 { 2077 {
1619 if (w->repeat) 2078 if (w->repeat)
1620 { 2079 {
1621 ((WT)w)->at = mn_now + w->repeat; 2080 ev_at (w) = mn_now + w->repeat;
2081 ANHE_at_set (timers [ev_active (w)]);
1622 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2082 adjustheap (timers, timercnt, ev_active (w));
1623 } 2083 }
1624 else 2084 else
1625 ev_timer_stop (EV_A_ w); 2085 ev_timer_stop (EV_A_ w);
1626 } 2086 }
1627 else if (w->repeat) 2087 else if (w->repeat)
1628 { 2088 {
1629 w->at = w->repeat; 2089 ev_at (w) = w->repeat;
1630 ev_timer_start (EV_A_ w); 2090 ev_timer_start (EV_A_ w);
1631 } 2091 }
1632} 2092}
1633 2093
1634#if EV_PERIODIC_ENABLE 2094#if EV_PERIODIC_ENABLE
1635void 2095void noinline
1636ev_periodic_start (EV_P_ ev_periodic *w) 2096ev_periodic_start (EV_P_ ev_periodic *w)
1637{ 2097{
1638 if (expect_false (ev_is_active (w))) 2098 if (expect_false (ev_is_active (w)))
1639 return; 2099 return;
1640 2100
1641 if (w->reschedule_cb) 2101 if (w->reschedule_cb)
1642 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2102 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1643 else if (w->interval) 2103 else if (w->interval)
1644 { 2104 {
1645 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2105 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1646 /* this formula differs from the one in periodic_reify because we do not always round up */ 2106 /* this formula differs from the one in periodic_reify because we do not always round up */
1647 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2107 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1648 } 2108 }
2109 else
2110 ev_at (w) = w->offset;
1649 2111
1650 ev_start (EV_A_ (W)w, ++periodiccnt); 2112 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1651 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2113 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1652 periodics [periodiccnt - 1] = w; 2114 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1653 upheap ((WT *)periodics, periodiccnt - 1); 2115 ANHE_at_set (periodics [ev_active (w)]);
2116 upheap (periodics, ev_active (w));
1654 2117
1655 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2118 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1656} 2119}
1657 2120
1658void 2121void noinline
1659ev_periodic_stop (EV_P_ ev_periodic *w) 2122ev_periodic_stop (EV_P_ ev_periodic *w)
1660{ 2123{
1661 ev_clear_pending (EV_A_ (W)w); 2124 clear_pending (EV_A_ (W)w);
1662 if (expect_false (!ev_is_active (w))) 2125 if (expect_false (!ev_is_active (w)))
1663 return; 2126 return;
1664 2127
1665 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1666
1667 { 2128 {
1668 int active = ((W)w)->active; 2129 int active = ev_active (w);
1669 2130
2131 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2132
1670 if (expect_true (--active < --periodiccnt)) 2133 if (expect_true (active < periodiccnt + HEAP0 - 1))
1671 { 2134 {
1672 periodics [active] = periodics [periodiccnt]; 2135 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1673 adjustheap ((WT *)periodics, periodiccnt, active); 2136 adjustheap (periodics, periodiccnt, active);
1674 } 2137 }
2138
2139 --periodiccnt;
1675 } 2140 }
1676 2141
1677 ev_stop (EV_A_ (W)w); 2142 ev_stop (EV_A_ (W)w);
1678} 2143}
1679 2144
1680void 2145void noinline
1681ev_periodic_again (EV_P_ ev_periodic *w) 2146ev_periodic_again (EV_P_ ev_periodic *w)
1682{ 2147{
1683 /* TODO: use adjustheap and recalculation */ 2148 /* TODO: use adjustheap and recalculation */
1684 ev_periodic_stop (EV_A_ w); 2149 ev_periodic_stop (EV_A_ w);
1685 ev_periodic_start (EV_A_ w); 2150 ev_periodic_start (EV_A_ w);
1688 2153
1689#ifndef SA_RESTART 2154#ifndef SA_RESTART
1690# define SA_RESTART 0 2155# define SA_RESTART 0
1691#endif 2156#endif
1692 2157
1693void 2158void noinline
1694ev_signal_start (EV_P_ ev_signal *w) 2159ev_signal_start (EV_P_ ev_signal *w)
1695{ 2160{
1696#if EV_MULTIPLICITY 2161#if EV_MULTIPLICITY
1697 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2162 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1698#endif 2163#endif
1699 if (expect_false (ev_is_active (w))) 2164 if (expect_false (ev_is_active (w)))
1700 return; 2165 return;
1701 2166
1702 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2167 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1703 2168
2169 evpipe_init (EV_A);
2170
2171 {
2172#ifndef _WIN32
2173 sigset_t full, prev;
2174 sigfillset (&full);
2175 sigprocmask (SIG_SETMASK, &full, &prev);
2176#endif
2177
2178 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2179
2180#ifndef _WIN32
2181 sigprocmask (SIG_SETMASK, &prev, 0);
2182#endif
2183 }
2184
1704 ev_start (EV_A_ (W)w, 1); 2185 ev_start (EV_A_ (W)w, 1);
1705 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1706 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2186 wlist_add (&signals [w->signum - 1].head, (WL)w);
1707 2187
1708 if (!((WL)w)->next) 2188 if (!((WL)w)->next)
1709 { 2189 {
1710#if _WIN32 2190#if _WIN32
1711 signal (w->signum, sighandler); 2191 signal (w->signum, ev_sighandler);
1712#else 2192#else
1713 struct sigaction sa; 2193 struct sigaction sa;
1714 sa.sa_handler = sighandler; 2194 sa.sa_handler = ev_sighandler;
1715 sigfillset (&sa.sa_mask); 2195 sigfillset (&sa.sa_mask);
1716 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2196 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1717 sigaction (w->signum, &sa, 0); 2197 sigaction (w->signum, &sa, 0);
1718#endif 2198#endif
1719 } 2199 }
1720} 2200}
1721 2201
1722void 2202void noinline
1723ev_signal_stop (EV_P_ ev_signal *w) 2203ev_signal_stop (EV_P_ ev_signal *w)
1724{ 2204{
1725 ev_clear_pending (EV_A_ (W)w); 2205 clear_pending (EV_A_ (W)w);
1726 if (expect_false (!ev_is_active (w))) 2206 if (expect_false (!ev_is_active (w)))
1727 return; 2207 return;
1728 2208
1729 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2209 wlist_del (&signals [w->signum - 1].head, (WL)w);
1730 ev_stop (EV_A_ (W)w); 2210 ev_stop (EV_A_ (W)w);
1731 2211
1732 if (!signals [w->signum - 1].head) 2212 if (!signals [w->signum - 1].head)
1733 signal (w->signum, SIG_DFL); 2213 signal (w->signum, SIG_DFL);
1734} 2214}
1741#endif 2221#endif
1742 if (expect_false (ev_is_active (w))) 2222 if (expect_false (ev_is_active (w)))
1743 return; 2223 return;
1744 2224
1745 ev_start (EV_A_ (W)w, 1); 2225 ev_start (EV_A_ (W)w, 1);
1746 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2226 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1747} 2227}
1748 2228
1749void 2229void
1750ev_child_stop (EV_P_ ev_child *w) 2230ev_child_stop (EV_P_ ev_child *w)
1751{ 2231{
1752 ev_clear_pending (EV_A_ (W)w); 2232 clear_pending (EV_A_ (W)w);
1753 if (expect_false (!ev_is_active (w))) 2233 if (expect_false (!ev_is_active (w)))
1754 return; 2234 return;
1755 2235
1756 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2236 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1757 ev_stop (EV_A_ (W)w); 2237 ev_stop (EV_A_ (W)w);
1758} 2238}
1759 2239
1760#if EV_STAT_ENABLE 2240#if EV_STAT_ENABLE
1761 2241
1780 if (w->wd < 0) 2260 if (w->wd < 0)
1781 { 2261 {
1782 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2262 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1783 2263
1784 /* monitor some parent directory for speedup hints */ 2264 /* monitor some parent directory for speedup hints */
2265 /* note that exceeding the hardcoded limit is not a correctness issue, */
2266 /* but an efficiency issue only */
1785 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2267 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1786 { 2268 {
1787 char path [4096]; 2269 char path [4096];
1788 strcpy (path, w->path); 2270 strcpy (path, w->path);
1789 2271
1993} 2475}
1994 2476
1995void 2477void
1996ev_stat_stop (EV_P_ ev_stat *w) 2478ev_stat_stop (EV_P_ ev_stat *w)
1997{ 2479{
1998 ev_clear_pending (EV_A_ (W)w); 2480 clear_pending (EV_A_ (W)w);
1999 if (expect_false (!ev_is_active (w))) 2481 if (expect_false (!ev_is_active (w)))
2000 return; 2482 return;
2001 2483
2002#if EV_USE_INOTIFY 2484#if EV_USE_INOTIFY
2003 infy_del (EV_A_ w); 2485 infy_del (EV_A_ w);
2006 2488
2007 ev_stop (EV_A_ (W)w); 2489 ev_stop (EV_A_ (W)w);
2008} 2490}
2009#endif 2491#endif
2010 2492
2493#if EV_IDLE_ENABLE
2011void 2494void
2012ev_idle_start (EV_P_ ev_idle *w) 2495ev_idle_start (EV_P_ ev_idle *w)
2013{ 2496{
2014 if (expect_false (ev_is_active (w))) 2497 if (expect_false (ev_is_active (w)))
2015 return; 2498 return;
2016 2499
2500 pri_adjust (EV_A_ (W)w);
2501
2502 {
2503 int active = ++idlecnt [ABSPRI (w)];
2504
2505 ++idleall;
2017 ev_start (EV_A_ (W)w, ++idlecnt); 2506 ev_start (EV_A_ (W)w, active);
2507
2018 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2508 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2019 idles [idlecnt - 1] = w; 2509 idles [ABSPRI (w)][active - 1] = w;
2510 }
2020} 2511}
2021 2512
2022void 2513void
2023ev_idle_stop (EV_P_ ev_idle *w) 2514ev_idle_stop (EV_P_ ev_idle *w)
2024{ 2515{
2025 ev_clear_pending (EV_A_ (W)w); 2516 clear_pending (EV_A_ (W)w);
2026 if (expect_false (!ev_is_active (w))) 2517 if (expect_false (!ev_is_active (w)))
2027 return; 2518 return;
2028 2519
2029 { 2520 {
2030 int active = ((W)w)->active; 2521 int active = ev_active (w);
2031 idles [active - 1] = idles [--idlecnt]; 2522
2032 ((W)idles [active - 1])->active = active; 2523 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2524 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2525
2526 ev_stop (EV_A_ (W)w);
2527 --idleall;
2033 } 2528 }
2034
2035 ev_stop (EV_A_ (W)w);
2036} 2529}
2530#endif
2037 2531
2038void 2532void
2039ev_prepare_start (EV_P_ ev_prepare *w) 2533ev_prepare_start (EV_P_ ev_prepare *w)
2040{ 2534{
2041 if (expect_false (ev_is_active (w))) 2535 if (expect_false (ev_is_active (w)))
2047} 2541}
2048 2542
2049void 2543void
2050ev_prepare_stop (EV_P_ ev_prepare *w) 2544ev_prepare_stop (EV_P_ ev_prepare *w)
2051{ 2545{
2052 ev_clear_pending (EV_A_ (W)w); 2546 clear_pending (EV_A_ (W)w);
2053 if (expect_false (!ev_is_active (w))) 2547 if (expect_false (!ev_is_active (w)))
2054 return; 2548 return;
2055 2549
2056 { 2550 {
2057 int active = ((W)w)->active; 2551 int active = ev_active (w);
2552
2058 prepares [active - 1] = prepares [--preparecnt]; 2553 prepares [active - 1] = prepares [--preparecnt];
2059 ((W)prepares [active - 1])->active = active; 2554 ev_active (prepares [active - 1]) = active;
2060 } 2555 }
2061 2556
2062 ev_stop (EV_A_ (W)w); 2557 ev_stop (EV_A_ (W)w);
2063} 2558}
2064 2559
2074} 2569}
2075 2570
2076void 2571void
2077ev_check_stop (EV_P_ ev_check *w) 2572ev_check_stop (EV_P_ ev_check *w)
2078{ 2573{
2079 ev_clear_pending (EV_A_ (W)w); 2574 clear_pending (EV_A_ (W)w);
2080 if (expect_false (!ev_is_active (w))) 2575 if (expect_false (!ev_is_active (w)))
2081 return; 2576 return;
2082 2577
2083 { 2578 {
2084 int active = ((W)w)->active; 2579 int active = ev_active (w);
2580
2085 checks [active - 1] = checks [--checkcnt]; 2581 checks [active - 1] = checks [--checkcnt];
2086 ((W)checks [active - 1])->active = active; 2582 ev_active (checks [active - 1]) = active;
2087 } 2583 }
2088 2584
2089 ev_stop (EV_A_ (W)w); 2585 ev_stop (EV_A_ (W)w);
2090} 2586}
2091 2587
2092#if EV_EMBED_ENABLE 2588#if EV_EMBED_ENABLE
2093void noinline 2589void noinline
2094ev_embed_sweep (EV_P_ ev_embed *w) 2590ev_embed_sweep (EV_P_ ev_embed *w)
2095{ 2591{
2096 ev_loop (w->loop, EVLOOP_NONBLOCK); 2592 ev_loop (w->other, EVLOOP_NONBLOCK);
2097} 2593}
2098 2594
2099static void 2595static void
2100embed_cb (EV_P_ ev_io *io, int revents) 2596embed_io_cb (EV_P_ ev_io *io, int revents)
2101{ 2597{
2102 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2598 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2103 2599
2104 if (ev_cb (w)) 2600 if (ev_cb (w))
2105 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2601 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2106 else 2602 else
2107 ev_embed_sweep (loop, w); 2603 ev_loop (w->other, EVLOOP_NONBLOCK);
2108} 2604}
2605
2606static void
2607embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2608{
2609 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2610
2611 {
2612 struct ev_loop *loop = w->other;
2613
2614 while (fdchangecnt)
2615 {
2616 fd_reify (EV_A);
2617 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2618 }
2619 }
2620}
2621
2622#if 0
2623static void
2624embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2625{
2626 ev_idle_stop (EV_A_ idle);
2627}
2628#endif
2109 2629
2110void 2630void
2111ev_embed_start (EV_P_ ev_embed *w) 2631ev_embed_start (EV_P_ ev_embed *w)
2112{ 2632{
2113 if (expect_false (ev_is_active (w))) 2633 if (expect_false (ev_is_active (w)))
2114 return; 2634 return;
2115 2635
2116 { 2636 {
2117 struct ev_loop *loop = w->loop; 2637 struct ev_loop *loop = w->other;
2118 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2638 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2119 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2639 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2120 } 2640 }
2121 2641
2122 ev_set_priority (&w->io, ev_priority (w)); 2642 ev_set_priority (&w->io, ev_priority (w));
2123 ev_io_start (EV_A_ &w->io); 2643 ev_io_start (EV_A_ &w->io);
2124 2644
2645 ev_prepare_init (&w->prepare, embed_prepare_cb);
2646 ev_set_priority (&w->prepare, EV_MINPRI);
2647 ev_prepare_start (EV_A_ &w->prepare);
2648
2649 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2650
2125 ev_start (EV_A_ (W)w, 1); 2651 ev_start (EV_A_ (W)w, 1);
2126} 2652}
2127 2653
2128void 2654void
2129ev_embed_stop (EV_P_ ev_embed *w) 2655ev_embed_stop (EV_P_ ev_embed *w)
2130{ 2656{
2131 ev_clear_pending (EV_A_ (W)w); 2657 clear_pending (EV_A_ (W)w);
2132 if (expect_false (!ev_is_active (w))) 2658 if (expect_false (!ev_is_active (w)))
2133 return; 2659 return;
2134 2660
2135 ev_io_stop (EV_A_ &w->io); 2661 ev_io_stop (EV_A_ &w->io);
2662 ev_prepare_stop (EV_A_ &w->prepare);
2136 2663
2137 ev_stop (EV_A_ (W)w); 2664 ev_stop (EV_A_ (W)w);
2138} 2665}
2139#endif 2666#endif
2140 2667
2151} 2678}
2152 2679
2153void 2680void
2154ev_fork_stop (EV_P_ ev_fork *w) 2681ev_fork_stop (EV_P_ ev_fork *w)
2155{ 2682{
2156 ev_clear_pending (EV_A_ (W)w); 2683 clear_pending (EV_A_ (W)w);
2157 if (expect_false (!ev_is_active (w))) 2684 if (expect_false (!ev_is_active (w)))
2158 return; 2685 return;
2159 2686
2160 { 2687 {
2161 int active = ((W)w)->active; 2688 int active = ev_active (w);
2689
2162 forks [active - 1] = forks [--forkcnt]; 2690 forks [active - 1] = forks [--forkcnt];
2163 ((W)forks [active - 1])->active = active; 2691 ev_active (forks [active - 1]) = active;
2164 } 2692 }
2165 2693
2166 ev_stop (EV_A_ (W)w); 2694 ev_stop (EV_A_ (W)w);
2695}
2696#endif
2697
2698#if EV_ASYNC_ENABLE
2699void
2700ev_async_start (EV_P_ ev_async *w)
2701{
2702 if (expect_false (ev_is_active (w)))
2703 return;
2704
2705 evpipe_init (EV_A);
2706
2707 ev_start (EV_A_ (W)w, ++asynccnt);
2708 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2709 asyncs [asynccnt - 1] = w;
2710}
2711
2712void
2713ev_async_stop (EV_P_ ev_async *w)
2714{
2715 clear_pending (EV_A_ (W)w);
2716 if (expect_false (!ev_is_active (w)))
2717 return;
2718
2719 {
2720 int active = ev_active (w);
2721
2722 asyncs [active - 1] = asyncs [--asynccnt];
2723 ev_active (asyncs [active - 1]) = active;
2724 }
2725
2726 ev_stop (EV_A_ (W)w);
2727}
2728
2729void
2730ev_async_send (EV_P_ ev_async *w)
2731{
2732 w->sent = 1;
2733 evpipe_write (EV_A_ &gotasync);
2167} 2734}
2168#endif 2735#endif
2169 2736
2170/*****************************************************************************/ 2737/*****************************************************************************/
2171 2738
2229 ev_timer_set (&once->to, timeout, 0.); 2796 ev_timer_set (&once->to, timeout, 0.);
2230 ev_timer_start (EV_A_ &once->to); 2797 ev_timer_start (EV_A_ &once->to);
2231 } 2798 }
2232} 2799}
2233 2800
2801#if EV_MULTIPLICITY
2802 #include "ev_wrap.h"
2803#endif
2804
2234#ifdef __cplusplus 2805#ifdef __cplusplus
2235} 2806}
2236#endif 2807#endif
2237 2808

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines