ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.164 by root, Fri Dec 7 16:44:10 2007 UTC vs.
Revision 1.370 by root, Sun Jan 30 19:05:41 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
43# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
46# endif 65# endif
47# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
49# endif 68# endif
50# else 69# else
51# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
53# endif 72# endif
54# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
56# endif 75# endif
57# endif 76# endif
58 77
78# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 79# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 81# endif
82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0
65# endif 85# endif
66 86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 88# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 89# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
94# endif
95
96# if HAVE_POLL && HAVE_POLL_H
97# ifndef EV_USE_POLL
98# define EV_USE_POLL EV_FEATURE_BACKENDS
99# endif
100# else
101# undef EV_USE_POLL
102# define EV_USE_POLL 0
73# endif 103# endif
74 104
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
78# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
81# endif 112# endif
82 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
89# endif 121# endif
90 122
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
94# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
97# endif 130# endif
98 131
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
102# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
104# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
105# endif 139# endif
106 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
107#endif 159#endif
108 160
109#include <math.h> 161#include <math.h>
110#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
111#include <fcntl.h> 164#include <fcntl.h>
112#include <stddef.h> 165#include <stddef.h>
113 166
114#include <stdio.h> 167#include <stdio.h>
115 168
116#include <assert.h> 169#include <assert.h>
117#include <errno.h> 170#include <errno.h>
118#include <sys/types.h> 171#include <sys/types.h>
119#include <time.h> 172#include <time.h>
173#include <limits.h>
120 174
121#include <signal.h> 175#include <signal.h>
122 176
123#ifdef EV_H 177#ifdef EV_H
124# include EV_H 178# include EV_H
125#else 179#else
126# include "ev.h" 180# include "ev.h"
127#endif 181#endif
182
183EV_CPP(extern "C" {)
128 184
129#ifndef _WIN32 185#ifndef _WIN32
130# include <sys/time.h> 186# include <sys/time.h>
131# include <sys/wait.h> 187# include <sys/wait.h>
132# include <unistd.h> 188# include <unistd.h>
133#else 189#else
190# include <io.h>
134# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 192# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
138# endif 195# endif
196# undef EV_AVOID_STDIO
197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
139#endif 242# endif
140 243#endif
141/**/
142 244
143#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
144# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
145#endif 251#endif
146 252
147#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255#endif
256
257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
261# define EV_USE_NANOSLEEP 0
262# endif
149#endif 263#endif
150 264
151#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 267#endif
154 268
155#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
156# ifdef _WIN32 270# ifdef _WIN32
157# define EV_USE_POLL 0 271# define EV_USE_POLL 0
158# else 272# else
159# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 274# endif
161#endif 275#endif
162 276
163#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
164# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
282# endif
165#endif 283#endif
166 284
167#ifndef EV_USE_KQUEUE 285#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 286# define EV_USE_KQUEUE 0
169#endif 287#endif
171#ifndef EV_USE_PORT 289#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 290# define EV_USE_PORT 0
173#endif 291#endif
174 292
175#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_INOTIFY EV_FEATURE_OS
296# else
176# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
298# endif
177#endif 299#endif
178 300
179#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
309#ifndef EV_USE_EVENTFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 312# else
183# define EV_PID_HASHSIZE 16 313# define EV_USE_EVENTFD 0
184# endif 314# endif
185#endif 315#endif
186 316
187#ifndef EV_INOTIFY_HASHSIZE 317#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 319# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 320# else
191# define EV_INOTIFY_HASHSIZE 16 321# define EV_USE_SIGNALFD 0
192# endif 322# endif
193#endif 323#endif
194 324
195/**/ 325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
196 364
197#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
200#endif 368#endif
202#ifndef CLOCK_REALTIME 370#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 371# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 372# define EV_USE_REALTIME 0
205#endif 373#endif
206 374
375#if !EV_STAT_ENABLE
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378#endif
379
380#if !EV_USE_NANOSLEEP
381/* hp-ux has it in sys/time.h, which we unconditionally include above */
382# if !defined(_WIN32) && !defined(__hpux)
383# include <sys/select.h>
384# endif
385#endif
386
387#if EV_USE_INOTIFY
388# include <sys/statfs.h>
389# include <sys/inotify.h>
390/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
391# ifndef IN_DONT_FOLLOW
392# undef EV_USE_INOTIFY
393# define EV_USE_INOTIFY 0
394# endif
395#endif
396
207#if EV_SELECT_IS_WINSOCKET 397#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 398# include <winsock.h>
209#endif 399#endif
210 400
211#if !EV_STAT_ENABLE 401#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 402/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
403# include <stdint.h>
404# ifndef EFD_NONBLOCK
405# define EFD_NONBLOCK O_NONBLOCK
213#endif 406# endif
407# ifndef EFD_CLOEXEC
408# ifdef O_CLOEXEC
409# define EFD_CLOEXEC O_CLOEXEC
410# else
411# define EFD_CLOEXEC 02000000
412# endif
413# endif
414EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
415#endif
214 416
215#if EV_USE_INOTIFY 417#if EV_USE_SIGNALFD
418/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
216# include <sys/inotify.h> 419# include <stdint.h>
420# ifndef SFD_NONBLOCK
421# define SFD_NONBLOCK O_NONBLOCK
422# endif
423# ifndef SFD_CLOEXEC
424# ifdef O_CLOEXEC
425# define SFD_CLOEXEC O_CLOEXEC
426# else
427# define SFD_CLOEXEC 02000000
428# endif
429# endif
430EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
431
432struct signalfd_siginfo
433{
434 uint32_t ssi_signo;
435 char pad[128 - sizeof (uint32_t)];
436};
217#endif 437#endif
218 438
219/**/ 439/**/
440
441#if EV_VERIFY >= 3
442# define EV_FREQUENT_CHECK ev_verify (EV_A)
443#else
444# define EV_FREQUENT_CHECK do { } while (0)
445#endif
446
447/*
448 * This is used to avoid floating point rounding problems.
449 * It is added to ev_rt_now when scheduling periodics
450 * to ensure progress, time-wise, even when rounding
451 * errors are against us.
452 * This value is good at least till the year 4000.
453 * Better solutions welcome.
454 */
455#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 456
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 457#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 458#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 459
460#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
461#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
462
225#if __GNUC__ >= 3 463#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 464# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 465# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 466#else
236# define expect(expr,value) (expr) 467# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 468# define noinline
469# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
470# define inline
471# endif
240#endif 472#endif
241 473
242#define expect_false(expr) expect ((expr) != 0, 0) 474#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 475#define expect_true(expr) expect ((expr) != 0, 1)
476#define inline_size static inline
244 477
478#if EV_FEATURE_CODE
479# define inline_speed static inline
480#else
481# define inline_speed static noinline
482#endif
483
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 484#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
485
486#if EV_MINPRI == EV_MAXPRI
487# define ABSPRI(w) (((W)w), 0)
488#else
246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 489# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
490#endif
247 491
248#define EMPTY /* required for microsofts broken pseudo-c compiler */ 492#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 493#define EMPTY2(a,b) /* used to suppress some warnings */
250 494
251typedef ev_watcher *W; 495typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 496typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 497typedef ev_watcher_time *WT;
254 498
499#define ev_active(w) ((W)(w))->active
500#define ev_at(w) ((WT)(w))->at
501
502#if EV_USE_REALTIME
503/* sig_atomic_t is used to avoid per-thread variables or locking but still */
504/* giving it a reasonably high chance of working on typical architectures */
505static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
506#endif
507
508#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 509static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
510#endif
511
512#ifndef EV_FD_TO_WIN32_HANDLE
513# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
514#endif
515#ifndef EV_WIN32_HANDLE_TO_FD
516# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
517#endif
518#ifndef EV_WIN32_CLOSE_FD
519# define EV_WIN32_CLOSE_FD(fd) close (fd)
520#endif
256 521
257#ifdef _WIN32 522#ifdef _WIN32
258# include "ev_win32.c" 523# include "ev_win32.c"
259#endif 524#endif
260 525
261/*****************************************************************************/ 526/*****************************************************************************/
262 527
528#ifdef __linux
529# include <sys/utsname.h>
530#endif
531
532static unsigned int noinline
533ev_linux_version (void)
534{
535#ifdef __linux
536 unsigned int v = 0;
537 struct utsname buf;
538 int i;
539 char *p = buf.release;
540
541 if (uname (&buf))
542 return 0;
543
544 for (i = 3+1; --i; )
545 {
546 unsigned int c = 0;
547
548 for (;;)
549 {
550 if (*p >= '0' && *p <= '9')
551 c = c * 10 + *p++ - '0';
552 else
553 {
554 p += *p == '.';
555 break;
556 }
557 }
558
559 v = (v << 8) | c;
560 }
561
562 return v;
563#else
564 return 0;
565#endif
566}
567
568/*****************************************************************************/
569
570#if EV_AVOID_STDIO
571static void noinline
572ev_printerr (const char *msg)
573{
574 write (STDERR_FILENO, msg, strlen (msg));
575}
576#endif
577
263static void (*syserr_cb)(const char *msg); 578static void (*syserr_cb)(const char *msg);
264 579
265void 580void
266ev_set_syserr_cb (void (*cb)(const char *msg)) 581ev_set_syserr_cb (void (*cb)(const char *msg))
267{ 582{
268 syserr_cb = cb; 583 syserr_cb = cb;
269} 584}
270 585
271static void noinline 586static void noinline
272syserr (const char *msg) 587ev_syserr (const char *msg)
273{ 588{
274 if (!msg) 589 if (!msg)
275 msg = "(libev) system error"; 590 msg = "(libev) system error";
276 591
277 if (syserr_cb) 592 if (syserr_cb)
278 syserr_cb (msg); 593 syserr_cb (msg);
279 else 594 else
280 { 595 {
596#if EV_AVOID_STDIO
597 ev_printerr (msg);
598 ev_printerr (": ");
599 ev_printerr (strerror (errno));
600 ev_printerr ("\n");
601#else
281 perror (msg); 602 perror (msg);
603#endif
282 abort (); 604 abort ();
283 } 605 }
284} 606}
285 607
608static void *
609ev_realloc_emul (void *ptr, long size)
610{
611#if __GLIBC__
612 return realloc (ptr, size);
613#else
614 /* some systems, notably openbsd and darwin, fail to properly
615 * implement realloc (x, 0) (as required by both ansi c-89 and
616 * the single unix specification, so work around them here.
617 */
618
619 if (size)
620 return realloc (ptr, size);
621
622 free (ptr);
623 return 0;
624#endif
625}
626
286static void *(*alloc)(void *ptr, long size); 627static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 628
288void 629void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 630ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 631{
291 alloc = cb; 632 alloc = cb;
292} 633}
293 634
294inline_speed void * 635inline_speed void *
295ev_realloc (void *ptr, long size) 636ev_realloc (void *ptr, long size)
296{ 637{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 638 ptr = alloc (ptr, size);
298 639
299 if (!ptr && size) 640 if (!ptr && size)
300 { 641 {
642#if EV_AVOID_STDIO
643 ev_printerr ("(libev) memory allocation failed, aborting.\n");
644#else
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 645 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
646#endif
302 abort (); 647 abort ();
303 } 648 }
304 649
305 return ptr; 650 return ptr;
306} 651}
308#define ev_malloc(size) ev_realloc (0, (size)) 653#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 654#define ev_free(ptr) ev_realloc ((ptr), 0)
310 655
311/*****************************************************************************/ 656/*****************************************************************************/
312 657
658/* set in reify when reification needed */
659#define EV_ANFD_REIFY 1
660
661/* file descriptor info structure */
313typedef struct 662typedef struct
314{ 663{
315 WL head; 664 WL head;
316 unsigned char events; 665 unsigned char events; /* the events watched for */
666 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
667 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 668 unsigned char unused;
669#if EV_USE_EPOLL
670 unsigned int egen; /* generation counter to counter epoll bugs */
671#endif
318#if EV_SELECT_IS_WINSOCKET 672#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
319 SOCKET handle; 673 SOCKET handle;
320#endif 674#endif
675#if EV_USE_IOCP
676 OVERLAPPED or, ow;
677#endif
321} ANFD; 678} ANFD;
322 679
680/* stores the pending event set for a given watcher */
323typedef struct 681typedef struct
324{ 682{
325 W w; 683 W w;
326 int events; 684 int events; /* the pending event set for the given watcher */
327} ANPENDING; 685} ANPENDING;
328 686
329#if EV_USE_INOTIFY 687#if EV_USE_INOTIFY
688/* hash table entry per inotify-id */
330typedef struct 689typedef struct
331{ 690{
332 WL head; 691 WL head;
333} ANFS; 692} ANFS;
693#endif
694
695/* Heap Entry */
696#if EV_HEAP_CACHE_AT
697 /* a heap element */
698 typedef struct {
699 ev_tstamp at;
700 WT w;
701 } ANHE;
702
703 #define ANHE_w(he) (he).w /* access watcher, read-write */
704 #define ANHE_at(he) (he).at /* access cached at, read-only */
705 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
706#else
707 /* a heap element */
708 typedef WT ANHE;
709
710 #define ANHE_w(he) (he)
711 #define ANHE_at(he) (he)->at
712 #define ANHE_at_cache(he)
334#endif 713#endif
335 714
336#if EV_MULTIPLICITY 715#if EV_MULTIPLICITY
337 716
338 struct ev_loop 717 struct ev_loop
357 736
358 static int ev_default_loop_ptr; 737 static int ev_default_loop_ptr;
359 738
360#endif 739#endif
361 740
741#if EV_FEATURE_API
742# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
743# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
744# define EV_INVOKE_PENDING invoke_cb (EV_A)
745#else
746# define EV_RELEASE_CB (void)0
747# define EV_ACQUIRE_CB (void)0
748# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
749#endif
750
751#define EVBREAK_RECURSE 0x80
752
362/*****************************************************************************/ 753/*****************************************************************************/
363 754
755#ifndef EV_HAVE_EV_TIME
364ev_tstamp 756ev_tstamp
365ev_time (void) 757ev_time (void)
366{ 758{
367#if EV_USE_REALTIME 759#if EV_USE_REALTIME
760 if (expect_true (have_realtime))
761 {
368 struct timespec ts; 762 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 763 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 764 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 765 }
766#endif
767
372 struct timeval tv; 768 struct timeval tv;
373 gettimeofday (&tv, 0); 769 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 770 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 771}
772#endif
377 773
378ev_tstamp inline_size 774inline_size ev_tstamp
379get_clock (void) 775get_clock (void)
380{ 776{
381#if EV_USE_MONOTONIC 777#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 778 if (expect_true (have_monotonic))
383 { 779 {
396{ 792{
397 return ev_rt_now; 793 return ev_rt_now;
398} 794}
399#endif 795#endif
400 796
401int inline_size 797void
798ev_sleep (ev_tstamp delay)
799{
800 if (delay > 0.)
801 {
802#if EV_USE_NANOSLEEP
803 struct timespec ts;
804
805 EV_TS_SET (ts, delay);
806 nanosleep (&ts, 0);
807#elif defined(_WIN32)
808 Sleep ((unsigned long)(delay * 1e3));
809#else
810 struct timeval tv;
811
812 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
813 /* something not guaranteed by newer posix versions, but guaranteed */
814 /* by older ones */
815 EV_TV_SET (tv, delay);
816 select (0, 0, 0, 0, &tv);
817#endif
818 }
819}
820
821inline_speed int
822ev_timeout_to_ms (ev_tstamp timeout)
823{
824 int ms = timeout * 1000. + .999999;
825
826 return expect_true (ms) ? ms : timeout < 1e-6 ? 0 : 1;
827}
828
829/*****************************************************************************/
830
831#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
832
833/* find a suitable new size for the given array, */
834/* hopefully by rounding to a nice-to-malloc size */
835inline_size int
402array_nextsize (int elem, int cur, int cnt) 836array_nextsize (int elem, int cur, int cnt)
403{ 837{
404 int ncur = cur + 1; 838 int ncur = cur + 1;
405 839
406 do 840 do
407 ncur <<= 1; 841 ncur <<= 1;
408 while (cnt > ncur); 842 while (cnt > ncur);
409 843
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 844 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
411 if (elem * ncur > 4096) 845 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
412 { 846 {
413 ncur *= elem; 847 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 848 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
415 ncur = ncur - sizeof (void *) * 4; 849 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem; 850 ncur /= elem;
417 } 851 }
418 852
419 return ncur; 853 return ncur;
420} 854}
421 855
422inline_speed void * 856static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 857array_realloc (int elem, void *base, int *cur, int cnt)
424{ 858{
425 *cur = array_nextsize (elem, *cur, cnt); 859 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 860 return ev_realloc (base, elem * *cur);
427} 861}
862
863#define array_init_zero(base,count) \
864 memset ((void *)(base), 0, sizeof (*(base)) * (count))
428 865
429#define array_needsize(type,base,cur,cnt,init) \ 866#define array_needsize(type,base,cur,cnt,init) \
430 if (expect_false ((cnt) > (cur))) \ 867 if (expect_false ((cnt) > (cur))) \
431 { \ 868 { \
432 int ocur_ = (cur); \ 869 int ocur_ = (cur); \
444 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 881 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
445 } 882 }
446#endif 883#endif
447 884
448#define array_free(stem, idx) \ 885#define array_free(stem, idx) \
449 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 886 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
450 887
451/*****************************************************************************/ 888/*****************************************************************************/
889
890/* dummy callback for pending events */
891static void noinline
892pendingcb (EV_P_ ev_prepare *w, int revents)
893{
894}
452 895
453void noinline 896void noinline
454ev_feed_event (EV_P_ void *w, int revents) 897ev_feed_event (EV_P_ void *w, int revents)
455{ 898{
456 W w_ = (W)w; 899 W w_ = (W)w;
900 int pri = ABSPRI (w_);
457 901
458 if (expect_false (w_->pending)) 902 if (expect_false (w_->pending))
903 pendings [pri][w_->pending - 1].events |= revents;
904 else
459 { 905 {
906 w_->pending = ++pendingcnt [pri];
907 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
908 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 909 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 910 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 911}
469 912
470void inline_size 913inline_speed void
914feed_reverse (EV_P_ W w)
915{
916 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
917 rfeeds [rfeedcnt++] = w;
918}
919
920inline_size void
921feed_reverse_done (EV_P_ int revents)
922{
923 do
924 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
925 while (rfeedcnt);
926}
927
928inline_speed void
471queue_events (EV_P_ W *events, int eventcnt, int type) 929queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 930{
473 int i; 931 int i;
474 932
475 for (i = 0; i < eventcnt; ++i) 933 for (i = 0; i < eventcnt; ++i)
476 ev_feed_event (EV_A_ events [i], type); 934 ev_feed_event (EV_A_ events [i], type);
477} 935}
478 936
479/*****************************************************************************/ 937/*****************************************************************************/
480 938
481void inline_size 939inline_speed void
482anfds_init (ANFD *base, int count)
483{
484 while (count--)
485 {
486 base->head = 0;
487 base->events = EV_NONE;
488 base->reify = 0;
489
490 ++base;
491 }
492}
493
494void inline_speed
495fd_event (EV_P_ int fd, int revents) 940fd_event_nocheck (EV_P_ int fd, int revents)
496{ 941{
497 ANFD *anfd = anfds + fd; 942 ANFD *anfd = anfds + fd;
498 ev_io *w; 943 ev_io *w;
499 944
500 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 945 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
504 if (ev) 949 if (ev)
505 ev_feed_event (EV_A_ (W)w, ev); 950 ev_feed_event (EV_A_ (W)w, ev);
506 } 951 }
507} 952}
508 953
954/* do not submit kernel events for fds that have reify set */
955/* because that means they changed while we were polling for new events */
956inline_speed void
957fd_event (EV_P_ int fd, int revents)
958{
959 ANFD *anfd = anfds + fd;
960
961 if (expect_true (!anfd->reify))
962 fd_event_nocheck (EV_A_ fd, revents);
963}
964
509void 965void
510ev_feed_fd_event (EV_P_ int fd, int revents) 966ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 967{
968 if (fd >= 0 && fd < anfdmax)
512 fd_event (EV_A_ fd, revents); 969 fd_event_nocheck (EV_A_ fd, revents);
513} 970}
514 971
515void inline_size 972/* make sure the external fd watch events are in-sync */
973/* with the kernel/libev internal state */
974inline_size void
516fd_reify (EV_P) 975fd_reify (EV_P)
517{ 976{
518 int i; 977 int i;
519 978
520 for (i = 0; i < fdchangecnt; ++i) 979 for (i = 0; i < fdchangecnt; ++i)
521 { 980 {
522 int fd = fdchanges [i]; 981 int fd = fdchanges [i];
523 ANFD *anfd = anfds + fd; 982 ANFD *anfd = anfds + fd;
524 ev_io *w; 983 ev_io *w;
525 984
526 int events = 0; 985 unsigned char o_events = anfd->events;
986 unsigned char o_reify = anfd->reify;
527 987
528 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 988 anfd->reify = 0;
529 events |= w->events;
530 989
531#if EV_SELECT_IS_WINSOCKET 990#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
532 if (events) 991 if (o_reify & EV__IOFDSET)
533 { 992 {
534 unsigned long argp; 993 unsigned long arg;
535 anfd->handle = _get_osfhandle (fd); 994 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
536 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 995 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
996 printf ("oi %d %x\n", fd, anfd->handle);//D
537 } 997 }
538#endif 998#endif
539 999
540 anfd->reify = 0; 1000 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1001 {
1002 anfd->events = 0;
541 1003
1004 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1005 anfd->events |= (unsigned char)w->events;
1006
1007 if (o_events != anfd->events)
1008 o_reify = EV__IOFDSET; /* actually |= */
1009 }
1010
1011 if (o_reify & EV__IOFDSET)
542 backend_modify (EV_A_ fd, anfd->events, events); 1012 backend_modify (EV_A_ fd, o_events, anfd->events);
543 anfd->events = events;
544 } 1013 }
545 1014
546 fdchangecnt = 0; 1015 fdchangecnt = 0;
547} 1016}
548 1017
549void inline_size 1018/* something about the given fd changed */
1019inline_size void
550fd_change (EV_P_ int fd) 1020fd_change (EV_P_ int fd, int flags)
551{ 1021{
552 if (expect_false (anfds [fd].reify)) 1022 unsigned char reify = anfds [fd].reify;
553 return;
554
555 anfds [fd].reify = 1; 1023 anfds [fd].reify |= flags;
556 1024
1025 if (expect_true (!reify))
1026 {
557 ++fdchangecnt; 1027 ++fdchangecnt;
558 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1028 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
559 fdchanges [fdchangecnt - 1] = fd; 1029 fdchanges [fdchangecnt - 1] = fd;
1030 }
560} 1031}
561 1032
562void inline_speed 1033/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1034inline_speed void
563fd_kill (EV_P_ int fd) 1035fd_kill (EV_P_ int fd)
564{ 1036{
565 ev_io *w; 1037 ev_io *w;
566 1038
567 while ((w = (ev_io *)anfds [fd].head)) 1039 while ((w = (ev_io *)anfds [fd].head))
569 ev_io_stop (EV_A_ w); 1041 ev_io_stop (EV_A_ w);
570 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1042 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
571 } 1043 }
572} 1044}
573 1045
574int inline_size 1046/* check whether the given fd is actually valid, for error recovery */
1047inline_size int
575fd_valid (int fd) 1048fd_valid (int fd)
576{ 1049{
577#ifdef _WIN32 1050#ifdef _WIN32
578 return _get_osfhandle (fd) != -1; 1051 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
579#else 1052#else
580 return fcntl (fd, F_GETFD) != -1; 1053 return fcntl (fd, F_GETFD) != -1;
581#endif 1054#endif
582} 1055}
583 1056
587{ 1060{
588 int fd; 1061 int fd;
589 1062
590 for (fd = 0; fd < anfdmax; ++fd) 1063 for (fd = 0; fd < anfdmax; ++fd)
591 if (anfds [fd].events) 1064 if (anfds [fd].events)
592 if (!fd_valid (fd) == -1 && errno == EBADF) 1065 if (!fd_valid (fd) && errno == EBADF)
593 fd_kill (EV_A_ fd); 1066 fd_kill (EV_A_ fd);
594} 1067}
595 1068
596/* called on ENOMEM in select/poll to kill some fds and retry */ 1069/* called on ENOMEM in select/poll to kill some fds and retry */
597static void noinline 1070static void noinline
601 1074
602 for (fd = anfdmax; fd--; ) 1075 for (fd = anfdmax; fd--; )
603 if (anfds [fd].events) 1076 if (anfds [fd].events)
604 { 1077 {
605 fd_kill (EV_A_ fd); 1078 fd_kill (EV_A_ fd);
606 return; 1079 break;
607 } 1080 }
608} 1081}
609 1082
610/* usually called after fork if backend needs to re-arm all fds from scratch */ 1083/* usually called after fork if backend needs to re-arm all fds from scratch */
611static void noinline 1084static void noinline
615 1088
616 for (fd = 0; fd < anfdmax; ++fd) 1089 for (fd = 0; fd < anfdmax; ++fd)
617 if (anfds [fd].events) 1090 if (anfds [fd].events)
618 { 1091 {
619 anfds [fd].events = 0; 1092 anfds [fd].events = 0;
620 fd_change (EV_A_ fd); 1093 anfds [fd].emask = 0;
1094 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
621 } 1095 }
622} 1096}
623 1097
624/*****************************************************************************/ 1098/* used to prepare libev internal fd's */
625 1099/* this is not fork-safe */
626void inline_speed 1100inline_speed void
627upheap (WT *heap, int k)
628{
629 WT w = heap [k];
630
631 while (k && heap [k >> 1]->at > w->at)
632 {
633 heap [k] = heap [k >> 1];
634 ((W)heap [k])->active = k + 1;
635 k >>= 1;
636 }
637
638 heap [k] = w;
639 ((W)heap [k])->active = k + 1;
640
641}
642
643void inline_speed
644downheap (WT *heap, int N, int k)
645{
646 WT w = heap [k];
647
648 while (k < (N >> 1))
649 {
650 int j = k << 1;
651
652 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
653 ++j;
654
655 if (w->at <= heap [j]->at)
656 break;
657
658 heap [k] = heap [j];
659 ((W)heap [k])->active = k + 1;
660 k = j;
661 }
662
663 heap [k] = w;
664 ((W)heap [k])->active = k + 1;
665}
666
667void inline_size
668adjustheap (WT *heap, int N, int k)
669{
670 upheap (heap, k);
671 downheap (heap, N, k);
672}
673
674/*****************************************************************************/
675
676typedef struct
677{
678 WL head;
679 sig_atomic_t volatile gotsig;
680} ANSIG;
681
682static ANSIG *signals;
683static int signalmax;
684
685static int sigpipe [2];
686static sig_atomic_t volatile gotsig;
687static ev_io sigev;
688
689void inline_size
690signals_init (ANSIG *base, int count)
691{
692 while (count--)
693 {
694 base->head = 0;
695 base->gotsig = 0;
696
697 ++base;
698 }
699}
700
701static void
702sighandler (int signum)
703{
704#if _WIN32
705 signal (signum, sighandler);
706#endif
707
708 signals [signum - 1].gotsig = 1;
709
710 if (!gotsig)
711 {
712 int old_errno = errno;
713 gotsig = 1;
714 write (sigpipe [1], &signum, 1);
715 errno = old_errno;
716 }
717}
718
719void noinline
720ev_feed_signal_event (EV_P_ int signum)
721{
722 WL w;
723
724#if EV_MULTIPLICITY
725 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
726#endif
727
728 --signum;
729
730 if (signum < 0 || signum >= signalmax)
731 return;
732
733 signals [signum].gotsig = 0;
734
735 for (w = signals [signum].head; w; w = w->next)
736 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
737}
738
739static void
740sigcb (EV_P_ ev_io *iow, int revents)
741{
742 int signum;
743
744 read (sigpipe [0], &revents, 1);
745 gotsig = 0;
746
747 for (signum = signalmax; signum--; )
748 if (signals [signum].gotsig)
749 ev_feed_signal_event (EV_A_ signum + 1);
750}
751
752void inline_size
753fd_intern (int fd) 1101fd_intern (int fd)
754{ 1102{
755#ifdef _WIN32 1103#ifdef _WIN32
756 int arg = 1; 1104 unsigned long arg = 1;
757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1105 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
758#else 1106#else
759 fcntl (fd, F_SETFD, FD_CLOEXEC); 1107 fcntl (fd, F_SETFD, FD_CLOEXEC);
760 fcntl (fd, F_SETFL, O_NONBLOCK); 1108 fcntl (fd, F_SETFL, O_NONBLOCK);
761#endif 1109#endif
762} 1110}
763 1111
1112/*****************************************************************************/
1113
1114/*
1115 * the heap functions want a real array index. array index 0 is guaranteed to not
1116 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1117 * the branching factor of the d-tree.
1118 */
1119
1120/*
1121 * at the moment we allow libev the luxury of two heaps,
1122 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1123 * which is more cache-efficient.
1124 * the difference is about 5% with 50000+ watchers.
1125 */
1126#if EV_USE_4HEAP
1127
1128#define DHEAP 4
1129#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1130#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1131#define UPHEAP_DONE(p,k) ((p) == (k))
1132
1133/* away from the root */
1134inline_speed void
1135downheap (ANHE *heap, int N, int k)
1136{
1137 ANHE he = heap [k];
1138 ANHE *E = heap + N + HEAP0;
1139
1140 for (;;)
1141 {
1142 ev_tstamp minat;
1143 ANHE *minpos;
1144 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1145
1146 /* find minimum child */
1147 if (expect_true (pos + DHEAP - 1 < E))
1148 {
1149 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1150 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1151 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1152 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1153 }
1154 else if (pos < E)
1155 {
1156 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1157 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1158 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1159 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1160 }
1161 else
1162 break;
1163
1164 if (ANHE_at (he) <= minat)
1165 break;
1166
1167 heap [k] = *minpos;
1168 ev_active (ANHE_w (*minpos)) = k;
1169
1170 k = minpos - heap;
1171 }
1172
1173 heap [k] = he;
1174 ev_active (ANHE_w (he)) = k;
1175}
1176
1177#else /* 4HEAP */
1178
1179#define HEAP0 1
1180#define HPARENT(k) ((k) >> 1)
1181#define UPHEAP_DONE(p,k) (!(p))
1182
1183/* away from the root */
1184inline_speed void
1185downheap (ANHE *heap, int N, int k)
1186{
1187 ANHE he = heap [k];
1188
1189 for (;;)
1190 {
1191 int c = k << 1;
1192
1193 if (c >= N + HEAP0)
1194 break;
1195
1196 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1197 ? 1 : 0;
1198
1199 if (ANHE_at (he) <= ANHE_at (heap [c]))
1200 break;
1201
1202 heap [k] = heap [c];
1203 ev_active (ANHE_w (heap [k])) = k;
1204
1205 k = c;
1206 }
1207
1208 heap [k] = he;
1209 ev_active (ANHE_w (he)) = k;
1210}
1211#endif
1212
1213/* towards the root */
1214inline_speed void
1215upheap (ANHE *heap, int k)
1216{
1217 ANHE he = heap [k];
1218
1219 for (;;)
1220 {
1221 int p = HPARENT (k);
1222
1223 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1224 break;
1225
1226 heap [k] = heap [p];
1227 ev_active (ANHE_w (heap [k])) = k;
1228 k = p;
1229 }
1230
1231 heap [k] = he;
1232 ev_active (ANHE_w (he)) = k;
1233}
1234
1235/* move an element suitably so it is in a correct place */
1236inline_size void
1237adjustheap (ANHE *heap, int N, int k)
1238{
1239 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1240 upheap (heap, k);
1241 else
1242 downheap (heap, N, k);
1243}
1244
1245/* rebuild the heap: this function is used only once and executed rarely */
1246inline_size void
1247reheap (ANHE *heap, int N)
1248{
1249 int i;
1250
1251 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1252 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1253 for (i = 0; i < N; ++i)
1254 upheap (heap, i + HEAP0);
1255}
1256
1257/*****************************************************************************/
1258
1259/* associate signal watchers to a signal signal */
1260typedef struct
1261{
1262 EV_ATOMIC_T pending;
1263#if EV_MULTIPLICITY
1264 EV_P;
1265#endif
1266 WL head;
1267} ANSIG;
1268
1269static ANSIG signals [EV_NSIG - 1];
1270
1271/*****************************************************************************/
1272
1273#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1274
764static void noinline 1275static void noinline
765siginit (EV_P) 1276evpipe_init (EV_P)
766{ 1277{
1278 if (!ev_is_active (&pipe_w))
1279 {
1280# if EV_USE_EVENTFD
1281 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1282 if (evfd < 0 && errno == EINVAL)
1283 evfd = eventfd (0, 0);
1284
1285 if (evfd >= 0)
1286 {
1287 evpipe [0] = -1;
1288 fd_intern (evfd); /* doing it twice doesn't hurt */
1289 ev_io_set (&pipe_w, evfd, EV_READ);
1290 }
1291 else
1292# endif
1293 {
1294 while (pipe (evpipe))
1295 ev_syserr ("(libev) error creating signal/async pipe");
1296
767 fd_intern (sigpipe [0]); 1297 fd_intern (evpipe [0]);
768 fd_intern (sigpipe [1]); 1298 fd_intern (evpipe [1]);
1299 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1300 }
769 1301
770 ev_io_set (&sigev, sigpipe [0], EV_READ);
771 ev_io_start (EV_A_ &sigev); 1302 ev_io_start (EV_A_ &pipe_w);
772 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1303 ev_unref (EV_A); /* watcher should not keep loop alive */
1304 }
1305}
1306
1307inline_size void
1308evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1309{
1310 if (!*flag)
1311 {
1312 int old_errno = errno; /* save errno because write might clobber it */
1313 char dummy;
1314
1315 *flag = 1;
1316
1317#if EV_USE_EVENTFD
1318 if (evfd >= 0)
1319 {
1320 uint64_t counter = 1;
1321 write (evfd, &counter, sizeof (uint64_t));
1322 }
1323 else
1324#endif
1325 /* win32 people keep sending patches that change this write() to send() */
1326 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1327 /* so when you think this write should be a send instead, please find out */
1328 /* where your send() is from - it's definitely not the microsoft send, and */
1329 /* tell me. thank you. */
1330 write (evpipe [1], &dummy, 1);
1331
1332 errno = old_errno;
1333 }
1334}
1335
1336/* called whenever the libev signal pipe */
1337/* got some events (signal, async) */
1338static void
1339pipecb (EV_P_ ev_io *iow, int revents)
1340{
1341 int i;
1342
1343#if EV_USE_EVENTFD
1344 if (evfd >= 0)
1345 {
1346 uint64_t counter;
1347 read (evfd, &counter, sizeof (uint64_t));
1348 }
1349 else
1350#endif
1351 {
1352 char dummy;
1353 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1354 read (evpipe [0], &dummy, 1);
1355 }
1356
1357#if EV_SIGNAL_ENABLE
1358 if (sig_pending)
1359 {
1360 sig_pending = 0;
1361
1362 for (i = EV_NSIG - 1; i--; )
1363 if (expect_false (signals [i].pending))
1364 ev_feed_signal_event (EV_A_ i + 1);
1365 }
1366#endif
1367
1368#if EV_ASYNC_ENABLE
1369 if (async_pending)
1370 {
1371 async_pending = 0;
1372
1373 for (i = asynccnt; i--; )
1374 if (asyncs [i]->sent)
1375 {
1376 asyncs [i]->sent = 0;
1377 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1378 }
1379 }
1380#endif
773} 1381}
774 1382
775/*****************************************************************************/ 1383/*****************************************************************************/
776 1384
777static ev_child *childs [EV_PID_HASHSIZE]; 1385void
1386ev_feed_signal (int signum)
1387{
1388#if EV_MULTIPLICITY
1389 EV_P = signals [signum - 1].loop;
778 1390
1391 if (!EV_A)
1392 return;
1393#endif
1394
1395 signals [signum - 1].pending = 1;
1396 evpipe_write (EV_A_ &sig_pending);
1397}
1398
1399static void
1400ev_sighandler (int signum)
1401{
779#ifndef _WIN32 1402#ifdef _WIN32
1403 signal (signum, ev_sighandler);
1404#endif
1405
1406 ev_feed_signal (signum);
1407}
1408
1409void noinline
1410ev_feed_signal_event (EV_P_ int signum)
1411{
1412 WL w;
1413
1414 if (expect_false (signum <= 0 || signum > EV_NSIG))
1415 return;
1416
1417 --signum;
1418
1419#if EV_MULTIPLICITY
1420 /* it is permissible to try to feed a signal to the wrong loop */
1421 /* or, likely more useful, feeding a signal nobody is waiting for */
1422
1423 if (expect_false (signals [signum].loop != EV_A))
1424 return;
1425#endif
1426
1427 signals [signum].pending = 0;
1428
1429 for (w = signals [signum].head; w; w = w->next)
1430 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1431}
1432
1433#if EV_USE_SIGNALFD
1434static void
1435sigfdcb (EV_P_ ev_io *iow, int revents)
1436{
1437 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1438
1439 for (;;)
1440 {
1441 ssize_t res = read (sigfd, si, sizeof (si));
1442
1443 /* not ISO-C, as res might be -1, but works with SuS */
1444 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1445 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1446
1447 if (res < (ssize_t)sizeof (si))
1448 break;
1449 }
1450}
1451#endif
1452
1453#endif
1454
1455/*****************************************************************************/
1456
1457#if EV_CHILD_ENABLE
1458static WL childs [EV_PID_HASHSIZE];
780 1459
781static ev_signal childev; 1460static ev_signal childev;
782 1461
783void inline_speed 1462#ifndef WIFCONTINUED
1463# define WIFCONTINUED(status) 0
1464#endif
1465
1466/* handle a single child status event */
1467inline_speed void
784child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1468child_reap (EV_P_ int chain, int pid, int status)
785{ 1469{
786 ev_child *w; 1470 ev_child *w;
1471 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
787 1472
788 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1473 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1474 {
789 if (w->pid == pid || !w->pid) 1475 if ((w->pid == pid || !w->pid)
1476 && (!traced || (w->flags & 1)))
790 { 1477 {
791 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1478 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
792 w->rpid = pid; 1479 w->rpid = pid;
793 w->rstatus = status; 1480 w->rstatus = status;
794 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1481 ev_feed_event (EV_A_ (W)w, EV_CHILD);
795 } 1482 }
1483 }
796} 1484}
797 1485
798#ifndef WCONTINUED 1486#ifndef WCONTINUED
799# define WCONTINUED 0 1487# define WCONTINUED 0
800#endif 1488#endif
801 1489
1490/* called on sigchld etc., calls waitpid */
802static void 1491static void
803childcb (EV_P_ ev_signal *sw, int revents) 1492childcb (EV_P_ ev_signal *sw, int revents)
804{ 1493{
805 int pid, status; 1494 int pid, status;
806 1495
809 if (!WCONTINUED 1498 if (!WCONTINUED
810 || errno != EINVAL 1499 || errno != EINVAL
811 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1500 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
812 return; 1501 return;
813 1502
814 /* make sure we are called again until all childs have been reaped */ 1503 /* make sure we are called again until all children have been reaped */
815 /* we need to do it this way so that the callback gets called before we continue */ 1504 /* we need to do it this way so that the callback gets called before we continue */
816 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1505 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
817 1506
818 child_reap (EV_A_ sw, pid, pid, status); 1507 child_reap (EV_A_ pid, pid, status);
819 if (EV_PID_HASHSIZE > 1) 1508 if ((EV_PID_HASHSIZE) > 1)
820 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1509 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
821} 1510}
822 1511
823#endif 1512#endif
824 1513
825/*****************************************************************************/ 1514/*****************************************************************************/
826 1515
1516#if EV_USE_IOCP
1517# include "ev_iocp.c"
1518#endif
827#if EV_USE_PORT 1519#if EV_USE_PORT
828# include "ev_port.c" 1520# include "ev_port.c"
829#endif 1521#endif
830#if EV_USE_KQUEUE 1522#if EV_USE_KQUEUE
831# include "ev_kqueue.c" 1523# include "ev_kqueue.c"
887 /* kqueue is borked on everything but netbsd apparently */ 1579 /* kqueue is borked on everything but netbsd apparently */
888 /* it usually doesn't work correctly on anything but sockets and pipes */ 1580 /* it usually doesn't work correctly on anything but sockets and pipes */
889 flags &= ~EVBACKEND_KQUEUE; 1581 flags &= ~EVBACKEND_KQUEUE;
890#endif 1582#endif
891#ifdef __APPLE__ 1583#ifdef __APPLE__
892 // flags &= ~EVBACKEND_KQUEUE; for documentation 1584 /* only select works correctly on that "unix-certified" platform */
893 flags &= ~EVBACKEND_POLL; 1585 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1586 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1587#endif
1588#ifdef __FreeBSD__
1589 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
894#endif 1590#endif
895 1591
896 return flags; 1592 return flags;
897} 1593}
898 1594
899unsigned int 1595unsigned int
900ev_embeddable_backends (void) 1596ev_embeddable_backends (void)
901{ 1597{
902 return EVBACKEND_EPOLL 1598 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
903 | EVBACKEND_KQUEUE 1599
904 | EVBACKEND_PORT; 1600 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1601 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1602 flags &= ~EVBACKEND_EPOLL;
1603
1604 return flags;
905} 1605}
906 1606
907unsigned int 1607unsigned int
908ev_backend (EV_P) 1608ev_backend (EV_P)
909{ 1609{
910 return backend; 1610 return backend;
911} 1611}
912 1612
1613#if EV_FEATURE_API
913unsigned int 1614unsigned int
914ev_loop_count (EV_P) 1615ev_iteration (EV_P)
915{ 1616{
916 return loop_count; 1617 return loop_count;
917} 1618}
918 1619
1620unsigned int
1621ev_depth (EV_P)
1622{
1623 return loop_depth;
1624}
1625
1626void
1627ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1628{
1629 io_blocktime = interval;
1630}
1631
1632void
1633ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1634{
1635 timeout_blocktime = interval;
1636}
1637
1638void
1639ev_set_userdata (EV_P_ void *data)
1640{
1641 userdata = data;
1642}
1643
1644void *
1645ev_userdata (EV_P)
1646{
1647 return userdata;
1648}
1649
1650void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1651{
1652 invoke_cb = invoke_pending_cb;
1653}
1654
1655void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1656{
1657 release_cb = release;
1658 acquire_cb = acquire;
1659}
1660#endif
1661
1662/* initialise a loop structure, must be zero-initialised */
919static void noinline 1663static void noinline
920loop_init (EV_P_ unsigned int flags) 1664loop_init (EV_P_ unsigned int flags)
921{ 1665{
922 if (!backend) 1666 if (!backend)
923 { 1667 {
1668 origflags = flags;
1669
1670#if EV_USE_REALTIME
1671 if (!have_realtime)
1672 {
1673 struct timespec ts;
1674
1675 if (!clock_gettime (CLOCK_REALTIME, &ts))
1676 have_realtime = 1;
1677 }
1678#endif
1679
924#if EV_USE_MONOTONIC 1680#if EV_USE_MONOTONIC
1681 if (!have_monotonic)
925 { 1682 {
926 struct timespec ts; 1683 struct timespec ts;
1684
927 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1685 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
928 have_monotonic = 1; 1686 have_monotonic = 1;
929 } 1687 }
930#endif 1688#endif
931
932 ev_rt_now = ev_time ();
933 mn_now = get_clock ();
934 now_floor = mn_now;
935 rtmn_diff = ev_rt_now - mn_now;
936 1689
937 /* pid check not overridable via env */ 1690 /* pid check not overridable via env */
938#ifndef _WIN32 1691#ifndef _WIN32
939 if (flags & EVFLAG_FORKCHECK) 1692 if (flags & EVFLAG_FORKCHECK)
940 curpid = getpid (); 1693 curpid = getpid ();
943 if (!(flags & EVFLAG_NOENV) 1696 if (!(flags & EVFLAG_NOENV)
944 && !enable_secure () 1697 && !enable_secure ()
945 && getenv ("LIBEV_FLAGS")) 1698 && getenv ("LIBEV_FLAGS"))
946 flags = atoi (getenv ("LIBEV_FLAGS")); 1699 flags = atoi (getenv ("LIBEV_FLAGS"));
947 1700
948 if (!(flags & 0x0000ffffUL)) 1701 ev_rt_now = ev_time ();
1702 mn_now = get_clock ();
1703 now_floor = mn_now;
1704 rtmn_diff = ev_rt_now - mn_now;
1705#if EV_FEATURE_API
1706 invoke_cb = ev_invoke_pending;
1707#endif
1708
1709 io_blocktime = 0.;
1710 timeout_blocktime = 0.;
1711 backend = 0;
1712 backend_fd = -1;
1713 sig_pending = 0;
1714#if EV_ASYNC_ENABLE
1715 async_pending = 0;
1716#endif
1717#if EV_USE_INOTIFY
1718 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1719#endif
1720#if EV_USE_SIGNALFD
1721 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1722#endif
1723
1724 if (!(flags & EVBACKEND_MASK))
949 flags |= ev_recommended_backends (); 1725 flags |= ev_recommended_backends ();
950 1726
951 backend = 0;
952 backend_fd = -1;
953#if EV_USE_INOTIFY 1727#if EV_USE_IOCP
954 fs_fd = -2; 1728 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
955#endif 1729#endif
956
957#if EV_USE_PORT 1730#if EV_USE_PORT
958 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1731 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
959#endif 1732#endif
960#if EV_USE_KQUEUE 1733#if EV_USE_KQUEUE
961 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1734 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
968#endif 1741#endif
969#if EV_USE_SELECT 1742#if EV_USE_SELECT
970 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1743 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
971#endif 1744#endif
972 1745
1746 ev_prepare_init (&pending_w, pendingcb);
1747
1748#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
973 ev_init (&sigev, sigcb); 1749 ev_init (&pipe_w, pipecb);
974 ev_set_priority (&sigev, EV_MAXPRI); 1750 ev_set_priority (&pipe_w, EV_MAXPRI);
1751#endif
975 } 1752 }
976} 1753}
977 1754
978static void noinline 1755/* free up a loop structure */
1756void
979loop_destroy (EV_P) 1757ev_loop_destroy (EV_P)
980{ 1758{
981 int i; 1759 int i;
1760
1761#if EV_MULTIPLICITY
1762 /* mimic free (0) */
1763 if (!EV_A)
1764 return;
1765#endif
1766
1767#if EV_CLEANUP_ENABLE
1768 /* queue cleanup watchers (and execute them) */
1769 if (expect_false (cleanupcnt))
1770 {
1771 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1772 EV_INVOKE_PENDING;
1773 }
1774#endif
1775
1776#if EV_CHILD_ENABLE
1777 if (ev_is_active (&childev))
1778 {
1779 ev_ref (EV_A); /* child watcher */
1780 ev_signal_stop (EV_A_ &childev);
1781 }
1782#endif
1783
1784 if (ev_is_active (&pipe_w))
1785 {
1786 /*ev_ref (EV_A);*/
1787 /*ev_io_stop (EV_A_ &pipe_w);*/
1788
1789#if EV_USE_EVENTFD
1790 if (evfd >= 0)
1791 close (evfd);
1792#endif
1793
1794 if (evpipe [0] >= 0)
1795 {
1796 EV_WIN32_CLOSE_FD (evpipe [0]);
1797 EV_WIN32_CLOSE_FD (evpipe [1]);
1798 }
1799 }
1800
1801#if EV_USE_SIGNALFD
1802 if (ev_is_active (&sigfd_w))
1803 close (sigfd);
1804#endif
982 1805
983#if EV_USE_INOTIFY 1806#if EV_USE_INOTIFY
984 if (fs_fd >= 0) 1807 if (fs_fd >= 0)
985 close (fs_fd); 1808 close (fs_fd);
986#endif 1809#endif
987 1810
988 if (backend_fd >= 0) 1811 if (backend_fd >= 0)
989 close (backend_fd); 1812 close (backend_fd);
990 1813
1814#if EV_USE_IOCP
1815 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1816#endif
991#if EV_USE_PORT 1817#if EV_USE_PORT
992 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1818 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
993#endif 1819#endif
994#if EV_USE_KQUEUE 1820#if EV_USE_KQUEUE
995 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1821 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1010#if EV_IDLE_ENABLE 1836#if EV_IDLE_ENABLE
1011 array_free (idle, [i]); 1837 array_free (idle, [i]);
1012#endif 1838#endif
1013 } 1839 }
1014 1840
1841 ev_free (anfds); anfds = 0; anfdmax = 0;
1842
1015 /* have to use the microsoft-never-gets-it-right macro */ 1843 /* have to use the microsoft-never-gets-it-right macro */
1844 array_free (rfeed, EMPTY);
1016 array_free (fdchange, EMPTY); 1845 array_free (fdchange, EMPTY);
1017 array_free (timer, EMPTY); 1846 array_free (timer, EMPTY);
1018#if EV_PERIODIC_ENABLE 1847#if EV_PERIODIC_ENABLE
1019 array_free (periodic, EMPTY); 1848 array_free (periodic, EMPTY);
1020#endif 1849#endif
1850#if EV_FORK_ENABLE
1851 array_free (fork, EMPTY);
1852#endif
1853#if EV_CLEANUP_ENABLE
1854 array_free (cleanup, EMPTY);
1855#endif
1021 array_free (prepare, EMPTY); 1856 array_free (prepare, EMPTY);
1022 array_free (check, EMPTY); 1857 array_free (check, EMPTY);
1858#if EV_ASYNC_ENABLE
1859 array_free (async, EMPTY);
1860#endif
1023 1861
1024 backend = 0; 1862 backend = 0;
1025}
1026 1863
1864#if EV_MULTIPLICITY
1865 if (ev_is_default_loop (EV_A))
1866#endif
1867 ev_default_loop_ptr = 0;
1868#if EV_MULTIPLICITY
1869 else
1870 ev_free (EV_A);
1871#endif
1872}
1873
1874#if EV_USE_INOTIFY
1027void inline_size infy_fork (EV_P); 1875inline_size void infy_fork (EV_P);
1876#endif
1028 1877
1029void inline_size 1878inline_size void
1030loop_fork (EV_P) 1879loop_fork (EV_P)
1031{ 1880{
1032#if EV_USE_PORT 1881#if EV_USE_PORT
1033 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1882 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1034#endif 1883#endif
1040#endif 1889#endif
1041#if EV_USE_INOTIFY 1890#if EV_USE_INOTIFY
1042 infy_fork (EV_A); 1891 infy_fork (EV_A);
1043#endif 1892#endif
1044 1893
1045 if (ev_is_active (&sigev)) 1894 if (ev_is_active (&pipe_w))
1046 { 1895 {
1047 /* default loop */ 1896 /* this "locks" the handlers against writing to the pipe */
1897 /* while we modify the fd vars */
1898 sig_pending = 1;
1899#if EV_ASYNC_ENABLE
1900 async_pending = 1;
1901#endif
1048 1902
1049 ev_ref (EV_A); 1903 ev_ref (EV_A);
1050 ev_io_stop (EV_A_ &sigev); 1904 ev_io_stop (EV_A_ &pipe_w);
1051 close (sigpipe [0]);
1052 close (sigpipe [1]);
1053 1905
1054 while (pipe (sigpipe)) 1906#if EV_USE_EVENTFD
1055 syserr ("(libev) error creating pipe"); 1907 if (evfd >= 0)
1908 close (evfd);
1909#endif
1056 1910
1911 if (evpipe [0] >= 0)
1912 {
1913 EV_WIN32_CLOSE_FD (evpipe [0]);
1914 EV_WIN32_CLOSE_FD (evpipe [1]);
1915 }
1916
1917#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1057 siginit (EV_A); 1918 evpipe_init (EV_A);
1919 /* now iterate over everything, in case we missed something */
1920 pipecb (EV_A_ &pipe_w, EV_READ);
1921#endif
1058 } 1922 }
1059 1923
1060 postfork = 0; 1924 postfork = 0;
1061} 1925}
1926
1927#if EV_MULTIPLICITY
1928
1929struct ev_loop *
1930ev_loop_new (unsigned int flags)
1931{
1932 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1933
1934 memset (EV_A, 0, sizeof (struct ev_loop));
1935 loop_init (EV_A_ flags);
1936
1937 if (ev_backend (EV_A))
1938 return EV_A;
1939
1940 ev_free (EV_A);
1941 return 0;
1942}
1943
1944#endif /* multiplicity */
1945
1946#if EV_VERIFY
1947static void noinline
1948verify_watcher (EV_P_ W w)
1949{
1950 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1951
1952 if (w->pending)
1953 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1954}
1955
1956static void noinline
1957verify_heap (EV_P_ ANHE *heap, int N)
1958{
1959 int i;
1960
1961 for (i = HEAP0; i < N + HEAP0; ++i)
1962 {
1963 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1964 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1965 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1966
1967 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1968 }
1969}
1970
1971static void noinline
1972array_verify (EV_P_ W *ws, int cnt)
1973{
1974 while (cnt--)
1975 {
1976 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1977 verify_watcher (EV_A_ ws [cnt]);
1978 }
1979}
1980#endif
1981
1982#if EV_FEATURE_API
1983void
1984ev_verify (EV_P)
1985{
1986#if EV_VERIFY
1987 int i;
1988 WL w;
1989
1990 assert (activecnt >= -1);
1991
1992 assert (fdchangemax >= fdchangecnt);
1993 for (i = 0; i < fdchangecnt; ++i)
1994 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1995
1996 assert (anfdmax >= 0);
1997 for (i = 0; i < anfdmax; ++i)
1998 for (w = anfds [i].head; w; w = w->next)
1999 {
2000 verify_watcher (EV_A_ (W)w);
2001 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2002 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2003 }
2004
2005 assert (timermax >= timercnt);
2006 verify_heap (EV_A_ timers, timercnt);
2007
2008#if EV_PERIODIC_ENABLE
2009 assert (periodicmax >= periodiccnt);
2010 verify_heap (EV_A_ periodics, periodiccnt);
2011#endif
2012
2013 for (i = NUMPRI; i--; )
2014 {
2015 assert (pendingmax [i] >= pendingcnt [i]);
2016#if EV_IDLE_ENABLE
2017 assert (idleall >= 0);
2018 assert (idlemax [i] >= idlecnt [i]);
2019 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2020#endif
2021 }
2022
2023#if EV_FORK_ENABLE
2024 assert (forkmax >= forkcnt);
2025 array_verify (EV_A_ (W *)forks, forkcnt);
2026#endif
2027
2028#if EV_CLEANUP_ENABLE
2029 assert (cleanupmax >= cleanupcnt);
2030 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2031#endif
2032
2033#if EV_ASYNC_ENABLE
2034 assert (asyncmax >= asynccnt);
2035 array_verify (EV_A_ (W *)asyncs, asynccnt);
2036#endif
2037
2038#if EV_PREPARE_ENABLE
2039 assert (preparemax >= preparecnt);
2040 array_verify (EV_A_ (W *)prepares, preparecnt);
2041#endif
2042
2043#if EV_CHECK_ENABLE
2044 assert (checkmax >= checkcnt);
2045 array_verify (EV_A_ (W *)checks, checkcnt);
2046#endif
2047
2048# if 0
2049#if EV_CHILD_ENABLE
2050 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2051 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2052#endif
2053# endif
2054#endif
2055}
2056#endif
1062 2057
1063#if EV_MULTIPLICITY 2058#if EV_MULTIPLICITY
1064struct ev_loop * 2059struct ev_loop *
1065ev_loop_new (unsigned int flags)
1066{
1067 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1068
1069 memset (loop, 0, sizeof (struct ev_loop));
1070
1071 loop_init (EV_A_ flags);
1072
1073 if (ev_backend (EV_A))
1074 return loop;
1075
1076 return 0;
1077}
1078
1079void
1080ev_loop_destroy (EV_P)
1081{
1082 loop_destroy (EV_A);
1083 ev_free (loop);
1084}
1085
1086void
1087ev_loop_fork (EV_P)
1088{
1089 postfork = 1;
1090}
1091
1092#endif
1093
1094#if EV_MULTIPLICITY
1095struct ev_loop *
1096ev_default_loop_init (unsigned int flags)
1097#else 2060#else
1098int 2061int
2062#endif
1099ev_default_loop (unsigned int flags) 2063ev_default_loop (unsigned int flags)
1100#endif
1101{ 2064{
1102 if (sigpipe [0] == sigpipe [1])
1103 if (pipe (sigpipe))
1104 return 0;
1105
1106 if (!ev_default_loop_ptr) 2065 if (!ev_default_loop_ptr)
1107 { 2066 {
1108#if EV_MULTIPLICITY 2067#if EV_MULTIPLICITY
1109 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2068 EV_P = ev_default_loop_ptr = &default_loop_struct;
1110#else 2069#else
1111 ev_default_loop_ptr = 1; 2070 ev_default_loop_ptr = 1;
1112#endif 2071#endif
1113 2072
1114 loop_init (EV_A_ flags); 2073 loop_init (EV_A_ flags);
1115 2074
1116 if (ev_backend (EV_A)) 2075 if (ev_backend (EV_A))
1117 { 2076 {
1118 siginit (EV_A); 2077#if EV_CHILD_ENABLE
1119
1120#ifndef _WIN32
1121 ev_signal_init (&childev, childcb, SIGCHLD); 2078 ev_signal_init (&childev, childcb, SIGCHLD);
1122 ev_set_priority (&childev, EV_MAXPRI); 2079 ev_set_priority (&childev, EV_MAXPRI);
1123 ev_signal_start (EV_A_ &childev); 2080 ev_signal_start (EV_A_ &childev);
1124 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2081 ev_unref (EV_A); /* child watcher should not keep loop alive */
1125#endif 2082#endif
1130 2087
1131 return ev_default_loop_ptr; 2088 return ev_default_loop_ptr;
1132} 2089}
1133 2090
1134void 2091void
1135ev_default_destroy (void) 2092ev_loop_fork (EV_P)
1136{ 2093{
1137#if EV_MULTIPLICITY 2094 postfork = 1; /* must be in line with ev_default_fork */
1138 struct ev_loop *loop = ev_default_loop_ptr;
1139#endif
1140
1141#ifndef _WIN32
1142 ev_ref (EV_A); /* child watcher */
1143 ev_signal_stop (EV_A_ &childev);
1144#endif
1145
1146 ev_ref (EV_A); /* signal watcher */
1147 ev_io_stop (EV_A_ &sigev);
1148
1149 close (sigpipe [0]); sigpipe [0] = 0;
1150 close (sigpipe [1]); sigpipe [1] = 0;
1151
1152 loop_destroy (EV_A);
1153}
1154
1155void
1156ev_default_fork (void)
1157{
1158#if EV_MULTIPLICITY
1159 struct ev_loop *loop = ev_default_loop_ptr;
1160#endif
1161
1162 if (backend)
1163 postfork = 1;
1164} 2095}
1165 2096
1166/*****************************************************************************/ 2097/*****************************************************************************/
1167 2098
1168void inline_speed 2099void
1169call_pending (EV_P) 2100ev_invoke (EV_P_ void *w, int revents)
2101{
2102 EV_CB_INVOKE ((W)w, revents);
2103}
2104
2105unsigned int
2106ev_pending_count (EV_P)
2107{
2108 int pri;
2109 unsigned int count = 0;
2110
2111 for (pri = NUMPRI; pri--; )
2112 count += pendingcnt [pri];
2113
2114 return count;
2115}
2116
2117void noinline
2118ev_invoke_pending (EV_P)
1170{ 2119{
1171 int pri; 2120 int pri;
1172 2121
1173 for (pri = NUMPRI; pri--; ) 2122 for (pri = NUMPRI; pri--; )
1174 while (pendingcnt [pri]) 2123 while (pendingcnt [pri])
1175 { 2124 {
1176 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2125 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1177 2126
1178 if (expect_true (p->w))
1179 {
1180 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1181
1182 p->w->pending = 0; 2127 p->w->pending = 0;
1183 EV_CB_INVOKE (p->w, p->events); 2128 EV_CB_INVOKE (p->w, p->events);
1184 } 2129 EV_FREQUENT_CHECK;
1185 } 2130 }
1186} 2131}
1187 2132
1188void inline_size
1189timers_reify (EV_P)
1190{
1191 while (timercnt && ((WT)timers [0])->at <= mn_now)
1192 {
1193 ev_timer *w = timers [0];
1194
1195 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1196
1197 /* first reschedule or stop timer */
1198 if (w->repeat)
1199 {
1200 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1201
1202 ((WT)w)->at += w->repeat;
1203 if (((WT)w)->at < mn_now)
1204 ((WT)w)->at = mn_now;
1205
1206 downheap ((WT *)timers, timercnt, 0);
1207 }
1208 else
1209 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1210
1211 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1212 }
1213}
1214
1215#if EV_PERIODIC_ENABLE
1216void inline_size
1217periodics_reify (EV_P)
1218{
1219 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1220 {
1221 ev_periodic *w = periodics [0];
1222
1223 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1224
1225 /* first reschedule or stop timer */
1226 if (w->reschedule_cb)
1227 {
1228 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1229 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1230 downheap ((WT *)periodics, periodiccnt, 0);
1231 }
1232 else if (w->interval)
1233 {
1234 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1235 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1236 downheap ((WT *)periodics, periodiccnt, 0);
1237 }
1238 else
1239 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1240
1241 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1242 }
1243}
1244
1245static void noinline
1246periodics_reschedule (EV_P)
1247{
1248 int i;
1249
1250 /* adjust periodics after time jump */
1251 for (i = 0; i < periodiccnt; ++i)
1252 {
1253 ev_periodic *w = periodics [i];
1254
1255 if (w->reschedule_cb)
1256 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1257 else if (w->interval)
1258 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1259 }
1260
1261 /* now rebuild the heap */
1262 for (i = periodiccnt >> 1; i--; )
1263 downheap ((WT *)periodics, periodiccnt, i);
1264}
1265#endif
1266
1267#if EV_IDLE_ENABLE 2133#if EV_IDLE_ENABLE
1268void inline_size 2134/* make idle watchers pending. this handles the "call-idle */
2135/* only when higher priorities are idle" logic */
2136inline_size void
1269idle_reify (EV_P) 2137idle_reify (EV_P)
1270{ 2138{
1271 if (expect_false (!idleall)) 2139 if (expect_false (idleall))
1272 { 2140 {
1273 int pri; 2141 int pri;
1274 2142
1275 for (pri = NUMPRI; pri--; ) 2143 for (pri = NUMPRI; pri--; )
1276 { 2144 {
1285 } 2153 }
1286 } 2154 }
1287} 2155}
1288#endif 2156#endif
1289 2157
1290int inline_size 2158/* make timers pending */
1291time_update_monotonic (EV_P) 2159inline_size void
2160timers_reify (EV_P)
1292{ 2161{
2162 EV_FREQUENT_CHECK;
2163
2164 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2165 {
2166 do
2167 {
2168 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2169
2170 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2171
2172 /* first reschedule or stop timer */
2173 if (w->repeat)
2174 {
2175 ev_at (w) += w->repeat;
2176 if (ev_at (w) < mn_now)
2177 ev_at (w) = mn_now;
2178
2179 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2180
2181 ANHE_at_cache (timers [HEAP0]);
2182 downheap (timers, timercnt, HEAP0);
2183 }
2184 else
2185 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2186
2187 EV_FREQUENT_CHECK;
2188 feed_reverse (EV_A_ (W)w);
2189 }
2190 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2191
2192 feed_reverse_done (EV_A_ EV_TIMER);
2193 }
2194}
2195
2196#if EV_PERIODIC_ENABLE
2197
2198inline_speed
2199periodic_recalc (EV_P_ ev_periodic *w)
2200{
2201 /* TODO: use slow but potentially more correct incremental algo, */
2202 /* also do not rely on ceil */
2203 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2204}
2205
2206/* make periodics pending */
2207inline_size void
2208periodics_reify (EV_P)
2209{
2210 EV_FREQUENT_CHECK;
2211
2212 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2213 {
2214 int feed_count = 0;
2215
2216 do
2217 {
2218 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2219
2220 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2221
2222 /* first reschedule or stop timer */
2223 if (w->reschedule_cb)
2224 {
2225 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2226
2227 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2228
2229 ANHE_at_cache (periodics [HEAP0]);
2230 downheap (periodics, periodiccnt, HEAP0);
2231 }
2232 else if (w->interval)
2233 {
2234 periodic_recalc (EV_A_ w);
2235
2236 /* if next trigger time is not sufficiently in the future, put it there */
2237 /* this might happen because of floating point inexactness */
2238 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2239 {
2240 ev_at (w) += w->interval;
2241
2242 /* if interval is unreasonably low we might still have a time in the past */
2243 /* so correct this. this will make the periodic very inexact, but the user */
2244 /* has effectively asked to get triggered more often than possible */
2245 if (ev_at (w) < ev_rt_now)
2246 ev_at (w) = ev_rt_now;
2247 }
2248
2249 ANHE_at_cache (periodics [HEAP0]);
2250 downheap (periodics, periodiccnt, HEAP0);
2251 }
2252 else
2253 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2254
2255 EV_FREQUENT_CHECK;
2256 feed_reverse (EV_A_ (W)w);
2257 }
2258 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2259
2260 feed_reverse_done (EV_A_ EV_PERIODIC);
2261 }
2262}
2263
2264/* simply recalculate all periodics */
2265/* TODO: maybe ensure that at least one event happens when jumping forward? */
2266static void noinline
2267periodics_reschedule (EV_P)
2268{
2269 int i;
2270
2271 /* adjust periodics after time jump */
2272 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2273 {
2274 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2275
2276 if (w->reschedule_cb)
2277 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2278 else if (w->interval)
2279 periodic_recalc (EV_A_ w);
2280
2281 ANHE_at_cache (periodics [i]);
2282 }
2283
2284 reheap (periodics, periodiccnt);
2285}
2286#endif
2287
2288/* adjust all timers by a given offset */
2289static void noinline
2290timers_reschedule (EV_P_ ev_tstamp adjust)
2291{
2292 int i;
2293
2294 for (i = 0; i < timercnt; ++i)
2295 {
2296 ANHE *he = timers + i + HEAP0;
2297 ANHE_w (*he)->at += adjust;
2298 ANHE_at_cache (*he);
2299 }
2300}
2301
2302/* fetch new monotonic and realtime times from the kernel */
2303/* also detect if there was a timejump, and act accordingly */
2304inline_speed void
2305time_update (EV_P_ ev_tstamp max_block)
2306{
2307#if EV_USE_MONOTONIC
2308 if (expect_true (have_monotonic))
2309 {
2310 int i;
2311 ev_tstamp odiff = rtmn_diff;
2312
1293 mn_now = get_clock (); 2313 mn_now = get_clock ();
1294 2314
2315 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2316 /* interpolate in the meantime */
1295 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2317 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1296 { 2318 {
1297 ev_rt_now = rtmn_diff + mn_now; 2319 ev_rt_now = rtmn_diff + mn_now;
1298 return 0; 2320 return;
1299 } 2321 }
1300 else 2322
1301 {
1302 now_floor = mn_now; 2323 now_floor = mn_now;
1303 ev_rt_now = ev_time (); 2324 ev_rt_now = ev_time ();
1304 return 1;
1305 }
1306}
1307 2325
1308void inline_size 2326 /* loop a few times, before making important decisions.
1309time_update (EV_P) 2327 * on the choice of "4": one iteration isn't enough,
1310{ 2328 * in case we get preempted during the calls to
1311 int i; 2329 * ev_time and get_clock. a second call is almost guaranteed
1312 2330 * to succeed in that case, though. and looping a few more times
1313#if EV_USE_MONOTONIC 2331 * doesn't hurt either as we only do this on time-jumps or
1314 if (expect_true (have_monotonic)) 2332 * in the unlikely event of having been preempted here.
1315 { 2333 */
1316 if (time_update_monotonic (EV_A)) 2334 for (i = 4; --i; )
1317 { 2335 {
1318 ev_tstamp odiff = rtmn_diff;
1319
1320 /* loop a few times, before making important decisions.
1321 * on the choice of "4": one iteration isn't enough,
1322 * in case we get preempted during the calls to
1323 * ev_time and get_clock. a second call is almost guaranteed
1324 * to succeed in that case, though. and looping a few more times
1325 * doesn't hurt either as we only do this on time-jumps or
1326 * in the unlikely event of having been preempted here.
1327 */
1328 for (i = 4; --i; )
1329 {
1330 rtmn_diff = ev_rt_now - mn_now; 2336 rtmn_diff = ev_rt_now - mn_now;
1331 2337
1332 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2338 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1333 return; /* all is well */ 2339 return; /* all is well */
1334 2340
1335 ev_rt_now = ev_time (); 2341 ev_rt_now = ev_time ();
1336 mn_now = get_clock (); 2342 mn_now = get_clock ();
1337 now_floor = mn_now; 2343 now_floor = mn_now;
1338 } 2344 }
1339 2345
2346 /* no timer adjustment, as the monotonic clock doesn't jump */
2347 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1340# if EV_PERIODIC_ENABLE 2348# if EV_PERIODIC_ENABLE
1341 periodics_reschedule (EV_A); 2349 periodics_reschedule (EV_A);
1342# endif 2350# endif
1343 /* no timer adjustment, as the monotonic clock doesn't jump */
1344 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1345 }
1346 } 2351 }
1347 else 2352 else
1348#endif 2353#endif
1349 { 2354 {
1350 ev_rt_now = ev_time (); 2355 ev_rt_now = ev_time ();
1351 2356
1352 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2357 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1353 { 2358 {
2359 /* adjust timers. this is easy, as the offset is the same for all of them */
2360 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1354#if EV_PERIODIC_ENABLE 2361#if EV_PERIODIC_ENABLE
1355 periodics_reschedule (EV_A); 2362 periodics_reschedule (EV_A);
1356#endif 2363#endif
1357
1358 /* adjust timers. this is easy, as the offset is the same for all of them */
1359 for (i = 0; i < timercnt; ++i)
1360 ((WT)timers [i])->at += ev_rt_now - mn_now;
1361 } 2364 }
1362 2365
1363 mn_now = ev_rt_now; 2366 mn_now = ev_rt_now;
1364 } 2367 }
1365} 2368}
1366 2369
1367void 2370void
1368ev_ref (EV_P)
1369{
1370 ++activecnt;
1371}
1372
1373void
1374ev_unref (EV_P)
1375{
1376 --activecnt;
1377}
1378
1379static int loop_done;
1380
1381void
1382ev_loop (EV_P_ int flags) 2371ev_run (EV_P_ int flags)
1383{ 2372{
1384 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2373#if EV_FEATURE_API
1385 ? EVUNLOOP_ONE 2374 ++loop_depth;
1386 : EVUNLOOP_CANCEL; 2375#endif
1387 2376
2377 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2378
2379 loop_done = EVBREAK_CANCEL;
2380
1388 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2381 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1389 2382
1390 do 2383 do
1391 { 2384 {
2385#if EV_VERIFY >= 2
2386 ev_verify (EV_A);
2387#endif
2388
1392#ifndef _WIN32 2389#ifndef _WIN32
1393 if (expect_false (curpid)) /* penalise the forking check even more */ 2390 if (expect_false (curpid)) /* penalise the forking check even more */
1394 if (expect_false (getpid () != curpid)) 2391 if (expect_false (getpid () != curpid))
1395 { 2392 {
1396 curpid = getpid (); 2393 curpid = getpid ();
1402 /* we might have forked, so queue fork handlers */ 2399 /* we might have forked, so queue fork handlers */
1403 if (expect_false (postfork)) 2400 if (expect_false (postfork))
1404 if (forkcnt) 2401 if (forkcnt)
1405 { 2402 {
1406 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2403 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1407 call_pending (EV_A); 2404 EV_INVOKE_PENDING;
1408 } 2405 }
1409#endif 2406#endif
1410 2407
2408#if EV_PREPARE_ENABLE
1411 /* queue check watchers (and execute them) */ 2409 /* queue prepare watchers (and execute them) */
1412 if (expect_false (preparecnt)) 2410 if (expect_false (preparecnt))
1413 { 2411 {
1414 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2412 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1415 call_pending (EV_A); 2413 EV_INVOKE_PENDING;
1416 } 2414 }
2415#endif
1417 2416
1418 if (expect_false (!activecnt)) 2417 if (expect_false (loop_done))
1419 break; 2418 break;
1420 2419
1421 /* we might have forked, so reify kernel state if necessary */ 2420 /* we might have forked, so reify kernel state if necessary */
1422 if (expect_false (postfork)) 2421 if (expect_false (postfork))
1423 loop_fork (EV_A); 2422 loop_fork (EV_A);
1425 /* update fd-related kernel structures */ 2424 /* update fd-related kernel structures */
1426 fd_reify (EV_A); 2425 fd_reify (EV_A);
1427 2426
1428 /* calculate blocking time */ 2427 /* calculate blocking time */
1429 { 2428 {
1430 ev_tstamp block; 2429 ev_tstamp waittime = 0.;
2430 ev_tstamp sleeptime = 0.;
1431 2431
2432 /* remember old timestamp for io_blocktime calculation */
2433 ev_tstamp prev_mn_now = mn_now;
2434
2435 /* update time to cancel out callback processing overhead */
2436 time_update (EV_A_ 1e100);
2437
1432 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2438 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1433 block = 0.; /* do not block at all */
1434 else
1435 { 2439 {
1436 /* update time to cancel out callback processing overhead */
1437#if EV_USE_MONOTONIC
1438 if (expect_true (have_monotonic))
1439 time_update_monotonic (EV_A);
1440 else
1441#endif
1442 {
1443 ev_rt_now = ev_time ();
1444 mn_now = ev_rt_now;
1445 }
1446
1447 block = MAX_BLOCKTIME; 2440 waittime = MAX_BLOCKTIME;
1448 2441
1449 if (timercnt) 2442 if (timercnt)
1450 { 2443 {
1451 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2444 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1452 if (block > to) block = to; 2445 if (waittime > to) waittime = to;
1453 } 2446 }
1454 2447
1455#if EV_PERIODIC_ENABLE 2448#if EV_PERIODIC_ENABLE
1456 if (periodiccnt) 2449 if (periodiccnt)
1457 { 2450 {
1458 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2451 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1459 if (block > to) block = to; 2452 if (waittime > to) waittime = to;
1460 } 2453 }
1461#endif 2454#endif
1462 2455
2456 /* don't let timeouts decrease the waittime below timeout_blocktime */
2457 if (expect_false (waittime < timeout_blocktime))
2458 waittime = timeout_blocktime;
2459
2460 /* extra check because io_blocktime is commonly 0 */
1463 if (expect_false (block < 0.)) block = 0.; 2461 if (expect_false (io_blocktime))
2462 {
2463 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2464
2465 if (sleeptime > waittime - backend_fudge)
2466 sleeptime = waittime - backend_fudge;
2467
2468 if (expect_true (sleeptime > 0.))
2469 {
2470 ev_sleep (sleeptime);
2471 waittime -= sleeptime;
2472 }
2473 }
1464 } 2474 }
1465 2475
2476#if EV_FEATURE_API
1466 ++loop_count; 2477 ++loop_count;
2478#endif
2479 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1467 backend_poll (EV_A_ block); 2480 backend_poll (EV_A_ waittime);
2481 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2482
2483 /* update ev_rt_now, do magic */
2484 time_update (EV_A_ waittime + sleeptime);
1468 } 2485 }
1469
1470 /* update ev_rt_now, do magic */
1471 time_update (EV_A);
1472 2486
1473 /* queue pending timers and reschedule them */ 2487 /* queue pending timers and reschedule them */
1474 timers_reify (EV_A); /* relative timers called last */ 2488 timers_reify (EV_A); /* relative timers called last */
1475#if EV_PERIODIC_ENABLE 2489#if EV_PERIODIC_ENABLE
1476 periodics_reify (EV_A); /* absolute timers called first */ 2490 periodics_reify (EV_A); /* absolute timers called first */
1479#if EV_IDLE_ENABLE 2493#if EV_IDLE_ENABLE
1480 /* queue idle watchers unless other events are pending */ 2494 /* queue idle watchers unless other events are pending */
1481 idle_reify (EV_A); 2495 idle_reify (EV_A);
1482#endif 2496#endif
1483 2497
2498#if EV_CHECK_ENABLE
1484 /* queue check watchers, to be executed first */ 2499 /* queue check watchers, to be executed first */
1485 if (expect_false (checkcnt)) 2500 if (expect_false (checkcnt))
1486 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2501 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2502#endif
1487 2503
1488 call_pending (EV_A); 2504 EV_INVOKE_PENDING;
1489
1490 } 2505 }
1491 while (expect_true (activecnt && !loop_done)); 2506 while (expect_true (
2507 activecnt
2508 && !loop_done
2509 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2510 ));
1492 2511
1493 if (loop_done == EVUNLOOP_ONE) 2512 if (loop_done == EVBREAK_ONE)
1494 loop_done = EVUNLOOP_CANCEL; 2513 loop_done = EVBREAK_CANCEL;
1495}
1496 2514
2515#if EV_FEATURE_API
2516 --loop_depth;
2517#endif
2518}
2519
1497void 2520void
1498ev_unloop (EV_P_ int how) 2521ev_break (EV_P_ int how)
1499{ 2522{
1500 loop_done = how; 2523 loop_done = how;
1501} 2524}
1502 2525
2526void
2527ev_ref (EV_P)
2528{
2529 ++activecnt;
2530}
2531
2532void
2533ev_unref (EV_P)
2534{
2535 --activecnt;
2536}
2537
2538void
2539ev_now_update (EV_P)
2540{
2541 time_update (EV_A_ 1e100);
2542}
2543
2544void
2545ev_suspend (EV_P)
2546{
2547 ev_now_update (EV_A);
2548}
2549
2550void
2551ev_resume (EV_P)
2552{
2553 ev_tstamp mn_prev = mn_now;
2554
2555 ev_now_update (EV_A);
2556 timers_reschedule (EV_A_ mn_now - mn_prev);
2557#if EV_PERIODIC_ENABLE
2558 /* TODO: really do this? */
2559 periodics_reschedule (EV_A);
2560#endif
2561}
2562
1503/*****************************************************************************/ 2563/*****************************************************************************/
2564/* singly-linked list management, used when the expected list length is short */
1504 2565
1505void inline_size 2566inline_size void
1506wlist_add (WL *head, WL elem) 2567wlist_add (WL *head, WL elem)
1507{ 2568{
1508 elem->next = *head; 2569 elem->next = *head;
1509 *head = elem; 2570 *head = elem;
1510} 2571}
1511 2572
1512void inline_size 2573inline_size void
1513wlist_del (WL *head, WL elem) 2574wlist_del (WL *head, WL elem)
1514{ 2575{
1515 while (*head) 2576 while (*head)
1516 { 2577 {
1517 if (*head == elem) 2578 if (expect_true (*head == elem))
1518 { 2579 {
1519 *head = elem->next; 2580 *head = elem->next;
1520 return; 2581 break;
1521 } 2582 }
1522 2583
1523 head = &(*head)->next; 2584 head = &(*head)->next;
1524 } 2585 }
1525} 2586}
1526 2587
1527void inline_speed 2588/* internal, faster, version of ev_clear_pending */
2589inline_speed void
1528ev_clear_pending (EV_P_ W w) 2590clear_pending (EV_P_ W w)
1529{ 2591{
1530 if (w->pending) 2592 if (w->pending)
1531 { 2593 {
1532 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2594 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1533 w->pending = 0; 2595 w->pending = 0;
1534 } 2596 }
1535} 2597}
1536 2598
1537void inline_size 2599int
2600ev_clear_pending (EV_P_ void *w)
2601{
2602 W w_ = (W)w;
2603 int pending = w_->pending;
2604
2605 if (expect_true (pending))
2606 {
2607 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2608 p->w = (W)&pending_w;
2609 w_->pending = 0;
2610 return p->events;
2611 }
2612 else
2613 return 0;
2614}
2615
2616inline_size void
1538pri_adjust (EV_P_ W w) 2617pri_adjust (EV_P_ W w)
1539{ 2618{
1540 int pri = w->priority; 2619 int pri = ev_priority (w);
1541 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2620 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1542 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2621 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1543 w->priority = pri; 2622 ev_set_priority (w, pri);
1544} 2623}
1545 2624
1546void inline_speed 2625inline_speed void
1547ev_start (EV_P_ W w, int active) 2626ev_start (EV_P_ W w, int active)
1548{ 2627{
1549 pri_adjust (EV_A_ w); 2628 pri_adjust (EV_A_ w);
1550 w->active = active; 2629 w->active = active;
1551 ev_ref (EV_A); 2630 ev_ref (EV_A);
1552} 2631}
1553 2632
1554void inline_size 2633inline_size void
1555ev_stop (EV_P_ W w) 2634ev_stop (EV_P_ W w)
1556{ 2635{
1557 ev_unref (EV_A); 2636 ev_unref (EV_A);
1558 w->active = 0; 2637 w->active = 0;
1559} 2638}
1560 2639
1561/*****************************************************************************/ 2640/*****************************************************************************/
1562 2641
1563void 2642void noinline
1564ev_io_start (EV_P_ ev_io *w) 2643ev_io_start (EV_P_ ev_io *w)
1565{ 2644{
1566 int fd = w->fd; 2645 int fd = w->fd;
1567 2646
1568 if (expect_false (ev_is_active (w))) 2647 if (expect_false (ev_is_active (w)))
1569 return; 2648 return;
1570 2649
1571 assert (("ev_io_start called with negative fd", fd >= 0)); 2650 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2651 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2652
2653 EV_FREQUENT_CHECK;
1572 2654
1573 ev_start (EV_A_ (W)w, 1); 2655 ev_start (EV_A_ (W)w, 1);
1574 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2656 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1575 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2657 wlist_add (&anfds[fd].head, (WL)w);
1576 2658
1577 fd_change (EV_A_ fd); 2659 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1578} 2660 w->events &= ~EV__IOFDSET;
1579 2661
1580void 2662 EV_FREQUENT_CHECK;
2663}
2664
2665void noinline
1581ev_io_stop (EV_P_ ev_io *w) 2666ev_io_stop (EV_P_ ev_io *w)
1582{ 2667{
1583 ev_clear_pending (EV_A_ (W)w); 2668 clear_pending (EV_A_ (W)w);
1584 if (expect_false (!ev_is_active (w))) 2669 if (expect_false (!ev_is_active (w)))
1585 return; 2670 return;
1586 2671
1587 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2672 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1588 2673
2674 EV_FREQUENT_CHECK;
2675
1589 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2676 wlist_del (&anfds[w->fd].head, (WL)w);
1590 ev_stop (EV_A_ (W)w); 2677 ev_stop (EV_A_ (W)w);
1591 2678
1592 fd_change (EV_A_ w->fd); 2679 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1593}
1594 2680
1595void 2681 EV_FREQUENT_CHECK;
2682}
2683
2684void noinline
1596ev_timer_start (EV_P_ ev_timer *w) 2685ev_timer_start (EV_P_ ev_timer *w)
1597{ 2686{
1598 if (expect_false (ev_is_active (w))) 2687 if (expect_false (ev_is_active (w)))
1599 return; 2688 return;
1600 2689
1601 ((WT)w)->at += mn_now; 2690 ev_at (w) += mn_now;
1602 2691
1603 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2692 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1604 2693
2694 EV_FREQUENT_CHECK;
2695
2696 ++timercnt;
1605 ev_start (EV_A_ (W)w, ++timercnt); 2697 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1606 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2698 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1607 timers [timercnt - 1] = w; 2699 ANHE_w (timers [ev_active (w)]) = (WT)w;
1608 upheap ((WT *)timers, timercnt - 1); 2700 ANHE_at_cache (timers [ev_active (w)]);
2701 upheap (timers, ev_active (w));
1609 2702
2703 EV_FREQUENT_CHECK;
2704
1610 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2705 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1611} 2706}
1612 2707
1613void 2708void noinline
1614ev_timer_stop (EV_P_ ev_timer *w) 2709ev_timer_stop (EV_P_ ev_timer *w)
1615{ 2710{
1616 ev_clear_pending (EV_A_ (W)w); 2711 clear_pending (EV_A_ (W)w);
1617 if (expect_false (!ev_is_active (w))) 2712 if (expect_false (!ev_is_active (w)))
1618 return; 2713 return;
1619 2714
1620 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2715 EV_FREQUENT_CHECK;
1621 2716
1622 { 2717 {
1623 int active = ((W)w)->active; 2718 int active = ev_active (w);
1624 2719
2720 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2721
2722 --timercnt;
2723
1625 if (expect_true (--active < --timercnt)) 2724 if (expect_true (active < timercnt + HEAP0))
1626 { 2725 {
1627 timers [active] = timers [timercnt]; 2726 timers [active] = timers [timercnt + HEAP0];
1628 adjustheap ((WT *)timers, timercnt, active); 2727 adjustheap (timers, timercnt, active);
1629 } 2728 }
1630 } 2729 }
1631 2730
1632 ((WT)w)->at -= mn_now; 2731 ev_at (w) -= mn_now;
1633 2732
1634 ev_stop (EV_A_ (W)w); 2733 ev_stop (EV_A_ (W)w);
1635}
1636 2734
1637void 2735 EV_FREQUENT_CHECK;
2736}
2737
2738void noinline
1638ev_timer_again (EV_P_ ev_timer *w) 2739ev_timer_again (EV_P_ ev_timer *w)
1639{ 2740{
2741 EV_FREQUENT_CHECK;
2742
1640 if (ev_is_active (w)) 2743 if (ev_is_active (w))
1641 { 2744 {
1642 if (w->repeat) 2745 if (w->repeat)
1643 { 2746 {
1644 ((WT)w)->at = mn_now + w->repeat; 2747 ev_at (w) = mn_now + w->repeat;
2748 ANHE_at_cache (timers [ev_active (w)]);
1645 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2749 adjustheap (timers, timercnt, ev_active (w));
1646 } 2750 }
1647 else 2751 else
1648 ev_timer_stop (EV_A_ w); 2752 ev_timer_stop (EV_A_ w);
1649 } 2753 }
1650 else if (w->repeat) 2754 else if (w->repeat)
1651 { 2755 {
1652 w->at = w->repeat; 2756 ev_at (w) = w->repeat;
1653 ev_timer_start (EV_A_ w); 2757 ev_timer_start (EV_A_ w);
1654 } 2758 }
2759
2760 EV_FREQUENT_CHECK;
2761}
2762
2763ev_tstamp
2764ev_timer_remaining (EV_P_ ev_timer *w)
2765{
2766 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1655} 2767}
1656 2768
1657#if EV_PERIODIC_ENABLE 2769#if EV_PERIODIC_ENABLE
1658void 2770void noinline
1659ev_periodic_start (EV_P_ ev_periodic *w) 2771ev_periodic_start (EV_P_ ev_periodic *w)
1660{ 2772{
1661 if (expect_false (ev_is_active (w))) 2773 if (expect_false (ev_is_active (w)))
1662 return; 2774 return;
1663 2775
1664 if (w->reschedule_cb) 2776 if (w->reschedule_cb)
1665 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2777 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1666 else if (w->interval) 2778 else if (w->interval)
1667 { 2779 {
1668 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2780 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1669 /* this formula differs from the one in periodic_reify because we do not always round up */ 2781 periodic_recalc (EV_A_ w);
1670 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1671 } 2782 }
2783 else
2784 ev_at (w) = w->offset;
1672 2785
2786 EV_FREQUENT_CHECK;
2787
2788 ++periodiccnt;
1673 ev_start (EV_A_ (W)w, ++periodiccnt); 2789 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1674 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2790 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1675 periodics [periodiccnt - 1] = w; 2791 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1676 upheap ((WT *)periodics, periodiccnt - 1); 2792 ANHE_at_cache (periodics [ev_active (w)]);
2793 upheap (periodics, ev_active (w));
1677 2794
2795 EV_FREQUENT_CHECK;
2796
1678 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2797 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1679} 2798}
1680 2799
1681void 2800void noinline
1682ev_periodic_stop (EV_P_ ev_periodic *w) 2801ev_periodic_stop (EV_P_ ev_periodic *w)
1683{ 2802{
1684 ev_clear_pending (EV_A_ (W)w); 2803 clear_pending (EV_A_ (W)w);
1685 if (expect_false (!ev_is_active (w))) 2804 if (expect_false (!ev_is_active (w)))
1686 return; 2805 return;
1687 2806
1688 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2807 EV_FREQUENT_CHECK;
1689 2808
1690 { 2809 {
1691 int active = ((W)w)->active; 2810 int active = ev_active (w);
1692 2811
2812 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2813
2814 --periodiccnt;
2815
1693 if (expect_true (--active < --periodiccnt)) 2816 if (expect_true (active < periodiccnt + HEAP0))
1694 { 2817 {
1695 periodics [active] = periodics [periodiccnt]; 2818 periodics [active] = periodics [periodiccnt + HEAP0];
1696 adjustheap ((WT *)periodics, periodiccnt, active); 2819 adjustheap (periodics, periodiccnt, active);
1697 } 2820 }
1698 } 2821 }
1699 2822
1700 ev_stop (EV_A_ (W)w); 2823 ev_stop (EV_A_ (W)w);
1701}
1702 2824
1703void 2825 EV_FREQUENT_CHECK;
2826}
2827
2828void noinline
1704ev_periodic_again (EV_P_ ev_periodic *w) 2829ev_periodic_again (EV_P_ ev_periodic *w)
1705{ 2830{
1706 /* TODO: use adjustheap and recalculation */ 2831 /* TODO: use adjustheap and recalculation */
1707 ev_periodic_stop (EV_A_ w); 2832 ev_periodic_stop (EV_A_ w);
1708 ev_periodic_start (EV_A_ w); 2833 ev_periodic_start (EV_A_ w);
1711 2836
1712#ifndef SA_RESTART 2837#ifndef SA_RESTART
1713# define SA_RESTART 0 2838# define SA_RESTART 0
1714#endif 2839#endif
1715 2840
1716void 2841#if EV_SIGNAL_ENABLE
2842
2843void noinline
1717ev_signal_start (EV_P_ ev_signal *w) 2844ev_signal_start (EV_P_ ev_signal *w)
1718{ 2845{
1719#if EV_MULTIPLICITY
1720 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1721#endif
1722 if (expect_false (ev_is_active (w))) 2846 if (expect_false (ev_is_active (w)))
1723 return; 2847 return;
1724 2848
1725 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2849 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2850
2851#if EV_MULTIPLICITY
2852 assert (("libev: a signal must not be attached to two different loops",
2853 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2854
2855 signals [w->signum - 1].loop = EV_A;
2856#endif
2857
2858 EV_FREQUENT_CHECK;
2859
2860#if EV_USE_SIGNALFD
2861 if (sigfd == -2)
2862 {
2863 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2864 if (sigfd < 0 && errno == EINVAL)
2865 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2866
2867 if (sigfd >= 0)
2868 {
2869 fd_intern (sigfd); /* doing it twice will not hurt */
2870
2871 sigemptyset (&sigfd_set);
2872
2873 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2874 ev_set_priority (&sigfd_w, EV_MAXPRI);
2875 ev_io_start (EV_A_ &sigfd_w);
2876 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2877 }
2878 }
2879
2880 if (sigfd >= 0)
2881 {
2882 /* TODO: check .head */
2883 sigaddset (&sigfd_set, w->signum);
2884 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2885
2886 signalfd (sigfd, &sigfd_set, 0);
2887 }
2888#endif
1726 2889
1727 ev_start (EV_A_ (W)w, 1); 2890 ev_start (EV_A_ (W)w, 1);
1728 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1729 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2891 wlist_add (&signals [w->signum - 1].head, (WL)w);
1730 2892
1731 if (!((WL)w)->next) 2893 if (!((WL)w)->next)
2894# if EV_USE_SIGNALFD
2895 if (sigfd < 0) /*TODO*/
2896# endif
1732 { 2897 {
1733#if _WIN32 2898# ifdef _WIN32
2899 evpipe_init (EV_A);
2900
1734 signal (w->signum, sighandler); 2901 signal (w->signum, ev_sighandler);
1735#else 2902# else
1736 struct sigaction sa; 2903 struct sigaction sa;
2904
2905 evpipe_init (EV_A);
2906
1737 sa.sa_handler = sighandler; 2907 sa.sa_handler = ev_sighandler;
1738 sigfillset (&sa.sa_mask); 2908 sigfillset (&sa.sa_mask);
1739 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2909 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1740 sigaction (w->signum, &sa, 0); 2910 sigaction (w->signum, &sa, 0);
2911
2912 if (origflags & EVFLAG_NOSIGMASK)
2913 {
2914 sigemptyset (&sa.sa_mask);
2915 sigaddset (&sa.sa_mask, w->signum);
2916 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2917 }
1741#endif 2918#endif
1742 } 2919 }
1743}
1744 2920
1745void 2921 EV_FREQUENT_CHECK;
2922}
2923
2924void noinline
1746ev_signal_stop (EV_P_ ev_signal *w) 2925ev_signal_stop (EV_P_ ev_signal *w)
1747{ 2926{
1748 ev_clear_pending (EV_A_ (W)w); 2927 clear_pending (EV_A_ (W)w);
1749 if (expect_false (!ev_is_active (w))) 2928 if (expect_false (!ev_is_active (w)))
1750 return; 2929 return;
1751 2930
2931 EV_FREQUENT_CHECK;
2932
1752 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2933 wlist_del (&signals [w->signum - 1].head, (WL)w);
1753 ev_stop (EV_A_ (W)w); 2934 ev_stop (EV_A_ (W)w);
1754 2935
1755 if (!signals [w->signum - 1].head) 2936 if (!signals [w->signum - 1].head)
2937 {
2938#if EV_MULTIPLICITY
2939 signals [w->signum - 1].loop = 0; /* unattach from signal */
2940#endif
2941#if EV_USE_SIGNALFD
2942 if (sigfd >= 0)
2943 {
2944 sigset_t ss;
2945
2946 sigemptyset (&ss);
2947 sigaddset (&ss, w->signum);
2948 sigdelset (&sigfd_set, w->signum);
2949
2950 signalfd (sigfd, &sigfd_set, 0);
2951 sigprocmask (SIG_UNBLOCK, &ss, 0);
2952 }
2953 else
2954#endif
1756 signal (w->signum, SIG_DFL); 2955 signal (w->signum, SIG_DFL);
2956 }
2957
2958 EV_FREQUENT_CHECK;
1757} 2959}
2960
2961#endif
2962
2963#if EV_CHILD_ENABLE
1758 2964
1759void 2965void
1760ev_child_start (EV_P_ ev_child *w) 2966ev_child_start (EV_P_ ev_child *w)
1761{ 2967{
1762#if EV_MULTIPLICITY 2968#if EV_MULTIPLICITY
1763 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2969 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1764#endif 2970#endif
1765 if (expect_false (ev_is_active (w))) 2971 if (expect_false (ev_is_active (w)))
1766 return; 2972 return;
1767 2973
2974 EV_FREQUENT_CHECK;
2975
1768 ev_start (EV_A_ (W)w, 1); 2976 ev_start (EV_A_ (W)w, 1);
1769 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2977 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2978
2979 EV_FREQUENT_CHECK;
1770} 2980}
1771 2981
1772void 2982void
1773ev_child_stop (EV_P_ ev_child *w) 2983ev_child_stop (EV_P_ ev_child *w)
1774{ 2984{
1775 ev_clear_pending (EV_A_ (W)w); 2985 clear_pending (EV_A_ (W)w);
1776 if (expect_false (!ev_is_active (w))) 2986 if (expect_false (!ev_is_active (w)))
1777 return; 2987 return;
1778 2988
2989 EV_FREQUENT_CHECK;
2990
1779 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2991 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1780 ev_stop (EV_A_ (W)w); 2992 ev_stop (EV_A_ (W)w);
2993
2994 EV_FREQUENT_CHECK;
1781} 2995}
2996
2997#endif
1782 2998
1783#if EV_STAT_ENABLE 2999#if EV_STAT_ENABLE
1784 3000
1785# ifdef _WIN32 3001# ifdef _WIN32
1786# undef lstat 3002# undef lstat
1787# define lstat(a,b) _stati64 (a,b) 3003# define lstat(a,b) _stati64 (a,b)
1788# endif 3004# endif
1789 3005
1790#define DEF_STAT_INTERVAL 5.0074891 3006#define DEF_STAT_INTERVAL 5.0074891
3007#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1791#define MIN_STAT_INTERVAL 0.1074891 3008#define MIN_STAT_INTERVAL 0.1074891
1792 3009
1793static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3010static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1794 3011
1795#if EV_USE_INOTIFY 3012#if EV_USE_INOTIFY
1796# define EV_INOTIFY_BUFSIZE 8192 3013
3014/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3015# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1797 3016
1798static void noinline 3017static void noinline
1799infy_add (EV_P_ ev_stat *w) 3018infy_add (EV_P_ ev_stat *w)
1800{ 3019{
1801 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3020 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1802 3021
1803 if (w->wd < 0) 3022 if (w->wd >= 0)
3023 {
3024 struct statfs sfs;
3025
3026 /* now local changes will be tracked by inotify, but remote changes won't */
3027 /* unless the filesystem is known to be local, we therefore still poll */
3028 /* also do poll on <2.6.25, but with normal frequency */
3029
3030 if (!fs_2625)
3031 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3032 else if (!statfs (w->path, &sfs)
3033 && (sfs.f_type == 0x1373 /* devfs */
3034 || sfs.f_type == 0xEF53 /* ext2/3 */
3035 || sfs.f_type == 0x3153464a /* jfs */
3036 || sfs.f_type == 0x52654973 /* reiser3 */
3037 || sfs.f_type == 0x01021994 /* tempfs */
3038 || sfs.f_type == 0x58465342 /* xfs */))
3039 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3040 else
3041 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1804 { 3042 }
1805 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3043 else
3044 {
3045 /* can't use inotify, continue to stat */
3046 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1806 3047
1807 /* monitor some parent directory for speedup hints */ 3048 /* if path is not there, monitor some parent directory for speedup hints */
3049 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3050 /* but an efficiency issue only */
1808 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3051 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1809 { 3052 {
1810 char path [4096]; 3053 char path [4096];
1811 strcpy (path, w->path); 3054 strcpy (path, w->path);
1812 3055
1815 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3058 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1816 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3059 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1817 3060
1818 char *pend = strrchr (path, '/'); 3061 char *pend = strrchr (path, '/');
1819 3062
1820 if (!pend) 3063 if (!pend || pend == path)
1821 break; /* whoops, no '/', complain to your admin */ 3064 break;
1822 3065
1823 *pend = 0; 3066 *pend = 0;
1824 w->wd = inotify_add_watch (fs_fd, path, mask); 3067 w->wd = inotify_add_watch (fs_fd, path, mask);
1825 } 3068 }
1826 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3069 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1827 } 3070 }
1828 } 3071 }
1829 else
1830 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1831 3072
1832 if (w->wd >= 0) 3073 if (w->wd >= 0)
1833 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3074 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3075
3076 /* now re-arm timer, if required */
3077 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3078 ev_timer_again (EV_A_ &w->timer);
3079 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1834} 3080}
1835 3081
1836static void noinline 3082static void noinline
1837infy_del (EV_P_ ev_stat *w) 3083infy_del (EV_P_ ev_stat *w)
1838{ 3084{
1841 3087
1842 if (wd < 0) 3088 if (wd < 0)
1843 return; 3089 return;
1844 3090
1845 w->wd = -2; 3091 w->wd = -2;
1846 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3092 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1847 wlist_del (&fs_hash [slot].head, (WL)w); 3093 wlist_del (&fs_hash [slot].head, (WL)w);
1848 3094
1849 /* remove this watcher, if others are watching it, they will rearm */ 3095 /* remove this watcher, if others are watching it, they will rearm */
1850 inotify_rm_watch (fs_fd, wd); 3096 inotify_rm_watch (fs_fd, wd);
1851} 3097}
1852 3098
1853static void noinline 3099static void noinline
1854infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3100infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1855{ 3101{
1856 if (slot < 0) 3102 if (slot < 0)
1857 /* overflow, need to check for all hahs slots */ 3103 /* overflow, need to check for all hash slots */
1858 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3104 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1859 infy_wd (EV_A_ slot, wd, ev); 3105 infy_wd (EV_A_ slot, wd, ev);
1860 else 3106 else
1861 { 3107 {
1862 WL w_; 3108 WL w_;
1863 3109
1864 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3110 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1865 { 3111 {
1866 ev_stat *w = (ev_stat *)w_; 3112 ev_stat *w = (ev_stat *)w_;
1867 w_ = w_->next; /* lets us remove this watcher and all before it */ 3113 w_ = w_->next; /* lets us remove this watcher and all before it */
1868 3114
1869 if (w->wd == wd || wd == -1) 3115 if (w->wd == wd || wd == -1)
1870 { 3116 {
1871 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3117 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1872 { 3118 {
3119 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1873 w->wd = -1; 3120 w->wd = -1;
1874 infy_add (EV_A_ w); /* re-add, no matter what */ 3121 infy_add (EV_A_ w); /* re-add, no matter what */
1875 } 3122 }
1876 3123
1877 stat_timer_cb (EV_A_ &w->timer, 0); 3124 stat_timer_cb (EV_A_ &w->timer, 0);
1882 3129
1883static void 3130static void
1884infy_cb (EV_P_ ev_io *w, int revents) 3131infy_cb (EV_P_ ev_io *w, int revents)
1885{ 3132{
1886 char buf [EV_INOTIFY_BUFSIZE]; 3133 char buf [EV_INOTIFY_BUFSIZE];
1887 struct inotify_event *ev = (struct inotify_event *)buf;
1888 int ofs; 3134 int ofs;
1889 int len = read (fs_fd, buf, sizeof (buf)); 3135 int len = read (fs_fd, buf, sizeof (buf));
1890 3136
1891 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3137 for (ofs = 0; ofs < len; )
3138 {
3139 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1892 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3140 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3141 ofs += sizeof (struct inotify_event) + ev->len;
3142 }
1893} 3143}
1894 3144
1895void inline_size 3145inline_size void
3146ev_check_2625 (EV_P)
3147{
3148 /* kernels < 2.6.25 are borked
3149 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3150 */
3151 if (ev_linux_version () < 0x020619)
3152 return;
3153
3154 fs_2625 = 1;
3155}
3156
3157inline_size int
3158infy_newfd (void)
3159{
3160#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3161 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3162 if (fd >= 0)
3163 return fd;
3164#endif
3165 return inotify_init ();
3166}
3167
3168inline_size void
1896infy_init (EV_P) 3169infy_init (EV_P)
1897{ 3170{
1898 if (fs_fd != -2) 3171 if (fs_fd != -2)
1899 return; 3172 return;
1900 3173
3174 fs_fd = -1;
3175
3176 ev_check_2625 (EV_A);
3177
1901 fs_fd = inotify_init (); 3178 fs_fd = infy_newfd ();
1902 3179
1903 if (fs_fd >= 0) 3180 if (fs_fd >= 0)
1904 { 3181 {
3182 fd_intern (fs_fd);
1905 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3183 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1906 ev_set_priority (&fs_w, EV_MAXPRI); 3184 ev_set_priority (&fs_w, EV_MAXPRI);
1907 ev_io_start (EV_A_ &fs_w); 3185 ev_io_start (EV_A_ &fs_w);
3186 ev_unref (EV_A);
1908 } 3187 }
1909} 3188}
1910 3189
1911void inline_size 3190inline_size void
1912infy_fork (EV_P) 3191infy_fork (EV_P)
1913{ 3192{
1914 int slot; 3193 int slot;
1915 3194
1916 if (fs_fd < 0) 3195 if (fs_fd < 0)
1917 return; 3196 return;
1918 3197
3198 ev_ref (EV_A);
3199 ev_io_stop (EV_A_ &fs_w);
1919 close (fs_fd); 3200 close (fs_fd);
1920 fs_fd = inotify_init (); 3201 fs_fd = infy_newfd ();
1921 3202
3203 if (fs_fd >= 0)
3204 {
3205 fd_intern (fs_fd);
3206 ev_io_set (&fs_w, fs_fd, EV_READ);
3207 ev_io_start (EV_A_ &fs_w);
3208 ev_unref (EV_A);
3209 }
3210
1922 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3211 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1923 { 3212 {
1924 WL w_ = fs_hash [slot].head; 3213 WL w_ = fs_hash [slot].head;
1925 fs_hash [slot].head = 0; 3214 fs_hash [slot].head = 0;
1926 3215
1927 while (w_) 3216 while (w_)
1932 w->wd = -1; 3221 w->wd = -1;
1933 3222
1934 if (fs_fd >= 0) 3223 if (fs_fd >= 0)
1935 infy_add (EV_A_ w); /* re-add, no matter what */ 3224 infy_add (EV_A_ w); /* re-add, no matter what */
1936 else 3225 else
3226 {
3227 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3228 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1937 ev_timer_start (EV_A_ &w->timer); 3229 ev_timer_again (EV_A_ &w->timer);
3230 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3231 }
1938 } 3232 }
1939
1940 } 3233 }
1941} 3234}
1942 3235
3236#endif
3237
3238#ifdef _WIN32
3239# define EV_LSTAT(p,b) _stati64 (p, b)
3240#else
3241# define EV_LSTAT(p,b) lstat (p, b)
1943#endif 3242#endif
1944 3243
1945void 3244void
1946ev_stat_stat (EV_P_ ev_stat *w) 3245ev_stat_stat (EV_P_ ev_stat *w)
1947{ 3246{
1954static void noinline 3253static void noinline
1955stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3254stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1956{ 3255{
1957 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3256 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1958 3257
1959 /* we copy this here each the time so that */ 3258 ev_statdata prev = w->attr;
1960 /* prev has the old value when the callback gets invoked */
1961 w->prev = w->attr;
1962 ev_stat_stat (EV_A_ w); 3259 ev_stat_stat (EV_A_ w);
1963 3260
1964 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3261 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1965 if ( 3262 if (
1966 w->prev.st_dev != w->attr.st_dev 3263 prev.st_dev != w->attr.st_dev
1967 || w->prev.st_ino != w->attr.st_ino 3264 || prev.st_ino != w->attr.st_ino
1968 || w->prev.st_mode != w->attr.st_mode 3265 || prev.st_mode != w->attr.st_mode
1969 || w->prev.st_nlink != w->attr.st_nlink 3266 || prev.st_nlink != w->attr.st_nlink
1970 || w->prev.st_uid != w->attr.st_uid 3267 || prev.st_uid != w->attr.st_uid
1971 || w->prev.st_gid != w->attr.st_gid 3268 || prev.st_gid != w->attr.st_gid
1972 || w->prev.st_rdev != w->attr.st_rdev 3269 || prev.st_rdev != w->attr.st_rdev
1973 || w->prev.st_size != w->attr.st_size 3270 || prev.st_size != w->attr.st_size
1974 || w->prev.st_atime != w->attr.st_atime 3271 || prev.st_atime != w->attr.st_atime
1975 || w->prev.st_mtime != w->attr.st_mtime 3272 || prev.st_mtime != w->attr.st_mtime
1976 || w->prev.st_ctime != w->attr.st_ctime 3273 || prev.st_ctime != w->attr.st_ctime
1977 ) { 3274 ) {
3275 /* we only update w->prev on actual differences */
3276 /* in case we test more often than invoke the callback, */
3277 /* to ensure that prev is always different to attr */
3278 w->prev = prev;
3279
1978 #if EV_USE_INOTIFY 3280 #if EV_USE_INOTIFY
3281 if (fs_fd >= 0)
3282 {
1979 infy_del (EV_A_ w); 3283 infy_del (EV_A_ w);
1980 infy_add (EV_A_ w); 3284 infy_add (EV_A_ w);
1981 ev_stat_stat (EV_A_ w); /* avoid race... */ 3285 ev_stat_stat (EV_A_ w); /* avoid race... */
3286 }
1982 #endif 3287 #endif
1983 3288
1984 ev_feed_event (EV_A_ w, EV_STAT); 3289 ev_feed_event (EV_A_ w, EV_STAT);
1985 } 3290 }
1986} 3291}
1989ev_stat_start (EV_P_ ev_stat *w) 3294ev_stat_start (EV_P_ ev_stat *w)
1990{ 3295{
1991 if (expect_false (ev_is_active (w))) 3296 if (expect_false (ev_is_active (w)))
1992 return; 3297 return;
1993 3298
1994 /* since we use memcmp, we need to clear any padding data etc. */
1995 memset (&w->prev, 0, sizeof (ev_statdata));
1996 memset (&w->attr, 0, sizeof (ev_statdata));
1997
1998 ev_stat_stat (EV_A_ w); 3299 ev_stat_stat (EV_A_ w);
1999 3300
3301 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2000 if (w->interval < MIN_STAT_INTERVAL) 3302 w->interval = MIN_STAT_INTERVAL;
2001 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2002 3303
2003 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3304 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2004 ev_set_priority (&w->timer, ev_priority (w)); 3305 ev_set_priority (&w->timer, ev_priority (w));
2005 3306
2006#if EV_USE_INOTIFY 3307#if EV_USE_INOTIFY
2007 infy_init (EV_A); 3308 infy_init (EV_A);
2008 3309
2009 if (fs_fd >= 0) 3310 if (fs_fd >= 0)
2010 infy_add (EV_A_ w); 3311 infy_add (EV_A_ w);
2011 else 3312 else
2012#endif 3313#endif
3314 {
2013 ev_timer_start (EV_A_ &w->timer); 3315 ev_timer_again (EV_A_ &w->timer);
3316 ev_unref (EV_A);
3317 }
2014 3318
2015 ev_start (EV_A_ (W)w, 1); 3319 ev_start (EV_A_ (W)w, 1);
3320
3321 EV_FREQUENT_CHECK;
2016} 3322}
2017 3323
2018void 3324void
2019ev_stat_stop (EV_P_ ev_stat *w) 3325ev_stat_stop (EV_P_ ev_stat *w)
2020{ 3326{
2021 ev_clear_pending (EV_A_ (W)w); 3327 clear_pending (EV_A_ (W)w);
2022 if (expect_false (!ev_is_active (w))) 3328 if (expect_false (!ev_is_active (w)))
2023 return; 3329 return;
2024 3330
3331 EV_FREQUENT_CHECK;
3332
2025#if EV_USE_INOTIFY 3333#if EV_USE_INOTIFY
2026 infy_del (EV_A_ w); 3334 infy_del (EV_A_ w);
2027#endif 3335#endif
3336
3337 if (ev_is_active (&w->timer))
3338 {
3339 ev_ref (EV_A);
2028 ev_timer_stop (EV_A_ &w->timer); 3340 ev_timer_stop (EV_A_ &w->timer);
3341 }
2029 3342
2030 ev_stop (EV_A_ (W)w); 3343 ev_stop (EV_A_ (W)w);
3344
3345 EV_FREQUENT_CHECK;
2031} 3346}
2032#endif 3347#endif
2033 3348
2034#if EV_IDLE_ENABLE 3349#if EV_IDLE_ENABLE
2035void 3350void
2037{ 3352{
2038 if (expect_false (ev_is_active (w))) 3353 if (expect_false (ev_is_active (w)))
2039 return; 3354 return;
2040 3355
2041 pri_adjust (EV_A_ (W)w); 3356 pri_adjust (EV_A_ (W)w);
3357
3358 EV_FREQUENT_CHECK;
2042 3359
2043 { 3360 {
2044 int active = ++idlecnt [ABSPRI (w)]; 3361 int active = ++idlecnt [ABSPRI (w)];
2045 3362
2046 ++idleall; 3363 ++idleall;
2047 ev_start (EV_A_ (W)w, active); 3364 ev_start (EV_A_ (W)w, active);
2048 3365
2049 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3366 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2050 idles [ABSPRI (w)][active - 1] = w; 3367 idles [ABSPRI (w)][active - 1] = w;
2051 } 3368 }
3369
3370 EV_FREQUENT_CHECK;
2052} 3371}
2053 3372
2054void 3373void
2055ev_idle_stop (EV_P_ ev_idle *w) 3374ev_idle_stop (EV_P_ ev_idle *w)
2056{ 3375{
2057 ev_clear_pending (EV_A_ (W)w); 3376 clear_pending (EV_A_ (W)w);
2058 if (expect_false (!ev_is_active (w))) 3377 if (expect_false (!ev_is_active (w)))
2059 return; 3378 return;
2060 3379
3380 EV_FREQUENT_CHECK;
3381
2061 { 3382 {
2062 int active = ((W)w)->active; 3383 int active = ev_active (w);
2063 3384
2064 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3385 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2065 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3386 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2066 3387
2067 ev_stop (EV_A_ (W)w); 3388 ev_stop (EV_A_ (W)w);
2068 --idleall; 3389 --idleall;
2069 } 3390 }
2070}
2071#endif
2072 3391
3392 EV_FREQUENT_CHECK;
3393}
3394#endif
3395
3396#if EV_PREPARE_ENABLE
2073void 3397void
2074ev_prepare_start (EV_P_ ev_prepare *w) 3398ev_prepare_start (EV_P_ ev_prepare *w)
2075{ 3399{
2076 if (expect_false (ev_is_active (w))) 3400 if (expect_false (ev_is_active (w)))
2077 return; 3401 return;
3402
3403 EV_FREQUENT_CHECK;
2078 3404
2079 ev_start (EV_A_ (W)w, ++preparecnt); 3405 ev_start (EV_A_ (W)w, ++preparecnt);
2080 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3406 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2081 prepares [preparecnt - 1] = w; 3407 prepares [preparecnt - 1] = w;
3408
3409 EV_FREQUENT_CHECK;
2082} 3410}
2083 3411
2084void 3412void
2085ev_prepare_stop (EV_P_ ev_prepare *w) 3413ev_prepare_stop (EV_P_ ev_prepare *w)
2086{ 3414{
2087 ev_clear_pending (EV_A_ (W)w); 3415 clear_pending (EV_A_ (W)w);
2088 if (expect_false (!ev_is_active (w))) 3416 if (expect_false (!ev_is_active (w)))
2089 return; 3417 return;
2090 3418
3419 EV_FREQUENT_CHECK;
3420
2091 { 3421 {
2092 int active = ((W)w)->active; 3422 int active = ev_active (w);
3423
2093 prepares [active - 1] = prepares [--preparecnt]; 3424 prepares [active - 1] = prepares [--preparecnt];
2094 ((W)prepares [active - 1])->active = active; 3425 ev_active (prepares [active - 1]) = active;
2095 } 3426 }
2096 3427
2097 ev_stop (EV_A_ (W)w); 3428 ev_stop (EV_A_ (W)w);
2098}
2099 3429
3430 EV_FREQUENT_CHECK;
3431}
3432#endif
3433
3434#if EV_CHECK_ENABLE
2100void 3435void
2101ev_check_start (EV_P_ ev_check *w) 3436ev_check_start (EV_P_ ev_check *w)
2102{ 3437{
2103 if (expect_false (ev_is_active (w))) 3438 if (expect_false (ev_is_active (w)))
2104 return; 3439 return;
3440
3441 EV_FREQUENT_CHECK;
2105 3442
2106 ev_start (EV_A_ (W)w, ++checkcnt); 3443 ev_start (EV_A_ (W)w, ++checkcnt);
2107 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3444 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2108 checks [checkcnt - 1] = w; 3445 checks [checkcnt - 1] = w;
3446
3447 EV_FREQUENT_CHECK;
2109} 3448}
2110 3449
2111void 3450void
2112ev_check_stop (EV_P_ ev_check *w) 3451ev_check_stop (EV_P_ ev_check *w)
2113{ 3452{
2114 ev_clear_pending (EV_A_ (W)w); 3453 clear_pending (EV_A_ (W)w);
2115 if (expect_false (!ev_is_active (w))) 3454 if (expect_false (!ev_is_active (w)))
2116 return; 3455 return;
2117 3456
3457 EV_FREQUENT_CHECK;
3458
2118 { 3459 {
2119 int active = ((W)w)->active; 3460 int active = ev_active (w);
3461
2120 checks [active - 1] = checks [--checkcnt]; 3462 checks [active - 1] = checks [--checkcnt];
2121 ((W)checks [active - 1])->active = active; 3463 ev_active (checks [active - 1]) = active;
2122 } 3464 }
2123 3465
2124 ev_stop (EV_A_ (W)w); 3466 ev_stop (EV_A_ (W)w);
3467
3468 EV_FREQUENT_CHECK;
2125} 3469}
3470#endif
2126 3471
2127#if EV_EMBED_ENABLE 3472#if EV_EMBED_ENABLE
2128void noinline 3473void noinline
2129ev_embed_sweep (EV_P_ ev_embed *w) 3474ev_embed_sweep (EV_P_ ev_embed *w)
2130{ 3475{
2131 ev_loop (w->loop, EVLOOP_NONBLOCK); 3476 ev_run (w->other, EVRUN_NOWAIT);
2132} 3477}
2133 3478
2134static void 3479static void
2135embed_cb (EV_P_ ev_io *io, int revents) 3480embed_io_cb (EV_P_ ev_io *io, int revents)
2136{ 3481{
2137 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3482 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2138 3483
2139 if (ev_cb (w)) 3484 if (ev_cb (w))
2140 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3485 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2141 else 3486 else
2142 ev_embed_sweep (loop, w); 3487 ev_run (w->other, EVRUN_NOWAIT);
2143} 3488}
3489
3490static void
3491embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3492{
3493 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3494
3495 {
3496 EV_P = w->other;
3497
3498 while (fdchangecnt)
3499 {
3500 fd_reify (EV_A);
3501 ev_run (EV_A_ EVRUN_NOWAIT);
3502 }
3503 }
3504}
3505
3506static void
3507embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3508{
3509 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3510
3511 ev_embed_stop (EV_A_ w);
3512
3513 {
3514 EV_P = w->other;
3515
3516 ev_loop_fork (EV_A);
3517 ev_run (EV_A_ EVRUN_NOWAIT);
3518 }
3519
3520 ev_embed_start (EV_A_ w);
3521}
3522
3523#if 0
3524static void
3525embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3526{
3527 ev_idle_stop (EV_A_ idle);
3528}
3529#endif
2144 3530
2145void 3531void
2146ev_embed_start (EV_P_ ev_embed *w) 3532ev_embed_start (EV_P_ ev_embed *w)
2147{ 3533{
2148 if (expect_false (ev_is_active (w))) 3534 if (expect_false (ev_is_active (w)))
2149 return; 3535 return;
2150 3536
2151 { 3537 {
2152 struct ev_loop *loop = w->loop; 3538 EV_P = w->other;
2153 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3539 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2154 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3540 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2155 } 3541 }
3542
3543 EV_FREQUENT_CHECK;
2156 3544
2157 ev_set_priority (&w->io, ev_priority (w)); 3545 ev_set_priority (&w->io, ev_priority (w));
2158 ev_io_start (EV_A_ &w->io); 3546 ev_io_start (EV_A_ &w->io);
2159 3547
3548 ev_prepare_init (&w->prepare, embed_prepare_cb);
3549 ev_set_priority (&w->prepare, EV_MINPRI);
3550 ev_prepare_start (EV_A_ &w->prepare);
3551
3552 ev_fork_init (&w->fork, embed_fork_cb);
3553 ev_fork_start (EV_A_ &w->fork);
3554
3555 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3556
2160 ev_start (EV_A_ (W)w, 1); 3557 ev_start (EV_A_ (W)w, 1);
3558
3559 EV_FREQUENT_CHECK;
2161} 3560}
2162 3561
2163void 3562void
2164ev_embed_stop (EV_P_ ev_embed *w) 3563ev_embed_stop (EV_P_ ev_embed *w)
2165{ 3564{
2166 ev_clear_pending (EV_A_ (W)w); 3565 clear_pending (EV_A_ (W)w);
2167 if (expect_false (!ev_is_active (w))) 3566 if (expect_false (!ev_is_active (w)))
2168 return; 3567 return;
2169 3568
3569 EV_FREQUENT_CHECK;
3570
2170 ev_io_stop (EV_A_ &w->io); 3571 ev_io_stop (EV_A_ &w->io);
3572 ev_prepare_stop (EV_A_ &w->prepare);
3573 ev_fork_stop (EV_A_ &w->fork);
2171 3574
2172 ev_stop (EV_A_ (W)w); 3575 ev_stop (EV_A_ (W)w);
3576
3577 EV_FREQUENT_CHECK;
2173} 3578}
2174#endif 3579#endif
2175 3580
2176#if EV_FORK_ENABLE 3581#if EV_FORK_ENABLE
2177void 3582void
2178ev_fork_start (EV_P_ ev_fork *w) 3583ev_fork_start (EV_P_ ev_fork *w)
2179{ 3584{
2180 if (expect_false (ev_is_active (w))) 3585 if (expect_false (ev_is_active (w)))
2181 return; 3586 return;
3587
3588 EV_FREQUENT_CHECK;
2182 3589
2183 ev_start (EV_A_ (W)w, ++forkcnt); 3590 ev_start (EV_A_ (W)w, ++forkcnt);
2184 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3591 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2185 forks [forkcnt - 1] = w; 3592 forks [forkcnt - 1] = w;
3593
3594 EV_FREQUENT_CHECK;
2186} 3595}
2187 3596
2188void 3597void
2189ev_fork_stop (EV_P_ ev_fork *w) 3598ev_fork_stop (EV_P_ ev_fork *w)
2190{ 3599{
2191 ev_clear_pending (EV_A_ (W)w); 3600 clear_pending (EV_A_ (W)w);
2192 if (expect_false (!ev_is_active (w))) 3601 if (expect_false (!ev_is_active (w)))
2193 return; 3602 return;
2194 3603
3604 EV_FREQUENT_CHECK;
3605
2195 { 3606 {
2196 int active = ((W)w)->active; 3607 int active = ev_active (w);
3608
2197 forks [active - 1] = forks [--forkcnt]; 3609 forks [active - 1] = forks [--forkcnt];
2198 ((W)forks [active - 1])->active = active; 3610 ev_active (forks [active - 1]) = active;
2199 } 3611 }
2200 3612
2201 ev_stop (EV_A_ (W)w); 3613 ev_stop (EV_A_ (W)w);
3614
3615 EV_FREQUENT_CHECK;
3616}
3617#endif
3618
3619#if EV_CLEANUP_ENABLE
3620void
3621ev_cleanup_start (EV_P_ ev_cleanup *w)
3622{
3623 if (expect_false (ev_is_active (w)))
3624 return;
3625
3626 EV_FREQUENT_CHECK;
3627
3628 ev_start (EV_A_ (W)w, ++cleanupcnt);
3629 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3630 cleanups [cleanupcnt - 1] = w;
3631
3632 /* cleanup watchers should never keep a refcount on the loop */
3633 ev_unref (EV_A);
3634 EV_FREQUENT_CHECK;
3635}
3636
3637void
3638ev_cleanup_stop (EV_P_ ev_cleanup *w)
3639{
3640 clear_pending (EV_A_ (W)w);
3641 if (expect_false (!ev_is_active (w)))
3642 return;
3643
3644 EV_FREQUENT_CHECK;
3645 ev_ref (EV_A);
3646
3647 {
3648 int active = ev_active (w);
3649
3650 cleanups [active - 1] = cleanups [--cleanupcnt];
3651 ev_active (cleanups [active - 1]) = active;
3652 }
3653
3654 ev_stop (EV_A_ (W)w);
3655
3656 EV_FREQUENT_CHECK;
3657}
3658#endif
3659
3660#if EV_ASYNC_ENABLE
3661void
3662ev_async_start (EV_P_ ev_async *w)
3663{
3664 if (expect_false (ev_is_active (w)))
3665 return;
3666
3667 w->sent = 0;
3668
3669 evpipe_init (EV_A);
3670
3671 EV_FREQUENT_CHECK;
3672
3673 ev_start (EV_A_ (W)w, ++asynccnt);
3674 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3675 asyncs [asynccnt - 1] = w;
3676
3677 EV_FREQUENT_CHECK;
3678}
3679
3680void
3681ev_async_stop (EV_P_ ev_async *w)
3682{
3683 clear_pending (EV_A_ (W)w);
3684 if (expect_false (!ev_is_active (w)))
3685 return;
3686
3687 EV_FREQUENT_CHECK;
3688
3689 {
3690 int active = ev_active (w);
3691
3692 asyncs [active - 1] = asyncs [--asynccnt];
3693 ev_active (asyncs [active - 1]) = active;
3694 }
3695
3696 ev_stop (EV_A_ (W)w);
3697
3698 EV_FREQUENT_CHECK;
3699}
3700
3701void
3702ev_async_send (EV_P_ ev_async *w)
3703{
3704 w->sent = 1;
3705 evpipe_write (EV_A_ &async_pending);
2202} 3706}
2203#endif 3707#endif
2204 3708
2205/*****************************************************************************/ 3709/*****************************************************************************/
2206 3710
2216once_cb (EV_P_ struct ev_once *once, int revents) 3720once_cb (EV_P_ struct ev_once *once, int revents)
2217{ 3721{
2218 void (*cb)(int revents, void *arg) = once->cb; 3722 void (*cb)(int revents, void *arg) = once->cb;
2219 void *arg = once->arg; 3723 void *arg = once->arg;
2220 3724
2221 ev_io_stop (EV_A_ &once->io); 3725 ev_io_stop (EV_A_ &once->io);
2222 ev_timer_stop (EV_A_ &once->to); 3726 ev_timer_stop (EV_A_ &once->to);
2223 ev_free (once); 3727 ev_free (once);
2224 3728
2225 cb (revents, arg); 3729 cb (revents, arg);
2226} 3730}
2227 3731
2228static void 3732static void
2229once_cb_io (EV_P_ ev_io *w, int revents) 3733once_cb_io (EV_P_ ev_io *w, int revents)
2230{ 3734{
2231 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3735 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3736
3737 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2232} 3738}
2233 3739
2234static void 3740static void
2235once_cb_to (EV_P_ ev_timer *w, int revents) 3741once_cb_to (EV_P_ ev_timer *w, int revents)
2236{ 3742{
2237 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3743 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3744
3745 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2238} 3746}
2239 3747
2240void 3748void
2241ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3749ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2242{ 3750{
2243 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3751 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2244 3752
2245 if (expect_false (!once)) 3753 if (expect_false (!once))
2246 { 3754 {
2247 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3755 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2248 return; 3756 return;
2249 } 3757 }
2250 3758
2251 once->cb = cb; 3759 once->cb = cb;
2252 once->arg = arg; 3760 once->arg = arg;
2264 ev_timer_set (&once->to, timeout, 0.); 3772 ev_timer_set (&once->to, timeout, 0.);
2265 ev_timer_start (EV_A_ &once->to); 3773 ev_timer_start (EV_A_ &once->to);
2266 } 3774 }
2267} 3775}
2268 3776
2269#ifdef __cplusplus 3777/*****************************************************************************/
2270} 3778
3779#if EV_WALK_ENABLE
3780void
3781ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3782{
3783 int i, j;
3784 ev_watcher_list *wl, *wn;
3785
3786 if (types & (EV_IO | EV_EMBED))
3787 for (i = 0; i < anfdmax; ++i)
3788 for (wl = anfds [i].head; wl; )
3789 {
3790 wn = wl->next;
3791
3792#if EV_EMBED_ENABLE
3793 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3794 {
3795 if (types & EV_EMBED)
3796 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3797 }
3798 else
3799#endif
3800#if EV_USE_INOTIFY
3801 if (ev_cb ((ev_io *)wl) == infy_cb)
3802 ;
3803 else
3804#endif
3805 if ((ev_io *)wl != &pipe_w)
3806 if (types & EV_IO)
3807 cb (EV_A_ EV_IO, wl);
3808
3809 wl = wn;
3810 }
3811
3812 if (types & (EV_TIMER | EV_STAT))
3813 for (i = timercnt + HEAP0; i-- > HEAP0; )
3814#if EV_STAT_ENABLE
3815 /*TODO: timer is not always active*/
3816 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3817 {
3818 if (types & EV_STAT)
3819 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3820 }
3821 else
3822#endif
3823 if (types & EV_TIMER)
3824 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3825
3826#if EV_PERIODIC_ENABLE
3827 if (types & EV_PERIODIC)
3828 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3829 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3830#endif
3831
3832#if EV_IDLE_ENABLE
3833 if (types & EV_IDLE)
3834 for (j = NUMPRI; i--; )
3835 for (i = idlecnt [j]; i--; )
3836 cb (EV_A_ EV_IDLE, idles [j][i]);
3837#endif
3838
3839#if EV_FORK_ENABLE
3840 if (types & EV_FORK)
3841 for (i = forkcnt; i--; )
3842 if (ev_cb (forks [i]) != embed_fork_cb)
3843 cb (EV_A_ EV_FORK, forks [i]);
3844#endif
3845
3846#if EV_ASYNC_ENABLE
3847 if (types & EV_ASYNC)
3848 for (i = asynccnt; i--; )
3849 cb (EV_A_ EV_ASYNC, asyncs [i]);
3850#endif
3851
3852#if EV_PREPARE_ENABLE
3853 if (types & EV_PREPARE)
3854 for (i = preparecnt; i--; )
3855# if EV_EMBED_ENABLE
3856 if (ev_cb (prepares [i]) != embed_prepare_cb)
2271#endif 3857# endif
3858 cb (EV_A_ EV_PREPARE, prepares [i]);
3859#endif
2272 3860
3861#if EV_CHECK_ENABLE
3862 if (types & EV_CHECK)
3863 for (i = checkcnt; i--; )
3864 cb (EV_A_ EV_CHECK, checks [i]);
3865#endif
3866
3867#if EV_SIGNAL_ENABLE
3868 if (types & EV_SIGNAL)
3869 for (i = 0; i < EV_NSIG - 1; ++i)
3870 for (wl = signals [i].head; wl; )
3871 {
3872 wn = wl->next;
3873 cb (EV_A_ EV_SIGNAL, wl);
3874 wl = wn;
3875 }
3876#endif
3877
3878#if EV_CHILD_ENABLE
3879 if (types & EV_CHILD)
3880 for (i = (EV_PID_HASHSIZE); i--; )
3881 for (wl = childs [i]; wl; )
3882 {
3883 wn = wl->next;
3884 cb (EV_A_ EV_CHILD, wl);
3885 wl = wn;
3886 }
3887#endif
3888/* EV_STAT 0x00001000 /* stat data changed */
3889/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3890}
3891#endif
3892
3893#if EV_MULTIPLICITY
3894 #include "ev_wrap.h"
3895#endif
3896
3897EV_CPP(})
3898

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines