ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.163 by root, Wed Dec 5 13:54:36 2007 UTC vs.
Revision 1.283 by root, Wed Apr 15 09:51:19 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
63
43# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
46# endif 67# endif
47# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
49# endif 70# endif
50# else 71# else
51# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
53# endif 74# endif
54# ifndef EV_USE_REALTIME 75# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 76# define EV_USE_REALTIME 0
77# endif
78# endif
79
80# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1
83# else
84# define EV_USE_NANOSLEEP 0
56# endif 85# endif
57# endif 86# endif
58 87
59# ifndef EV_USE_SELECT 88# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 89# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 131# else
103# define EV_USE_INOTIFY 0 132# define EV_USE_INOTIFY 0
104# endif 133# endif
105# endif 134# endif
106 135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
107#endif 144#endif
108 145
109#include <math.h> 146#include <math.h>
110#include <stdlib.h> 147#include <stdlib.h>
111#include <fcntl.h> 148#include <fcntl.h>
129#ifndef _WIN32 166#ifndef _WIN32
130# include <sys/time.h> 167# include <sys/time.h>
131# include <sys/wait.h> 168# include <sys/wait.h>
132# include <unistd.h> 169# include <unistd.h>
133#else 170#else
171# include <io.h>
134# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 173# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
138# endif 176# endif
139#endif 177#endif
140 178
141/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
142 188
143#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
144# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
145#endif 195#endif
146 196
147#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif
200
201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
205# define EV_USE_NANOSLEEP 0
206# endif
149#endif 207#endif
150 208
151#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
153#endif 211#endif
159# define EV_USE_POLL 1 217# define EV_USE_POLL 1
160# endif 218# endif
161#endif 219#endif
162 220
163#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
164# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
165#endif 227#endif
166 228
167#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
169#endif 231#endif
171#ifndef EV_USE_PORT 233#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 234# define EV_USE_PORT 0
173#endif 235#endif
174 236
175#ifndef EV_USE_INOTIFY 237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1
240# else
176# define EV_USE_INOTIFY 0 241# define EV_USE_INOTIFY 0
242# endif
177#endif 243#endif
178 244
179#ifndef EV_PID_HASHSIZE 245#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 246# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 247# define EV_PID_HASHSIZE 1
190# else 256# else
191# define EV_INOTIFY_HASHSIZE 16 257# define EV_INOTIFY_HASHSIZE 16
192# endif 258# endif
193#endif 259#endif
194 260
195/**/ 261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 288
197#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
200#endif 292#endif
202#ifndef CLOCK_REALTIME 294#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 295# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 296# define EV_USE_REALTIME 0
205#endif 297#endif
206 298
299#if !EV_STAT_ENABLE
300# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0
302#endif
303
304#if !EV_USE_NANOSLEEP
305# ifndef _WIN32
306# include <sys/select.h>
307# endif
308#endif
309
310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
319#endif
320
207#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 322# include <winsock.h>
209#endif 323#endif
210 324
211#if !EV_STAT_ENABLE 325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
212# define EV_USE_INOTIFY 0 331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
213#endif 339# endif
214 340int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 341# ifdef __cplusplus
216# include <sys/inotify.h> 342}
343# endif
217#endif 344#endif
218 345
219/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
353
354/*
355 * This is used to avoid floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 363
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 367
225#if __GNUC__ >= 3 368#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 370# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 371#else
236# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 373# define noinline
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
375# define inline
376# endif
240#endif 377#endif
241 378
242#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 380#define expect_true(expr) expect ((expr) != 0, 1)
381#define inline_size static inline
382
383#if EV_MINIMAL
384# define inline_speed static noinline
385#else
386# define inline_speed static inline
387#endif
244 388
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 391
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 392#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 393#define EMPTY2(a,b) /* used to suppress some warnings */
250 394
251typedef ev_watcher *W; 395typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
254 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif
256 411
257#ifdef _WIN32 412#ifdef _WIN32
258# include "ev_win32.c" 413# include "ev_win32.c"
259#endif 414#endif
260 415
267{ 422{
268 syserr_cb = cb; 423 syserr_cb = cb;
269} 424}
270 425
271static void noinline 426static void noinline
272syserr (const char *msg) 427ev_syserr (const char *msg)
273{ 428{
274 if (!msg) 429 if (!msg)
275 msg = "(libev) system error"; 430 msg = "(libev) system error";
276 431
277 if (syserr_cb) 432 if (syserr_cb)
281 perror (msg); 436 perror (msg);
282 abort (); 437 abort ();
283 } 438 }
284} 439}
285 440
441static void *
442ev_realloc_emul (void *ptr, long size)
443{
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454}
455
286static void *(*alloc)(void *ptr, long size); 456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 457
288void 458void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 459ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 460{
291 alloc = cb; 461 alloc = cb;
292} 462}
293 463
294inline_speed void * 464inline_speed void *
295ev_realloc (void *ptr, long size) 465ev_realloc (void *ptr, long size)
296{ 466{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 467 ptr = alloc (ptr, size);
298 468
299 if (!ptr && size) 469 if (!ptr && size)
300 { 470 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 472 abort ();
313typedef struct 483typedef struct
314{ 484{
315 WL head; 485 WL head;
316 unsigned char events; 486 unsigned char events;
317 unsigned char reify; 487 unsigned char reify;
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused;
490#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif
318#if EV_SELECT_IS_WINSOCKET 493#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 494 SOCKET handle;
320#endif 495#endif
321} ANFD; 496} ANFD;
322 497
325 W w; 500 W w;
326 int events; 501 int events;
327} ANPENDING; 502} ANPENDING;
328 503
329#if EV_USE_INOTIFY 504#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */
330typedef struct 506typedef struct
331{ 507{
332 WL head; 508 WL head;
333} ANFS; 509} ANFS;
510#endif
511
512/* Heap Entry */
513#if EV_HEAP_CACHE_AT
514 typedef struct {
515 ev_tstamp at;
516 WT w;
517 } ANHE;
518
519 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else
523 typedef WT ANHE;
524
525 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he)
334#endif 528#endif
335 529
336#if EV_MULTIPLICITY 530#if EV_MULTIPLICITY
337 531
338 struct ev_loop 532 struct ev_loop
363 557
364ev_tstamp 558ev_tstamp
365ev_time (void) 559ev_time (void)
366{ 560{
367#if EV_USE_REALTIME 561#if EV_USE_REALTIME
562 if (expect_true (have_realtime))
563 {
368 struct timespec ts; 564 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 565 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 566 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 567 }
568#endif
569
372 struct timeval tv; 570 struct timeval tv;
373 gettimeofday (&tv, 0); 571 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 572 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 573}
377 574
378ev_tstamp inline_size 575ev_tstamp inline_size
379get_clock (void) 576get_clock (void)
380{ 577{
396{ 593{
397 return ev_rt_now; 594 return ev_rt_now;
398} 595}
399#endif 596#endif
400 597
598void
599ev_sleep (ev_tstamp delay)
600{
601 if (delay > 0.)
602 {
603#if EV_USE_NANOSLEEP
604 struct timespec ts;
605
606 ts.tv_sec = (time_t)delay;
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0);
610#elif defined(_WIN32)
611 Sleep ((unsigned long)(delay * 1e3));
612#else
613 struct timeval tv;
614
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */
621 select (0, 0, 0, 0, &tv);
622#endif
623 }
624}
625
626/*****************************************************************************/
627
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629
401int inline_size 630int inline_size
402array_nextsize (int elem, int cur, int cnt) 631array_nextsize (int elem, int cur, int cnt)
403{ 632{
404 int ncur = cur + 1; 633 int ncur = cur + 1;
405 634
406 do 635 do
407 ncur <<= 1; 636 ncur <<= 1;
408 while (cnt > ncur); 637 while (cnt > ncur);
409 638
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
411 if (elem * ncur > 4096) 640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
412 { 641 {
413 ncur *= elem; 642 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
415 ncur = ncur - sizeof (void *) * 4; 644 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem; 645 ncur /= elem;
417 } 646 }
418 647
419 return ncur; 648 return ncur;
420} 649}
421 650
422inline_speed void * 651static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 652array_realloc (int elem, void *base, int *cur, int cnt)
424{ 653{
425 *cur = array_nextsize (elem, *cur, cnt); 654 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 655 return ev_realloc (base, elem * *cur);
427} 656}
657
658#define array_init_zero(base,count) \
659 memset ((void *)(base), 0, sizeof (*(base)) * (count))
428 660
429#define array_needsize(type,base,cur,cnt,init) \ 661#define array_needsize(type,base,cur,cnt,init) \
430 if (expect_false ((cnt) > (cur))) \ 662 if (expect_false ((cnt) > (cur))) \
431 { \ 663 { \
432 int ocur_ = (cur); \ 664 int ocur_ = (cur); \
444 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 676 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
445 } 677 }
446#endif 678#endif
447 679
448#define array_free(stem, idx) \ 680#define array_free(stem, idx) \
449 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
450 682
451/*****************************************************************************/ 683/*****************************************************************************/
452 684
453void noinline 685void noinline
454ev_feed_event (EV_P_ void *w, int revents) 686ev_feed_event (EV_P_ void *w, int revents)
455{ 687{
456 W w_ = (W)w; 688 W w_ = (W)w;
689 int pri = ABSPRI (w_);
457 690
458 if (expect_false (w_->pending)) 691 if (expect_false (w_->pending))
692 pendings [pri][w_->pending - 1].events |= revents;
693 else
459 { 694 {
695 w_->pending = ++pendingcnt [pri];
696 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
697 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 698 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 699 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 700}
469 701
470void inline_size 702void inline_speed
471queue_events (EV_P_ W *events, int eventcnt, int type) 703queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 704{
473 int i; 705 int i;
474 706
475 for (i = 0; i < eventcnt; ++i) 707 for (i = 0; i < eventcnt; ++i)
476 ev_feed_event (EV_A_ events [i], type); 708 ev_feed_event (EV_A_ events [i], type);
477} 709}
478 710
479/*****************************************************************************/ 711/*****************************************************************************/
480 712
481void inline_size
482anfds_init (ANFD *base, int count)
483{
484 while (count--)
485 {
486 base->head = 0;
487 base->events = EV_NONE;
488 base->reify = 0;
489
490 ++base;
491 }
492}
493
494void inline_speed 713void inline_speed
495fd_event (EV_P_ int fd, int revents) 714fd_event (EV_P_ int fd, int revents)
496{ 715{
497 ANFD *anfd = anfds + fd; 716 ANFD *anfd = anfds + fd;
498 ev_io *w; 717 ev_io *w;
507} 726}
508 727
509void 728void
510ev_feed_fd_event (EV_P_ int fd, int revents) 729ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 730{
731 if (fd >= 0 && fd < anfdmax)
512 fd_event (EV_A_ fd, revents); 732 fd_event (EV_A_ fd, revents);
513} 733}
514 734
515void inline_size 735void inline_size
516fd_reify (EV_P) 736fd_reify (EV_P)
517{ 737{
521 { 741 {
522 int fd = fdchanges [i]; 742 int fd = fdchanges [i];
523 ANFD *anfd = anfds + fd; 743 ANFD *anfd = anfds + fd;
524 ev_io *w; 744 ev_io *w;
525 745
526 int events = 0; 746 unsigned char events = 0;
527 747
528 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 748 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
529 events |= w->events; 749 events |= (unsigned char)w->events;
530 750
531#if EV_SELECT_IS_WINSOCKET 751#if EV_SELECT_IS_WINSOCKET
532 if (events) 752 if (events)
533 { 753 {
534 unsigned long argp; 754 unsigned long arg;
755 #ifdef EV_FD_TO_WIN32_HANDLE
756 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
757 #else
535 anfd->handle = _get_osfhandle (fd); 758 anfd->handle = _get_osfhandle (fd);
759 #endif
536 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 760 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
537 } 761 }
538#endif 762#endif
539 763
764 {
765 unsigned char o_events = anfd->events;
766 unsigned char o_reify = anfd->reify;
767
540 anfd->reify = 0; 768 anfd->reify = 0;
541
542 backend_modify (EV_A_ fd, anfd->events, events);
543 anfd->events = events; 769 anfd->events = events;
770
771 if (o_events != events || o_reify & EV__IOFDSET)
772 backend_modify (EV_A_ fd, o_events, events);
773 }
544 } 774 }
545 775
546 fdchangecnt = 0; 776 fdchangecnt = 0;
547} 777}
548 778
549void inline_size 779void inline_size
550fd_change (EV_P_ int fd) 780fd_change (EV_P_ int fd, int flags)
551{ 781{
552 if (expect_false (anfds [fd].reify)) 782 unsigned char reify = anfds [fd].reify;
553 return;
554
555 anfds [fd].reify = 1; 783 anfds [fd].reify |= flags;
556 784
785 if (expect_true (!reify))
786 {
557 ++fdchangecnt; 787 ++fdchangecnt;
558 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 788 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
559 fdchanges [fdchangecnt - 1] = fd; 789 fdchanges [fdchangecnt - 1] = fd;
790 }
560} 791}
561 792
562void inline_speed 793void inline_speed
563fd_kill (EV_P_ int fd) 794fd_kill (EV_P_ int fd)
564{ 795{
587{ 818{
588 int fd; 819 int fd;
589 820
590 for (fd = 0; fd < anfdmax; ++fd) 821 for (fd = 0; fd < anfdmax; ++fd)
591 if (anfds [fd].events) 822 if (anfds [fd].events)
592 if (!fd_valid (fd) == -1 && errno == EBADF) 823 if (!fd_valid (fd) && errno == EBADF)
593 fd_kill (EV_A_ fd); 824 fd_kill (EV_A_ fd);
594} 825}
595 826
596/* called on ENOMEM in select/poll to kill some fds and retry */ 827/* called on ENOMEM in select/poll to kill some fds and retry */
597static void noinline 828static void noinline
615 846
616 for (fd = 0; fd < anfdmax; ++fd) 847 for (fd = 0; fd < anfdmax; ++fd)
617 if (anfds [fd].events) 848 if (anfds [fd].events)
618 { 849 {
619 anfds [fd].events = 0; 850 anfds [fd].events = 0;
851 anfds [fd].emask = 0;
620 fd_change (EV_A_ fd); 852 fd_change (EV_A_ fd, EV__IOFDSET | 1);
621 } 853 }
622} 854}
623 855
624/*****************************************************************************/ 856/*****************************************************************************/
625 857
858/*
859 * the heap functions want a real array index. array index 0 uis guaranteed to not
860 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
861 * the branching factor of the d-tree.
862 */
863
864/*
865 * at the moment we allow libev the luxury of two heaps,
866 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
867 * which is more cache-efficient.
868 * the difference is about 5% with 50000+ watchers.
869 */
870#if EV_USE_4HEAP
871
872#define DHEAP 4
873#define HEAP0 (DHEAP - 1) /* index of first element in heap */
874#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
875#define UPHEAP_DONE(p,k) ((p) == (k))
876
877/* away from the root */
626void inline_speed 878void inline_speed
627upheap (WT *heap, int k) 879downheap (ANHE *heap, int N, int k)
628{ 880{
629 WT w = heap [k]; 881 ANHE he = heap [k];
882 ANHE *E = heap + N + HEAP0;
630 883
631 while (k && heap [k >> 1]->at > w->at) 884 for (;;)
632 {
633 heap [k] = heap [k >> 1];
634 ((W)heap [k])->active = k + 1;
635 k >>= 1;
636 } 885 {
886 ev_tstamp minat;
887 ANHE *minpos;
888 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
637 889
890 /* find minimum child */
891 if (expect_true (pos + DHEAP - 1 < E))
892 {
893 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
894 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
895 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
896 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
897 }
898 else if (pos < E)
899 {
900 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
901 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
902 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
903 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
904 }
905 else
906 break;
907
908 if (ANHE_at (he) <= minat)
909 break;
910
911 heap [k] = *minpos;
912 ev_active (ANHE_w (*minpos)) = k;
913
914 k = minpos - heap;
915 }
916
638 heap [k] = w; 917 heap [k] = he;
639 ((W)heap [k])->active = k + 1; 918 ev_active (ANHE_w (he)) = k;
640
641} 919}
642 920
921#else /* 4HEAP */
922
923#define HEAP0 1
924#define HPARENT(k) ((k) >> 1)
925#define UPHEAP_DONE(p,k) (!(p))
926
927/* away from the root */
643void inline_speed 928void inline_speed
644downheap (WT *heap, int N, int k) 929downheap (ANHE *heap, int N, int k)
645{ 930{
646 WT w = heap [k]; 931 ANHE he = heap [k];
647 932
648 while (k < (N >> 1)) 933 for (;;)
649 { 934 {
650 int j = k << 1; 935 int c = k << 1;
651 936
652 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 937 if (c > N + HEAP0 - 1)
653 ++j;
654
655 if (w->at <= heap [j]->at)
656 break; 938 break;
657 939
940 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
941 ? 1 : 0;
942
943 if (ANHE_at (he) <= ANHE_at (heap [c]))
944 break;
945
658 heap [k] = heap [j]; 946 heap [k] = heap [c];
659 ((W)heap [k])->active = k + 1; 947 ev_active (ANHE_w (heap [k])) = k;
948
660 k = j; 949 k = c;
661 } 950 }
662 951
663 heap [k] = w; 952 heap [k] = he;
664 ((W)heap [k])->active = k + 1; 953 ev_active (ANHE_w (he)) = k;
954}
955#endif
956
957/* towards the root */
958void inline_speed
959upheap (ANHE *heap, int k)
960{
961 ANHE he = heap [k];
962
963 for (;;)
964 {
965 int p = HPARENT (k);
966
967 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
968 break;
969
970 heap [k] = heap [p];
971 ev_active (ANHE_w (heap [k])) = k;
972 k = p;
973 }
974
975 heap [k] = he;
976 ev_active (ANHE_w (he)) = k;
665} 977}
666 978
667void inline_size 979void inline_size
668adjustheap (WT *heap, int N, int k) 980adjustheap (ANHE *heap, int N, int k)
669{ 981{
982 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
670 upheap (heap, k); 983 upheap (heap, k);
984 else
671 downheap (heap, N, k); 985 downheap (heap, N, k);
986}
987
988/* rebuild the heap: this function is used only once and executed rarely */
989void inline_size
990reheap (ANHE *heap, int N)
991{
992 int i;
993
994 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
995 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
996 for (i = 0; i < N; ++i)
997 upheap (heap, i + HEAP0);
672} 998}
673 999
674/*****************************************************************************/ 1000/*****************************************************************************/
675 1001
676typedef struct 1002typedef struct
677{ 1003{
678 WL head; 1004 WL head;
679 sig_atomic_t volatile gotsig; 1005 EV_ATOMIC_T gotsig;
680} ANSIG; 1006} ANSIG;
681 1007
682static ANSIG *signals; 1008static ANSIG *signals;
683static int signalmax; 1009static int signalmax;
684 1010
685static int sigpipe [2]; 1011static EV_ATOMIC_T gotsig;
686static sig_atomic_t volatile gotsig;
687static ev_io sigev;
688 1012
1013/*****************************************************************************/
1014
689void inline_size 1015void inline_speed
690signals_init (ANSIG *base, int count)
691{
692 while (count--)
693 {
694 base->head = 0;
695 base->gotsig = 0;
696
697 ++base;
698 }
699}
700
701static void
702sighandler (int signum)
703{
704#if _WIN32
705 signal (signum, sighandler);
706#endif
707
708 signals [signum - 1].gotsig = 1;
709
710 if (!gotsig)
711 {
712 int old_errno = errno;
713 gotsig = 1;
714 write (sigpipe [1], &signum, 1);
715 errno = old_errno;
716 }
717}
718
719void noinline
720ev_feed_signal_event (EV_P_ int signum)
721{
722 WL w;
723
724#if EV_MULTIPLICITY
725 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
726#endif
727
728 --signum;
729
730 if (signum < 0 || signum >= signalmax)
731 return;
732
733 signals [signum].gotsig = 0;
734
735 for (w = signals [signum].head; w; w = w->next)
736 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
737}
738
739static void
740sigcb (EV_P_ ev_io *iow, int revents)
741{
742 int signum;
743
744 read (sigpipe [0], &revents, 1);
745 gotsig = 0;
746
747 for (signum = signalmax; signum--; )
748 if (signals [signum].gotsig)
749 ev_feed_signal_event (EV_A_ signum + 1);
750}
751
752void inline_size
753fd_intern (int fd) 1016fd_intern (int fd)
754{ 1017{
755#ifdef _WIN32 1018#ifdef _WIN32
756 int arg = 1; 1019 unsigned long arg = 1;
757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1020 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
758#else 1021#else
759 fcntl (fd, F_SETFD, FD_CLOEXEC); 1022 fcntl (fd, F_SETFD, FD_CLOEXEC);
760 fcntl (fd, F_SETFL, O_NONBLOCK); 1023 fcntl (fd, F_SETFL, O_NONBLOCK);
761#endif 1024#endif
762} 1025}
763 1026
764static void noinline 1027static void noinline
765siginit (EV_P) 1028evpipe_init (EV_P)
766{ 1029{
1030 if (!ev_is_active (&pipeev))
1031 {
1032#if EV_USE_EVENTFD
1033 if ((evfd = eventfd (0, 0)) >= 0)
1034 {
1035 evpipe [0] = -1;
1036 fd_intern (evfd);
1037 ev_io_set (&pipeev, evfd, EV_READ);
1038 }
1039 else
1040#endif
1041 {
1042 while (pipe (evpipe))
1043 ev_syserr ("(libev) error creating signal/async pipe");
1044
767 fd_intern (sigpipe [0]); 1045 fd_intern (evpipe [0]);
768 fd_intern (sigpipe [1]); 1046 fd_intern (evpipe [1]);
1047 ev_io_set (&pipeev, evpipe [0], EV_READ);
1048 }
769 1049
770 ev_io_set (&sigev, sigpipe [0], EV_READ);
771 ev_io_start (EV_A_ &sigev); 1050 ev_io_start (EV_A_ &pipeev);
772 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1051 ev_unref (EV_A); /* watcher should not keep loop alive */
1052 }
1053}
1054
1055void inline_size
1056evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1057{
1058 if (!*flag)
1059 {
1060 int old_errno = errno; /* save errno because write might clobber it */
1061
1062 *flag = 1;
1063
1064#if EV_USE_EVENTFD
1065 if (evfd >= 0)
1066 {
1067 uint64_t counter = 1;
1068 write (evfd, &counter, sizeof (uint64_t));
1069 }
1070 else
1071#endif
1072 write (evpipe [1], &old_errno, 1);
1073
1074 errno = old_errno;
1075 }
1076}
1077
1078static void
1079pipecb (EV_P_ ev_io *iow, int revents)
1080{
1081#if EV_USE_EVENTFD
1082 if (evfd >= 0)
1083 {
1084 uint64_t counter;
1085 read (evfd, &counter, sizeof (uint64_t));
1086 }
1087 else
1088#endif
1089 {
1090 char dummy;
1091 read (evpipe [0], &dummy, 1);
1092 }
1093
1094 if (gotsig && ev_is_default_loop (EV_A))
1095 {
1096 int signum;
1097 gotsig = 0;
1098
1099 for (signum = signalmax; signum--; )
1100 if (signals [signum].gotsig)
1101 ev_feed_signal_event (EV_A_ signum + 1);
1102 }
1103
1104#if EV_ASYNC_ENABLE
1105 if (gotasync)
1106 {
1107 int i;
1108 gotasync = 0;
1109
1110 for (i = asynccnt; i--; )
1111 if (asyncs [i]->sent)
1112 {
1113 asyncs [i]->sent = 0;
1114 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1115 }
1116 }
1117#endif
773} 1118}
774 1119
775/*****************************************************************************/ 1120/*****************************************************************************/
776 1121
1122static void
1123ev_sighandler (int signum)
1124{
1125#if EV_MULTIPLICITY
1126 struct ev_loop *loop = &default_loop_struct;
1127#endif
1128
1129#if _WIN32
1130 signal (signum, ev_sighandler);
1131#endif
1132
1133 signals [signum - 1].gotsig = 1;
1134 evpipe_write (EV_A_ &gotsig);
1135}
1136
1137void noinline
1138ev_feed_signal_event (EV_P_ int signum)
1139{
1140 WL w;
1141
1142#if EV_MULTIPLICITY
1143 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1144#endif
1145
1146 --signum;
1147
1148 if (signum < 0 || signum >= signalmax)
1149 return;
1150
1151 signals [signum].gotsig = 0;
1152
1153 for (w = signals [signum].head; w; w = w->next)
1154 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1155}
1156
1157/*****************************************************************************/
1158
777static ev_child *childs [EV_PID_HASHSIZE]; 1159static WL childs [EV_PID_HASHSIZE];
778 1160
779#ifndef _WIN32 1161#ifndef _WIN32
780 1162
781static ev_signal childev; 1163static ev_signal childev;
782 1164
1165#ifndef WIFCONTINUED
1166# define WIFCONTINUED(status) 0
1167#endif
1168
783void inline_speed 1169void inline_speed
784child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1170child_reap (EV_P_ int chain, int pid, int status)
785{ 1171{
786 ev_child *w; 1172 ev_child *w;
1173 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
787 1174
788 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1175 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1176 {
789 if (w->pid == pid || !w->pid) 1177 if ((w->pid == pid || !w->pid)
1178 && (!traced || (w->flags & 1)))
790 { 1179 {
791 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1180 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
792 w->rpid = pid; 1181 w->rpid = pid;
793 w->rstatus = status; 1182 w->rstatus = status;
794 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1183 ev_feed_event (EV_A_ (W)w, EV_CHILD);
795 } 1184 }
1185 }
796} 1186}
797 1187
798#ifndef WCONTINUED 1188#ifndef WCONTINUED
799# define WCONTINUED 0 1189# define WCONTINUED 0
800#endif 1190#endif
809 if (!WCONTINUED 1199 if (!WCONTINUED
810 || errno != EINVAL 1200 || errno != EINVAL
811 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1201 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
812 return; 1202 return;
813 1203
814 /* make sure we are called again until all childs have been reaped */ 1204 /* make sure we are called again until all children have been reaped */
815 /* we need to do it this way so that the callback gets called before we continue */ 1205 /* we need to do it this way so that the callback gets called before we continue */
816 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1206 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
817 1207
818 child_reap (EV_A_ sw, pid, pid, status); 1208 child_reap (EV_A_ pid, pid, status);
819 if (EV_PID_HASHSIZE > 1) 1209 if (EV_PID_HASHSIZE > 1)
820 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1210 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
821} 1211}
822 1212
823#endif 1213#endif
824 1214
825/*****************************************************************************/ 1215/*****************************************************************************/
887 /* kqueue is borked on everything but netbsd apparently */ 1277 /* kqueue is borked on everything but netbsd apparently */
888 /* it usually doesn't work correctly on anything but sockets and pipes */ 1278 /* it usually doesn't work correctly on anything but sockets and pipes */
889 flags &= ~EVBACKEND_KQUEUE; 1279 flags &= ~EVBACKEND_KQUEUE;
890#endif 1280#endif
891#ifdef __APPLE__ 1281#ifdef __APPLE__
892 // flags &= ~EVBACKEND_KQUEUE; for documentation 1282 /* only select works correctly on that "unix-certified" platform */
893 flags &= ~EVBACKEND_POLL; 1283 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1284 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
894#endif 1285#endif
895 1286
896 return flags; 1287 return flags;
897} 1288}
898 1289
899unsigned int 1290unsigned int
900ev_embeddable_backends (void) 1291ev_embeddable_backends (void)
901{ 1292{
902 return EVBACKEND_EPOLL 1293 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
903 | EVBACKEND_KQUEUE 1294
904 | EVBACKEND_PORT; 1295 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1296 /* please fix it and tell me how to detect the fix */
1297 flags &= ~EVBACKEND_EPOLL;
1298
1299 return flags;
905} 1300}
906 1301
907unsigned int 1302unsigned int
908ev_backend (EV_P) 1303ev_backend (EV_P)
909{ 1304{
914ev_loop_count (EV_P) 1309ev_loop_count (EV_P)
915{ 1310{
916 return loop_count; 1311 return loop_count;
917} 1312}
918 1313
1314void
1315ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1316{
1317 io_blocktime = interval;
1318}
1319
1320void
1321ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1322{
1323 timeout_blocktime = interval;
1324}
1325
919static void noinline 1326static void noinline
920loop_init (EV_P_ unsigned int flags) 1327loop_init (EV_P_ unsigned int flags)
921{ 1328{
922 if (!backend) 1329 if (!backend)
923 { 1330 {
1331#if EV_USE_REALTIME
1332 if (!have_realtime)
1333 {
1334 struct timespec ts;
1335
1336 if (!clock_gettime (CLOCK_REALTIME, &ts))
1337 have_realtime = 1;
1338 }
1339#endif
1340
924#if EV_USE_MONOTONIC 1341#if EV_USE_MONOTONIC
1342 if (!have_monotonic)
925 { 1343 {
926 struct timespec ts; 1344 struct timespec ts;
1345
927 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1346 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
928 have_monotonic = 1; 1347 have_monotonic = 1;
929 } 1348 }
930#endif 1349#endif
931 1350
932 ev_rt_now = ev_time (); 1351 ev_rt_now = ev_time ();
933 mn_now = get_clock (); 1352 mn_now = get_clock ();
934 now_floor = mn_now; 1353 now_floor = mn_now;
935 rtmn_diff = ev_rt_now - mn_now; 1354 rtmn_diff = ev_rt_now - mn_now;
1355
1356 io_blocktime = 0.;
1357 timeout_blocktime = 0.;
1358 backend = 0;
1359 backend_fd = -1;
1360 gotasync = 0;
1361#if EV_USE_INOTIFY
1362 fs_fd = -2;
1363#endif
936 1364
937 /* pid check not overridable via env */ 1365 /* pid check not overridable via env */
938#ifndef _WIN32 1366#ifndef _WIN32
939 if (flags & EVFLAG_FORKCHECK) 1367 if (flags & EVFLAG_FORKCHECK)
940 curpid = getpid (); 1368 curpid = getpid ();
943 if (!(flags & EVFLAG_NOENV) 1371 if (!(flags & EVFLAG_NOENV)
944 && !enable_secure () 1372 && !enable_secure ()
945 && getenv ("LIBEV_FLAGS")) 1373 && getenv ("LIBEV_FLAGS"))
946 flags = atoi (getenv ("LIBEV_FLAGS")); 1374 flags = atoi (getenv ("LIBEV_FLAGS"));
947 1375
948 if (!(flags & 0x0000ffffUL)) 1376 if (!(flags & 0x0000ffffU))
949 flags |= ev_recommended_backends (); 1377 flags |= ev_recommended_backends ();
950
951 backend = 0;
952 backend_fd = -1;
953#if EV_USE_INOTIFY
954 fs_fd = -2;
955#endif
956 1378
957#if EV_USE_PORT 1379#if EV_USE_PORT
958 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1380 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
959#endif 1381#endif
960#if EV_USE_KQUEUE 1382#if EV_USE_KQUEUE
968#endif 1390#endif
969#if EV_USE_SELECT 1391#if EV_USE_SELECT
970 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1392 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
971#endif 1393#endif
972 1394
973 ev_init (&sigev, sigcb); 1395 ev_init (&pipeev, pipecb);
974 ev_set_priority (&sigev, EV_MAXPRI); 1396 ev_set_priority (&pipeev, EV_MAXPRI);
975 } 1397 }
976} 1398}
977 1399
978static void noinline 1400static void noinline
979loop_destroy (EV_P) 1401loop_destroy (EV_P)
980{ 1402{
981 int i; 1403 int i;
1404
1405 if (ev_is_active (&pipeev))
1406 {
1407 ev_ref (EV_A); /* signal watcher */
1408 ev_io_stop (EV_A_ &pipeev);
1409
1410#if EV_USE_EVENTFD
1411 if (evfd >= 0)
1412 close (evfd);
1413#endif
1414
1415 if (evpipe [0] >= 0)
1416 {
1417 close (evpipe [0]);
1418 close (evpipe [1]);
1419 }
1420 }
982 1421
983#if EV_USE_INOTIFY 1422#if EV_USE_INOTIFY
984 if (fs_fd >= 0) 1423 if (fs_fd >= 0)
985 close (fs_fd); 1424 close (fs_fd);
986#endif 1425#endif
1003#if EV_USE_SELECT 1442#if EV_USE_SELECT
1004 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1443 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1005#endif 1444#endif
1006 1445
1007 for (i = NUMPRI; i--; ) 1446 for (i = NUMPRI; i--; )
1447 {
1008 array_free (pending, [i]); 1448 array_free (pending, [i]);
1449#if EV_IDLE_ENABLE
1450 array_free (idle, [i]);
1451#endif
1452 }
1453
1454 ev_free (anfds); anfdmax = 0;
1009 1455
1010 /* have to use the microsoft-never-gets-it-right macro */ 1456 /* have to use the microsoft-never-gets-it-right macro */
1011 array_free (fdchange, EMPTY0); 1457 array_free (fdchange, EMPTY);
1012 array_free (timer, EMPTY0); 1458 array_free (timer, EMPTY);
1013#if EV_PERIODIC_ENABLE 1459#if EV_PERIODIC_ENABLE
1014 array_free (periodic, EMPTY0); 1460 array_free (periodic, EMPTY);
1015#endif 1461#endif
1462#if EV_FORK_ENABLE
1016 array_free (idle, EMPTY0); 1463 array_free (fork, EMPTY);
1464#endif
1017 array_free (prepare, EMPTY0); 1465 array_free (prepare, EMPTY);
1018 array_free (check, EMPTY0); 1466 array_free (check, EMPTY);
1467#if EV_ASYNC_ENABLE
1468 array_free (async, EMPTY);
1469#endif
1019 1470
1020 backend = 0; 1471 backend = 0;
1021} 1472}
1022 1473
1474#if EV_USE_INOTIFY
1023void inline_size infy_fork (EV_P); 1475void inline_size infy_fork (EV_P);
1476#endif
1024 1477
1025void inline_size 1478void inline_size
1026loop_fork (EV_P) 1479loop_fork (EV_P)
1027{ 1480{
1028#if EV_USE_PORT 1481#if EV_USE_PORT
1036#endif 1489#endif
1037#if EV_USE_INOTIFY 1490#if EV_USE_INOTIFY
1038 infy_fork (EV_A); 1491 infy_fork (EV_A);
1039#endif 1492#endif
1040 1493
1041 if (ev_is_active (&sigev)) 1494 if (ev_is_active (&pipeev))
1042 { 1495 {
1043 /* default loop */ 1496 /* this "locks" the handlers against writing to the pipe */
1497 /* while we modify the fd vars */
1498 gotsig = 1;
1499#if EV_ASYNC_ENABLE
1500 gotasync = 1;
1501#endif
1044 1502
1045 ev_ref (EV_A); 1503 ev_ref (EV_A);
1046 ev_io_stop (EV_A_ &sigev); 1504 ev_io_stop (EV_A_ &pipeev);
1505
1506#if EV_USE_EVENTFD
1507 if (evfd >= 0)
1508 close (evfd);
1509#endif
1510
1511 if (evpipe [0] >= 0)
1512 {
1047 close (sigpipe [0]); 1513 close (evpipe [0]);
1048 close (sigpipe [1]); 1514 close (evpipe [1]);
1515 }
1049 1516
1050 while (pipe (sigpipe))
1051 syserr ("(libev) error creating pipe");
1052
1053 siginit (EV_A); 1517 evpipe_init (EV_A);
1518 /* now iterate over everything, in case we missed something */
1519 pipecb (EV_A_ &pipeev, EV_READ);
1054 } 1520 }
1055 1521
1056 postfork = 0; 1522 postfork = 0;
1057} 1523}
1058 1524
1059#if EV_MULTIPLICITY 1525#if EV_MULTIPLICITY
1526
1060struct ev_loop * 1527struct ev_loop *
1061ev_loop_new (unsigned int flags) 1528ev_loop_new (unsigned int flags)
1062{ 1529{
1063 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1530 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1064 1531
1080} 1547}
1081 1548
1082void 1549void
1083ev_loop_fork (EV_P) 1550ev_loop_fork (EV_P)
1084{ 1551{
1085 postfork = 1; 1552 postfork = 1; /* must be in line with ev_default_fork */
1086} 1553}
1087 1554
1555#if EV_VERIFY
1556static void noinline
1557verify_watcher (EV_P_ W w)
1558{
1559 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1560
1561 if (w->pending)
1562 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1563}
1564
1565static void noinline
1566verify_heap (EV_P_ ANHE *heap, int N)
1567{
1568 int i;
1569
1570 for (i = HEAP0; i < N + HEAP0; ++i)
1571 {
1572 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1573 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1574 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1575
1576 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1577 }
1578}
1579
1580static void noinline
1581array_verify (EV_P_ W *ws, int cnt)
1582{
1583 while (cnt--)
1584 {
1585 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1586 verify_watcher (EV_A_ ws [cnt]);
1587 }
1588}
1589#endif
1590
1591void
1592ev_loop_verify (EV_P)
1593{
1594#if EV_VERIFY
1595 int i;
1596 WL w;
1597
1598 assert (activecnt >= -1);
1599
1600 assert (fdchangemax >= fdchangecnt);
1601 for (i = 0; i < fdchangecnt; ++i)
1602 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1603
1604 assert (anfdmax >= 0);
1605 for (i = 0; i < anfdmax; ++i)
1606 for (w = anfds [i].head; w; w = w->next)
1607 {
1608 verify_watcher (EV_A_ (W)w);
1609 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1610 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1611 }
1612
1613 assert (timermax >= timercnt);
1614 verify_heap (EV_A_ timers, timercnt);
1615
1616#if EV_PERIODIC_ENABLE
1617 assert (periodicmax >= periodiccnt);
1618 verify_heap (EV_A_ periodics, periodiccnt);
1619#endif
1620
1621 for (i = NUMPRI; i--; )
1622 {
1623 assert (pendingmax [i] >= pendingcnt [i]);
1624#if EV_IDLE_ENABLE
1625 assert (idleall >= 0);
1626 assert (idlemax [i] >= idlecnt [i]);
1627 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1628#endif
1629 }
1630
1631#if EV_FORK_ENABLE
1632 assert (forkmax >= forkcnt);
1633 array_verify (EV_A_ (W *)forks, forkcnt);
1634#endif
1635
1636#if EV_ASYNC_ENABLE
1637 assert (asyncmax >= asynccnt);
1638 array_verify (EV_A_ (W *)asyncs, asynccnt);
1639#endif
1640
1641 assert (preparemax >= preparecnt);
1642 array_verify (EV_A_ (W *)prepares, preparecnt);
1643
1644 assert (checkmax >= checkcnt);
1645 array_verify (EV_A_ (W *)checks, checkcnt);
1646
1647# if 0
1648 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1649 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1088#endif 1650# endif
1651#endif
1652}
1653
1654#endif /* multiplicity */
1089 1655
1090#if EV_MULTIPLICITY 1656#if EV_MULTIPLICITY
1091struct ev_loop * 1657struct ev_loop *
1092ev_default_loop_init (unsigned int flags) 1658ev_default_loop_init (unsigned int flags)
1093#else 1659#else
1094int 1660int
1095ev_default_loop (unsigned int flags) 1661ev_default_loop (unsigned int flags)
1096#endif 1662#endif
1097{ 1663{
1098 if (sigpipe [0] == sigpipe [1])
1099 if (pipe (sigpipe))
1100 return 0;
1101
1102 if (!ev_default_loop_ptr) 1664 if (!ev_default_loop_ptr)
1103 { 1665 {
1104#if EV_MULTIPLICITY 1666#if EV_MULTIPLICITY
1105 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1667 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1106#else 1668#else
1109 1671
1110 loop_init (EV_A_ flags); 1672 loop_init (EV_A_ flags);
1111 1673
1112 if (ev_backend (EV_A)) 1674 if (ev_backend (EV_A))
1113 { 1675 {
1114 siginit (EV_A);
1115
1116#ifndef _WIN32 1676#ifndef _WIN32
1117 ev_signal_init (&childev, childcb, SIGCHLD); 1677 ev_signal_init (&childev, childcb, SIGCHLD);
1118 ev_set_priority (&childev, EV_MAXPRI); 1678 ev_set_priority (&childev, EV_MAXPRI);
1119 ev_signal_start (EV_A_ &childev); 1679 ev_signal_start (EV_A_ &childev);
1120 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1680 ev_unref (EV_A); /* child watcher should not keep loop alive */
1132{ 1692{
1133#if EV_MULTIPLICITY 1693#if EV_MULTIPLICITY
1134 struct ev_loop *loop = ev_default_loop_ptr; 1694 struct ev_loop *loop = ev_default_loop_ptr;
1135#endif 1695#endif
1136 1696
1697 ev_default_loop_ptr = 0;
1698
1137#ifndef _WIN32 1699#ifndef _WIN32
1138 ev_ref (EV_A); /* child watcher */ 1700 ev_ref (EV_A); /* child watcher */
1139 ev_signal_stop (EV_A_ &childev); 1701 ev_signal_stop (EV_A_ &childev);
1140#endif 1702#endif
1141 1703
1142 ev_ref (EV_A); /* signal watcher */
1143 ev_io_stop (EV_A_ &sigev);
1144
1145 close (sigpipe [0]); sigpipe [0] = 0;
1146 close (sigpipe [1]); sigpipe [1] = 0;
1147
1148 loop_destroy (EV_A); 1704 loop_destroy (EV_A);
1149} 1705}
1150 1706
1151void 1707void
1152ev_default_fork (void) 1708ev_default_fork (void)
1153{ 1709{
1154#if EV_MULTIPLICITY 1710#if EV_MULTIPLICITY
1155 struct ev_loop *loop = ev_default_loop_ptr; 1711 struct ev_loop *loop = ev_default_loop_ptr;
1156#endif 1712#endif
1157 1713
1158 if (backend) 1714 postfork = 1; /* must be in line with ev_loop_fork */
1159 postfork = 1;
1160} 1715}
1161 1716
1162/*****************************************************************************/ 1717/*****************************************************************************/
1163 1718
1164int inline_size 1719void
1165any_pending (EV_P) 1720ev_invoke (EV_P_ void *w, int revents)
1166{ 1721{
1167 int pri; 1722 EV_CB_INVOKE ((W)w, revents);
1168
1169 for (pri = NUMPRI; pri--; )
1170 if (pendingcnt [pri])
1171 return 1;
1172
1173 return 0;
1174} 1723}
1175 1724
1176void inline_speed 1725void inline_speed
1177call_pending (EV_P) 1726call_pending (EV_P)
1178{ 1727{
1183 { 1732 {
1184 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1733 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1185 1734
1186 if (expect_true (p->w)) 1735 if (expect_true (p->w))
1187 { 1736 {
1188 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1737 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1189 1738
1190 p->w->pending = 0; 1739 p->w->pending = 0;
1191 EV_CB_INVOKE (p->w, p->events); 1740 EV_CB_INVOKE (p->w, p->events);
1741 EV_FREQUENT_CHECK;
1192 } 1742 }
1193 } 1743 }
1194} 1744}
1195 1745
1746#if EV_IDLE_ENABLE
1747void inline_size
1748idle_reify (EV_P)
1749{
1750 if (expect_false (idleall))
1751 {
1752 int pri;
1753
1754 for (pri = NUMPRI; pri--; )
1755 {
1756 if (pendingcnt [pri])
1757 break;
1758
1759 if (idlecnt [pri])
1760 {
1761 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1762 break;
1763 }
1764 }
1765 }
1766}
1767#endif
1768
1196void inline_size 1769void inline_size
1197timers_reify (EV_P) 1770timers_reify (EV_P)
1198{ 1771{
1772 EV_FREQUENT_CHECK;
1773
1199 while (timercnt && ((WT)timers [0])->at <= mn_now) 1774 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1200 { 1775 {
1201 ev_timer *w = timers [0]; 1776 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1202 1777
1203 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1778 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1204 1779
1205 /* first reschedule or stop timer */ 1780 /* first reschedule or stop timer */
1206 if (w->repeat) 1781 if (w->repeat)
1207 { 1782 {
1783 ev_at (w) += w->repeat;
1784 if (ev_at (w) < mn_now)
1785 ev_at (w) = mn_now;
1786
1208 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1787 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1209 1788
1210 ((WT)w)->at += w->repeat; 1789 ANHE_at_cache (timers [HEAP0]);
1211 if (((WT)w)->at < mn_now)
1212 ((WT)w)->at = mn_now;
1213
1214 downheap ((WT *)timers, timercnt, 0); 1790 downheap (timers, timercnt, HEAP0);
1215 } 1791 }
1216 else 1792 else
1217 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1793 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1218 1794
1795 EV_FREQUENT_CHECK;
1219 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1796 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1220 } 1797 }
1221} 1798}
1222 1799
1223#if EV_PERIODIC_ENABLE 1800#if EV_PERIODIC_ENABLE
1224void inline_size 1801void inline_size
1225periodics_reify (EV_P) 1802periodics_reify (EV_P)
1226{ 1803{
1804 EV_FREQUENT_CHECK;
1805
1227 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1806 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1228 { 1807 {
1229 ev_periodic *w = periodics [0]; 1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1230 1809
1231 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1810 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1232 1811
1233 /* first reschedule or stop timer */ 1812 /* first reschedule or stop timer */
1234 if (w->reschedule_cb) 1813 if (w->reschedule_cb)
1235 { 1814 {
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816
1237 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1817 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1818
1819 ANHE_at_cache (periodics [HEAP0]);
1238 downheap ((WT *)periodics, periodiccnt, 0); 1820 downheap (periodics, periodiccnt, HEAP0);
1239 } 1821 }
1240 else if (w->interval) 1822 else if (w->interval)
1241 { 1823 {
1242 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1824 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1243 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1825 /* if next trigger time is not sufficiently in the future, put it there */
1826 /* this might happen because of floating point inexactness */
1827 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1828 {
1829 ev_at (w) += w->interval;
1830
1831 /* if interval is unreasonably low we might still have a time in the past */
1832 /* so correct this. this will make the periodic very inexact, but the user */
1833 /* has effectively asked to get triggered more often than possible */
1834 if (ev_at (w) < ev_rt_now)
1835 ev_at (w) = ev_rt_now;
1836 }
1837
1838 ANHE_at_cache (periodics [HEAP0]);
1244 downheap ((WT *)periodics, periodiccnt, 0); 1839 downheap (periodics, periodiccnt, HEAP0);
1245 } 1840 }
1246 else 1841 else
1247 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1842 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1248 1843
1844 EV_FREQUENT_CHECK;
1249 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1845 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1250 } 1846 }
1251} 1847}
1252 1848
1253static void noinline 1849static void noinline
1254periodics_reschedule (EV_P) 1850periodics_reschedule (EV_P)
1255{ 1851{
1256 int i; 1852 int i;
1257 1853
1258 /* adjust periodics after time jump */ 1854 /* adjust periodics after time jump */
1259 for (i = 0; i < periodiccnt; ++i) 1855 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1260 { 1856 {
1261 ev_periodic *w = periodics [i]; 1857 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1262 1858
1263 if (w->reschedule_cb) 1859 if (w->reschedule_cb)
1264 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1860 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1265 else if (w->interval) 1861 else if (w->interval)
1266 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1862 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1863
1864 ANHE_at_cache (periodics [i]);
1865 }
1866
1867 reheap (periodics, periodiccnt);
1868}
1869#endif
1870
1871void inline_speed
1872time_update (EV_P_ ev_tstamp max_block)
1873{
1874 int i;
1875
1876#if EV_USE_MONOTONIC
1877 if (expect_true (have_monotonic))
1267 } 1878 {
1879 ev_tstamp odiff = rtmn_diff;
1268 1880
1269 /* now rebuild the heap */
1270 for (i = periodiccnt >> 1; i--; )
1271 downheap ((WT *)periodics, periodiccnt, i);
1272}
1273#endif
1274
1275int inline_size
1276time_update_monotonic (EV_P)
1277{
1278 mn_now = get_clock (); 1881 mn_now = get_clock ();
1279 1882
1883 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1884 /* interpolate in the meantime */
1280 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1885 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1281 { 1886 {
1282 ev_rt_now = rtmn_diff + mn_now; 1887 ev_rt_now = rtmn_diff + mn_now;
1283 return 0; 1888 return;
1284 } 1889 }
1285 else 1890
1286 {
1287 now_floor = mn_now; 1891 now_floor = mn_now;
1288 ev_rt_now = ev_time (); 1892 ev_rt_now = ev_time ();
1289 return 1;
1290 }
1291}
1292 1893
1293void inline_size 1894 /* loop a few times, before making important decisions.
1294time_update (EV_P) 1895 * on the choice of "4": one iteration isn't enough,
1295{ 1896 * in case we get preempted during the calls to
1296 int i; 1897 * ev_time and get_clock. a second call is almost guaranteed
1297 1898 * to succeed in that case, though. and looping a few more times
1298#if EV_USE_MONOTONIC 1899 * doesn't hurt either as we only do this on time-jumps or
1299 if (expect_true (have_monotonic)) 1900 * in the unlikely event of having been preempted here.
1300 { 1901 */
1301 if (time_update_monotonic (EV_A)) 1902 for (i = 4; --i; )
1302 { 1903 {
1303 ev_tstamp odiff = rtmn_diff;
1304
1305 /* loop a few times, before making important decisions.
1306 * on the choice of "4": one iteration isn't enough,
1307 * in case we get preempted during the calls to
1308 * ev_time and get_clock. a second call is almost guaranteed
1309 * to succeed in that case, though. and looping a few more times
1310 * doesn't hurt either as we only do this on time-jumps or
1311 * in the unlikely event of having been preempted here.
1312 */
1313 for (i = 4; --i; )
1314 {
1315 rtmn_diff = ev_rt_now - mn_now; 1904 rtmn_diff = ev_rt_now - mn_now;
1316 1905
1317 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1906 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1318 return; /* all is well */ 1907 return; /* all is well */
1319 1908
1320 ev_rt_now = ev_time (); 1909 ev_rt_now = ev_time ();
1321 mn_now = get_clock (); 1910 mn_now = get_clock ();
1322 now_floor = mn_now; 1911 now_floor = mn_now;
1323 } 1912 }
1324 1913
1325# if EV_PERIODIC_ENABLE 1914# if EV_PERIODIC_ENABLE
1326 periodics_reschedule (EV_A); 1915 periodics_reschedule (EV_A);
1327# endif 1916# endif
1328 /* no timer adjustment, as the monotonic clock doesn't jump */ 1917 /* no timer adjustment, as the monotonic clock doesn't jump */
1329 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1918 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1330 }
1331 } 1919 }
1332 else 1920 else
1333#endif 1921#endif
1334 { 1922 {
1335 ev_rt_now = ev_time (); 1923 ev_rt_now = ev_time ();
1336 1924
1337 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1925 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1338 { 1926 {
1339#if EV_PERIODIC_ENABLE 1927#if EV_PERIODIC_ENABLE
1340 periodics_reschedule (EV_A); 1928 periodics_reschedule (EV_A);
1341#endif 1929#endif
1342
1343 /* adjust timers. this is easy, as the offset is the same for all of them */ 1930 /* adjust timers. this is easy, as the offset is the same for all of them */
1344 for (i = 0; i < timercnt; ++i) 1931 for (i = 0; i < timercnt; ++i)
1932 {
1933 ANHE *he = timers + i + HEAP0;
1345 ((WT)timers [i])->at += ev_rt_now - mn_now; 1934 ANHE_w (*he)->at += ev_rt_now - mn_now;
1935 ANHE_at_cache (*he);
1936 }
1346 } 1937 }
1347 1938
1348 mn_now = ev_rt_now; 1939 mn_now = ev_rt_now;
1349 } 1940 }
1350} 1941}
1359ev_unref (EV_P) 1950ev_unref (EV_P)
1360{ 1951{
1361 --activecnt; 1952 --activecnt;
1362} 1953}
1363 1954
1955void
1956ev_now_update (EV_P)
1957{
1958 time_update (EV_A_ 1e100);
1959}
1960
1364static int loop_done; 1961static int loop_done;
1365 1962
1366void 1963void
1367ev_loop (EV_P_ int flags) 1964ev_loop (EV_P_ int flags)
1368{ 1965{
1369 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1966 loop_done = EVUNLOOP_CANCEL;
1370 ? EVUNLOOP_ONE
1371 : EVUNLOOP_CANCEL;
1372 1967
1373 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1968 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1374 1969
1375 do 1970 do
1376 { 1971 {
1972#if EV_VERIFY >= 2
1973 ev_loop_verify (EV_A);
1974#endif
1975
1377#ifndef _WIN32 1976#ifndef _WIN32
1378 if (expect_false (curpid)) /* penalise the forking check even more */ 1977 if (expect_false (curpid)) /* penalise the forking check even more */
1379 if (expect_false (getpid () != curpid)) 1978 if (expect_false (getpid () != curpid))
1380 { 1979 {
1381 curpid = getpid (); 1980 curpid = getpid ();
1391 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1990 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1392 call_pending (EV_A); 1991 call_pending (EV_A);
1393 } 1992 }
1394#endif 1993#endif
1395 1994
1396 /* queue check watchers (and execute them) */ 1995 /* queue prepare watchers (and execute them) */
1397 if (expect_false (preparecnt)) 1996 if (expect_false (preparecnt))
1398 { 1997 {
1399 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1998 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1400 call_pending (EV_A); 1999 call_pending (EV_A);
1401 } 2000 }
1402 2001
1403 if (expect_false (!activecnt))
1404 break;
1405
1406 /* we might have forked, so reify kernel state if necessary */ 2002 /* we might have forked, so reify kernel state if necessary */
1407 if (expect_false (postfork)) 2003 if (expect_false (postfork))
1408 loop_fork (EV_A); 2004 loop_fork (EV_A);
1409 2005
1410 /* update fd-related kernel structures */ 2006 /* update fd-related kernel structures */
1411 fd_reify (EV_A); 2007 fd_reify (EV_A);
1412 2008
1413 /* calculate blocking time */ 2009 /* calculate blocking time */
1414 { 2010 {
1415 ev_tstamp block; 2011 ev_tstamp waittime = 0.;
2012 ev_tstamp sleeptime = 0.;
1416 2013
1417 if (expect_false (flags & EVLOOP_NONBLOCK || idlecnt || !activecnt)) 2014 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1418 block = 0.; /* do not block at all */
1419 else
1420 { 2015 {
1421 /* update time to cancel out callback processing overhead */ 2016 /* update time to cancel out callback processing overhead */
1422#if EV_USE_MONOTONIC
1423 if (expect_true (have_monotonic))
1424 time_update_monotonic (EV_A); 2017 time_update (EV_A_ 1e100);
1425 else
1426#endif
1427 {
1428 ev_rt_now = ev_time ();
1429 mn_now = ev_rt_now;
1430 }
1431 2018
1432 block = MAX_BLOCKTIME; 2019 waittime = MAX_BLOCKTIME;
1433 2020
1434 if (timercnt) 2021 if (timercnt)
1435 { 2022 {
1436 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2023 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1437 if (block > to) block = to; 2024 if (waittime > to) waittime = to;
1438 } 2025 }
1439 2026
1440#if EV_PERIODIC_ENABLE 2027#if EV_PERIODIC_ENABLE
1441 if (periodiccnt) 2028 if (periodiccnt)
1442 { 2029 {
1443 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2030 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1444 if (block > to) block = to; 2031 if (waittime > to) waittime = to;
1445 } 2032 }
1446#endif 2033#endif
1447 2034
1448 if (expect_false (block < 0.)) block = 0.; 2035 if (expect_false (waittime < timeout_blocktime))
2036 waittime = timeout_blocktime;
2037
2038 sleeptime = waittime - backend_fudge;
2039
2040 if (expect_true (sleeptime > io_blocktime))
2041 sleeptime = io_blocktime;
2042
2043 if (sleeptime)
2044 {
2045 ev_sleep (sleeptime);
2046 waittime -= sleeptime;
2047 }
1449 } 2048 }
1450 2049
1451 ++loop_count; 2050 ++loop_count;
1452 backend_poll (EV_A_ block); 2051 backend_poll (EV_A_ waittime);
2052
2053 /* update ev_rt_now, do magic */
2054 time_update (EV_A_ waittime + sleeptime);
1453 } 2055 }
1454
1455 /* update ev_rt_now, do magic */
1456 time_update (EV_A);
1457 2056
1458 /* queue pending timers and reschedule them */ 2057 /* queue pending timers and reschedule them */
1459 timers_reify (EV_A); /* relative timers called last */ 2058 timers_reify (EV_A); /* relative timers called last */
1460#if EV_PERIODIC_ENABLE 2059#if EV_PERIODIC_ENABLE
1461 periodics_reify (EV_A); /* absolute timers called first */ 2060 periodics_reify (EV_A); /* absolute timers called first */
1462#endif 2061#endif
1463 2062
2063#if EV_IDLE_ENABLE
1464 /* queue idle watchers unless other events are pending */ 2064 /* queue idle watchers unless other events are pending */
1465 if (idlecnt && !any_pending (EV_A)) 2065 idle_reify (EV_A);
1466 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2066#endif
1467 2067
1468 /* queue check watchers, to be executed first */ 2068 /* queue check watchers, to be executed first */
1469 if (expect_false (checkcnt)) 2069 if (expect_false (checkcnt))
1470 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2070 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1471 2071
1472 call_pending (EV_A); 2072 call_pending (EV_A);
1473
1474 } 2073 }
1475 while (expect_true (activecnt && !loop_done)); 2074 while (expect_true (
2075 activecnt
2076 && !loop_done
2077 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2078 ));
1476 2079
1477 if (loop_done == EVUNLOOP_ONE) 2080 if (loop_done == EVUNLOOP_ONE)
1478 loop_done = EVUNLOOP_CANCEL; 2081 loop_done = EVUNLOOP_CANCEL;
1479} 2082}
1480 2083
1507 head = &(*head)->next; 2110 head = &(*head)->next;
1508 } 2111 }
1509} 2112}
1510 2113
1511void inline_speed 2114void inline_speed
1512ev_clear_pending (EV_P_ W w) 2115clear_pending (EV_P_ W w)
1513{ 2116{
1514 if (w->pending) 2117 if (w->pending)
1515 { 2118 {
1516 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2119 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1517 w->pending = 0; 2120 w->pending = 0;
1518 } 2121 }
1519} 2122}
1520 2123
2124int
2125ev_clear_pending (EV_P_ void *w)
2126{
2127 W w_ = (W)w;
2128 int pending = w_->pending;
2129
2130 if (expect_true (pending))
2131 {
2132 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2133 w_->pending = 0;
2134 p->w = 0;
2135 return p->events;
2136 }
2137 else
2138 return 0;
2139}
2140
2141void inline_size
2142pri_adjust (EV_P_ W w)
2143{
2144 int pri = w->priority;
2145 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2146 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2147 w->priority = pri;
2148}
2149
1521void inline_speed 2150void inline_speed
1522ev_start (EV_P_ W w, int active) 2151ev_start (EV_P_ W w, int active)
1523{ 2152{
1524 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2153 pri_adjust (EV_A_ w);
1525 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1526
1527 w->active = active; 2154 w->active = active;
1528 ev_ref (EV_A); 2155 ev_ref (EV_A);
1529} 2156}
1530 2157
1531void inline_size 2158void inline_size
1535 w->active = 0; 2162 w->active = 0;
1536} 2163}
1537 2164
1538/*****************************************************************************/ 2165/*****************************************************************************/
1539 2166
1540void 2167void noinline
1541ev_io_start (EV_P_ ev_io *w) 2168ev_io_start (EV_P_ ev_io *w)
1542{ 2169{
1543 int fd = w->fd; 2170 int fd = w->fd;
1544 2171
1545 if (expect_false (ev_is_active (w))) 2172 if (expect_false (ev_is_active (w)))
1546 return; 2173 return;
1547 2174
1548 assert (("ev_io_start called with negative fd", fd >= 0)); 2175 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2176 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2177
2178 EV_FREQUENT_CHECK;
1549 2179
1550 ev_start (EV_A_ (W)w, 1); 2180 ev_start (EV_A_ (W)w, 1);
1551 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2181 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1552 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2182 wlist_add (&anfds[fd].head, (WL)w);
1553 2183
1554 fd_change (EV_A_ fd); 2184 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1555} 2185 w->events &= ~EV__IOFDSET;
1556 2186
1557void 2187 EV_FREQUENT_CHECK;
2188}
2189
2190void noinline
1558ev_io_stop (EV_P_ ev_io *w) 2191ev_io_stop (EV_P_ ev_io *w)
1559{ 2192{
1560 ev_clear_pending (EV_A_ (W)w); 2193 clear_pending (EV_A_ (W)w);
1561 if (expect_false (!ev_is_active (w))) 2194 if (expect_false (!ev_is_active (w)))
1562 return; 2195 return;
1563 2196
1564 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2197 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1565 2198
2199 EV_FREQUENT_CHECK;
2200
1566 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2201 wlist_del (&anfds[w->fd].head, (WL)w);
1567 ev_stop (EV_A_ (W)w); 2202 ev_stop (EV_A_ (W)w);
1568 2203
1569 fd_change (EV_A_ w->fd); 2204 fd_change (EV_A_ w->fd, 1);
1570}
1571 2205
1572void 2206 EV_FREQUENT_CHECK;
2207}
2208
2209void noinline
1573ev_timer_start (EV_P_ ev_timer *w) 2210ev_timer_start (EV_P_ ev_timer *w)
1574{ 2211{
1575 if (expect_false (ev_is_active (w))) 2212 if (expect_false (ev_is_active (w)))
1576 return; 2213 return;
1577 2214
1578 ((WT)w)->at += mn_now; 2215 ev_at (w) += mn_now;
1579 2216
1580 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2217 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1581 2218
2219 EV_FREQUENT_CHECK;
2220
2221 ++timercnt;
1582 ev_start (EV_A_ (W)w, ++timercnt); 2222 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1583 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2223 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1584 timers [timercnt - 1] = w; 2224 ANHE_w (timers [ev_active (w)]) = (WT)w;
1585 upheap ((WT *)timers, timercnt - 1); 2225 ANHE_at_cache (timers [ev_active (w)]);
2226 upheap (timers, ev_active (w));
1586 2227
2228 EV_FREQUENT_CHECK;
2229
1587 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2230 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1588} 2231}
1589 2232
1590void 2233void noinline
1591ev_timer_stop (EV_P_ ev_timer *w) 2234ev_timer_stop (EV_P_ ev_timer *w)
1592{ 2235{
1593 ev_clear_pending (EV_A_ (W)w); 2236 clear_pending (EV_A_ (W)w);
1594 if (expect_false (!ev_is_active (w))) 2237 if (expect_false (!ev_is_active (w)))
1595 return; 2238 return;
1596 2239
1597 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2240 EV_FREQUENT_CHECK;
1598 2241
1599 { 2242 {
1600 int active = ((W)w)->active; 2243 int active = ev_active (w);
1601 2244
2245 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2246
2247 --timercnt;
2248
1602 if (expect_true (--active < --timercnt)) 2249 if (expect_true (active < timercnt + HEAP0))
1603 { 2250 {
1604 timers [active] = timers [timercnt]; 2251 timers [active] = timers [timercnt + HEAP0];
1605 adjustheap ((WT *)timers, timercnt, active); 2252 adjustheap (timers, timercnt, active);
1606 } 2253 }
1607 } 2254 }
1608 2255
1609 ((WT)w)->at -= mn_now; 2256 EV_FREQUENT_CHECK;
2257
2258 ev_at (w) -= mn_now;
1610 2259
1611 ev_stop (EV_A_ (W)w); 2260 ev_stop (EV_A_ (W)w);
1612} 2261}
1613 2262
1614void 2263void noinline
1615ev_timer_again (EV_P_ ev_timer *w) 2264ev_timer_again (EV_P_ ev_timer *w)
1616{ 2265{
2266 EV_FREQUENT_CHECK;
2267
1617 if (ev_is_active (w)) 2268 if (ev_is_active (w))
1618 { 2269 {
1619 if (w->repeat) 2270 if (w->repeat)
1620 { 2271 {
1621 ((WT)w)->at = mn_now + w->repeat; 2272 ev_at (w) = mn_now + w->repeat;
2273 ANHE_at_cache (timers [ev_active (w)]);
1622 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2274 adjustheap (timers, timercnt, ev_active (w));
1623 } 2275 }
1624 else 2276 else
1625 ev_timer_stop (EV_A_ w); 2277 ev_timer_stop (EV_A_ w);
1626 } 2278 }
1627 else if (w->repeat) 2279 else if (w->repeat)
1628 { 2280 {
1629 w->at = w->repeat; 2281 ev_at (w) = w->repeat;
1630 ev_timer_start (EV_A_ w); 2282 ev_timer_start (EV_A_ w);
1631 } 2283 }
2284
2285 EV_FREQUENT_CHECK;
1632} 2286}
1633 2287
1634#if EV_PERIODIC_ENABLE 2288#if EV_PERIODIC_ENABLE
1635void 2289void noinline
1636ev_periodic_start (EV_P_ ev_periodic *w) 2290ev_periodic_start (EV_P_ ev_periodic *w)
1637{ 2291{
1638 if (expect_false (ev_is_active (w))) 2292 if (expect_false (ev_is_active (w)))
1639 return; 2293 return;
1640 2294
1641 if (w->reschedule_cb) 2295 if (w->reschedule_cb)
1642 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2296 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1643 else if (w->interval) 2297 else if (w->interval)
1644 { 2298 {
1645 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2299 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1646 /* this formula differs from the one in periodic_reify because we do not always round up */ 2300 /* this formula differs from the one in periodic_reify because we do not always round up */
1647 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2301 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1648 } 2302 }
2303 else
2304 ev_at (w) = w->offset;
1649 2305
2306 EV_FREQUENT_CHECK;
2307
2308 ++periodiccnt;
1650 ev_start (EV_A_ (W)w, ++periodiccnt); 2309 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1651 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2310 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1652 periodics [periodiccnt - 1] = w; 2311 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1653 upheap ((WT *)periodics, periodiccnt - 1); 2312 ANHE_at_cache (periodics [ev_active (w)]);
2313 upheap (periodics, ev_active (w));
1654 2314
2315 EV_FREQUENT_CHECK;
2316
1655 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2317 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1656} 2318}
1657 2319
1658void 2320void noinline
1659ev_periodic_stop (EV_P_ ev_periodic *w) 2321ev_periodic_stop (EV_P_ ev_periodic *w)
1660{ 2322{
1661 ev_clear_pending (EV_A_ (W)w); 2323 clear_pending (EV_A_ (W)w);
1662 if (expect_false (!ev_is_active (w))) 2324 if (expect_false (!ev_is_active (w)))
1663 return; 2325 return;
1664 2326
1665 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2327 EV_FREQUENT_CHECK;
1666 2328
1667 { 2329 {
1668 int active = ((W)w)->active; 2330 int active = ev_active (w);
1669 2331
2332 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2333
2334 --periodiccnt;
2335
1670 if (expect_true (--active < --periodiccnt)) 2336 if (expect_true (active < periodiccnt + HEAP0))
1671 { 2337 {
1672 periodics [active] = periodics [periodiccnt]; 2338 periodics [active] = periodics [periodiccnt + HEAP0];
1673 adjustheap ((WT *)periodics, periodiccnt, active); 2339 adjustheap (periodics, periodiccnt, active);
1674 } 2340 }
1675 } 2341 }
1676 2342
2343 EV_FREQUENT_CHECK;
2344
1677 ev_stop (EV_A_ (W)w); 2345 ev_stop (EV_A_ (W)w);
1678} 2346}
1679 2347
1680void 2348void noinline
1681ev_periodic_again (EV_P_ ev_periodic *w) 2349ev_periodic_again (EV_P_ ev_periodic *w)
1682{ 2350{
1683 /* TODO: use adjustheap and recalculation */ 2351 /* TODO: use adjustheap and recalculation */
1684 ev_periodic_stop (EV_A_ w); 2352 ev_periodic_stop (EV_A_ w);
1685 ev_periodic_start (EV_A_ w); 2353 ev_periodic_start (EV_A_ w);
1688 2356
1689#ifndef SA_RESTART 2357#ifndef SA_RESTART
1690# define SA_RESTART 0 2358# define SA_RESTART 0
1691#endif 2359#endif
1692 2360
1693void 2361void noinline
1694ev_signal_start (EV_P_ ev_signal *w) 2362ev_signal_start (EV_P_ ev_signal *w)
1695{ 2363{
1696#if EV_MULTIPLICITY 2364#if EV_MULTIPLICITY
1697 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2365 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1698#endif 2366#endif
1699 if (expect_false (ev_is_active (w))) 2367 if (expect_false (ev_is_active (w)))
1700 return; 2368 return;
1701 2369
1702 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2370 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2371
2372 evpipe_init (EV_A);
2373
2374 EV_FREQUENT_CHECK;
2375
2376 {
2377#ifndef _WIN32
2378 sigset_t full, prev;
2379 sigfillset (&full);
2380 sigprocmask (SIG_SETMASK, &full, &prev);
2381#endif
2382
2383 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2384
2385#ifndef _WIN32
2386 sigprocmask (SIG_SETMASK, &prev, 0);
2387#endif
2388 }
1703 2389
1704 ev_start (EV_A_ (W)w, 1); 2390 ev_start (EV_A_ (W)w, 1);
1705 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1706 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2391 wlist_add (&signals [w->signum - 1].head, (WL)w);
1707 2392
1708 if (!((WL)w)->next) 2393 if (!((WL)w)->next)
1709 { 2394 {
1710#if _WIN32 2395#if _WIN32
1711 signal (w->signum, sighandler); 2396 signal (w->signum, ev_sighandler);
1712#else 2397#else
1713 struct sigaction sa; 2398 struct sigaction sa;
1714 sa.sa_handler = sighandler; 2399 sa.sa_handler = ev_sighandler;
1715 sigfillset (&sa.sa_mask); 2400 sigfillset (&sa.sa_mask);
1716 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2401 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1717 sigaction (w->signum, &sa, 0); 2402 sigaction (w->signum, &sa, 0);
1718#endif 2403#endif
1719 } 2404 }
1720}
1721 2405
1722void 2406 EV_FREQUENT_CHECK;
2407}
2408
2409void noinline
1723ev_signal_stop (EV_P_ ev_signal *w) 2410ev_signal_stop (EV_P_ ev_signal *w)
1724{ 2411{
1725 ev_clear_pending (EV_A_ (W)w); 2412 clear_pending (EV_A_ (W)w);
1726 if (expect_false (!ev_is_active (w))) 2413 if (expect_false (!ev_is_active (w)))
1727 return; 2414 return;
1728 2415
2416 EV_FREQUENT_CHECK;
2417
1729 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2418 wlist_del (&signals [w->signum - 1].head, (WL)w);
1730 ev_stop (EV_A_ (W)w); 2419 ev_stop (EV_A_ (W)w);
1731 2420
1732 if (!signals [w->signum - 1].head) 2421 if (!signals [w->signum - 1].head)
1733 signal (w->signum, SIG_DFL); 2422 signal (w->signum, SIG_DFL);
2423
2424 EV_FREQUENT_CHECK;
1734} 2425}
1735 2426
1736void 2427void
1737ev_child_start (EV_P_ ev_child *w) 2428ev_child_start (EV_P_ ev_child *w)
1738{ 2429{
1739#if EV_MULTIPLICITY 2430#if EV_MULTIPLICITY
1740 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2431 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1741#endif 2432#endif
1742 if (expect_false (ev_is_active (w))) 2433 if (expect_false (ev_is_active (w)))
1743 return; 2434 return;
1744 2435
2436 EV_FREQUENT_CHECK;
2437
1745 ev_start (EV_A_ (W)w, 1); 2438 ev_start (EV_A_ (W)w, 1);
1746 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2439 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2440
2441 EV_FREQUENT_CHECK;
1747} 2442}
1748 2443
1749void 2444void
1750ev_child_stop (EV_P_ ev_child *w) 2445ev_child_stop (EV_P_ ev_child *w)
1751{ 2446{
1752 ev_clear_pending (EV_A_ (W)w); 2447 clear_pending (EV_A_ (W)w);
1753 if (expect_false (!ev_is_active (w))) 2448 if (expect_false (!ev_is_active (w)))
1754 return; 2449 return;
1755 2450
2451 EV_FREQUENT_CHECK;
2452
1756 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2453 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1757 ev_stop (EV_A_ (W)w); 2454 ev_stop (EV_A_ (W)w);
2455
2456 EV_FREQUENT_CHECK;
1758} 2457}
1759 2458
1760#if EV_STAT_ENABLE 2459#if EV_STAT_ENABLE
1761 2460
1762# ifdef _WIN32 2461# ifdef _WIN32
1763# undef lstat 2462# undef lstat
1764# define lstat(a,b) _stati64 (a,b) 2463# define lstat(a,b) _stati64 (a,b)
1765# endif 2464# endif
1766 2465
1767#define DEF_STAT_INTERVAL 5.0074891 2466#define DEF_STAT_INTERVAL 5.0074891
2467#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1768#define MIN_STAT_INTERVAL 0.1074891 2468#define MIN_STAT_INTERVAL 0.1074891
1769 2469
1770static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2470static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1771 2471
1772#if EV_USE_INOTIFY 2472#if EV_USE_INOTIFY
1773# define EV_INOTIFY_BUFSIZE 8192 2473# define EV_INOTIFY_BUFSIZE 8192
1777{ 2477{
1778 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2478 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1779 2479
1780 if (w->wd < 0) 2480 if (w->wd < 0)
1781 { 2481 {
2482 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1782 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2483 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1783 2484
1784 /* monitor some parent directory for speedup hints */ 2485 /* monitor some parent directory for speedup hints */
2486 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2487 /* but an efficiency issue only */
1785 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2488 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1786 { 2489 {
1787 char path [4096]; 2490 char path [4096];
1788 strcpy (path, w->path); 2491 strcpy (path, w->path);
1789 2492
1792 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2495 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1793 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2496 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1794 2497
1795 char *pend = strrchr (path, '/'); 2498 char *pend = strrchr (path, '/');
1796 2499
1797 if (!pend) 2500 if (!pend || pend == path)
1798 break; /* whoops, no '/', complain to your admin */ 2501 break;
1799 2502
1800 *pend = 0; 2503 *pend = 0;
1801 w->wd = inotify_add_watch (fs_fd, path, mask); 2504 w->wd = inotify_add_watch (fs_fd, path, mask);
1802 } 2505 }
1803 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2506 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1804 } 2507 }
1805 } 2508 }
1806 else
1807 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1808 2509
1809 if (w->wd >= 0) 2510 if (w->wd >= 0)
2511 {
1810 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2512 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2513
2514 /* now local changes will be tracked by inotify, but remote changes won't */
2515 /* unless the filesystem it known to be local, we therefore still poll */
2516 /* also do poll on <2.6.25, but with normal frequency */
2517 struct statfs sfs;
2518
2519 if (fs_2625 && !statfs (w->path, &sfs))
2520 if (sfs.f_type == 0x1373 /* devfs */
2521 || sfs.f_type == 0xEF53 /* ext2/3 */
2522 || sfs.f_type == 0x3153464a /* jfs */
2523 || sfs.f_type == 0x52654973 /* reiser3 */
2524 || sfs.f_type == 0x01021994 /* tempfs */
2525 || sfs.f_type == 0x58465342 /* xfs */)
2526 return;
2527
2528 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2529 ev_timer_again (EV_A_ &w->timer);
2530 }
1811} 2531}
1812 2532
1813static void noinline 2533static void noinline
1814infy_del (EV_P_ ev_stat *w) 2534infy_del (EV_P_ ev_stat *w)
1815{ 2535{
1829 2549
1830static void noinline 2550static void noinline
1831infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2551infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1832{ 2552{
1833 if (slot < 0) 2553 if (slot < 0)
1834 /* overflow, need to check for all hahs slots */ 2554 /* overflow, need to check for all hash slots */
1835 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2555 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1836 infy_wd (EV_A_ slot, wd, ev); 2556 infy_wd (EV_A_ slot, wd, ev);
1837 else 2557 else
1838 { 2558 {
1839 WL w_; 2559 WL w_;
1845 2565
1846 if (w->wd == wd || wd == -1) 2566 if (w->wd == wd || wd == -1)
1847 { 2567 {
1848 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2568 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1849 { 2569 {
2570 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1850 w->wd = -1; 2571 w->wd = -1;
1851 infy_add (EV_A_ w); /* re-add, no matter what */ 2572 infy_add (EV_A_ w); /* re-add, no matter what */
1852 } 2573 }
1853 2574
1854 stat_timer_cb (EV_A_ &w->timer, 0); 2575 stat_timer_cb (EV_A_ &w->timer, 0);
1868 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2589 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1869 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2590 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1870} 2591}
1871 2592
1872void inline_size 2593void inline_size
2594check_2625 (EV_P)
2595{
2596 /* kernels < 2.6.25 are borked
2597 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2598 */
2599 struct utsname buf;
2600 int major, minor, micro;
2601
2602 if (uname (&buf))
2603 return;
2604
2605 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2606 return;
2607
2608 if (major < 2
2609 || (major == 2 && minor < 6)
2610 || (major == 2 && minor == 6 && micro < 25))
2611 return;
2612
2613 fs_2625 = 1;
2614}
2615
2616void inline_size
1873infy_init (EV_P) 2617infy_init (EV_P)
1874{ 2618{
1875 if (fs_fd != -2) 2619 if (fs_fd != -2)
1876 return; 2620 return;
2621
2622 fs_fd = -1;
2623
2624 check_2625 (EV_A);
1877 2625
1878 fs_fd = inotify_init (); 2626 fs_fd = inotify_init ();
1879 2627
1880 if (fs_fd >= 0) 2628 if (fs_fd >= 0)
1881 { 2629 {
1909 w->wd = -1; 2657 w->wd = -1;
1910 2658
1911 if (fs_fd >= 0) 2659 if (fs_fd >= 0)
1912 infy_add (EV_A_ w); /* re-add, no matter what */ 2660 infy_add (EV_A_ w); /* re-add, no matter what */
1913 else 2661 else
1914 ev_timer_start (EV_A_ &w->timer); 2662 ev_timer_again (EV_A_ &w->timer);
1915 } 2663 }
1916
1917 } 2664 }
1918} 2665}
1919 2666
2667#endif
2668
2669#ifdef _WIN32
2670# define EV_LSTAT(p,b) _stati64 (p, b)
2671#else
2672# define EV_LSTAT(p,b) lstat (p, b)
1920#endif 2673#endif
1921 2674
1922void 2675void
1923ev_stat_stat (EV_P_ ev_stat *w) 2676ev_stat_stat (EV_P_ ev_stat *w)
1924{ 2677{
1951 || w->prev.st_atime != w->attr.st_atime 2704 || w->prev.st_atime != w->attr.st_atime
1952 || w->prev.st_mtime != w->attr.st_mtime 2705 || w->prev.st_mtime != w->attr.st_mtime
1953 || w->prev.st_ctime != w->attr.st_ctime 2706 || w->prev.st_ctime != w->attr.st_ctime
1954 ) { 2707 ) {
1955 #if EV_USE_INOTIFY 2708 #if EV_USE_INOTIFY
2709 if (fs_fd >= 0)
2710 {
1956 infy_del (EV_A_ w); 2711 infy_del (EV_A_ w);
1957 infy_add (EV_A_ w); 2712 infy_add (EV_A_ w);
1958 ev_stat_stat (EV_A_ w); /* avoid race... */ 2713 ev_stat_stat (EV_A_ w); /* avoid race... */
2714 }
1959 #endif 2715 #endif
1960 2716
1961 ev_feed_event (EV_A_ w, EV_STAT); 2717 ev_feed_event (EV_A_ w, EV_STAT);
1962 } 2718 }
1963} 2719}
1966ev_stat_start (EV_P_ ev_stat *w) 2722ev_stat_start (EV_P_ ev_stat *w)
1967{ 2723{
1968 if (expect_false (ev_is_active (w))) 2724 if (expect_false (ev_is_active (w)))
1969 return; 2725 return;
1970 2726
1971 /* since we use memcmp, we need to clear any padding data etc. */
1972 memset (&w->prev, 0, sizeof (ev_statdata));
1973 memset (&w->attr, 0, sizeof (ev_statdata));
1974
1975 ev_stat_stat (EV_A_ w); 2727 ev_stat_stat (EV_A_ w);
1976 2728
2729 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1977 if (w->interval < MIN_STAT_INTERVAL) 2730 w->interval = MIN_STAT_INTERVAL;
1978 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1979 2731
1980 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2732 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1981 ev_set_priority (&w->timer, ev_priority (w)); 2733 ev_set_priority (&w->timer, ev_priority (w));
1982 2734
1983#if EV_USE_INOTIFY 2735#if EV_USE_INOTIFY
1984 infy_init (EV_A); 2736 infy_init (EV_A);
1985 2737
1986 if (fs_fd >= 0) 2738 if (fs_fd >= 0)
1987 infy_add (EV_A_ w); 2739 infy_add (EV_A_ w);
1988 else 2740 else
1989#endif 2741#endif
1990 ev_timer_start (EV_A_ &w->timer); 2742 ev_timer_again (EV_A_ &w->timer);
1991 2743
1992 ev_start (EV_A_ (W)w, 1); 2744 ev_start (EV_A_ (W)w, 1);
2745
2746 EV_FREQUENT_CHECK;
1993} 2747}
1994 2748
1995void 2749void
1996ev_stat_stop (EV_P_ ev_stat *w) 2750ev_stat_stop (EV_P_ ev_stat *w)
1997{ 2751{
1998 ev_clear_pending (EV_A_ (W)w); 2752 clear_pending (EV_A_ (W)w);
1999 if (expect_false (!ev_is_active (w))) 2753 if (expect_false (!ev_is_active (w)))
2000 return; 2754 return;
2001 2755
2756 EV_FREQUENT_CHECK;
2757
2002#if EV_USE_INOTIFY 2758#if EV_USE_INOTIFY
2003 infy_del (EV_A_ w); 2759 infy_del (EV_A_ w);
2004#endif 2760#endif
2005 ev_timer_stop (EV_A_ &w->timer); 2761 ev_timer_stop (EV_A_ &w->timer);
2006 2762
2007 ev_stop (EV_A_ (W)w); 2763 ev_stop (EV_A_ (W)w);
2008}
2009#endif
2010 2764
2765 EV_FREQUENT_CHECK;
2766}
2767#endif
2768
2769#if EV_IDLE_ENABLE
2011void 2770void
2012ev_idle_start (EV_P_ ev_idle *w) 2771ev_idle_start (EV_P_ ev_idle *w)
2013{ 2772{
2014 if (expect_false (ev_is_active (w))) 2773 if (expect_false (ev_is_active (w)))
2015 return; 2774 return;
2016 2775
2776 pri_adjust (EV_A_ (W)w);
2777
2778 EV_FREQUENT_CHECK;
2779
2780 {
2781 int active = ++idlecnt [ABSPRI (w)];
2782
2783 ++idleall;
2017 ev_start (EV_A_ (W)w, ++idlecnt); 2784 ev_start (EV_A_ (W)w, active);
2785
2018 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2786 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2019 idles [idlecnt - 1] = w; 2787 idles [ABSPRI (w)][active - 1] = w;
2788 }
2789
2790 EV_FREQUENT_CHECK;
2020} 2791}
2021 2792
2022void 2793void
2023ev_idle_stop (EV_P_ ev_idle *w) 2794ev_idle_stop (EV_P_ ev_idle *w)
2024{ 2795{
2025 ev_clear_pending (EV_A_ (W)w); 2796 clear_pending (EV_A_ (W)w);
2026 if (expect_false (!ev_is_active (w))) 2797 if (expect_false (!ev_is_active (w)))
2027 return; 2798 return;
2028 2799
2800 EV_FREQUENT_CHECK;
2801
2029 { 2802 {
2030 int active = ((W)w)->active; 2803 int active = ev_active (w);
2031 idles [active - 1] = idles [--idlecnt]; 2804
2032 ((W)idles [active - 1])->active = active; 2805 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2806 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2807
2808 ev_stop (EV_A_ (W)w);
2809 --idleall;
2033 } 2810 }
2034 2811
2035 ev_stop (EV_A_ (W)w); 2812 EV_FREQUENT_CHECK;
2036} 2813}
2814#endif
2037 2815
2038void 2816void
2039ev_prepare_start (EV_P_ ev_prepare *w) 2817ev_prepare_start (EV_P_ ev_prepare *w)
2040{ 2818{
2041 if (expect_false (ev_is_active (w))) 2819 if (expect_false (ev_is_active (w)))
2042 return; 2820 return;
2821
2822 EV_FREQUENT_CHECK;
2043 2823
2044 ev_start (EV_A_ (W)w, ++preparecnt); 2824 ev_start (EV_A_ (W)w, ++preparecnt);
2045 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2825 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2046 prepares [preparecnt - 1] = w; 2826 prepares [preparecnt - 1] = w;
2827
2828 EV_FREQUENT_CHECK;
2047} 2829}
2048 2830
2049void 2831void
2050ev_prepare_stop (EV_P_ ev_prepare *w) 2832ev_prepare_stop (EV_P_ ev_prepare *w)
2051{ 2833{
2052 ev_clear_pending (EV_A_ (W)w); 2834 clear_pending (EV_A_ (W)w);
2053 if (expect_false (!ev_is_active (w))) 2835 if (expect_false (!ev_is_active (w)))
2054 return; 2836 return;
2055 2837
2838 EV_FREQUENT_CHECK;
2839
2056 { 2840 {
2057 int active = ((W)w)->active; 2841 int active = ev_active (w);
2842
2058 prepares [active - 1] = prepares [--preparecnt]; 2843 prepares [active - 1] = prepares [--preparecnt];
2059 ((W)prepares [active - 1])->active = active; 2844 ev_active (prepares [active - 1]) = active;
2060 } 2845 }
2061 2846
2062 ev_stop (EV_A_ (W)w); 2847 ev_stop (EV_A_ (W)w);
2848
2849 EV_FREQUENT_CHECK;
2063} 2850}
2064 2851
2065void 2852void
2066ev_check_start (EV_P_ ev_check *w) 2853ev_check_start (EV_P_ ev_check *w)
2067{ 2854{
2068 if (expect_false (ev_is_active (w))) 2855 if (expect_false (ev_is_active (w)))
2069 return; 2856 return;
2857
2858 EV_FREQUENT_CHECK;
2070 2859
2071 ev_start (EV_A_ (W)w, ++checkcnt); 2860 ev_start (EV_A_ (W)w, ++checkcnt);
2072 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2861 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2073 checks [checkcnt - 1] = w; 2862 checks [checkcnt - 1] = w;
2863
2864 EV_FREQUENT_CHECK;
2074} 2865}
2075 2866
2076void 2867void
2077ev_check_stop (EV_P_ ev_check *w) 2868ev_check_stop (EV_P_ ev_check *w)
2078{ 2869{
2079 ev_clear_pending (EV_A_ (W)w); 2870 clear_pending (EV_A_ (W)w);
2080 if (expect_false (!ev_is_active (w))) 2871 if (expect_false (!ev_is_active (w)))
2081 return; 2872 return;
2082 2873
2874 EV_FREQUENT_CHECK;
2875
2083 { 2876 {
2084 int active = ((W)w)->active; 2877 int active = ev_active (w);
2878
2085 checks [active - 1] = checks [--checkcnt]; 2879 checks [active - 1] = checks [--checkcnt];
2086 ((W)checks [active - 1])->active = active; 2880 ev_active (checks [active - 1]) = active;
2087 } 2881 }
2088 2882
2089 ev_stop (EV_A_ (W)w); 2883 ev_stop (EV_A_ (W)w);
2884
2885 EV_FREQUENT_CHECK;
2090} 2886}
2091 2887
2092#if EV_EMBED_ENABLE 2888#if EV_EMBED_ENABLE
2093void noinline 2889void noinline
2094ev_embed_sweep (EV_P_ ev_embed *w) 2890ev_embed_sweep (EV_P_ ev_embed *w)
2095{ 2891{
2096 ev_loop (w->loop, EVLOOP_NONBLOCK); 2892 ev_loop (w->other, EVLOOP_NONBLOCK);
2097} 2893}
2098 2894
2099static void 2895static void
2100embed_cb (EV_P_ ev_io *io, int revents) 2896embed_io_cb (EV_P_ ev_io *io, int revents)
2101{ 2897{
2102 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2898 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2103 2899
2104 if (ev_cb (w)) 2900 if (ev_cb (w))
2105 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2901 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2106 else 2902 else
2107 ev_embed_sweep (loop, w); 2903 ev_loop (w->other, EVLOOP_NONBLOCK);
2108} 2904}
2905
2906static void
2907embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2908{
2909 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2910
2911 {
2912 struct ev_loop *loop = w->other;
2913
2914 while (fdchangecnt)
2915 {
2916 fd_reify (EV_A);
2917 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2918 }
2919 }
2920}
2921
2922static void
2923embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2924{
2925 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2926
2927 ev_embed_stop (EV_A_ w);
2928
2929 {
2930 struct ev_loop *loop = w->other;
2931
2932 ev_loop_fork (EV_A);
2933 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2934 }
2935
2936 ev_embed_start (EV_A_ w);
2937}
2938
2939#if 0
2940static void
2941embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2942{
2943 ev_idle_stop (EV_A_ idle);
2944}
2945#endif
2109 2946
2110void 2947void
2111ev_embed_start (EV_P_ ev_embed *w) 2948ev_embed_start (EV_P_ ev_embed *w)
2112{ 2949{
2113 if (expect_false (ev_is_active (w))) 2950 if (expect_false (ev_is_active (w)))
2114 return; 2951 return;
2115 2952
2116 { 2953 {
2117 struct ev_loop *loop = w->loop; 2954 struct ev_loop *loop = w->other;
2118 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2955 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2119 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2956 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2120 } 2957 }
2958
2959 EV_FREQUENT_CHECK;
2121 2960
2122 ev_set_priority (&w->io, ev_priority (w)); 2961 ev_set_priority (&w->io, ev_priority (w));
2123 ev_io_start (EV_A_ &w->io); 2962 ev_io_start (EV_A_ &w->io);
2124 2963
2964 ev_prepare_init (&w->prepare, embed_prepare_cb);
2965 ev_set_priority (&w->prepare, EV_MINPRI);
2966 ev_prepare_start (EV_A_ &w->prepare);
2967
2968 ev_fork_init (&w->fork, embed_fork_cb);
2969 ev_fork_start (EV_A_ &w->fork);
2970
2971 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2972
2125 ev_start (EV_A_ (W)w, 1); 2973 ev_start (EV_A_ (W)w, 1);
2974
2975 EV_FREQUENT_CHECK;
2126} 2976}
2127 2977
2128void 2978void
2129ev_embed_stop (EV_P_ ev_embed *w) 2979ev_embed_stop (EV_P_ ev_embed *w)
2130{ 2980{
2131 ev_clear_pending (EV_A_ (W)w); 2981 clear_pending (EV_A_ (W)w);
2132 if (expect_false (!ev_is_active (w))) 2982 if (expect_false (!ev_is_active (w)))
2133 return; 2983 return;
2134 2984
2985 EV_FREQUENT_CHECK;
2986
2135 ev_io_stop (EV_A_ &w->io); 2987 ev_io_stop (EV_A_ &w->io);
2988 ev_prepare_stop (EV_A_ &w->prepare);
2989 ev_fork_stop (EV_A_ &w->fork);
2136 2990
2137 ev_stop (EV_A_ (W)w); 2991 EV_FREQUENT_CHECK;
2138} 2992}
2139#endif 2993#endif
2140 2994
2141#if EV_FORK_ENABLE 2995#if EV_FORK_ENABLE
2142void 2996void
2143ev_fork_start (EV_P_ ev_fork *w) 2997ev_fork_start (EV_P_ ev_fork *w)
2144{ 2998{
2145 if (expect_false (ev_is_active (w))) 2999 if (expect_false (ev_is_active (w)))
2146 return; 3000 return;
3001
3002 EV_FREQUENT_CHECK;
2147 3003
2148 ev_start (EV_A_ (W)w, ++forkcnt); 3004 ev_start (EV_A_ (W)w, ++forkcnt);
2149 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3005 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2150 forks [forkcnt - 1] = w; 3006 forks [forkcnt - 1] = w;
3007
3008 EV_FREQUENT_CHECK;
2151} 3009}
2152 3010
2153void 3011void
2154ev_fork_stop (EV_P_ ev_fork *w) 3012ev_fork_stop (EV_P_ ev_fork *w)
2155{ 3013{
2156 ev_clear_pending (EV_A_ (W)w); 3014 clear_pending (EV_A_ (W)w);
2157 if (expect_false (!ev_is_active (w))) 3015 if (expect_false (!ev_is_active (w)))
2158 return; 3016 return;
2159 3017
3018 EV_FREQUENT_CHECK;
3019
2160 { 3020 {
2161 int active = ((W)w)->active; 3021 int active = ev_active (w);
3022
2162 forks [active - 1] = forks [--forkcnt]; 3023 forks [active - 1] = forks [--forkcnt];
2163 ((W)forks [active - 1])->active = active; 3024 ev_active (forks [active - 1]) = active;
2164 } 3025 }
2165 3026
2166 ev_stop (EV_A_ (W)w); 3027 ev_stop (EV_A_ (W)w);
3028
3029 EV_FREQUENT_CHECK;
3030}
3031#endif
3032
3033#if EV_ASYNC_ENABLE
3034void
3035ev_async_start (EV_P_ ev_async *w)
3036{
3037 if (expect_false (ev_is_active (w)))
3038 return;
3039
3040 evpipe_init (EV_A);
3041
3042 EV_FREQUENT_CHECK;
3043
3044 ev_start (EV_A_ (W)w, ++asynccnt);
3045 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3046 asyncs [asynccnt - 1] = w;
3047
3048 EV_FREQUENT_CHECK;
3049}
3050
3051void
3052ev_async_stop (EV_P_ ev_async *w)
3053{
3054 clear_pending (EV_A_ (W)w);
3055 if (expect_false (!ev_is_active (w)))
3056 return;
3057
3058 EV_FREQUENT_CHECK;
3059
3060 {
3061 int active = ev_active (w);
3062
3063 asyncs [active - 1] = asyncs [--asynccnt];
3064 ev_active (asyncs [active - 1]) = active;
3065 }
3066
3067 ev_stop (EV_A_ (W)w);
3068
3069 EV_FREQUENT_CHECK;
3070}
3071
3072void
3073ev_async_send (EV_P_ ev_async *w)
3074{
3075 w->sent = 1;
3076 evpipe_write (EV_A_ &gotasync);
2167} 3077}
2168#endif 3078#endif
2169 3079
2170/*****************************************************************************/ 3080/*****************************************************************************/
2171 3081
2181once_cb (EV_P_ struct ev_once *once, int revents) 3091once_cb (EV_P_ struct ev_once *once, int revents)
2182{ 3092{
2183 void (*cb)(int revents, void *arg) = once->cb; 3093 void (*cb)(int revents, void *arg) = once->cb;
2184 void *arg = once->arg; 3094 void *arg = once->arg;
2185 3095
2186 ev_io_stop (EV_A_ &once->io); 3096 ev_io_stop (EV_A_ &once->io);
2187 ev_timer_stop (EV_A_ &once->to); 3097 ev_timer_stop (EV_A_ &once->to);
2188 ev_free (once); 3098 ev_free (once);
2189 3099
2190 cb (revents, arg); 3100 cb (revents, arg);
2191} 3101}
2192 3102
2193static void 3103static void
2194once_cb_io (EV_P_ ev_io *w, int revents) 3104once_cb_io (EV_P_ ev_io *w, int revents)
2195{ 3105{
2196 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3106 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3107
3108 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2197} 3109}
2198 3110
2199static void 3111static void
2200once_cb_to (EV_P_ ev_timer *w, int revents) 3112once_cb_to (EV_P_ ev_timer *w, int revents)
2201{ 3113{
2202 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3114 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3115
3116 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2203} 3117}
2204 3118
2205void 3119void
2206ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3120ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2207{ 3121{
2229 ev_timer_set (&once->to, timeout, 0.); 3143 ev_timer_set (&once->to, timeout, 0.);
2230 ev_timer_start (EV_A_ &once->to); 3144 ev_timer_start (EV_A_ &once->to);
2231 } 3145 }
2232} 3146}
2233 3147
3148/*****************************************************************************/
3149
3150#if 0
3151void
3152ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3153{
3154 int i, j;
3155 ev_watcher_list *wl, *wn;
3156
3157 if (types & (EV_IO | EV_EMBED))
3158 for (i = 0; i < anfdmax; ++i)
3159 for (wl = anfds [i].head; wl; )
3160 {
3161 wn = wl->next;
3162
3163#if EV_EMBED_ENABLE
3164 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3165 {
3166 if (types & EV_EMBED)
3167 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3168 }
3169 else
3170#endif
3171#if EV_USE_INOTIFY
3172 if (ev_cb ((ev_io *)wl) == infy_cb)
3173 ;
3174 else
3175#endif
3176 if ((ev_io *)wl != &pipeev)
3177 if (types & EV_IO)
3178 cb (EV_A_ EV_IO, wl);
3179
3180 wl = wn;
3181 }
3182
3183 if (types & (EV_TIMER | EV_STAT))
3184 for (i = timercnt + HEAP0; i-- > HEAP0; )
3185#if EV_STAT_ENABLE
3186 /*TODO: timer is not always active*/
3187 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3188 {
3189 if (types & EV_STAT)
3190 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3191 }
3192 else
3193#endif
3194 if (types & EV_TIMER)
3195 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3196
3197#if EV_PERIODIC_ENABLE
3198 if (types & EV_PERIODIC)
3199 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3200 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3201#endif
3202
3203#if EV_IDLE_ENABLE
3204 if (types & EV_IDLE)
3205 for (j = NUMPRI; i--; )
3206 for (i = idlecnt [j]; i--; )
3207 cb (EV_A_ EV_IDLE, idles [j][i]);
3208#endif
3209
3210#if EV_FORK_ENABLE
3211 if (types & EV_FORK)
3212 for (i = forkcnt; i--; )
3213 if (ev_cb (forks [i]) != embed_fork_cb)
3214 cb (EV_A_ EV_FORK, forks [i]);
3215#endif
3216
3217#if EV_ASYNC_ENABLE
3218 if (types & EV_ASYNC)
3219 for (i = asynccnt; i--; )
3220 cb (EV_A_ EV_ASYNC, asyncs [i]);
3221#endif
3222
3223 if (types & EV_PREPARE)
3224 for (i = preparecnt; i--; )
3225#if EV_EMBED_ENABLE
3226 if (ev_cb (prepares [i]) != embed_prepare_cb)
3227#endif
3228 cb (EV_A_ EV_PREPARE, prepares [i]);
3229
3230 if (types & EV_CHECK)
3231 for (i = checkcnt; i--; )
3232 cb (EV_A_ EV_CHECK, checks [i]);
3233
3234 if (types & EV_SIGNAL)
3235 for (i = 0; i < signalmax; ++i)
3236 for (wl = signals [i].head; wl; )
3237 {
3238 wn = wl->next;
3239 cb (EV_A_ EV_SIGNAL, wl);
3240 wl = wn;
3241 }
3242
3243 if (types & EV_CHILD)
3244 for (i = EV_PID_HASHSIZE; i--; )
3245 for (wl = childs [i]; wl; )
3246 {
3247 wn = wl->next;
3248 cb (EV_A_ EV_CHILD, wl);
3249 wl = wn;
3250 }
3251/* EV_STAT 0x00001000 /* stat data changed */
3252/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3253}
3254#endif
3255
3256#if EV_MULTIPLICITY
3257 #include "ev_wrap.h"
3258#endif
3259
2234#ifdef __cplusplus 3260#ifdef __cplusplus
2235} 3261}
2236#endif 3262#endif
2237 3263

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines