ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.163 by root, Wed Dec 5 13:54:36 2007 UTC vs.
Revision 1.273 by root, Mon Nov 3 14:27:06 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
129#ifndef _WIN32 154#ifndef _WIN32
130# include <sys/time.h> 155# include <sys/time.h>
131# include <sys/wait.h> 156# include <sys/wait.h>
132# include <unistd.h> 157# include <unistd.h>
133#else 158#else
159# include <io.h>
134# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 161# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
138# endif 164# endif
139#endif 165#endif
140 166
141/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
142 168
143#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
144# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
145#endif 175#endif
146 176
147#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
149#endif 187#endif
150 188
151#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
153#endif 191#endif
159# define EV_USE_POLL 1 197# define EV_USE_POLL 1
160# endif 198# endif
161#endif 199#endif
162 200
163#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
164# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
165#endif 207#endif
166 208
167#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
169#endif 211#endif
171#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 214# define EV_USE_PORT 0
173#endif 215#endif
174 216
175#ifndef EV_USE_INOTIFY 217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
176# define EV_USE_INOTIFY 0 221# define EV_USE_INOTIFY 0
222# endif
177#endif 223#endif
178 224
179#ifndef EV_PID_HASHSIZE 225#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 226# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 227# define EV_PID_HASHSIZE 1
190# else 236# else
191# define EV_INOTIFY_HASHSIZE 16 237# define EV_INOTIFY_HASHSIZE 16
192# endif 238# endif
193#endif 239#endif
194 240
195/**/ 241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 268
197#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
200#endif 272#endif
202#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
205#endif 277#endif
206 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
292# include <sys/statfs.h>
293# include <sys/inotify.h>
294/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
295# ifndef IN_DONT_FOLLOW
296# undef EV_USE_INOTIFY
297# define EV_USE_INOTIFY 0
298# endif
299#endif
300
207#if EV_SELECT_IS_WINSOCKET 301#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 302# include <winsock.h>
209#endif 303#endif
210 304
211#if !EV_STAT_ENABLE 305#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 306/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
307# include <stdint.h>
308# ifdef __cplusplus
309extern "C" {
213#endif 310# endif
214 311int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 312# ifdef __cplusplus
216# include <sys/inotify.h> 313}
314# endif
217#endif 315#endif
218 316
219/**/ 317/**/
318
319#if EV_VERIFY >= 3
320# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
321#else
322# define EV_FREQUENT_CHECK do { } while (0)
323#endif
324
325/*
326 * This is used to avoid floating point rounding problems.
327 * It is added to ev_rt_now when scheduling periodics
328 * to ensure progress, time-wise, even when rounding
329 * errors are against us.
330 * This value is good at least till the year 4000.
331 * Better solutions welcome.
332 */
333#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 334
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 335#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 336#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 337/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 338
225#if __GNUC__ >= 3 339#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 340# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 341# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 342#else
236# define expect(expr,value) (expr) 343# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 344# define noinline
345# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
346# define inline
347# endif
240#endif 348#endif
241 349
242#define expect_false(expr) expect ((expr) != 0, 0) 350#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 351#define expect_true(expr) expect ((expr) != 0, 1)
352#define inline_size static inline
353
354#if EV_MINIMAL
355# define inline_speed static noinline
356#else
357# define inline_speed static inline
358#endif
244 359
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 360#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 361#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 362
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 363#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 364#define EMPTY2(a,b) /* used to suppress some warnings */
250 365
251typedef ev_watcher *W; 366typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 367typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 368typedef ev_watcher_time *WT;
254 369
370#define ev_active(w) ((W)(w))->active
371#define ev_at(w) ((WT)(w))->at
372
373#if EV_USE_MONOTONIC
374/* sig_atomic_t is used to avoid per-thread variables or locking but still */
375/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 376static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
377#endif
256 378
257#ifdef _WIN32 379#ifdef _WIN32
258# include "ev_win32.c" 380# include "ev_win32.c"
259#endif 381#endif
260 382
267{ 389{
268 syserr_cb = cb; 390 syserr_cb = cb;
269} 391}
270 392
271static void noinline 393static void noinline
272syserr (const char *msg) 394ev_syserr (const char *msg)
273{ 395{
274 if (!msg) 396 if (!msg)
275 msg = "(libev) system error"; 397 msg = "(libev) system error";
276 398
277 if (syserr_cb) 399 if (syserr_cb)
281 perror (msg); 403 perror (msg);
282 abort (); 404 abort ();
283 } 405 }
284} 406}
285 407
408static void *
409ev_realloc_emul (void *ptr, long size)
410{
411 /* some systems, notably openbsd and darwin, fail to properly
412 * implement realloc (x, 0) (as required by both ansi c-98 and
413 * the single unix specification, so work around them here.
414 */
415
416 if (size)
417 return realloc (ptr, size);
418
419 free (ptr);
420 return 0;
421}
422
286static void *(*alloc)(void *ptr, long size); 423static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 424
288void 425void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 426ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 427{
291 alloc = cb; 428 alloc = cb;
292} 429}
293 430
294inline_speed void * 431inline_speed void *
295ev_realloc (void *ptr, long size) 432ev_realloc (void *ptr, long size)
296{ 433{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 434 ptr = alloc (ptr, size);
298 435
299 if (!ptr && size) 436 if (!ptr && size)
300 { 437 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 438 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 439 abort ();
313typedef struct 450typedef struct
314{ 451{
315 WL head; 452 WL head;
316 unsigned char events; 453 unsigned char events;
317 unsigned char reify; 454 unsigned char reify;
455 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
456 unsigned char unused;
457#if EV_USE_EPOLL
458 unsigned int egen; /* generation counter to counter epoll bugs */
459#endif
318#if EV_SELECT_IS_WINSOCKET 460#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 461 SOCKET handle;
320#endif 462#endif
321} ANFD; 463} ANFD;
322 464
325 W w; 467 W w;
326 int events; 468 int events;
327} ANPENDING; 469} ANPENDING;
328 470
329#if EV_USE_INOTIFY 471#if EV_USE_INOTIFY
472/* hash table entry per inotify-id */
330typedef struct 473typedef struct
331{ 474{
332 WL head; 475 WL head;
333} ANFS; 476} ANFS;
477#endif
478
479/* Heap Entry */
480#if EV_HEAP_CACHE_AT
481 typedef struct {
482 ev_tstamp at;
483 WT w;
484 } ANHE;
485
486 #define ANHE_w(he) (he).w /* access watcher, read-write */
487 #define ANHE_at(he) (he).at /* access cached at, read-only */
488 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
489#else
490 typedef WT ANHE;
491
492 #define ANHE_w(he) (he)
493 #define ANHE_at(he) (he)->at
494 #define ANHE_at_cache(he)
334#endif 495#endif
335 496
336#if EV_MULTIPLICITY 497#if EV_MULTIPLICITY
337 498
338 struct ev_loop 499 struct ev_loop
396{ 557{
397 return ev_rt_now; 558 return ev_rt_now;
398} 559}
399#endif 560#endif
400 561
562void
563ev_sleep (ev_tstamp delay)
564{
565 if (delay > 0.)
566 {
567#if EV_USE_NANOSLEEP
568 struct timespec ts;
569
570 ts.tv_sec = (time_t)delay;
571 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
572
573 nanosleep (&ts, 0);
574#elif defined(_WIN32)
575 Sleep ((unsigned long)(delay * 1e3));
576#else
577 struct timeval tv;
578
579 tv.tv_sec = (time_t)delay;
580 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
581
582 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
583 /* somehting nto guaranteed by newer posix versions, but guaranteed */
584 /* by older ones */
585 select (0, 0, 0, 0, &tv);
586#endif
587 }
588}
589
590/*****************************************************************************/
591
592#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
593
401int inline_size 594int inline_size
402array_nextsize (int elem, int cur, int cnt) 595array_nextsize (int elem, int cur, int cnt)
403{ 596{
404 int ncur = cur + 1; 597 int ncur = cur + 1;
405 598
406 do 599 do
407 ncur <<= 1; 600 ncur <<= 1;
408 while (cnt > ncur); 601 while (cnt > ncur);
409 602
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 603 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
411 if (elem * ncur > 4096) 604 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
412 { 605 {
413 ncur *= elem; 606 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 607 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
415 ncur = ncur - sizeof (void *) * 4; 608 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem; 609 ncur /= elem;
417 } 610 }
418 611
419 return ncur; 612 return ncur;
420} 613}
421 614
422inline_speed void * 615static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 616array_realloc (int elem, void *base, int *cur, int cnt)
424{ 617{
425 *cur = array_nextsize (elem, *cur, cnt); 618 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 619 return ev_realloc (base, elem * *cur);
427} 620}
621
622#define array_init_zero(base,count) \
623 memset ((void *)(base), 0, sizeof (*(base)) * (count))
428 624
429#define array_needsize(type,base,cur,cnt,init) \ 625#define array_needsize(type,base,cur,cnt,init) \
430 if (expect_false ((cnt) > (cur))) \ 626 if (expect_false ((cnt) > (cur))) \
431 { \ 627 { \
432 int ocur_ = (cur); \ 628 int ocur_ = (cur); \
452 648
453void noinline 649void noinline
454ev_feed_event (EV_P_ void *w, int revents) 650ev_feed_event (EV_P_ void *w, int revents)
455{ 651{
456 W w_ = (W)w; 652 W w_ = (W)w;
653 int pri = ABSPRI (w_);
457 654
458 if (expect_false (w_->pending)) 655 if (expect_false (w_->pending))
656 pendings [pri][w_->pending - 1].events |= revents;
657 else
459 { 658 {
659 w_->pending = ++pendingcnt [pri];
660 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
661 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 662 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 663 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 664}
469 665
470void inline_size 666void inline_speed
471queue_events (EV_P_ W *events, int eventcnt, int type) 667queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 668{
473 int i; 669 int i;
474 670
475 for (i = 0; i < eventcnt; ++i) 671 for (i = 0; i < eventcnt; ++i)
476 ev_feed_event (EV_A_ events [i], type); 672 ev_feed_event (EV_A_ events [i], type);
477} 673}
478 674
479/*****************************************************************************/ 675/*****************************************************************************/
480 676
481void inline_size
482anfds_init (ANFD *base, int count)
483{
484 while (count--)
485 {
486 base->head = 0;
487 base->events = EV_NONE;
488 base->reify = 0;
489
490 ++base;
491 }
492}
493
494void inline_speed 677void inline_speed
495fd_event (EV_P_ int fd, int revents) 678fd_event (EV_P_ int fd, int revents)
496{ 679{
497 ANFD *anfd = anfds + fd; 680 ANFD *anfd = anfds + fd;
498 ev_io *w; 681 ev_io *w;
507} 690}
508 691
509void 692void
510ev_feed_fd_event (EV_P_ int fd, int revents) 693ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 694{
695 if (fd >= 0 && fd < anfdmax)
512 fd_event (EV_A_ fd, revents); 696 fd_event (EV_A_ fd, revents);
513} 697}
514 698
515void inline_size 699void inline_size
516fd_reify (EV_P) 700fd_reify (EV_P)
517{ 701{
521 { 705 {
522 int fd = fdchanges [i]; 706 int fd = fdchanges [i];
523 ANFD *anfd = anfds + fd; 707 ANFD *anfd = anfds + fd;
524 ev_io *w; 708 ev_io *w;
525 709
526 int events = 0; 710 unsigned char events = 0;
527 711
528 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 712 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
529 events |= w->events; 713 events |= (unsigned char)w->events;
530 714
531#if EV_SELECT_IS_WINSOCKET 715#if EV_SELECT_IS_WINSOCKET
532 if (events) 716 if (events)
533 { 717 {
534 unsigned long argp; 718 unsigned long arg;
719 #ifdef EV_FD_TO_WIN32_HANDLE
720 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
721 #else
535 anfd->handle = _get_osfhandle (fd); 722 anfd->handle = _get_osfhandle (fd);
723 #endif
536 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 724 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
537 } 725 }
538#endif 726#endif
539 727
728 {
729 unsigned char o_events = anfd->events;
730 unsigned char o_reify = anfd->reify;
731
540 anfd->reify = 0; 732 anfd->reify = 0;
541
542 backend_modify (EV_A_ fd, anfd->events, events);
543 anfd->events = events; 733 anfd->events = events;
734
735 if (o_events != events || o_reify & EV_IOFDSET)
736 backend_modify (EV_A_ fd, o_events, events);
737 }
544 } 738 }
545 739
546 fdchangecnt = 0; 740 fdchangecnt = 0;
547} 741}
548 742
549void inline_size 743void inline_size
550fd_change (EV_P_ int fd) 744fd_change (EV_P_ int fd, int flags)
551{ 745{
552 if (expect_false (anfds [fd].reify)) 746 unsigned char reify = anfds [fd].reify;
553 return;
554
555 anfds [fd].reify = 1; 747 anfds [fd].reify |= flags;
556 748
749 if (expect_true (!reify))
750 {
557 ++fdchangecnt; 751 ++fdchangecnt;
558 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 752 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
559 fdchanges [fdchangecnt - 1] = fd; 753 fdchanges [fdchangecnt - 1] = fd;
754 }
560} 755}
561 756
562void inline_speed 757void inline_speed
563fd_kill (EV_P_ int fd) 758fd_kill (EV_P_ int fd)
564{ 759{
587{ 782{
588 int fd; 783 int fd;
589 784
590 for (fd = 0; fd < anfdmax; ++fd) 785 for (fd = 0; fd < anfdmax; ++fd)
591 if (anfds [fd].events) 786 if (anfds [fd].events)
592 if (!fd_valid (fd) == -1 && errno == EBADF) 787 if (!fd_valid (fd) && errno == EBADF)
593 fd_kill (EV_A_ fd); 788 fd_kill (EV_A_ fd);
594} 789}
595 790
596/* called on ENOMEM in select/poll to kill some fds and retry */ 791/* called on ENOMEM in select/poll to kill some fds and retry */
597static void noinline 792static void noinline
615 810
616 for (fd = 0; fd < anfdmax; ++fd) 811 for (fd = 0; fd < anfdmax; ++fd)
617 if (anfds [fd].events) 812 if (anfds [fd].events)
618 { 813 {
619 anfds [fd].events = 0; 814 anfds [fd].events = 0;
815 anfds [fd].emask = 0;
620 fd_change (EV_A_ fd); 816 fd_change (EV_A_ fd, EV_IOFDSET | 1);
621 } 817 }
622} 818}
623 819
624/*****************************************************************************/ 820/*****************************************************************************/
625 821
822/*
823 * the heap functions want a real array index. array index 0 uis guaranteed to not
824 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
825 * the branching factor of the d-tree.
826 */
827
828/*
829 * at the moment we allow libev the luxury of two heaps,
830 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
831 * which is more cache-efficient.
832 * the difference is about 5% with 50000+ watchers.
833 */
834#if EV_USE_4HEAP
835
836#define DHEAP 4
837#define HEAP0 (DHEAP - 1) /* index of first element in heap */
838#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
839#define UPHEAP_DONE(p,k) ((p) == (k))
840
841/* away from the root */
626void inline_speed 842void inline_speed
627upheap (WT *heap, int k) 843downheap (ANHE *heap, int N, int k)
628{ 844{
629 WT w = heap [k]; 845 ANHE he = heap [k];
846 ANHE *E = heap + N + HEAP0;
630 847
631 while (k && heap [k >> 1]->at > w->at) 848 for (;;)
632 {
633 heap [k] = heap [k >> 1];
634 ((W)heap [k])->active = k + 1;
635 k >>= 1;
636 } 849 {
850 ev_tstamp minat;
851 ANHE *minpos;
852 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
637 853
854 /* find minimum child */
855 if (expect_true (pos + DHEAP - 1 < E))
856 {
857 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
858 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
859 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
860 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
861 }
862 else if (pos < E)
863 {
864 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
865 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
866 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
867 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
868 }
869 else
870 break;
871
872 if (ANHE_at (he) <= minat)
873 break;
874
875 heap [k] = *minpos;
876 ev_active (ANHE_w (*minpos)) = k;
877
878 k = minpos - heap;
879 }
880
638 heap [k] = w; 881 heap [k] = he;
639 ((W)heap [k])->active = k + 1; 882 ev_active (ANHE_w (he)) = k;
640
641} 883}
642 884
885#else /* 4HEAP */
886
887#define HEAP0 1
888#define HPARENT(k) ((k) >> 1)
889#define UPHEAP_DONE(p,k) (!(p))
890
891/* away from the root */
643void inline_speed 892void inline_speed
644downheap (WT *heap, int N, int k) 893downheap (ANHE *heap, int N, int k)
645{ 894{
646 WT w = heap [k]; 895 ANHE he = heap [k];
647 896
648 while (k < (N >> 1)) 897 for (;;)
649 { 898 {
650 int j = k << 1; 899 int c = k << 1;
651 900
652 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 901 if (c > N + HEAP0 - 1)
653 ++j;
654
655 if (w->at <= heap [j]->at)
656 break; 902 break;
657 903
904 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
905 ? 1 : 0;
906
907 if (ANHE_at (he) <= ANHE_at (heap [c]))
908 break;
909
658 heap [k] = heap [j]; 910 heap [k] = heap [c];
659 ((W)heap [k])->active = k + 1; 911 ev_active (ANHE_w (heap [k])) = k;
912
660 k = j; 913 k = c;
661 } 914 }
662 915
663 heap [k] = w; 916 heap [k] = he;
664 ((W)heap [k])->active = k + 1; 917 ev_active (ANHE_w (he)) = k;
918}
919#endif
920
921/* towards the root */
922void inline_speed
923upheap (ANHE *heap, int k)
924{
925 ANHE he = heap [k];
926
927 for (;;)
928 {
929 int p = HPARENT (k);
930
931 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
932 break;
933
934 heap [k] = heap [p];
935 ev_active (ANHE_w (heap [k])) = k;
936 k = p;
937 }
938
939 heap [k] = he;
940 ev_active (ANHE_w (he)) = k;
665} 941}
666 942
667void inline_size 943void inline_size
668adjustheap (WT *heap, int N, int k) 944adjustheap (ANHE *heap, int N, int k)
669{ 945{
946 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
670 upheap (heap, k); 947 upheap (heap, k);
948 else
671 downheap (heap, N, k); 949 downheap (heap, N, k);
950}
951
952/* rebuild the heap: this function is used only once and executed rarely */
953void inline_size
954reheap (ANHE *heap, int N)
955{
956 int i;
957
958 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
959 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
960 for (i = 0; i < N; ++i)
961 upheap (heap, i + HEAP0);
672} 962}
673 963
674/*****************************************************************************/ 964/*****************************************************************************/
675 965
676typedef struct 966typedef struct
677{ 967{
678 WL head; 968 WL head;
679 sig_atomic_t volatile gotsig; 969 EV_ATOMIC_T gotsig;
680} ANSIG; 970} ANSIG;
681 971
682static ANSIG *signals; 972static ANSIG *signals;
683static int signalmax; 973static int signalmax;
684 974
685static int sigpipe [2]; 975static EV_ATOMIC_T gotsig;
686static sig_atomic_t volatile gotsig;
687static ev_io sigev;
688 976
977/*****************************************************************************/
978
689void inline_size 979void inline_speed
690signals_init (ANSIG *base, int count)
691{
692 while (count--)
693 {
694 base->head = 0;
695 base->gotsig = 0;
696
697 ++base;
698 }
699}
700
701static void
702sighandler (int signum)
703{
704#if _WIN32
705 signal (signum, sighandler);
706#endif
707
708 signals [signum - 1].gotsig = 1;
709
710 if (!gotsig)
711 {
712 int old_errno = errno;
713 gotsig = 1;
714 write (sigpipe [1], &signum, 1);
715 errno = old_errno;
716 }
717}
718
719void noinline
720ev_feed_signal_event (EV_P_ int signum)
721{
722 WL w;
723
724#if EV_MULTIPLICITY
725 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
726#endif
727
728 --signum;
729
730 if (signum < 0 || signum >= signalmax)
731 return;
732
733 signals [signum].gotsig = 0;
734
735 for (w = signals [signum].head; w; w = w->next)
736 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
737}
738
739static void
740sigcb (EV_P_ ev_io *iow, int revents)
741{
742 int signum;
743
744 read (sigpipe [0], &revents, 1);
745 gotsig = 0;
746
747 for (signum = signalmax; signum--; )
748 if (signals [signum].gotsig)
749 ev_feed_signal_event (EV_A_ signum + 1);
750}
751
752void inline_size
753fd_intern (int fd) 980fd_intern (int fd)
754{ 981{
755#ifdef _WIN32 982#ifdef _WIN32
756 int arg = 1; 983 unsigned long arg = 1;
757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 984 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
758#else 985#else
759 fcntl (fd, F_SETFD, FD_CLOEXEC); 986 fcntl (fd, F_SETFD, FD_CLOEXEC);
760 fcntl (fd, F_SETFL, O_NONBLOCK); 987 fcntl (fd, F_SETFL, O_NONBLOCK);
761#endif 988#endif
762} 989}
763 990
764static void noinline 991static void noinline
765siginit (EV_P) 992evpipe_init (EV_P)
766{ 993{
994 if (!ev_is_active (&pipeev))
995 {
996#if EV_USE_EVENTFD
997 if ((evfd = eventfd (0, 0)) >= 0)
998 {
999 evpipe [0] = -1;
1000 fd_intern (evfd);
1001 ev_io_set (&pipeev, evfd, EV_READ);
1002 }
1003 else
1004#endif
1005 {
1006 while (pipe (evpipe))
1007 ev_syserr ("(libev) error creating signal/async pipe");
1008
767 fd_intern (sigpipe [0]); 1009 fd_intern (evpipe [0]);
768 fd_intern (sigpipe [1]); 1010 fd_intern (evpipe [1]);
1011 ev_io_set (&pipeev, evpipe [0], EV_READ);
1012 }
769 1013
770 ev_io_set (&sigev, sigpipe [0], EV_READ);
771 ev_io_start (EV_A_ &sigev); 1014 ev_io_start (EV_A_ &pipeev);
772 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1015 ev_unref (EV_A); /* watcher should not keep loop alive */
1016 }
1017}
1018
1019void inline_size
1020evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1021{
1022 if (!*flag)
1023 {
1024 int old_errno = errno; /* save errno because write might clobber it */
1025
1026 *flag = 1;
1027
1028#if EV_USE_EVENTFD
1029 if (evfd >= 0)
1030 {
1031 uint64_t counter = 1;
1032 write (evfd, &counter, sizeof (uint64_t));
1033 }
1034 else
1035#endif
1036 write (evpipe [1], &old_errno, 1);
1037
1038 errno = old_errno;
1039 }
1040}
1041
1042static void
1043pipecb (EV_P_ ev_io *iow, int revents)
1044{
1045#if EV_USE_EVENTFD
1046 if (evfd >= 0)
1047 {
1048 uint64_t counter;
1049 read (evfd, &counter, sizeof (uint64_t));
1050 }
1051 else
1052#endif
1053 {
1054 char dummy;
1055 read (evpipe [0], &dummy, 1);
1056 }
1057
1058 if (gotsig && ev_is_default_loop (EV_A))
1059 {
1060 int signum;
1061 gotsig = 0;
1062
1063 for (signum = signalmax; signum--; )
1064 if (signals [signum].gotsig)
1065 ev_feed_signal_event (EV_A_ signum + 1);
1066 }
1067
1068#if EV_ASYNC_ENABLE
1069 if (gotasync)
1070 {
1071 int i;
1072 gotasync = 0;
1073
1074 for (i = asynccnt; i--; )
1075 if (asyncs [i]->sent)
1076 {
1077 asyncs [i]->sent = 0;
1078 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1079 }
1080 }
1081#endif
773} 1082}
774 1083
775/*****************************************************************************/ 1084/*****************************************************************************/
776 1085
1086static void
1087ev_sighandler (int signum)
1088{
1089#if EV_MULTIPLICITY
1090 struct ev_loop *loop = &default_loop_struct;
1091#endif
1092
1093#if _WIN32
1094 signal (signum, ev_sighandler);
1095#endif
1096
1097 signals [signum - 1].gotsig = 1;
1098 evpipe_write (EV_A_ &gotsig);
1099}
1100
1101void noinline
1102ev_feed_signal_event (EV_P_ int signum)
1103{
1104 WL w;
1105
1106#if EV_MULTIPLICITY
1107 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1108#endif
1109
1110 --signum;
1111
1112 if (signum < 0 || signum >= signalmax)
1113 return;
1114
1115 signals [signum].gotsig = 0;
1116
1117 for (w = signals [signum].head; w; w = w->next)
1118 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1119}
1120
1121/*****************************************************************************/
1122
777static ev_child *childs [EV_PID_HASHSIZE]; 1123static WL childs [EV_PID_HASHSIZE];
778 1124
779#ifndef _WIN32 1125#ifndef _WIN32
780 1126
781static ev_signal childev; 1127static ev_signal childev;
782 1128
1129#ifndef WIFCONTINUED
1130# define WIFCONTINUED(status) 0
1131#endif
1132
783void inline_speed 1133void inline_speed
784child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1134child_reap (EV_P_ int chain, int pid, int status)
785{ 1135{
786 ev_child *w; 1136 ev_child *w;
1137 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
787 1138
788 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1139 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1140 {
789 if (w->pid == pid || !w->pid) 1141 if ((w->pid == pid || !w->pid)
1142 && (!traced || (w->flags & 1)))
790 { 1143 {
791 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1144 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
792 w->rpid = pid; 1145 w->rpid = pid;
793 w->rstatus = status; 1146 w->rstatus = status;
794 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1147 ev_feed_event (EV_A_ (W)w, EV_CHILD);
795 } 1148 }
1149 }
796} 1150}
797 1151
798#ifndef WCONTINUED 1152#ifndef WCONTINUED
799# define WCONTINUED 0 1153# define WCONTINUED 0
800#endif 1154#endif
809 if (!WCONTINUED 1163 if (!WCONTINUED
810 || errno != EINVAL 1164 || errno != EINVAL
811 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1165 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
812 return; 1166 return;
813 1167
814 /* make sure we are called again until all childs have been reaped */ 1168 /* make sure we are called again until all children have been reaped */
815 /* we need to do it this way so that the callback gets called before we continue */ 1169 /* we need to do it this way so that the callback gets called before we continue */
816 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1170 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
817 1171
818 child_reap (EV_A_ sw, pid, pid, status); 1172 child_reap (EV_A_ pid, pid, status);
819 if (EV_PID_HASHSIZE > 1) 1173 if (EV_PID_HASHSIZE > 1)
820 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1174 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
821} 1175}
822 1176
823#endif 1177#endif
824 1178
825/*****************************************************************************/ 1179/*****************************************************************************/
897} 1251}
898 1252
899unsigned int 1253unsigned int
900ev_embeddable_backends (void) 1254ev_embeddable_backends (void)
901{ 1255{
902 return EVBACKEND_EPOLL 1256 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
903 | EVBACKEND_KQUEUE 1257
904 | EVBACKEND_PORT; 1258 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1259 /* please fix it and tell me how to detect the fix */
1260 flags &= ~EVBACKEND_EPOLL;
1261
1262 return flags;
905} 1263}
906 1264
907unsigned int 1265unsigned int
908ev_backend (EV_P) 1266ev_backend (EV_P)
909{ 1267{
912 1270
913unsigned int 1271unsigned int
914ev_loop_count (EV_P) 1272ev_loop_count (EV_P)
915{ 1273{
916 return loop_count; 1274 return loop_count;
1275}
1276
1277void
1278ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1279{
1280 io_blocktime = interval;
1281}
1282
1283void
1284ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1285{
1286 timeout_blocktime = interval;
917} 1287}
918 1288
919static void noinline 1289static void noinline
920loop_init (EV_P_ unsigned int flags) 1290loop_init (EV_P_ unsigned int flags)
921{ 1291{
927 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1297 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
928 have_monotonic = 1; 1298 have_monotonic = 1;
929 } 1299 }
930#endif 1300#endif
931 1301
932 ev_rt_now = ev_time (); 1302 ev_rt_now = ev_time ();
933 mn_now = get_clock (); 1303 mn_now = get_clock ();
934 now_floor = mn_now; 1304 now_floor = mn_now;
935 rtmn_diff = ev_rt_now - mn_now; 1305 rtmn_diff = ev_rt_now - mn_now;
1306
1307 io_blocktime = 0.;
1308 timeout_blocktime = 0.;
1309 backend = 0;
1310 backend_fd = -1;
1311 gotasync = 0;
1312#if EV_USE_INOTIFY
1313 fs_fd = -2;
1314#endif
936 1315
937 /* pid check not overridable via env */ 1316 /* pid check not overridable via env */
938#ifndef _WIN32 1317#ifndef _WIN32
939 if (flags & EVFLAG_FORKCHECK) 1318 if (flags & EVFLAG_FORKCHECK)
940 curpid = getpid (); 1319 curpid = getpid ();
943 if (!(flags & EVFLAG_NOENV) 1322 if (!(flags & EVFLAG_NOENV)
944 && !enable_secure () 1323 && !enable_secure ()
945 && getenv ("LIBEV_FLAGS")) 1324 && getenv ("LIBEV_FLAGS"))
946 flags = atoi (getenv ("LIBEV_FLAGS")); 1325 flags = atoi (getenv ("LIBEV_FLAGS"));
947 1326
948 if (!(flags & 0x0000ffffUL)) 1327 if (!(flags & 0x0000ffffU))
949 flags |= ev_recommended_backends (); 1328 flags |= ev_recommended_backends ();
950
951 backend = 0;
952 backend_fd = -1;
953#if EV_USE_INOTIFY
954 fs_fd = -2;
955#endif
956 1329
957#if EV_USE_PORT 1330#if EV_USE_PORT
958 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1331 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
959#endif 1332#endif
960#if EV_USE_KQUEUE 1333#if EV_USE_KQUEUE
968#endif 1341#endif
969#if EV_USE_SELECT 1342#if EV_USE_SELECT
970 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1343 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
971#endif 1344#endif
972 1345
973 ev_init (&sigev, sigcb); 1346 ev_init (&pipeev, pipecb);
974 ev_set_priority (&sigev, EV_MAXPRI); 1347 ev_set_priority (&pipeev, EV_MAXPRI);
975 } 1348 }
976} 1349}
977 1350
978static void noinline 1351static void noinline
979loop_destroy (EV_P) 1352loop_destroy (EV_P)
980{ 1353{
981 int i; 1354 int i;
1355
1356 if (ev_is_active (&pipeev))
1357 {
1358 ev_ref (EV_A); /* signal watcher */
1359 ev_io_stop (EV_A_ &pipeev);
1360
1361#if EV_USE_EVENTFD
1362 if (evfd >= 0)
1363 close (evfd);
1364#endif
1365
1366 if (evpipe [0] >= 0)
1367 {
1368 close (evpipe [0]);
1369 close (evpipe [1]);
1370 }
1371 }
982 1372
983#if EV_USE_INOTIFY 1373#if EV_USE_INOTIFY
984 if (fs_fd >= 0) 1374 if (fs_fd >= 0)
985 close (fs_fd); 1375 close (fs_fd);
986#endif 1376#endif
1003#if EV_USE_SELECT 1393#if EV_USE_SELECT
1004 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1394 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1005#endif 1395#endif
1006 1396
1007 for (i = NUMPRI; i--; ) 1397 for (i = NUMPRI; i--; )
1398 {
1008 array_free (pending, [i]); 1399 array_free (pending, [i]);
1400#if EV_IDLE_ENABLE
1401 array_free (idle, [i]);
1402#endif
1403 }
1404
1405 ev_free (anfds); anfdmax = 0;
1009 1406
1010 /* have to use the microsoft-never-gets-it-right macro */ 1407 /* have to use the microsoft-never-gets-it-right macro */
1011 array_free (fdchange, EMPTY0); 1408 array_free (fdchange, EMPTY);
1012 array_free (timer, EMPTY0); 1409 array_free (timer, EMPTY);
1013#if EV_PERIODIC_ENABLE 1410#if EV_PERIODIC_ENABLE
1014 array_free (periodic, EMPTY0); 1411 array_free (periodic, EMPTY);
1015#endif 1412#endif
1413#if EV_FORK_ENABLE
1016 array_free (idle, EMPTY0); 1414 array_free (fork, EMPTY);
1415#endif
1017 array_free (prepare, EMPTY0); 1416 array_free (prepare, EMPTY);
1018 array_free (check, EMPTY0); 1417 array_free (check, EMPTY);
1418#if EV_ASYNC_ENABLE
1419 array_free (async, EMPTY);
1420#endif
1019 1421
1020 backend = 0; 1422 backend = 0;
1021} 1423}
1022 1424
1425#if EV_USE_INOTIFY
1023void inline_size infy_fork (EV_P); 1426void inline_size infy_fork (EV_P);
1427#endif
1024 1428
1025void inline_size 1429void inline_size
1026loop_fork (EV_P) 1430loop_fork (EV_P)
1027{ 1431{
1028#if EV_USE_PORT 1432#if EV_USE_PORT
1036#endif 1440#endif
1037#if EV_USE_INOTIFY 1441#if EV_USE_INOTIFY
1038 infy_fork (EV_A); 1442 infy_fork (EV_A);
1039#endif 1443#endif
1040 1444
1041 if (ev_is_active (&sigev)) 1445 if (ev_is_active (&pipeev))
1042 { 1446 {
1043 /* default loop */ 1447 /* this "locks" the handlers against writing to the pipe */
1448 /* while we modify the fd vars */
1449 gotsig = 1;
1450#if EV_ASYNC_ENABLE
1451 gotasync = 1;
1452#endif
1044 1453
1045 ev_ref (EV_A); 1454 ev_ref (EV_A);
1046 ev_io_stop (EV_A_ &sigev); 1455 ev_io_stop (EV_A_ &pipeev);
1456
1457#if EV_USE_EVENTFD
1458 if (evfd >= 0)
1459 close (evfd);
1460#endif
1461
1462 if (evpipe [0] >= 0)
1463 {
1047 close (sigpipe [0]); 1464 close (evpipe [0]);
1048 close (sigpipe [1]); 1465 close (evpipe [1]);
1466 }
1049 1467
1050 while (pipe (sigpipe))
1051 syserr ("(libev) error creating pipe");
1052
1053 siginit (EV_A); 1468 evpipe_init (EV_A);
1469 /* now iterate over everything, in case we missed something */
1470 pipecb (EV_A_ &pipeev, EV_READ);
1054 } 1471 }
1055 1472
1056 postfork = 0; 1473 postfork = 0;
1057} 1474}
1058 1475
1059#if EV_MULTIPLICITY 1476#if EV_MULTIPLICITY
1477
1060struct ev_loop * 1478struct ev_loop *
1061ev_loop_new (unsigned int flags) 1479ev_loop_new (unsigned int flags)
1062{ 1480{
1063 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1481 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1064 1482
1080} 1498}
1081 1499
1082void 1500void
1083ev_loop_fork (EV_P) 1501ev_loop_fork (EV_P)
1084{ 1502{
1085 postfork = 1; 1503 postfork = 1; /* must be in line with ev_default_fork */
1086} 1504}
1087 1505
1506#if EV_VERIFY
1507static void noinline
1508verify_watcher (EV_P_ W w)
1509{
1510 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1511
1512 if (w->pending)
1513 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1514}
1515
1516static void noinline
1517verify_heap (EV_P_ ANHE *heap, int N)
1518{
1519 int i;
1520
1521 for (i = HEAP0; i < N + HEAP0; ++i)
1522 {
1523 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1524 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1525 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1526
1527 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1528 }
1529}
1530
1531static void noinline
1532array_verify (EV_P_ W *ws, int cnt)
1533{
1534 while (cnt--)
1535 {
1536 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1537 verify_watcher (EV_A_ ws [cnt]);
1538 }
1539}
1540#endif
1541
1542void
1543ev_loop_verify (EV_P)
1544{
1545#if EV_VERIFY
1546 int i;
1547 WL w;
1548
1549 assert (activecnt >= -1);
1550
1551 assert (fdchangemax >= fdchangecnt);
1552 for (i = 0; i < fdchangecnt; ++i)
1553 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1554
1555 assert (anfdmax >= 0);
1556 for (i = 0; i < anfdmax; ++i)
1557 for (w = anfds [i].head; w; w = w->next)
1558 {
1559 verify_watcher (EV_A_ (W)w);
1560 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1561 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1562 }
1563
1564 assert (timermax >= timercnt);
1565 verify_heap (EV_A_ timers, timercnt);
1566
1567#if EV_PERIODIC_ENABLE
1568 assert (periodicmax >= periodiccnt);
1569 verify_heap (EV_A_ periodics, periodiccnt);
1570#endif
1571
1572 for (i = NUMPRI; i--; )
1573 {
1574 assert (pendingmax [i] >= pendingcnt [i]);
1575#if EV_IDLE_ENABLE
1576 assert (idleall >= 0);
1577 assert (idlemax [i] >= idlecnt [i]);
1578 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1579#endif
1580 }
1581
1582#if EV_FORK_ENABLE
1583 assert (forkmax >= forkcnt);
1584 array_verify (EV_A_ (W *)forks, forkcnt);
1585#endif
1586
1587#if EV_ASYNC_ENABLE
1588 assert (asyncmax >= asynccnt);
1589 array_verify (EV_A_ (W *)asyncs, asynccnt);
1590#endif
1591
1592 assert (preparemax >= preparecnt);
1593 array_verify (EV_A_ (W *)prepares, preparecnt);
1594
1595 assert (checkmax >= checkcnt);
1596 array_verify (EV_A_ (W *)checks, checkcnt);
1597
1598# if 0
1599 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1600 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1088#endif 1601# endif
1602#endif
1603}
1604
1605#endif /* multiplicity */
1089 1606
1090#if EV_MULTIPLICITY 1607#if EV_MULTIPLICITY
1091struct ev_loop * 1608struct ev_loop *
1092ev_default_loop_init (unsigned int flags) 1609ev_default_loop_init (unsigned int flags)
1093#else 1610#else
1094int 1611int
1095ev_default_loop (unsigned int flags) 1612ev_default_loop (unsigned int flags)
1096#endif 1613#endif
1097{ 1614{
1098 if (sigpipe [0] == sigpipe [1])
1099 if (pipe (sigpipe))
1100 return 0;
1101
1102 if (!ev_default_loop_ptr) 1615 if (!ev_default_loop_ptr)
1103 { 1616 {
1104#if EV_MULTIPLICITY 1617#if EV_MULTIPLICITY
1105 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1618 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1106#else 1619#else
1109 1622
1110 loop_init (EV_A_ flags); 1623 loop_init (EV_A_ flags);
1111 1624
1112 if (ev_backend (EV_A)) 1625 if (ev_backend (EV_A))
1113 { 1626 {
1114 siginit (EV_A);
1115
1116#ifndef _WIN32 1627#ifndef _WIN32
1117 ev_signal_init (&childev, childcb, SIGCHLD); 1628 ev_signal_init (&childev, childcb, SIGCHLD);
1118 ev_set_priority (&childev, EV_MAXPRI); 1629 ev_set_priority (&childev, EV_MAXPRI);
1119 ev_signal_start (EV_A_ &childev); 1630 ev_signal_start (EV_A_ &childev);
1120 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1631 ev_unref (EV_A); /* child watcher should not keep loop alive */
1132{ 1643{
1133#if EV_MULTIPLICITY 1644#if EV_MULTIPLICITY
1134 struct ev_loop *loop = ev_default_loop_ptr; 1645 struct ev_loop *loop = ev_default_loop_ptr;
1135#endif 1646#endif
1136 1647
1648 ev_default_loop_ptr = 0;
1649
1137#ifndef _WIN32 1650#ifndef _WIN32
1138 ev_ref (EV_A); /* child watcher */ 1651 ev_ref (EV_A); /* child watcher */
1139 ev_signal_stop (EV_A_ &childev); 1652 ev_signal_stop (EV_A_ &childev);
1140#endif 1653#endif
1141 1654
1142 ev_ref (EV_A); /* signal watcher */
1143 ev_io_stop (EV_A_ &sigev);
1144
1145 close (sigpipe [0]); sigpipe [0] = 0;
1146 close (sigpipe [1]); sigpipe [1] = 0;
1147
1148 loop_destroy (EV_A); 1655 loop_destroy (EV_A);
1149} 1656}
1150 1657
1151void 1658void
1152ev_default_fork (void) 1659ev_default_fork (void)
1153{ 1660{
1154#if EV_MULTIPLICITY 1661#if EV_MULTIPLICITY
1155 struct ev_loop *loop = ev_default_loop_ptr; 1662 struct ev_loop *loop = ev_default_loop_ptr;
1156#endif 1663#endif
1157 1664
1158 if (backend) 1665 postfork = 1; /* must be in line with ev_loop_fork */
1159 postfork = 1;
1160} 1666}
1161 1667
1162/*****************************************************************************/ 1668/*****************************************************************************/
1163 1669
1164int inline_size 1670void
1165any_pending (EV_P) 1671ev_invoke (EV_P_ void *w, int revents)
1166{ 1672{
1167 int pri; 1673 EV_CB_INVOKE ((W)w, revents);
1168
1169 for (pri = NUMPRI; pri--; )
1170 if (pendingcnt [pri])
1171 return 1;
1172
1173 return 0;
1174} 1674}
1175 1675
1176void inline_speed 1676void inline_speed
1177call_pending (EV_P) 1677call_pending (EV_P)
1178{ 1678{
1187 { 1687 {
1188 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1688 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1189 1689
1190 p->w->pending = 0; 1690 p->w->pending = 0;
1191 EV_CB_INVOKE (p->w, p->events); 1691 EV_CB_INVOKE (p->w, p->events);
1692 EV_FREQUENT_CHECK;
1192 } 1693 }
1193 } 1694 }
1194} 1695}
1195 1696
1697#if EV_IDLE_ENABLE
1698void inline_size
1699idle_reify (EV_P)
1700{
1701 if (expect_false (idleall))
1702 {
1703 int pri;
1704
1705 for (pri = NUMPRI; pri--; )
1706 {
1707 if (pendingcnt [pri])
1708 break;
1709
1710 if (idlecnt [pri])
1711 {
1712 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1713 break;
1714 }
1715 }
1716 }
1717}
1718#endif
1719
1196void inline_size 1720void inline_size
1197timers_reify (EV_P) 1721timers_reify (EV_P)
1198{ 1722{
1723 EV_FREQUENT_CHECK;
1724
1199 while (timercnt && ((WT)timers [0])->at <= mn_now) 1725 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1200 { 1726 {
1201 ev_timer *w = timers [0]; 1727 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1202 1728
1203 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1729 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1204 1730
1205 /* first reschedule or stop timer */ 1731 /* first reschedule or stop timer */
1206 if (w->repeat) 1732 if (w->repeat)
1207 { 1733 {
1734 ev_at (w) += w->repeat;
1735 if (ev_at (w) < mn_now)
1736 ev_at (w) = mn_now;
1737
1208 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1738 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1209 1739
1210 ((WT)w)->at += w->repeat; 1740 ANHE_at_cache (timers [HEAP0]);
1211 if (((WT)w)->at < mn_now)
1212 ((WT)w)->at = mn_now;
1213
1214 downheap ((WT *)timers, timercnt, 0); 1741 downheap (timers, timercnt, HEAP0);
1215 } 1742 }
1216 else 1743 else
1217 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1744 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1218 1745
1746 EV_FREQUENT_CHECK;
1219 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1747 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1220 } 1748 }
1221} 1749}
1222 1750
1223#if EV_PERIODIC_ENABLE 1751#if EV_PERIODIC_ENABLE
1224void inline_size 1752void inline_size
1225periodics_reify (EV_P) 1753periodics_reify (EV_P)
1226{ 1754{
1755 EV_FREQUENT_CHECK;
1756
1227 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1757 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1228 { 1758 {
1229 ev_periodic *w = periodics [0]; 1759 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1230 1760
1231 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1761 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1232 1762
1233 /* first reschedule or stop timer */ 1763 /* first reschedule or stop timer */
1234 if (w->reschedule_cb) 1764 if (w->reschedule_cb)
1235 { 1765 {
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1766 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1767
1237 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1768 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1769
1770 ANHE_at_cache (periodics [HEAP0]);
1238 downheap ((WT *)periodics, periodiccnt, 0); 1771 downheap (periodics, periodiccnt, HEAP0);
1239 } 1772 }
1240 else if (w->interval) 1773 else if (w->interval)
1241 { 1774 {
1242 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1775 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1243 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1776 /* if next trigger time is not sufficiently in the future, put it there */
1777 /* this might happen because of floating point inexactness */
1778 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1779 {
1780 ev_at (w) += w->interval;
1781
1782 /* if interval is unreasonably low we might still have a time in the past */
1783 /* so correct this. this will make the periodic very inexact, but the user */
1784 /* has effectively asked to get triggered more often than possible */
1785 if (ev_at (w) < ev_rt_now)
1786 ev_at (w) = ev_rt_now;
1787 }
1788
1789 ANHE_at_cache (periodics [HEAP0]);
1244 downheap ((WT *)periodics, periodiccnt, 0); 1790 downheap (periodics, periodiccnt, HEAP0);
1245 } 1791 }
1246 else 1792 else
1247 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1793 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1248 1794
1795 EV_FREQUENT_CHECK;
1249 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1796 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1250 } 1797 }
1251} 1798}
1252 1799
1253static void noinline 1800static void noinline
1254periodics_reschedule (EV_P) 1801periodics_reschedule (EV_P)
1255{ 1802{
1256 int i; 1803 int i;
1257 1804
1258 /* adjust periodics after time jump */ 1805 /* adjust periodics after time jump */
1259 for (i = 0; i < periodiccnt; ++i) 1806 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1260 { 1807 {
1261 ev_periodic *w = periodics [i]; 1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1262 1809
1263 if (w->reschedule_cb) 1810 if (w->reschedule_cb)
1264 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1811 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1265 else if (w->interval) 1812 else if (w->interval)
1266 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1813 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1814
1815 ANHE_at_cache (periodics [i]);
1816 }
1817
1818 reheap (periodics, periodiccnt);
1819}
1820#endif
1821
1822void inline_speed
1823time_update (EV_P_ ev_tstamp max_block)
1824{
1825 int i;
1826
1827#if EV_USE_MONOTONIC
1828 if (expect_true (have_monotonic))
1267 } 1829 {
1830 ev_tstamp odiff = rtmn_diff;
1268 1831
1269 /* now rebuild the heap */
1270 for (i = periodiccnt >> 1; i--; )
1271 downheap ((WT *)periodics, periodiccnt, i);
1272}
1273#endif
1274
1275int inline_size
1276time_update_monotonic (EV_P)
1277{
1278 mn_now = get_clock (); 1832 mn_now = get_clock ();
1279 1833
1834 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1835 /* interpolate in the meantime */
1280 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1836 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1281 { 1837 {
1282 ev_rt_now = rtmn_diff + mn_now; 1838 ev_rt_now = rtmn_diff + mn_now;
1283 return 0; 1839 return;
1284 } 1840 }
1285 else 1841
1286 {
1287 now_floor = mn_now; 1842 now_floor = mn_now;
1288 ev_rt_now = ev_time (); 1843 ev_rt_now = ev_time ();
1289 return 1;
1290 }
1291}
1292 1844
1293void inline_size 1845 /* loop a few times, before making important decisions.
1294time_update (EV_P) 1846 * on the choice of "4": one iteration isn't enough,
1295{ 1847 * in case we get preempted during the calls to
1296 int i; 1848 * ev_time and get_clock. a second call is almost guaranteed
1297 1849 * to succeed in that case, though. and looping a few more times
1298#if EV_USE_MONOTONIC 1850 * doesn't hurt either as we only do this on time-jumps or
1299 if (expect_true (have_monotonic)) 1851 * in the unlikely event of having been preempted here.
1300 { 1852 */
1301 if (time_update_monotonic (EV_A)) 1853 for (i = 4; --i; )
1302 { 1854 {
1303 ev_tstamp odiff = rtmn_diff;
1304
1305 /* loop a few times, before making important decisions.
1306 * on the choice of "4": one iteration isn't enough,
1307 * in case we get preempted during the calls to
1308 * ev_time and get_clock. a second call is almost guaranteed
1309 * to succeed in that case, though. and looping a few more times
1310 * doesn't hurt either as we only do this on time-jumps or
1311 * in the unlikely event of having been preempted here.
1312 */
1313 for (i = 4; --i; )
1314 {
1315 rtmn_diff = ev_rt_now - mn_now; 1855 rtmn_diff = ev_rt_now - mn_now;
1316 1856
1317 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1857 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1318 return; /* all is well */ 1858 return; /* all is well */
1319 1859
1320 ev_rt_now = ev_time (); 1860 ev_rt_now = ev_time ();
1321 mn_now = get_clock (); 1861 mn_now = get_clock ();
1322 now_floor = mn_now; 1862 now_floor = mn_now;
1323 } 1863 }
1324 1864
1325# if EV_PERIODIC_ENABLE 1865# if EV_PERIODIC_ENABLE
1326 periodics_reschedule (EV_A); 1866 periodics_reschedule (EV_A);
1327# endif 1867# endif
1328 /* no timer adjustment, as the monotonic clock doesn't jump */ 1868 /* no timer adjustment, as the monotonic clock doesn't jump */
1329 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1869 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1330 }
1331 } 1870 }
1332 else 1871 else
1333#endif 1872#endif
1334 { 1873 {
1335 ev_rt_now = ev_time (); 1874 ev_rt_now = ev_time ();
1336 1875
1337 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1876 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1338 { 1877 {
1339#if EV_PERIODIC_ENABLE 1878#if EV_PERIODIC_ENABLE
1340 periodics_reschedule (EV_A); 1879 periodics_reschedule (EV_A);
1341#endif 1880#endif
1342
1343 /* adjust timers. this is easy, as the offset is the same for all of them */ 1881 /* adjust timers. this is easy, as the offset is the same for all of them */
1344 for (i = 0; i < timercnt; ++i) 1882 for (i = 0; i < timercnt; ++i)
1883 {
1884 ANHE *he = timers + i + HEAP0;
1345 ((WT)timers [i])->at += ev_rt_now - mn_now; 1885 ANHE_w (*he)->at += ev_rt_now - mn_now;
1886 ANHE_at_cache (*he);
1887 }
1346 } 1888 }
1347 1889
1348 mn_now = ev_rt_now; 1890 mn_now = ev_rt_now;
1349 } 1891 }
1350} 1892}
1359ev_unref (EV_P) 1901ev_unref (EV_P)
1360{ 1902{
1361 --activecnt; 1903 --activecnt;
1362} 1904}
1363 1905
1906void
1907ev_now_update (EV_P)
1908{
1909 time_update (EV_A_ 1e100);
1910}
1911
1364static int loop_done; 1912static int loop_done;
1365 1913
1366void 1914void
1367ev_loop (EV_P_ int flags) 1915ev_loop (EV_P_ int flags)
1368{ 1916{
1369 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1917 loop_done = EVUNLOOP_CANCEL;
1370 ? EVUNLOOP_ONE
1371 : EVUNLOOP_CANCEL;
1372 1918
1373 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1919 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1374 1920
1375 do 1921 do
1376 { 1922 {
1923#if EV_VERIFY >= 2
1924 ev_loop_verify (EV_A);
1925#endif
1926
1377#ifndef _WIN32 1927#ifndef _WIN32
1378 if (expect_false (curpid)) /* penalise the forking check even more */ 1928 if (expect_false (curpid)) /* penalise the forking check even more */
1379 if (expect_false (getpid () != curpid)) 1929 if (expect_false (getpid () != curpid))
1380 { 1930 {
1381 curpid = getpid (); 1931 curpid = getpid ();
1391 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1941 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1392 call_pending (EV_A); 1942 call_pending (EV_A);
1393 } 1943 }
1394#endif 1944#endif
1395 1945
1396 /* queue check watchers (and execute them) */ 1946 /* queue prepare watchers (and execute them) */
1397 if (expect_false (preparecnt)) 1947 if (expect_false (preparecnt))
1398 { 1948 {
1399 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1949 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1400 call_pending (EV_A); 1950 call_pending (EV_A);
1401 } 1951 }
1410 /* update fd-related kernel structures */ 1960 /* update fd-related kernel structures */
1411 fd_reify (EV_A); 1961 fd_reify (EV_A);
1412 1962
1413 /* calculate blocking time */ 1963 /* calculate blocking time */
1414 { 1964 {
1415 ev_tstamp block; 1965 ev_tstamp waittime = 0.;
1966 ev_tstamp sleeptime = 0.;
1416 1967
1417 if (expect_false (flags & EVLOOP_NONBLOCK || idlecnt || !activecnt)) 1968 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1418 block = 0.; /* do not block at all */
1419 else
1420 { 1969 {
1421 /* update time to cancel out callback processing overhead */ 1970 /* update time to cancel out callback processing overhead */
1422#if EV_USE_MONOTONIC
1423 if (expect_true (have_monotonic))
1424 time_update_monotonic (EV_A); 1971 time_update (EV_A_ 1e100);
1425 else
1426#endif
1427 {
1428 ev_rt_now = ev_time ();
1429 mn_now = ev_rt_now;
1430 }
1431 1972
1432 block = MAX_BLOCKTIME; 1973 waittime = MAX_BLOCKTIME;
1433 1974
1434 if (timercnt) 1975 if (timercnt)
1435 { 1976 {
1436 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1977 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1437 if (block > to) block = to; 1978 if (waittime > to) waittime = to;
1438 } 1979 }
1439 1980
1440#if EV_PERIODIC_ENABLE 1981#if EV_PERIODIC_ENABLE
1441 if (periodiccnt) 1982 if (periodiccnt)
1442 { 1983 {
1443 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1984 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1444 if (block > to) block = to; 1985 if (waittime > to) waittime = to;
1445 } 1986 }
1446#endif 1987#endif
1447 1988
1448 if (expect_false (block < 0.)) block = 0.; 1989 if (expect_false (waittime < timeout_blocktime))
1990 waittime = timeout_blocktime;
1991
1992 sleeptime = waittime - backend_fudge;
1993
1994 if (expect_true (sleeptime > io_blocktime))
1995 sleeptime = io_blocktime;
1996
1997 if (sleeptime)
1998 {
1999 ev_sleep (sleeptime);
2000 waittime -= sleeptime;
2001 }
1449 } 2002 }
1450 2003
1451 ++loop_count; 2004 ++loop_count;
1452 backend_poll (EV_A_ block); 2005 backend_poll (EV_A_ waittime);
2006
2007 /* update ev_rt_now, do magic */
2008 time_update (EV_A_ waittime + sleeptime);
1453 } 2009 }
1454
1455 /* update ev_rt_now, do magic */
1456 time_update (EV_A);
1457 2010
1458 /* queue pending timers and reschedule them */ 2011 /* queue pending timers and reschedule them */
1459 timers_reify (EV_A); /* relative timers called last */ 2012 timers_reify (EV_A); /* relative timers called last */
1460#if EV_PERIODIC_ENABLE 2013#if EV_PERIODIC_ENABLE
1461 periodics_reify (EV_A); /* absolute timers called first */ 2014 periodics_reify (EV_A); /* absolute timers called first */
1462#endif 2015#endif
1463 2016
2017#if EV_IDLE_ENABLE
1464 /* queue idle watchers unless other events are pending */ 2018 /* queue idle watchers unless other events are pending */
1465 if (idlecnt && !any_pending (EV_A)) 2019 idle_reify (EV_A);
1466 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2020#endif
1467 2021
1468 /* queue check watchers, to be executed first */ 2022 /* queue check watchers, to be executed first */
1469 if (expect_false (checkcnt)) 2023 if (expect_false (checkcnt))
1470 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2024 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1471 2025
1472 call_pending (EV_A); 2026 call_pending (EV_A);
1473
1474 } 2027 }
1475 while (expect_true (activecnt && !loop_done)); 2028 while (expect_true (
2029 activecnt
2030 && !loop_done
2031 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2032 ));
1476 2033
1477 if (loop_done == EVUNLOOP_ONE) 2034 if (loop_done == EVUNLOOP_ONE)
1478 loop_done = EVUNLOOP_CANCEL; 2035 loop_done = EVUNLOOP_CANCEL;
1479} 2036}
1480 2037
1507 head = &(*head)->next; 2064 head = &(*head)->next;
1508 } 2065 }
1509} 2066}
1510 2067
1511void inline_speed 2068void inline_speed
1512ev_clear_pending (EV_P_ W w) 2069clear_pending (EV_P_ W w)
1513{ 2070{
1514 if (w->pending) 2071 if (w->pending)
1515 { 2072 {
1516 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2073 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1517 w->pending = 0; 2074 w->pending = 0;
1518 } 2075 }
1519} 2076}
1520 2077
2078int
2079ev_clear_pending (EV_P_ void *w)
2080{
2081 W w_ = (W)w;
2082 int pending = w_->pending;
2083
2084 if (expect_true (pending))
2085 {
2086 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2087 w_->pending = 0;
2088 p->w = 0;
2089 return p->events;
2090 }
2091 else
2092 return 0;
2093}
2094
2095void inline_size
2096pri_adjust (EV_P_ W w)
2097{
2098 int pri = w->priority;
2099 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2100 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2101 w->priority = pri;
2102}
2103
1521void inline_speed 2104void inline_speed
1522ev_start (EV_P_ W w, int active) 2105ev_start (EV_P_ W w, int active)
1523{ 2106{
1524 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2107 pri_adjust (EV_A_ w);
1525 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1526
1527 w->active = active; 2108 w->active = active;
1528 ev_ref (EV_A); 2109 ev_ref (EV_A);
1529} 2110}
1530 2111
1531void inline_size 2112void inline_size
1535 w->active = 0; 2116 w->active = 0;
1536} 2117}
1537 2118
1538/*****************************************************************************/ 2119/*****************************************************************************/
1539 2120
1540void 2121void noinline
1541ev_io_start (EV_P_ ev_io *w) 2122ev_io_start (EV_P_ ev_io *w)
1542{ 2123{
1543 int fd = w->fd; 2124 int fd = w->fd;
1544 2125
1545 if (expect_false (ev_is_active (w))) 2126 if (expect_false (ev_is_active (w)))
1546 return; 2127 return;
1547 2128
1548 assert (("ev_io_start called with negative fd", fd >= 0)); 2129 assert (("ev_io_start called with negative fd", fd >= 0));
2130 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2131
2132 EV_FREQUENT_CHECK;
1549 2133
1550 ev_start (EV_A_ (W)w, 1); 2134 ev_start (EV_A_ (W)w, 1);
1551 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2135 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1552 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2136 wlist_add (&anfds[fd].head, (WL)w);
1553 2137
1554 fd_change (EV_A_ fd); 2138 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1555} 2139 w->events &= ~EV_IOFDSET;
1556 2140
1557void 2141 EV_FREQUENT_CHECK;
2142}
2143
2144void noinline
1558ev_io_stop (EV_P_ ev_io *w) 2145ev_io_stop (EV_P_ ev_io *w)
1559{ 2146{
1560 ev_clear_pending (EV_A_ (W)w); 2147 clear_pending (EV_A_ (W)w);
1561 if (expect_false (!ev_is_active (w))) 2148 if (expect_false (!ev_is_active (w)))
1562 return; 2149 return;
1563 2150
1564 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2151 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1565 2152
2153 EV_FREQUENT_CHECK;
2154
1566 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2155 wlist_del (&anfds[w->fd].head, (WL)w);
1567 ev_stop (EV_A_ (W)w); 2156 ev_stop (EV_A_ (W)w);
1568 2157
1569 fd_change (EV_A_ w->fd); 2158 fd_change (EV_A_ w->fd, 1);
1570}
1571 2159
1572void 2160 EV_FREQUENT_CHECK;
2161}
2162
2163void noinline
1573ev_timer_start (EV_P_ ev_timer *w) 2164ev_timer_start (EV_P_ ev_timer *w)
1574{ 2165{
1575 if (expect_false (ev_is_active (w))) 2166 if (expect_false (ev_is_active (w)))
1576 return; 2167 return;
1577 2168
1578 ((WT)w)->at += mn_now; 2169 ev_at (w) += mn_now;
1579 2170
1580 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2171 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1581 2172
2173 EV_FREQUENT_CHECK;
2174
2175 ++timercnt;
1582 ev_start (EV_A_ (W)w, ++timercnt); 2176 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1583 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2177 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1584 timers [timercnt - 1] = w; 2178 ANHE_w (timers [ev_active (w)]) = (WT)w;
1585 upheap ((WT *)timers, timercnt - 1); 2179 ANHE_at_cache (timers [ev_active (w)]);
2180 upheap (timers, ev_active (w));
1586 2181
2182 EV_FREQUENT_CHECK;
2183
1587 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2184 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1588} 2185}
1589 2186
1590void 2187void noinline
1591ev_timer_stop (EV_P_ ev_timer *w) 2188ev_timer_stop (EV_P_ ev_timer *w)
1592{ 2189{
1593 ev_clear_pending (EV_A_ (W)w); 2190 clear_pending (EV_A_ (W)w);
1594 if (expect_false (!ev_is_active (w))) 2191 if (expect_false (!ev_is_active (w)))
1595 return; 2192 return;
1596 2193
1597 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2194 EV_FREQUENT_CHECK;
1598 2195
1599 { 2196 {
1600 int active = ((W)w)->active; 2197 int active = ev_active (w);
1601 2198
2199 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2200
2201 --timercnt;
2202
1602 if (expect_true (--active < --timercnt)) 2203 if (expect_true (active < timercnt + HEAP0))
1603 { 2204 {
1604 timers [active] = timers [timercnt]; 2205 timers [active] = timers [timercnt + HEAP0];
1605 adjustheap ((WT *)timers, timercnt, active); 2206 adjustheap (timers, timercnt, active);
1606 } 2207 }
1607 } 2208 }
1608 2209
1609 ((WT)w)->at -= mn_now; 2210 EV_FREQUENT_CHECK;
2211
2212 ev_at (w) -= mn_now;
1610 2213
1611 ev_stop (EV_A_ (W)w); 2214 ev_stop (EV_A_ (W)w);
1612} 2215}
1613 2216
1614void 2217void noinline
1615ev_timer_again (EV_P_ ev_timer *w) 2218ev_timer_again (EV_P_ ev_timer *w)
1616{ 2219{
2220 EV_FREQUENT_CHECK;
2221
1617 if (ev_is_active (w)) 2222 if (ev_is_active (w))
1618 { 2223 {
1619 if (w->repeat) 2224 if (w->repeat)
1620 { 2225 {
1621 ((WT)w)->at = mn_now + w->repeat; 2226 ev_at (w) = mn_now + w->repeat;
2227 ANHE_at_cache (timers [ev_active (w)]);
1622 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2228 adjustheap (timers, timercnt, ev_active (w));
1623 } 2229 }
1624 else 2230 else
1625 ev_timer_stop (EV_A_ w); 2231 ev_timer_stop (EV_A_ w);
1626 } 2232 }
1627 else if (w->repeat) 2233 else if (w->repeat)
1628 { 2234 {
1629 w->at = w->repeat; 2235 ev_at (w) = w->repeat;
1630 ev_timer_start (EV_A_ w); 2236 ev_timer_start (EV_A_ w);
1631 } 2237 }
2238
2239 EV_FREQUENT_CHECK;
1632} 2240}
1633 2241
1634#if EV_PERIODIC_ENABLE 2242#if EV_PERIODIC_ENABLE
1635void 2243void noinline
1636ev_periodic_start (EV_P_ ev_periodic *w) 2244ev_periodic_start (EV_P_ ev_periodic *w)
1637{ 2245{
1638 if (expect_false (ev_is_active (w))) 2246 if (expect_false (ev_is_active (w)))
1639 return; 2247 return;
1640 2248
1641 if (w->reschedule_cb) 2249 if (w->reschedule_cb)
1642 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2250 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1643 else if (w->interval) 2251 else if (w->interval)
1644 { 2252 {
1645 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2253 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1646 /* this formula differs from the one in periodic_reify because we do not always round up */ 2254 /* this formula differs from the one in periodic_reify because we do not always round up */
1647 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2255 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1648 } 2256 }
2257 else
2258 ev_at (w) = w->offset;
1649 2259
2260 EV_FREQUENT_CHECK;
2261
2262 ++periodiccnt;
1650 ev_start (EV_A_ (W)w, ++periodiccnt); 2263 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1651 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2264 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1652 periodics [periodiccnt - 1] = w; 2265 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1653 upheap ((WT *)periodics, periodiccnt - 1); 2266 ANHE_at_cache (periodics [ev_active (w)]);
2267 upheap (periodics, ev_active (w));
1654 2268
2269 EV_FREQUENT_CHECK;
2270
1655 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2271 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1656} 2272}
1657 2273
1658void 2274void noinline
1659ev_periodic_stop (EV_P_ ev_periodic *w) 2275ev_periodic_stop (EV_P_ ev_periodic *w)
1660{ 2276{
1661 ev_clear_pending (EV_A_ (W)w); 2277 clear_pending (EV_A_ (W)w);
1662 if (expect_false (!ev_is_active (w))) 2278 if (expect_false (!ev_is_active (w)))
1663 return; 2279 return;
1664 2280
1665 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2281 EV_FREQUENT_CHECK;
1666 2282
1667 { 2283 {
1668 int active = ((W)w)->active; 2284 int active = ev_active (w);
1669 2285
2286 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2287
2288 --periodiccnt;
2289
1670 if (expect_true (--active < --periodiccnt)) 2290 if (expect_true (active < periodiccnt + HEAP0))
1671 { 2291 {
1672 periodics [active] = periodics [periodiccnt]; 2292 periodics [active] = periodics [periodiccnt + HEAP0];
1673 adjustheap ((WT *)periodics, periodiccnt, active); 2293 adjustheap (periodics, periodiccnt, active);
1674 } 2294 }
1675 } 2295 }
1676 2296
2297 EV_FREQUENT_CHECK;
2298
1677 ev_stop (EV_A_ (W)w); 2299 ev_stop (EV_A_ (W)w);
1678} 2300}
1679 2301
1680void 2302void noinline
1681ev_periodic_again (EV_P_ ev_periodic *w) 2303ev_periodic_again (EV_P_ ev_periodic *w)
1682{ 2304{
1683 /* TODO: use adjustheap and recalculation */ 2305 /* TODO: use adjustheap and recalculation */
1684 ev_periodic_stop (EV_A_ w); 2306 ev_periodic_stop (EV_A_ w);
1685 ev_periodic_start (EV_A_ w); 2307 ev_periodic_start (EV_A_ w);
1688 2310
1689#ifndef SA_RESTART 2311#ifndef SA_RESTART
1690# define SA_RESTART 0 2312# define SA_RESTART 0
1691#endif 2313#endif
1692 2314
1693void 2315void noinline
1694ev_signal_start (EV_P_ ev_signal *w) 2316ev_signal_start (EV_P_ ev_signal *w)
1695{ 2317{
1696#if EV_MULTIPLICITY 2318#if EV_MULTIPLICITY
1697 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2319 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1698#endif 2320#endif
1699 if (expect_false (ev_is_active (w))) 2321 if (expect_false (ev_is_active (w)))
1700 return; 2322 return;
1701 2323
1702 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2324 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1703 2325
2326 evpipe_init (EV_A);
2327
2328 EV_FREQUENT_CHECK;
2329
2330 {
2331#ifndef _WIN32
2332 sigset_t full, prev;
2333 sigfillset (&full);
2334 sigprocmask (SIG_SETMASK, &full, &prev);
2335#endif
2336
2337 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2338
2339#ifndef _WIN32
2340 sigprocmask (SIG_SETMASK, &prev, 0);
2341#endif
2342 }
2343
1704 ev_start (EV_A_ (W)w, 1); 2344 ev_start (EV_A_ (W)w, 1);
1705 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1706 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2345 wlist_add (&signals [w->signum - 1].head, (WL)w);
1707 2346
1708 if (!((WL)w)->next) 2347 if (!((WL)w)->next)
1709 { 2348 {
1710#if _WIN32 2349#if _WIN32
1711 signal (w->signum, sighandler); 2350 signal (w->signum, ev_sighandler);
1712#else 2351#else
1713 struct sigaction sa; 2352 struct sigaction sa;
1714 sa.sa_handler = sighandler; 2353 sa.sa_handler = ev_sighandler;
1715 sigfillset (&sa.sa_mask); 2354 sigfillset (&sa.sa_mask);
1716 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2355 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1717 sigaction (w->signum, &sa, 0); 2356 sigaction (w->signum, &sa, 0);
1718#endif 2357#endif
1719 } 2358 }
1720}
1721 2359
1722void 2360 EV_FREQUENT_CHECK;
2361}
2362
2363void noinline
1723ev_signal_stop (EV_P_ ev_signal *w) 2364ev_signal_stop (EV_P_ ev_signal *w)
1724{ 2365{
1725 ev_clear_pending (EV_A_ (W)w); 2366 clear_pending (EV_A_ (W)w);
1726 if (expect_false (!ev_is_active (w))) 2367 if (expect_false (!ev_is_active (w)))
1727 return; 2368 return;
1728 2369
2370 EV_FREQUENT_CHECK;
2371
1729 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2372 wlist_del (&signals [w->signum - 1].head, (WL)w);
1730 ev_stop (EV_A_ (W)w); 2373 ev_stop (EV_A_ (W)w);
1731 2374
1732 if (!signals [w->signum - 1].head) 2375 if (!signals [w->signum - 1].head)
1733 signal (w->signum, SIG_DFL); 2376 signal (w->signum, SIG_DFL);
2377
2378 EV_FREQUENT_CHECK;
1734} 2379}
1735 2380
1736void 2381void
1737ev_child_start (EV_P_ ev_child *w) 2382ev_child_start (EV_P_ ev_child *w)
1738{ 2383{
1740 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2385 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1741#endif 2386#endif
1742 if (expect_false (ev_is_active (w))) 2387 if (expect_false (ev_is_active (w)))
1743 return; 2388 return;
1744 2389
2390 EV_FREQUENT_CHECK;
2391
1745 ev_start (EV_A_ (W)w, 1); 2392 ev_start (EV_A_ (W)w, 1);
1746 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2393 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2394
2395 EV_FREQUENT_CHECK;
1747} 2396}
1748 2397
1749void 2398void
1750ev_child_stop (EV_P_ ev_child *w) 2399ev_child_stop (EV_P_ ev_child *w)
1751{ 2400{
1752 ev_clear_pending (EV_A_ (W)w); 2401 clear_pending (EV_A_ (W)w);
1753 if (expect_false (!ev_is_active (w))) 2402 if (expect_false (!ev_is_active (w)))
1754 return; 2403 return;
1755 2404
2405 EV_FREQUENT_CHECK;
2406
1756 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2407 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1757 ev_stop (EV_A_ (W)w); 2408 ev_stop (EV_A_ (W)w);
2409
2410 EV_FREQUENT_CHECK;
1758} 2411}
1759 2412
1760#if EV_STAT_ENABLE 2413#if EV_STAT_ENABLE
1761 2414
1762# ifdef _WIN32 2415# ifdef _WIN32
1763# undef lstat 2416# undef lstat
1764# define lstat(a,b) _stati64 (a,b) 2417# define lstat(a,b) _stati64 (a,b)
1765# endif 2418# endif
1766 2419
1767#define DEF_STAT_INTERVAL 5.0074891 2420#define DEF_STAT_INTERVAL 5.0074891
2421#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1768#define MIN_STAT_INTERVAL 0.1074891 2422#define MIN_STAT_INTERVAL 0.1074891
1769 2423
1770static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2424static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1771 2425
1772#if EV_USE_INOTIFY 2426#if EV_USE_INOTIFY
1773# define EV_INOTIFY_BUFSIZE 8192 2427# define EV_INOTIFY_BUFSIZE 8192
1777{ 2431{
1778 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2432 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1779 2433
1780 if (w->wd < 0) 2434 if (w->wd < 0)
1781 { 2435 {
2436 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1782 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2437 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1783 2438
1784 /* monitor some parent directory for speedup hints */ 2439 /* monitor some parent directory for speedup hints */
2440 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2441 /* but an efficiency issue only */
1785 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2442 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1786 { 2443 {
1787 char path [4096]; 2444 char path [4096];
1788 strcpy (path, w->path); 2445 strcpy (path, w->path);
1789 2446
1802 } 2459 }
1803 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2460 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1804 } 2461 }
1805 } 2462 }
1806 else 2463 else
1807 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */ 2464 {
1808
1809 if (w->wd >= 0)
1810 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2465 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2466
2467 /* now local changes will be tracked by inotify, but remote changes won't */
2468 /* unless the filesystem it known to be local, we therefore still poll */
2469 /* also do poll on <2.6.25, but with normal frequency */
2470 struct statfs sfs;
2471
2472 if (fs_2625 && !statfs (w->path, &sfs))
2473 if (sfs.f_type == 0x1373 /* devfs */
2474 || sfs.f_type == 0xEF53 /* ext2/3 */
2475 || sfs.f_type == 0x3153464a /* jfs */
2476 || sfs.f_type == 0x52654973 /* reiser3 */
2477 || sfs.f_type == 0x01021994 /* tempfs */
2478 || sfs.f_type == 0x58465342 /* xfs */)
2479 return;
2480
2481 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2482 ev_timer_again (EV_A_ &w->timer);
2483 }
1811} 2484}
1812 2485
1813static void noinline 2486static void noinline
1814infy_del (EV_P_ ev_stat *w) 2487infy_del (EV_P_ ev_stat *w)
1815{ 2488{
1829 2502
1830static void noinline 2503static void noinline
1831infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2504infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1832{ 2505{
1833 if (slot < 0) 2506 if (slot < 0)
1834 /* overflow, need to check for all hahs slots */ 2507 /* overflow, need to check for all hash slots */
1835 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2508 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1836 infy_wd (EV_A_ slot, wd, ev); 2509 infy_wd (EV_A_ slot, wd, ev);
1837 else 2510 else
1838 { 2511 {
1839 WL w_; 2512 WL w_;
1868 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2541 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1869 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2542 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1870} 2543}
1871 2544
1872void inline_size 2545void inline_size
2546check_2625 (EV_P)
2547{
2548 /* kernels < 2.6.25 are borked
2549 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2550 */
2551 struct utsname buf;
2552 int major, minor, micro;
2553
2554 if (uname (&buf))
2555 return;
2556
2557 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2558 return;
2559
2560 if (major < 2
2561 || (major == 2 && minor < 6)
2562 || (major == 2 && minor == 6 && micro < 25))
2563 return;
2564
2565 fs_2625 = 1;
2566}
2567
2568void inline_size
1873infy_init (EV_P) 2569infy_init (EV_P)
1874{ 2570{
1875 if (fs_fd != -2) 2571 if (fs_fd != -2)
1876 return; 2572 return;
2573
2574 fs_fd = -1;
2575
2576 check_2625 (EV_A);
1877 2577
1878 fs_fd = inotify_init (); 2578 fs_fd = inotify_init ();
1879 2579
1880 if (fs_fd >= 0) 2580 if (fs_fd >= 0)
1881 { 2581 {
1909 w->wd = -1; 2609 w->wd = -1;
1910 2610
1911 if (fs_fd >= 0) 2611 if (fs_fd >= 0)
1912 infy_add (EV_A_ w); /* re-add, no matter what */ 2612 infy_add (EV_A_ w); /* re-add, no matter what */
1913 else 2613 else
1914 ev_timer_start (EV_A_ &w->timer); 2614 ev_timer_again (EV_A_ &w->timer);
1915 } 2615 }
1916
1917 } 2616 }
1918} 2617}
1919 2618
2619#endif
2620
2621#ifdef _WIN32
2622# define EV_LSTAT(p,b) _stati64 (p, b)
2623#else
2624# define EV_LSTAT(p,b) lstat (p, b)
1920#endif 2625#endif
1921 2626
1922void 2627void
1923ev_stat_stat (EV_P_ ev_stat *w) 2628ev_stat_stat (EV_P_ ev_stat *w)
1924{ 2629{
1951 || w->prev.st_atime != w->attr.st_atime 2656 || w->prev.st_atime != w->attr.st_atime
1952 || w->prev.st_mtime != w->attr.st_mtime 2657 || w->prev.st_mtime != w->attr.st_mtime
1953 || w->prev.st_ctime != w->attr.st_ctime 2658 || w->prev.st_ctime != w->attr.st_ctime
1954 ) { 2659 ) {
1955 #if EV_USE_INOTIFY 2660 #if EV_USE_INOTIFY
2661 if (fs_fd >= 0)
2662 {
1956 infy_del (EV_A_ w); 2663 infy_del (EV_A_ w);
1957 infy_add (EV_A_ w); 2664 infy_add (EV_A_ w);
1958 ev_stat_stat (EV_A_ w); /* avoid race... */ 2665 ev_stat_stat (EV_A_ w); /* avoid race... */
2666 }
1959 #endif 2667 #endif
1960 2668
1961 ev_feed_event (EV_A_ w, EV_STAT); 2669 ev_feed_event (EV_A_ w, EV_STAT);
1962 } 2670 }
1963} 2671}
1966ev_stat_start (EV_P_ ev_stat *w) 2674ev_stat_start (EV_P_ ev_stat *w)
1967{ 2675{
1968 if (expect_false (ev_is_active (w))) 2676 if (expect_false (ev_is_active (w)))
1969 return; 2677 return;
1970 2678
1971 /* since we use memcmp, we need to clear any padding data etc. */
1972 memset (&w->prev, 0, sizeof (ev_statdata));
1973 memset (&w->attr, 0, sizeof (ev_statdata));
1974
1975 ev_stat_stat (EV_A_ w); 2679 ev_stat_stat (EV_A_ w);
1976 2680
2681 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1977 if (w->interval < MIN_STAT_INTERVAL) 2682 w->interval = MIN_STAT_INTERVAL;
1978 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1979 2683
1980 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2684 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1981 ev_set_priority (&w->timer, ev_priority (w)); 2685 ev_set_priority (&w->timer, ev_priority (w));
1982 2686
1983#if EV_USE_INOTIFY 2687#if EV_USE_INOTIFY
1984 infy_init (EV_A); 2688 infy_init (EV_A);
1985 2689
1986 if (fs_fd >= 0) 2690 if (fs_fd >= 0)
1987 infy_add (EV_A_ w); 2691 infy_add (EV_A_ w);
1988 else 2692 else
1989#endif 2693#endif
1990 ev_timer_start (EV_A_ &w->timer); 2694 ev_timer_again (EV_A_ &w->timer);
1991 2695
1992 ev_start (EV_A_ (W)w, 1); 2696 ev_start (EV_A_ (W)w, 1);
2697
2698 EV_FREQUENT_CHECK;
1993} 2699}
1994 2700
1995void 2701void
1996ev_stat_stop (EV_P_ ev_stat *w) 2702ev_stat_stop (EV_P_ ev_stat *w)
1997{ 2703{
1998 ev_clear_pending (EV_A_ (W)w); 2704 clear_pending (EV_A_ (W)w);
1999 if (expect_false (!ev_is_active (w))) 2705 if (expect_false (!ev_is_active (w)))
2000 return; 2706 return;
2001 2707
2708 EV_FREQUENT_CHECK;
2709
2002#if EV_USE_INOTIFY 2710#if EV_USE_INOTIFY
2003 infy_del (EV_A_ w); 2711 infy_del (EV_A_ w);
2004#endif 2712#endif
2005 ev_timer_stop (EV_A_ &w->timer); 2713 ev_timer_stop (EV_A_ &w->timer);
2006 2714
2007 ev_stop (EV_A_ (W)w); 2715 ev_stop (EV_A_ (W)w);
2008}
2009#endif
2010 2716
2717 EV_FREQUENT_CHECK;
2718}
2719#endif
2720
2721#if EV_IDLE_ENABLE
2011void 2722void
2012ev_idle_start (EV_P_ ev_idle *w) 2723ev_idle_start (EV_P_ ev_idle *w)
2013{ 2724{
2014 if (expect_false (ev_is_active (w))) 2725 if (expect_false (ev_is_active (w)))
2015 return; 2726 return;
2016 2727
2728 pri_adjust (EV_A_ (W)w);
2729
2730 EV_FREQUENT_CHECK;
2731
2732 {
2733 int active = ++idlecnt [ABSPRI (w)];
2734
2735 ++idleall;
2017 ev_start (EV_A_ (W)w, ++idlecnt); 2736 ev_start (EV_A_ (W)w, active);
2737
2018 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2738 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2019 idles [idlecnt - 1] = w; 2739 idles [ABSPRI (w)][active - 1] = w;
2740 }
2741
2742 EV_FREQUENT_CHECK;
2020} 2743}
2021 2744
2022void 2745void
2023ev_idle_stop (EV_P_ ev_idle *w) 2746ev_idle_stop (EV_P_ ev_idle *w)
2024{ 2747{
2025 ev_clear_pending (EV_A_ (W)w); 2748 clear_pending (EV_A_ (W)w);
2026 if (expect_false (!ev_is_active (w))) 2749 if (expect_false (!ev_is_active (w)))
2027 return; 2750 return;
2028 2751
2752 EV_FREQUENT_CHECK;
2753
2029 { 2754 {
2030 int active = ((W)w)->active; 2755 int active = ev_active (w);
2031 idles [active - 1] = idles [--idlecnt]; 2756
2032 ((W)idles [active - 1])->active = active; 2757 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2758 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2759
2760 ev_stop (EV_A_ (W)w);
2761 --idleall;
2033 } 2762 }
2034 2763
2035 ev_stop (EV_A_ (W)w); 2764 EV_FREQUENT_CHECK;
2036} 2765}
2766#endif
2037 2767
2038void 2768void
2039ev_prepare_start (EV_P_ ev_prepare *w) 2769ev_prepare_start (EV_P_ ev_prepare *w)
2040{ 2770{
2041 if (expect_false (ev_is_active (w))) 2771 if (expect_false (ev_is_active (w)))
2042 return; 2772 return;
2773
2774 EV_FREQUENT_CHECK;
2043 2775
2044 ev_start (EV_A_ (W)w, ++preparecnt); 2776 ev_start (EV_A_ (W)w, ++preparecnt);
2045 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2777 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2046 prepares [preparecnt - 1] = w; 2778 prepares [preparecnt - 1] = w;
2779
2780 EV_FREQUENT_CHECK;
2047} 2781}
2048 2782
2049void 2783void
2050ev_prepare_stop (EV_P_ ev_prepare *w) 2784ev_prepare_stop (EV_P_ ev_prepare *w)
2051{ 2785{
2052 ev_clear_pending (EV_A_ (W)w); 2786 clear_pending (EV_A_ (W)w);
2053 if (expect_false (!ev_is_active (w))) 2787 if (expect_false (!ev_is_active (w)))
2054 return; 2788 return;
2055 2789
2790 EV_FREQUENT_CHECK;
2791
2056 { 2792 {
2057 int active = ((W)w)->active; 2793 int active = ev_active (w);
2794
2058 prepares [active - 1] = prepares [--preparecnt]; 2795 prepares [active - 1] = prepares [--preparecnt];
2059 ((W)prepares [active - 1])->active = active; 2796 ev_active (prepares [active - 1]) = active;
2060 } 2797 }
2061 2798
2062 ev_stop (EV_A_ (W)w); 2799 ev_stop (EV_A_ (W)w);
2800
2801 EV_FREQUENT_CHECK;
2063} 2802}
2064 2803
2065void 2804void
2066ev_check_start (EV_P_ ev_check *w) 2805ev_check_start (EV_P_ ev_check *w)
2067{ 2806{
2068 if (expect_false (ev_is_active (w))) 2807 if (expect_false (ev_is_active (w)))
2069 return; 2808 return;
2809
2810 EV_FREQUENT_CHECK;
2070 2811
2071 ev_start (EV_A_ (W)w, ++checkcnt); 2812 ev_start (EV_A_ (W)w, ++checkcnt);
2072 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2813 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2073 checks [checkcnt - 1] = w; 2814 checks [checkcnt - 1] = w;
2815
2816 EV_FREQUENT_CHECK;
2074} 2817}
2075 2818
2076void 2819void
2077ev_check_stop (EV_P_ ev_check *w) 2820ev_check_stop (EV_P_ ev_check *w)
2078{ 2821{
2079 ev_clear_pending (EV_A_ (W)w); 2822 clear_pending (EV_A_ (W)w);
2080 if (expect_false (!ev_is_active (w))) 2823 if (expect_false (!ev_is_active (w)))
2081 return; 2824 return;
2082 2825
2826 EV_FREQUENT_CHECK;
2827
2083 { 2828 {
2084 int active = ((W)w)->active; 2829 int active = ev_active (w);
2830
2085 checks [active - 1] = checks [--checkcnt]; 2831 checks [active - 1] = checks [--checkcnt];
2086 ((W)checks [active - 1])->active = active; 2832 ev_active (checks [active - 1]) = active;
2087 } 2833 }
2088 2834
2089 ev_stop (EV_A_ (W)w); 2835 ev_stop (EV_A_ (W)w);
2836
2837 EV_FREQUENT_CHECK;
2090} 2838}
2091 2839
2092#if EV_EMBED_ENABLE 2840#if EV_EMBED_ENABLE
2093void noinline 2841void noinline
2094ev_embed_sweep (EV_P_ ev_embed *w) 2842ev_embed_sweep (EV_P_ ev_embed *w)
2095{ 2843{
2096 ev_loop (w->loop, EVLOOP_NONBLOCK); 2844 ev_loop (w->other, EVLOOP_NONBLOCK);
2097} 2845}
2098 2846
2099static void 2847static void
2100embed_cb (EV_P_ ev_io *io, int revents) 2848embed_io_cb (EV_P_ ev_io *io, int revents)
2101{ 2849{
2102 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2850 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2103 2851
2104 if (ev_cb (w)) 2852 if (ev_cb (w))
2105 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2853 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2106 else 2854 else
2107 ev_embed_sweep (loop, w); 2855 ev_loop (w->other, EVLOOP_NONBLOCK);
2108} 2856}
2857
2858static void
2859embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2860{
2861 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2862
2863 {
2864 struct ev_loop *loop = w->other;
2865
2866 while (fdchangecnt)
2867 {
2868 fd_reify (EV_A);
2869 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2870 }
2871 }
2872}
2873
2874static void
2875embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2876{
2877 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2878
2879 {
2880 struct ev_loop *loop = w->other;
2881
2882 ev_loop_fork (EV_A);
2883 }
2884}
2885
2886#if 0
2887static void
2888embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2889{
2890 ev_idle_stop (EV_A_ idle);
2891}
2892#endif
2109 2893
2110void 2894void
2111ev_embed_start (EV_P_ ev_embed *w) 2895ev_embed_start (EV_P_ ev_embed *w)
2112{ 2896{
2113 if (expect_false (ev_is_active (w))) 2897 if (expect_false (ev_is_active (w)))
2114 return; 2898 return;
2115 2899
2116 { 2900 {
2117 struct ev_loop *loop = w->loop; 2901 struct ev_loop *loop = w->other;
2118 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2902 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2119 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2903 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2120 } 2904 }
2905
2906 EV_FREQUENT_CHECK;
2121 2907
2122 ev_set_priority (&w->io, ev_priority (w)); 2908 ev_set_priority (&w->io, ev_priority (w));
2123 ev_io_start (EV_A_ &w->io); 2909 ev_io_start (EV_A_ &w->io);
2124 2910
2911 ev_prepare_init (&w->prepare, embed_prepare_cb);
2912 ev_set_priority (&w->prepare, EV_MINPRI);
2913 ev_prepare_start (EV_A_ &w->prepare);
2914
2915 ev_fork_init (&w->fork, embed_fork_cb);
2916 ev_fork_start (EV_A_ &w->fork);
2917
2918 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2919
2125 ev_start (EV_A_ (W)w, 1); 2920 ev_start (EV_A_ (W)w, 1);
2921
2922 EV_FREQUENT_CHECK;
2126} 2923}
2127 2924
2128void 2925void
2129ev_embed_stop (EV_P_ ev_embed *w) 2926ev_embed_stop (EV_P_ ev_embed *w)
2130{ 2927{
2131 ev_clear_pending (EV_A_ (W)w); 2928 clear_pending (EV_A_ (W)w);
2132 if (expect_false (!ev_is_active (w))) 2929 if (expect_false (!ev_is_active (w)))
2133 return; 2930 return;
2134 2931
2932 EV_FREQUENT_CHECK;
2933
2135 ev_io_stop (EV_A_ &w->io); 2934 ev_io_stop (EV_A_ &w->io);
2935 ev_prepare_stop (EV_A_ &w->prepare);
2936 ev_fork_stop (EV_A_ &w->fork);
2136 2937
2137 ev_stop (EV_A_ (W)w); 2938 EV_FREQUENT_CHECK;
2138} 2939}
2139#endif 2940#endif
2140 2941
2141#if EV_FORK_ENABLE 2942#if EV_FORK_ENABLE
2142void 2943void
2143ev_fork_start (EV_P_ ev_fork *w) 2944ev_fork_start (EV_P_ ev_fork *w)
2144{ 2945{
2145 if (expect_false (ev_is_active (w))) 2946 if (expect_false (ev_is_active (w)))
2146 return; 2947 return;
2948
2949 EV_FREQUENT_CHECK;
2147 2950
2148 ev_start (EV_A_ (W)w, ++forkcnt); 2951 ev_start (EV_A_ (W)w, ++forkcnt);
2149 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2952 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2150 forks [forkcnt - 1] = w; 2953 forks [forkcnt - 1] = w;
2954
2955 EV_FREQUENT_CHECK;
2151} 2956}
2152 2957
2153void 2958void
2154ev_fork_stop (EV_P_ ev_fork *w) 2959ev_fork_stop (EV_P_ ev_fork *w)
2155{ 2960{
2156 ev_clear_pending (EV_A_ (W)w); 2961 clear_pending (EV_A_ (W)w);
2157 if (expect_false (!ev_is_active (w))) 2962 if (expect_false (!ev_is_active (w)))
2158 return; 2963 return;
2159 2964
2965 EV_FREQUENT_CHECK;
2966
2160 { 2967 {
2161 int active = ((W)w)->active; 2968 int active = ev_active (w);
2969
2162 forks [active - 1] = forks [--forkcnt]; 2970 forks [active - 1] = forks [--forkcnt];
2163 ((W)forks [active - 1])->active = active; 2971 ev_active (forks [active - 1]) = active;
2164 } 2972 }
2165 2973
2166 ev_stop (EV_A_ (W)w); 2974 ev_stop (EV_A_ (W)w);
2975
2976 EV_FREQUENT_CHECK;
2977}
2978#endif
2979
2980#if EV_ASYNC_ENABLE
2981void
2982ev_async_start (EV_P_ ev_async *w)
2983{
2984 if (expect_false (ev_is_active (w)))
2985 return;
2986
2987 evpipe_init (EV_A);
2988
2989 EV_FREQUENT_CHECK;
2990
2991 ev_start (EV_A_ (W)w, ++asynccnt);
2992 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2993 asyncs [asynccnt - 1] = w;
2994
2995 EV_FREQUENT_CHECK;
2996}
2997
2998void
2999ev_async_stop (EV_P_ ev_async *w)
3000{
3001 clear_pending (EV_A_ (W)w);
3002 if (expect_false (!ev_is_active (w)))
3003 return;
3004
3005 EV_FREQUENT_CHECK;
3006
3007 {
3008 int active = ev_active (w);
3009
3010 asyncs [active - 1] = asyncs [--asynccnt];
3011 ev_active (asyncs [active - 1]) = active;
3012 }
3013
3014 ev_stop (EV_A_ (W)w);
3015
3016 EV_FREQUENT_CHECK;
3017}
3018
3019void
3020ev_async_send (EV_P_ ev_async *w)
3021{
3022 w->sent = 1;
3023 evpipe_write (EV_A_ &gotasync);
2167} 3024}
2168#endif 3025#endif
2169 3026
2170/*****************************************************************************/ 3027/*****************************************************************************/
2171 3028
2181once_cb (EV_P_ struct ev_once *once, int revents) 3038once_cb (EV_P_ struct ev_once *once, int revents)
2182{ 3039{
2183 void (*cb)(int revents, void *arg) = once->cb; 3040 void (*cb)(int revents, void *arg) = once->cb;
2184 void *arg = once->arg; 3041 void *arg = once->arg;
2185 3042
2186 ev_io_stop (EV_A_ &once->io); 3043 ev_io_stop (EV_A_ &once->io);
2187 ev_timer_stop (EV_A_ &once->to); 3044 ev_timer_stop (EV_A_ &once->to);
2188 ev_free (once); 3045 ev_free (once);
2189 3046
2190 cb (revents, arg); 3047 cb (revents, arg);
2191} 3048}
2192 3049
2193static void 3050static void
2194once_cb_io (EV_P_ ev_io *w, int revents) 3051once_cb_io (EV_P_ ev_io *w, int revents)
2195{ 3052{
2196 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3053 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3054
3055 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2197} 3056}
2198 3057
2199static void 3058static void
2200once_cb_to (EV_P_ ev_timer *w, int revents) 3059once_cb_to (EV_P_ ev_timer *w, int revents)
2201{ 3060{
2202 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3061 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3062
3063 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2203} 3064}
2204 3065
2205void 3066void
2206ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3067ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2207{ 3068{
2229 ev_timer_set (&once->to, timeout, 0.); 3090 ev_timer_set (&once->to, timeout, 0.);
2230 ev_timer_start (EV_A_ &once->to); 3091 ev_timer_start (EV_A_ &once->to);
2231 } 3092 }
2232} 3093}
2233 3094
3095#if EV_MULTIPLICITY
3096 #include "ev_wrap.h"
3097#endif
3098
2234#ifdef __cplusplus 3099#ifdef __cplusplus
2235} 3100}
2236#endif 3101#endif
2237 3102

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines