ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.163 by root, Wed Dec 5 13:54:36 2007 UTC vs.
Revision 1.366 by root, Mon Jan 10 01:58:54 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
43# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
46# endif 65# endif
47# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
49# endif 68# endif
50# else 69# else
51# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
53# endif 72# endif
54# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
56# endif 75# endif
57# endif 76# endif
58 77
78# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 79# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 81# endif
82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0
65# endif 85# endif
66 86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 88# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 89# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
94# endif
95
96# if HAVE_POLL && HAVE_POLL_H
97# ifndef EV_USE_POLL
98# define EV_USE_POLL EV_FEATURE_BACKENDS
99# endif
100# else
101# undef EV_USE_POLL
102# define EV_USE_POLL 0
73# endif 103# endif
74 104
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
78# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
81# endif 112# endif
82 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
89# endif 121# endif
90 122
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
94# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
97# endif 130# endif
98 131
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
102# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
104# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
105# endif 139# endif
106 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
107#endif 159#endif
108 160
109#include <math.h> 161#include <math.h>
110#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
111#include <fcntl.h> 164#include <fcntl.h>
112#include <stddef.h> 165#include <stddef.h>
113 166
114#include <stdio.h> 167#include <stdio.h>
115 168
116#include <assert.h> 169#include <assert.h>
117#include <errno.h> 170#include <errno.h>
118#include <sys/types.h> 171#include <sys/types.h>
119#include <time.h> 172#include <time.h>
173#include <limits.h>
120 174
121#include <signal.h> 175#include <signal.h>
122 176
123#ifdef EV_H 177#ifdef EV_H
124# include EV_H 178# include EV_H
125#else 179#else
126# include "ev.h" 180# include "ev.h"
127#endif 181#endif
182
183EV_CPP(extern "C" {)
128 184
129#ifndef _WIN32 185#ifndef _WIN32
130# include <sys/time.h> 186# include <sys/time.h>
131# include <sys/wait.h> 187# include <sys/wait.h>
132# include <unistd.h> 188# include <unistd.h>
133#else 189#else
190# include <io.h>
134# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 192# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
138# endif 195# endif
196# undef EV_AVOID_STDIO
197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
139#endif 242# endif
140 243#endif
141/**/
142 244
143#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
144# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
145#endif 251#endif
146 252
147#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255#endif
256
257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
261# define EV_USE_NANOSLEEP 0
262# endif
149#endif 263#endif
150 264
151#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 267#endif
154 268
155#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
156# ifdef _WIN32 270# ifdef _WIN32
157# define EV_USE_POLL 0 271# define EV_USE_POLL 0
158# else 272# else
159# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 274# endif
161#endif 275#endif
162 276
163#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
164# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
282# endif
165#endif 283#endif
166 284
167#ifndef EV_USE_KQUEUE 285#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 286# define EV_USE_KQUEUE 0
169#endif 287#endif
171#ifndef EV_USE_PORT 289#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 290# define EV_USE_PORT 0
173#endif 291#endif
174 292
175#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_INOTIFY EV_FEATURE_OS
296# else
176# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
298# endif
177#endif 299#endif
178 300
179#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
309#ifndef EV_USE_EVENTFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 312# else
183# define EV_PID_HASHSIZE 16 313# define EV_USE_EVENTFD 0
184# endif 314# endif
185#endif 315#endif
186 316
187#ifndef EV_INOTIFY_HASHSIZE 317#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 319# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 320# else
191# define EV_INOTIFY_HASHSIZE 16 321# define EV_USE_SIGNALFD 0
192# endif 322# endif
193#endif 323#endif
194 324
195/**/ 325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
196 364
197#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
200#endif 368#endif
202#ifndef CLOCK_REALTIME 370#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 371# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 372# define EV_USE_REALTIME 0
205#endif 373#endif
206 374
375#if !EV_STAT_ENABLE
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378#endif
379
380#if !EV_USE_NANOSLEEP
381# ifndef _WIN32
382# include <sys/select.h>
383# endif
384#endif
385
386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
394#endif
395
207#if EV_SELECT_IS_WINSOCKET 396#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 397# include <winsock.h>
209#endif 398#endif
210 399
211#if !EV_STAT_ENABLE 400#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
402# include <stdint.h>
403# ifndef EFD_NONBLOCK
404# define EFD_NONBLOCK O_NONBLOCK
213#endif 405# endif
406# ifndef EFD_CLOEXEC
407# ifdef O_CLOEXEC
408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
214 415
215#if EV_USE_INOTIFY 416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
216# include <sys/inotify.h> 418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
217#endif 436#endif
218 437
219/**/ 438/**/
439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
445
446/*
447 * This is used to avoid floating point rounding problems.
448 * It is added to ev_rt_now when scheduling periodics
449 * to ensure progress, time-wise, even when rounding
450 * errors are against us.
451 * This value is good at least till the year 4000.
452 * Better solutions welcome.
453 */
454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 455
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 458
459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
461
225#if __GNUC__ >= 3 462#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 464# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 465#else
236# define expect(expr,value) (expr) 466# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 467# define noinline
468# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
469# define inline
470# endif
240#endif 471#endif
241 472
242#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
475#define inline_size static inline
244 476
477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
480# define inline_speed static noinline
481#endif
482
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
487#else
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
247 490
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 491#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 492#define EMPTY2(a,b) /* used to suppress some warnings */
250 493
251typedef ev_watcher *W; 494typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 495typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
254 497
498#define ev_active(w) ((W)(w))->active
499#define ev_at(w) ((WT)(w))->at
500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
507#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
519#endif
256 520
257#ifdef _WIN32 521#ifdef _WIN32
258# include "ev_win32.c" 522# include "ev_win32.c"
259#endif 523#endif
260 524
261/*****************************************************************************/ 525/*****************************************************************************/
262 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
263static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
264 578
265void 579void
266ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
267{ 581{
268 syserr_cb = cb; 582 syserr_cb = cb;
269} 583}
270 584
271static void noinline 585static void noinline
272syserr (const char *msg) 586ev_syserr (const char *msg)
273{ 587{
274 if (!msg) 588 if (!msg)
275 msg = "(libev) system error"; 589 msg = "(libev) system error";
276 590
277 if (syserr_cb) 591 if (syserr_cb)
278 syserr_cb (msg); 592 syserr_cb (msg);
279 else 593 else
280 { 594 {
595#if EV_AVOID_STDIO
596 ev_printerr (msg);
597 ev_printerr (": ");
598 ev_printerr (strerror (errno));
599 ev_printerr ("\n");
600#else
281 perror (msg); 601 perror (msg);
602#endif
282 abort (); 603 abort ();
283 } 604 }
284} 605}
285 606
607static void *
608ev_realloc_emul (void *ptr, long size)
609{
610#if __GLIBC__
611 return realloc (ptr, size);
612#else
613 /* some systems, notably openbsd and darwin, fail to properly
614 * implement realloc (x, 0) (as required by both ansi c-89 and
615 * the single unix specification, so work around them here.
616 */
617
618 if (size)
619 return realloc (ptr, size);
620
621 free (ptr);
622 return 0;
623#endif
624}
625
286static void *(*alloc)(void *ptr, long size); 626static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 627
288void 628void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 629ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 630{
291 alloc = cb; 631 alloc = cb;
292} 632}
293 633
294inline_speed void * 634inline_speed void *
295ev_realloc (void *ptr, long size) 635ev_realloc (void *ptr, long size)
296{ 636{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 637 ptr = alloc (ptr, size);
298 638
299 if (!ptr && size) 639 if (!ptr && size)
300 { 640 {
641#if EV_AVOID_STDIO
642 ev_printerr ("(libev) memory allocation failed, aborting.\n");
643#else
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 644 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
645#endif
302 abort (); 646 abort ();
303 } 647 }
304 648
305 return ptr; 649 return ptr;
306} 650}
308#define ev_malloc(size) ev_realloc (0, (size)) 652#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 653#define ev_free(ptr) ev_realloc ((ptr), 0)
310 654
311/*****************************************************************************/ 655/*****************************************************************************/
312 656
657/* set in reify when reification needed */
658#define EV_ANFD_REIFY 1
659
660/* file descriptor info structure */
313typedef struct 661typedef struct
314{ 662{
315 WL head; 663 WL head;
316 unsigned char events; 664 unsigned char events; /* the events watched for */
665 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
666 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 667 unsigned char unused;
668#if EV_USE_EPOLL
669 unsigned int egen; /* generation counter to counter epoll bugs */
670#endif
318#if EV_SELECT_IS_WINSOCKET 671#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
319 SOCKET handle; 672 SOCKET handle;
320#endif 673#endif
674#if EV_USE_IOCP
675 OVERLAPPED or, ow;
676#endif
321} ANFD; 677} ANFD;
322 678
679/* stores the pending event set for a given watcher */
323typedef struct 680typedef struct
324{ 681{
325 W w; 682 W w;
326 int events; 683 int events; /* the pending event set for the given watcher */
327} ANPENDING; 684} ANPENDING;
328 685
329#if EV_USE_INOTIFY 686#if EV_USE_INOTIFY
687/* hash table entry per inotify-id */
330typedef struct 688typedef struct
331{ 689{
332 WL head; 690 WL head;
333} ANFS; 691} ANFS;
692#endif
693
694/* Heap Entry */
695#if EV_HEAP_CACHE_AT
696 /* a heap element */
697 typedef struct {
698 ev_tstamp at;
699 WT w;
700 } ANHE;
701
702 #define ANHE_w(he) (he).w /* access watcher, read-write */
703 #define ANHE_at(he) (he).at /* access cached at, read-only */
704 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
705#else
706 /* a heap element */
707 typedef WT ANHE;
708
709 #define ANHE_w(he) (he)
710 #define ANHE_at(he) (he)->at
711 #define ANHE_at_cache(he)
334#endif 712#endif
335 713
336#if EV_MULTIPLICITY 714#if EV_MULTIPLICITY
337 715
338 struct ev_loop 716 struct ev_loop
357 735
358 static int ev_default_loop_ptr; 736 static int ev_default_loop_ptr;
359 737
360#endif 738#endif
361 739
740#if EV_FEATURE_API
741# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
742# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
743# define EV_INVOKE_PENDING invoke_cb (EV_A)
744#else
745# define EV_RELEASE_CB (void)0
746# define EV_ACQUIRE_CB (void)0
747# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
748#endif
749
750#define EVBREAK_RECURSE 0x80
751
362/*****************************************************************************/ 752/*****************************************************************************/
363 753
754#ifndef EV_HAVE_EV_TIME
364ev_tstamp 755ev_tstamp
365ev_time (void) 756ev_time (void)
366{ 757{
367#if EV_USE_REALTIME 758#if EV_USE_REALTIME
759 if (expect_true (have_realtime))
760 {
368 struct timespec ts; 761 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 762 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 763 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 764 }
765#endif
766
372 struct timeval tv; 767 struct timeval tv;
373 gettimeofday (&tv, 0); 768 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 769 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 770}
771#endif
377 772
378ev_tstamp inline_size 773inline_size ev_tstamp
379get_clock (void) 774get_clock (void)
380{ 775{
381#if EV_USE_MONOTONIC 776#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 777 if (expect_true (have_monotonic))
383 { 778 {
396{ 791{
397 return ev_rt_now; 792 return ev_rt_now;
398} 793}
399#endif 794#endif
400 795
401int inline_size 796void
797ev_sleep (ev_tstamp delay)
798{
799 if (delay > 0.)
800 {
801#if EV_USE_NANOSLEEP
802 struct timespec ts;
803
804 EV_TS_SET (ts, delay);
805 nanosleep (&ts, 0);
806#elif defined(_WIN32)
807 Sleep ((unsigned long)(delay * 1e3));
808#else
809 struct timeval tv;
810
811 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
812 /* something not guaranteed by newer posix versions, but guaranteed */
813 /* by older ones */
814 EV_TV_SET (tv, delay);
815 select (0, 0, 0, 0, &tv);
816#endif
817 }
818}
819
820/*****************************************************************************/
821
822#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
823
824/* find a suitable new size for the given array, */
825/* hopefully by rounding to a nice-to-malloc size */
826inline_size int
402array_nextsize (int elem, int cur, int cnt) 827array_nextsize (int elem, int cur, int cnt)
403{ 828{
404 int ncur = cur + 1; 829 int ncur = cur + 1;
405 830
406 do 831 do
407 ncur <<= 1; 832 ncur <<= 1;
408 while (cnt > ncur); 833 while (cnt > ncur);
409 834
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 835 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
411 if (elem * ncur > 4096) 836 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
412 { 837 {
413 ncur *= elem; 838 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 839 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
415 ncur = ncur - sizeof (void *) * 4; 840 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem; 841 ncur /= elem;
417 } 842 }
418 843
419 return ncur; 844 return ncur;
420} 845}
421 846
422inline_speed void * 847static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 848array_realloc (int elem, void *base, int *cur, int cnt)
424{ 849{
425 *cur = array_nextsize (elem, *cur, cnt); 850 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 851 return ev_realloc (base, elem * *cur);
427} 852}
853
854#define array_init_zero(base,count) \
855 memset ((void *)(base), 0, sizeof (*(base)) * (count))
428 856
429#define array_needsize(type,base,cur,cnt,init) \ 857#define array_needsize(type,base,cur,cnt,init) \
430 if (expect_false ((cnt) > (cur))) \ 858 if (expect_false ((cnt) > (cur))) \
431 { \ 859 { \
432 int ocur_ = (cur); \ 860 int ocur_ = (cur); \
444 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 872 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
445 } 873 }
446#endif 874#endif
447 875
448#define array_free(stem, idx) \ 876#define array_free(stem, idx) \
449 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 877 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
450 878
451/*****************************************************************************/ 879/*****************************************************************************/
880
881/* dummy callback for pending events */
882static void noinline
883pendingcb (EV_P_ ev_prepare *w, int revents)
884{
885}
452 886
453void noinline 887void noinline
454ev_feed_event (EV_P_ void *w, int revents) 888ev_feed_event (EV_P_ void *w, int revents)
455{ 889{
456 W w_ = (W)w; 890 W w_ = (W)w;
891 int pri = ABSPRI (w_);
457 892
458 if (expect_false (w_->pending)) 893 if (expect_false (w_->pending))
894 pendings [pri][w_->pending - 1].events |= revents;
895 else
459 { 896 {
897 w_->pending = ++pendingcnt [pri];
898 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
899 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 900 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 901 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 902}
469 903
470void inline_size 904inline_speed void
905feed_reverse (EV_P_ W w)
906{
907 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
908 rfeeds [rfeedcnt++] = w;
909}
910
911inline_size void
912feed_reverse_done (EV_P_ int revents)
913{
914 do
915 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
916 while (rfeedcnt);
917}
918
919inline_speed void
471queue_events (EV_P_ W *events, int eventcnt, int type) 920queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 921{
473 int i; 922 int i;
474 923
475 for (i = 0; i < eventcnt; ++i) 924 for (i = 0; i < eventcnt; ++i)
476 ev_feed_event (EV_A_ events [i], type); 925 ev_feed_event (EV_A_ events [i], type);
477} 926}
478 927
479/*****************************************************************************/ 928/*****************************************************************************/
480 929
481void inline_size 930inline_speed void
482anfds_init (ANFD *base, int count)
483{
484 while (count--)
485 {
486 base->head = 0;
487 base->events = EV_NONE;
488 base->reify = 0;
489
490 ++base;
491 }
492}
493
494void inline_speed
495fd_event (EV_P_ int fd, int revents) 931fd_event_nocheck (EV_P_ int fd, int revents)
496{ 932{
497 ANFD *anfd = anfds + fd; 933 ANFD *anfd = anfds + fd;
498 ev_io *w; 934 ev_io *w;
499 935
500 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 936 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
504 if (ev) 940 if (ev)
505 ev_feed_event (EV_A_ (W)w, ev); 941 ev_feed_event (EV_A_ (W)w, ev);
506 } 942 }
507} 943}
508 944
945/* do not submit kernel events for fds that have reify set */
946/* because that means they changed while we were polling for new events */
947inline_speed void
948fd_event (EV_P_ int fd, int revents)
949{
950 ANFD *anfd = anfds + fd;
951
952 if (expect_true (!anfd->reify))
953 fd_event_nocheck (EV_A_ fd, revents);
954}
955
509void 956void
510ev_feed_fd_event (EV_P_ int fd, int revents) 957ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 958{
959 if (fd >= 0 && fd < anfdmax)
512 fd_event (EV_A_ fd, revents); 960 fd_event_nocheck (EV_A_ fd, revents);
513} 961}
514 962
515void inline_size 963/* make sure the external fd watch events are in-sync */
964/* with the kernel/libev internal state */
965inline_size void
516fd_reify (EV_P) 966fd_reify (EV_P)
517{ 967{
518 int i; 968 int i;
519 969
520 for (i = 0; i < fdchangecnt; ++i) 970 for (i = 0; i < fdchangecnt; ++i)
521 { 971 {
522 int fd = fdchanges [i]; 972 int fd = fdchanges [i];
523 ANFD *anfd = anfds + fd; 973 ANFD *anfd = anfds + fd;
524 ev_io *w; 974 ev_io *w;
525 975
526 int events = 0; 976 unsigned char o_events = anfd->events;
977 unsigned char o_reify = anfd->reify;
527 978
528 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 979 anfd->reify = 0;
529 events |= w->events;
530 980
531#if EV_SELECT_IS_WINSOCKET 981#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
532 if (events) 982 if (o_reify & EV__IOFDSET)
533 { 983 {
534 unsigned long argp; 984 unsigned long arg;
535 anfd->handle = _get_osfhandle (fd); 985 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
536 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 986 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
987 printf ("oi %d %x\n", fd, anfd->handle);//D
537 } 988 }
538#endif 989#endif
539 990
540 anfd->reify = 0; 991 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
992 {
993 anfd->events = 0;
541 994
995 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
996 anfd->events |= (unsigned char)w->events;
997
998 if (o_events != anfd->events)
999 o_reify = EV__IOFDSET; /* actually |= */
1000 }
1001
1002 if (o_reify & EV__IOFDSET)
542 backend_modify (EV_A_ fd, anfd->events, events); 1003 backend_modify (EV_A_ fd, o_events, anfd->events);
543 anfd->events = events;
544 } 1004 }
545 1005
546 fdchangecnt = 0; 1006 fdchangecnt = 0;
547} 1007}
548 1008
549void inline_size 1009/* something about the given fd changed */
1010inline_size void
550fd_change (EV_P_ int fd) 1011fd_change (EV_P_ int fd, int flags)
551{ 1012{
552 if (expect_false (anfds [fd].reify)) 1013 unsigned char reify = anfds [fd].reify;
553 return;
554
555 anfds [fd].reify = 1; 1014 anfds [fd].reify |= flags;
556 1015
1016 if (expect_true (!reify))
1017 {
557 ++fdchangecnt; 1018 ++fdchangecnt;
558 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1019 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
559 fdchanges [fdchangecnt - 1] = fd; 1020 fdchanges [fdchangecnt - 1] = fd;
1021 }
560} 1022}
561 1023
562void inline_speed 1024/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1025inline_speed void
563fd_kill (EV_P_ int fd) 1026fd_kill (EV_P_ int fd)
564{ 1027{
565 ev_io *w; 1028 ev_io *w;
566 1029
567 while ((w = (ev_io *)anfds [fd].head)) 1030 while ((w = (ev_io *)anfds [fd].head))
569 ev_io_stop (EV_A_ w); 1032 ev_io_stop (EV_A_ w);
570 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1033 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
571 } 1034 }
572} 1035}
573 1036
574int inline_size 1037/* check whether the given fd is actually valid, for error recovery */
1038inline_size int
575fd_valid (int fd) 1039fd_valid (int fd)
576{ 1040{
577#ifdef _WIN32 1041#ifdef _WIN32
578 return _get_osfhandle (fd) != -1; 1042 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
579#else 1043#else
580 return fcntl (fd, F_GETFD) != -1; 1044 return fcntl (fd, F_GETFD) != -1;
581#endif 1045#endif
582} 1046}
583 1047
587{ 1051{
588 int fd; 1052 int fd;
589 1053
590 for (fd = 0; fd < anfdmax; ++fd) 1054 for (fd = 0; fd < anfdmax; ++fd)
591 if (anfds [fd].events) 1055 if (anfds [fd].events)
592 if (!fd_valid (fd) == -1 && errno == EBADF) 1056 if (!fd_valid (fd) && errno == EBADF)
593 fd_kill (EV_A_ fd); 1057 fd_kill (EV_A_ fd);
594} 1058}
595 1059
596/* called on ENOMEM in select/poll to kill some fds and retry */ 1060/* called on ENOMEM in select/poll to kill some fds and retry */
597static void noinline 1061static void noinline
601 1065
602 for (fd = anfdmax; fd--; ) 1066 for (fd = anfdmax; fd--; )
603 if (anfds [fd].events) 1067 if (anfds [fd].events)
604 { 1068 {
605 fd_kill (EV_A_ fd); 1069 fd_kill (EV_A_ fd);
606 return; 1070 break;
607 } 1071 }
608} 1072}
609 1073
610/* usually called after fork if backend needs to re-arm all fds from scratch */ 1074/* usually called after fork if backend needs to re-arm all fds from scratch */
611static void noinline 1075static void noinline
615 1079
616 for (fd = 0; fd < anfdmax; ++fd) 1080 for (fd = 0; fd < anfdmax; ++fd)
617 if (anfds [fd].events) 1081 if (anfds [fd].events)
618 { 1082 {
619 anfds [fd].events = 0; 1083 anfds [fd].events = 0;
620 fd_change (EV_A_ fd); 1084 anfds [fd].emask = 0;
1085 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
621 } 1086 }
622} 1087}
623 1088
624/*****************************************************************************/ 1089/* used to prepare libev internal fd's */
625 1090/* this is not fork-safe */
626void inline_speed 1091inline_speed void
627upheap (WT *heap, int k)
628{
629 WT w = heap [k];
630
631 while (k && heap [k >> 1]->at > w->at)
632 {
633 heap [k] = heap [k >> 1];
634 ((W)heap [k])->active = k + 1;
635 k >>= 1;
636 }
637
638 heap [k] = w;
639 ((W)heap [k])->active = k + 1;
640
641}
642
643void inline_speed
644downheap (WT *heap, int N, int k)
645{
646 WT w = heap [k];
647
648 while (k < (N >> 1))
649 {
650 int j = k << 1;
651
652 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
653 ++j;
654
655 if (w->at <= heap [j]->at)
656 break;
657
658 heap [k] = heap [j];
659 ((W)heap [k])->active = k + 1;
660 k = j;
661 }
662
663 heap [k] = w;
664 ((W)heap [k])->active = k + 1;
665}
666
667void inline_size
668adjustheap (WT *heap, int N, int k)
669{
670 upheap (heap, k);
671 downheap (heap, N, k);
672}
673
674/*****************************************************************************/
675
676typedef struct
677{
678 WL head;
679 sig_atomic_t volatile gotsig;
680} ANSIG;
681
682static ANSIG *signals;
683static int signalmax;
684
685static int sigpipe [2];
686static sig_atomic_t volatile gotsig;
687static ev_io sigev;
688
689void inline_size
690signals_init (ANSIG *base, int count)
691{
692 while (count--)
693 {
694 base->head = 0;
695 base->gotsig = 0;
696
697 ++base;
698 }
699}
700
701static void
702sighandler (int signum)
703{
704#if _WIN32
705 signal (signum, sighandler);
706#endif
707
708 signals [signum - 1].gotsig = 1;
709
710 if (!gotsig)
711 {
712 int old_errno = errno;
713 gotsig = 1;
714 write (sigpipe [1], &signum, 1);
715 errno = old_errno;
716 }
717}
718
719void noinline
720ev_feed_signal_event (EV_P_ int signum)
721{
722 WL w;
723
724#if EV_MULTIPLICITY
725 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
726#endif
727
728 --signum;
729
730 if (signum < 0 || signum >= signalmax)
731 return;
732
733 signals [signum].gotsig = 0;
734
735 for (w = signals [signum].head; w; w = w->next)
736 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
737}
738
739static void
740sigcb (EV_P_ ev_io *iow, int revents)
741{
742 int signum;
743
744 read (sigpipe [0], &revents, 1);
745 gotsig = 0;
746
747 for (signum = signalmax; signum--; )
748 if (signals [signum].gotsig)
749 ev_feed_signal_event (EV_A_ signum + 1);
750}
751
752void inline_size
753fd_intern (int fd) 1092fd_intern (int fd)
754{ 1093{
755#ifdef _WIN32 1094#ifdef _WIN32
756 int arg = 1; 1095 unsigned long arg = 1;
757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1096 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
758#else 1097#else
759 fcntl (fd, F_SETFD, FD_CLOEXEC); 1098 fcntl (fd, F_SETFD, FD_CLOEXEC);
760 fcntl (fd, F_SETFL, O_NONBLOCK); 1099 fcntl (fd, F_SETFL, O_NONBLOCK);
761#endif 1100#endif
762} 1101}
763 1102
1103/*****************************************************************************/
1104
1105/*
1106 * the heap functions want a real array index. array index 0 is guaranteed to not
1107 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1108 * the branching factor of the d-tree.
1109 */
1110
1111/*
1112 * at the moment we allow libev the luxury of two heaps,
1113 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1114 * which is more cache-efficient.
1115 * the difference is about 5% with 50000+ watchers.
1116 */
1117#if EV_USE_4HEAP
1118
1119#define DHEAP 4
1120#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1121#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1122#define UPHEAP_DONE(p,k) ((p) == (k))
1123
1124/* away from the root */
1125inline_speed void
1126downheap (ANHE *heap, int N, int k)
1127{
1128 ANHE he = heap [k];
1129 ANHE *E = heap + N + HEAP0;
1130
1131 for (;;)
1132 {
1133 ev_tstamp minat;
1134 ANHE *minpos;
1135 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1136
1137 /* find minimum child */
1138 if (expect_true (pos + DHEAP - 1 < E))
1139 {
1140 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1141 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1142 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1143 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1144 }
1145 else if (pos < E)
1146 {
1147 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1148 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1149 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1150 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1151 }
1152 else
1153 break;
1154
1155 if (ANHE_at (he) <= minat)
1156 break;
1157
1158 heap [k] = *minpos;
1159 ev_active (ANHE_w (*minpos)) = k;
1160
1161 k = minpos - heap;
1162 }
1163
1164 heap [k] = he;
1165 ev_active (ANHE_w (he)) = k;
1166}
1167
1168#else /* 4HEAP */
1169
1170#define HEAP0 1
1171#define HPARENT(k) ((k) >> 1)
1172#define UPHEAP_DONE(p,k) (!(p))
1173
1174/* away from the root */
1175inline_speed void
1176downheap (ANHE *heap, int N, int k)
1177{
1178 ANHE he = heap [k];
1179
1180 for (;;)
1181 {
1182 int c = k << 1;
1183
1184 if (c >= N + HEAP0)
1185 break;
1186
1187 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1188 ? 1 : 0;
1189
1190 if (ANHE_at (he) <= ANHE_at (heap [c]))
1191 break;
1192
1193 heap [k] = heap [c];
1194 ev_active (ANHE_w (heap [k])) = k;
1195
1196 k = c;
1197 }
1198
1199 heap [k] = he;
1200 ev_active (ANHE_w (he)) = k;
1201}
1202#endif
1203
1204/* towards the root */
1205inline_speed void
1206upheap (ANHE *heap, int k)
1207{
1208 ANHE he = heap [k];
1209
1210 for (;;)
1211 {
1212 int p = HPARENT (k);
1213
1214 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1215 break;
1216
1217 heap [k] = heap [p];
1218 ev_active (ANHE_w (heap [k])) = k;
1219 k = p;
1220 }
1221
1222 heap [k] = he;
1223 ev_active (ANHE_w (he)) = k;
1224}
1225
1226/* move an element suitably so it is in a correct place */
1227inline_size void
1228adjustheap (ANHE *heap, int N, int k)
1229{
1230 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1231 upheap (heap, k);
1232 else
1233 downheap (heap, N, k);
1234}
1235
1236/* rebuild the heap: this function is used only once and executed rarely */
1237inline_size void
1238reheap (ANHE *heap, int N)
1239{
1240 int i;
1241
1242 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1243 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1244 for (i = 0; i < N; ++i)
1245 upheap (heap, i + HEAP0);
1246}
1247
1248/*****************************************************************************/
1249
1250/* associate signal watchers to a signal signal */
1251typedef struct
1252{
1253 EV_ATOMIC_T pending;
1254#if EV_MULTIPLICITY
1255 EV_P;
1256#endif
1257 WL head;
1258} ANSIG;
1259
1260static ANSIG signals [EV_NSIG - 1];
1261
1262/*****************************************************************************/
1263
1264#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1265
764static void noinline 1266static void noinline
765siginit (EV_P) 1267evpipe_init (EV_P)
766{ 1268{
1269 if (!ev_is_active (&pipe_w))
1270 {
1271# if EV_USE_EVENTFD
1272 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1273 if (evfd < 0 && errno == EINVAL)
1274 evfd = eventfd (0, 0);
1275
1276 if (evfd >= 0)
1277 {
1278 evpipe [0] = -1;
1279 fd_intern (evfd); /* doing it twice doesn't hurt */
1280 ev_io_set (&pipe_w, evfd, EV_READ);
1281 }
1282 else
1283# endif
1284 {
1285 while (pipe (evpipe))
1286 ev_syserr ("(libev) error creating signal/async pipe");
1287
767 fd_intern (sigpipe [0]); 1288 fd_intern (evpipe [0]);
768 fd_intern (sigpipe [1]); 1289 fd_intern (evpipe [1]);
1290 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1291 }
769 1292
770 ev_io_set (&sigev, sigpipe [0], EV_READ);
771 ev_io_start (EV_A_ &sigev); 1293 ev_io_start (EV_A_ &pipe_w);
772 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1294 ev_unref (EV_A); /* watcher should not keep loop alive */
1295 }
1296}
1297
1298inline_size void
1299evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1300{
1301 if (!*flag)
1302 {
1303 int old_errno = errno; /* save errno because write might clobber it */
1304 char dummy;
1305
1306 *flag = 1;
1307
1308#if EV_USE_EVENTFD
1309 if (evfd >= 0)
1310 {
1311 uint64_t counter = 1;
1312 write (evfd, &counter, sizeof (uint64_t));
1313 }
1314 else
1315#endif
1316 /* win32 people keep sending patches that change this write() to send() */
1317 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1318 /* so when you think this write should be a send instead, please find out */
1319 /* where your send() is from - it's definitely not the microsoft send, and */
1320 /* tell me. thank you. */
1321 write (evpipe [1], &dummy, 1);
1322
1323 errno = old_errno;
1324 }
1325}
1326
1327/* called whenever the libev signal pipe */
1328/* got some events (signal, async) */
1329static void
1330pipecb (EV_P_ ev_io *iow, int revents)
1331{
1332 int i;
1333
1334#if EV_USE_EVENTFD
1335 if (evfd >= 0)
1336 {
1337 uint64_t counter;
1338 read (evfd, &counter, sizeof (uint64_t));
1339 }
1340 else
1341#endif
1342 {
1343 char dummy;
1344 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1345 read (evpipe [0], &dummy, 1);
1346 }
1347
1348 if (sig_pending)
1349 {
1350 sig_pending = 0;
1351
1352 for (i = EV_NSIG - 1; i--; )
1353 if (expect_false (signals [i].pending))
1354 ev_feed_signal_event (EV_A_ i + 1);
1355 }
1356
1357#if EV_ASYNC_ENABLE
1358 if (async_pending)
1359 {
1360 async_pending = 0;
1361
1362 for (i = asynccnt; i--; )
1363 if (asyncs [i]->sent)
1364 {
1365 asyncs [i]->sent = 0;
1366 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1367 }
1368 }
1369#endif
773} 1370}
774 1371
775/*****************************************************************************/ 1372/*****************************************************************************/
776 1373
777static ev_child *childs [EV_PID_HASHSIZE]; 1374void
1375ev_feed_signal (int signum)
1376{
1377#if EV_MULTIPLICITY
1378 EV_P = signals [signum - 1].loop;
778 1379
1380 if (!EV_A)
1381 return;
1382#endif
1383
1384 signals [signum - 1].pending = 1;
1385 evpipe_write (EV_A_ &sig_pending);
1386}
1387
1388static void
1389ev_sighandler (int signum)
1390{
779#ifndef _WIN32 1391#ifdef _WIN32
1392 signal (signum, ev_sighandler);
1393#endif
1394
1395 ev_feed_signal (signum);
1396}
1397
1398void noinline
1399ev_feed_signal_event (EV_P_ int signum)
1400{
1401 WL w;
1402
1403 if (expect_false (signum <= 0 || signum > EV_NSIG))
1404 return;
1405
1406 --signum;
1407
1408#if EV_MULTIPLICITY
1409 /* it is permissible to try to feed a signal to the wrong loop */
1410 /* or, likely more useful, feeding a signal nobody is waiting for */
1411
1412 if (expect_false (signals [signum].loop != EV_A))
1413 return;
1414#endif
1415
1416 signals [signum].pending = 0;
1417
1418 for (w = signals [signum].head; w; w = w->next)
1419 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1420}
1421
1422#if EV_USE_SIGNALFD
1423static void
1424sigfdcb (EV_P_ ev_io *iow, int revents)
1425{
1426 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1427
1428 for (;;)
1429 {
1430 ssize_t res = read (sigfd, si, sizeof (si));
1431
1432 /* not ISO-C, as res might be -1, but works with SuS */
1433 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1434 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1435
1436 if (res < (ssize_t)sizeof (si))
1437 break;
1438 }
1439}
1440#endif
1441
1442#endif
1443
1444/*****************************************************************************/
1445
1446#if EV_CHILD_ENABLE
1447static WL childs [EV_PID_HASHSIZE];
780 1448
781static ev_signal childev; 1449static ev_signal childev;
782 1450
783void inline_speed 1451#ifndef WIFCONTINUED
1452# define WIFCONTINUED(status) 0
1453#endif
1454
1455/* handle a single child status event */
1456inline_speed void
784child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1457child_reap (EV_P_ int chain, int pid, int status)
785{ 1458{
786 ev_child *w; 1459 ev_child *w;
1460 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
787 1461
788 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1462 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1463 {
789 if (w->pid == pid || !w->pid) 1464 if ((w->pid == pid || !w->pid)
1465 && (!traced || (w->flags & 1)))
790 { 1466 {
791 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1467 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
792 w->rpid = pid; 1468 w->rpid = pid;
793 w->rstatus = status; 1469 w->rstatus = status;
794 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1470 ev_feed_event (EV_A_ (W)w, EV_CHILD);
795 } 1471 }
1472 }
796} 1473}
797 1474
798#ifndef WCONTINUED 1475#ifndef WCONTINUED
799# define WCONTINUED 0 1476# define WCONTINUED 0
800#endif 1477#endif
801 1478
1479/* called on sigchld etc., calls waitpid */
802static void 1480static void
803childcb (EV_P_ ev_signal *sw, int revents) 1481childcb (EV_P_ ev_signal *sw, int revents)
804{ 1482{
805 int pid, status; 1483 int pid, status;
806 1484
809 if (!WCONTINUED 1487 if (!WCONTINUED
810 || errno != EINVAL 1488 || errno != EINVAL
811 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1489 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
812 return; 1490 return;
813 1491
814 /* make sure we are called again until all childs have been reaped */ 1492 /* make sure we are called again until all children have been reaped */
815 /* we need to do it this way so that the callback gets called before we continue */ 1493 /* we need to do it this way so that the callback gets called before we continue */
816 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1494 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
817 1495
818 child_reap (EV_A_ sw, pid, pid, status); 1496 child_reap (EV_A_ pid, pid, status);
819 if (EV_PID_HASHSIZE > 1) 1497 if ((EV_PID_HASHSIZE) > 1)
820 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1498 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
821} 1499}
822 1500
823#endif 1501#endif
824 1502
825/*****************************************************************************/ 1503/*****************************************************************************/
826 1504
1505#if EV_USE_IOCP
1506# include "ev_iocp.c"
1507#endif
827#if EV_USE_PORT 1508#if EV_USE_PORT
828# include "ev_port.c" 1509# include "ev_port.c"
829#endif 1510#endif
830#if EV_USE_KQUEUE 1511#if EV_USE_KQUEUE
831# include "ev_kqueue.c" 1512# include "ev_kqueue.c"
887 /* kqueue is borked on everything but netbsd apparently */ 1568 /* kqueue is borked on everything but netbsd apparently */
888 /* it usually doesn't work correctly on anything but sockets and pipes */ 1569 /* it usually doesn't work correctly on anything but sockets and pipes */
889 flags &= ~EVBACKEND_KQUEUE; 1570 flags &= ~EVBACKEND_KQUEUE;
890#endif 1571#endif
891#ifdef __APPLE__ 1572#ifdef __APPLE__
892 // flags &= ~EVBACKEND_KQUEUE; for documentation 1573 /* only select works correctly on that "unix-certified" platform */
893 flags &= ~EVBACKEND_POLL; 1574 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1575 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1576#endif
1577#ifdef __FreeBSD__
1578 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
894#endif 1579#endif
895 1580
896 return flags; 1581 return flags;
897} 1582}
898 1583
899unsigned int 1584unsigned int
900ev_embeddable_backends (void) 1585ev_embeddable_backends (void)
901{ 1586{
902 return EVBACKEND_EPOLL 1587 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
903 | EVBACKEND_KQUEUE 1588
904 | EVBACKEND_PORT; 1589 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1590 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1591 flags &= ~EVBACKEND_EPOLL;
1592
1593 return flags;
905} 1594}
906 1595
907unsigned int 1596unsigned int
908ev_backend (EV_P) 1597ev_backend (EV_P)
909{ 1598{
910 return backend; 1599 return backend;
911} 1600}
912 1601
1602#if EV_FEATURE_API
913unsigned int 1603unsigned int
914ev_loop_count (EV_P) 1604ev_iteration (EV_P)
915{ 1605{
916 return loop_count; 1606 return loop_count;
917} 1607}
918 1608
1609unsigned int
1610ev_depth (EV_P)
1611{
1612 return loop_depth;
1613}
1614
1615void
1616ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1617{
1618 io_blocktime = interval;
1619}
1620
1621void
1622ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1623{
1624 timeout_blocktime = interval;
1625}
1626
1627void
1628ev_set_userdata (EV_P_ void *data)
1629{
1630 userdata = data;
1631}
1632
1633void *
1634ev_userdata (EV_P)
1635{
1636 return userdata;
1637}
1638
1639void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1640{
1641 invoke_cb = invoke_pending_cb;
1642}
1643
1644void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1645{
1646 release_cb = release;
1647 acquire_cb = acquire;
1648}
1649#endif
1650
1651/* initialise a loop structure, must be zero-initialised */
919static void noinline 1652static void noinline
920loop_init (EV_P_ unsigned int flags) 1653loop_init (EV_P_ unsigned int flags)
921{ 1654{
922 if (!backend) 1655 if (!backend)
923 { 1656 {
1657 origflags = flags;
1658
1659#if EV_USE_REALTIME
1660 if (!have_realtime)
1661 {
1662 struct timespec ts;
1663
1664 if (!clock_gettime (CLOCK_REALTIME, &ts))
1665 have_realtime = 1;
1666 }
1667#endif
1668
924#if EV_USE_MONOTONIC 1669#if EV_USE_MONOTONIC
1670 if (!have_monotonic)
925 { 1671 {
926 struct timespec ts; 1672 struct timespec ts;
1673
927 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1674 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
928 have_monotonic = 1; 1675 have_monotonic = 1;
929 } 1676 }
930#endif 1677#endif
931
932 ev_rt_now = ev_time ();
933 mn_now = get_clock ();
934 now_floor = mn_now;
935 rtmn_diff = ev_rt_now - mn_now;
936 1678
937 /* pid check not overridable via env */ 1679 /* pid check not overridable via env */
938#ifndef _WIN32 1680#ifndef _WIN32
939 if (flags & EVFLAG_FORKCHECK) 1681 if (flags & EVFLAG_FORKCHECK)
940 curpid = getpid (); 1682 curpid = getpid ();
943 if (!(flags & EVFLAG_NOENV) 1685 if (!(flags & EVFLAG_NOENV)
944 && !enable_secure () 1686 && !enable_secure ()
945 && getenv ("LIBEV_FLAGS")) 1687 && getenv ("LIBEV_FLAGS"))
946 flags = atoi (getenv ("LIBEV_FLAGS")); 1688 flags = atoi (getenv ("LIBEV_FLAGS"));
947 1689
948 if (!(flags & 0x0000ffffUL)) 1690 ev_rt_now = ev_time ();
1691 mn_now = get_clock ();
1692 now_floor = mn_now;
1693 rtmn_diff = ev_rt_now - mn_now;
1694#if EV_FEATURE_API
1695 invoke_cb = ev_invoke_pending;
1696#endif
1697
1698 io_blocktime = 0.;
1699 timeout_blocktime = 0.;
1700 backend = 0;
1701 backend_fd = -1;
1702 sig_pending = 0;
1703#if EV_ASYNC_ENABLE
1704 async_pending = 0;
1705#endif
1706#if EV_USE_INOTIFY
1707 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1708#endif
1709#if EV_USE_SIGNALFD
1710 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1711#endif
1712
1713 if (!(flags & EVBACKEND_MASK))
949 flags |= ev_recommended_backends (); 1714 flags |= ev_recommended_backends ();
950 1715
951 backend = 0;
952 backend_fd = -1;
953#if EV_USE_INOTIFY 1716#if EV_USE_IOCP
954 fs_fd = -2; 1717 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
955#endif 1718#endif
956
957#if EV_USE_PORT 1719#if EV_USE_PORT
958 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1720 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
959#endif 1721#endif
960#if EV_USE_KQUEUE 1722#if EV_USE_KQUEUE
961 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1723 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
968#endif 1730#endif
969#if EV_USE_SELECT 1731#if EV_USE_SELECT
970 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1732 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
971#endif 1733#endif
972 1734
1735 ev_prepare_init (&pending_w, pendingcb);
1736
1737#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
973 ev_init (&sigev, sigcb); 1738 ev_init (&pipe_w, pipecb);
974 ev_set_priority (&sigev, EV_MAXPRI); 1739 ev_set_priority (&pipe_w, EV_MAXPRI);
1740#endif
975 } 1741 }
976} 1742}
977 1743
978static void noinline 1744/* free up a loop structure */
1745void
979loop_destroy (EV_P) 1746ev_loop_destroy (EV_P)
980{ 1747{
981 int i; 1748 int i;
1749
1750#if EV_MULTIPLICITY
1751 /* mimic free (0) */
1752 if (!EV_A)
1753 return;
1754#endif
1755
1756#if EV_CLEANUP_ENABLE
1757 /* queue cleanup watchers (and execute them) */
1758 if (expect_false (cleanupcnt))
1759 {
1760 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1761 EV_INVOKE_PENDING;
1762 }
1763#endif
1764
1765#if EV_CHILD_ENABLE
1766 if (ev_is_active (&childev))
1767 {
1768 ev_ref (EV_A); /* child watcher */
1769 ev_signal_stop (EV_A_ &childev);
1770 }
1771#endif
1772
1773 if (ev_is_active (&pipe_w))
1774 {
1775 /*ev_ref (EV_A);*/
1776 /*ev_io_stop (EV_A_ &pipe_w);*/
1777
1778#if EV_USE_EVENTFD
1779 if (evfd >= 0)
1780 close (evfd);
1781#endif
1782
1783 if (evpipe [0] >= 0)
1784 {
1785 EV_WIN32_CLOSE_FD (evpipe [0]);
1786 EV_WIN32_CLOSE_FD (evpipe [1]);
1787 }
1788 }
1789
1790#if EV_USE_SIGNALFD
1791 if (ev_is_active (&sigfd_w))
1792 close (sigfd);
1793#endif
982 1794
983#if EV_USE_INOTIFY 1795#if EV_USE_INOTIFY
984 if (fs_fd >= 0) 1796 if (fs_fd >= 0)
985 close (fs_fd); 1797 close (fs_fd);
986#endif 1798#endif
987 1799
988 if (backend_fd >= 0) 1800 if (backend_fd >= 0)
989 close (backend_fd); 1801 close (backend_fd);
990 1802
1803#if EV_USE_IOCP
1804 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1805#endif
991#if EV_USE_PORT 1806#if EV_USE_PORT
992 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1807 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
993#endif 1808#endif
994#if EV_USE_KQUEUE 1809#if EV_USE_KQUEUE
995 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1810 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1003#if EV_USE_SELECT 1818#if EV_USE_SELECT
1004 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1819 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1005#endif 1820#endif
1006 1821
1007 for (i = NUMPRI; i--; ) 1822 for (i = NUMPRI; i--; )
1823 {
1008 array_free (pending, [i]); 1824 array_free (pending, [i]);
1825#if EV_IDLE_ENABLE
1826 array_free (idle, [i]);
1827#endif
1828 }
1829
1830 ev_free (anfds); anfds = 0; anfdmax = 0;
1009 1831
1010 /* have to use the microsoft-never-gets-it-right macro */ 1832 /* have to use the microsoft-never-gets-it-right macro */
1833 array_free (rfeed, EMPTY);
1011 array_free (fdchange, EMPTY0); 1834 array_free (fdchange, EMPTY);
1012 array_free (timer, EMPTY0); 1835 array_free (timer, EMPTY);
1013#if EV_PERIODIC_ENABLE 1836#if EV_PERIODIC_ENABLE
1014 array_free (periodic, EMPTY0); 1837 array_free (periodic, EMPTY);
1015#endif 1838#endif
1839#if EV_FORK_ENABLE
1840 array_free (fork, EMPTY);
1841#endif
1842#if EV_CLEANUP_ENABLE
1016 array_free (idle, EMPTY0); 1843 array_free (cleanup, EMPTY);
1844#endif
1017 array_free (prepare, EMPTY0); 1845 array_free (prepare, EMPTY);
1018 array_free (check, EMPTY0); 1846 array_free (check, EMPTY);
1847#if EV_ASYNC_ENABLE
1848 array_free (async, EMPTY);
1849#endif
1019 1850
1020 backend = 0; 1851 backend = 0;
1021}
1022 1852
1853#if EV_MULTIPLICITY
1854 if (ev_is_default_loop (EV_A))
1855#endif
1856 ev_default_loop_ptr = 0;
1857#if EV_MULTIPLICITY
1858 else
1859 ev_free (EV_A);
1860#endif
1861}
1862
1863#if EV_USE_INOTIFY
1023void inline_size infy_fork (EV_P); 1864inline_size void infy_fork (EV_P);
1865#endif
1024 1866
1025void inline_size 1867inline_size void
1026loop_fork (EV_P) 1868loop_fork (EV_P)
1027{ 1869{
1028#if EV_USE_PORT 1870#if EV_USE_PORT
1029 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1871 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1030#endif 1872#endif
1036#endif 1878#endif
1037#if EV_USE_INOTIFY 1879#if EV_USE_INOTIFY
1038 infy_fork (EV_A); 1880 infy_fork (EV_A);
1039#endif 1881#endif
1040 1882
1041 if (ev_is_active (&sigev)) 1883 if (ev_is_active (&pipe_w))
1042 { 1884 {
1043 /* default loop */ 1885 /* this "locks" the handlers against writing to the pipe */
1886 /* while we modify the fd vars */
1887 sig_pending = 1;
1888#if EV_ASYNC_ENABLE
1889 async_pending = 1;
1890#endif
1044 1891
1045 ev_ref (EV_A); 1892 ev_ref (EV_A);
1046 ev_io_stop (EV_A_ &sigev); 1893 ev_io_stop (EV_A_ &pipe_w);
1047 close (sigpipe [0]);
1048 close (sigpipe [1]);
1049 1894
1050 while (pipe (sigpipe)) 1895#if EV_USE_EVENTFD
1051 syserr ("(libev) error creating pipe"); 1896 if (evfd >= 0)
1897 close (evfd);
1898#endif
1052 1899
1900 if (evpipe [0] >= 0)
1901 {
1902 EV_WIN32_CLOSE_FD (evpipe [0]);
1903 EV_WIN32_CLOSE_FD (evpipe [1]);
1904 }
1905
1906#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1053 siginit (EV_A); 1907 evpipe_init (EV_A);
1908 /* now iterate over everything, in case we missed something */
1909 pipecb (EV_A_ &pipe_w, EV_READ);
1910#endif
1054 } 1911 }
1055 1912
1056 postfork = 0; 1913 postfork = 0;
1057} 1914}
1915
1916#if EV_MULTIPLICITY
1917
1918struct ev_loop *
1919ev_loop_new (unsigned int flags)
1920{
1921 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1922
1923 memset (EV_A, 0, sizeof (struct ev_loop));
1924 loop_init (EV_A_ flags);
1925
1926 if (ev_backend (EV_A))
1927 return EV_A;
1928
1929 ev_free (EV_A);
1930 return 0;
1931}
1932
1933#endif /* multiplicity */
1934
1935#if EV_VERIFY
1936static void noinline
1937verify_watcher (EV_P_ W w)
1938{
1939 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1940
1941 if (w->pending)
1942 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1943}
1944
1945static void noinline
1946verify_heap (EV_P_ ANHE *heap, int N)
1947{
1948 int i;
1949
1950 for (i = HEAP0; i < N + HEAP0; ++i)
1951 {
1952 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1953 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1954 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1955
1956 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1957 }
1958}
1959
1960static void noinline
1961array_verify (EV_P_ W *ws, int cnt)
1962{
1963 while (cnt--)
1964 {
1965 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1966 verify_watcher (EV_A_ ws [cnt]);
1967 }
1968}
1969#endif
1970
1971#if EV_FEATURE_API
1972void
1973ev_verify (EV_P)
1974{
1975#if EV_VERIFY
1976 int i;
1977 WL w;
1978
1979 assert (activecnt >= -1);
1980
1981 assert (fdchangemax >= fdchangecnt);
1982 for (i = 0; i < fdchangecnt; ++i)
1983 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1984
1985 assert (anfdmax >= 0);
1986 for (i = 0; i < anfdmax; ++i)
1987 for (w = anfds [i].head; w; w = w->next)
1988 {
1989 verify_watcher (EV_A_ (W)w);
1990 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1991 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1992 }
1993
1994 assert (timermax >= timercnt);
1995 verify_heap (EV_A_ timers, timercnt);
1996
1997#if EV_PERIODIC_ENABLE
1998 assert (periodicmax >= periodiccnt);
1999 verify_heap (EV_A_ periodics, periodiccnt);
2000#endif
2001
2002 for (i = NUMPRI; i--; )
2003 {
2004 assert (pendingmax [i] >= pendingcnt [i]);
2005#if EV_IDLE_ENABLE
2006 assert (idleall >= 0);
2007 assert (idlemax [i] >= idlecnt [i]);
2008 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2009#endif
2010 }
2011
2012#if EV_FORK_ENABLE
2013 assert (forkmax >= forkcnt);
2014 array_verify (EV_A_ (W *)forks, forkcnt);
2015#endif
2016
2017#if EV_CLEANUP_ENABLE
2018 assert (cleanupmax >= cleanupcnt);
2019 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2020#endif
2021
2022#if EV_ASYNC_ENABLE
2023 assert (asyncmax >= asynccnt);
2024 array_verify (EV_A_ (W *)asyncs, asynccnt);
2025#endif
2026
2027#if EV_PREPARE_ENABLE
2028 assert (preparemax >= preparecnt);
2029 array_verify (EV_A_ (W *)prepares, preparecnt);
2030#endif
2031
2032#if EV_CHECK_ENABLE
2033 assert (checkmax >= checkcnt);
2034 array_verify (EV_A_ (W *)checks, checkcnt);
2035#endif
2036
2037# if 0
2038#if EV_CHILD_ENABLE
2039 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2040 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2041#endif
2042# endif
2043#endif
2044}
2045#endif
1058 2046
1059#if EV_MULTIPLICITY 2047#if EV_MULTIPLICITY
1060struct ev_loop * 2048struct ev_loop *
1061ev_loop_new (unsigned int flags)
1062{
1063 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1064
1065 memset (loop, 0, sizeof (struct ev_loop));
1066
1067 loop_init (EV_A_ flags);
1068
1069 if (ev_backend (EV_A))
1070 return loop;
1071
1072 return 0;
1073}
1074
1075void
1076ev_loop_destroy (EV_P)
1077{
1078 loop_destroy (EV_A);
1079 ev_free (loop);
1080}
1081
1082void
1083ev_loop_fork (EV_P)
1084{
1085 postfork = 1;
1086}
1087
1088#endif
1089
1090#if EV_MULTIPLICITY
1091struct ev_loop *
1092ev_default_loop_init (unsigned int flags)
1093#else 2049#else
1094int 2050int
2051#endif
1095ev_default_loop (unsigned int flags) 2052ev_default_loop (unsigned int flags)
1096#endif
1097{ 2053{
1098 if (sigpipe [0] == sigpipe [1])
1099 if (pipe (sigpipe))
1100 return 0;
1101
1102 if (!ev_default_loop_ptr) 2054 if (!ev_default_loop_ptr)
1103 { 2055 {
1104#if EV_MULTIPLICITY 2056#if EV_MULTIPLICITY
1105 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2057 EV_P = ev_default_loop_ptr = &default_loop_struct;
1106#else 2058#else
1107 ev_default_loop_ptr = 1; 2059 ev_default_loop_ptr = 1;
1108#endif 2060#endif
1109 2061
1110 loop_init (EV_A_ flags); 2062 loop_init (EV_A_ flags);
1111 2063
1112 if (ev_backend (EV_A)) 2064 if (ev_backend (EV_A))
1113 { 2065 {
1114 siginit (EV_A); 2066#if EV_CHILD_ENABLE
1115
1116#ifndef _WIN32
1117 ev_signal_init (&childev, childcb, SIGCHLD); 2067 ev_signal_init (&childev, childcb, SIGCHLD);
1118 ev_set_priority (&childev, EV_MAXPRI); 2068 ev_set_priority (&childev, EV_MAXPRI);
1119 ev_signal_start (EV_A_ &childev); 2069 ev_signal_start (EV_A_ &childev);
1120 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2070 ev_unref (EV_A); /* child watcher should not keep loop alive */
1121#endif 2071#endif
1126 2076
1127 return ev_default_loop_ptr; 2077 return ev_default_loop_ptr;
1128} 2078}
1129 2079
1130void 2080void
1131ev_default_destroy (void) 2081ev_loop_fork (EV_P)
1132{ 2082{
1133#if EV_MULTIPLICITY 2083 postfork = 1; /* must be in line with ev_default_fork */
1134 struct ev_loop *loop = ev_default_loop_ptr;
1135#endif
1136
1137#ifndef _WIN32
1138 ev_ref (EV_A); /* child watcher */
1139 ev_signal_stop (EV_A_ &childev);
1140#endif
1141
1142 ev_ref (EV_A); /* signal watcher */
1143 ev_io_stop (EV_A_ &sigev);
1144
1145 close (sigpipe [0]); sigpipe [0] = 0;
1146 close (sigpipe [1]); sigpipe [1] = 0;
1147
1148 loop_destroy (EV_A);
1149}
1150
1151void
1152ev_default_fork (void)
1153{
1154#if EV_MULTIPLICITY
1155 struct ev_loop *loop = ev_default_loop_ptr;
1156#endif
1157
1158 if (backend)
1159 postfork = 1;
1160} 2084}
1161 2085
1162/*****************************************************************************/ 2086/*****************************************************************************/
1163 2087
1164int inline_size 2088void
1165any_pending (EV_P) 2089ev_invoke (EV_P_ void *w, int revents)
2090{
2091 EV_CB_INVOKE ((W)w, revents);
2092}
2093
2094unsigned int
2095ev_pending_count (EV_P)
1166{ 2096{
1167 int pri; 2097 int pri;
2098 unsigned int count = 0;
1168 2099
1169 for (pri = NUMPRI; pri--; ) 2100 for (pri = NUMPRI; pri--; )
1170 if (pendingcnt [pri]) 2101 count += pendingcnt [pri];
1171 return 1;
1172 2102
1173 return 0; 2103 return count;
1174} 2104}
1175 2105
1176void inline_speed 2106void noinline
1177call_pending (EV_P) 2107ev_invoke_pending (EV_P)
1178{ 2108{
1179 int pri; 2109 int pri;
1180 2110
1181 for (pri = NUMPRI; pri--; ) 2111 for (pri = NUMPRI; pri--; )
1182 while (pendingcnt [pri]) 2112 while (pendingcnt [pri])
1183 { 2113 {
1184 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2114 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1185 2115
1186 if (expect_true (p->w))
1187 {
1188 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2116 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2117 /* ^ this is no longer true, as pending_w could be here */
1189 2118
1190 p->w->pending = 0; 2119 p->w->pending = 0;
1191 EV_CB_INVOKE (p->w, p->events); 2120 EV_CB_INVOKE (p->w, p->events);
1192 } 2121 EV_FREQUENT_CHECK;
1193 } 2122 }
1194} 2123}
1195 2124
1196void inline_size 2125#if EV_IDLE_ENABLE
2126/* make idle watchers pending. this handles the "call-idle */
2127/* only when higher priorities are idle" logic */
2128inline_size void
2129idle_reify (EV_P)
2130{
2131 if (expect_false (idleall))
2132 {
2133 int pri;
2134
2135 for (pri = NUMPRI; pri--; )
2136 {
2137 if (pendingcnt [pri])
2138 break;
2139
2140 if (idlecnt [pri])
2141 {
2142 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2143 break;
2144 }
2145 }
2146 }
2147}
2148#endif
2149
2150/* make timers pending */
2151inline_size void
1197timers_reify (EV_P) 2152timers_reify (EV_P)
1198{ 2153{
2154 EV_FREQUENT_CHECK;
2155
1199 while (timercnt && ((WT)timers [0])->at <= mn_now) 2156 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1200 { 2157 {
1201 ev_timer *w = timers [0]; 2158 do
1202
1203 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1204
1205 /* first reschedule or stop timer */
1206 if (w->repeat)
1207 { 2159 {
2160 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2161
2162 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2163
2164 /* first reschedule or stop timer */
2165 if (w->repeat)
2166 {
2167 ev_at (w) += w->repeat;
2168 if (ev_at (w) < mn_now)
2169 ev_at (w) = mn_now;
2170
1208 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2171 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1209 2172
1210 ((WT)w)->at += w->repeat; 2173 ANHE_at_cache (timers [HEAP0]);
1211 if (((WT)w)->at < mn_now)
1212 ((WT)w)->at = mn_now;
1213
1214 downheap ((WT *)timers, timercnt, 0); 2174 downheap (timers, timercnt, HEAP0);
2175 }
2176 else
2177 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2178
2179 EV_FREQUENT_CHECK;
2180 feed_reverse (EV_A_ (W)w);
1215 } 2181 }
1216 else 2182 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1217 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1218 2183
1219 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2184 feed_reverse_done (EV_A_ EV_TIMER);
1220 } 2185 }
1221} 2186}
1222 2187
1223#if EV_PERIODIC_ENABLE 2188#if EV_PERIODIC_ENABLE
1224void inline_size 2189/* make periodics pending */
2190inline_size void
1225periodics_reify (EV_P) 2191periodics_reify (EV_P)
1226{ 2192{
2193 EV_FREQUENT_CHECK;
2194
1227 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2195 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1228 { 2196 {
1229 ev_periodic *w = periodics [0]; 2197 int feed_count = 0;
1230 2198
1231 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2199 do
1232
1233 /* first reschedule or stop timer */
1234 if (w->reschedule_cb)
1235 { 2200 {
2201 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2202
2203 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2204
2205 /* first reschedule or stop timer */
2206 if (w->reschedule_cb)
2207 {
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2208 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2209
1237 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2210 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2211
2212 ANHE_at_cache (periodics [HEAP0]);
1238 downheap ((WT *)periodics, periodiccnt, 0); 2213 downheap (periodics, periodiccnt, HEAP0);
2214 }
2215 else if (w->interval)
2216 {
2217 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2218 /* if next trigger time is not sufficiently in the future, put it there */
2219 /* this might happen because of floating point inexactness */
2220 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2221 {
2222 ev_at (w) += w->interval;
2223
2224 /* if interval is unreasonably low we might still have a time in the past */
2225 /* so correct this. this will make the periodic very inexact, but the user */
2226 /* has effectively asked to get triggered more often than possible */
2227 if (ev_at (w) < ev_rt_now)
2228 ev_at (w) = ev_rt_now;
2229 }
2230
2231 ANHE_at_cache (periodics [HEAP0]);
2232 downheap (periodics, periodiccnt, HEAP0);
2233 }
2234 else
2235 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2236
2237 EV_FREQUENT_CHECK;
2238 feed_reverse (EV_A_ (W)w);
1239 } 2239 }
1240 else if (w->interval) 2240 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1241 {
1242 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1243 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1244 downheap ((WT *)periodics, periodiccnt, 0);
1245 }
1246 else
1247 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1248 2241
1249 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2242 feed_reverse_done (EV_A_ EV_PERIODIC);
1250 } 2243 }
1251} 2244}
1252 2245
2246/* simply recalculate all periodics */
2247/* TODO: maybe ensure that at least one event happens when jumping forward? */
1253static void noinline 2248static void noinline
1254periodics_reschedule (EV_P) 2249periodics_reschedule (EV_P)
1255{ 2250{
1256 int i; 2251 int i;
1257 2252
1258 /* adjust periodics after time jump */ 2253 /* adjust periodics after time jump */
1259 for (i = 0; i < periodiccnt; ++i) 2254 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1260 { 2255 {
1261 ev_periodic *w = periodics [i]; 2256 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1262 2257
1263 if (w->reschedule_cb) 2258 if (w->reschedule_cb)
1264 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2259 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1265 else if (w->interval) 2260 else if (w->interval)
1266 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2261 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2262
2263 ANHE_at_cache (periodics [i]);
2264 }
2265
2266 reheap (periodics, periodiccnt);
2267}
2268#endif
2269
2270/* adjust all timers by a given offset */
2271static void noinline
2272timers_reschedule (EV_P_ ev_tstamp adjust)
2273{
2274 int i;
2275
2276 for (i = 0; i < timercnt; ++i)
1267 } 2277 {
1268 2278 ANHE *he = timers + i + HEAP0;
1269 /* now rebuild the heap */ 2279 ANHE_w (*he)->at += adjust;
1270 for (i = periodiccnt >> 1; i--; ) 2280 ANHE_at_cache (*he);
1271 downheap ((WT *)periodics, periodiccnt, i); 2281 }
1272} 2282}
1273#endif
1274 2283
1275int inline_size 2284/* fetch new monotonic and realtime times from the kernel */
1276time_update_monotonic (EV_P) 2285/* also detect if there was a timejump, and act accordingly */
2286inline_speed void
2287time_update (EV_P_ ev_tstamp max_block)
1277{ 2288{
2289#if EV_USE_MONOTONIC
2290 if (expect_true (have_monotonic))
2291 {
2292 int i;
2293 ev_tstamp odiff = rtmn_diff;
2294
1278 mn_now = get_clock (); 2295 mn_now = get_clock ();
1279 2296
2297 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2298 /* interpolate in the meantime */
1280 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2299 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1281 { 2300 {
1282 ev_rt_now = rtmn_diff + mn_now; 2301 ev_rt_now = rtmn_diff + mn_now;
1283 return 0; 2302 return;
1284 } 2303 }
1285 else 2304
1286 {
1287 now_floor = mn_now; 2305 now_floor = mn_now;
1288 ev_rt_now = ev_time (); 2306 ev_rt_now = ev_time ();
1289 return 1;
1290 }
1291}
1292 2307
1293void inline_size 2308 /* loop a few times, before making important decisions.
1294time_update (EV_P) 2309 * on the choice of "4": one iteration isn't enough,
1295{ 2310 * in case we get preempted during the calls to
1296 int i; 2311 * ev_time and get_clock. a second call is almost guaranteed
1297 2312 * to succeed in that case, though. and looping a few more times
1298#if EV_USE_MONOTONIC 2313 * doesn't hurt either as we only do this on time-jumps or
1299 if (expect_true (have_monotonic)) 2314 * in the unlikely event of having been preempted here.
1300 { 2315 */
1301 if (time_update_monotonic (EV_A)) 2316 for (i = 4; --i; )
1302 { 2317 {
1303 ev_tstamp odiff = rtmn_diff;
1304
1305 /* loop a few times, before making important decisions.
1306 * on the choice of "4": one iteration isn't enough,
1307 * in case we get preempted during the calls to
1308 * ev_time and get_clock. a second call is almost guaranteed
1309 * to succeed in that case, though. and looping a few more times
1310 * doesn't hurt either as we only do this on time-jumps or
1311 * in the unlikely event of having been preempted here.
1312 */
1313 for (i = 4; --i; )
1314 {
1315 rtmn_diff = ev_rt_now - mn_now; 2318 rtmn_diff = ev_rt_now - mn_now;
1316 2319
1317 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2320 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1318 return; /* all is well */ 2321 return; /* all is well */
1319 2322
1320 ev_rt_now = ev_time (); 2323 ev_rt_now = ev_time ();
1321 mn_now = get_clock (); 2324 mn_now = get_clock ();
1322 now_floor = mn_now; 2325 now_floor = mn_now;
1323 } 2326 }
1324 2327
2328 /* no timer adjustment, as the monotonic clock doesn't jump */
2329 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1325# if EV_PERIODIC_ENABLE 2330# if EV_PERIODIC_ENABLE
1326 periodics_reschedule (EV_A); 2331 periodics_reschedule (EV_A);
1327# endif 2332# endif
1328 /* no timer adjustment, as the monotonic clock doesn't jump */
1329 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1330 }
1331 } 2333 }
1332 else 2334 else
1333#endif 2335#endif
1334 { 2336 {
1335 ev_rt_now = ev_time (); 2337 ev_rt_now = ev_time ();
1336 2338
1337 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2339 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1338 { 2340 {
2341 /* adjust timers. this is easy, as the offset is the same for all of them */
2342 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1339#if EV_PERIODIC_ENABLE 2343#if EV_PERIODIC_ENABLE
1340 periodics_reschedule (EV_A); 2344 periodics_reschedule (EV_A);
1341#endif 2345#endif
1342
1343 /* adjust timers. this is easy, as the offset is the same for all of them */
1344 for (i = 0; i < timercnt; ++i)
1345 ((WT)timers [i])->at += ev_rt_now - mn_now;
1346 } 2346 }
1347 2347
1348 mn_now = ev_rt_now; 2348 mn_now = ev_rt_now;
1349 } 2349 }
1350} 2350}
1351 2351
1352void 2352void
1353ev_ref (EV_P)
1354{
1355 ++activecnt;
1356}
1357
1358void
1359ev_unref (EV_P)
1360{
1361 --activecnt;
1362}
1363
1364static int loop_done;
1365
1366void
1367ev_loop (EV_P_ int flags) 2353ev_run (EV_P_ int flags)
1368{ 2354{
1369 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2355#if EV_FEATURE_API
1370 ? EVUNLOOP_ONE 2356 ++loop_depth;
1371 : EVUNLOOP_CANCEL; 2357#endif
1372 2358
2359 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2360
2361 loop_done = EVBREAK_CANCEL;
2362
1373 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2363 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1374 2364
1375 do 2365 do
1376 { 2366 {
2367#if EV_VERIFY >= 2
2368 ev_verify (EV_A);
2369#endif
2370
1377#ifndef _WIN32 2371#ifndef _WIN32
1378 if (expect_false (curpid)) /* penalise the forking check even more */ 2372 if (expect_false (curpid)) /* penalise the forking check even more */
1379 if (expect_false (getpid () != curpid)) 2373 if (expect_false (getpid () != curpid))
1380 { 2374 {
1381 curpid = getpid (); 2375 curpid = getpid ();
1387 /* we might have forked, so queue fork handlers */ 2381 /* we might have forked, so queue fork handlers */
1388 if (expect_false (postfork)) 2382 if (expect_false (postfork))
1389 if (forkcnt) 2383 if (forkcnt)
1390 { 2384 {
1391 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2385 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1392 call_pending (EV_A); 2386 EV_INVOKE_PENDING;
1393 } 2387 }
1394#endif 2388#endif
1395 2389
2390#if EV_PREPARE_ENABLE
1396 /* queue check watchers (and execute them) */ 2391 /* queue prepare watchers (and execute them) */
1397 if (expect_false (preparecnt)) 2392 if (expect_false (preparecnt))
1398 { 2393 {
1399 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2394 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1400 call_pending (EV_A); 2395 EV_INVOKE_PENDING;
1401 } 2396 }
2397#endif
1402 2398
1403 if (expect_false (!activecnt)) 2399 if (expect_false (loop_done))
1404 break; 2400 break;
1405 2401
1406 /* we might have forked, so reify kernel state if necessary */ 2402 /* we might have forked, so reify kernel state if necessary */
1407 if (expect_false (postfork)) 2403 if (expect_false (postfork))
1408 loop_fork (EV_A); 2404 loop_fork (EV_A);
1410 /* update fd-related kernel structures */ 2406 /* update fd-related kernel structures */
1411 fd_reify (EV_A); 2407 fd_reify (EV_A);
1412 2408
1413 /* calculate blocking time */ 2409 /* calculate blocking time */
1414 { 2410 {
1415 ev_tstamp block; 2411 ev_tstamp waittime = 0.;
2412 ev_tstamp sleeptime = 0.;
1416 2413
2414 /* remember old timestamp for io_blocktime calculation */
2415 ev_tstamp prev_mn_now = mn_now;
2416
2417 /* update time to cancel out callback processing overhead */
2418 time_update (EV_A_ 1e100);
2419
1417 if (expect_false (flags & EVLOOP_NONBLOCK || idlecnt || !activecnt)) 2420 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1418 block = 0.; /* do not block at all */
1419 else
1420 { 2421 {
1421 /* update time to cancel out callback processing overhead */
1422#if EV_USE_MONOTONIC
1423 if (expect_true (have_monotonic))
1424 time_update_monotonic (EV_A);
1425 else
1426#endif
1427 {
1428 ev_rt_now = ev_time ();
1429 mn_now = ev_rt_now;
1430 }
1431
1432 block = MAX_BLOCKTIME; 2422 waittime = MAX_BLOCKTIME;
1433 2423
1434 if (timercnt) 2424 if (timercnt)
1435 { 2425 {
1436 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2426 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1437 if (block > to) block = to; 2427 if (waittime > to) waittime = to;
1438 } 2428 }
1439 2429
1440#if EV_PERIODIC_ENABLE 2430#if EV_PERIODIC_ENABLE
1441 if (periodiccnt) 2431 if (periodiccnt)
1442 { 2432 {
1443 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2433 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1444 if (block > to) block = to; 2434 if (waittime > to) waittime = to;
1445 } 2435 }
1446#endif 2436#endif
1447 2437
2438 /* don't let timeouts decrease the waittime below timeout_blocktime */
2439 if (expect_false (waittime < timeout_blocktime))
2440 waittime = timeout_blocktime;
2441
2442 /* extra check because io_blocktime is commonly 0 */
1448 if (expect_false (block < 0.)) block = 0.; 2443 if (expect_false (io_blocktime))
2444 {
2445 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2446
2447 if (sleeptime > waittime - backend_fudge)
2448 sleeptime = waittime - backend_fudge;
2449
2450 if (expect_true (sleeptime > 0.))
2451 {
2452 ev_sleep (sleeptime);
2453 waittime -= sleeptime;
2454 }
2455 }
1449 } 2456 }
1450 2457
2458#if EV_FEATURE_API
1451 ++loop_count; 2459 ++loop_count;
2460#endif
2461 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1452 backend_poll (EV_A_ block); 2462 backend_poll (EV_A_ waittime);
2463 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2464
2465 /* update ev_rt_now, do magic */
2466 time_update (EV_A_ waittime + sleeptime);
1453 } 2467 }
1454
1455 /* update ev_rt_now, do magic */
1456 time_update (EV_A);
1457 2468
1458 /* queue pending timers and reschedule them */ 2469 /* queue pending timers and reschedule them */
1459 timers_reify (EV_A); /* relative timers called last */ 2470 timers_reify (EV_A); /* relative timers called last */
1460#if EV_PERIODIC_ENABLE 2471#if EV_PERIODIC_ENABLE
1461 periodics_reify (EV_A); /* absolute timers called first */ 2472 periodics_reify (EV_A); /* absolute timers called first */
1462#endif 2473#endif
1463 2474
2475#if EV_IDLE_ENABLE
1464 /* queue idle watchers unless other events are pending */ 2476 /* queue idle watchers unless other events are pending */
1465 if (idlecnt && !any_pending (EV_A)) 2477 idle_reify (EV_A);
1466 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2478#endif
1467 2479
2480#if EV_CHECK_ENABLE
1468 /* queue check watchers, to be executed first */ 2481 /* queue check watchers, to be executed first */
1469 if (expect_false (checkcnt)) 2482 if (expect_false (checkcnt))
1470 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2483 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2484#endif
1471 2485
1472 call_pending (EV_A); 2486 EV_INVOKE_PENDING;
1473
1474 } 2487 }
1475 while (expect_true (activecnt && !loop_done)); 2488 while (expect_true (
2489 activecnt
2490 && !loop_done
2491 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2492 ));
1476 2493
1477 if (loop_done == EVUNLOOP_ONE) 2494 if (loop_done == EVBREAK_ONE)
1478 loop_done = EVUNLOOP_CANCEL; 2495 loop_done = EVBREAK_CANCEL;
1479}
1480 2496
2497#if EV_FEATURE_API
2498 --loop_depth;
2499#endif
2500}
2501
1481void 2502void
1482ev_unloop (EV_P_ int how) 2503ev_break (EV_P_ int how)
1483{ 2504{
1484 loop_done = how; 2505 loop_done = how;
1485} 2506}
1486 2507
2508void
2509ev_ref (EV_P)
2510{
2511 ++activecnt;
2512}
2513
2514void
2515ev_unref (EV_P)
2516{
2517 --activecnt;
2518}
2519
2520void
2521ev_now_update (EV_P)
2522{
2523 time_update (EV_A_ 1e100);
2524}
2525
2526void
2527ev_suspend (EV_P)
2528{
2529 ev_now_update (EV_A);
2530}
2531
2532void
2533ev_resume (EV_P)
2534{
2535 ev_tstamp mn_prev = mn_now;
2536
2537 ev_now_update (EV_A);
2538 timers_reschedule (EV_A_ mn_now - mn_prev);
2539#if EV_PERIODIC_ENABLE
2540 /* TODO: really do this? */
2541 periodics_reschedule (EV_A);
2542#endif
2543}
2544
1487/*****************************************************************************/ 2545/*****************************************************************************/
2546/* singly-linked list management, used when the expected list length is short */
1488 2547
1489void inline_size 2548inline_size void
1490wlist_add (WL *head, WL elem) 2549wlist_add (WL *head, WL elem)
1491{ 2550{
1492 elem->next = *head; 2551 elem->next = *head;
1493 *head = elem; 2552 *head = elem;
1494} 2553}
1495 2554
1496void inline_size 2555inline_size void
1497wlist_del (WL *head, WL elem) 2556wlist_del (WL *head, WL elem)
1498{ 2557{
1499 while (*head) 2558 while (*head)
1500 { 2559 {
1501 if (*head == elem) 2560 if (expect_true (*head == elem))
1502 { 2561 {
1503 *head = elem->next; 2562 *head = elem->next;
1504 return; 2563 break;
1505 } 2564 }
1506 2565
1507 head = &(*head)->next; 2566 head = &(*head)->next;
1508 } 2567 }
1509} 2568}
1510 2569
1511void inline_speed 2570/* internal, faster, version of ev_clear_pending */
2571inline_speed void
1512ev_clear_pending (EV_P_ W w) 2572clear_pending (EV_P_ W w)
1513{ 2573{
1514 if (w->pending) 2574 if (w->pending)
1515 { 2575 {
1516 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2576 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1517 w->pending = 0; 2577 w->pending = 0;
1518 } 2578 }
1519} 2579}
1520 2580
1521void inline_speed 2581int
2582ev_clear_pending (EV_P_ void *w)
2583{
2584 W w_ = (W)w;
2585 int pending = w_->pending;
2586
2587 if (expect_true (pending))
2588 {
2589 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2590 p->w = (W)&pending_w;
2591 w_->pending = 0;
2592 return p->events;
2593 }
2594 else
2595 return 0;
2596}
2597
2598inline_size void
2599pri_adjust (EV_P_ W w)
2600{
2601 int pri = ev_priority (w);
2602 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2603 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2604 ev_set_priority (w, pri);
2605}
2606
2607inline_speed void
1522ev_start (EV_P_ W w, int active) 2608ev_start (EV_P_ W w, int active)
1523{ 2609{
1524 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2610 pri_adjust (EV_A_ w);
1525 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1526
1527 w->active = active; 2611 w->active = active;
1528 ev_ref (EV_A); 2612 ev_ref (EV_A);
1529} 2613}
1530 2614
1531void inline_size 2615inline_size void
1532ev_stop (EV_P_ W w) 2616ev_stop (EV_P_ W w)
1533{ 2617{
1534 ev_unref (EV_A); 2618 ev_unref (EV_A);
1535 w->active = 0; 2619 w->active = 0;
1536} 2620}
1537 2621
1538/*****************************************************************************/ 2622/*****************************************************************************/
1539 2623
1540void 2624void noinline
1541ev_io_start (EV_P_ ev_io *w) 2625ev_io_start (EV_P_ ev_io *w)
1542{ 2626{
1543 int fd = w->fd; 2627 int fd = w->fd;
1544 2628
1545 if (expect_false (ev_is_active (w))) 2629 if (expect_false (ev_is_active (w)))
1546 return; 2630 return;
1547 2631
1548 assert (("ev_io_start called with negative fd", fd >= 0)); 2632 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2633 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2634
2635 EV_FREQUENT_CHECK;
1549 2636
1550 ev_start (EV_A_ (W)w, 1); 2637 ev_start (EV_A_ (W)w, 1);
1551 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2638 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1552 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2639 wlist_add (&anfds[fd].head, (WL)w);
1553 2640
1554 fd_change (EV_A_ fd); 2641 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1555} 2642 w->events &= ~EV__IOFDSET;
1556 2643
1557void 2644 EV_FREQUENT_CHECK;
2645}
2646
2647void noinline
1558ev_io_stop (EV_P_ ev_io *w) 2648ev_io_stop (EV_P_ ev_io *w)
1559{ 2649{
1560 ev_clear_pending (EV_A_ (W)w); 2650 clear_pending (EV_A_ (W)w);
1561 if (expect_false (!ev_is_active (w))) 2651 if (expect_false (!ev_is_active (w)))
1562 return; 2652 return;
1563 2653
1564 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2654 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1565 2655
2656 EV_FREQUENT_CHECK;
2657
1566 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2658 wlist_del (&anfds[w->fd].head, (WL)w);
1567 ev_stop (EV_A_ (W)w); 2659 ev_stop (EV_A_ (W)w);
1568 2660
1569 fd_change (EV_A_ w->fd); 2661 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1570}
1571 2662
1572void 2663 EV_FREQUENT_CHECK;
2664}
2665
2666void noinline
1573ev_timer_start (EV_P_ ev_timer *w) 2667ev_timer_start (EV_P_ ev_timer *w)
1574{ 2668{
1575 if (expect_false (ev_is_active (w))) 2669 if (expect_false (ev_is_active (w)))
1576 return; 2670 return;
1577 2671
1578 ((WT)w)->at += mn_now; 2672 ev_at (w) += mn_now;
1579 2673
1580 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2674 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1581 2675
2676 EV_FREQUENT_CHECK;
2677
2678 ++timercnt;
1582 ev_start (EV_A_ (W)w, ++timercnt); 2679 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1583 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2680 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1584 timers [timercnt - 1] = w; 2681 ANHE_w (timers [ev_active (w)]) = (WT)w;
1585 upheap ((WT *)timers, timercnt - 1); 2682 ANHE_at_cache (timers [ev_active (w)]);
2683 upheap (timers, ev_active (w));
1586 2684
2685 EV_FREQUENT_CHECK;
2686
1587 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2687 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1588} 2688}
1589 2689
1590void 2690void noinline
1591ev_timer_stop (EV_P_ ev_timer *w) 2691ev_timer_stop (EV_P_ ev_timer *w)
1592{ 2692{
1593 ev_clear_pending (EV_A_ (W)w); 2693 clear_pending (EV_A_ (W)w);
1594 if (expect_false (!ev_is_active (w))) 2694 if (expect_false (!ev_is_active (w)))
1595 return; 2695 return;
1596 2696
1597 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2697 EV_FREQUENT_CHECK;
1598 2698
1599 { 2699 {
1600 int active = ((W)w)->active; 2700 int active = ev_active (w);
1601 2701
2702 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2703
2704 --timercnt;
2705
1602 if (expect_true (--active < --timercnt)) 2706 if (expect_true (active < timercnt + HEAP0))
1603 { 2707 {
1604 timers [active] = timers [timercnt]; 2708 timers [active] = timers [timercnt + HEAP0];
1605 adjustheap ((WT *)timers, timercnt, active); 2709 adjustheap (timers, timercnt, active);
1606 } 2710 }
1607 } 2711 }
1608 2712
1609 ((WT)w)->at -= mn_now; 2713 ev_at (w) -= mn_now;
1610 2714
1611 ev_stop (EV_A_ (W)w); 2715 ev_stop (EV_A_ (W)w);
1612}
1613 2716
1614void 2717 EV_FREQUENT_CHECK;
2718}
2719
2720void noinline
1615ev_timer_again (EV_P_ ev_timer *w) 2721ev_timer_again (EV_P_ ev_timer *w)
1616{ 2722{
2723 EV_FREQUENT_CHECK;
2724
1617 if (ev_is_active (w)) 2725 if (ev_is_active (w))
1618 { 2726 {
1619 if (w->repeat) 2727 if (w->repeat)
1620 { 2728 {
1621 ((WT)w)->at = mn_now + w->repeat; 2729 ev_at (w) = mn_now + w->repeat;
2730 ANHE_at_cache (timers [ev_active (w)]);
1622 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2731 adjustheap (timers, timercnt, ev_active (w));
1623 } 2732 }
1624 else 2733 else
1625 ev_timer_stop (EV_A_ w); 2734 ev_timer_stop (EV_A_ w);
1626 } 2735 }
1627 else if (w->repeat) 2736 else if (w->repeat)
1628 { 2737 {
1629 w->at = w->repeat; 2738 ev_at (w) = w->repeat;
1630 ev_timer_start (EV_A_ w); 2739 ev_timer_start (EV_A_ w);
1631 } 2740 }
2741
2742 EV_FREQUENT_CHECK;
2743}
2744
2745ev_tstamp
2746ev_timer_remaining (EV_P_ ev_timer *w)
2747{
2748 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1632} 2749}
1633 2750
1634#if EV_PERIODIC_ENABLE 2751#if EV_PERIODIC_ENABLE
1635void 2752void noinline
1636ev_periodic_start (EV_P_ ev_periodic *w) 2753ev_periodic_start (EV_P_ ev_periodic *w)
1637{ 2754{
1638 if (expect_false (ev_is_active (w))) 2755 if (expect_false (ev_is_active (w)))
1639 return; 2756 return;
1640 2757
1641 if (w->reschedule_cb) 2758 if (w->reschedule_cb)
1642 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2759 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1643 else if (w->interval) 2760 else if (w->interval)
1644 { 2761 {
1645 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2762 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1646 /* this formula differs from the one in periodic_reify because we do not always round up */ 2763 /* this formula differs from the one in periodic_reify because we do not always round up */
1647 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2764 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1648 } 2765 }
2766 else
2767 ev_at (w) = w->offset;
1649 2768
2769 EV_FREQUENT_CHECK;
2770
2771 ++periodiccnt;
1650 ev_start (EV_A_ (W)w, ++periodiccnt); 2772 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1651 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2773 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1652 periodics [periodiccnt - 1] = w; 2774 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1653 upheap ((WT *)periodics, periodiccnt - 1); 2775 ANHE_at_cache (periodics [ev_active (w)]);
2776 upheap (periodics, ev_active (w));
1654 2777
2778 EV_FREQUENT_CHECK;
2779
1655 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2780 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1656} 2781}
1657 2782
1658void 2783void noinline
1659ev_periodic_stop (EV_P_ ev_periodic *w) 2784ev_periodic_stop (EV_P_ ev_periodic *w)
1660{ 2785{
1661 ev_clear_pending (EV_A_ (W)w); 2786 clear_pending (EV_A_ (W)w);
1662 if (expect_false (!ev_is_active (w))) 2787 if (expect_false (!ev_is_active (w)))
1663 return; 2788 return;
1664 2789
1665 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2790 EV_FREQUENT_CHECK;
1666 2791
1667 { 2792 {
1668 int active = ((W)w)->active; 2793 int active = ev_active (w);
1669 2794
2795 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2796
2797 --periodiccnt;
2798
1670 if (expect_true (--active < --periodiccnt)) 2799 if (expect_true (active < periodiccnt + HEAP0))
1671 { 2800 {
1672 periodics [active] = periodics [periodiccnt]; 2801 periodics [active] = periodics [periodiccnt + HEAP0];
1673 adjustheap ((WT *)periodics, periodiccnt, active); 2802 adjustheap (periodics, periodiccnt, active);
1674 } 2803 }
1675 } 2804 }
1676 2805
1677 ev_stop (EV_A_ (W)w); 2806 ev_stop (EV_A_ (W)w);
1678}
1679 2807
1680void 2808 EV_FREQUENT_CHECK;
2809}
2810
2811void noinline
1681ev_periodic_again (EV_P_ ev_periodic *w) 2812ev_periodic_again (EV_P_ ev_periodic *w)
1682{ 2813{
1683 /* TODO: use adjustheap and recalculation */ 2814 /* TODO: use adjustheap and recalculation */
1684 ev_periodic_stop (EV_A_ w); 2815 ev_periodic_stop (EV_A_ w);
1685 ev_periodic_start (EV_A_ w); 2816 ev_periodic_start (EV_A_ w);
1688 2819
1689#ifndef SA_RESTART 2820#ifndef SA_RESTART
1690# define SA_RESTART 0 2821# define SA_RESTART 0
1691#endif 2822#endif
1692 2823
1693void 2824#if EV_SIGNAL_ENABLE
2825
2826void noinline
1694ev_signal_start (EV_P_ ev_signal *w) 2827ev_signal_start (EV_P_ ev_signal *w)
1695{ 2828{
1696#if EV_MULTIPLICITY
1697 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1698#endif
1699 if (expect_false (ev_is_active (w))) 2829 if (expect_false (ev_is_active (w)))
1700 return; 2830 return;
1701 2831
1702 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2832 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2833
2834#if EV_MULTIPLICITY
2835 assert (("libev: a signal must not be attached to two different loops",
2836 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2837
2838 signals [w->signum - 1].loop = EV_A;
2839#endif
2840
2841 EV_FREQUENT_CHECK;
2842
2843#if EV_USE_SIGNALFD
2844 if (sigfd == -2)
2845 {
2846 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2847 if (sigfd < 0 && errno == EINVAL)
2848 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2849
2850 if (sigfd >= 0)
2851 {
2852 fd_intern (sigfd); /* doing it twice will not hurt */
2853
2854 sigemptyset (&sigfd_set);
2855
2856 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2857 ev_set_priority (&sigfd_w, EV_MAXPRI);
2858 ev_io_start (EV_A_ &sigfd_w);
2859 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2860 }
2861 }
2862
2863 if (sigfd >= 0)
2864 {
2865 /* TODO: check .head */
2866 sigaddset (&sigfd_set, w->signum);
2867 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2868
2869 signalfd (sigfd, &sigfd_set, 0);
2870 }
2871#endif
1703 2872
1704 ev_start (EV_A_ (W)w, 1); 2873 ev_start (EV_A_ (W)w, 1);
1705 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1706 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2874 wlist_add (&signals [w->signum - 1].head, (WL)w);
1707 2875
1708 if (!((WL)w)->next) 2876 if (!((WL)w)->next)
2877# if EV_USE_SIGNALFD
2878 if (sigfd < 0) /*TODO*/
2879# endif
1709 { 2880 {
1710#if _WIN32 2881# ifdef _WIN32
2882 evpipe_init (EV_A);
2883
1711 signal (w->signum, sighandler); 2884 signal (w->signum, ev_sighandler);
1712#else 2885# else
1713 struct sigaction sa; 2886 struct sigaction sa;
2887
2888 evpipe_init (EV_A);
2889
1714 sa.sa_handler = sighandler; 2890 sa.sa_handler = ev_sighandler;
1715 sigfillset (&sa.sa_mask); 2891 sigfillset (&sa.sa_mask);
1716 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2892 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1717 sigaction (w->signum, &sa, 0); 2893 sigaction (w->signum, &sa, 0);
2894
2895 if (origflags & EVFLAG_NOSIGMASK)
2896 {
2897 sigemptyset (&sa.sa_mask);
2898 sigaddset (&sa.sa_mask, w->signum);
2899 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2900 }
1718#endif 2901#endif
1719 } 2902 }
1720}
1721 2903
1722void 2904 EV_FREQUENT_CHECK;
2905}
2906
2907void noinline
1723ev_signal_stop (EV_P_ ev_signal *w) 2908ev_signal_stop (EV_P_ ev_signal *w)
1724{ 2909{
1725 ev_clear_pending (EV_A_ (W)w); 2910 clear_pending (EV_A_ (W)w);
1726 if (expect_false (!ev_is_active (w))) 2911 if (expect_false (!ev_is_active (w)))
1727 return; 2912 return;
1728 2913
2914 EV_FREQUENT_CHECK;
2915
1729 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2916 wlist_del (&signals [w->signum - 1].head, (WL)w);
1730 ev_stop (EV_A_ (W)w); 2917 ev_stop (EV_A_ (W)w);
1731 2918
1732 if (!signals [w->signum - 1].head) 2919 if (!signals [w->signum - 1].head)
2920 {
2921#if EV_MULTIPLICITY
2922 signals [w->signum - 1].loop = 0; /* unattach from signal */
2923#endif
2924#if EV_USE_SIGNALFD
2925 if (sigfd >= 0)
2926 {
2927 sigset_t ss;
2928
2929 sigemptyset (&ss);
2930 sigaddset (&ss, w->signum);
2931 sigdelset (&sigfd_set, w->signum);
2932
2933 signalfd (sigfd, &sigfd_set, 0);
2934 sigprocmask (SIG_UNBLOCK, &ss, 0);
2935 }
2936 else
2937#endif
1733 signal (w->signum, SIG_DFL); 2938 signal (w->signum, SIG_DFL);
2939 }
2940
2941 EV_FREQUENT_CHECK;
1734} 2942}
2943
2944#endif
2945
2946#if EV_CHILD_ENABLE
1735 2947
1736void 2948void
1737ev_child_start (EV_P_ ev_child *w) 2949ev_child_start (EV_P_ ev_child *w)
1738{ 2950{
1739#if EV_MULTIPLICITY 2951#if EV_MULTIPLICITY
1740 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2952 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1741#endif 2953#endif
1742 if (expect_false (ev_is_active (w))) 2954 if (expect_false (ev_is_active (w)))
1743 return; 2955 return;
1744 2956
2957 EV_FREQUENT_CHECK;
2958
1745 ev_start (EV_A_ (W)w, 1); 2959 ev_start (EV_A_ (W)w, 1);
1746 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2960 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2961
2962 EV_FREQUENT_CHECK;
1747} 2963}
1748 2964
1749void 2965void
1750ev_child_stop (EV_P_ ev_child *w) 2966ev_child_stop (EV_P_ ev_child *w)
1751{ 2967{
1752 ev_clear_pending (EV_A_ (W)w); 2968 clear_pending (EV_A_ (W)w);
1753 if (expect_false (!ev_is_active (w))) 2969 if (expect_false (!ev_is_active (w)))
1754 return; 2970 return;
1755 2971
2972 EV_FREQUENT_CHECK;
2973
1756 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2974 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1757 ev_stop (EV_A_ (W)w); 2975 ev_stop (EV_A_ (W)w);
2976
2977 EV_FREQUENT_CHECK;
1758} 2978}
2979
2980#endif
1759 2981
1760#if EV_STAT_ENABLE 2982#if EV_STAT_ENABLE
1761 2983
1762# ifdef _WIN32 2984# ifdef _WIN32
1763# undef lstat 2985# undef lstat
1764# define lstat(a,b) _stati64 (a,b) 2986# define lstat(a,b) _stati64 (a,b)
1765# endif 2987# endif
1766 2988
1767#define DEF_STAT_INTERVAL 5.0074891 2989#define DEF_STAT_INTERVAL 5.0074891
2990#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1768#define MIN_STAT_INTERVAL 0.1074891 2991#define MIN_STAT_INTERVAL 0.1074891
1769 2992
1770static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2993static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1771 2994
1772#if EV_USE_INOTIFY 2995#if EV_USE_INOTIFY
1773# define EV_INOTIFY_BUFSIZE 8192 2996
2997/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2998# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1774 2999
1775static void noinline 3000static void noinline
1776infy_add (EV_P_ ev_stat *w) 3001infy_add (EV_P_ ev_stat *w)
1777{ 3002{
1778 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3003 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1779 3004
1780 if (w->wd < 0) 3005 if (w->wd >= 0)
3006 {
3007 struct statfs sfs;
3008
3009 /* now local changes will be tracked by inotify, but remote changes won't */
3010 /* unless the filesystem is known to be local, we therefore still poll */
3011 /* also do poll on <2.6.25, but with normal frequency */
3012
3013 if (!fs_2625)
3014 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3015 else if (!statfs (w->path, &sfs)
3016 && (sfs.f_type == 0x1373 /* devfs */
3017 || sfs.f_type == 0xEF53 /* ext2/3 */
3018 || sfs.f_type == 0x3153464a /* jfs */
3019 || sfs.f_type == 0x52654973 /* reiser3 */
3020 || sfs.f_type == 0x01021994 /* tempfs */
3021 || sfs.f_type == 0x58465342 /* xfs */))
3022 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3023 else
3024 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1781 { 3025 }
1782 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3026 else
3027 {
3028 /* can't use inotify, continue to stat */
3029 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1783 3030
1784 /* monitor some parent directory for speedup hints */ 3031 /* if path is not there, monitor some parent directory for speedup hints */
3032 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3033 /* but an efficiency issue only */
1785 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3034 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1786 { 3035 {
1787 char path [4096]; 3036 char path [4096];
1788 strcpy (path, w->path); 3037 strcpy (path, w->path);
1789 3038
1792 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3041 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1793 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3042 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1794 3043
1795 char *pend = strrchr (path, '/'); 3044 char *pend = strrchr (path, '/');
1796 3045
1797 if (!pend) 3046 if (!pend || pend == path)
1798 break; /* whoops, no '/', complain to your admin */ 3047 break;
1799 3048
1800 *pend = 0; 3049 *pend = 0;
1801 w->wd = inotify_add_watch (fs_fd, path, mask); 3050 w->wd = inotify_add_watch (fs_fd, path, mask);
1802 } 3051 }
1803 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3052 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1804 } 3053 }
1805 } 3054 }
1806 else
1807 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1808 3055
1809 if (w->wd >= 0) 3056 if (w->wd >= 0)
1810 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3057 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3058
3059 /* now re-arm timer, if required */
3060 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3061 ev_timer_again (EV_A_ &w->timer);
3062 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1811} 3063}
1812 3064
1813static void noinline 3065static void noinline
1814infy_del (EV_P_ ev_stat *w) 3066infy_del (EV_P_ ev_stat *w)
1815{ 3067{
1818 3070
1819 if (wd < 0) 3071 if (wd < 0)
1820 return; 3072 return;
1821 3073
1822 w->wd = -2; 3074 w->wd = -2;
1823 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3075 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1824 wlist_del (&fs_hash [slot].head, (WL)w); 3076 wlist_del (&fs_hash [slot].head, (WL)w);
1825 3077
1826 /* remove this watcher, if others are watching it, they will rearm */ 3078 /* remove this watcher, if others are watching it, they will rearm */
1827 inotify_rm_watch (fs_fd, wd); 3079 inotify_rm_watch (fs_fd, wd);
1828} 3080}
1829 3081
1830static void noinline 3082static void noinline
1831infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3083infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1832{ 3084{
1833 if (slot < 0) 3085 if (slot < 0)
1834 /* overflow, need to check for all hahs slots */ 3086 /* overflow, need to check for all hash slots */
1835 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3087 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1836 infy_wd (EV_A_ slot, wd, ev); 3088 infy_wd (EV_A_ slot, wd, ev);
1837 else 3089 else
1838 { 3090 {
1839 WL w_; 3091 WL w_;
1840 3092
1841 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3093 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1842 { 3094 {
1843 ev_stat *w = (ev_stat *)w_; 3095 ev_stat *w = (ev_stat *)w_;
1844 w_ = w_->next; /* lets us remove this watcher and all before it */ 3096 w_ = w_->next; /* lets us remove this watcher and all before it */
1845 3097
1846 if (w->wd == wd || wd == -1) 3098 if (w->wd == wd || wd == -1)
1847 { 3099 {
1848 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3100 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1849 { 3101 {
3102 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1850 w->wd = -1; 3103 w->wd = -1;
1851 infy_add (EV_A_ w); /* re-add, no matter what */ 3104 infy_add (EV_A_ w); /* re-add, no matter what */
1852 } 3105 }
1853 3106
1854 stat_timer_cb (EV_A_ &w->timer, 0); 3107 stat_timer_cb (EV_A_ &w->timer, 0);
1859 3112
1860static void 3113static void
1861infy_cb (EV_P_ ev_io *w, int revents) 3114infy_cb (EV_P_ ev_io *w, int revents)
1862{ 3115{
1863 char buf [EV_INOTIFY_BUFSIZE]; 3116 char buf [EV_INOTIFY_BUFSIZE];
1864 struct inotify_event *ev = (struct inotify_event *)buf;
1865 int ofs; 3117 int ofs;
1866 int len = read (fs_fd, buf, sizeof (buf)); 3118 int len = read (fs_fd, buf, sizeof (buf));
1867 3119
1868 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3120 for (ofs = 0; ofs < len; )
3121 {
3122 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1869 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3123 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3124 ofs += sizeof (struct inotify_event) + ev->len;
3125 }
1870} 3126}
1871 3127
1872void inline_size 3128inline_size void
3129ev_check_2625 (EV_P)
3130{
3131 /* kernels < 2.6.25 are borked
3132 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3133 */
3134 if (ev_linux_version () < 0x020619)
3135 return;
3136
3137 fs_2625 = 1;
3138}
3139
3140inline_size int
3141infy_newfd (void)
3142{
3143#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3144 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3145 if (fd >= 0)
3146 return fd;
3147#endif
3148 return inotify_init ();
3149}
3150
3151inline_size void
1873infy_init (EV_P) 3152infy_init (EV_P)
1874{ 3153{
1875 if (fs_fd != -2) 3154 if (fs_fd != -2)
1876 return; 3155 return;
1877 3156
3157 fs_fd = -1;
3158
3159 ev_check_2625 (EV_A);
3160
1878 fs_fd = inotify_init (); 3161 fs_fd = infy_newfd ();
1879 3162
1880 if (fs_fd >= 0) 3163 if (fs_fd >= 0)
1881 { 3164 {
3165 fd_intern (fs_fd);
1882 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3166 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1883 ev_set_priority (&fs_w, EV_MAXPRI); 3167 ev_set_priority (&fs_w, EV_MAXPRI);
1884 ev_io_start (EV_A_ &fs_w); 3168 ev_io_start (EV_A_ &fs_w);
3169 ev_unref (EV_A);
1885 } 3170 }
1886} 3171}
1887 3172
1888void inline_size 3173inline_size void
1889infy_fork (EV_P) 3174infy_fork (EV_P)
1890{ 3175{
1891 int slot; 3176 int slot;
1892 3177
1893 if (fs_fd < 0) 3178 if (fs_fd < 0)
1894 return; 3179 return;
1895 3180
3181 ev_ref (EV_A);
3182 ev_io_stop (EV_A_ &fs_w);
1896 close (fs_fd); 3183 close (fs_fd);
1897 fs_fd = inotify_init (); 3184 fs_fd = infy_newfd ();
1898 3185
3186 if (fs_fd >= 0)
3187 {
3188 fd_intern (fs_fd);
3189 ev_io_set (&fs_w, fs_fd, EV_READ);
3190 ev_io_start (EV_A_ &fs_w);
3191 ev_unref (EV_A);
3192 }
3193
1899 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3194 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1900 { 3195 {
1901 WL w_ = fs_hash [slot].head; 3196 WL w_ = fs_hash [slot].head;
1902 fs_hash [slot].head = 0; 3197 fs_hash [slot].head = 0;
1903 3198
1904 while (w_) 3199 while (w_)
1909 w->wd = -1; 3204 w->wd = -1;
1910 3205
1911 if (fs_fd >= 0) 3206 if (fs_fd >= 0)
1912 infy_add (EV_A_ w); /* re-add, no matter what */ 3207 infy_add (EV_A_ w); /* re-add, no matter what */
1913 else 3208 else
3209 {
3210 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3211 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1914 ev_timer_start (EV_A_ &w->timer); 3212 ev_timer_again (EV_A_ &w->timer);
3213 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3214 }
1915 } 3215 }
1916
1917 } 3216 }
1918} 3217}
1919 3218
3219#endif
3220
3221#ifdef _WIN32
3222# define EV_LSTAT(p,b) _stati64 (p, b)
3223#else
3224# define EV_LSTAT(p,b) lstat (p, b)
1920#endif 3225#endif
1921 3226
1922void 3227void
1923ev_stat_stat (EV_P_ ev_stat *w) 3228ev_stat_stat (EV_P_ ev_stat *w)
1924{ 3229{
1931static void noinline 3236static void noinline
1932stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3237stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1933{ 3238{
1934 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3239 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1935 3240
1936 /* we copy this here each the time so that */ 3241 ev_statdata prev = w->attr;
1937 /* prev has the old value when the callback gets invoked */
1938 w->prev = w->attr;
1939 ev_stat_stat (EV_A_ w); 3242 ev_stat_stat (EV_A_ w);
1940 3243
1941 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3244 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1942 if ( 3245 if (
1943 w->prev.st_dev != w->attr.st_dev 3246 prev.st_dev != w->attr.st_dev
1944 || w->prev.st_ino != w->attr.st_ino 3247 || prev.st_ino != w->attr.st_ino
1945 || w->prev.st_mode != w->attr.st_mode 3248 || prev.st_mode != w->attr.st_mode
1946 || w->prev.st_nlink != w->attr.st_nlink 3249 || prev.st_nlink != w->attr.st_nlink
1947 || w->prev.st_uid != w->attr.st_uid 3250 || prev.st_uid != w->attr.st_uid
1948 || w->prev.st_gid != w->attr.st_gid 3251 || prev.st_gid != w->attr.st_gid
1949 || w->prev.st_rdev != w->attr.st_rdev 3252 || prev.st_rdev != w->attr.st_rdev
1950 || w->prev.st_size != w->attr.st_size 3253 || prev.st_size != w->attr.st_size
1951 || w->prev.st_atime != w->attr.st_atime 3254 || prev.st_atime != w->attr.st_atime
1952 || w->prev.st_mtime != w->attr.st_mtime 3255 || prev.st_mtime != w->attr.st_mtime
1953 || w->prev.st_ctime != w->attr.st_ctime 3256 || prev.st_ctime != w->attr.st_ctime
1954 ) { 3257 ) {
3258 /* we only update w->prev on actual differences */
3259 /* in case we test more often than invoke the callback, */
3260 /* to ensure that prev is always different to attr */
3261 w->prev = prev;
3262
1955 #if EV_USE_INOTIFY 3263 #if EV_USE_INOTIFY
3264 if (fs_fd >= 0)
3265 {
1956 infy_del (EV_A_ w); 3266 infy_del (EV_A_ w);
1957 infy_add (EV_A_ w); 3267 infy_add (EV_A_ w);
1958 ev_stat_stat (EV_A_ w); /* avoid race... */ 3268 ev_stat_stat (EV_A_ w); /* avoid race... */
3269 }
1959 #endif 3270 #endif
1960 3271
1961 ev_feed_event (EV_A_ w, EV_STAT); 3272 ev_feed_event (EV_A_ w, EV_STAT);
1962 } 3273 }
1963} 3274}
1966ev_stat_start (EV_P_ ev_stat *w) 3277ev_stat_start (EV_P_ ev_stat *w)
1967{ 3278{
1968 if (expect_false (ev_is_active (w))) 3279 if (expect_false (ev_is_active (w)))
1969 return; 3280 return;
1970 3281
1971 /* since we use memcmp, we need to clear any padding data etc. */
1972 memset (&w->prev, 0, sizeof (ev_statdata));
1973 memset (&w->attr, 0, sizeof (ev_statdata));
1974
1975 ev_stat_stat (EV_A_ w); 3282 ev_stat_stat (EV_A_ w);
1976 3283
3284 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1977 if (w->interval < MIN_STAT_INTERVAL) 3285 w->interval = MIN_STAT_INTERVAL;
1978 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1979 3286
1980 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3287 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1981 ev_set_priority (&w->timer, ev_priority (w)); 3288 ev_set_priority (&w->timer, ev_priority (w));
1982 3289
1983#if EV_USE_INOTIFY 3290#if EV_USE_INOTIFY
1984 infy_init (EV_A); 3291 infy_init (EV_A);
1985 3292
1986 if (fs_fd >= 0) 3293 if (fs_fd >= 0)
1987 infy_add (EV_A_ w); 3294 infy_add (EV_A_ w);
1988 else 3295 else
1989#endif 3296#endif
3297 {
1990 ev_timer_start (EV_A_ &w->timer); 3298 ev_timer_again (EV_A_ &w->timer);
3299 ev_unref (EV_A);
3300 }
1991 3301
1992 ev_start (EV_A_ (W)w, 1); 3302 ev_start (EV_A_ (W)w, 1);
3303
3304 EV_FREQUENT_CHECK;
1993} 3305}
1994 3306
1995void 3307void
1996ev_stat_stop (EV_P_ ev_stat *w) 3308ev_stat_stop (EV_P_ ev_stat *w)
1997{ 3309{
1998 ev_clear_pending (EV_A_ (W)w); 3310 clear_pending (EV_A_ (W)w);
1999 if (expect_false (!ev_is_active (w))) 3311 if (expect_false (!ev_is_active (w)))
2000 return; 3312 return;
2001 3313
3314 EV_FREQUENT_CHECK;
3315
2002#if EV_USE_INOTIFY 3316#if EV_USE_INOTIFY
2003 infy_del (EV_A_ w); 3317 infy_del (EV_A_ w);
2004#endif 3318#endif
3319
3320 if (ev_is_active (&w->timer))
3321 {
3322 ev_ref (EV_A);
2005 ev_timer_stop (EV_A_ &w->timer); 3323 ev_timer_stop (EV_A_ &w->timer);
3324 }
2006 3325
2007 ev_stop (EV_A_ (W)w); 3326 ev_stop (EV_A_ (W)w);
2008}
2009#endif
2010 3327
3328 EV_FREQUENT_CHECK;
3329}
3330#endif
3331
3332#if EV_IDLE_ENABLE
2011void 3333void
2012ev_idle_start (EV_P_ ev_idle *w) 3334ev_idle_start (EV_P_ ev_idle *w)
2013{ 3335{
2014 if (expect_false (ev_is_active (w))) 3336 if (expect_false (ev_is_active (w)))
2015 return; 3337 return;
2016 3338
3339 pri_adjust (EV_A_ (W)w);
3340
3341 EV_FREQUENT_CHECK;
3342
3343 {
3344 int active = ++idlecnt [ABSPRI (w)];
3345
3346 ++idleall;
2017 ev_start (EV_A_ (W)w, ++idlecnt); 3347 ev_start (EV_A_ (W)w, active);
3348
2018 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3349 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2019 idles [idlecnt - 1] = w; 3350 idles [ABSPRI (w)][active - 1] = w;
3351 }
3352
3353 EV_FREQUENT_CHECK;
2020} 3354}
2021 3355
2022void 3356void
2023ev_idle_stop (EV_P_ ev_idle *w) 3357ev_idle_stop (EV_P_ ev_idle *w)
2024{ 3358{
2025 ev_clear_pending (EV_A_ (W)w); 3359 clear_pending (EV_A_ (W)w);
2026 if (expect_false (!ev_is_active (w))) 3360 if (expect_false (!ev_is_active (w)))
2027 return; 3361 return;
2028 3362
3363 EV_FREQUENT_CHECK;
3364
2029 { 3365 {
2030 int active = ((W)w)->active; 3366 int active = ev_active (w);
2031 idles [active - 1] = idles [--idlecnt]; 3367
2032 ((W)idles [active - 1])->active = active; 3368 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3369 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3370
3371 ev_stop (EV_A_ (W)w);
3372 --idleall;
2033 } 3373 }
2034 3374
2035 ev_stop (EV_A_ (W)w); 3375 EV_FREQUENT_CHECK;
2036} 3376}
3377#endif
2037 3378
3379#if EV_PREPARE_ENABLE
2038void 3380void
2039ev_prepare_start (EV_P_ ev_prepare *w) 3381ev_prepare_start (EV_P_ ev_prepare *w)
2040{ 3382{
2041 if (expect_false (ev_is_active (w))) 3383 if (expect_false (ev_is_active (w)))
2042 return; 3384 return;
3385
3386 EV_FREQUENT_CHECK;
2043 3387
2044 ev_start (EV_A_ (W)w, ++preparecnt); 3388 ev_start (EV_A_ (W)w, ++preparecnt);
2045 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3389 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2046 prepares [preparecnt - 1] = w; 3390 prepares [preparecnt - 1] = w;
3391
3392 EV_FREQUENT_CHECK;
2047} 3393}
2048 3394
2049void 3395void
2050ev_prepare_stop (EV_P_ ev_prepare *w) 3396ev_prepare_stop (EV_P_ ev_prepare *w)
2051{ 3397{
2052 ev_clear_pending (EV_A_ (W)w); 3398 clear_pending (EV_A_ (W)w);
2053 if (expect_false (!ev_is_active (w))) 3399 if (expect_false (!ev_is_active (w)))
2054 return; 3400 return;
2055 3401
3402 EV_FREQUENT_CHECK;
3403
2056 { 3404 {
2057 int active = ((W)w)->active; 3405 int active = ev_active (w);
3406
2058 prepares [active - 1] = prepares [--preparecnt]; 3407 prepares [active - 1] = prepares [--preparecnt];
2059 ((W)prepares [active - 1])->active = active; 3408 ev_active (prepares [active - 1]) = active;
2060 } 3409 }
2061 3410
2062 ev_stop (EV_A_ (W)w); 3411 ev_stop (EV_A_ (W)w);
2063}
2064 3412
3413 EV_FREQUENT_CHECK;
3414}
3415#endif
3416
3417#if EV_CHECK_ENABLE
2065void 3418void
2066ev_check_start (EV_P_ ev_check *w) 3419ev_check_start (EV_P_ ev_check *w)
2067{ 3420{
2068 if (expect_false (ev_is_active (w))) 3421 if (expect_false (ev_is_active (w)))
2069 return; 3422 return;
3423
3424 EV_FREQUENT_CHECK;
2070 3425
2071 ev_start (EV_A_ (W)w, ++checkcnt); 3426 ev_start (EV_A_ (W)w, ++checkcnt);
2072 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3427 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2073 checks [checkcnt - 1] = w; 3428 checks [checkcnt - 1] = w;
3429
3430 EV_FREQUENT_CHECK;
2074} 3431}
2075 3432
2076void 3433void
2077ev_check_stop (EV_P_ ev_check *w) 3434ev_check_stop (EV_P_ ev_check *w)
2078{ 3435{
2079 ev_clear_pending (EV_A_ (W)w); 3436 clear_pending (EV_A_ (W)w);
2080 if (expect_false (!ev_is_active (w))) 3437 if (expect_false (!ev_is_active (w)))
2081 return; 3438 return;
2082 3439
3440 EV_FREQUENT_CHECK;
3441
2083 { 3442 {
2084 int active = ((W)w)->active; 3443 int active = ev_active (w);
3444
2085 checks [active - 1] = checks [--checkcnt]; 3445 checks [active - 1] = checks [--checkcnt];
2086 ((W)checks [active - 1])->active = active; 3446 ev_active (checks [active - 1]) = active;
2087 } 3447 }
2088 3448
2089 ev_stop (EV_A_ (W)w); 3449 ev_stop (EV_A_ (W)w);
3450
3451 EV_FREQUENT_CHECK;
2090} 3452}
3453#endif
2091 3454
2092#if EV_EMBED_ENABLE 3455#if EV_EMBED_ENABLE
2093void noinline 3456void noinline
2094ev_embed_sweep (EV_P_ ev_embed *w) 3457ev_embed_sweep (EV_P_ ev_embed *w)
2095{ 3458{
2096 ev_loop (w->loop, EVLOOP_NONBLOCK); 3459 ev_run (w->other, EVRUN_NOWAIT);
2097} 3460}
2098 3461
2099static void 3462static void
2100embed_cb (EV_P_ ev_io *io, int revents) 3463embed_io_cb (EV_P_ ev_io *io, int revents)
2101{ 3464{
2102 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3465 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2103 3466
2104 if (ev_cb (w)) 3467 if (ev_cb (w))
2105 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3468 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2106 else 3469 else
2107 ev_embed_sweep (loop, w); 3470 ev_run (w->other, EVRUN_NOWAIT);
2108} 3471}
3472
3473static void
3474embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3475{
3476 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3477
3478 {
3479 EV_P = w->other;
3480
3481 while (fdchangecnt)
3482 {
3483 fd_reify (EV_A);
3484 ev_run (EV_A_ EVRUN_NOWAIT);
3485 }
3486 }
3487}
3488
3489static void
3490embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3491{
3492 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3493
3494 ev_embed_stop (EV_A_ w);
3495
3496 {
3497 EV_P = w->other;
3498
3499 ev_loop_fork (EV_A);
3500 ev_run (EV_A_ EVRUN_NOWAIT);
3501 }
3502
3503 ev_embed_start (EV_A_ w);
3504}
3505
3506#if 0
3507static void
3508embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3509{
3510 ev_idle_stop (EV_A_ idle);
3511}
3512#endif
2109 3513
2110void 3514void
2111ev_embed_start (EV_P_ ev_embed *w) 3515ev_embed_start (EV_P_ ev_embed *w)
2112{ 3516{
2113 if (expect_false (ev_is_active (w))) 3517 if (expect_false (ev_is_active (w)))
2114 return; 3518 return;
2115 3519
2116 { 3520 {
2117 struct ev_loop *loop = w->loop; 3521 EV_P = w->other;
2118 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3522 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2119 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3523 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2120 } 3524 }
3525
3526 EV_FREQUENT_CHECK;
2121 3527
2122 ev_set_priority (&w->io, ev_priority (w)); 3528 ev_set_priority (&w->io, ev_priority (w));
2123 ev_io_start (EV_A_ &w->io); 3529 ev_io_start (EV_A_ &w->io);
2124 3530
3531 ev_prepare_init (&w->prepare, embed_prepare_cb);
3532 ev_set_priority (&w->prepare, EV_MINPRI);
3533 ev_prepare_start (EV_A_ &w->prepare);
3534
3535 ev_fork_init (&w->fork, embed_fork_cb);
3536 ev_fork_start (EV_A_ &w->fork);
3537
3538 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3539
2125 ev_start (EV_A_ (W)w, 1); 3540 ev_start (EV_A_ (W)w, 1);
3541
3542 EV_FREQUENT_CHECK;
2126} 3543}
2127 3544
2128void 3545void
2129ev_embed_stop (EV_P_ ev_embed *w) 3546ev_embed_stop (EV_P_ ev_embed *w)
2130{ 3547{
2131 ev_clear_pending (EV_A_ (W)w); 3548 clear_pending (EV_A_ (W)w);
2132 if (expect_false (!ev_is_active (w))) 3549 if (expect_false (!ev_is_active (w)))
2133 return; 3550 return;
2134 3551
3552 EV_FREQUENT_CHECK;
3553
2135 ev_io_stop (EV_A_ &w->io); 3554 ev_io_stop (EV_A_ &w->io);
3555 ev_prepare_stop (EV_A_ &w->prepare);
3556 ev_fork_stop (EV_A_ &w->fork);
2136 3557
2137 ev_stop (EV_A_ (W)w); 3558 ev_stop (EV_A_ (W)w);
3559
3560 EV_FREQUENT_CHECK;
2138} 3561}
2139#endif 3562#endif
2140 3563
2141#if EV_FORK_ENABLE 3564#if EV_FORK_ENABLE
2142void 3565void
2143ev_fork_start (EV_P_ ev_fork *w) 3566ev_fork_start (EV_P_ ev_fork *w)
2144{ 3567{
2145 if (expect_false (ev_is_active (w))) 3568 if (expect_false (ev_is_active (w)))
2146 return; 3569 return;
3570
3571 EV_FREQUENT_CHECK;
2147 3572
2148 ev_start (EV_A_ (W)w, ++forkcnt); 3573 ev_start (EV_A_ (W)w, ++forkcnt);
2149 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3574 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2150 forks [forkcnt - 1] = w; 3575 forks [forkcnt - 1] = w;
3576
3577 EV_FREQUENT_CHECK;
2151} 3578}
2152 3579
2153void 3580void
2154ev_fork_stop (EV_P_ ev_fork *w) 3581ev_fork_stop (EV_P_ ev_fork *w)
2155{ 3582{
2156 ev_clear_pending (EV_A_ (W)w); 3583 clear_pending (EV_A_ (W)w);
2157 if (expect_false (!ev_is_active (w))) 3584 if (expect_false (!ev_is_active (w)))
2158 return; 3585 return;
2159 3586
3587 EV_FREQUENT_CHECK;
3588
2160 { 3589 {
2161 int active = ((W)w)->active; 3590 int active = ev_active (w);
3591
2162 forks [active - 1] = forks [--forkcnt]; 3592 forks [active - 1] = forks [--forkcnt];
2163 ((W)forks [active - 1])->active = active; 3593 ev_active (forks [active - 1]) = active;
2164 } 3594 }
2165 3595
2166 ev_stop (EV_A_ (W)w); 3596 ev_stop (EV_A_ (W)w);
3597
3598 EV_FREQUENT_CHECK;
3599}
3600#endif
3601
3602#if EV_CLEANUP_ENABLE
3603void
3604ev_cleanup_start (EV_P_ ev_cleanup *w)
3605{
3606 if (expect_false (ev_is_active (w)))
3607 return;
3608
3609 EV_FREQUENT_CHECK;
3610
3611 ev_start (EV_A_ (W)w, ++cleanupcnt);
3612 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3613 cleanups [cleanupcnt - 1] = w;
3614
3615 /* cleanup watchers should never keep a refcount on the loop */
3616 ev_unref (EV_A);
3617 EV_FREQUENT_CHECK;
3618}
3619
3620void
3621ev_cleanup_stop (EV_P_ ev_cleanup *w)
3622{
3623 clear_pending (EV_A_ (W)w);
3624 if (expect_false (!ev_is_active (w)))
3625 return;
3626
3627 EV_FREQUENT_CHECK;
3628 ev_ref (EV_A);
3629
3630 {
3631 int active = ev_active (w);
3632
3633 cleanups [active - 1] = cleanups [--cleanupcnt];
3634 ev_active (cleanups [active - 1]) = active;
3635 }
3636
3637 ev_stop (EV_A_ (W)w);
3638
3639 EV_FREQUENT_CHECK;
3640}
3641#endif
3642
3643#if EV_ASYNC_ENABLE
3644void
3645ev_async_start (EV_P_ ev_async *w)
3646{
3647 if (expect_false (ev_is_active (w)))
3648 return;
3649
3650 w->sent = 0;
3651
3652 evpipe_init (EV_A);
3653
3654 EV_FREQUENT_CHECK;
3655
3656 ev_start (EV_A_ (W)w, ++asynccnt);
3657 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3658 asyncs [asynccnt - 1] = w;
3659
3660 EV_FREQUENT_CHECK;
3661}
3662
3663void
3664ev_async_stop (EV_P_ ev_async *w)
3665{
3666 clear_pending (EV_A_ (W)w);
3667 if (expect_false (!ev_is_active (w)))
3668 return;
3669
3670 EV_FREQUENT_CHECK;
3671
3672 {
3673 int active = ev_active (w);
3674
3675 asyncs [active - 1] = asyncs [--asynccnt];
3676 ev_active (asyncs [active - 1]) = active;
3677 }
3678
3679 ev_stop (EV_A_ (W)w);
3680
3681 EV_FREQUENT_CHECK;
3682}
3683
3684void
3685ev_async_send (EV_P_ ev_async *w)
3686{
3687 w->sent = 1;
3688 evpipe_write (EV_A_ &async_pending);
2167} 3689}
2168#endif 3690#endif
2169 3691
2170/*****************************************************************************/ 3692/*****************************************************************************/
2171 3693
2181once_cb (EV_P_ struct ev_once *once, int revents) 3703once_cb (EV_P_ struct ev_once *once, int revents)
2182{ 3704{
2183 void (*cb)(int revents, void *arg) = once->cb; 3705 void (*cb)(int revents, void *arg) = once->cb;
2184 void *arg = once->arg; 3706 void *arg = once->arg;
2185 3707
2186 ev_io_stop (EV_A_ &once->io); 3708 ev_io_stop (EV_A_ &once->io);
2187 ev_timer_stop (EV_A_ &once->to); 3709 ev_timer_stop (EV_A_ &once->to);
2188 ev_free (once); 3710 ev_free (once);
2189 3711
2190 cb (revents, arg); 3712 cb (revents, arg);
2191} 3713}
2192 3714
2193static void 3715static void
2194once_cb_io (EV_P_ ev_io *w, int revents) 3716once_cb_io (EV_P_ ev_io *w, int revents)
2195{ 3717{
2196 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3718 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3719
3720 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2197} 3721}
2198 3722
2199static void 3723static void
2200once_cb_to (EV_P_ ev_timer *w, int revents) 3724once_cb_to (EV_P_ ev_timer *w, int revents)
2201{ 3725{
2202 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3726 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3727
3728 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2203} 3729}
2204 3730
2205void 3731void
2206ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3732ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2207{ 3733{
2208 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3734 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2209 3735
2210 if (expect_false (!once)) 3736 if (expect_false (!once))
2211 { 3737 {
2212 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3738 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2213 return; 3739 return;
2214 } 3740 }
2215 3741
2216 once->cb = cb; 3742 once->cb = cb;
2217 once->arg = arg; 3743 once->arg = arg;
2229 ev_timer_set (&once->to, timeout, 0.); 3755 ev_timer_set (&once->to, timeout, 0.);
2230 ev_timer_start (EV_A_ &once->to); 3756 ev_timer_start (EV_A_ &once->to);
2231 } 3757 }
2232} 3758}
2233 3759
2234#ifdef __cplusplus 3760/*****************************************************************************/
2235} 3761
3762#if EV_WALK_ENABLE
3763void
3764ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3765{
3766 int i, j;
3767 ev_watcher_list *wl, *wn;
3768
3769 if (types & (EV_IO | EV_EMBED))
3770 for (i = 0; i < anfdmax; ++i)
3771 for (wl = anfds [i].head; wl; )
3772 {
3773 wn = wl->next;
3774
3775#if EV_EMBED_ENABLE
3776 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3777 {
3778 if (types & EV_EMBED)
3779 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3780 }
3781 else
3782#endif
3783#if EV_USE_INOTIFY
3784 if (ev_cb ((ev_io *)wl) == infy_cb)
3785 ;
3786 else
3787#endif
3788 if ((ev_io *)wl != &pipe_w)
3789 if (types & EV_IO)
3790 cb (EV_A_ EV_IO, wl);
3791
3792 wl = wn;
3793 }
3794
3795 if (types & (EV_TIMER | EV_STAT))
3796 for (i = timercnt + HEAP0; i-- > HEAP0; )
3797#if EV_STAT_ENABLE
3798 /*TODO: timer is not always active*/
3799 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3800 {
3801 if (types & EV_STAT)
3802 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3803 }
3804 else
3805#endif
3806 if (types & EV_TIMER)
3807 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3808
3809#if EV_PERIODIC_ENABLE
3810 if (types & EV_PERIODIC)
3811 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3812 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3813#endif
3814
3815#if EV_IDLE_ENABLE
3816 if (types & EV_IDLE)
3817 for (j = NUMPRI; i--; )
3818 for (i = idlecnt [j]; i--; )
3819 cb (EV_A_ EV_IDLE, idles [j][i]);
3820#endif
3821
3822#if EV_FORK_ENABLE
3823 if (types & EV_FORK)
3824 for (i = forkcnt; i--; )
3825 if (ev_cb (forks [i]) != embed_fork_cb)
3826 cb (EV_A_ EV_FORK, forks [i]);
3827#endif
3828
3829#if EV_ASYNC_ENABLE
3830 if (types & EV_ASYNC)
3831 for (i = asynccnt; i--; )
3832 cb (EV_A_ EV_ASYNC, asyncs [i]);
3833#endif
3834
3835#if EV_PREPARE_ENABLE
3836 if (types & EV_PREPARE)
3837 for (i = preparecnt; i--; )
3838# if EV_EMBED_ENABLE
3839 if (ev_cb (prepares [i]) != embed_prepare_cb)
2236#endif 3840# endif
3841 cb (EV_A_ EV_PREPARE, prepares [i]);
3842#endif
2237 3843
3844#if EV_CHECK_ENABLE
3845 if (types & EV_CHECK)
3846 for (i = checkcnt; i--; )
3847 cb (EV_A_ EV_CHECK, checks [i]);
3848#endif
3849
3850#if EV_SIGNAL_ENABLE
3851 if (types & EV_SIGNAL)
3852 for (i = 0; i < EV_NSIG - 1; ++i)
3853 for (wl = signals [i].head; wl; )
3854 {
3855 wn = wl->next;
3856 cb (EV_A_ EV_SIGNAL, wl);
3857 wl = wn;
3858 }
3859#endif
3860
3861#if EV_CHILD_ENABLE
3862 if (types & EV_CHILD)
3863 for (i = (EV_PID_HASHSIZE); i--; )
3864 for (wl = childs [i]; wl; )
3865 {
3866 wn = wl->next;
3867 cb (EV_A_ EV_CHILD, wl);
3868 wl = wn;
3869 }
3870#endif
3871/* EV_STAT 0x00001000 /* stat data changed */
3872/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3873}
3874#endif
3875
3876#if EV_MULTIPLICITY
3877 #include "ev_wrap.h"
3878#endif
3879
3880EV_CPP(})
3881

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines