ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.163 by root, Wed Dec 5 13:54:36 2007 UTC vs.
Revision 1.293 by root, Mon Jun 29 18:46:52 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
56# endif 87# endif
57# endif 88# endif
58 89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
107#endif 146#endif
108 147
109#include <math.h> 148#include <math.h>
110#include <stdlib.h> 149#include <stdlib.h>
111#include <fcntl.h> 150#include <fcntl.h>
129#ifndef _WIN32 168#ifndef _WIN32
130# include <sys/time.h> 169# include <sys/time.h>
131# include <sys/wait.h> 170# include <sys/wait.h>
132# include <unistd.h> 171# include <unistd.h>
133#else 172#else
173# include <io.h>
134# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 175# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
138# endif 178# endif
139#endif 179#endif
140 180
141/**/ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
142 190
143#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
144# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
145#endif 197#endif
146 198
147#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
201#endif
202
203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
207# define EV_USE_NANOSLEEP 0
208# endif
149#endif 209#endif
150 210
151#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
153#endif 213#endif
159# define EV_USE_POLL 1 219# define EV_USE_POLL 1
160# endif 220# endif
161#endif 221#endif
162 222
163#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
164# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
228# endif
165#endif 229#endif
166 230
167#ifndef EV_USE_KQUEUE 231#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 232# define EV_USE_KQUEUE 0
169#endif 233#endif
171#ifndef EV_USE_PORT 235#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 236# define EV_USE_PORT 0
173#endif 237#endif
174 238
175#ifndef EV_USE_INOTIFY 239#ifndef EV_USE_INOTIFY
240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
241# define EV_USE_INOTIFY 1
242# else
176# define EV_USE_INOTIFY 0 243# define EV_USE_INOTIFY 0
244# endif
177#endif 245#endif
178 246
179#ifndef EV_PID_HASHSIZE 247#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 248# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 249# define EV_PID_HASHSIZE 1
190# else 258# else
191# define EV_INOTIFY_HASHSIZE 16 259# define EV_INOTIFY_HASHSIZE 16
192# endif 260# endif
193#endif 261#endif
194 262
195/**/ 263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 304
197#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
200#endif 308#endif
202#ifndef CLOCK_REALTIME 310#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 311# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 312# define EV_USE_REALTIME 0
205#endif 313#endif
206 314
315#if !EV_STAT_ENABLE
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318#endif
319
320#if !EV_USE_NANOSLEEP
321# ifndef _WIN32
322# include <sys/select.h>
323# endif
324#endif
325
326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
335#endif
336
207#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 338# include <winsock.h>
209#endif 339#endif
210 340
211#if !EV_STAT_ENABLE 341#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
213#endif 346# endif
214 347int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 348# ifdef __cplusplus
216# include <sys/inotify.h> 349}
350# endif
217#endif 351#endif
218 352
219/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
360
361/*
362 * This is used to avoid floating point rounding problems.
363 * It is added to ev_rt_now when scheduling periodics
364 * to ensure progress, time-wise, even when rounding
365 * errors are against us.
366 * This value is good at least till the year 4000.
367 * Better solutions welcome.
368 */
369#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 370
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 371#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 372#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 373/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 374
225#if __GNUC__ >= 3 375#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 376# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 377# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 378#else
236# define expect(expr,value) (expr) 379# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 380# define noinline
381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
382# define inline
383# endif
240#endif 384#endif
241 385
242#define expect_false(expr) expect ((expr) != 0, 0) 386#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 387#define expect_true(expr) expect ((expr) != 0, 1)
388#define inline_size static inline
389
390#if EV_MINIMAL
391# define inline_speed static noinline
392#else
393# define inline_speed static inline
394#endif
244 395
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 397#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 398
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 399#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 400#define EMPTY2(a,b) /* used to suppress some warnings */
250 401
251typedef ev_watcher *W; 402typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 403typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 404typedef ev_watcher_time *WT;
254 405
406#define ev_active(w) ((W)(w))->active
407#define ev_at(w) ((WT)(w))->at
408
409#if EV_USE_REALTIME
410/* sig_atomic_t is used to avoid per-thread variables or locking but still */
411/* giving it a reasonably high chance of working on typical architetcures */
412static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
413#endif
414
415#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 416static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
417#endif
256 418
257#ifdef _WIN32 419#ifdef _WIN32
258# include "ev_win32.c" 420# include "ev_win32.c"
259#endif 421#endif
260 422
267{ 429{
268 syserr_cb = cb; 430 syserr_cb = cb;
269} 431}
270 432
271static void noinline 433static void noinline
272syserr (const char *msg) 434ev_syserr (const char *msg)
273{ 435{
274 if (!msg) 436 if (!msg)
275 msg = "(libev) system error"; 437 msg = "(libev) system error";
276 438
277 if (syserr_cb) 439 if (syserr_cb)
281 perror (msg); 443 perror (msg);
282 abort (); 444 abort ();
283 } 445 }
284} 446}
285 447
448static void *
449ev_realloc_emul (void *ptr, long size)
450{
451 /* some systems, notably openbsd and darwin, fail to properly
452 * implement realloc (x, 0) (as required by both ansi c-98 and
453 * the single unix specification, so work around them here.
454 */
455
456 if (size)
457 return realloc (ptr, size);
458
459 free (ptr);
460 return 0;
461}
462
286static void *(*alloc)(void *ptr, long size); 463static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 464
288void 465void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 466ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 467{
291 alloc = cb; 468 alloc = cb;
292} 469}
293 470
294inline_speed void * 471inline_speed void *
295ev_realloc (void *ptr, long size) 472ev_realloc (void *ptr, long size)
296{ 473{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 474 ptr = alloc (ptr, size);
298 475
299 if (!ptr && size) 476 if (!ptr && size)
300 { 477 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 478 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 479 abort ();
308#define ev_malloc(size) ev_realloc (0, (size)) 485#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 486#define ev_free(ptr) ev_realloc ((ptr), 0)
310 487
311/*****************************************************************************/ 488/*****************************************************************************/
312 489
490/* file descriptor info structure */
313typedef struct 491typedef struct
314{ 492{
315 WL head; 493 WL head;
316 unsigned char events; 494 unsigned char events; /* the events watched for */
495 unsigned char reify; /* flag set when this ANFD needs reification */
496 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 497 unsigned char unused;
498#if EV_USE_EPOLL
499 unsigned int egen; /* generation counter to counter epoll bugs */
500#endif
318#if EV_SELECT_IS_WINSOCKET 501#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 502 SOCKET handle;
320#endif 503#endif
321} ANFD; 504} ANFD;
322 505
506/* stores the pending event set for a given watcher */
323typedef struct 507typedef struct
324{ 508{
325 W w; 509 W w;
326 int events; 510 int events; /* the pending event set for the given watcher */
327} ANPENDING; 511} ANPENDING;
328 512
329#if EV_USE_INOTIFY 513#if EV_USE_INOTIFY
514/* hash table entry per inotify-id */
330typedef struct 515typedef struct
331{ 516{
332 WL head; 517 WL head;
333} ANFS; 518} ANFS;
519#endif
520
521/* Heap Entry */
522#if EV_HEAP_CACHE_AT
523 /* a heap element */
524 typedef struct {
525 ev_tstamp at;
526 WT w;
527 } ANHE;
528
529 #define ANHE_w(he) (he).w /* access watcher, read-write */
530 #define ANHE_at(he) (he).at /* access cached at, read-only */
531 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
532#else
533 /* a heap element */
534 typedef WT ANHE;
535
536 #define ANHE_w(he) (he)
537 #define ANHE_at(he) (he)->at
538 #define ANHE_at_cache(he)
334#endif 539#endif
335 540
336#if EV_MULTIPLICITY 541#if EV_MULTIPLICITY
337 542
338 struct ev_loop 543 struct ev_loop
359 564
360#endif 565#endif
361 566
362/*****************************************************************************/ 567/*****************************************************************************/
363 568
569#ifndef EV_HAVE_EV_TIME
364ev_tstamp 570ev_tstamp
365ev_time (void) 571ev_time (void)
366{ 572{
367#if EV_USE_REALTIME 573#if EV_USE_REALTIME
574 if (expect_true (have_realtime))
575 {
368 struct timespec ts; 576 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 577 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 578 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 579 }
580#endif
581
372 struct timeval tv; 582 struct timeval tv;
373 gettimeofday (&tv, 0); 583 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 584 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 585}
586#endif
377 587
378ev_tstamp inline_size 588inline_size ev_tstamp
379get_clock (void) 589get_clock (void)
380{ 590{
381#if EV_USE_MONOTONIC 591#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 592 if (expect_true (have_monotonic))
383 { 593 {
396{ 606{
397 return ev_rt_now; 607 return ev_rt_now;
398} 608}
399#endif 609#endif
400 610
401int inline_size 611void
612ev_sleep (ev_tstamp delay)
613{
614 if (delay > 0.)
615 {
616#if EV_USE_NANOSLEEP
617 struct timespec ts;
618
619 ts.tv_sec = (time_t)delay;
620 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
621
622 nanosleep (&ts, 0);
623#elif defined(_WIN32)
624 Sleep ((unsigned long)(delay * 1e3));
625#else
626 struct timeval tv;
627
628 tv.tv_sec = (time_t)delay;
629 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
630
631 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
632 /* somehting not guaranteed by newer posix versions, but guaranteed */
633 /* by older ones */
634 select (0, 0, 0, 0, &tv);
635#endif
636 }
637}
638
639/*****************************************************************************/
640
641#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
642
643/* find a suitable new size for the given array, */
644/* hopefully by rounding to a ncie-to-malloc size */
645inline_size int
402array_nextsize (int elem, int cur, int cnt) 646array_nextsize (int elem, int cur, int cnt)
403{ 647{
404 int ncur = cur + 1; 648 int ncur = cur + 1;
405 649
406 do 650 do
407 ncur <<= 1; 651 ncur <<= 1;
408 while (cnt > ncur); 652 while (cnt > ncur);
409 653
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 654 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
411 if (elem * ncur > 4096) 655 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
412 { 656 {
413 ncur *= elem; 657 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 658 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
415 ncur = ncur - sizeof (void *) * 4; 659 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem; 660 ncur /= elem;
417 } 661 }
418 662
419 return ncur; 663 return ncur;
420} 664}
421 665
422inline_speed void * 666static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 667array_realloc (int elem, void *base, int *cur, int cnt)
424{ 668{
425 *cur = array_nextsize (elem, *cur, cnt); 669 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 670 return ev_realloc (base, elem * *cur);
427} 671}
672
673#define array_init_zero(base,count) \
674 memset ((void *)(base), 0, sizeof (*(base)) * (count))
428 675
429#define array_needsize(type,base,cur,cnt,init) \ 676#define array_needsize(type,base,cur,cnt,init) \
430 if (expect_false ((cnt) > (cur))) \ 677 if (expect_false ((cnt) > (cur))) \
431 { \ 678 { \
432 int ocur_ = (cur); \ 679 int ocur_ = (cur); \
444 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 691 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
445 } 692 }
446#endif 693#endif
447 694
448#define array_free(stem, idx) \ 695#define array_free(stem, idx) \
449 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 696 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
450 697
451/*****************************************************************************/ 698/*****************************************************************************/
699
700/* dummy callback for pending events */
701static void noinline
702pendingcb (EV_P_ ev_prepare *w, int revents)
703{
704}
452 705
453void noinline 706void noinline
454ev_feed_event (EV_P_ void *w, int revents) 707ev_feed_event (EV_P_ void *w, int revents)
455{ 708{
456 W w_ = (W)w; 709 W w_ = (W)w;
710 int pri = ABSPRI (w_);
457 711
458 if (expect_false (w_->pending)) 712 if (expect_false (w_->pending))
713 pendings [pri][w_->pending - 1].events |= revents;
714 else
459 { 715 {
716 w_->pending = ++pendingcnt [pri];
717 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
718 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 719 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 720 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 721}
469 722
470void inline_size 723inline_speed void
724feed_reverse (EV_P_ W w)
725{
726 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
727 rfeeds [rfeedcnt++] = w;
728}
729
730inline_size void
731feed_reverse_done (EV_P_ int revents)
732{
733 do
734 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
735 while (rfeedcnt);
736}
737
738inline_speed void
471queue_events (EV_P_ W *events, int eventcnt, int type) 739queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 740{
473 int i; 741 int i;
474 742
475 for (i = 0; i < eventcnt; ++i) 743 for (i = 0; i < eventcnt; ++i)
476 ev_feed_event (EV_A_ events [i], type); 744 ev_feed_event (EV_A_ events [i], type);
477} 745}
478 746
479/*****************************************************************************/ 747/*****************************************************************************/
480 748
481void inline_size 749inline_speed void
482anfds_init (ANFD *base, int count)
483{
484 while (count--)
485 {
486 base->head = 0;
487 base->events = EV_NONE;
488 base->reify = 0;
489
490 ++base;
491 }
492}
493
494void inline_speed
495fd_event (EV_P_ int fd, int revents) 750fd_event (EV_P_ int fd, int revents)
496{ 751{
497 ANFD *anfd = anfds + fd; 752 ANFD *anfd = anfds + fd;
498 ev_io *w; 753 ev_io *w;
499 754
507} 762}
508 763
509void 764void
510ev_feed_fd_event (EV_P_ int fd, int revents) 765ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 766{
767 if (fd >= 0 && fd < anfdmax)
512 fd_event (EV_A_ fd, revents); 768 fd_event (EV_A_ fd, revents);
513} 769}
514 770
515void inline_size 771/* make sure the external fd watch events are in-sync */
772/* with the kernel/libev internal state */
773inline_size void
516fd_reify (EV_P) 774fd_reify (EV_P)
517{ 775{
518 int i; 776 int i;
519 777
520 for (i = 0; i < fdchangecnt; ++i) 778 for (i = 0; i < fdchangecnt; ++i)
521 { 779 {
522 int fd = fdchanges [i]; 780 int fd = fdchanges [i];
523 ANFD *anfd = anfds + fd; 781 ANFD *anfd = anfds + fd;
524 ev_io *w; 782 ev_io *w;
525 783
526 int events = 0; 784 unsigned char events = 0;
527 785
528 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 786 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
529 events |= w->events; 787 events |= (unsigned char)w->events;
530 788
531#if EV_SELECT_IS_WINSOCKET 789#if EV_SELECT_IS_WINSOCKET
532 if (events) 790 if (events)
533 { 791 {
534 unsigned long argp; 792 unsigned long arg;
793 #ifdef EV_FD_TO_WIN32_HANDLE
794 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
795 #else
535 anfd->handle = _get_osfhandle (fd); 796 anfd->handle = _get_osfhandle (fd);
797 #endif
536 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 798 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
537 } 799 }
538#endif 800#endif
539 801
802 {
803 unsigned char o_events = anfd->events;
804 unsigned char o_reify = anfd->reify;
805
540 anfd->reify = 0; 806 anfd->reify = 0;
541
542 backend_modify (EV_A_ fd, anfd->events, events);
543 anfd->events = events; 807 anfd->events = events;
808
809 if (o_events != events || o_reify & EV__IOFDSET)
810 backend_modify (EV_A_ fd, o_events, events);
811 }
544 } 812 }
545 813
546 fdchangecnt = 0; 814 fdchangecnt = 0;
547} 815}
548 816
549void inline_size 817/* something about the given fd changed */
818inline_size void
550fd_change (EV_P_ int fd) 819fd_change (EV_P_ int fd, int flags)
551{ 820{
552 if (expect_false (anfds [fd].reify)) 821 unsigned char reify = anfds [fd].reify;
553 return;
554
555 anfds [fd].reify = 1; 822 anfds [fd].reify |= flags;
556 823
824 if (expect_true (!reify))
825 {
557 ++fdchangecnt; 826 ++fdchangecnt;
558 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 827 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
559 fdchanges [fdchangecnt - 1] = fd; 828 fdchanges [fdchangecnt - 1] = fd;
829 }
560} 830}
561 831
562void inline_speed 832/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
833inline_speed void
563fd_kill (EV_P_ int fd) 834fd_kill (EV_P_ int fd)
564{ 835{
565 ev_io *w; 836 ev_io *w;
566 837
567 while ((w = (ev_io *)anfds [fd].head)) 838 while ((w = (ev_io *)anfds [fd].head))
569 ev_io_stop (EV_A_ w); 840 ev_io_stop (EV_A_ w);
570 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 841 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
571 } 842 }
572} 843}
573 844
574int inline_size 845/* check whether the given fd is atcually valid, for error recovery */
846inline_size int
575fd_valid (int fd) 847fd_valid (int fd)
576{ 848{
577#ifdef _WIN32 849#ifdef _WIN32
578 return _get_osfhandle (fd) != -1; 850 return _get_osfhandle (fd) != -1;
579#else 851#else
587{ 859{
588 int fd; 860 int fd;
589 861
590 for (fd = 0; fd < anfdmax; ++fd) 862 for (fd = 0; fd < anfdmax; ++fd)
591 if (anfds [fd].events) 863 if (anfds [fd].events)
592 if (!fd_valid (fd) == -1 && errno == EBADF) 864 if (!fd_valid (fd) && errno == EBADF)
593 fd_kill (EV_A_ fd); 865 fd_kill (EV_A_ fd);
594} 866}
595 867
596/* called on ENOMEM in select/poll to kill some fds and retry */ 868/* called on ENOMEM in select/poll to kill some fds and retry */
597static void noinline 869static void noinline
615 887
616 for (fd = 0; fd < anfdmax; ++fd) 888 for (fd = 0; fd < anfdmax; ++fd)
617 if (anfds [fd].events) 889 if (anfds [fd].events)
618 { 890 {
619 anfds [fd].events = 0; 891 anfds [fd].events = 0;
892 anfds [fd].emask = 0;
620 fd_change (EV_A_ fd); 893 fd_change (EV_A_ fd, EV__IOFDSET | 1);
621 } 894 }
622} 895}
623 896
624/*****************************************************************************/ 897/*****************************************************************************/
625 898
626void inline_speed 899/*
627upheap (WT *heap, int k) 900 * the heap functions want a real array index. array index 0 uis guaranteed to not
628{ 901 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
629 WT w = heap [k]; 902 * the branching factor of the d-tree.
903 */
630 904
631 while (k && heap [k >> 1]->at > w->at) 905/*
632 { 906 * at the moment we allow libev the luxury of two heaps,
633 heap [k] = heap [k >> 1]; 907 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
634 ((W)heap [k])->active = k + 1; 908 * which is more cache-efficient.
635 k >>= 1; 909 * the difference is about 5% with 50000+ watchers.
636 } 910 */
911#if EV_USE_4HEAP
637 912
638 heap [k] = w; 913#define DHEAP 4
639 ((W)heap [k])->active = k + 1; 914#define HEAP0 (DHEAP - 1) /* index of first element in heap */
915#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
916#define UPHEAP_DONE(p,k) ((p) == (k))
640 917
641} 918/* away from the root */
642 919inline_speed void
643void inline_speed
644downheap (WT *heap, int N, int k) 920downheap (ANHE *heap, int N, int k)
645{ 921{
646 WT w = heap [k]; 922 ANHE he = heap [k];
923 ANHE *E = heap + N + HEAP0;
647 924
648 while (k < (N >> 1)) 925 for (;;)
649 { 926 {
650 int j = k << 1; 927 ev_tstamp minat;
928 ANHE *minpos;
929 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
651 930
652 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 931 /* find minimum child */
932 if (expect_true (pos + DHEAP - 1 < E))
653 ++j; 933 {
654 934 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
655 if (w->at <= heap [j]->at) 935 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
936 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
937 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
938 }
939 else if (pos < E)
940 {
941 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
942 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
943 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
944 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
945 }
946 else
656 break; 947 break;
657 948
949 if (ANHE_at (he) <= minat)
950 break;
951
952 heap [k] = *minpos;
953 ev_active (ANHE_w (*minpos)) = k;
954
955 k = minpos - heap;
956 }
957
958 heap [k] = he;
959 ev_active (ANHE_w (he)) = k;
960}
961
962#else /* 4HEAP */
963
964#define HEAP0 1
965#define HPARENT(k) ((k) >> 1)
966#define UPHEAP_DONE(p,k) (!(p))
967
968/* away from the root */
969inline_speed void
970downheap (ANHE *heap, int N, int k)
971{
972 ANHE he = heap [k];
973
974 for (;;)
975 {
976 int c = k << 1;
977
978 if (c > N + HEAP0 - 1)
979 break;
980
981 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
982 ? 1 : 0;
983
984 if (ANHE_at (he) <= ANHE_at (heap [c]))
985 break;
986
658 heap [k] = heap [j]; 987 heap [k] = heap [c];
659 ((W)heap [k])->active = k + 1; 988 ev_active (ANHE_w (heap [k])) = k;
989
660 k = j; 990 k = c;
661 } 991 }
662 992
663 heap [k] = w; 993 heap [k] = he;
664 ((W)heap [k])->active = k + 1; 994 ev_active (ANHE_w (he)) = k;
665} 995}
996#endif
666 997
667void inline_size 998/* towards the root */
999inline_speed void
1000upheap (ANHE *heap, int k)
1001{
1002 ANHE he = heap [k];
1003
1004 for (;;)
1005 {
1006 int p = HPARENT (k);
1007
1008 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1009 break;
1010
1011 heap [k] = heap [p];
1012 ev_active (ANHE_w (heap [k])) = k;
1013 k = p;
1014 }
1015
1016 heap [k] = he;
1017 ev_active (ANHE_w (he)) = k;
1018}
1019
1020/* move an element suitably so it is in a correct place */
1021inline_size void
668adjustheap (WT *heap, int N, int k) 1022adjustheap (ANHE *heap, int N, int k)
669{ 1023{
1024 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
670 upheap (heap, k); 1025 upheap (heap, k);
1026 else
671 downheap (heap, N, k); 1027 downheap (heap, N, k);
1028}
1029
1030/* rebuild the heap: this function is used only once and executed rarely */
1031inline_size void
1032reheap (ANHE *heap, int N)
1033{
1034 int i;
1035
1036 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1037 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1038 for (i = 0; i < N; ++i)
1039 upheap (heap, i + HEAP0);
672} 1040}
673 1041
674/*****************************************************************************/ 1042/*****************************************************************************/
675 1043
1044/* associate signal watchers to a signal signal */
676typedef struct 1045typedef struct
677{ 1046{
678 WL head; 1047 WL head;
679 sig_atomic_t volatile gotsig; 1048 EV_ATOMIC_T gotsig;
680} ANSIG; 1049} ANSIG;
681 1050
682static ANSIG *signals; 1051static ANSIG *signals;
683static int signalmax; 1052static int signalmax;
684 1053
685static int sigpipe [2]; 1054static EV_ATOMIC_T gotsig;
686static sig_atomic_t volatile gotsig;
687static ev_io sigev;
688 1055
689void inline_size 1056/*****************************************************************************/
690signals_init (ANSIG *base, int count)
691{
692 while (count--)
693 {
694 base->head = 0;
695 base->gotsig = 0;
696 1057
697 ++base; 1058/* used to prepare libev internal fd's */
698 } 1059/* this is not fork-safe */
699} 1060inline_speed void
700
701static void
702sighandler (int signum)
703{
704#if _WIN32
705 signal (signum, sighandler);
706#endif
707
708 signals [signum - 1].gotsig = 1;
709
710 if (!gotsig)
711 {
712 int old_errno = errno;
713 gotsig = 1;
714 write (sigpipe [1], &signum, 1);
715 errno = old_errno;
716 }
717}
718
719void noinline
720ev_feed_signal_event (EV_P_ int signum)
721{
722 WL w;
723
724#if EV_MULTIPLICITY
725 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
726#endif
727
728 --signum;
729
730 if (signum < 0 || signum >= signalmax)
731 return;
732
733 signals [signum].gotsig = 0;
734
735 for (w = signals [signum].head; w; w = w->next)
736 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
737}
738
739static void
740sigcb (EV_P_ ev_io *iow, int revents)
741{
742 int signum;
743
744 read (sigpipe [0], &revents, 1);
745 gotsig = 0;
746
747 for (signum = signalmax; signum--; )
748 if (signals [signum].gotsig)
749 ev_feed_signal_event (EV_A_ signum + 1);
750}
751
752void inline_size
753fd_intern (int fd) 1061fd_intern (int fd)
754{ 1062{
755#ifdef _WIN32 1063#ifdef _WIN32
756 int arg = 1; 1064 unsigned long arg = 1;
757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1065 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
758#else 1066#else
759 fcntl (fd, F_SETFD, FD_CLOEXEC); 1067 fcntl (fd, F_SETFD, FD_CLOEXEC);
760 fcntl (fd, F_SETFL, O_NONBLOCK); 1068 fcntl (fd, F_SETFL, O_NONBLOCK);
761#endif 1069#endif
762} 1070}
763 1071
764static void noinline 1072static void noinline
765siginit (EV_P) 1073evpipe_init (EV_P)
766{ 1074{
1075 if (!ev_is_active (&pipe_w))
1076 {
1077#if EV_USE_EVENTFD
1078 if ((evfd = eventfd (0, 0)) >= 0)
1079 {
1080 evpipe [0] = -1;
1081 fd_intern (evfd);
1082 ev_io_set (&pipe_w, evfd, EV_READ);
1083 }
1084 else
1085#endif
1086 {
1087 while (pipe (evpipe))
1088 ev_syserr ("(libev) error creating signal/async pipe");
1089
767 fd_intern (sigpipe [0]); 1090 fd_intern (evpipe [0]);
768 fd_intern (sigpipe [1]); 1091 fd_intern (evpipe [1]);
1092 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1093 }
769 1094
770 ev_io_set (&sigev, sigpipe [0], EV_READ);
771 ev_io_start (EV_A_ &sigev); 1095 ev_io_start (EV_A_ &pipe_w);
772 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1096 ev_unref (EV_A); /* watcher should not keep loop alive */
1097 }
1098}
1099
1100inline_size void
1101evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1102{
1103 if (!*flag)
1104 {
1105 int old_errno = errno; /* save errno because write might clobber it */
1106
1107 *flag = 1;
1108
1109#if EV_USE_EVENTFD
1110 if (evfd >= 0)
1111 {
1112 uint64_t counter = 1;
1113 write (evfd, &counter, sizeof (uint64_t));
1114 }
1115 else
1116#endif
1117 write (evpipe [1], &old_errno, 1);
1118
1119 errno = old_errno;
1120 }
1121}
1122
1123/* called whenever the libev signal pipe */
1124/* got some events (signal, async) */
1125static void
1126pipecb (EV_P_ ev_io *iow, int revents)
1127{
1128#if EV_USE_EVENTFD
1129 if (evfd >= 0)
1130 {
1131 uint64_t counter;
1132 read (evfd, &counter, sizeof (uint64_t));
1133 }
1134 else
1135#endif
1136 {
1137 char dummy;
1138 read (evpipe [0], &dummy, 1);
1139 }
1140
1141 if (gotsig && ev_is_default_loop (EV_A))
1142 {
1143 int signum;
1144 gotsig = 0;
1145
1146 for (signum = signalmax; signum--; )
1147 if (signals [signum].gotsig)
1148 ev_feed_signal_event (EV_A_ signum + 1);
1149 }
1150
1151#if EV_ASYNC_ENABLE
1152 if (gotasync)
1153 {
1154 int i;
1155 gotasync = 0;
1156
1157 for (i = asynccnt; i--; )
1158 if (asyncs [i]->sent)
1159 {
1160 asyncs [i]->sent = 0;
1161 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1162 }
1163 }
1164#endif
773} 1165}
774 1166
775/*****************************************************************************/ 1167/*****************************************************************************/
776 1168
1169static void
1170ev_sighandler (int signum)
1171{
1172#if EV_MULTIPLICITY
1173 struct ev_loop *loop = &default_loop_struct;
1174#endif
1175
1176#if _WIN32
1177 signal (signum, ev_sighandler);
1178#endif
1179
1180 signals [signum - 1].gotsig = 1;
1181 evpipe_write (EV_A_ &gotsig);
1182}
1183
1184void noinline
1185ev_feed_signal_event (EV_P_ int signum)
1186{
1187 WL w;
1188
1189#if EV_MULTIPLICITY
1190 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1191#endif
1192
1193 --signum;
1194
1195 if (signum < 0 || signum >= signalmax)
1196 return;
1197
1198 signals [signum].gotsig = 0;
1199
1200 for (w = signals [signum].head; w; w = w->next)
1201 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1202}
1203
1204/*****************************************************************************/
1205
777static ev_child *childs [EV_PID_HASHSIZE]; 1206static WL childs [EV_PID_HASHSIZE];
778 1207
779#ifndef _WIN32 1208#ifndef _WIN32
780 1209
781static ev_signal childev; 1210static ev_signal childev;
782 1211
783void inline_speed 1212#ifndef WIFCONTINUED
1213# define WIFCONTINUED(status) 0
1214#endif
1215
1216/* handle a single child status event */
1217inline_speed void
784child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1218child_reap (EV_P_ int chain, int pid, int status)
785{ 1219{
786 ev_child *w; 1220 ev_child *w;
1221 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
787 1222
788 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1223 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1224 {
789 if (w->pid == pid || !w->pid) 1225 if ((w->pid == pid || !w->pid)
1226 && (!traced || (w->flags & 1)))
790 { 1227 {
791 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1228 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
792 w->rpid = pid; 1229 w->rpid = pid;
793 w->rstatus = status; 1230 w->rstatus = status;
794 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1231 ev_feed_event (EV_A_ (W)w, EV_CHILD);
795 } 1232 }
1233 }
796} 1234}
797 1235
798#ifndef WCONTINUED 1236#ifndef WCONTINUED
799# define WCONTINUED 0 1237# define WCONTINUED 0
800#endif 1238#endif
801 1239
1240/* called on sigchld etc., calls waitpid */
802static void 1241static void
803childcb (EV_P_ ev_signal *sw, int revents) 1242childcb (EV_P_ ev_signal *sw, int revents)
804{ 1243{
805 int pid, status; 1244 int pid, status;
806 1245
809 if (!WCONTINUED 1248 if (!WCONTINUED
810 || errno != EINVAL 1249 || errno != EINVAL
811 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1250 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
812 return; 1251 return;
813 1252
814 /* make sure we are called again until all childs have been reaped */ 1253 /* make sure we are called again until all children have been reaped */
815 /* we need to do it this way so that the callback gets called before we continue */ 1254 /* we need to do it this way so that the callback gets called before we continue */
816 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1255 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
817 1256
818 child_reap (EV_A_ sw, pid, pid, status); 1257 child_reap (EV_A_ pid, pid, status);
819 if (EV_PID_HASHSIZE > 1) 1258 if (EV_PID_HASHSIZE > 1)
820 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1259 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
821} 1260}
822 1261
823#endif 1262#endif
824 1263
825/*****************************************************************************/ 1264/*****************************************************************************/
887 /* kqueue is borked on everything but netbsd apparently */ 1326 /* kqueue is borked on everything but netbsd apparently */
888 /* it usually doesn't work correctly on anything but sockets and pipes */ 1327 /* it usually doesn't work correctly on anything but sockets and pipes */
889 flags &= ~EVBACKEND_KQUEUE; 1328 flags &= ~EVBACKEND_KQUEUE;
890#endif 1329#endif
891#ifdef __APPLE__ 1330#ifdef __APPLE__
892 // flags &= ~EVBACKEND_KQUEUE; for documentation 1331 /* only select works correctly on that "unix-certified" platform */
893 flags &= ~EVBACKEND_POLL; 1332 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1333 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
894#endif 1334#endif
895 1335
896 return flags; 1336 return flags;
897} 1337}
898 1338
899unsigned int 1339unsigned int
900ev_embeddable_backends (void) 1340ev_embeddable_backends (void)
901{ 1341{
902 return EVBACKEND_EPOLL 1342 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
903 | EVBACKEND_KQUEUE 1343
904 | EVBACKEND_PORT; 1344 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1345 /* please fix it and tell me how to detect the fix */
1346 flags &= ~EVBACKEND_EPOLL;
1347
1348 return flags;
905} 1349}
906 1350
907unsigned int 1351unsigned int
908ev_backend (EV_P) 1352ev_backend (EV_P)
909{ 1353{
914ev_loop_count (EV_P) 1358ev_loop_count (EV_P)
915{ 1359{
916 return loop_count; 1360 return loop_count;
917} 1361}
918 1362
1363void
1364ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1365{
1366 io_blocktime = interval;
1367}
1368
1369void
1370ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1371{
1372 timeout_blocktime = interval;
1373}
1374
1375/* initialise a loop structure, must be zero-initialised */
919static void noinline 1376static void noinline
920loop_init (EV_P_ unsigned int flags) 1377loop_init (EV_P_ unsigned int flags)
921{ 1378{
922 if (!backend) 1379 if (!backend)
923 { 1380 {
1381#if EV_USE_REALTIME
1382 if (!have_realtime)
1383 {
1384 struct timespec ts;
1385
1386 if (!clock_gettime (CLOCK_REALTIME, &ts))
1387 have_realtime = 1;
1388 }
1389#endif
1390
924#if EV_USE_MONOTONIC 1391#if EV_USE_MONOTONIC
1392 if (!have_monotonic)
925 { 1393 {
926 struct timespec ts; 1394 struct timespec ts;
1395
927 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1396 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
928 have_monotonic = 1; 1397 have_monotonic = 1;
929 } 1398 }
930#endif 1399#endif
931 1400
932 ev_rt_now = ev_time (); 1401 ev_rt_now = ev_time ();
933 mn_now = get_clock (); 1402 mn_now = get_clock ();
934 now_floor = mn_now; 1403 now_floor = mn_now;
935 rtmn_diff = ev_rt_now - mn_now; 1404 rtmn_diff = ev_rt_now - mn_now;
1405
1406 io_blocktime = 0.;
1407 timeout_blocktime = 0.;
1408 backend = 0;
1409 backend_fd = -1;
1410 gotasync = 0;
1411#if EV_USE_INOTIFY
1412 fs_fd = -2;
1413#endif
936 1414
937 /* pid check not overridable via env */ 1415 /* pid check not overridable via env */
938#ifndef _WIN32 1416#ifndef _WIN32
939 if (flags & EVFLAG_FORKCHECK) 1417 if (flags & EVFLAG_FORKCHECK)
940 curpid = getpid (); 1418 curpid = getpid ();
943 if (!(flags & EVFLAG_NOENV) 1421 if (!(flags & EVFLAG_NOENV)
944 && !enable_secure () 1422 && !enable_secure ()
945 && getenv ("LIBEV_FLAGS")) 1423 && getenv ("LIBEV_FLAGS"))
946 flags = atoi (getenv ("LIBEV_FLAGS")); 1424 flags = atoi (getenv ("LIBEV_FLAGS"));
947 1425
948 if (!(flags & 0x0000ffffUL)) 1426 if (!(flags & 0x0000ffffU))
949 flags |= ev_recommended_backends (); 1427 flags |= ev_recommended_backends ();
950
951 backend = 0;
952 backend_fd = -1;
953#if EV_USE_INOTIFY
954 fs_fd = -2;
955#endif
956 1428
957#if EV_USE_PORT 1429#if EV_USE_PORT
958 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1430 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
959#endif 1431#endif
960#if EV_USE_KQUEUE 1432#if EV_USE_KQUEUE
968#endif 1440#endif
969#if EV_USE_SELECT 1441#if EV_USE_SELECT
970 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1442 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
971#endif 1443#endif
972 1444
1445 ev_prepare_init (&pending_w, pendingcb);
1446
973 ev_init (&sigev, sigcb); 1447 ev_init (&pipe_w, pipecb);
974 ev_set_priority (&sigev, EV_MAXPRI); 1448 ev_set_priority (&pipe_w, EV_MAXPRI);
975 } 1449 }
976} 1450}
977 1451
1452/* free up a loop structure */
978static void noinline 1453static void noinline
979loop_destroy (EV_P) 1454loop_destroy (EV_P)
980{ 1455{
981 int i; 1456 int i;
1457
1458 if (ev_is_active (&pipe_w))
1459 {
1460 ev_ref (EV_A); /* signal watcher */
1461 ev_io_stop (EV_A_ &pipe_w);
1462
1463#if EV_USE_EVENTFD
1464 if (evfd >= 0)
1465 close (evfd);
1466#endif
1467
1468 if (evpipe [0] >= 0)
1469 {
1470 close (evpipe [0]);
1471 close (evpipe [1]);
1472 }
1473 }
982 1474
983#if EV_USE_INOTIFY 1475#if EV_USE_INOTIFY
984 if (fs_fd >= 0) 1476 if (fs_fd >= 0)
985 close (fs_fd); 1477 close (fs_fd);
986#endif 1478#endif
1003#if EV_USE_SELECT 1495#if EV_USE_SELECT
1004 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1496 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1005#endif 1497#endif
1006 1498
1007 for (i = NUMPRI; i--; ) 1499 for (i = NUMPRI; i--; )
1500 {
1008 array_free (pending, [i]); 1501 array_free (pending, [i]);
1502#if EV_IDLE_ENABLE
1503 array_free (idle, [i]);
1504#endif
1505 }
1506
1507 ev_free (anfds); anfdmax = 0;
1009 1508
1010 /* have to use the microsoft-never-gets-it-right macro */ 1509 /* have to use the microsoft-never-gets-it-right macro */
1510 array_free (rfeed, EMPTY);
1011 array_free (fdchange, EMPTY0); 1511 array_free (fdchange, EMPTY);
1012 array_free (timer, EMPTY0); 1512 array_free (timer, EMPTY);
1013#if EV_PERIODIC_ENABLE 1513#if EV_PERIODIC_ENABLE
1014 array_free (periodic, EMPTY0); 1514 array_free (periodic, EMPTY);
1015#endif 1515#endif
1516#if EV_FORK_ENABLE
1016 array_free (idle, EMPTY0); 1517 array_free (fork, EMPTY);
1518#endif
1017 array_free (prepare, EMPTY0); 1519 array_free (prepare, EMPTY);
1018 array_free (check, EMPTY0); 1520 array_free (check, EMPTY);
1521#if EV_ASYNC_ENABLE
1522 array_free (async, EMPTY);
1523#endif
1019 1524
1020 backend = 0; 1525 backend = 0;
1021} 1526}
1022 1527
1528#if EV_USE_INOTIFY
1023void inline_size infy_fork (EV_P); 1529inline_size void infy_fork (EV_P);
1530#endif
1024 1531
1025void inline_size 1532inline_size void
1026loop_fork (EV_P) 1533loop_fork (EV_P)
1027{ 1534{
1028#if EV_USE_PORT 1535#if EV_USE_PORT
1029 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1536 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1030#endif 1537#endif
1036#endif 1543#endif
1037#if EV_USE_INOTIFY 1544#if EV_USE_INOTIFY
1038 infy_fork (EV_A); 1545 infy_fork (EV_A);
1039#endif 1546#endif
1040 1547
1041 if (ev_is_active (&sigev)) 1548 if (ev_is_active (&pipe_w))
1042 { 1549 {
1043 /* default loop */ 1550 /* this "locks" the handlers against writing to the pipe */
1551 /* while we modify the fd vars */
1552 gotsig = 1;
1553#if EV_ASYNC_ENABLE
1554 gotasync = 1;
1555#endif
1044 1556
1045 ev_ref (EV_A); 1557 ev_ref (EV_A);
1046 ev_io_stop (EV_A_ &sigev); 1558 ev_io_stop (EV_A_ &pipe_w);
1559
1560#if EV_USE_EVENTFD
1561 if (evfd >= 0)
1562 close (evfd);
1563#endif
1564
1565 if (evpipe [0] >= 0)
1566 {
1047 close (sigpipe [0]); 1567 close (evpipe [0]);
1048 close (sigpipe [1]); 1568 close (evpipe [1]);
1569 }
1049 1570
1050 while (pipe (sigpipe))
1051 syserr ("(libev) error creating pipe");
1052
1053 siginit (EV_A); 1571 evpipe_init (EV_A);
1572 /* now iterate over everything, in case we missed something */
1573 pipecb (EV_A_ &pipe_w, EV_READ);
1054 } 1574 }
1055 1575
1056 postfork = 0; 1576 postfork = 0;
1057} 1577}
1058 1578
1059#if EV_MULTIPLICITY 1579#if EV_MULTIPLICITY
1580
1060struct ev_loop * 1581struct ev_loop *
1061ev_loop_new (unsigned int flags) 1582ev_loop_new (unsigned int flags)
1062{ 1583{
1063 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1584 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1064 1585
1080} 1601}
1081 1602
1082void 1603void
1083ev_loop_fork (EV_P) 1604ev_loop_fork (EV_P)
1084{ 1605{
1085 postfork = 1; 1606 postfork = 1; /* must be in line with ev_default_fork */
1086} 1607}
1087 1608
1609#if EV_VERIFY
1610static void noinline
1611verify_watcher (EV_P_ W w)
1612{
1613 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1614
1615 if (w->pending)
1616 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1617}
1618
1619static void noinline
1620verify_heap (EV_P_ ANHE *heap, int N)
1621{
1622 int i;
1623
1624 for (i = HEAP0; i < N + HEAP0; ++i)
1625 {
1626 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1627 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1628 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1629
1630 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1631 }
1632}
1633
1634static void noinline
1635array_verify (EV_P_ W *ws, int cnt)
1636{
1637 while (cnt--)
1638 {
1639 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1640 verify_watcher (EV_A_ ws [cnt]);
1641 }
1642}
1643#endif
1644
1645void
1646ev_loop_verify (EV_P)
1647{
1648#if EV_VERIFY
1649 int i;
1650 WL w;
1651
1652 assert (activecnt >= -1);
1653
1654 assert (fdchangemax >= fdchangecnt);
1655 for (i = 0; i < fdchangecnt; ++i)
1656 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1657
1658 assert (anfdmax >= 0);
1659 for (i = 0; i < anfdmax; ++i)
1660 for (w = anfds [i].head; w; w = w->next)
1661 {
1662 verify_watcher (EV_A_ (W)w);
1663 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1664 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1665 }
1666
1667 assert (timermax >= timercnt);
1668 verify_heap (EV_A_ timers, timercnt);
1669
1670#if EV_PERIODIC_ENABLE
1671 assert (periodicmax >= periodiccnt);
1672 verify_heap (EV_A_ periodics, periodiccnt);
1673#endif
1674
1675 for (i = NUMPRI; i--; )
1676 {
1677 assert (pendingmax [i] >= pendingcnt [i]);
1678#if EV_IDLE_ENABLE
1679 assert (idleall >= 0);
1680 assert (idlemax [i] >= idlecnt [i]);
1681 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1682#endif
1683 }
1684
1685#if EV_FORK_ENABLE
1686 assert (forkmax >= forkcnt);
1687 array_verify (EV_A_ (W *)forks, forkcnt);
1688#endif
1689
1690#if EV_ASYNC_ENABLE
1691 assert (asyncmax >= asynccnt);
1692 array_verify (EV_A_ (W *)asyncs, asynccnt);
1693#endif
1694
1695 assert (preparemax >= preparecnt);
1696 array_verify (EV_A_ (W *)prepares, preparecnt);
1697
1698 assert (checkmax >= checkcnt);
1699 array_verify (EV_A_ (W *)checks, checkcnt);
1700
1701# if 0
1702 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1703 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1088#endif 1704# endif
1705#endif
1706}
1707
1708#endif /* multiplicity */
1089 1709
1090#if EV_MULTIPLICITY 1710#if EV_MULTIPLICITY
1091struct ev_loop * 1711struct ev_loop *
1092ev_default_loop_init (unsigned int flags) 1712ev_default_loop_init (unsigned int flags)
1093#else 1713#else
1094int 1714int
1095ev_default_loop (unsigned int flags) 1715ev_default_loop (unsigned int flags)
1096#endif 1716#endif
1097{ 1717{
1098 if (sigpipe [0] == sigpipe [1])
1099 if (pipe (sigpipe))
1100 return 0;
1101
1102 if (!ev_default_loop_ptr) 1718 if (!ev_default_loop_ptr)
1103 { 1719 {
1104#if EV_MULTIPLICITY 1720#if EV_MULTIPLICITY
1105 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1721 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1106#else 1722#else
1109 1725
1110 loop_init (EV_A_ flags); 1726 loop_init (EV_A_ flags);
1111 1727
1112 if (ev_backend (EV_A)) 1728 if (ev_backend (EV_A))
1113 { 1729 {
1114 siginit (EV_A);
1115
1116#ifndef _WIN32 1730#ifndef _WIN32
1117 ev_signal_init (&childev, childcb, SIGCHLD); 1731 ev_signal_init (&childev, childcb, SIGCHLD);
1118 ev_set_priority (&childev, EV_MAXPRI); 1732 ev_set_priority (&childev, EV_MAXPRI);
1119 ev_signal_start (EV_A_ &childev); 1733 ev_signal_start (EV_A_ &childev);
1120 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1734 ev_unref (EV_A); /* child watcher should not keep loop alive */
1132{ 1746{
1133#if EV_MULTIPLICITY 1747#if EV_MULTIPLICITY
1134 struct ev_loop *loop = ev_default_loop_ptr; 1748 struct ev_loop *loop = ev_default_loop_ptr;
1135#endif 1749#endif
1136 1750
1751 ev_default_loop_ptr = 0;
1752
1137#ifndef _WIN32 1753#ifndef _WIN32
1138 ev_ref (EV_A); /* child watcher */ 1754 ev_ref (EV_A); /* child watcher */
1139 ev_signal_stop (EV_A_ &childev); 1755 ev_signal_stop (EV_A_ &childev);
1140#endif 1756#endif
1141 1757
1142 ev_ref (EV_A); /* signal watcher */
1143 ev_io_stop (EV_A_ &sigev);
1144
1145 close (sigpipe [0]); sigpipe [0] = 0;
1146 close (sigpipe [1]); sigpipe [1] = 0;
1147
1148 loop_destroy (EV_A); 1758 loop_destroy (EV_A);
1149} 1759}
1150 1760
1151void 1761void
1152ev_default_fork (void) 1762ev_default_fork (void)
1153{ 1763{
1154#if EV_MULTIPLICITY 1764#if EV_MULTIPLICITY
1155 struct ev_loop *loop = ev_default_loop_ptr; 1765 struct ev_loop *loop = ev_default_loop_ptr;
1156#endif 1766#endif
1157 1767
1158 if (backend) 1768 postfork = 1; /* must be in line with ev_loop_fork */
1159 postfork = 1;
1160} 1769}
1161 1770
1162/*****************************************************************************/ 1771/*****************************************************************************/
1163 1772
1164int inline_size 1773void
1165any_pending (EV_P) 1774ev_invoke (EV_P_ void *w, int revents)
1166{ 1775{
1167 int pri; 1776 EV_CB_INVOKE ((W)w, revents);
1168
1169 for (pri = NUMPRI; pri--; )
1170 if (pendingcnt [pri])
1171 return 1;
1172
1173 return 0;
1174} 1777}
1175 1778
1176void inline_speed 1779inline_speed void
1177call_pending (EV_P) 1780call_pending (EV_P)
1178{ 1781{
1179 int pri; 1782 int pri;
1180 1783
1181 for (pri = NUMPRI; pri--; ) 1784 for (pri = NUMPRI; pri--; )
1182 while (pendingcnt [pri]) 1785 while (pendingcnt [pri])
1183 { 1786 {
1184 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1787 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1185 1788
1186 if (expect_true (p->w))
1187 {
1188 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1789 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1790 /* ^ this is no longer true, as pending_w could be here */
1189 1791
1190 p->w->pending = 0; 1792 p->w->pending = 0;
1191 EV_CB_INVOKE (p->w, p->events); 1793 EV_CB_INVOKE (p->w, p->events);
1192 } 1794 EV_FREQUENT_CHECK;
1193 } 1795 }
1194} 1796}
1195 1797
1196void inline_size 1798#if EV_IDLE_ENABLE
1799/* make idle watchers pending. this handles the "call-idle */
1800/* only when higher priorities are idle" logic */
1801inline_size void
1802idle_reify (EV_P)
1803{
1804 if (expect_false (idleall))
1805 {
1806 int pri;
1807
1808 for (pri = NUMPRI; pri--; )
1809 {
1810 if (pendingcnt [pri])
1811 break;
1812
1813 if (idlecnt [pri])
1814 {
1815 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1816 break;
1817 }
1818 }
1819 }
1820}
1821#endif
1822
1823/* make timers pending */
1824inline_size void
1197timers_reify (EV_P) 1825timers_reify (EV_P)
1198{ 1826{
1827 EV_FREQUENT_CHECK;
1828
1199 while (timercnt && ((WT)timers [0])->at <= mn_now) 1829 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1200 { 1830 {
1201 ev_timer *w = timers [0]; 1831 do
1202
1203 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1204
1205 /* first reschedule or stop timer */
1206 if (w->repeat)
1207 { 1832 {
1833 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1834
1835 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1836
1837 /* first reschedule or stop timer */
1838 if (w->repeat)
1839 {
1840 ev_at (w) += w->repeat;
1841 if (ev_at (w) < mn_now)
1842 ev_at (w) = mn_now;
1843
1208 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1844 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1209 1845
1210 ((WT)w)->at += w->repeat; 1846 ANHE_at_cache (timers [HEAP0]);
1211 if (((WT)w)->at < mn_now)
1212 ((WT)w)->at = mn_now;
1213
1214 downheap ((WT *)timers, timercnt, 0); 1847 downheap (timers, timercnt, HEAP0);
1848 }
1849 else
1850 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1851
1852 EV_FREQUENT_CHECK;
1853 feed_reverse (EV_A_ (W)w);
1215 } 1854 }
1216 else 1855 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1217 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1218 1856
1219 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1857 feed_reverse_done (EV_A_ EV_TIMEOUT);
1220 } 1858 }
1221} 1859}
1222 1860
1223#if EV_PERIODIC_ENABLE 1861#if EV_PERIODIC_ENABLE
1224void inline_size 1862/* make periodics pending */
1863inline_size void
1225periodics_reify (EV_P) 1864periodics_reify (EV_P)
1226{ 1865{
1866 EV_FREQUENT_CHECK;
1867
1227 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1868 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1228 { 1869 {
1229 ev_periodic *w = periodics [0]; 1870 int feed_count = 0;
1230 1871
1231 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1872 do
1232
1233 /* first reschedule or stop timer */
1234 if (w->reschedule_cb)
1235 { 1873 {
1874 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1875
1876 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1877
1878 /* first reschedule or stop timer */
1879 if (w->reschedule_cb)
1880 {
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1881 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1882
1237 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1883 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1884
1885 ANHE_at_cache (periodics [HEAP0]);
1238 downheap ((WT *)periodics, periodiccnt, 0); 1886 downheap (periodics, periodiccnt, HEAP0);
1887 }
1888 else if (w->interval)
1889 {
1890 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1891 /* if next trigger time is not sufficiently in the future, put it there */
1892 /* this might happen because of floating point inexactness */
1893 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1894 {
1895 ev_at (w) += w->interval;
1896
1897 /* if interval is unreasonably low we might still have a time in the past */
1898 /* so correct this. this will make the periodic very inexact, but the user */
1899 /* has effectively asked to get triggered more often than possible */
1900 if (ev_at (w) < ev_rt_now)
1901 ev_at (w) = ev_rt_now;
1902 }
1903
1904 ANHE_at_cache (periodics [HEAP0]);
1905 downheap (periodics, periodiccnt, HEAP0);
1906 }
1907 else
1908 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1909
1910 EV_FREQUENT_CHECK;
1911 feed_reverse (EV_A_ (W)w);
1239 } 1912 }
1240 else if (w->interval) 1913 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1241 {
1242 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1243 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1244 downheap ((WT *)periodics, periodiccnt, 0);
1245 }
1246 else
1247 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1248 1914
1249 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1915 feed_reverse_done (EV_A_ EV_PERIODIC);
1250 } 1916 }
1251} 1917}
1252 1918
1919/* simply recalculate all periodics */
1920/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1253static void noinline 1921static void noinline
1254periodics_reschedule (EV_P) 1922periodics_reschedule (EV_P)
1255{ 1923{
1256 int i; 1924 int i;
1257 1925
1258 /* adjust periodics after time jump */ 1926 /* adjust periodics after time jump */
1259 for (i = 0; i < periodiccnt; ++i) 1927 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1260 { 1928 {
1261 ev_periodic *w = periodics [i]; 1929 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1262 1930
1263 if (w->reschedule_cb) 1931 if (w->reschedule_cb)
1264 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1932 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1265 else if (w->interval) 1933 else if (w->interval)
1266 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1934 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1935
1936 ANHE_at_cache (periodics [i]);
1937 }
1938
1939 reheap (periodics, periodiccnt);
1940}
1941#endif
1942
1943/* adjust all timers by a given offset */
1944static void noinline
1945timers_reschedule (EV_P_ ev_tstamp adjust)
1946{
1947 int i;
1948
1949 for (i = 0; i < timercnt; ++i)
1267 } 1950 {
1268 1951 ANHE *he = timers + i + HEAP0;
1269 /* now rebuild the heap */ 1952 ANHE_w (*he)->at += adjust;
1270 for (i = periodiccnt >> 1; i--; ) 1953 ANHE_at_cache (*he);
1271 downheap ((WT *)periodics, periodiccnt, i); 1954 }
1272} 1955}
1273#endif
1274 1956
1275int inline_size 1957/* fetch new monotonic and realtime times from the kernel */
1276time_update_monotonic (EV_P) 1958/* also detetc if there was a timejump, and act accordingly */
1959inline_speed void
1960time_update (EV_P_ ev_tstamp max_block)
1277{ 1961{
1962#if EV_USE_MONOTONIC
1963 if (expect_true (have_monotonic))
1964 {
1965 int i;
1966 ev_tstamp odiff = rtmn_diff;
1967
1278 mn_now = get_clock (); 1968 mn_now = get_clock ();
1279 1969
1970 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1971 /* interpolate in the meantime */
1280 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1972 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1281 { 1973 {
1282 ev_rt_now = rtmn_diff + mn_now; 1974 ev_rt_now = rtmn_diff + mn_now;
1283 return 0; 1975 return;
1284 } 1976 }
1285 else 1977
1286 {
1287 now_floor = mn_now; 1978 now_floor = mn_now;
1288 ev_rt_now = ev_time (); 1979 ev_rt_now = ev_time ();
1289 return 1;
1290 }
1291}
1292 1980
1293void inline_size 1981 /* loop a few times, before making important decisions.
1294time_update (EV_P) 1982 * on the choice of "4": one iteration isn't enough,
1295{ 1983 * in case we get preempted during the calls to
1296 int i; 1984 * ev_time and get_clock. a second call is almost guaranteed
1297 1985 * to succeed in that case, though. and looping a few more times
1298#if EV_USE_MONOTONIC 1986 * doesn't hurt either as we only do this on time-jumps or
1299 if (expect_true (have_monotonic)) 1987 * in the unlikely event of having been preempted here.
1300 { 1988 */
1301 if (time_update_monotonic (EV_A)) 1989 for (i = 4; --i; )
1302 { 1990 {
1303 ev_tstamp odiff = rtmn_diff;
1304
1305 /* loop a few times, before making important decisions.
1306 * on the choice of "4": one iteration isn't enough,
1307 * in case we get preempted during the calls to
1308 * ev_time and get_clock. a second call is almost guaranteed
1309 * to succeed in that case, though. and looping a few more times
1310 * doesn't hurt either as we only do this on time-jumps or
1311 * in the unlikely event of having been preempted here.
1312 */
1313 for (i = 4; --i; )
1314 {
1315 rtmn_diff = ev_rt_now - mn_now; 1991 rtmn_diff = ev_rt_now - mn_now;
1316 1992
1317 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1993 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1318 return; /* all is well */ 1994 return; /* all is well */
1319 1995
1320 ev_rt_now = ev_time (); 1996 ev_rt_now = ev_time ();
1321 mn_now = get_clock (); 1997 mn_now = get_clock ();
1322 now_floor = mn_now; 1998 now_floor = mn_now;
1323 } 1999 }
1324 2000
2001 /* no timer adjustment, as the monotonic clock doesn't jump */
2002 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1325# if EV_PERIODIC_ENABLE 2003# if EV_PERIODIC_ENABLE
1326 periodics_reschedule (EV_A); 2004 periodics_reschedule (EV_A);
1327# endif 2005# endif
1328 /* no timer adjustment, as the monotonic clock doesn't jump */
1329 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1330 }
1331 } 2006 }
1332 else 2007 else
1333#endif 2008#endif
1334 { 2009 {
1335 ev_rt_now = ev_time (); 2010 ev_rt_now = ev_time ();
1336 2011
1337 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2012 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1338 { 2013 {
2014 /* adjust timers. this is easy, as the offset is the same for all of them */
2015 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1339#if EV_PERIODIC_ENABLE 2016#if EV_PERIODIC_ENABLE
1340 periodics_reschedule (EV_A); 2017 periodics_reschedule (EV_A);
1341#endif 2018#endif
1342
1343 /* adjust timers. this is easy, as the offset is the same for all of them */
1344 for (i = 0; i < timercnt; ++i)
1345 ((WT)timers [i])->at += ev_rt_now - mn_now;
1346 } 2019 }
1347 2020
1348 mn_now = ev_rt_now; 2021 mn_now = ev_rt_now;
1349 } 2022 }
1350} 2023}
1351 2024
1352void
1353ev_ref (EV_P)
1354{
1355 ++activecnt;
1356}
1357
1358void
1359ev_unref (EV_P)
1360{
1361 --activecnt;
1362}
1363
1364static int loop_done; 2025static int loop_done;
1365 2026
1366void 2027void
1367ev_loop (EV_P_ int flags) 2028ev_loop (EV_P_ int flags)
1368{ 2029{
1369 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2030 loop_done = EVUNLOOP_CANCEL;
1370 ? EVUNLOOP_ONE
1371 : EVUNLOOP_CANCEL;
1372 2031
1373 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2032 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1374 2033
1375 do 2034 do
1376 { 2035 {
2036#if EV_VERIFY >= 2
2037 ev_loop_verify (EV_A);
2038#endif
2039
1377#ifndef _WIN32 2040#ifndef _WIN32
1378 if (expect_false (curpid)) /* penalise the forking check even more */ 2041 if (expect_false (curpid)) /* penalise the forking check even more */
1379 if (expect_false (getpid () != curpid)) 2042 if (expect_false (getpid () != curpid))
1380 { 2043 {
1381 curpid = getpid (); 2044 curpid = getpid ();
1391 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2054 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1392 call_pending (EV_A); 2055 call_pending (EV_A);
1393 } 2056 }
1394#endif 2057#endif
1395 2058
1396 /* queue check watchers (and execute them) */ 2059 /* queue prepare watchers (and execute them) */
1397 if (expect_false (preparecnt)) 2060 if (expect_false (preparecnt))
1398 { 2061 {
1399 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2062 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1400 call_pending (EV_A); 2063 call_pending (EV_A);
1401 } 2064 }
1402 2065
1403 if (expect_false (!activecnt))
1404 break;
1405
1406 /* we might have forked, so reify kernel state if necessary */ 2066 /* we might have forked, so reify kernel state if necessary */
1407 if (expect_false (postfork)) 2067 if (expect_false (postfork))
1408 loop_fork (EV_A); 2068 loop_fork (EV_A);
1409 2069
1410 /* update fd-related kernel structures */ 2070 /* update fd-related kernel structures */
1411 fd_reify (EV_A); 2071 fd_reify (EV_A);
1412 2072
1413 /* calculate blocking time */ 2073 /* calculate blocking time */
1414 { 2074 {
1415 ev_tstamp block; 2075 ev_tstamp waittime = 0.;
2076 ev_tstamp sleeptime = 0.;
1416 2077
1417 if (expect_false (flags & EVLOOP_NONBLOCK || idlecnt || !activecnt)) 2078 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1418 block = 0.; /* do not block at all */
1419 else
1420 { 2079 {
2080 /* remember old timestamp for io_blocktime calculation */
2081 ev_tstamp prev_mn_now = mn_now;
2082
1421 /* update time to cancel out callback processing overhead */ 2083 /* update time to cancel out callback processing overhead */
1422#if EV_USE_MONOTONIC
1423 if (expect_true (have_monotonic))
1424 time_update_monotonic (EV_A); 2084 time_update (EV_A_ 1e100);
1425 else
1426#endif
1427 {
1428 ev_rt_now = ev_time ();
1429 mn_now = ev_rt_now;
1430 }
1431 2085
1432 block = MAX_BLOCKTIME; 2086 waittime = MAX_BLOCKTIME;
1433 2087
1434 if (timercnt) 2088 if (timercnt)
1435 { 2089 {
1436 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2090 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1437 if (block > to) block = to; 2091 if (waittime > to) waittime = to;
1438 } 2092 }
1439 2093
1440#if EV_PERIODIC_ENABLE 2094#if EV_PERIODIC_ENABLE
1441 if (periodiccnt) 2095 if (periodiccnt)
1442 { 2096 {
1443 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2097 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1444 if (block > to) block = to; 2098 if (waittime > to) waittime = to;
1445 } 2099 }
1446#endif 2100#endif
1447 2101
2102 /* don't let timeouts decrease the waittime below timeout_blocktime */
2103 if (expect_false (waittime < timeout_blocktime))
2104 waittime = timeout_blocktime;
2105
2106 /* extra check because io_blocktime is commonly 0 */
1448 if (expect_false (block < 0.)) block = 0.; 2107 if (expect_false (io_blocktime))
2108 {
2109 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2110
2111 if (sleeptime > waittime - backend_fudge)
2112 sleeptime = waittime - backend_fudge;
2113
2114 if (expect_true (sleeptime > 0.))
2115 {
2116 ev_sleep (sleeptime);
2117 waittime -= sleeptime;
2118 }
2119 }
1449 } 2120 }
1450 2121
1451 ++loop_count; 2122 ++loop_count;
1452 backend_poll (EV_A_ block); 2123 backend_poll (EV_A_ waittime);
2124
2125 /* update ev_rt_now, do magic */
2126 time_update (EV_A_ waittime + sleeptime);
1453 } 2127 }
1454
1455 /* update ev_rt_now, do magic */
1456 time_update (EV_A);
1457 2128
1458 /* queue pending timers and reschedule them */ 2129 /* queue pending timers and reschedule them */
1459 timers_reify (EV_A); /* relative timers called last */ 2130 timers_reify (EV_A); /* relative timers called last */
1460#if EV_PERIODIC_ENABLE 2131#if EV_PERIODIC_ENABLE
1461 periodics_reify (EV_A); /* absolute timers called first */ 2132 periodics_reify (EV_A); /* absolute timers called first */
1462#endif 2133#endif
1463 2134
2135#if EV_IDLE_ENABLE
1464 /* queue idle watchers unless other events are pending */ 2136 /* queue idle watchers unless other events are pending */
1465 if (idlecnt && !any_pending (EV_A)) 2137 idle_reify (EV_A);
1466 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2138#endif
1467 2139
1468 /* queue check watchers, to be executed first */ 2140 /* queue check watchers, to be executed first */
1469 if (expect_false (checkcnt)) 2141 if (expect_false (checkcnt))
1470 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2142 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1471 2143
1472 call_pending (EV_A); 2144 call_pending (EV_A);
1473
1474 } 2145 }
1475 while (expect_true (activecnt && !loop_done)); 2146 while (expect_true (
2147 activecnt
2148 && !loop_done
2149 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2150 ));
1476 2151
1477 if (loop_done == EVUNLOOP_ONE) 2152 if (loop_done == EVUNLOOP_ONE)
1478 loop_done = EVUNLOOP_CANCEL; 2153 loop_done = EVUNLOOP_CANCEL;
1479} 2154}
1480 2155
1482ev_unloop (EV_P_ int how) 2157ev_unloop (EV_P_ int how)
1483{ 2158{
1484 loop_done = how; 2159 loop_done = how;
1485} 2160}
1486 2161
2162void
2163ev_ref (EV_P)
2164{
2165 ++activecnt;
2166}
2167
2168void
2169ev_unref (EV_P)
2170{
2171 --activecnt;
2172}
2173
2174void
2175ev_now_update (EV_P)
2176{
2177 time_update (EV_A_ 1e100);
2178}
2179
2180void
2181ev_suspend (EV_P)
2182{
2183 ev_now_update (EV_A);
2184}
2185
2186void
2187ev_resume (EV_P)
2188{
2189 ev_tstamp mn_prev = mn_now;
2190
2191 ev_now_update (EV_A);
2192 timers_reschedule (EV_A_ mn_now - mn_prev);
2193#if EV_PERIODIC_ENABLE
2194 /* TODO: really do this? */
2195 periodics_reschedule (EV_A);
2196#endif
2197}
2198
1487/*****************************************************************************/ 2199/*****************************************************************************/
2200/* singly-linked list management, used when the expected list length is short */
1488 2201
1489void inline_size 2202inline_size void
1490wlist_add (WL *head, WL elem) 2203wlist_add (WL *head, WL elem)
1491{ 2204{
1492 elem->next = *head; 2205 elem->next = *head;
1493 *head = elem; 2206 *head = elem;
1494} 2207}
1495 2208
1496void inline_size 2209inline_size void
1497wlist_del (WL *head, WL elem) 2210wlist_del (WL *head, WL elem)
1498{ 2211{
1499 while (*head) 2212 while (*head)
1500 { 2213 {
1501 if (*head == elem) 2214 if (*head == elem)
1506 2219
1507 head = &(*head)->next; 2220 head = &(*head)->next;
1508 } 2221 }
1509} 2222}
1510 2223
1511void inline_speed 2224/* internal, faster, version of ev_clear_pending */
2225inline_speed void
1512ev_clear_pending (EV_P_ W w) 2226clear_pending (EV_P_ W w)
1513{ 2227{
1514 if (w->pending) 2228 if (w->pending)
1515 { 2229 {
1516 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2230 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1517 w->pending = 0; 2231 w->pending = 0;
1518 } 2232 }
1519} 2233}
1520 2234
1521void inline_speed 2235int
2236ev_clear_pending (EV_P_ void *w)
2237{
2238 W w_ = (W)w;
2239 int pending = w_->pending;
2240
2241 if (expect_true (pending))
2242 {
2243 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2244 p->w = (W)&pending_w;
2245 w_->pending = 0;
2246 return p->events;
2247 }
2248 else
2249 return 0;
2250}
2251
2252inline_size void
2253pri_adjust (EV_P_ W w)
2254{
2255 int pri = w->priority;
2256 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2257 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2258 w->priority = pri;
2259}
2260
2261inline_speed void
1522ev_start (EV_P_ W w, int active) 2262ev_start (EV_P_ W w, int active)
1523{ 2263{
1524 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2264 pri_adjust (EV_A_ w);
1525 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1526
1527 w->active = active; 2265 w->active = active;
1528 ev_ref (EV_A); 2266 ev_ref (EV_A);
1529} 2267}
1530 2268
1531void inline_size 2269inline_size void
1532ev_stop (EV_P_ W w) 2270ev_stop (EV_P_ W w)
1533{ 2271{
1534 ev_unref (EV_A); 2272 ev_unref (EV_A);
1535 w->active = 0; 2273 w->active = 0;
1536} 2274}
1537 2275
1538/*****************************************************************************/ 2276/*****************************************************************************/
1539 2277
1540void 2278void noinline
1541ev_io_start (EV_P_ ev_io *w) 2279ev_io_start (EV_P_ ev_io *w)
1542{ 2280{
1543 int fd = w->fd; 2281 int fd = w->fd;
1544 2282
1545 if (expect_false (ev_is_active (w))) 2283 if (expect_false (ev_is_active (w)))
1546 return; 2284 return;
1547 2285
1548 assert (("ev_io_start called with negative fd", fd >= 0)); 2286 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2287 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2288
2289 EV_FREQUENT_CHECK;
1549 2290
1550 ev_start (EV_A_ (W)w, 1); 2291 ev_start (EV_A_ (W)w, 1);
1551 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2292 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1552 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2293 wlist_add (&anfds[fd].head, (WL)w);
1553 2294
1554 fd_change (EV_A_ fd); 2295 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1555} 2296 w->events &= ~EV__IOFDSET;
1556 2297
1557void 2298 EV_FREQUENT_CHECK;
2299}
2300
2301void noinline
1558ev_io_stop (EV_P_ ev_io *w) 2302ev_io_stop (EV_P_ ev_io *w)
1559{ 2303{
1560 ev_clear_pending (EV_A_ (W)w); 2304 clear_pending (EV_A_ (W)w);
1561 if (expect_false (!ev_is_active (w))) 2305 if (expect_false (!ev_is_active (w)))
1562 return; 2306 return;
1563 2307
1564 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2308 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1565 2309
2310 EV_FREQUENT_CHECK;
2311
1566 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2312 wlist_del (&anfds[w->fd].head, (WL)w);
1567 ev_stop (EV_A_ (W)w); 2313 ev_stop (EV_A_ (W)w);
1568 2314
1569 fd_change (EV_A_ w->fd); 2315 fd_change (EV_A_ w->fd, 1);
1570}
1571 2316
1572void 2317 EV_FREQUENT_CHECK;
2318}
2319
2320void noinline
1573ev_timer_start (EV_P_ ev_timer *w) 2321ev_timer_start (EV_P_ ev_timer *w)
1574{ 2322{
1575 if (expect_false (ev_is_active (w))) 2323 if (expect_false (ev_is_active (w)))
1576 return; 2324 return;
1577 2325
1578 ((WT)w)->at += mn_now; 2326 ev_at (w) += mn_now;
1579 2327
1580 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2328 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1581 2329
2330 EV_FREQUENT_CHECK;
2331
2332 ++timercnt;
1582 ev_start (EV_A_ (W)w, ++timercnt); 2333 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1583 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2334 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1584 timers [timercnt - 1] = w; 2335 ANHE_w (timers [ev_active (w)]) = (WT)w;
1585 upheap ((WT *)timers, timercnt - 1); 2336 ANHE_at_cache (timers [ev_active (w)]);
2337 upheap (timers, ev_active (w));
1586 2338
2339 EV_FREQUENT_CHECK;
2340
1587 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2341 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1588} 2342}
1589 2343
1590void 2344void noinline
1591ev_timer_stop (EV_P_ ev_timer *w) 2345ev_timer_stop (EV_P_ ev_timer *w)
1592{ 2346{
1593 ev_clear_pending (EV_A_ (W)w); 2347 clear_pending (EV_A_ (W)w);
1594 if (expect_false (!ev_is_active (w))) 2348 if (expect_false (!ev_is_active (w)))
1595 return; 2349 return;
1596 2350
1597 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2351 EV_FREQUENT_CHECK;
1598 2352
1599 { 2353 {
1600 int active = ((W)w)->active; 2354 int active = ev_active (w);
1601 2355
2356 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2357
2358 --timercnt;
2359
1602 if (expect_true (--active < --timercnt)) 2360 if (expect_true (active < timercnt + HEAP0))
1603 { 2361 {
1604 timers [active] = timers [timercnt]; 2362 timers [active] = timers [timercnt + HEAP0];
1605 adjustheap ((WT *)timers, timercnt, active); 2363 adjustheap (timers, timercnt, active);
1606 } 2364 }
1607 } 2365 }
1608 2366
1609 ((WT)w)->at -= mn_now; 2367 EV_FREQUENT_CHECK;
2368
2369 ev_at (w) -= mn_now;
1610 2370
1611 ev_stop (EV_A_ (W)w); 2371 ev_stop (EV_A_ (W)w);
1612} 2372}
1613 2373
1614void 2374void noinline
1615ev_timer_again (EV_P_ ev_timer *w) 2375ev_timer_again (EV_P_ ev_timer *w)
1616{ 2376{
2377 EV_FREQUENT_CHECK;
2378
1617 if (ev_is_active (w)) 2379 if (ev_is_active (w))
1618 { 2380 {
1619 if (w->repeat) 2381 if (w->repeat)
1620 { 2382 {
1621 ((WT)w)->at = mn_now + w->repeat; 2383 ev_at (w) = mn_now + w->repeat;
2384 ANHE_at_cache (timers [ev_active (w)]);
1622 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2385 adjustheap (timers, timercnt, ev_active (w));
1623 } 2386 }
1624 else 2387 else
1625 ev_timer_stop (EV_A_ w); 2388 ev_timer_stop (EV_A_ w);
1626 } 2389 }
1627 else if (w->repeat) 2390 else if (w->repeat)
1628 { 2391 {
1629 w->at = w->repeat; 2392 ev_at (w) = w->repeat;
1630 ev_timer_start (EV_A_ w); 2393 ev_timer_start (EV_A_ w);
1631 } 2394 }
2395
2396 EV_FREQUENT_CHECK;
1632} 2397}
1633 2398
1634#if EV_PERIODIC_ENABLE 2399#if EV_PERIODIC_ENABLE
1635void 2400void noinline
1636ev_periodic_start (EV_P_ ev_periodic *w) 2401ev_periodic_start (EV_P_ ev_periodic *w)
1637{ 2402{
1638 if (expect_false (ev_is_active (w))) 2403 if (expect_false (ev_is_active (w)))
1639 return; 2404 return;
1640 2405
1641 if (w->reschedule_cb) 2406 if (w->reschedule_cb)
1642 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2407 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1643 else if (w->interval) 2408 else if (w->interval)
1644 { 2409 {
1645 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2410 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1646 /* this formula differs from the one in periodic_reify because we do not always round up */ 2411 /* this formula differs from the one in periodic_reify because we do not always round up */
1647 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2412 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1648 } 2413 }
2414 else
2415 ev_at (w) = w->offset;
1649 2416
2417 EV_FREQUENT_CHECK;
2418
2419 ++periodiccnt;
1650 ev_start (EV_A_ (W)w, ++periodiccnt); 2420 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1651 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2421 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1652 periodics [periodiccnt - 1] = w; 2422 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1653 upheap ((WT *)periodics, periodiccnt - 1); 2423 ANHE_at_cache (periodics [ev_active (w)]);
2424 upheap (periodics, ev_active (w));
1654 2425
2426 EV_FREQUENT_CHECK;
2427
1655 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2428 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1656} 2429}
1657 2430
1658void 2431void noinline
1659ev_periodic_stop (EV_P_ ev_periodic *w) 2432ev_periodic_stop (EV_P_ ev_periodic *w)
1660{ 2433{
1661 ev_clear_pending (EV_A_ (W)w); 2434 clear_pending (EV_A_ (W)w);
1662 if (expect_false (!ev_is_active (w))) 2435 if (expect_false (!ev_is_active (w)))
1663 return; 2436 return;
1664 2437
1665 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2438 EV_FREQUENT_CHECK;
1666 2439
1667 { 2440 {
1668 int active = ((W)w)->active; 2441 int active = ev_active (w);
1669 2442
2443 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2444
2445 --periodiccnt;
2446
1670 if (expect_true (--active < --periodiccnt)) 2447 if (expect_true (active < periodiccnt + HEAP0))
1671 { 2448 {
1672 periodics [active] = periodics [periodiccnt]; 2449 periodics [active] = periodics [periodiccnt + HEAP0];
1673 adjustheap ((WT *)periodics, periodiccnt, active); 2450 adjustheap (periodics, periodiccnt, active);
1674 } 2451 }
1675 } 2452 }
1676 2453
2454 EV_FREQUENT_CHECK;
2455
1677 ev_stop (EV_A_ (W)w); 2456 ev_stop (EV_A_ (W)w);
1678} 2457}
1679 2458
1680void 2459void noinline
1681ev_periodic_again (EV_P_ ev_periodic *w) 2460ev_periodic_again (EV_P_ ev_periodic *w)
1682{ 2461{
1683 /* TODO: use adjustheap and recalculation */ 2462 /* TODO: use adjustheap and recalculation */
1684 ev_periodic_stop (EV_A_ w); 2463 ev_periodic_stop (EV_A_ w);
1685 ev_periodic_start (EV_A_ w); 2464 ev_periodic_start (EV_A_ w);
1688 2467
1689#ifndef SA_RESTART 2468#ifndef SA_RESTART
1690# define SA_RESTART 0 2469# define SA_RESTART 0
1691#endif 2470#endif
1692 2471
1693void 2472void noinline
1694ev_signal_start (EV_P_ ev_signal *w) 2473ev_signal_start (EV_P_ ev_signal *w)
1695{ 2474{
1696#if EV_MULTIPLICITY 2475#if EV_MULTIPLICITY
1697 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2476 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1698#endif 2477#endif
1699 if (expect_false (ev_is_active (w))) 2478 if (expect_false (ev_is_active (w)))
1700 return; 2479 return;
1701 2480
1702 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2481 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2482
2483 evpipe_init (EV_A);
2484
2485 EV_FREQUENT_CHECK;
2486
2487 {
2488#ifndef _WIN32
2489 sigset_t full, prev;
2490 sigfillset (&full);
2491 sigprocmask (SIG_SETMASK, &full, &prev);
2492#endif
2493
2494 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2495
2496#ifndef _WIN32
2497 sigprocmask (SIG_SETMASK, &prev, 0);
2498#endif
2499 }
1703 2500
1704 ev_start (EV_A_ (W)w, 1); 2501 ev_start (EV_A_ (W)w, 1);
1705 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1706 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2502 wlist_add (&signals [w->signum - 1].head, (WL)w);
1707 2503
1708 if (!((WL)w)->next) 2504 if (!((WL)w)->next)
1709 { 2505 {
1710#if _WIN32 2506#if _WIN32
1711 signal (w->signum, sighandler); 2507 signal (w->signum, ev_sighandler);
1712#else 2508#else
1713 struct sigaction sa; 2509 struct sigaction sa;
1714 sa.sa_handler = sighandler; 2510 sa.sa_handler = ev_sighandler;
1715 sigfillset (&sa.sa_mask); 2511 sigfillset (&sa.sa_mask);
1716 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2512 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1717 sigaction (w->signum, &sa, 0); 2513 sigaction (w->signum, &sa, 0);
1718#endif 2514#endif
1719 } 2515 }
1720}
1721 2516
1722void 2517 EV_FREQUENT_CHECK;
2518}
2519
2520void noinline
1723ev_signal_stop (EV_P_ ev_signal *w) 2521ev_signal_stop (EV_P_ ev_signal *w)
1724{ 2522{
1725 ev_clear_pending (EV_A_ (W)w); 2523 clear_pending (EV_A_ (W)w);
1726 if (expect_false (!ev_is_active (w))) 2524 if (expect_false (!ev_is_active (w)))
1727 return; 2525 return;
1728 2526
2527 EV_FREQUENT_CHECK;
2528
1729 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2529 wlist_del (&signals [w->signum - 1].head, (WL)w);
1730 ev_stop (EV_A_ (W)w); 2530 ev_stop (EV_A_ (W)w);
1731 2531
1732 if (!signals [w->signum - 1].head) 2532 if (!signals [w->signum - 1].head)
1733 signal (w->signum, SIG_DFL); 2533 signal (w->signum, SIG_DFL);
2534
2535 EV_FREQUENT_CHECK;
1734} 2536}
1735 2537
1736void 2538void
1737ev_child_start (EV_P_ ev_child *w) 2539ev_child_start (EV_P_ ev_child *w)
1738{ 2540{
1739#if EV_MULTIPLICITY 2541#if EV_MULTIPLICITY
1740 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2542 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1741#endif 2543#endif
1742 if (expect_false (ev_is_active (w))) 2544 if (expect_false (ev_is_active (w)))
1743 return; 2545 return;
1744 2546
2547 EV_FREQUENT_CHECK;
2548
1745 ev_start (EV_A_ (W)w, 1); 2549 ev_start (EV_A_ (W)w, 1);
1746 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2550 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2551
2552 EV_FREQUENT_CHECK;
1747} 2553}
1748 2554
1749void 2555void
1750ev_child_stop (EV_P_ ev_child *w) 2556ev_child_stop (EV_P_ ev_child *w)
1751{ 2557{
1752 ev_clear_pending (EV_A_ (W)w); 2558 clear_pending (EV_A_ (W)w);
1753 if (expect_false (!ev_is_active (w))) 2559 if (expect_false (!ev_is_active (w)))
1754 return; 2560 return;
1755 2561
2562 EV_FREQUENT_CHECK;
2563
1756 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2564 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1757 ev_stop (EV_A_ (W)w); 2565 ev_stop (EV_A_ (W)w);
2566
2567 EV_FREQUENT_CHECK;
1758} 2568}
1759 2569
1760#if EV_STAT_ENABLE 2570#if EV_STAT_ENABLE
1761 2571
1762# ifdef _WIN32 2572# ifdef _WIN32
1763# undef lstat 2573# undef lstat
1764# define lstat(a,b) _stati64 (a,b) 2574# define lstat(a,b) _stati64 (a,b)
1765# endif 2575# endif
1766 2576
1767#define DEF_STAT_INTERVAL 5.0074891 2577#define DEF_STAT_INTERVAL 5.0074891
2578#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1768#define MIN_STAT_INTERVAL 0.1074891 2579#define MIN_STAT_INTERVAL 0.1074891
1769 2580
1770static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2581static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1771 2582
1772#if EV_USE_INOTIFY 2583#if EV_USE_INOTIFY
1773# define EV_INOTIFY_BUFSIZE 8192 2584# define EV_INOTIFY_BUFSIZE 8192
1777{ 2588{
1778 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2589 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1779 2590
1780 if (w->wd < 0) 2591 if (w->wd < 0)
1781 { 2592 {
2593 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1782 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2594 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1783 2595
1784 /* monitor some parent directory for speedup hints */ 2596 /* monitor some parent directory for speedup hints */
2597 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2598 /* but an efficiency issue only */
1785 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2599 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1786 { 2600 {
1787 char path [4096]; 2601 char path [4096];
1788 strcpy (path, w->path); 2602 strcpy (path, w->path);
1789 2603
1792 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2606 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1793 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2607 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1794 2608
1795 char *pend = strrchr (path, '/'); 2609 char *pend = strrchr (path, '/');
1796 2610
1797 if (!pend) 2611 if (!pend || pend == path)
1798 break; /* whoops, no '/', complain to your admin */ 2612 break;
1799 2613
1800 *pend = 0; 2614 *pend = 0;
1801 w->wd = inotify_add_watch (fs_fd, path, mask); 2615 w->wd = inotify_add_watch (fs_fd, path, mask);
1802 } 2616 }
1803 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2617 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1804 } 2618 }
1805 } 2619 }
1806 else
1807 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1808 2620
1809 if (w->wd >= 0) 2621 if (w->wd >= 0)
2622 {
1810 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2623 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2624
2625 /* now local changes will be tracked by inotify, but remote changes won't */
2626 /* unless the filesystem it known to be local, we therefore still poll */
2627 /* also do poll on <2.6.25, but with normal frequency */
2628 struct statfs sfs;
2629
2630 if (fs_2625 && !statfs (w->path, &sfs))
2631 if (sfs.f_type == 0x1373 /* devfs */
2632 || sfs.f_type == 0xEF53 /* ext2/3 */
2633 || sfs.f_type == 0x3153464a /* jfs */
2634 || sfs.f_type == 0x52654973 /* reiser3 */
2635 || sfs.f_type == 0x01021994 /* tempfs */
2636 || sfs.f_type == 0x58465342 /* xfs */)
2637 return;
2638
2639 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2640 ev_timer_again (EV_A_ &w->timer);
2641 }
1811} 2642}
1812 2643
1813static void noinline 2644static void noinline
1814infy_del (EV_P_ ev_stat *w) 2645infy_del (EV_P_ ev_stat *w)
1815{ 2646{
1829 2660
1830static void noinline 2661static void noinline
1831infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2662infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1832{ 2663{
1833 if (slot < 0) 2664 if (slot < 0)
1834 /* overflow, need to check for all hahs slots */ 2665 /* overflow, need to check for all hash slots */
1835 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2666 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1836 infy_wd (EV_A_ slot, wd, ev); 2667 infy_wd (EV_A_ slot, wd, ev);
1837 else 2668 else
1838 { 2669 {
1839 WL w_; 2670 WL w_;
1845 2676
1846 if (w->wd == wd || wd == -1) 2677 if (w->wd == wd || wd == -1)
1847 { 2678 {
1848 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2679 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1849 { 2680 {
2681 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1850 w->wd = -1; 2682 w->wd = -1;
1851 infy_add (EV_A_ w); /* re-add, no matter what */ 2683 infy_add (EV_A_ w); /* re-add, no matter what */
1852 } 2684 }
1853 2685
1854 stat_timer_cb (EV_A_ &w->timer, 0); 2686 stat_timer_cb (EV_A_ &w->timer, 0);
1867 2699
1868 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2700 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1869 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2701 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1870} 2702}
1871 2703
1872void inline_size 2704inline_size void
2705check_2625 (EV_P)
2706{
2707 /* kernels < 2.6.25 are borked
2708 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2709 */
2710 struct utsname buf;
2711 int major, minor, micro;
2712
2713 if (uname (&buf))
2714 return;
2715
2716 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2717 return;
2718
2719 if (major < 2
2720 || (major == 2 && minor < 6)
2721 || (major == 2 && minor == 6 && micro < 25))
2722 return;
2723
2724 fs_2625 = 1;
2725}
2726
2727inline_size void
1873infy_init (EV_P) 2728infy_init (EV_P)
1874{ 2729{
1875 if (fs_fd != -2) 2730 if (fs_fd != -2)
1876 return; 2731 return;
2732
2733 fs_fd = -1;
2734
2735 check_2625 (EV_A);
1877 2736
1878 fs_fd = inotify_init (); 2737 fs_fd = inotify_init ();
1879 2738
1880 if (fs_fd >= 0) 2739 if (fs_fd >= 0)
1881 { 2740 {
1883 ev_set_priority (&fs_w, EV_MAXPRI); 2742 ev_set_priority (&fs_w, EV_MAXPRI);
1884 ev_io_start (EV_A_ &fs_w); 2743 ev_io_start (EV_A_ &fs_w);
1885 } 2744 }
1886} 2745}
1887 2746
1888void inline_size 2747inline_size void
1889infy_fork (EV_P) 2748infy_fork (EV_P)
1890{ 2749{
1891 int slot; 2750 int slot;
1892 2751
1893 if (fs_fd < 0) 2752 if (fs_fd < 0)
1909 w->wd = -1; 2768 w->wd = -1;
1910 2769
1911 if (fs_fd >= 0) 2770 if (fs_fd >= 0)
1912 infy_add (EV_A_ w); /* re-add, no matter what */ 2771 infy_add (EV_A_ w); /* re-add, no matter what */
1913 else 2772 else
1914 ev_timer_start (EV_A_ &w->timer); 2773 ev_timer_again (EV_A_ &w->timer);
1915 } 2774 }
1916
1917 } 2775 }
1918} 2776}
1919 2777
2778#endif
2779
2780#ifdef _WIN32
2781# define EV_LSTAT(p,b) _stati64 (p, b)
2782#else
2783# define EV_LSTAT(p,b) lstat (p, b)
1920#endif 2784#endif
1921 2785
1922void 2786void
1923ev_stat_stat (EV_P_ ev_stat *w) 2787ev_stat_stat (EV_P_ ev_stat *w)
1924{ 2788{
1951 || w->prev.st_atime != w->attr.st_atime 2815 || w->prev.st_atime != w->attr.st_atime
1952 || w->prev.st_mtime != w->attr.st_mtime 2816 || w->prev.st_mtime != w->attr.st_mtime
1953 || w->prev.st_ctime != w->attr.st_ctime 2817 || w->prev.st_ctime != w->attr.st_ctime
1954 ) { 2818 ) {
1955 #if EV_USE_INOTIFY 2819 #if EV_USE_INOTIFY
2820 if (fs_fd >= 0)
2821 {
1956 infy_del (EV_A_ w); 2822 infy_del (EV_A_ w);
1957 infy_add (EV_A_ w); 2823 infy_add (EV_A_ w);
1958 ev_stat_stat (EV_A_ w); /* avoid race... */ 2824 ev_stat_stat (EV_A_ w); /* avoid race... */
2825 }
1959 #endif 2826 #endif
1960 2827
1961 ev_feed_event (EV_A_ w, EV_STAT); 2828 ev_feed_event (EV_A_ w, EV_STAT);
1962 } 2829 }
1963} 2830}
1966ev_stat_start (EV_P_ ev_stat *w) 2833ev_stat_start (EV_P_ ev_stat *w)
1967{ 2834{
1968 if (expect_false (ev_is_active (w))) 2835 if (expect_false (ev_is_active (w)))
1969 return; 2836 return;
1970 2837
1971 /* since we use memcmp, we need to clear any padding data etc. */
1972 memset (&w->prev, 0, sizeof (ev_statdata));
1973 memset (&w->attr, 0, sizeof (ev_statdata));
1974
1975 ev_stat_stat (EV_A_ w); 2838 ev_stat_stat (EV_A_ w);
1976 2839
2840 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1977 if (w->interval < MIN_STAT_INTERVAL) 2841 w->interval = MIN_STAT_INTERVAL;
1978 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1979 2842
1980 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2843 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1981 ev_set_priority (&w->timer, ev_priority (w)); 2844 ev_set_priority (&w->timer, ev_priority (w));
1982 2845
1983#if EV_USE_INOTIFY 2846#if EV_USE_INOTIFY
1984 infy_init (EV_A); 2847 infy_init (EV_A);
1985 2848
1986 if (fs_fd >= 0) 2849 if (fs_fd >= 0)
1987 infy_add (EV_A_ w); 2850 infy_add (EV_A_ w);
1988 else 2851 else
1989#endif 2852#endif
1990 ev_timer_start (EV_A_ &w->timer); 2853 ev_timer_again (EV_A_ &w->timer);
1991 2854
1992 ev_start (EV_A_ (W)w, 1); 2855 ev_start (EV_A_ (W)w, 1);
2856
2857 EV_FREQUENT_CHECK;
1993} 2858}
1994 2859
1995void 2860void
1996ev_stat_stop (EV_P_ ev_stat *w) 2861ev_stat_stop (EV_P_ ev_stat *w)
1997{ 2862{
1998 ev_clear_pending (EV_A_ (W)w); 2863 clear_pending (EV_A_ (W)w);
1999 if (expect_false (!ev_is_active (w))) 2864 if (expect_false (!ev_is_active (w)))
2000 return; 2865 return;
2001 2866
2867 EV_FREQUENT_CHECK;
2868
2002#if EV_USE_INOTIFY 2869#if EV_USE_INOTIFY
2003 infy_del (EV_A_ w); 2870 infy_del (EV_A_ w);
2004#endif 2871#endif
2005 ev_timer_stop (EV_A_ &w->timer); 2872 ev_timer_stop (EV_A_ &w->timer);
2006 2873
2007 ev_stop (EV_A_ (W)w); 2874 ev_stop (EV_A_ (W)w);
2008}
2009#endif
2010 2875
2876 EV_FREQUENT_CHECK;
2877}
2878#endif
2879
2880#if EV_IDLE_ENABLE
2011void 2881void
2012ev_idle_start (EV_P_ ev_idle *w) 2882ev_idle_start (EV_P_ ev_idle *w)
2013{ 2883{
2014 if (expect_false (ev_is_active (w))) 2884 if (expect_false (ev_is_active (w)))
2015 return; 2885 return;
2016 2886
2887 pri_adjust (EV_A_ (W)w);
2888
2889 EV_FREQUENT_CHECK;
2890
2891 {
2892 int active = ++idlecnt [ABSPRI (w)];
2893
2894 ++idleall;
2017 ev_start (EV_A_ (W)w, ++idlecnt); 2895 ev_start (EV_A_ (W)w, active);
2896
2018 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2897 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2019 idles [idlecnt - 1] = w; 2898 idles [ABSPRI (w)][active - 1] = w;
2899 }
2900
2901 EV_FREQUENT_CHECK;
2020} 2902}
2021 2903
2022void 2904void
2023ev_idle_stop (EV_P_ ev_idle *w) 2905ev_idle_stop (EV_P_ ev_idle *w)
2024{ 2906{
2025 ev_clear_pending (EV_A_ (W)w); 2907 clear_pending (EV_A_ (W)w);
2026 if (expect_false (!ev_is_active (w))) 2908 if (expect_false (!ev_is_active (w)))
2027 return; 2909 return;
2028 2910
2911 EV_FREQUENT_CHECK;
2912
2029 { 2913 {
2030 int active = ((W)w)->active; 2914 int active = ev_active (w);
2031 idles [active - 1] = idles [--idlecnt]; 2915
2032 ((W)idles [active - 1])->active = active; 2916 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2917 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2918
2919 ev_stop (EV_A_ (W)w);
2920 --idleall;
2033 } 2921 }
2034 2922
2035 ev_stop (EV_A_ (W)w); 2923 EV_FREQUENT_CHECK;
2036} 2924}
2925#endif
2037 2926
2038void 2927void
2039ev_prepare_start (EV_P_ ev_prepare *w) 2928ev_prepare_start (EV_P_ ev_prepare *w)
2040{ 2929{
2041 if (expect_false (ev_is_active (w))) 2930 if (expect_false (ev_is_active (w)))
2042 return; 2931 return;
2932
2933 EV_FREQUENT_CHECK;
2043 2934
2044 ev_start (EV_A_ (W)w, ++preparecnt); 2935 ev_start (EV_A_ (W)w, ++preparecnt);
2045 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2936 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2046 prepares [preparecnt - 1] = w; 2937 prepares [preparecnt - 1] = w;
2938
2939 EV_FREQUENT_CHECK;
2047} 2940}
2048 2941
2049void 2942void
2050ev_prepare_stop (EV_P_ ev_prepare *w) 2943ev_prepare_stop (EV_P_ ev_prepare *w)
2051{ 2944{
2052 ev_clear_pending (EV_A_ (W)w); 2945 clear_pending (EV_A_ (W)w);
2053 if (expect_false (!ev_is_active (w))) 2946 if (expect_false (!ev_is_active (w)))
2054 return; 2947 return;
2055 2948
2949 EV_FREQUENT_CHECK;
2950
2056 { 2951 {
2057 int active = ((W)w)->active; 2952 int active = ev_active (w);
2953
2058 prepares [active - 1] = prepares [--preparecnt]; 2954 prepares [active - 1] = prepares [--preparecnt];
2059 ((W)prepares [active - 1])->active = active; 2955 ev_active (prepares [active - 1]) = active;
2060 } 2956 }
2061 2957
2062 ev_stop (EV_A_ (W)w); 2958 ev_stop (EV_A_ (W)w);
2959
2960 EV_FREQUENT_CHECK;
2063} 2961}
2064 2962
2065void 2963void
2066ev_check_start (EV_P_ ev_check *w) 2964ev_check_start (EV_P_ ev_check *w)
2067{ 2965{
2068 if (expect_false (ev_is_active (w))) 2966 if (expect_false (ev_is_active (w)))
2069 return; 2967 return;
2968
2969 EV_FREQUENT_CHECK;
2070 2970
2071 ev_start (EV_A_ (W)w, ++checkcnt); 2971 ev_start (EV_A_ (W)w, ++checkcnt);
2072 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2972 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2073 checks [checkcnt - 1] = w; 2973 checks [checkcnt - 1] = w;
2974
2975 EV_FREQUENT_CHECK;
2074} 2976}
2075 2977
2076void 2978void
2077ev_check_stop (EV_P_ ev_check *w) 2979ev_check_stop (EV_P_ ev_check *w)
2078{ 2980{
2079 ev_clear_pending (EV_A_ (W)w); 2981 clear_pending (EV_A_ (W)w);
2080 if (expect_false (!ev_is_active (w))) 2982 if (expect_false (!ev_is_active (w)))
2081 return; 2983 return;
2082 2984
2985 EV_FREQUENT_CHECK;
2986
2083 { 2987 {
2084 int active = ((W)w)->active; 2988 int active = ev_active (w);
2989
2085 checks [active - 1] = checks [--checkcnt]; 2990 checks [active - 1] = checks [--checkcnt];
2086 ((W)checks [active - 1])->active = active; 2991 ev_active (checks [active - 1]) = active;
2087 } 2992 }
2088 2993
2089 ev_stop (EV_A_ (W)w); 2994 ev_stop (EV_A_ (W)w);
2995
2996 EV_FREQUENT_CHECK;
2090} 2997}
2091 2998
2092#if EV_EMBED_ENABLE 2999#if EV_EMBED_ENABLE
2093void noinline 3000void noinline
2094ev_embed_sweep (EV_P_ ev_embed *w) 3001ev_embed_sweep (EV_P_ ev_embed *w)
2095{ 3002{
2096 ev_loop (w->loop, EVLOOP_NONBLOCK); 3003 ev_loop (w->other, EVLOOP_NONBLOCK);
2097} 3004}
2098 3005
2099static void 3006static void
2100embed_cb (EV_P_ ev_io *io, int revents) 3007embed_io_cb (EV_P_ ev_io *io, int revents)
2101{ 3008{
2102 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3009 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2103 3010
2104 if (ev_cb (w)) 3011 if (ev_cb (w))
2105 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3012 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2106 else 3013 else
2107 ev_embed_sweep (loop, w); 3014 ev_loop (w->other, EVLOOP_NONBLOCK);
2108} 3015}
3016
3017static void
3018embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3019{
3020 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3021
3022 {
3023 struct ev_loop *loop = w->other;
3024
3025 while (fdchangecnt)
3026 {
3027 fd_reify (EV_A);
3028 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3029 }
3030 }
3031}
3032
3033static void
3034embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3035{
3036 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3037
3038 ev_embed_stop (EV_A_ w);
3039
3040 {
3041 struct ev_loop *loop = w->other;
3042
3043 ev_loop_fork (EV_A);
3044 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3045 }
3046
3047 ev_embed_start (EV_A_ w);
3048}
3049
3050#if 0
3051static void
3052embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3053{
3054 ev_idle_stop (EV_A_ idle);
3055}
3056#endif
2109 3057
2110void 3058void
2111ev_embed_start (EV_P_ ev_embed *w) 3059ev_embed_start (EV_P_ ev_embed *w)
2112{ 3060{
2113 if (expect_false (ev_is_active (w))) 3061 if (expect_false (ev_is_active (w)))
2114 return; 3062 return;
2115 3063
2116 { 3064 {
2117 struct ev_loop *loop = w->loop; 3065 struct ev_loop *loop = w->other;
2118 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3066 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2119 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3067 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2120 } 3068 }
3069
3070 EV_FREQUENT_CHECK;
2121 3071
2122 ev_set_priority (&w->io, ev_priority (w)); 3072 ev_set_priority (&w->io, ev_priority (w));
2123 ev_io_start (EV_A_ &w->io); 3073 ev_io_start (EV_A_ &w->io);
2124 3074
3075 ev_prepare_init (&w->prepare, embed_prepare_cb);
3076 ev_set_priority (&w->prepare, EV_MINPRI);
3077 ev_prepare_start (EV_A_ &w->prepare);
3078
3079 ev_fork_init (&w->fork, embed_fork_cb);
3080 ev_fork_start (EV_A_ &w->fork);
3081
3082 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3083
2125 ev_start (EV_A_ (W)w, 1); 3084 ev_start (EV_A_ (W)w, 1);
3085
3086 EV_FREQUENT_CHECK;
2126} 3087}
2127 3088
2128void 3089void
2129ev_embed_stop (EV_P_ ev_embed *w) 3090ev_embed_stop (EV_P_ ev_embed *w)
2130{ 3091{
2131 ev_clear_pending (EV_A_ (W)w); 3092 clear_pending (EV_A_ (W)w);
2132 if (expect_false (!ev_is_active (w))) 3093 if (expect_false (!ev_is_active (w)))
2133 return; 3094 return;
2134 3095
3096 EV_FREQUENT_CHECK;
3097
2135 ev_io_stop (EV_A_ &w->io); 3098 ev_io_stop (EV_A_ &w->io);
3099 ev_prepare_stop (EV_A_ &w->prepare);
3100 ev_fork_stop (EV_A_ &w->fork);
2136 3101
2137 ev_stop (EV_A_ (W)w); 3102 EV_FREQUENT_CHECK;
2138} 3103}
2139#endif 3104#endif
2140 3105
2141#if EV_FORK_ENABLE 3106#if EV_FORK_ENABLE
2142void 3107void
2143ev_fork_start (EV_P_ ev_fork *w) 3108ev_fork_start (EV_P_ ev_fork *w)
2144{ 3109{
2145 if (expect_false (ev_is_active (w))) 3110 if (expect_false (ev_is_active (w)))
2146 return; 3111 return;
3112
3113 EV_FREQUENT_CHECK;
2147 3114
2148 ev_start (EV_A_ (W)w, ++forkcnt); 3115 ev_start (EV_A_ (W)w, ++forkcnt);
2149 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3116 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2150 forks [forkcnt - 1] = w; 3117 forks [forkcnt - 1] = w;
3118
3119 EV_FREQUENT_CHECK;
2151} 3120}
2152 3121
2153void 3122void
2154ev_fork_stop (EV_P_ ev_fork *w) 3123ev_fork_stop (EV_P_ ev_fork *w)
2155{ 3124{
2156 ev_clear_pending (EV_A_ (W)w); 3125 clear_pending (EV_A_ (W)w);
2157 if (expect_false (!ev_is_active (w))) 3126 if (expect_false (!ev_is_active (w)))
2158 return; 3127 return;
2159 3128
3129 EV_FREQUENT_CHECK;
3130
2160 { 3131 {
2161 int active = ((W)w)->active; 3132 int active = ev_active (w);
3133
2162 forks [active - 1] = forks [--forkcnt]; 3134 forks [active - 1] = forks [--forkcnt];
2163 ((W)forks [active - 1])->active = active; 3135 ev_active (forks [active - 1]) = active;
2164 } 3136 }
2165 3137
2166 ev_stop (EV_A_ (W)w); 3138 ev_stop (EV_A_ (W)w);
3139
3140 EV_FREQUENT_CHECK;
3141}
3142#endif
3143
3144#if EV_ASYNC_ENABLE
3145void
3146ev_async_start (EV_P_ ev_async *w)
3147{
3148 if (expect_false (ev_is_active (w)))
3149 return;
3150
3151 evpipe_init (EV_A);
3152
3153 EV_FREQUENT_CHECK;
3154
3155 ev_start (EV_A_ (W)w, ++asynccnt);
3156 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3157 asyncs [asynccnt - 1] = w;
3158
3159 EV_FREQUENT_CHECK;
3160}
3161
3162void
3163ev_async_stop (EV_P_ ev_async *w)
3164{
3165 clear_pending (EV_A_ (W)w);
3166 if (expect_false (!ev_is_active (w)))
3167 return;
3168
3169 EV_FREQUENT_CHECK;
3170
3171 {
3172 int active = ev_active (w);
3173
3174 asyncs [active - 1] = asyncs [--asynccnt];
3175 ev_active (asyncs [active - 1]) = active;
3176 }
3177
3178 ev_stop (EV_A_ (W)w);
3179
3180 EV_FREQUENT_CHECK;
3181}
3182
3183void
3184ev_async_send (EV_P_ ev_async *w)
3185{
3186 w->sent = 1;
3187 evpipe_write (EV_A_ &gotasync);
2167} 3188}
2168#endif 3189#endif
2169 3190
2170/*****************************************************************************/ 3191/*****************************************************************************/
2171 3192
2181once_cb (EV_P_ struct ev_once *once, int revents) 3202once_cb (EV_P_ struct ev_once *once, int revents)
2182{ 3203{
2183 void (*cb)(int revents, void *arg) = once->cb; 3204 void (*cb)(int revents, void *arg) = once->cb;
2184 void *arg = once->arg; 3205 void *arg = once->arg;
2185 3206
2186 ev_io_stop (EV_A_ &once->io); 3207 ev_io_stop (EV_A_ &once->io);
2187 ev_timer_stop (EV_A_ &once->to); 3208 ev_timer_stop (EV_A_ &once->to);
2188 ev_free (once); 3209 ev_free (once);
2189 3210
2190 cb (revents, arg); 3211 cb (revents, arg);
2191} 3212}
2192 3213
2193static void 3214static void
2194once_cb_io (EV_P_ ev_io *w, int revents) 3215once_cb_io (EV_P_ ev_io *w, int revents)
2195{ 3216{
2196 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3217 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3218
3219 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2197} 3220}
2198 3221
2199static void 3222static void
2200once_cb_to (EV_P_ ev_timer *w, int revents) 3223once_cb_to (EV_P_ ev_timer *w, int revents)
2201{ 3224{
2202 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3225 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3226
3227 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2203} 3228}
2204 3229
2205void 3230void
2206ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3231ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2207{ 3232{
2229 ev_timer_set (&once->to, timeout, 0.); 3254 ev_timer_set (&once->to, timeout, 0.);
2230 ev_timer_start (EV_A_ &once->to); 3255 ev_timer_start (EV_A_ &once->to);
2231 } 3256 }
2232} 3257}
2233 3258
3259/*****************************************************************************/
3260
3261#if EV_WALK_ENABLE
3262void
3263ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3264{
3265 int i, j;
3266 ev_watcher_list *wl, *wn;
3267
3268 if (types & (EV_IO | EV_EMBED))
3269 for (i = 0; i < anfdmax; ++i)
3270 for (wl = anfds [i].head; wl; )
3271 {
3272 wn = wl->next;
3273
3274#if EV_EMBED_ENABLE
3275 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3276 {
3277 if (types & EV_EMBED)
3278 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3279 }
3280 else
3281#endif
3282#if EV_USE_INOTIFY
3283 if (ev_cb ((ev_io *)wl) == infy_cb)
3284 ;
3285 else
3286#endif
3287 if ((ev_io *)wl != &pipe_w)
3288 if (types & EV_IO)
3289 cb (EV_A_ EV_IO, wl);
3290
3291 wl = wn;
3292 }
3293
3294 if (types & (EV_TIMER | EV_STAT))
3295 for (i = timercnt + HEAP0; i-- > HEAP0; )
3296#if EV_STAT_ENABLE
3297 /*TODO: timer is not always active*/
3298 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3299 {
3300 if (types & EV_STAT)
3301 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3302 }
3303 else
3304#endif
3305 if (types & EV_TIMER)
3306 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3307
3308#if EV_PERIODIC_ENABLE
3309 if (types & EV_PERIODIC)
3310 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3311 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3312#endif
3313
3314#if EV_IDLE_ENABLE
3315 if (types & EV_IDLE)
3316 for (j = NUMPRI; i--; )
3317 for (i = idlecnt [j]; i--; )
3318 cb (EV_A_ EV_IDLE, idles [j][i]);
3319#endif
3320
3321#if EV_FORK_ENABLE
3322 if (types & EV_FORK)
3323 for (i = forkcnt; i--; )
3324 if (ev_cb (forks [i]) != embed_fork_cb)
3325 cb (EV_A_ EV_FORK, forks [i]);
3326#endif
3327
3328#if EV_ASYNC_ENABLE
3329 if (types & EV_ASYNC)
3330 for (i = asynccnt; i--; )
3331 cb (EV_A_ EV_ASYNC, asyncs [i]);
3332#endif
3333
3334 if (types & EV_PREPARE)
3335 for (i = preparecnt; i--; )
3336#if EV_EMBED_ENABLE
3337 if (ev_cb (prepares [i]) != embed_prepare_cb)
3338#endif
3339 cb (EV_A_ EV_PREPARE, prepares [i]);
3340
3341 if (types & EV_CHECK)
3342 for (i = checkcnt; i--; )
3343 cb (EV_A_ EV_CHECK, checks [i]);
3344
3345 if (types & EV_SIGNAL)
3346 for (i = 0; i < signalmax; ++i)
3347 for (wl = signals [i].head; wl; )
3348 {
3349 wn = wl->next;
3350 cb (EV_A_ EV_SIGNAL, wl);
3351 wl = wn;
3352 }
3353
3354 if (types & EV_CHILD)
3355 for (i = EV_PID_HASHSIZE; i--; )
3356 for (wl = childs [i]; wl; )
3357 {
3358 wn = wl->next;
3359 cb (EV_A_ EV_CHILD, wl);
3360 wl = wn;
3361 }
3362/* EV_STAT 0x00001000 /* stat data changed */
3363/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3364}
3365#endif
3366
3367#if EV_MULTIPLICITY
3368 #include "ev_wrap.h"
3369#endif
3370
2234#ifdef __cplusplus 3371#ifdef __cplusplus
2235} 3372}
2236#endif 3373#endif
2237 3374

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines