ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.163 by root, Wed Dec 5 13:54:36 2007 UTC vs.
Revision 1.314 by root, Wed Aug 26 17:31:20 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
56# endif 79# endif
57# endif 80# endif
58 81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
61# define EV_USE_SELECT 1 92# define EV_USE_SELECT 1
62# else 93# else
63# define EV_USE_SELECT 0 94# define EV_USE_SELECT 0
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
107#endif 154#endif
108 155
109#include <math.h> 156#include <math.h>
110#include <stdlib.h> 157#include <stdlib.h>
111#include <fcntl.h> 158#include <fcntl.h>
129#ifndef _WIN32 176#ifndef _WIN32
130# include <sys/time.h> 177# include <sys/time.h>
131# include <sys/wait.h> 178# include <sys/wait.h>
132# include <unistd.h> 179# include <unistd.h>
133#else 180#else
181# include <io.h>
134# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 183# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
138# endif 186# endif
139#endif 187#endif
140 188
141/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
142 225
143#ifndef EV_USE_MONOTONIC 226#ifndef EV_USE_MONOTONIC
227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
228# define EV_USE_MONOTONIC 1
229# else
144# define EV_USE_MONOTONIC 0 230# define EV_USE_MONOTONIC 0
231# endif
145#endif 232#endif
146 233
147#ifndef EV_USE_REALTIME 234#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
236#endif
237
238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
242# define EV_USE_NANOSLEEP 0
243# endif
149#endif 244#endif
150 245
151#ifndef EV_USE_SELECT 246#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 247# define EV_USE_SELECT 1
153#endif 248#endif
159# define EV_USE_POLL 1 254# define EV_USE_POLL 1
160# endif 255# endif
161#endif 256#endif
162 257
163#ifndef EV_USE_EPOLL 258#ifndef EV_USE_EPOLL
259# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
260# define EV_USE_EPOLL 1
261# else
164# define EV_USE_EPOLL 0 262# define EV_USE_EPOLL 0
263# endif
165#endif 264#endif
166 265
167#ifndef EV_USE_KQUEUE 266#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 267# define EV_USE_KQUEUE 0
169#endif 268#endif
171#ifndef EV_USE_PORT 270#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 271# define EV_USE_PORT 0
173#endif 272#endif
174 273
175#ifndef EV_USE_INOTIFY 274#ifndef EV_USE_INOTIFY
275# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
276# define EV_USE_INOTIFY 1
277# else
176# define EV_USE_INOTIFY 0 278# define EV_USE_INOTIFY 0
279# endif
177#endif 280#endif
178 281
179#ifndef EV_PID_HASHSIZE 282#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 283# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 284# define EV_PID_HASHSIZE 1
190# else 293# else
191# define EV_INOTIFY_HASHSIZE 16 294# define EV_INOTIFY_HASHSIZE 16
192# endif 295# endif
193#endif 296#endif
194 297
195/**/ 298#ifndef EV_USE_EVENTFD
299# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
300# define EV_USE_EVENTFD 1
301# else
302# define EV_USE_EVENTFD 0
303# endif
304#endif
305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
324#ifndef EV_USE_4HEAP
325# define EV_USE_4HEAP !EV_MINIMAL
326#endif
327
328#ifndef EV_HEAP_CACHE_AT
329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
344#endif
345
346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 347
197#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 349# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 350# define EV_USE_MONOTONIC 0
200#endif 351#endif
202#ifndef CLOCK_REALTIME 353#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 354# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 355# define EV_USE_REALTIME 0
205#endif 356#endif
206 357
358#if !EV_STAT_ENABLE
359# undef EV_USE_INOTIFY
360# define EV_USE_INOTIFY 0
361#endif
362
363#if !EV_USE_NANOSLEEP
364# ifndef _WIN32
365# include <sys/select.h>
366# endif
367#endif
368
369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
378#endif
379
207#if EV_SELECT_IS_WINSOCKET 380#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 381# include <winsock.h>
209#endif 382#endif
210 383
211#if !EV_STAT_ENABLE 384#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
213#endif 389# endif
214 390# ifndef EFD_CLOEXEC
215#if EV_USE_INOTIFY 391# ifdef O_CLOEXEC
216# include <sys/inotify.h> 392# define EFD_CLOEXEC O_CLOEXEC
393# else
394# define EFD_CLOEXEC 02000000
395# endif
217#endif 396# endif
397# ifdef __cplusplus
398extern "C" {
399# endif
400int eventfd (unsigned int initval, int flags);
401# ifdef __cplusplus
402}
403# endif
404#endif
405
406#if EV_USE_SIGNALFD
407/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
408# include <stdint.h>
409# ifndef SFD_NONBLOCK
410# define SFD_NONBLOCK O_NONBLOCK
411# endif
412# ifndef SFD_CLOEXEC
413# ifdef O_CLOEXEC
414# define SFD_CLOEXEC O_CLOEXEC
415# else
416# define SFD_CLOEXEC 02000000
417# endif
418# endif
419# ifdef __cplusplus
420extern "C" {
421# endif
422int signalfd (int fd, const sigset_t *mask, int flags);
423
424struct signalfd_siginfo
425{
426 uint32_t ssi_signo;
427 char pad[128 - sizeof (uint32_t)];
428};
429# ifdef __cplusplus
430}
431# endif
432#endif
433
218 434
219/**/ 435/**/
436
437#if EV_VERIFY >= 3
438# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
439#else
440# define EV_FREQUENT_CHECK do { } while (0)
441#endif
442
443/*
444 * This is used to avoid floating point rounding problems.
445 * It is added to ev_rt_now when scheduling periodics
446 * to ensure progress, time-wise, even when rounding
447 * errors are against us.
448 * This value is good at least till the year 4000.
449 * Better solutions welcome.
450 */
451#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 452
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 453#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 454#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 455/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 456
225#if __GNUC__ >= 3 457#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 458# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 459# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 460#else
236# define expect(expr,value) (expr) 461# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 462# define noinline
463# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
464# define inline
465# endif
240#endif 466#endif
241 467
242#define expect_false(expr) expect ((expr) != 0, 0) 468#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 469#define expect_true(expr) expect ((expr) != 0, 1)
470#define inline_size static inline
244 471
472#if EV_MINIMAL
473# define inline_speed static noinline
474#else
475# define inline_speed static inline
476#endif
477
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 478#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
479
480#if EV_MINPRI == EV_MAXPRI
481# define ABSPRI(w) (((W)w), 0)
482#else
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 483# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
484#endif
247 485
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 486#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 487#define EMPTY2(a,b) /* used to suppress some warnings */
250 488
251typedef ev_watcher *W; 489typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 490typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 491typedef ev_watcher_time *WT;
254 492
493#define ev_active(w) ((W)(w))->active
494#define ev_at(w) ((WT)(w))->at
495
496#if EV_USE_REALTIME
497/* sig_atomic_t is used to avoid per-thread variables or locking but still */
498/* giving it a reasonably high chance of working on typical architetcures */
499static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
500#endif
501
502#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 503static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
504#endif
505
506#ifndef EV_FD_TO_WIN32_HANDLE
507# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
508#endif
509#ifndef EV_WIN32_HANDLE_TO_FD
510# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
511#endif
512#ifndef EV_WIN32_CLOSE_FD
513# define EV_WIN32_CLOSE_FD(fd) close (fd)
514#endif
256 515
257#ifdef _WIN32 516#ifdef _WIN32
258# include "ev_win32.c" 517# include "ev_win32.c"
259#endif 518#endif
260 519
267{ 526{
268 syserr_cb = cb; 527 syserr_cb = cb;
269} 528}
270 529
271static void noinline 530static void noinline
272syserr (const char *msg) 531ev_syserr (const char *msg)
273{ 532{
274 if (!msg) 533 if (!msg)
275 msg = "(libev) system error"; 534 msg = "(libev) system error";
276 535
277 if (syserr_cb) 536 if (syserr_cb)
281 perror (msg); 540 perror (msg);
282 abort (); 541 abort ();
283 } 542 }
284} 543}
285 544
545static void *
546ev_realloc_emul (void *ptr, long size)
547{
548 /* some systems, notably openbsd and darwin, fail to properly
549 * implement realloc (x, 0) (as required by both ansi c-98 and
550 * the single unix specification, so work around them here.
551 */
552
553 if (size)
554 return realloc (ptr, size);
555
556 free (ptr);
557 return 0;
558}
559
286static void *(*alloc)(void *ptr, long size); 560static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 561
288void 562void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 563ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 564{
291 alloc = cb; 565 alloc = cb;
292} 566}
293 567
294inline_speed void * 568inline_speed void *
295ev_realloc (void *ptr, long size) 569ev_realloc (void *ptr, long size)
296{ 570{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 571 ptr = alloc (ptr, size);
298 572
299 if (!ptr && size) 573 if (!ptr && size)
300 { 574 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 575 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 576 abort ();
308#define ev_malloc(size) ev_realloc (0, (size)) 582#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 583#define ev_free(ptr) ev_realloc ((ptr), 0)
310 584
311/*****************************************************************************/ 585/*****************************************************************************/
312 586
587/* set in reify when reification needed */
588#define EV_ANFD_REIFY 1
589
590/* file descriptor info structure */
313typedef struct 591typedef struct
314{ 592{
315 WL head; 593 WL head;
316 unsigned char events; 594 unsigned char events; /* the events watched for */
595 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
596 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 597 unsigned char unused;
598#if EV_USE_EPOLL
599 unsigned int egen; /* generation counter to counter epoll bugs */
600#endif
318#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 602 SOCKET handle;
320#endif 603#endif
321} ANFD; 604} ANFD;
322 605
606/* stores the pending event set for a given watcher */
323typedef struct 607typedef struct
324{ 608{
325 W w; 609 W w;
326 int events; 610 int events; /* the pending event set for the given watcher */
327} ANPENDING; 611} ANPENDING;
328 612
329#if EV_USE_INOTIFY 613#if EV_USE_INOTIFY
614/* hash table entry per inotify-id */
330typedef struct 615typedef struct
331{ 616{
332 WL head; 617 WL head;
333} ANFS; 618} ANFS;
619#endif
620
621/* Heap Entry */
622#if EV_HEAP_CACHE_AT
623 /* a heap element */
624 typedef struct {
625 ev_tstamp at;
626 WT w;
627 } ANHE;
628
629 #define ANHE_w(he) (he).w /* access watcher, read-write */
630 #define ANHE_at(he) (he).at /* access cached at, read-only */
631 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
632#else
633 /* a heap element */
634 typedef WT ANHE;
635
636 #define ANHE_w(he) (he)
637 #define ANHE_at(he) (he)->at
638 #define ANHE_at_cache(he)
334#endif 639#endif
335 640
336#if EV_MULTIPLICITY 641#if EV_MULTIPLICITY
337 642
338 struct ev_loop 643 struct ev_loop
357 662
358 static int ev_default_loop_ptr; 663 static int ev_default_loop_ptr;
359 664
360#endif 665#endif
361 666
667#if EV_MINIMAL < 2
668# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
669# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
670# define EV_INVOKE_PENDING invoke_cb (EV_A)
671#else
672# define EV_RELEASE_CB (void)0
673# define EV_ACQUIRE_CB (void)0
674# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
675#endif
676
677#define EVUNLOOP_RECURSE 0x80
678
362/*****************************************************************************/ 679/*****************************************************************************/
363 680
681#ifndef EV_HAVE_EV_TIME
364ev_tstamp 682ev_tstamp
365ev_time (void) 683ev_time (void)
366{ 684{
367#if EV_USE_REALTIME 685#if EV_USE_REALTIME
686 if (expect_true (have_realtime))
687 {
368 struct timespec ts; 688 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 689 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 690 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 691 }
692#endif
693
372 struct timeval tv; 694 struct timeval tv;
373 gettimeofday (&tv, 0); 695 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 696 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 697}
698#endif
377 699
378ev_tstamp inline_size 700inline_size ev_tstamp
379get_clock (void) 701get_clock (void)
380{ 702{
381#if EV_USE_MONOTONIC 703#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 704 if (expect_true (have_monotonic))
383 { 705 {
396{ 718{
397 return ev_rt_now; 719 return ev_rt_now;
398} 720}
399#endif 721#endif
400 722
401int inline_size 723void
724ev_sleep (ev_tstamp delay)
725{
726 if (delay > 0.)
727 {
728#if EV_USE_NANOSLEEP
729 struct timespec ts;
730
731 ts.tv_sec = (time_t)delay;
732 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
733
734 nanosleep (&ts, 0);
735#elif defined(_WIN32)
736 Sleep ((unsigned long)(delay * 1e3));
737#else
738 struct timeval tv;
739
740 tv.tv_sec = (time_t)delay;
741 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
742
743 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
744 /* something not guaranteed by newer posix versions, but guaranteed */
745 /* by older ones */
746 select (0, 0, 0, 0, &tv);
747#endif
748 }
749}
750
751/*****************************************************************************/
752
753#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
754
755/* find a suitable new size for the given array, */
756/* hopefully by rounding to a ncie-to-malloc size */
757inline_size int
402array_nextsize (int elem, int cur, int cnt) 758array_nextsize (int elem, int cur, int cnt)
403{ 759{
404 int ncur = cur + 1; 760 int ncur = cur + 1;
405 761
406 do 762 do
407 ncur <<= 1; 763 ncur <<= 1;
408 while (cnt > ncur); 764 while (cnt > ncur);
409 765
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 766 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
411 if (elem * ncur > 4096) 767 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
412 { 768 {
413 ncur *= elem; 769 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 770 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
415 ncur = ncur - sizeof (void *) * 4; 771 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem; 772 ncur /= elem;
417 } 773 }
418 774
419 return ncur; 775 return ncur;
420} 776}
421 777
422inline_speed void * 778static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 779array_realloc (int elem, void *base, int *cur, int cnt)
424{ 780{
425 *cur = array_nextsize (elem, *cur, cnt); 781 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 782 return ev_realloc (base, elem * *cur);
427} 783}
784
785#define array_init_zero(base,count) \
786 memset ((void *)(base), 0, sizeof (*(base)) * (count))
428 787
429#define array_needsize(type,base,cur,cnt,init) \ 788#define array_needsize(type,base,cur,cnt,init) \
430 if (expect_false ((cnt) > (cur))) \ 789 if (expect_false ((cnt) > (cur))) \
431 { \ 790 { \
432 int ocur_ = (cur); \ 791 int ocur_ = (cur); \
444 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 803 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
445 } 804 }
446#endif 805#endif
447 806
448#define array_free(stem, idx) \ 807#define array_free(stem, idx) \
449 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 808 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
450 809
451/*****************************************************************************/ 810/*****************************************************************************/
811
812/* dummy callback for pending events */
813static void noinline
814pendingcb (EV_P_ ev_prepare *w, int revents)
815{
816}
452 817
453void noinline 818void noinline
454ev_feed_event (EV_P_ void *w, int revents) 819ev_feed_event (EV_P_ void *w, int revents)
455{ 820{
456 W w_ = (W)w; 821 W w_ = (W)w;
822 int pri = ABSPRI (w_);
457 823
458 if (expect_false (w_->pending)) 824 if (expect_false (w_->pending))
825 pendings [pri][w_->pending - 1].events |= revents;
826 else
459 { 827 {
828 w_->pending = ++pendingcnt [pri];
829 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
830 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 831 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 832 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 833}
469 834
470void inline_size 835inline_speed void
836feed_reverse (EV_P_ W w)
837{
838 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
839 rfeeds [rfeedcnt++] = w;
840}
841
842inline_size void
843feed_reverse_done (EV_P_ int revents)
844{
845 do
846 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
847 while (rfeedcnt);
848}
849
850inline_speed void
471queue_events (EV_P_ W *events, int eventcnt, int type) 851queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 852{
473 int i; 853 int i;
474 854
475 for (i = 0; i < eventcnt; ++i) 855 for (i = 0; i < eventcnt; ++i)
476 ev_feed_event (EV_A_ events [i], type); 856 ev_feed_event (EV_A_ events [i], type);
477} 857}
478 858
479/*****************************************************************************/ 859/*****************************************************************************/
480 860
481void inline_size 861inline_speed void
482anfds_init (ANFD *base, int count)
483{
484 while (count--)
485 {
486 base->head = 0;
487 base->events = EV_NONE;
488 base->reify = 0;
489
490 ++base;
491 }
492}
493
494void inline_speed
495fd_event (EV_P_ int fd, int revents) 862fd_event_nc (EV_P_ int fd, int revents)
496{ 863{
497 ANFD *anfd = anfds + fd; 864 ANFD *anfd = anfds + fd;
498 ev_io *w; 865 ev_io *w;
499 866
500 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 867 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
504 if (ev) 871 if (ev)
505 ev_feed_event (EV_A_ (W)w, ev); 872 ev_feed_event (EV_A_ (W)w, ev);
506 } 873 }
507} 874}
508 875
876/* do not submit kernel events for fds that have reify set */
877/* because that means they changed while we were polling for new events */
878inline_speed void
879fd_event (EV_P_ int fd, int revents)
880{
881 ANFD *anfd = anfds + fd;
882
883 if (expect_true (!anfd->reify))
884 fd_event_nc (EV_A_ fd, revents);
885}
886
509void 887void
510ev_feed_fd_event (EV_P_ int fd, int revents) 888ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 889{
890 if (fd >= 0 && fd < anfdmax)
512 fd_event (EV_A_ fd, revents); 891 fd_event_nc (EV_A_ fd, revents);
513} 892}
514 893
515void inline_size 894/* make sure the external fd watch events are in-sync */
895/* with the kernel/libev internal state */
896inline_size void
516fd_reify (EV_P) 897fd_reify (EV_P)
517{ 898{
518 int i; 899 int i;
519 900
520 for (i = 0; i < fdchangecnt; ++i) 901 for (i = 0; i < fdchangecnt; ++i)
521 { 902 {
522 int fd = fdchanges [i]; 903 int fd = fdchanges [i];
523 ANFD *anfd = anfds + fd; 904 ANFD *anfd = anfds + fd;
524 ev_io *w; 905 ev_io *w;
525 906
526 int events = 0; 907 unsigned char events = 0;
527 908
528 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 909 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
529 events |= w->events; 910 events |= (unsigned char)w->events;
530 911
531#if EV_SELECT_IS_WINSOCKET 912#if EV_SELECT_IS_WINSOCKET
532 if (events) 913 if (events)
533 { 914 {
534 unsigned long argp; 915 unsigned long arg;
535 anfd->handle = _get_osfhandle (fd); 916 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
536 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 917 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
537 } 918 }
538#endif 919#endif
539 920
921 {
922 unsigned char o_events = anfd->events;
923 unsigned char o_reify = anfd->reify;
924
540 anfd->reify = 0; 925 anfd->reify = 0;
541
542 backend_modify (EV_A_ fd, anfd->events, events);
543 anfd->events = events; 926 anfd->events = events;
927
928 if (o_events != events || o_reify & EV__IOFDSET)
929 backend_modify (EV_A_ fd, o_events, events);
930 }
544 } 931 }
545 932
546 fdchangecnt = 0; 933 fdchangecnt = 0;
547} 934}
548 935
549void inline_size 936/* something about the given fd changed */
937inline_size void
550fd_change (EV_P_ int fd) 938fd_change (EV_P_ int fd, int flags)
551{ 939{
552 if (expect_false (anfds [fd].reify)) 940 unsigned char reify = anfds [fd].reify;
553 return;
554
555 anfds [fd].reify = 1; 941 anfds [fd].reify |= flags;
556 942
943 if (expect_true (!reify))
944 {
557 ++fdchangecnt; 945 ++fdchangecnt;
558 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 946 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
559 fdchanges [fdchangecnt - 1] = fd; 947 fdchanges [fdchangecnt - 1] = fd;
948 }
560} 949}
561 950
562void inline_speed 951/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
952inline_speed void
563fd_kill (EV_P_ int fd) 953fd_kill (EV_P_ int fd)
564{ 954{
565 ev_io *w; 955 ev_io *w;
566 956
567 while ((w = (ev_io *)anfds [fd].head)) 957 while ((w = (ev_io *)anfds [fd].head))
569 ev_io_stop (EV_A_ w); 959 ev_io_stop (EV_A_ w);
570 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 960 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
571 } 961 }
572} 962}
573 963
574int inline_size 964/* check whether the given fd is atcually valid, for error recovery */
965inline_size int
575fd_valid (int fd) 966fd_valid (int fd)
576{ 967{
577#ifdef _WIN32 968#ifdef _WIN32
578 return _get_osfhandle (fd) != -1; 969 return _get_osfhandle (fd) != -1;
579#else 970#else
587{ 978{
588 int fd; 979 int fd;
589 980
590 for (fd = 0; fd < anfdmax; ++fd) 981 for (fd = 0; fd < anfdmax; ++fd)
591 if (anfds [fd].events) 982 if (anfds [fd].events)
592 if (!fd_valid (fd) == -1 && errno == EBADF) 983 if (!fd_valid (fd) && errno == EBADF)
593 fd_kill (EV_A_ fd); 984 fd_kill (EV_A_ fd);
594} 985}
595 986
596/* called on ENOMEM in select/poll to kill some fds and retry */ 987/* called on ENOMEM in select/poll to kill some fds and retry */
597static void noinline 988static void noinline
601 992
602 for (fd = anfdmax; fd--; ) 993 for (fd = anfdmax; fd--; )
603 if (anfds [fd].events) 994 if (anfds [fd].events)
604 { 995 {
605 fd_kill (EV_A_ fd); 996 fd_kill (EV_A_ fd);
606 return; 997 break;
607 } 998 }
608} 999}
609 1000
610/* usually called after fork if backend needs to re-arm all fds from scratch */ 1001/* usually called after fork if backend needs to re-arm all fds from scratch */
611static void noinline 1002static void noinline
615 1006
616 for (fd = 0; fd < anfdmax; ++fd) 1007 for (fd = 0; fd < anfdmax; ++fd)
617 if (anfds [fd].events) 1008 if (anfds [fd].events)
618 { 1009 {
619 anfds [fd].events = 0; 1010 anfds [fd].events = 0;
620 fd_change (EV_A_ fd); 1011 anfds [fd].emask = 0;
1012 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
621 } 1013 }
622} 1014}
623 1015
624/*****************************************************************************/ 1016/*****************************************************************************/
625 1017
626void inline_speed 1018/*
627upheap (WT *heap, int k) 1019 * the heap functions want a real array index. array index 0 uis guaranteed to not
628{ 1020 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
629 WT w = heap [k]; 1021 * the branching factor of the d-tree.
1022 */
630 1023
631 while (k && heap [k >> 1]->at > w->at) 1024/*
632 { 1025 * at the moment we allow libev the luxury of two heaps,
633 heap [k] = heap [k >> 1]; 1026 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
634 ((W)heap [k])->active = k + 1; 1027 * which is more cache-efficient.
635 k >>= 1; 1028 * the difference is about 5% with 50000+ watchers.
636 } 1029 */
1030#if EV_USE_4HEAP
637 1031
638 heap [k] = w; 1032#define DHEAP 4
639 ((W)heap [k])->active = k + 1; 1033#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1034#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1035#define UPHEAP_DONE(p,k) ((p) == (k))
640 1036
641} 1037/* away from the root */
642 1038inline_speed void
643void inline_speed
644downheap (WT *heap, int N, int k) 1039downheap (ANHE *heap, int N, int k)
645{ 1040{
646 WT w = heap [k]; 1041 ANHE he = heap [k];
1042 ANHE *E = heap + N + HEAP0;
647 1043
648 while (k < (N >> 1)) 1044 for (;;)
649 { 1045 {
650 int j = k << 1; 1046 ev_tstamp minat;
1047 ANHE *minpos;
1048 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
651 1049
652 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1050 /* find minimum child */
1051 if (expect_true (pos + DHEAP - 1 < E))
653 ++j; 1052 {
654 1053 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
655 if (w->at <= heap [j]->at) 1054 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1055 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1056 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1057 }
1058 else if (pos < E)
1059 {
1060 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1061 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1062 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1063 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1064 }
1065 else
656 break; 1066 break;
657 1067
1068 if (ANHE_at (he) <= minat)
1069 break;
1070
1071 heap [k] = *minpos;
1072 ev_active (ANHE_w (*minpos)) = k;
1073
1074 k = minpos - heap;
1075 }
1076
1077 heap [k] = he;
1078 ev_active (ANHE_w (he)) = k;
1079}
1080
1081#else /* 4HEAP */
1082
1083#define HEAP0 1
1084#define HPARENT(k) ((k) >> 1)
1085#define UPHEAP_DONE(p,k) (!(p))
1086
1087/* away from the root */
1088inline_speed void
1089downheap (ANHE *heap, int N, int k)
1090{
1091 ANHE he = heap [k];
1092
1093 for (;;)
1094 {
1095 int c = k << 1;
1096
1097 if (c >= N + HEAP0)
1098 break;
1099
1100 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1101 ? 1 : 0;
1102
1103 if (ANHE_at (he) <= ANHE_at (heap [c]))
1104 break;
1105
658 heap [k] = heap [j]; 1106 heap [k] = heap [c];
659 ((W)heap [k])->active = k + 1; 1107 ev_active (ANHE_w (heap [k])) = k;
1108
660 k = j; 1109 k = c;
661 } 1110 }
662 1111
663 heap [k] = w; 1112 heap [k] = he;
664 ((W)heap [k])->active = k + 1; 1113 ev_active (ANHE_w (he)) = k;
665} 1114}
1115#endif
666 1116
667void inline_size 1117/* towards the root */
1118inline_speed void
1119upheap (ANHE *heap, int k)
1120{
1121 ANHE he = heap [k];
1122
1123 for (;;)
1124 {
1125 int p = HPARENT (k);
1126
1127 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1128 break;
1129
1130 heap [k] = heap [p];
1131 ev_active (ANHE_w (heap [k])) = k;
1132 k = p;
1133 }
1134
1135 heap [k] = he;
1136 ev_active (ANHE_w (he)) = k;
1137}
1138
1139/* move an element suitably so it is in a correct place */
1140inline_size void
668adjustheap (WT *heap, int N, int k) 1141adjustheap (ANHE *heap, int N, int k)
669{ 1142{
1143 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
670 upheap (heap, k); 1144 upheap (heap, k);
1145 else
671 downheap (heap, N, k); 1146 downheap (heap, N, k);
1147}
1148
1149/* rebuild the heap: this function is used only once and executed rarely */
1150inline_size void
1151reheap (ANHE *heap, int N)
1152{
1153 int i;
1154
1155 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1156 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1157 for (i = 0; i < N; ++i)
1158 upheap (heap, i + HEAP0);
672} 1159}
673 1160
674/*****************************************************************************/ 1161/*****************************************************************************/
675 1162
1163/* associate signal watchers to a signal signal */
676typedef struct 1164typedef struct
677{ 1165{
1166 EV_ATOMIC_T pending;
1167#if EV_MULTIPLICITY
1168 EV_P;
1169#endif
678 WL head; 1170 WL head;
679 sig_atomic_t volatile gotsig;
680} ANSIG; 1171} ANSIG;
681 1172
682static ANSIG *signals; 1173static ANSIG signals [EV_NSIG - 1];
683static int signalmax;
684 1174
685static int sigpipe [2]; 1175/*****************************************************************************/
686static sig_atomic_t volatile gotsig;
687static ev_io sigev;
688 1176
689void inline_size 1177/* used to prepare libev internal fd's */
690signals_init (ANSIG *base, int count) 1178/* this is not fork-safe */
691{ 1179inline_speed void
692 while (count--)
693 {
694 base->head = 0;
695 base->gotsig = 0;
696
697 ++base;
698 }
699}
700
701static void
702sighandler (int signum)
703{
704#if _WIN32
705 signal (signum, sighandler);
706#endif
707
708 signals [signum - 1].gotsig = 1;
709
710 if (!gotsig)
711 {
712 int old_errno = errno;
713 gotsig = 1;
714 write (sigpipe [1], &signum, 1);
715 errno = old_errno;
716 }
717}
718
719void noinline
720ev_feed_signal_event (EV_P_ int signum)
721{
722 WL w;
723
724#if EV_MULTIPLICITY
725 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
726#endif
727
728 --signum;
729
730 if (signum < 0 || signum >= signalmax)
731 return;
732
733 signals [signum].gotsig = 0;
734
735 for (w = signals [signum].head; w; w = w->next)
736 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
737}
738
739static void
740sigcb (EV_P_ ev_io *iow, int revents)
741{
742 int signum;
743
744 read (sigpipe [0], &revents, 1);
745 gotsig = 0;
746
747 for (signum = signalmax; signum--; )
748 if (signals [signum].gotsig)
749 ev_feed_signal_event (EV_A_ signum + 1);
750}
751
752void inline_size
753fd_intern (int fd) 1180fd_intern (int fd)
754{ 1181{
755#ifdef _WIN32 1182#ifdef _WIN32
756 int arg = 1; 1183 unsigned long arg = 1;
757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1184 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
758#else 1185#else
759 fcntl (fd, F_SETFD, FD_CLOEXEC); 1186 fcntl (fd, F_SETFD, FD_CLOEXEC);
760 fcntl (fd, F_SETFL, O_NONBLOCK); 1187 fcntl (fd, F_SETFL, O_NONBLOCK);
761#endif 1188#endif
762} 1189}
763 1190
764static void noinline 1191static void noinline
765siginit (EV_P) 1192evpipe_init (EV_P)
766{ 1193{
1194 if (!ev_is_active (&pipe_w))
1195 {
1196#if EV_USE_EVENTFD
1197 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1198 if (evfd < 0 && errno == EINVAL)
1199 evfd = eventfd (0, 0);
1200
1201 if (evfd >= 0)
1202 {
1203 evpipe [0] = -1;
1204 fd_intern (evfd); /* doing it twice doesn't hurt */
1205 ev_io_set (&pipe_w, evfd, EV_READ);
1206 }
1207 else
1208#endif
1209 {
1210 while (pipe (evpipe))
1211 ev_syserr ("(libev) error creating signal/async pipe");
1212
767 fd_intern (sigpipe [0]); 1213 fd_intern (evpipe [0]);
768 fd_intern (sigpipe [1]); 1214 fd_intern (evpipe [1]);
1215 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1216 }
769 1217
770 ev_io_set (&sigev, sigpipe [0], EV_READ);
771 ev_io_start (EV_A_ &sigev); 1218 ev_io_start (EV_A_ &pipe_w);
772 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1219 ev_unref (EV_A); /* watcher should not keep loop alive */
1220 }
1221}
1222
1223inline_size void
1224evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1225{
1226 if (!*flag)
1227 {
1228 int old_errno = errno; /* save errno because write might clobber it */
1229
1230 *flag = 1;
1231
1232#if EV_USE_EVENTFD
1233 if (evfd >= 0)
1234 {
1235 uint64_t counter = 1;
1236 write (evfd, &counter, sizeof (uint64_t));
1237 }
1238 else
1239#endif
1240 write (evpipe [1], &old_errno, 1);
1241
1242 errno = old_errno;
1243 }
1244}
1245
1246/* called whenever the libev signal pipe */
1247/* got some events (signal, async) */
1248static void
1249pipecb (EV_P_ ev_io *iow, int revents)
1250{
1251 int i;
1252
1253#if EV_USE_EVENTFD
1254 if (evfd >= 0)
1255 {
1256 uint64_t counter;
1257 read (evfd, &counter, sizeof (uint64_t));
1258 }
1259 else
1260#endif
1261 {
1262 char dummy;
1263 read (evpipe [0], &dummy, 1);
1264 }
1265
1266 if (sig_pending)
1267 {
1268 sig_pending = 0;
1269
1270 for (i = EV_NSIG - 1; i--; )
1271 if (expect_false (signals [i].pending))
1272 ev_feed_signal_event (EV_A_ i + 1);
1273 }
1274
1275#if EV_ASYNC_ENABLE
1276 if (async_pending)
1277 {
1278 async_pending = 0;
1279
1280 for (i = asynccnt; i--; )
1281 if (asyncs [i]->sent)
1282 {
1283 asyncs [i]->sent = 0;
1284 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1285 }
1286 }
1287#endif
773} 1288}
774 1289
775/*****************************************************************************/ 1290/*****************************************************************************/
776 1291
1292static void
1293ev_sighandler (int signum)
1294{
1295#if EV_MULTIPLICITY
1296 EV_P = signals [signum - 1].loop;
1297#endif
1298
1299#if _WIN32
1300 signal (signum, ev_sighandler);
1301#endif
1302
1303 signals [signum - 1].pending = 1;
1304 evpipe_write (EV_A_ &sig_pending);
1305}
1306
1307void noinline
1308ev_feed_signal_event (EV_P_ int signum)
1309{
1310 WL w;
1311
1312 if (expect_false (signum <= 0 || signum > EV_NSIG))
1313 return;
1314
1315 --signum;
1316
1317#if EV_MULTIPLICITY
1318 /* it is permissible to try to feed a signal to the wrong loop */
1319 /* or, likely more useful, feeding a signal nobody is waiting for */
1320
1321 if (expect_false (signals [signum].loop != EV_A))
1322 return;
1323#endif
1324
1325 signals [signum].pending = 0;
1326
1327 for (w = signals [signum].head; w; w = w->next)
1328 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1329}
1330
1331#if EV_USE_SIGNALFD
1332static void
1333sigfdcb (EV_P_ ev_io *iow, int revents)
1334{
1335 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1336
1337 for (;;)
1338 {
1339 ssize_t res = read (sigfd, si, sizeof (si));
1340
1341 /* not ISO-C, as res might be -1, but works with SuS */
1342 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1343 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1344
1345 if (res < (ssize_t)sizeof (si))
1346 break;
1347 }
1348}
1349#endif
1350
1351/*****************************************************************************/
1352
777static ev_child *childs [EV_PID_HASHSIZE]; 1353static WL childs [EV_PID_HASHSIZE];
778 1354
779#ifndef _WIN32 1355#ifndef _WIN32
780 1356
781static ev_signal childev; 1357static ev_signal childev;
782 1358
783void inline_speed 1359#ifndef WIFCONTINUED
1360# define WIFCONTINUED(status) 0
1361#endif
1362
1363/* handle a single child status event */
1364inline_speed void
784child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1365child_reap (EV_P_ int chain, int pid, int status)
785{ 1366{
786 ev_child *w; 1367 ev_child *w;
1368 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
787 1369
788 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1370 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1371 {
789 if (w->pid == pid || !w->pid) 1372 if ((w->pid == pid || !w->pid)
1373 && (!traced || (w->flags & 1)))
790 { 1374 {
791 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1375 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
792 w->rpid = pid; 1376 w->rpid = pid;
793 w->rstatus = status; 1377 w->rstatus = status;
794 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1378 ev_feed_event (EV_A_ (W)w, EV_CHILD);
795 } 1379 }
1380 }
796} 1381}
797 1382
798#ifndef WCONTINUED 1383#ifndef WCONTINUED
799# define WCONTINUED 0 1384# define WCONTINUED 0
800#endif 1385#endif
801 1386
1387/* called on sigchld etc., calls waitpid */
802static void 1388static void
803childcb (EV_P_ ev_signal *sw, int revents) 1389childcb (EV_P_ ev_signal *sw, int revents)
804{ 1390{
805 int pid, status; 1391 int pid, status;
806 1392
809 if (!WCONTINUED 1395 if (!WCONTINUED
810 || errno != EINVAL 1396 || errno != EINVAL
811 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1397 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
812 return; 1398 return;
813 1399
814 /* make sure we are called again until all childs have been reaped */ 1400 /* make sure we are called again until all children have been reaped */
815 /* we need to do it this way so that the callback gets called before we continue */ 1401 /* we need to do it this way so that the callback gets called before we continue */
816 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1402 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
817 1403
818 child_reap (EV_A_ sw, pid, pid, status); 1404 child_reap (EV_A_ pid, pid, status);
819 if (EV_PID_HASHSIZE > 1) 1405 if (EV_PID_HASHSIZE > 1)
820 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1406 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
821} 1407}
822 1408
823#endif 1409#endif
824 1410
825/*****************************************************************************/ 1411/*****************************************************************************/
887 /* kqueue is borked on everything but netbsd apparently */ 1473 /* kqueue is borked on everything but netbsd apparently */
888 /* it usually doesn't work correctly on anything but sockets and pipes */ 1474 /* it usually doesn't work correctly on anything but sockets and pipes */
889 flags &= ~EVBACKEND_KQUEUE; 1475 flags &= ~EVBACKEND_KQUEUE;
890#endif 1476#endif
891#ifdef __APPLE__ 1477#ifdef __APPLE__
892 // flags &= ~EVBACKEND_KQUEUE; for documentation 1478 /* only select works correctly on that "unix-certified" platform */
893 flags &= ~EVBACKEND_POLL; 1479 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1480 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
894#endif 1481#endif
895 1482
896 return flags; 1483 return flags;
897} 1484}
898 1485
899unsigned int 1486unsigned int
900ev_embeddable_backends (void) 1487ev_embeddable_backends (void)
901{ 1488{
902 return EVBACKEND_EPOLL 1489 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
903 | EVBACKEND_KQUEUE 1490
904 | EVBACKEND_PORT; 1491 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1492 /* please fix it and tell me how to detect the fix */
1493 flags &= ~EVBACKEND_EPOLL;
1494
1495 return flags;
905} 1496}
906 1497
907unsigned int 1498unsigned int
908ev_backend (EV_P) 1499ev_backend (EV_P)
909{ 1500{
910 return backend; 1501 return backend;
911} 1502}
912 1503
1504#if EV_MINIMAL < 2
913unsigned int 1505unsigned int
914ev_loop_count (EV_P) 1506ev_loop_count (EV_P)
915{ 1507{
916 return loop_count; 1508 return loop_count;
917} 1509}
918 1510
1511unsigned int
1512ev_loop_depth (EV_P)
1513{
1514 return loop_depth;
1515}
1516
1517void
1518ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1519{
1520 io_blocktime = interval;
1521}
1522
1523void
1524ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1525{
1526 timeout_blocktime = interval;
1527}
1528
1529void
1530ev_set_userdata (EV_P_ void *data)
1531{
1532 userdata = data;
1533}
1534
1535void *
1536ev_userdata (EV_P)
1537{
1538 return userdata;
1539}
1540
1541void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1542{
1543 invoke_cb = invoke_pending_cb;
1544}
1545
1546void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1547{
1548 release_cb = release;
1549 acquire_cb = acquire;
1550}
1551#endif
1552
1553/* initialise a loop structure, must be zero-initialised */
919static void noinline 1554static void noinline
920loop_init (EV_P_ unsigned int flags) 1555loop_init (EV_P_ unsigned int flags)
921{ 1556{
922 if (!backend) 1557 if (!backend)
923 { 1558 {
1559#if EV_USE_REALTIME
1560 if (!have_realtime)
1561 {
1562 struct timespec ts;
1563
1564 if (!clock_gettime (CLOCK_REALTIME, &ts))
1565 have_realtime = 1;
1566 }
1567#endif
1568
924#if EV_USE_MONOTONIC 1569#if EV_USE_MONOTONIC
1570 if (!have_monotonic)
925 { 1571 {
926 struct timespec ts; 1572 struct timespec ts;
1573
927 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1574 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
928 have_monotonic = 1; 1575 have_monotonic = 1;
929 } 1576 }
930#endif 1577#endif
931
932 ev_rt_now = ev_time ();
933 mn_now = get_clock ();
934 now_floor = mn_now;
935 rtmn_diff = ev_rt_now - mn_now;
936 1578
937 /* pid check not overridable via env */ 1579 /* pid check not overridable via env */
938#ifndef _WIN32 1580#ifndef _WIN32
939 if (flags & EVFLAG_FORKCHECK) 1581 if (flags & EVFLAG_FORKCHECK)
940 curpid = getpid (); 1582 curpid = getpid ();
943 if (!(flags & EVFLAG_NOENV) 1585 if (!(flags & EVFLAG_NOENV)
944 && !enable_secure () 1586 && !enable_secure ()
945 && getenv ("LIBEV_FLAGS")) 1587 && getenv ("LIBEV_FLAGS"))
946 flags = atoi (getenv ("LIBEV_FLAGS")); 1588 flags = atoi (getenv ("LIBEV_FLAGS"));
947 1589
1590 ev_rt_now = ev_time ();
1591 mn_now = get_clock ();
1592 now_floor = mn_now;
1593 rtmn_diff = ev_rt_now - mn_now;
1594#if EV_MINIMAL < 2
1595 invoke_cb = ev_invoke_pending;
1596#endif
1597
1598 io_blocktime = 0.;
1599 timeout_blocktime = 0.;
1600 backend = 0;
1601 backend_fd = -1;
1602 sig_pending = 0;
1603#if EV_ASYNC_ENABLE
1604 async_pending = 0;
1605#endif
1606#if EV_USE_INOTIFY
1607 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1608#endif
1609#if EV_USE_SIGNALFD
1610 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1611#endif
1612
948 if (!(flags & 0x0000ffffUL)) 1613 if (!(flags & 0x0000ffffU))
949 flags |= ev_recommended_backends (); 1614 flags |= ev_recommended_backends ();
950
951 backend = 0;
952 backend_fd = -1;
953#if EV_USE_INOTIFY
954 fs_fd = -2;
955#endif
956 1615
957#if EV_USE_PORT 1616#if EV_USE_PORT
958 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1617 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
959#endif 1618#endif
960#if EV_USE_KQUEUE 1619#if EV_USE_KQUEUE
968#endif 1627#endif
969#if EV_USE_SELECT 1628#if EV_USE_SELECT
970 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1629 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
971#endif 1630#endif
972 1631
1632 ev_prepare_init (&pending_w, pendingcb);
1633
973 ev_init (&sigev, sigcb); 1634 ev_init (&pipe_w, pipecb);
974 ev_set_priority (&sigev, EV_MAXPRI); 1635 ev_set_priority (&pipe_w, EV_MAXPRI);
975 } 1636 }
976} 1637}
977 1638
1639/* free up a loop structure */
978static void noinline 1640static void noinline
979loop_destroy (EV_P) 1641loop_destroy (EV_P)
980{ 1642{
981 int i; 1643 int i;
1644
1645 if (ev_is_active (&pipe_w))
1646 {
1647 /*ev_ref (EV_A);*/
1648 /*ev_io_stop (EV_A_ &pipe_w);*/
1649
1650#if EV_USE_EVENTFD
1651 if (evfd >= 0)
1652 close (evfd);
1653#endif
1654
1655 if (evpipe [0] >= 0)
1656 {
1657 EV_WIN32_CLOSE_FD (evpipe [0]);
1658 EV_WIN32_CLOSE_FD (evpipe [1]);
1659 }
1660 }
1661
1662#if EV_USE_SIGNALFD
1663 if (ev_is_active (&sigfd_w))
1664 {
1665 /*ev_ref (EV_A);*/
1666 /*ev_io_stop (EV_A_ &sigfd_w);*/
1667
1668 close (sigfd);
1669 }
1670#endif
982 1671
983#if EV_USE_INOTIFY 1672#if EV_USE_INOTIFY
984 if (fs_fd >= 0) 1673 if (fs_fd >= 0)
985 close (fs_fd); 1674 close (fs_fd);
986#endif 1675#endif
1003#if EV_USE_SELECT 1692#if EV_USE_SELECT
1004 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1693 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1005#endif 1694#endif
1006 1695
1007 for (i = NUMPRI; i--; ) 1696 for (i = NUMPRI; i--; )
1697 {
1008 array_free (pending, [i]); 1698 array_free (pending, [i]);
1699#if EV_IDLE_ENABLE
1700 array_free (idle, [i]);
1701#endif
1702 }
1703
1704 ev_free (anfds); anfds = 0; anfdmax = 0;
1009 1705
1010 /* have to use the microsoft-never-gets-it-right macro */ 1706 /* have to use the microsoft-never-gets-it-right macro */
1707 array_free (rfeed, EMPTY);
1011 array_free (fdchange, EMPTY0); 1708 array_free (fdchange, EMPTY);
1012 array_free (timer, EMPTY0); 1709 array_free (timer, EMPTY);
1013#if EV_PERIODIC_ENABLE 1710#if EV_PERIODIC_ENABLE
1014 array_free (periodic, EMPTY0); 1711 array_free (periodic, EMPTY);
1015#endif 1712#endif
1713#if EV_FORK_ENABLE
1016 array_free (idle, EMPTY0); 1714 array_free (fork, EMPTY);
1715#endif
1017 array_free (prepare, EMPTY0); 1716 array_free (prepare, EMPTY);
1018 array_free (check, EMPTY0); 1717 array_free (check, EMPTY);
1718#if EV_ASYNC_ENABLE
1719 array_free (async, EMPTY);
1720#endif
1019 1721
1020 backend = 0; 1722 backend = 0;
1021} 1723}
1022 1724
1725#if EV_USE_INOTIFY
1023void inline_size infy_fork (EV_P); 1726inline_size void infy_fork (EV_P);
1727#endif
1024 1728
1025void inline_size 1729inline_size void
1026loop_fork (EV_P) 1730loop_fork (EV_P)
1027{ 1731{
1028#if EV_USE_PORT 1732#if EV_USE_PORT
1029 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1733 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1030#endif 1734#endif
1036#endif 1740#endif
1037#if EV_USE_INOTIFY 1741#if EV_USE_INOTIFY
1038 infy_fork (EV_A); 1742 infy_fork (EV_A);
1039#endif 1743#endif
1040 1744
1041 if (ev_is_active (&sigev)) 1745 if (ev_is_active (&pipe_w))
1042 { 1746 {
1043 /* default loop */ 1747 /* this "locks" the handlers against writing to the pipe */
1748 /* while we modify the fd vars */
1749 sig_pending = 1;
1750#if EV_ASYNC_ENABLE
1751 async_pending = 1;
1752#endif
1044 1753
1045 ev_ref (EV_A); 1754 ev_ref (EV_A);
1046 ev_io_stop (EV_A_ &sigev); 1755 ev_io_stop (EV_A_ &pipe_w);
1047 close (sigpipe [0]);
1048 close (sigpipe [1]);
1049 1756
1050 while (pipe (sigpipe)) 1757#if EV_USE_EVENTFD
1051 syserr ("(libev) error creating pipe"); 1758 if (evfd >= 0)
1759 close (evfd);
1760#endif
1052 1761
1762 if (evpipe [0] >= 0)
1763 {
1764 EV_WIN32_CLOSE_FD (evpipe [0]);
1765 EV_WIN32_CLOSE_FD (evpipe [1]);
1766 }
1767
1053 siginit (EV_A); 1768 evpipe_init (EV_A);
1769 /* now iterate over everything, in case we missed something */
1770 pipecb (EV_A_ &pipe_w, EV_READ);
1054 } 1771 }
1055 1772
1056 postfork = 0; 1773 postfork = 0;
1057} 1774}
1058 1775
1059#if EV_MULTIPLICITY 1776#if EV_MULTIPLICITY
1777
1060struct ev_loop * 1778struct ev_loop *
1061ev_loop_new (unsigned int flags) 1779ev_loop_new (unsigned int flags)
1062{ 1780{
1063 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1781 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1064 1782
1065 memset (loop, 0, sizeof (struct ev_loop)); 1783 memset (EV_A, 0, sizeof (struct ev_loop));
1066
1067 loop_init (EV_A_ flags); 1784 loop_init (EV_A_ flags);
1068 1785
1069 if (ev_backend (EV_A)) 1786 if (ev_backend (EV_A))
1070 return loop; 1787 return EV_A;
1071 1788
1072 return 0; 1789 return 0;
1073} 1790}
1074 1791
1075void 1792void
1080} 1797}
1081 1798
1082void 1799void
1083ev_loop_fork (EV_P) 1800ev_loop_fork (EV_P)
1084{ 1801{
1085 postfork = 1; 1802 postfork = 1; /* must be in line with ev_default_fork */
1086} 1803}
1804#endif /* multiplicity */
1087 1805
1806#if EV_VERIFY
1807static void noinline
1808verify_watcher (EV_P_ W w)
1809{
1810 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1811
1812 if (w->pending)
1813 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1814}
1815
1816static void noinline
1817verify_heap (EV_P_ ANHE *heap, int N)
1818{
1819 int i;
1820
1821 for (i = HEAP0; i < N + HEAP0; ++i)
1822 {
1823 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1824 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1825 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1826
1827 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1828 }
1829}
1830
1831static void noinline
1832array_verify (EV_P_ W *ws, int cnt)
1833{
1834 while (cnt--)
1835 {
1836 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1837 verify_watcher (EV_A_ ws [cnt]);
1838 }
1839}
1840#endif
1841
1842#if EV_MINIMAL < 2
1843void
1844ev_loop_verify (EV_P)
1845{
1846#if EV_VERIFY
1847 int i;
1848 WL w;
1849
1850 assert (activecnt >= -1);
1851
1852 assert (fdchangemax >= fdchangecnt);
1853 for (i = 0; i < fdchangecnt; ++i)
1854 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1855
1856 assert (anfdmax >= 0);
1857 for (i = 0; i < anfdmax; ++i)
1858 for (w = anfds [i].head; w; w = w->next)
1859 {
1860 verify_watcher (EV_A_ (W)w);
1861 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1862 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1863 }
1864
1865 assert (timermax >= timercnt);
1866 verify_heap (EV_A_ timers, timercnt);
1867
1868#if EV_PERIODIC_ENABLE
1869 assert (periodicmax >= periodiccnt);
1870 verify_heap (EV_A_ periodics, periodiccnt);
1871#endif
1872
1873 for (i = NUMPRI; i--; )
1874 {
1875 assert (pendingmax [i] >= pendingcnt [i]);
1876#if EV_IDLE_ENABLE
1877 assert (idleall >= 0);
1878 assert (idlemax [i] >= idlecnt [i]);
1879 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1880#endif
1881 }
1882
1883#if EV_FORK_ENABLE
1884 assert (forkmax >= forkcnt);
1885 array_verify (EV_A_ (W *)forks, forkcnt);
1886#endif
1887
1888#if EV_ASYNC_ENABLE
1889 assert (asyncmax >= asynccnt);
1890 array_verify (EV_A_ (W *)asyncs, asynccnt);
1891#endif
1892
1893 assert (preparemax >= preparecnt);
1894 array_verify (EV_A_ (W *)prepares, preparecnt);
1895
1896 assert (checkmax >= checkcnt);
1897 array_verify (EV_A_ (W *)checks, checkcnt);
1898
1899# if 0
1900 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1901 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1902# endif
1903#endif
1904}
1088#endif 1905#endif
1089 1906
1090#if EV_MULTIPLICITY 1907#if EV_MULTIPLICITY
1091struct ev_loop * 1908struct ev_loop *
1092ev_default_loop_init (unsigned int flags) 1909ev_default_loop_init (unsigned int flags)
1093#else 1910#else
1094int 1911int
1095ev_default_loop (unsigned int flags) 1912ev_default_loop (unsigned int flags)
1096#endif 1913#endif
1097{ 1914{
1098 if (sigpipe [0] == sigpipe [1])
1099 if (pipe (sigpipe))
1100 return 0;
1101
1102 if (!ev_default_loop_ptr) 1915 if (!ev_default_loop_ptr)
1103 { 1916 {
1104#if EV_MULTIPLICITY 1917#if EV_MULTIPLICITY
1105 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1918 EV_P = ev_default_loop_ptr = &default_loop_struct;
1106#else 1919#else
1107 ev_default_loop_ptr = 1; 1920 ev_default_loop_ptr = 1;
1108#endif 1921#endif
1109 1922
1110 loop_init (EV_A_ flags); 1923 loop_init (EV_A_ flags);
1111 1924
1112 if (ev_backend (EV_A)) 1925 if (ev_backend (EV_A))
1113 { 1926 {
1114 siginit (EV_A);
1115
1116#ifndef _WIN32 1927#ifndef _WIN32
1117 ev_signal_init (&childev, childcb, SIGCHLD); 1928 ev_signal_init (&childev, childcb, SIGCHLD);
1118 ev_set_priority (&childev, EV_MAXPRI); 1929 ev_set_priority (&childev, EV_MAXPRI);
1119 ev_signal_start (EV_A_ &childev); 1930 ev_signal_start (EV_A_ &childev);
1120 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1931 ev_unref (EV_A); /* child watcher should not keep loop alive */
1129 1940
1130void 1941void
1131ev_default_destroy (void) 1942ev_default_destroy (void)
1132{ 1943{
1133#if EV_MULTIPLICITY 1944#if EV_MULTIPLICITY
1134 struct ev_loop *loop = ev_default_loop_ptr; 1945 EV_P = ev_default_loop_ptr;
1135#endif 1946#endif
1947
1948 ev_default_loop_ptr = 0;
1136 1949
1137#ifndef _WIN32 1950#ifndef _WIN32
1138 ev_ref (EV_A); /* child watcher */ 1951 ev_ref (EV_A); /* child watcher */
1139 ev_signal_stop (EV_A_ &childev); 1952 ev_signal_stop (EV_A_ &childev);
1140#endif 1953#endif
1141 1954
1142 ev_ref (EV_A); /* signal watcher */
1143 ev_io_stop (EV_A_ &sigev);
1144
1145 close (sigpipe [0]); sigpipe [0] = 0;
1146 close (sigpipe [1]); sigpipe [1] = 0;
1147
1148 loop_destroy (EV_A); 1955 loop_destroy (EV_A);
1149} 1956}
1150 1957
1151void 1958void
1152ev_default_fork (void) 1959ev_default_fork (void)
1153{ 1960{
1154#if EV_MULTIPLICITY 1961#if EV_MULTIPLICITY
1155 struct ev_loop *loop = ev_default_loop_ptr; 1962 EV_P = ev_default_loop_ptr;
1156#endif 1963#endif
1157 1964
1158 if (backend) 1965 postfork = 1; /* must be in line with ev_loop_fork */
1159 postfork = 1;
1160} 1966}
1161 1967
1162/*****************************************************************************/ 1968/*****************************************************************************/
1163 1969
1164int inline_size 1970void
1165any_pending (EV_P) 1971ev_invoke (EV_P_ void *w, int revents)
1972{
1973 EV_CB_INVOKE ((W)w, revents);
1974}
1975
1976unsigned int
1977ev_pending_count (EV_P)
1166{ 1978{
1167 int pri; 1979 int pri;
1980 unsigned int count = 0;
1168 1981
1169 for (pri = NUMPRI; pri--; ) 1982 for (pri = NUMPRI; pri--; )
1170 if (pendingcnt [pri]) 1983 count += pendingcnt [pri];
1171 return 1;
1172 1984
1173 return 0; 1985 return count;
1174} 1986}
1175 1987
1176void inline_speed 1988void noinline
1177call_pending (EV_P) 1989ev_invoke_pending (EV_P)
1178{ 1990{
1179 int pri; 1991 int pri;
1180 1992
1181 for (pri = NUMPRI; pri--; ) 1993 for (pri = NUMPRI; pri--; )
1182 while (pendingcnt [pri]) 1994 while (pendingcnt [pri])
1183 { 1995 {
1184 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1996 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1185 1997
1186 if (expect_true (p->w))
1187 {
1188 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1998 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1999 /* ^ this is no longer true, as pending_w could be here */
1189 2000
1190 p->w->pending = 0; 2001 p->w->pending = 0;
1191 EV_CB_INVOKE (p->w, p->events); 2002 EV_CB_INVOKE (p->w, p->events);
1192 } 2003 EV_FREQUENT_CHECK;
1193 } 2004 }
1194} 2005}
1195 2006
1196void inline_size 2007#if EV_IDLE_ENABLE
2008/* make idle watchers pending. this handles the "call-idle */
2009/* only when higher priorities are idle" logic */
2010inline_size void
2011idle_reify (EV_P)
2012{
2013 if (expect_false (idleall))
2014 {
2015 int pri;
2016
2017 for (pri = NUMPRI; pri--; )
2018 {
2019 if (pendingcnt [pri])
2020 break;
2021
2022 if (idlecnt [pri])
2023 {
2024 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2025 break;
2026 }
2027 }
2028 }
2029}
2030#endif
2031
2032/* make timers pending */
2033inline_size void
1197timers_reify (EV_P) 2034timers_reify (EV_P)
1198{ 2035{
2036 EV_FREQUENT_CHECK;
2037
1199 while (timercnt && ((WT)timers [0])->at <= mn_now) 2038 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1200 { 2039 {
1201 ev_timer *w = timers [0]; 2040 do
1202
1203 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1204
1205 /* first reschedule or stop timer */
1206 if (w->repeat)
1207 { 2041 {
2042 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2043
2044 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2045
2046 /* first reschedule or stop timer */
2047 if (w->repeat)
2048 {
2049 ev_at (w) += w->repeat;
2050 if (ev_at (w) < mn_now)
2051 ev_at (w) = mn_now;
2052
1208 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2053 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1209 2054
1210 ((WT)w)->at += w->repeat; 2055 ANHE_at_cache (timers [HEAP0]);
1211 if (((WT)w)->at < mn_now)
1212 ((WT)w)->at = mn_now;
1213
1214 downheap ((WT *)timers, timercnt, 0); 2056 downheap (timers, timercnt, HEAP0);
2057 }
2058 else
2059 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2060
2061 EV_FREQUENT_CHECK;
2062 feed_reverse (EV_A_ (W)w);
1215 } 2063 }
1216 else 2064 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1217 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1218 2065
1219 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2066 feed_reverse_done (EV_A_ EV_TIMEOUT);
1220 } 2067 }
1221} 2068}
1222 2069
1223#if EV_PERIODIC_ENABLE 2070#if EV_PERIODIC_ENABLE
1224void inline_size 2071/* make periodics pending */
2072inline_size void
1225periodics_reify (EV_P) 2073periodics_reify (EV_P)
1226{ 2074{
2075 EV_FREQUENT_CHECK;
2076
1227 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2077 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1228 { 2078 {
1229 ev_periodic *w = periodics [0]; 2079 int feed_count = 0;
1230 2080
1231 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2081 do
1232
1233 /* first reschedule or stop timer */
1234 if (w->reschedule_cb)
1235 { 2082 {
2083 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2084
2085 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2086
2087 /* first reschedule or stop timer */
2088 if (w->reschedule_cb)
2089 {
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2090 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2091
1237 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2092 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2093
2094 ANHE_at_cache (periodics [HEAP0]);
1238 downheap ((WT *)periodics, periodiccnt, 0); 2095 downheap (periodics, periodiccnt, HEAP0);
2096 }
2097 else if (w->interval)
2098 {
2099 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2100 /* if next trigger time is not sufficiently in the future, put it there */
2101 /* this might happen because of floating point inexactness */
2102 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2103 {
2104 ev_at (w) += w->interval;
2105
2106 /* if interval is unreasonably low we might still have a time in the past */
2107 /* so correct this. this will make the periodic very inexact, but the user */
2108 /* has effectively asked to get triggered more often than possible */
2109 if (ev_at (w) < ev_rt_now)
2110 ev_at (w) = ev_rt_now;
2111 }
2112
2113 ANHE_at_cache (periodics [HEAP0]);
2114 downheap (periodics, periodiccnt, HEAP0);
2115 }
2116 else
2117 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2118
2119 EV_FREQUENT_CHECK;
2120 feed_reverse (EV_A_ (W)w);
1239 } 2121 }
1240 else if (w->interval) 2122 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1241 {
1242 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1243 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1244 downheap ((WT *)periodics, periodiccnt, 0);
1245 }
1246 else
1247 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1248 2123
1249 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2124 feed_reverse_done (EV_A_ EV_PERIODIC);
1250 } 2125 }
1251} 2126}
1252 2127
2128/* simply recalculate all periodics */
2129/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1253static void noinline 2130static void noinline
1254periodics_reschedule (EV_P) 2131periodics_reschedule (EV_P)
1255{ 2132{
1256 int i; 2133 int i;
1257 2134
1258 /* adjust periodics after time jump */ 2135 /* adjust periodics after time jump */
1259 for (i = 0; i < periodiccnt; ++i) 2136 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1260 { 2137 {
1261 ev_periodic *w = periodics [i]; 2138 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1262 2139
1263 if (w->reschedule_cb) 2140 if (w->reschedule_cb)
1264 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2141 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1265 else if (w->interval) 2142 else if (w->interval)
1266 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2143 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2144
2145 ANHE_at_cache (periodics [i]);
2146 }
2147
2148 reheap (periodics, periodiccnt);
2149}
2150#endif
2151
2152/* adjust all timers by a given offset */
2153static void noinline
2154timers_reschedule (EV_P_ ev_tstamp adjust)
2155{
2156 int i;
2157
2158 for (i = 0; i < timercnt; ++i)
1267 } 2159 {
1268 2160 ANHE *he = timers + i + HEAP0;
1269 /* now rebuild the heap */ 2161 ANHE_w (*he)->at += adjust;
1270 for (i = periodiccnt >> 1; i--; ) 2162 ANHE_at_cache (*he);
1271 downheap ((WT *)periodics, periodiccnt, i); 2163 }
1272} 2164}
1273#endif
1274 2165
1275int inline_size 2166/* fetch new monotonic and realtime times from the kernel */
1276time_update_monotonic (EV_P) 2167/* also detetc if there was a timejump, and act accordingly */
2168inline_speed void
2169time_update (EV_P_ ev_tstamp max_block)
1277{ 2170{
2171#if EV_USE_MONOTONIC
2172 if (expect_true (have_monotonic))
2173 {
2174 int i;
2175 ev_tstamp odiff = rtmn_diff;
2176
1278 mn_now = get_clock (); 2177 mn_now = get_clock ();
1279 2178
2179 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2180 /* interpolate in the meantime */
1280 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2181 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1281 { 2182 {
1282 ev_rt_now = rtmn_diff + mn_now; 2183 ev_rt_now = rtmn_diff + mn_now;
1283 return 0; 2184 return;
1284 } 2185 }
1285 else 2186
1286 {
1287 now_floor = mn_now; 2187 now_floor = mn_now;
1288 ev_rt_now = ev_time (); 2188 ev_rt_now = ev_time ();
1289 return 1;
1290 }
1291}
1292 2189
1293void inline_size 2190 /* loop a few times, before making important decisions.
1294time_update (EV_P) 2191 * on the choice of "4": one iteration isn't enough,
1295{ 2192 * in case we get preempted during the calls to
1296 int i; 2193 * ev_time and get_clock. a second call is almost guaranteed
1297 2194 * to succeed in that case, though. and looping a few more times
1298#if EV_USE_MONOTONIC 2195 * doesn't hurt either as we only do this on time-jumps or
1299 if (expect_true (have_monotonic)) 2196 * in the unlikely event of having been preempted here.
1300 { 2197 */
1301 if (time_update_monotonic (EV_A)) 2198 for (i = 4; --i; )
1302 { 2199 {
1303 ev_tstamp odiff = rtmn_diff;
1304
1305 /* loop a few times, before making important decisions.
1306 * on the choice of "4": one iteration isn't enough,
1307 * in case we get preempted during the calls to
1308 * ev_time and get_clock. a second call is almost guaranteed
1309 * to succeed in that case, though. and looping a few more times
1310 * doesn't hurt either as we only do this on time-jumps or
1311 * in the unlikely event of having been preempted here.
1312 */
1313 for (i = 4; --i; )
1314 {
1315 rtmn_diff = ev_rt_now - mn_now; 2200 rtmn_diff = ev_rt_now - mn_now;
1316 2201
1317 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2202 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1318 return; /* all is well */ 2203 return; /* all is well */
1319 2204
1320 ev_rt_now = ev_time (); 2205 ev_rt_now = ev_time ();
1321 mn_now = get_clock (); 2206 mn_now = get_clock ();
1322 now_floor = mn_now; 2207 now_floor = mn_now;
1323 } 2208 }
1324 2209
2210 /* no timer adjustment, as the monotonic clock doesn't jump */
2211 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1325# if EV_PERIODIC_ENABLE 2212# if EV_PERIODIC_ENABLE
1326 periodics_reschedule (EV_A); 2213 periodics_reschedule (EV_A);
1327# endif 2214# endif
1328 /* no timer adjustment, as the monotonic clock doesn't jump */
1329 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1330 }
1331 } 2215 }
1332 else 2216 else
1333#endif 2217#endif
1334 { 2218 {
1335 ev_rt_now = ev_time (); 2219 ev_rt_now = ev_time ();
1336 2220
1337 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2221 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1338 { 2222 {
2223 /* adjust timers. this is easy, as the offset is the same for all of them */
2224 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1339#if EV_PERIODIC_ENABLE 2225#if EV_PERIODIC_ENABLE
1340 periodics_reschedule (EV_A); 2226 periodics_reschedule (EV_A);
1341#endif 2227#endif
1342
1343 /* adjust timers. this is easy, as the offset is the same for all of them */
1344 for (i = 0; i < timercnt; ++i)
1345 ((WT)timers [i])->at += ev_rt_now - mn_now;
1346 } 2228 }
1347 2229
1348 mn_now = ev_rt_now; 2230 mn_now = ev_rt_now;
1349 } 2231 }
1350} 2232}
1351 2233
1352void 2234void
1353ev_ref (EV_P)
1354{
1355 ++activecnt;
1356}
1357
1358void
1359ev_unref (EV_P)
1360{
1361 --activecnt;
1362}
1363
1364static int loop_done;
1365
1366void
1367ev_loop (EV_P_ int flags) 2235ev_loop (EV_P_ int flags)
1368{ 2236{
1369 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2237#if EV_MINIMAL < 2
1370 ? EVUNLOOP_ONE 2238 ++loop_depth;
1371 : EVUNLOOP_CANCEL; 2239#endif
1372 2240
2241 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2242
2243 loop_done = EVUNLOOP_CANCEL;
2244
1373 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2245 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1374 2246
1375 do 2247 do
1376 { 2248 {
2249#if EV_VERIFY >= 2
2250 ev_loop_verify (EV_A);
2251#endif
2252
1377#ifndef _WIN32 2253#ifndef _WIN32
1378 if (expect_false (curpid)) /* penalise the forking check even more */ 2254 if (expect_false (curpid)) /* penalise the forking check even more */
1379 if (expect_false (getpid () != curpid)) 2255 if (expect_false (getpid () != curpid))
1380 { 2256 {
1381 curpid = getpid (); 2257 curpid = getpid ();
1387 /* we might have forked, so queue fork handlers */ 2263 /* we might have forked, so queue fork handlers */
1388 if (expect_false (postfork)) 2264 if (expect_false (postfork))
1389 if (forkcnt) 2265 if (forkcnt)
1390 { 2266 {
1391 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2267 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1392 call_pending (EV_A); 2268 EV_INVOKE_PENDING;
1393 } 2269 }
1394#endif 2270#endif
1395 2271
1396 /* queue check watchers (and execute them) */ 2272 /* queue prepare watchers (and execute them) */
1397 if (expect_false (preparecnt)) 2273 if (expect_false (preparecnt))
1398 { 2274 {
1399 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2275 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1400 call_pending (EV_A); 2276 EV_INVOKE_PENDING;
1401 } 2277 }
1402 2278
1403 if (expect_false (!activecnt)) 2279 if (expect_false (loop_done))
1404 break; 2280 break;
1405 2281
1406 /* we might have forked, so reify kernel state if necessary */ 2282 /* we might have forked, so reify kernel state if necessary */
1407 if (expect_false (postfork)) 2283 if (expect_false (postfork))
1408 loop_fork (EV_A); 2284 loop_fork (EV_A);
1410 /* update fd-related kernel structures */ 2286 /* update fd-related kernel structures */
1411 fd_reify (EV_A); 2287 fd_reify (EV_A);
1412 2288
1413 /* calculate blocking time */ 2289 /* calculate blocking time */
1414 { 2290 {
1415 ev_tstamp block; 2291 ev_tstamp waittime = 0.;
2292 ev_tstamp sleeptime = 0.;
1416 2293
1417 if (expect_false (flags & EVLOOP_NONBLOCK || idlecnt || !activecnt)) 2294 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1418 block = 0.; /* do not block at all */
1419 else
1420 { 2295 {
2296 /* remember old timestamp for io_blocktime calculation */
2297 ev_tstamp prev_mn_now = mn_now;
2298
1421 /* update time to cancel out callback processing overhead */ 2299 /* update time to cancel out callback processing overhead */
1422#if EV_USE_MONOTONIC
1423 if (expect_true (have_monotonic))
1424 time_update_monotonic (EV_A); 2300 time_update (EV_A_ 1e100);
1425 else
1426#endif
1427 {
1428 ev_rt_now = ev_time ();
1429 mn_now = ev_rt_now;
1430 }
1431 2301
1432 block = MAX_BLOCKTIME; 2302 waittime = MAX_BLOCKTIME;
1433 2303
1434 if (timercnt) 2304 if (timercnt)
1435 { 2305 {
1436 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2306 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1437 if (block > to) block = to; 2307 if (waittime > to) waittime = to;
1438 } 2308 }
1439 2309
1440#if EV_PERIODIC_ENABLE 2310#if EV_PERIODIC_ENABLE
1441 if (periodiccnt) 2311 if (periodiccnt)
1442 { 2312 {
1443 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2313 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1444 if (block > to) block = to; 2314 if (waittime > to) waittime = to;
1445 } 2315 }
1446#endif 2316#endif
1447 2317
2318 /* don't let timeouts decrease the waittime below timeout_blocktime */
2319 if (expect_false (waittime < timeout_blocktime))
2320 waittime = timeout_blocktime;
2321
2322 /* extra check because io_blocktime is commonly 0 */
1448 if (expect_false (block < 0.)) block = 0.; 2323 if (expect_false (io_blocktime))
2324 {
2325 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2326
2327 if (sleeptime > waittime - backend_fudge)
2328 sleeptime = waittime - backend_fudge;
2329
2330 if (expect_true (sleeptime > 0.))
2331 {
2332 ev_sleep (sleeptime);
2333 waittime -= sleeptime;
2334 }
2335 }
1449 } 2336 }
1450 2337
2338#if EV_MINIMAL < 2
1451 ++loop_count; 2339 ++loop_count;
2340#endif
2341 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1452 backend_poll (EV_A_ block); 2342 backend_poll (EV_A_ waittime);
2343 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2344
2345 /* update ev_rt_now, do magic */
2346 time_update (EV_A_ waittime + sleeptime);
1453 } 2347 }
1454
1455 /* update ev_rt_now, do magic */
1456 time_update (EV_A);
1457 2348
1458 /* queue pending timers and reschedule them */ 2349 /* queue pending timers and reschedule them */
1459 timers_reify (EV_A); /* relative timers called last */ 2350 timers_reify (EV_A); /* relative timers called last */
1460#if EV_PERIODIC_ENABLE 2351#if EV_PERIODIC_ENABLE
1461 periodics_reify (EV_A); /* absolute timers called first */ 2352 periodics_reify (EV_A); /* absolute timers called first */
1462#endif 2353#endif
1463 2354
2355#if EV_IDLE_ENABLE
1464 /* queue idle watchers unless other events are pending */ 2356 /* queue idle watchers unless other events are pending */
1465 if (idlecnt && !any_pending (EV_A)) 2357 idle_reify (EV_A);
1466 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2358#endif
1467 2359
1468 /* queue check watchers, to be executed first */ 2360 /* queue check watchers, to be executed first */
1469 if (expect_false (checkcnt)) 2361 if (expect_false (checkcnt))
1470 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2362 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1471 2363
1472 call_pending (EV_A); 2364 EV_INVOKE_PENDING;
1473
1474 } 2365 }
1475 while (expect_true (activecnt && !loop_done)); 2366 while (expect_true (
2367 activecnt
2368 && !loop_done
2369 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2370 ));
1476 2371
1477 if (loop_done == EVUNLOOP_ONE) 2372 if (loop_done == EVUNLOOP_ONE)
1478 loop_done = EVUNLOOP_CANCEL; 2373 loop_done = EVUNLOOP_CANCEL;
2374
2375#if EV_MINIMAL < 2
2376 --loop_depth;
2377#endif
1479} 2378}
1480 2379
1481void 2380void
1482ev_unloop (EV_P_ int how) 2381ev_unloop (EV_P_ int how)
1483{ 2382{
1484 loop_done = how; 2383 loop_done = how;
1485} 2384}
1486 2385
2386void
2387ev_ref (EV_P)
2388{
2389 ++activecnt;
2390}
2391
2392void
2393ev_unref (EV_P)
2394{
2395 --activecnt;
2396}
2397
2398void
2399ev_now_update (EV_P)
2400{
2401 time_update (EV_A_ 1e100);
2402}
2403
2404void
2405ev_suspend (EV_P)
2406{
2407 ev_now_update (EV_A);
2408}
2409
2410void
2411ev_resume (EV_P)
2412{
2413 ev_tstamp mn_prev = mn_now;
2414
2415 ev_now_update (EV_A);
2416 timers_reschedule (EV_A_ mn_now - mn_prev);
2417#if EV_PERIODIC_ENABLE
2418 /* TODO: really do this? */
2419 periodics_reschedule (EV_A);
2420#endif
2421}
2422
1487/*****************************************************************************/ 2423/*****************************************************************************/
2424/* singly-linked list management, used when the expected list length is short */
1488 2425
1489void inline_size 2426inline_size void
1490wlist_add (WL *head, WL elem) 2427wlist_add (WL *head, WL elem)
1491{ 2428{
1492 elem->next = *head; 2429 elem->next = *head;
1493 *head = elem; 2430 *head = elem;
1494} 2431}
1495 2432
1496void inline_size 2433inline_size void
1497wlist_del (WL *head, WL elem) 2434wlist_del (WL *head, WL elem)
1498{ 2435{
1499 while (*head) 2436 while (*head)
1500 { 2437 {
1501 if (*head == elem) 2438 if (expect_true (*head == elem))
1502 { 2439 {
1503 *head = elem->next; 2440 *head = elem->next;
1504 return; 2441 break;
1505 } 2442 }
1506 2443
1507 head = &(*head)->next; 2444 head = &(*head)->next;
1508 } 2445 }
1509} 2446}
1510 2447
1511void inline_speed 2448/* internal, faster, version of ev_clear_pending */
2449inline_speed void
1512ev_clear_pending (EV_P_ W w) 2450clear_pending (EV_P_ W w)
1513{ 2451{
1514 if (w->pending) 2452 if (w->pending)
1515 { 2453 {
1516 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2454 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1517 w->pending = 0; 2455 w->pending = 0;
1518 } 2456 }
1519} 2457}
1520 2458
1521void inline_speed 2459int
2460ev_clear_pending (EV_P_ void *w)
2461{
2462 W w_ = (W)w;
2463 int pending = w_->pending;
2464
2465 if (expect_true (pending))
2466 {
2467 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2468 p->w = (W)&pending_w;
2469 w_->pending = 0;
2470 return p->events;
2471 }
2472 else
2473 return 0;
2474}
2475
2476inline_size void
2477pri_adjust (EV_P_ W w)
2478{
2479 int pri = ev_priority (w);
2480 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2481 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2482 ev_set_priority (w, pri);
2483}
2484
2485inline_speed void
1522ev_start (EV_P_ W w, int active) 2486ev_start (EV_P_ W w, int active)
1523{ 2487{
1524 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2488 pri_adjust (EV_A_ w);
1525 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1526
1527 w->active = active; 2489 w->active = active;
1528 ev_ref (EV_A); 2490 ev_ref (EV_A);
1529} 2491}
1530 2492
1531void inline_size 2493inline_size void
1532ev_stop (EV_P_ W w) 2494ev_stop (EV_P_ W w)
1533{ 2495{
1534 ev_unref (EV_A); 2496 ev_unref (EV_A);
1535 w->active = 0; 2497 w->active = 0;
1536} 2498}
1537 2499
1538/*****************************************************************************/ 2500/*****************************************************************************/
1539 2501
1540void 2502void noinline
1541ev_io_start (EV_P_ ev_io *w) 2503ev_io_start (EV_P_ ev_io *w)
1542{ 2504{
1543 int fd = w->fd; 2505 int fd = w->fd;
1544 2506
1545 if (expect_false (ev_is_active (w))) 2507 if (expect_false (ev_is_active (w)))
1546 return; 2508 return;
1547 2509
1548 assert (("ev_io_start called with negative fd", fd >= 0)); 2510 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2511 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2512
2513 EV_FREQUENT_CHECK;
1549 2514
1550 ev_start (EV_A_ (W)w, 1); 2515 ev_start (EV_A_ (W)w, 1);
1551 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2516 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1552 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2517 wlist_add (&anfds[fd].head, (WL)w);
1553 2518
1554 fd_change (EV_A_ fd); 2519 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1555} 2520 w->events &= ~EV__IOFDSET;
1556 2521
1557void 2522 EV_FREQUENT_CHECK;
2523}
2524
2525void noinline
1558ev_io_stop (EV_P_ ev_io *w) 2526ev_io_stop (EV_P_ ev_io *w)
1559{ 2527{
1560 ev_clear_pending (EV_A_ (W)w); 2528 clear_pending (EV_A_ (W)w);
1561 if (expect_false (!ev_is_active (w))) 2529 if (expect_false (!ev_is_active (w)))
1562 return; 2530 return;
1563 2531
1564 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2532 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1565 2533
2534 EV_FREQUENT_CHECK;
2535
1566 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2536 wlist_del (&anfds[w->fd].head, (WL)w);
1567 ev_stop (EV_A_ (W)w); 2537 ev_stop (EV_A_ (W)w);
1568 2538
1569 fd_change (EV_A_ w->fd); 2539 fd_change (EV_A_ w->fd, 1);
1570}
1571 2540
1572void 2541 EV_FREQUENT_CHECK;
2542}
2543
2544void noinline
1573ev_timer_start (EV_P_ ev_timer *w) 2545ev_timer_start (EV_P_ ev_timer *w)
1574{ 2546{
1575 if (expect_false (ev_is_active (w))) 2547 if (expect_false (ev_is_active (w)))
1576 return; 2548 return;
1577 2549
1578 ((WT)w)->at += mn_now; 2550 ev_at (w) += mn_now;
1579 2551
1580 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2552 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1581 2553
2554 EV_FREQUENT_CHECK;
2555
2556 ++timercnt;
1582 ev_start (EV_A_ (W)w, ++timercnt); 2557 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1583 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2558 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1584 timers [timercnt - 1] = w; 2559 ANHE_w (timers [ev_active (w)]) = (WT)w;
1585 upheap ((WT *)timers, timercnt - 1); 2560 ANHE_at_cache (timers [ev_active (w)]);
2561 upheap (timers, ev_active (w));
1586 2562
2563 EV_FREQUENT_CHECK;
2564
1587 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2565 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1588} 2566}
1589 2567
1590void 2568void noinline
1591ev_timer_stop (EV_P_ ev_timer *w) 2569ev_timer_stop (EV_P_ ev_timer *w)
1592{ 2570{
1593 ev_clear_pending (EV_A_ (W)w); 2571 clear_pending (EV_A_ (W)w);
1594 if (expect_false (!ev_is_active (w))) 2572 if (expect_false (!ev_is_active (w)))
1595 return; 2573 return;
1596 2574
1597 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2575 EV_FREQUENT_CHECK;
1598 2576
1599 { 2577 {
1600 int active = ((W)w)->active; 2578 int active = ev_active (w);
1601 2579
2580 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2581
2582 --timercnt;
2583
1602 if (expect_true (--active < --timercnt)) 2584 if (expect_true (active < timercnt + HEAP0))
1603 { 2585 {
1604 timers [active] = timers [timercnt]; 2586 timers [active] = timers [timercnt + HEAP0];
1605 adjustheap ((WT *)timers, timercnt, active); 2587 adjustheap (timers, timercnt, active);
1606 } 2588 }
1607 } 2589 }
1608 2590
1609 ((WT)w)->at -= mn_now; 2591 EV_FREQUENT_CHECK;
2592
2593 ev_at (w) -= mn_now;
1610 2594
1611 ev_stop (EV_A_ (W)w); 2595 ev_stop (EV_A_ (W)w);
1612} 2596}
1613 2597
1614void 2598void noinline
1615ev_timer_again (EV_P_ ev_timer *w) 2599ev_timer_again (EV_P_ ev_timer *w)
1616{ 2600{
2601 EV_FREQUENT_CHECK;
2602
1617 if (ev_is_active (w)) 2603 if (ev_is_active (w))
1618 { 2604 {
1619 if (w->repeat) 2605 if (w->repeat)
1620 { 2606 {
1621 ((WT)w)->at = mn_now + w->repeat; 2607 ev_at (w) = mn_now + w->repeat;
2608 ANHE_at_cache (timers [ev_active (w)]);
1622 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2609 adjustheap (timers, timercnt, ev_active (w));
1623 } 2610 }
1624 else 2611 else
1625 ev_timer_stop (EV_A_ w); 2612 ev_timer_stop (EV_A_ w);
1626 } 2613 }
1627 else if (w->repeat) 2614 else if (w->repeat)
1628 { 2615 {
1629 w->at = w->repeat; 2616 ev_at (w) = w->repeat;
1630 ev_timer_start (EV_A_ w); 2617 ev_timer_start (EV_A_ w);
1631 } 2618 }
2619
2620 EV_FREQUENT_CHECK;
2621}
2622
2623ev_tstamp
2624ev_timer_remaining (EV_P_ ev_timer *w)
2625{
2626 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1632} 2627}
1633 2628
1634#if EV_PERIODIC_ENABLE 2629#if EV_PERIODIC_ENABLE
1635void 2630void noinline
1636ev_periodic_start (EV_P_ ev_periodic *w) 2631ev_periodic_start (EV_P_ ev_periodic *w)
1637{ 2632{
1638 if (expect_false (ev_is_active (w))) 2633 if (expect_false (ev_is_active (w)))
1639 return; 2634 return;
1640 2635
1641 if (w->reschedule_cb) 2636 if (w->reschedule_cb)
1642 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2637 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1643 else if (w->interval) 2638 else if (w->interval)
1644 { 2639 {
1645 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2640 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1646 /* this formula differs from the one in periodic_reify because we do not always round up */ 2641 /* this formula differs from the one in periodic_reify because we do not always round up */
1647 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2642 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1648 } 2643 }
2644 else
2645 ev_at (w) = w->offset;
1649 2646
2647 EV_FREQUENT_CHECK;
2648
2649 ++periodiccnt;
1650 ev_start (EV_A_ (W)w, ++periodiccnt); 2650 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1651 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2651 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1652 periodics [periodiccnt - 1] = w; 2652 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1653 upheap ((WT *)periodics, periodiccnt - 1); 2653 ANHE_at_cache (periodics [ev_active (w)]);
2654 upheap (periodics, ev_active (w));
1654 2655
2656 EV_FREQUENT_CHECK;
2657
1655 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2658 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1656} 2659}
1657 2660
1658void 2661void noinline
1659ev_periodic_stop (EV_P_ ev_periodic *w) 2662ev_periodic_stop (EV_P_ ev_periodic *w)
1660{ 2663{
1661 ev_clear_pending (EV_A_ (W)w); 2664 clear_pending (EV_A_ (W)w);
1662 if (expect_false (!ev_is_active (w))) 2665 if (expect_false (!ev_is_active (w)))
1663 return; 2666 return;
1664 2667
1665 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2668 EV_FREQUENT_CHECK;
1666 2669
1667 { 2670 {
1668 int active = ((W)w)->active; 2671 int active = ev_active (w);
1669 2672
2673 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2674
2675 --periodiccnt;
2676
1670 if (expect_true (--active < --periodiccnt)) 2677 if (expect_true (active < periodiccnt + HEAP0))
1671 { 2678 {
1672 periodics [active] = periodics [periodiccnt]; 2679 periodics [active] = periodics [periodiccnt + HEAP0];
1673 adjustheap ((WT *)periodics, periodiccnt, active); 2680 adjustheap (periodics, periodiccnt, active);
1674 } 2681 }
1675 } 2682 }
1676 2683
2684 EV_FREQUENT_CHECK;
2685
1677 ev_stop (EV_A_ (W)w); 2686 ev_stop (EV_A_ (W)w);
1678} 2687}
1679 2688
1680void 2689void noinline
1681ev_periodic_again (EV_P_ ev_periodic *w) 2690ev_periodic_again (EV_P_ ev_periodic *w)
1682{ 2691{
1683 /* TODO: use adjustheap and recalculation */ 2692 /* TODO: use adjustheap and recalculation */
1684 ev_periodic_stop (EV_A_ w); 2693 ev_periodic_stop (EV_A_ w);
1685 ev_periodic_start (EV_A_ w); 2694 ev_periodic_start (EV_A_ w);
1688 2697
1689#ifndef SA_RESTART 2698#ifndef SA_RESTART
1690# define SA_RESTART 0 2699# define SA_RESTART 0
1691#endif 2700#endif
1692 2701
1693void 2702void noinline
1694ev_signal_start (EV_P_ ev_signal *w) 2703ev_signal_start (EV_P_ ev_signal *w)
1695{ 2704{
1696#if EV_MULTIPLICITY
1697 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1698#endif
1699 if (expect_false (ev_is_active (w))) 2705 if (expect_false (ev_is_active (w)))
1700 return; 2706 return;
1701 2707
1702 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2708 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2709
2710#if EV_MULTIPLICITY
2711 assert (("libev: a signal must not be attached to two different loops",
2712 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2713
2714 signals [w->signum - 1].loop = EV_A;
2715#endif
2716
2717 EV_FREQUENT_CHECK;
2718
2719#if EV_USE_SIGNALFD
2720 if (sigfd == -2)
2721 {
2722 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2723 if (sigfd < 0 && errno == EINVAL)
2724 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2725
2726 if (sigfd >= 0)
2727 {
2728 fd_intern (sigfd); /* doing it twice will not hurt */
2729
2730 sigemptyset (&sigfd_set);
2731
2732 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2733 ev_set_priority (&sigfd_w, EV_MAXPRI);
2734 ev_io_start (EV_A_ &sigfd_w);
2735 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2736 }
2737 }
2738
2739 if (sigfd >= 0)
2740 {
2741 /* TODO: check .head */
2742 sigaddset (&sigfd_set, w->signum);
2743 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2744
2745 signalfd (sigfd, &sigfd_set, 0);
2746 }
2747#endif
1703 2748
1704 ev_start (EV_A_ (W)w, 1); 2749 ev_start (EV_A_ (W)w, 1);
1705 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1706 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2750 wlist_add (&signals [w->signum - 1].head, (WL)w);
1707 2751
1708 if (!((WL)w)->next) 2752 if (!((WL)w)->next)
2753# if EV_USE_SIGNALFD
2754 if (sigfd < 0) /*TODO*/
2755# endif
1709 { 2756 {
1710#if _WIN32 2757# if _WIN32
1711 signal (w->signum, sighandler); 2758 signal (w->signum, ev_sighandler);
1712#else 2759# else
1713 struct sigaction sa; 2760 struct sigaction sa;
2761
2762 evpipe_init (EV_A);
2763
1714 sa.sa_handler = sighandler; 2764 sa.sa_handler = ev_sighandler;
1715 sigfillset (&sa.sa_mask); 2765 sigfillset (&sa.sa_mask);
1716 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2766 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1717 sigaction (w->signum, &sa, 0); 2767 sigaction (w->signum, &sa, 0);
2768
2769 sigemptyset (&sa.sa_mask);
2770 sigaddset (&sa.sa_mask, w->signum);
2771 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1718#endif 2772#endif
1719 } 2773 }
1720}
1721 2774
1722void 2775 EV_FREQUENT_CHECK;
2776}
2777
2778void noinline
1723ev_signal_stop (EV_P_ ev_signal *w) 2779ev_signal_stop (EV_P_ ev_signal *w)
1724{ 2780{
1725 ev_clear_pending (EV_A_ (W)w); 2781 clear_pending (EV_A_ (W)w);
1726 if (expect_false (!ev_is_active (w))) 2782 if (expect_false (!ev_is_active (w)))
1727 return; 2783 return;
1728 2784
2785 EV_FREQUENT_CHECK;
2786
1729 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2787 wlist_del (&signals [w->signum - 1].head, (WL)w);
1730 ev_stop (EV_A_ (W)w); 2788 ev_stop (EV_A_ (W)w);
1731 2789
1732 if (!signals [w->signum - 1].head) 2790 if (!signals [w->signum - 1].head)
2791 {
2792#if EV_MULTIPLICITY
2793 signals [w->signum - 1].loop = 0; /* unattach from signal */
2794#endif
2795#if EV_USE_SIGNALFD
2796 if (sigfd >= 0)
2797 {
2798 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2799 sigdelset (&sigfd_set, w->signum);
2800 signalfd (sigfd, &sigfd_set, 0);
2801 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2802 /*TODO: maybe unblock signal? */
2803 }
2804 else
2805#endif
1733 signal (w->signum, SIG_DFL); 2806 signal (w->signum, SIG_DFL);
2807 }
2808
2809 EV_FREQUENT_CHECK;
1734} 2810}
1735 2811
1736void 2812void
1737ev_child_start (EV_P_ ev_child *w) 2813ev_child_start (EV_P_ ev_child *w)
1738{ 2814{
1739#if EV_MULTIPLICITY 2815#if EV_MULTIPLICITY
1740 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2816 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1741#endif 2817#endif
1742 if (expect_false (ev_is_active (w))) 2818 if (expect_false (ev_is_active (w)))
1743 return; 2819 return;
1744 2820
2821 EV_FREQUENT_CHECK;
2822
1745 ev_start (EV_A_ (W)w, 1); 2823 ev_start (EV_A_ (W)w, 1);
1746 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2824 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2825
2826 EV_FREQUENT_CHECK;
1747} 2827}
1748 2828
1749void 2829void
1750ev_child_stop (EV_P_ ev_child *w) 2830ev_child_stop (EV_P_ ev_child *w)
1751{ 2831{
1752 ev_clear_pending (EV_A_ (W)w); 2832 clear_pending (EV_A_ (W)w);
1753 if (expect_false (!ev_is_active (w))) 2833 if (expect_false (!ev_is_active (w)))
1754 return; 2834 return;
1755 2835
2836 EV_FREQUENT_CHECK;
2837
1756 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2838 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1757 ev_stop (EV_A_ (W)w); 2839 ev_stop (EV_A_ (W)w);
2840
2841 EV_FREQUENT_CHECK;
1758} 2842}
1759 2843
1760#if EV_STAT_ENABLE 2844#if EV_STAT_ENABLE
1761 2845
1762# ifdef _WIN32 2846# ifdef _WIN32
1763# undef lstat 2847# undef lstat
1764# define lstat(a,b) _stati64 (a,b) 2848# define lstat(a,b) _stati64 (a,b)
1765# endif 2849# endif
1766 2850
1767#define DEF_STAT_INTERVAL 5.0074891 2851#define DEF_STAT_INTERVAL 5.0074891
2852#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1768#define MIN_STAT_INTERVAL 0.1074891 2853#define MIN_STAT_INTERVAL 0.1074891
1769 2854
1770static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2855static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1771 2856
1772#if EV_USE_INOTIFY 2857#if EV_USE_INOTIFY
1773# define EV_INOTIFY_BUFSIZE 8192 2858# define EV_INOTIFY_BUFSIZE 8192
1777{ 2862{
1778 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2863 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1779 2864
1780 if (w->wd < 0) 2865 if (w->wd < 0)
1781 { 2866 {
2867 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1782 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2868 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1783 2869
1784 /* monitor some parent directory for speedup hints */ 2870 /* monitor some parent directory for speedup hints */
2871 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2872 /* but an efficiency issue only */
1785 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2873 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1786 { 2874 {
1787 char path [4096]; 2875 char path [4096];
1788 strcpy (path, w->path); 2876 strcpy (path, w->path);
1789 2877
1792 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2880 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1793 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2881 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1794 2882
1795 char *pend = strrchr (path, '/'); 2883 char *pend = strrchr (path, '/');
1796 2884
1797 if (!pend) 2885 if (!pend || pend == path)
1798 break; /* whoops, no '/', complain to your admin */ 2886 break;
1799 2887
1800 *pend = 0; 2888 *pend = 0;
1801 w->wd = inotify_add_watch (fs_fd, path, mask); 2889 w->wd = inotify_add_watch (fs_fd, path, mask);
1802 } 2890 }
1803 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2891 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1804 } 2892 }
1805 } 2893 }
1806 else
1807 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1808 2894
1809 if (w->wd >= 0) 2895 if (w->wd >= 0)
2896 {
2897 struct statfs sfs;
2898
1810 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2899 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2900
2901 /* now local changes will be tracked by inotify, but remote changes won't */
2902 /* unless the filesystem it known to be local, we therefore still poll */
2903 /* also do poll on <2.6.25, but with normal frequency */
2904
2905 if (fs_2625 && !statfs (w->path, &sfs))
2906 if (sfs.f_type == 0x1373 /* devfs */
2907 || sfs.f_type == 0xEF53 /* ext2/3 */
2908 || sfs.f_type == 0x3153464a /* jfs */
2909 || sfs.f_type == 0x52654973 /* reiser3 */
2910 || sfs.f_type == 0x01021994 /* tempfs */
2911 || sfs.f_type == 0x58465342 /* xfs */)
2912 return;
2913
2914 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2915 ev_timer_again (EV_A_ &w->timer);
2916 }
1811} 2917}
1812 2918
1813static void noinline 2919static void noinline
1814infy_del (EV_P_ ev_stat *w) 2920infy_del (EV_P_ ev_stat *w)
1815{ 2921{
1829 2935
1830static void noinline 2936static void noinline
1831infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2937infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1832{ 2938{
1833 if (slot < 0) 2939 if (slot < 0)
1834 /* overflow, need to check for all hahs slots */ 2940 /* overflow, need to check for all hash slots */
1835 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2941 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1836 infy_wd (EV_A_ slot, wd, ev); 2942 infy_wd (EV_A_ slot, wd, ev);
1837 else 2943 else
1838 { 2944 {
1839 WL w_; 2945 WL w_;
1845 2951
1846 if (w->wd == wd || wd == -1) 2952 if (w->wd == wd || wd == -1)
1847 { 2953 {
1848 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2954 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1849 { 2955 {
2956 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1850 w->wd = -1; 2957 w->wd = -1;
1851 infy_add (EV_A_ w); /* re-add, no matter what */ 2958 infy_add (EV_A_ w); /* re-add, no matter what */
1852 } 2959 }
1853 2960
1854 stat_timer_cb (EV_A_ &w->timer, 0); 2961 stat_timer_cb (EV_A_ &w->timer, 0);
1867 2974
1868 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2975 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1869 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2976 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1870} 2977}
1871 2978
1872void inline_size 2979inline_size void
2980check_2625 (EV_P)
2981{
2982 /* kernels < 2.6.25 are borked
2983 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2984 */
2985 struct utsname buf;
2986 int major, minor, micro;
2987
2988 if (uname (&buf))
2989 return;
2990
2991 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2992 return;
2993
2994 if (major < 2
2995 || (major == 2 && minor < 6)
2996 || (major == 2 && minor == 6 && micro < 25))
2997 return;
2998
2999 fs_2625 = 1;
3000}
3001
3002inline_size void
1873infy_init (EV_P) 3003infy_init (EV_P)
1874{ 3004{
1875 if (fs_fd != -2) 3005 if (fs_fd != -2)
1876 return; 3006 return;
3007
3008 fs_fd = -1;
3009
3010 check_2625 (EV_A);
1877 3011
1878 fs_fd = inotify_init (); 3012 fs_fd = inotify_init ();
1879 3013
1880 if (fs_fd >= 0) 3014 if (fs_fd >= 0)
1881 { 3015 {
1883 ev_set_priority (&fs_w, EV_MAXPRI); 3017 ev_set_priority (&fs_w, EV_MAXPRI);
1884 ev_io_start (EV_A_ &fs_w); 3018 ev_io_start (EV_A_ &fs_w);
1885 } 3019 }
1886} 3020}
1887 3021
1888void inline_size 3022inline_size void
1889infy_fork (EV_P) 3023infy_fork (EV_P)
1890{ 3024{
1891 int slot; 3025 int slot;
1892 3026
1893 if (fs_fd < 0) 3027 if (fs_fd < 0)
1909 w->wd = -1; 3043 w->wd = -1;
1910 3044
1911 if (fs_fd >= 0) 3045 if (fs_fd >= 0)
1912 infy_add (EV_A_ w); /* re-add, no matter what */ 3046 infy_add (EV_A_ w); /* re-add, no matter what */
1913 else 3047 else
1914 ev_timer_start (EV_A_ &w->timer); 3048 ev_timer_again (EV_A_ &w->timer);
1915 } 3049 }
1916
1917 } 3050 }
1918} 3051}
1919 3052
3053#endif
3054
3055#ifdef _WIN32
3056# define EV_LSTAT(p,b) _stati64 (p, b)
3057#else
3058# define EV_LSTAT(p,b) lstat (p, b)
1920#endif 3059#endif
1921 3060
1922void 3061void
1923ev_stat_stat (EV_P_ ev_stat *w) 3062ev_stat_stat (EV_P_ ev_stat *w)
1924{ 3063{
1951 || w->prev.st_atime != w->attr.st_atime 3090 || w->prev.st_atime != w->attr.st_atime
1952 || w->prev.st_mtime != w->attr.st_mtime 3091 || w->prev.st_mtime != w->attr.st_mtime
1953 || w->prev.st_ctime != w->attr.st_ctime 3092 || w->prev.st_ctime != w->attr.st_ctime
1954 ) { 3093 ) {
1955 #if EV_USE_INOTIFY 3094 #if EV_USE_INOTIFY
3095 if (fs_fd >= 0)
3096 {
1956 infy_del (EV_A_ w); 3097 infy_del (EV_A_ w);
1957 infy_add (EV_A_ w); 3098 infy_add (EV_A_ w);
1958 ev_stat_stat (EV_A_ w); /* avoid race... */ 3099 ev_stat_stat (EV_A_ w); /* avoid race... */
3100 }
1959 #endif 3101 #endif
1960 3102
1961 ev_feed_event (EV_A_ w, EV_STAT); 3103 ev_feed_event (EV_A_ w, EV_STAT);
1962 } 3104 }
1963} 3105}
1966ev_stat_start (EV_P_ ev_stat *w) 3108ev_stat_start (EV_P_ ev_stat *w)
1967{ 3109{
1968 if (expect_false (ev_is_active (w))) 3110 if (expect_false (ev_is_active (w)))
1969 return; 3111 return;
1970 3112
1971 /* since we use memcmp, we need to clear any padding data etc. */
1972 memset (&w->prev, 0, sizeof (ev_statdata));
1973 memset (&w->attr, 0, sizeof (ev_statdata));
1974
1975 ev_stat_stat (EV_A_ w); 3113 ev_stat_stat (EV_A_ w);
1976 3114
3115 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1977 if (w->interval < MIN_STAT_INTERVAL) 3116 w->interval = MIN_STAT_INTERVAL;
1978 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1979 3117
1980 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3118 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1981 ev_set_priority (&w->timer, ev_priority (w)); 3119 ev_set_priority (&w->timer, ev_priority (w));
1982 3120
1983#if EV_USE_INOTIFY 3121#if EV_USE_INOTIFY
1984 infy_init (EV_A); 3122 infy_init (EV_A);
1985 3123
1986 if (fs_fd >= 0) 3124 if (fs_fd >= 0)
1987 infy_add (EV_A_ w); 3125 infy_add (EV_A_ w);
1988 else 3126 else
1989#endif 3127#endif
1990 ev_timer_start (EV_A_ &w->timer); 3128 ev_timer_again (EV_A_ &w->timer);
1991 3129
1992 ev_start (EV_A_ (W)w, 1); 3130 ev_start (EV_A_ (W)w, 1);
3131
3132 EV_FREQUENT_CHECK;
1993} 3133}
1994 3134
1995void 3135void
1996ev_stat_stop (EV_P_ ev_stat *w) 3136ev_stat_stop (EV_P_ ev_stat *w)
1997{ 3137{
1998 ev_clear_pending (EV_A_ (W)w); 3138 clear_pending (EV_A_ (W)w);
1999 if (expect_false (!ev_is_active (w))) 3139 if (expect_false (!ev_is_active (w)))
2000 return; 3140 return;
2001 3141
3142 EV_FREQUENT_CHECK;
3143
2002#if EV_USE_INOTIFY 3144#if EV_USE_INOTIFY
2003 infy_del (EV_A_ w); 3145 infy_del (EV_A_ w);
2004#endif 3146#endif
2005 ev_timer_stop (EV_A_ &w->timer); 3147 ev_timer_stop (EV_A_ &w->timer);
2006 3148
2007 ev_stop (EV_A_ (W)w); 3149 ev_stop (EV_A_ (W)w);
2008}
2009#endif
2010 3150
3151 EV_FREQUENT_CHECK;
3152}
3153#endif
3154
3155#if EV_IDLE_ENABLE
2011void 3156void
2012ev_idle_start (EV_P_ ev_idle *w) 3157ev_idle_start (EV_P_ ev_idle *w)
2013{ 3158{
2014 if (expect_false (ev_is_active (w))) 3159 if (expect_false (ev_is_active (w)))
2015 return; 3160 return;
2016 3161
3162 pri_adjust (EV_A_ (W)w);
3163
3164 EV_FREQUENT_CHECK;
3165
3166 {
3167 int active = ++idlecnt [ABSPRI (w)];
3168
3169 ++idleall;
2017 ev_start (EV_A_ (W)w, ++idlecnt); 3170 ev_start (EV_A_ (W)w, active);
3171
2018 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3172 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2019 idles [idlecnt - 1] = w; 3173 idles [ABSPRI (w)][active - 1] = w;
3174 }
3175
3176 EV_FREQUENT_CHECK;
2020} 3177}
2021 3178
2022void 3179void
2023ev_idle_stop (EV_P_ ev_idle *w) 3180ev_idle_stop (EV_P_ ev_idle *w)
2024{ 3181{
2025 ev_clear_pending (EV_A_ (W)w); 3182 clear_pending (EV_A_ (W)w);
2026 if (expect_false (!ev_is_active (w))) 3183 if (expect_false (!ev_is_active (w)))
2027 return; 3184 return;
2028 3185
3186 EV_FREQUENT_CHECK;
3187
2029 { 3188 {
2030 int active = ((W)w)->active; 3189 int active = ev_active (w);
2031 idles [active - 1] = idles [--idlecnt]; 3190
2032 ((W)idles [active - 1])->active = active; 3191 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3192 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3193
3194 ev_stop (EV_A_ (W)w);
3195 --idleall;
2033 } 3196 }
2034 3197
2035 ev_stop (EV_A_ (W)w); 3198 EV_FREQUENT_CHECK;
2036} 3199}
3200#endif
2037 3201
2038void 3202void
2039ev_prepare_start (EV_P_ ev_prepare *w) 3203ev_prepare_start (EV_P_ ev_prepare *w)
2040{ 3204{
2041 if (expect_false (ev_is_active (w))) 3205 if (expect_false (ev_is_active (w)))
2042 return; 3206 return;
3207
3208 EV_FREQUENT_CHECK;
2043 3209
2044 ev_start (EV_A_ (W)w, ++preparecnt); 3210 ev_start (EV_A_ (W)w, ++preparecnt);
2045 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3211 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2046 prepares [preparecnt - 1] = w; 3212 prepares [preparecnt - 1] = w;
3213
3214 EV_FREQUENT_CHECK;
2047} 3215}
2048 3216
2049void 3217void
2050ev_prepare_stop (EV_P_ ev_prepare *w) 3218ev_prepare_stop (EV_P_ ev_prepare *w)
2051{ 3219{
2052 ev_clear_pending (EV_A_ (W)w); 3220 clear_pending (EV_A_ (W)w);
2053 if (expect_false (!ev_is_active (w))) 3221 if (expect_false (!ev_is_active (w)))
2054 return; 3222 return;
2055 3223
3224 EV_FREQUENT_CHECK;
3225
2056 { 3226 {
2057 int active = ((W)w)->active; 3227 int active = ev_active (w);
3228
2058 prepares [active - 1] = prepares [--preparecnt]; 3229 prepares [active - 1] = prepares [--preparecnt];
2059 ((W)prepares [active - 1])->active = active; 3230 ev_active (prepares [active - 1]) = active;
2060 } 3231 }
2061 3232
2062 ev_stop (EV_A_ (W)w); 3233 ev_stop (EV_A_ (W)w);
3234
3235 EV_FREQUENT_CHECK;
2063} 3236}
2064 3237
2065void 3238void
2066ev_check_start (EV_P_ ev_check *w) 3239ev_check_start (EV_P_ ev_check *w)
2067{ 3240{
2068 if (expect_false (ev_is_active (w))) 3241 if (expect_false (ev_is_active (w)))
2069 return; 3242 return;
3243
3244 EV_FREQUENT_CHECK;
2070 3245
2071 ev_start (EV_A_ (W)w, ++checkcnt); 3246 ev_start (EV_A_ (W)w, ++checkcnt);
2072 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3247 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2073 checks [checkcnt - 1] = w; 3248 checks [checkcnt - 1] = w;
3249
3250 EV_FREQUENT_CHECK;
2074} 3251}
2075 3252
2076void 3253void
2077ev_check_stop (EV_P_ ev_check *w) 3254ev_check_stop (EV_P_ ev_check *w)
2078{ 3255{
2079 ev_clear_pending (EV_A_ (W)w); 3256 clear_pending (EV_A_ (W)w);
2080 if (expect_false (!ev_is_active (w))) 3257 if (expect_false (!ev_is_active (w)))
2081 return; 3258 return;
2082 3259
3260 EV_FREQUENT_CHECK;
3261
2083 { 3262 {
2084 int active = ((W)w)->active; 3263 int active = ev_active (w);
3264
2085 checks [active - 1] = checks [--checkcnt]; 3265 checks [active - 1] = checks [--checkcnt];
2086 ((W)checks [active - 1])->active = active; 3266 ev_active (checks [active - 1]) = active;
2087 } 3267 }
2088 3268
2089 ev_stop (EV_A_ (W)w); 3269 ev_stop (EV_A_ (W)w);
3270
3271 EV_FREQUENT_CHECK;
2090} 3272}
2091 3273
2092#if EV_EMBED_ENABLE 3274#if EV_EMBED_ENABLE
2093void noinline 3275void noinline
2094ev_embed_sweep (EV_P_ ev_embed *w) 3276ev_embed_sweep (EV_P_ ev_embed *w)
2095{ 3277{
2096 ev_loop (w->loop, EVLOOP_NONBLOCK); 3278 ev_loop (w->other, EVLOOP_NONBLOCK);
2097} 3279}
2098 3280
2099static void 3281static void
2100embed_cb (EV_P_ ev_io *io, int revents) 3282embed_io_cb (EV_P_ ev_io *io, int revents)
2101{ 3283{
2102 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3284 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2103 3285
2104 if (ev_cb (w)) 3286 if (ev_cb (w))
2105 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3287 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2106 else 3288 else
2107 ev_embed_sweep (loop, w); 3289 ev_loop (w->other, EVLOOP_NONBLOCK);
2108} 3290}
3291
3292static void
3293embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3294{
3295 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3296
3297 {
3298 EV_P = w->other;
3299
3300 while (fdchangecnt)
3301 {
3302 fd_reify (EV_A);
3303 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3304 }
3305 }
3306}
3307
3308static void
3309embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3310{
3311 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3312
3313 ev_embed_stop (EV_A_ w);
3314
3315 {
3316 EV_P = w->other;
3317
3318 ev_loop_fork (EV_A);
3319 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3320 }
3321
3322 ev_embed_start (EV_A_ w);
3323}
3324
3325#if 0
3326static void
3327embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3328{
3329 ev_idle_stop (EV_A_ idle);
3330}
3331#endif
2109 3332
2110void 3333void
2111ev_embed_start (EV_P_ ev_embed *w) 3334ev_embed_start (EV_P_ ev_embed *w)
2112{ 3335{
2113 if (expect_false (ev_is_active (w))) 3336 if (expect_false (ev_is_active (w)))
2114 return; 3337 return;
2115 3338
2116 { 3339 {
2117 struct ev_loop *loop = w->loop; 3340 EV_P = w->other;
2118 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3341 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2119 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3342 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2120 } 3343 }
3344
3345 EV_FREQUENT_CHECK;
2121 3346
2122 ev_set_priority (&w->io, ev_priority (w)); 3347 ev_set_priority (&w->io, ev_priority (w));
2123 ev_io_start (EV_A_ &w->io); 3348 ev_io_start (EV_A_ &w->io);
2124 3349
3350 ev_prepare_init (&w->prepare, embed_prepare_cb);
3351 ev_set_priority (&w->prepare, EV_MINPRI);
3352 ev_prepare_start (EV_A_ &w->prepare);
3353
3354 ev_fork_init (&w->fork, embed_fork_cb);
3355 ev_fork_start (EV_A_ &w->fork);
3356
3357 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3358
2125 ev_start (EV_A_ (W)w, 1); 3359 ev_start (EV_A_ (W)w, 1);
3360
3361 EV_FREQUENT_CHECK;
2126} 3362}
2127 3363
2128void 3364void
2129ev_embed_stop (EV_P_ ev_embed *w) 3365ev_embed_stop (EV_P_ ev_embed *w)
2130{ 3366{
2131 ev_clear_pending (EV_A_ (W)w); 3367 clear_pending (EV_A_ (W)w);
2132 if (expect_false (!ev_is_active (w))) 3368 if (expect_false (!ev_is_active (w)))
2133 return; 3369 return;
2134 3370
3371 EV_FREQUENT_CHECK;
3372
2135 ev_io_stop (EV_A_ &w->io); 3373 ev_io_stop (EV_A_ &w->io);
3374 ev_prepare_stop (EV_A_ &w->prepare);
3375 ev_fork_stop (EV_A_ &w->fork);
2136 3376
2137 ev_stop (EV_A_ (W)w); 3377 EV_FREQUENT_CHECK;
2138} 3378}
2139#endif 3379#endif
2140 3380
2141#if EV_FORK_ENABLE 3381#if EV_FORK_ENABLE
2142void 3382void
2143ev_fork_start (EV_P_ ev_fork *w) 3383ev_fork_start (EV_P_ ev_fork *w)
2144{ 3384{
2145 if (expect_false (ev_is_active (w))) 3385 if (expect_false (ev_is_active (w)))
2146 return; 3386 return;
3387
3388 EV_FREQUENT_CHECK;
2147 3389
2148 ev_start (EV_A_ (W)w, ++forkcnt); 3390 ev_start (EV_A_ (W)w, ++forkcnt);
2149 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3391 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2150 forks [forkcnt - 1] = w; 3392 forks [forkcnt - 1] = w;
3393
3394 EV_FREQUENT_CHECK;
2151} 3395}
2152 3396
2153void 3397void
2154ev_fork_stop (EV_P_ ev_fork *w) 3398ev_fork_stop (EV_P_ ev_fork *w)
2155{ 3399{
2156 ev_clear_pending (EV_A_ (W)w); 3400 clear_pending (EV_A_ (W)w);
2157 if (expect_false (!ev_is_active (w))) 3401 if (expect_false (!ev_is_active (w)))
2158 return; 3402 return;
2159 3403
3404 EV_FREQUENT_CHECK;
3405
2160 { 3406 {
2161 int active = ((W)w)->active; 3407 int active = ev_active (w);
3408
2162 forks [active - 1] = forks [--forkcnt]; 3409 forks [active - 1] = forks [--forkcnt];
2163 ((W)forks [active - 1])->active = active; 3410 ev_active (forks [active - 1]) = active;
2164 } 3411 }
2165 3412
2166 ev_stop (EV_A_ (W)w); 3413 ev_stop (EV_A_ (W)w);
3414
3415 EV_FREQUENT_CHECK;
3416}
3417#endif
3418
3419#if EV_ASYNC_ENABLE
3420void
3421ev_async_start (EV_P_ ev_async *w)
3422{
3423 if (expect_false (ev_is_active (w)))
3424 return;
3425
3426 evpipe_init (EV_A);
3427
3428 EV_FREQUENT_CHECK;
3429
3430 ev_start (EV_A_ (W)w, ++asynccnt);
3431 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3432 asyncs [asynccnt - 1] = w;
3433
3434 EV_FREQUENT_CHECK;
3435}
3436
3437void
3438ev_async_stop (EV_P_ ev_async *w)
3439{
3440 clear_pending (EV_A_ (W)w);
3441 if (expect_false (!ev_is_active (w)))
3442 return;
3443
3444 EV_FREQUENT_CHECK;
3445
3446 {
3447 int active = ev_active (w);
3448
3449 asyncs [active - 1] = asyncs [--asynccnt];
3450 ev_active (asyncs [active - 1]) = active;
3451 }
3452
3453 ev_stop (EV_A_ (W)w);
3454
3455 EV_FREQUENT_CHECK;
3456}
3457
3458void
3459ev_async_send (EV_P_ ev_async *w)
3460{
3461 w->sent = 1;
3462 evpipe_write (EV_A_ &async_pending);
2167} 3463}
2168#endif 3464#endif
2169 3465
2170/*****************************************************************************/ 3466/*****************************************************************************/
2171 3467
2181once_cb (EV_P_ struct ev_once *once, int revents) 3477once_cb (EV_P_ struct ev_once *once, int revents)
2182{ 3478{
2183 void (*cb)(int revents, void *arg) = once->cb; 3479 void (*cb)(int revents, void *arg) = once->cb;
2184 void *arg = once->arg; 3480 void *arg = once->arg;
2185 3481
2186 ev_io_stop (EV_A_ &once->io); 3482 ev_io_stop (EV_A_ &once->io);
2187 ev_timer_stop (EV_A_ &once->to); 3483 ev_timer_stop (EV_A_ &once->to);
2188 ev_free (once); 3484 ev_free (once);
2189 3485
2190 cb (revents, arg); 3486 cb (revents, arg);
2191} 3487}
2192 3488
2193static void 3489static void
2194once_cb_io (EV_P_ ev_io *w, int revents) 3490once_cb_io (EV_P_ ev_io *w, int revents)
2195{ 3491{
2196 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3492 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3493
3494 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2197} 3495}
2198 3496
2199static void 3497static void
2200once_cb_to (EV_P_ ev_timer *w, int revents) 3498once_cb_to (EV_P_ ev_timer *w, int revents)
2201{ 3499{
2202 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3500 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3501
3502 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2203} 3503}
2204 3504
2205void 3505void
2206ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3506ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2207{ 3507{
2229 ev_timer_set (&once->to, timeout, 0.); 3529 ev_timer_set (&once->to, timeout, 0.);
2230 ev_timer_start (EV_A_ &once->to); 3530 ev_timer_start (EV_A_ &once->to);
2231 } 3531 }
2232} 3532}
2233 3533
3534/*****************************************************************************/
3535
3536#if EV_WALK_ENABLE
3537void
3538ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3539{
3540 int i, j;
3541 ev_watcher_list *wl, *wn;
3542
3543 if (types & (EV_IO | EV_EMBED))
3544 for (i = 0; i < anfdmax; ++i)
3545 for (wl = anfds [i].head; wl; )
3546 {
3547 wn = wl->next;
3548
3549#if EV_EMBED_ENABLE
3550 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3551 {
3552 if (types & EV_EMBED)
3553 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3554 }
3555 else
3556#endif
3557#if EV_USE_INOTIFY
3558 if (ev_cb ((ev_io *)wl) == infy_cb)
3559 ;
3560 else
3561#endif
3562 if ((ev_io *)wl != &pipe_w)
3563 if (types & EV_IO)
3564 cb (EV_A_ EV_IO, wl);
3565
3566 wl = wn;
3567 }
3568
3569 if (types & (EV_TIMER | EV_STAT))
3570 for (i = timercnt + HEAP0; i-- > HEAP0; )
3571#if EV_STAT_ENABLE
3572 /*TODO: timer is not always active*/
3573 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3574 {
3575 if (types & EV_STAT)
3576 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3577 }
3578 else
3579#endif
3580 if (types & EV_TIMER)
3581 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3582
3583#if EV_PERIODIC_ENABLE
3584 if (types & EV_PERIODIC)
3585 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3586 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3587#endif
3588
3589#if EV_IDLE_ENABLE
3590 if (types & EV_IDLE)
3591 for (j = NUMPRI; i--; )
3592 for (i = idlecnt [j]; i--; )
3593 cb (EV_A_ EV_IDLE, idles [j][i]);
3594#endif
3595
3596#if EV_FORK_ENABLE
3597 if (types & EV_FORK)
3598 for (i = forkcnt; i--; )
3599 if (ev_cb (forks [i]) != embed_fork_cb)
3600 cb (EV_A_ EV_FORK, forks [i]);
3601#endif
3602
3603#if EV_ASYNC_ENABLE
3604 if (types & EV_ASYNC)
3605 for (i = asynccnt; i--; )
3606 cb (EV_A_ EV_ASYNC, asyncs [i]);
3607#endif
3608
3609 if (types & EV_PREPARE)
3610 for (i = preparecnt; i--; )
3611#if EV_EMBED_ENABLE
3612 if (ev_cb (prepares [i]) != embed_prepare_cb)
3613#endif
3614 cb (EV_A_ EV_PREPARE, prepares [i]);
3615
3616 if (types & EV_CHECK)
3617 for (i = checkcnt; i--; )
3618 cb (EV_A_ EV_CHECK, checks [i]);
3619
3620 if (types & EV_SIGNAL)
3621 for (i = 0; i < EV_NSIG - 1; ++i)
3622 for (wl = signals [i].head; wl; )
3623 {
3624 wn = wl->next;
3625 cb (EV_A_ EV_SIGNAL, wl);
3626 wl = wn;
3627 }
3628
3629 if (types & EV_CHILD)
3630 for (i = EV_PID_HASHSIZE; i--; )
3631 for (wl = childs [i]; wl; )
3632 {
3633 wn = wl->next;
3634 cb (EV_A_ EV_CHILD, wl);
3635 wl = wn;
3636 }
3637/* EV_STAT 0x00001000 /* stat data changed */
3638/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3639}
3640#endif
3641
3642#if EV_MULTIPLICITY
3643 #include "ev_wrap.h"
3644#endif
3645
2234#ifdef __cplusplus 3646#ifdef __cplusplus
2235} 3647}
2236#endif 3648#endif
2237 3649

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines