ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.165 by root, Fri Dec 7 18:09:38 2007 UTC vs.
Revision 1.250 by root, Thu May 22 02:44:57 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
250#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL
252#endif
253
254#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif
257
258/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 259
197#ifndef CLOCK_MONOTONIC 260#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 261# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 262# define EV_USE_MONOTONIC 0
200#endif 263#endif
202#ifndef CLOCK_REALTIME 265#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 266# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 267# define EV_USE_REALTIME 0
205#endif 268#endif
206 269
270#if !EV_STAT_ENABLE
271# undef EV_USE_INOTIFY
272# define EV_USE_INOTIFY 0
273#endif
274
275#if !EV_USE_NANOSLEEP
276# ifndef _WIN32
277# include <sys/select.h>
278# endif
279#endif
280
281#if EV_USE_INOTIFY
282# include <sys/inotify.h>
283#endif
284
207#if EV_SELECT_IS_WINSOCKET 285#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 286# include <winsock.h>
209#endif 287#endif
210 288
211#if !EV_STAT_ENABLE 289#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 290/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
291# include <stdint.h>
292# ifdef __cplusplus
293extern "C" {
213#endif 294# endif
214 295int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 296# ifdef __cplusplus
216# include <sys/inotify.h> 297}
298# endif
217#endif 299#endif
218 300
219/**/ 301/**/
302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
308
309/*
310 * This is used to avoid floating point rounding problems.
311 * It is added to ev_rt_now when scheduling periodics
312 * to ensure progress, time-wise, even when rounding
313 * errors are against us.
314 * This value is good at least till the year 4000.
315 * Better solutions welcome.
316 */
317#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 318
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 319#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 320#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 321/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 322
225#if __GNUC__ >= 3 323#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 324# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 325# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 326#else
236# define expect(expr,value) (expr) 327# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 328# define noinline
329# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
330# define inline
331# endif
240#endif 332#endif
241 333
242#define expect_false(expr) expect ((expr) != 0, 0) 334#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 335#define expect_true(expr) expect ((expr) != 0, 1)
336#define inline_size static inline
337
338#if EV_MINIMAL
339# define inline_speed static noinline
340#else
341# define inline_speed static inline
342#endif
244 343
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 344#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 345#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 346
248#define EMPTY /* required for microsofts broken pseudo-c compiler */ 347#define EMPTY /* required for microsofts broken pseudo-c compiler */
250 349
251typedef ev_watcher *W; 350typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 351typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 352typedef ev_watcher_time *WT;
254 353
354#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at
356
357#if EV_USE_MONOTONIC
358/* sig_atomic_t is used to avoid per-thread variables or locking but still */
359/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
361#endif
256 362
257#ifdef _WIN32 363#ifdef _WIN32
258# include "ev_win32.c" 364# include "ev_win32.c"
259#endif 365#endif
260 366
281 perror (msg); 387 perror (msg);
282 abort (); 388 abort ();
283 } 389 }
284} 390}
285 391
392static void *
393ev_realloc_emul (void *ptr, long size)
394{
395 /* some systems, notably openbsd and darwin, fail to properly
396 * implement realloc (x, 0) (as required by both ansi c-98 and
397 * the single unix specification, so work around them here.
398 */
399
400 if (size)
401 return realloc (ptr, size);
402
403 free (ptr);
404 return 0;
405}
406
286static void *(*alloc)(void *ptr, long size); 407static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 408
288void 409void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 410ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 411{
291 alloc = cb; 412 alloc = cb;
292} 413}
293 414
294inline_speed void * 415inline_speed void *
295ev_realloc (void *ptr, long size) 416ev_realloc (void *ptr, long size)
296{ 417{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 418 ptr = alloc (ptr, size);
298 419
299 if (!ptr && size) 420 if (!ptr && size)
300 { 421 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 422 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 423 abort ();
325 W w; 446 W w;
326 int events; 447 int events;
327} ANPENDING; 448} ANPENDING;
328 449
329#if EV_USE_INOTIFY 450#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */
330typedef struct 452typedef struct
331{ 453{
332 WL head; 454 WL head;
333} ANFS; 455} ANFS;
456#endif
457
458/* Heap Entry */
459#if EV_HEAP_CACHE_AT
460 typedef struct {
461 ev_tstamp at;
462 WT w;
463 } ANHE;
464
465 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else
469 typedef WT ANHE;
470
471 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he)
334#endif 474#endif
335 475
336#if EV_MULTIPLICITY 476#if EV_MULTIPLICITY
337 477
338 struct ev_loop 478 struct ev_loop
396{ 536{
397 return ev_rt_now; 537 return ev_rt_now;
398} 538}
399#endif 539#endif
400 540
541void
542ev_sleep (ev_tstamp delay)
543{
544 if (delay > 0.)
545 {
546#if EV_USE_NANOSLEEP
547 struct timespec ts;
548
549 ts.tv_sec = (time_t)delay;
550 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
551
552 nanosleep (&ts, 0);
553#elif defined(_WIN32)
554 Sleep ((unsigned long)(delay * 1e3));
555#else
556 struct timeval tv;
557
558 tv.tv_sec = (time_t)delay;
559 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
560
561 select (0, 0, 0, 0, &tv);
562#endif
563 }
564}
565
566/*****************************************************************************/
567
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
569
401int inline_size 570int inline_size
402array_nextsize (int elem, int cur, int cnt) 571array_nextsize (int elem, int cur, int cnt)
403{ 572{
404 int ncur = cur + 1; 573 int ncur = cur + 1;
405 574
406 do 575 do
407 ncur <<= 1; 576 ncur <<= 1;
408 while (cnt > ncur); 577 while (cnt > ncur);
409 578
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 579 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
411 if (elem * ncur > 4096) 580 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
412 { 581 {
413 ncur *= elem; 582 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 583 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
415 ncur = ncur - sizeof (void *) * 4; 584 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem; 585 ncur /= elem;
417 } 586 }
418 587
419 return ncur; 588 return ncur;
420} 589}
421 590
422inline_speed void * 591static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 592array_realloc (int elem, void *base, int *cur, int cnt)
424{ 593{
425 *cur = array_nextsize (elem, *cur, cnt); 594 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 595 return ev_realloc (base, elem * *cur);
427} 596}
452 621
453void noinline 622void noinline
454ev_feed_event (EV_P_ void *w, int revents) 623ev_feed_event (EV_P_ void *w, int revents)
455{ 624{
456 W w_ = (W)w; 625 W w_ = (W)w;
626 int pri = ABSPRI (w_);
457 627
458 if (expect_false (w_->pending)) 628 if (expect_false (w_->pending))
629 pendings [pri][w_->pending - 1].events |= revents;
630 else
459 { 631 {
632 w_->pending = ++pendingcnt [pri];
633 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
634 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 635 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 636 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 637}
469 638
470void inline_size 639void inline_speed
471queue_events (EV_P_ W *events, int eventcnt, int type) 640queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 641{
473 int i; 642 int i;
474 643
475 for (i = 0; i < eventcnt; ++i) 644 for (i = 0; i < eventcnt; ++i)
507} 676}
508 677
509void 678void
510ev_feed_fd_event (EV_P_ int fd, int revents) 679ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 680{
681 if (fd >= 0 && fd < anfdmax)
512 fd_event (EV_A_ fd, revents); 682 fd_event (EV_A_ fd, revents);
513} 683}
514 684
515void inline_size 685void inline_size
516fd_reify (EV_P) 686fd_reify (EV_P)
517{ 687{
521 { 691 {
522 int fd = fdchanges [i]; 692 int fd = fdchanges [i];
523 ANFD *anfd = anfds + fd; 693 ANFD *anfd = anfds + fd;
524 ev_io *w; 694 ev_io *w;
525 695
526 int events = 0; 696 unsigned char events = 0;
527 697
528 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 698 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
529 events |= w->events; 699 events |= (unsigned char)w->events;
530 700
531#if EV_SELECT_IS_WINSOCKET 701#if EV_SELECT_IS_WINSOCKET
532 if (events) 702 if (events)
533 { 703 {
534 unsigned long argp; 704 unsigned long argp;
705 #ifdef EV_FD_TO_WIN32_HANDLE
706 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
707 #else
535 anfd->handle = _get_osfhandle (fd); 708 anfd->handle = _get_osfhandle (fd);
709 #endif
536 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 710 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
537 } 711 }
538#endif 712#endif
539 713
714 {
715 unsigned char o_events = anfd->events;
716 unsigned char o_reify = anfd->reify;
717
540 anfd->reify = 0; 718 anfd->reify = 0;
541
542 backend_modify (EV_A_ fd, anfd->events, events);
543 anfd->events = events; 719 anfd->events = events;
720
721 if (o_events != events || o_reify & EV_IOFDSET)
722 backend_modify (EV_A_ fd, o_events, events);
723 }
544 } 724 }
545 725
546 fdchangecnt = 0; 726 fdchangecnt = 0;
547} 727}
548 728
549void inline_size 729void inline_size
550fd_change (EV_P_ int fd) 730fd_change (EV_P_ int fd, int flags)
551{ 731{
552 if (expect_false (anfds [fd].reify)) 732 unsigned char reify = anfds [fd].reify;
553 return;
554
555 anfds [fd].reify = 1; 733 anfds [fd].reify |= flags;
556 734
735 if (expect_true (!reify))
736 {
557 ++fdchangecnt; 737 ++fdchangecnt;
558 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 738 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
559 fdchanges [fdchangecnt - 1] = fd; 739 fdchanges [fdchangecnt - 1] = fd;
740 }
560} 741}
561 742
562void inline_speed 743void inline_speed
563fd_kill (EV_P_ int fd) 744fd_kill (EV_P_ int fd)
564{ 745{
615 796
616 for (fd = 0; fd < anfdmax; ++fd) 797 for (fd = 0; fd < anfdmax; ++fd)
617 if (anfds [fd].events) 798 if (anfds [fd].events)
618 { 799 {
619 anfds [fd].events = 0; 800 anfds [fd].events = 0;
620 fd_change (EV_A_ fd); 801 fd_change (EV_A_ fd, EV_IOFDSET | 1);
621 } 802 }
622} 803}
623 804
624/*****************************************************************************/ 805/*****************************************************************************/
625 806
807/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree.
811 */
812
813/*
814 * at the moment we allow libev the luxury of two heaps,
815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
816 * which is more cache-efficient.
817 * the difference is about 5% with 50000+ watchers.
818 */
819#if EV_USE_4HEAP
820
821#define DHEAP 4
822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k))
825
826/* away from the root */
626void inline_speed 827void inline_speed
627upheap (WT *heap, int k) 828downheap (ANHE *heap, int N, int k)
628{ 829{
629 WT w = heap [k]; 830 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0;
630 832
631 while (k && heap [k >> 1]->at > w->at) 833 for (;;)
632 {
633 heap [k] = heap [k >> 1];
634 ((W)heap [k])->active = k + 1;
635 k >>= 1;
636 } 834 {
835 ev_tstamp minat;
836 ANHE *minpos;
837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
637 838
839 /* find minimum child */
840 if (expect_true (pos + DHEAP - 1 < E))
841 {
842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
846 }
847 else if (pos < E)
848 {
849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
851 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
852 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
853 }
854 else
855 break;
856
857 if (ANHE_at (he) <= minat)
858 break;
859
860 heap [k] = *minpos;
861 ev_active (ANHE_w (*minpos)) = k;
862
863 k = minpos - heap;
864 }
865
638 heap [k] = w; 866 heap [k] = he;
639 ((W)heap [k])->active = k + 1; 867 ev_active (ANHE_w (he)) = k;
640
641} 868}
642 869
870#else /* 4HEAP */
871
872#define HEAP0 1
873#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p))
875
876/* away from the root */
643void inline_speed 877void inline_speed
644downheap (WT *heap, int N, int k) 878downheap (ANHE *heap, int N, int k)
645{ 879{
646 WT w = heap [k]; 880 ANHE he = heap [k];
647 881
648 while (k < (N >> 1)) 882 for (;;)
649 { 883 {
650 int j = k << 1; 884 int c = k << 1;
651 885
652 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 886 if (c > N + HEAP0 - 1)
653 ++j;
654
655 if (w->at <= heap [j]->at)
656 break; 887 break;
657 888
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0;
891
892 if (ANHE_at (he) <= ANHE_at (heap [c]))
893 break;
894
658 heap [k] = heap [j]; 895 heap [k] = heap [c];
659 ((W)heap [k])->active = k + 1; 896 ev_active (ANHE_w (heap [k])) = k;
897
660 k = j; 898 k = c;
661 } 899 }
662 900
663 heap [k] = w; 901 heap [k] = he;
664 ((W)heap [k])->active = k + 1; 902 ev_active (ANHE_w (he)) = k;
903}
904#endif
905
906/* towards the root */
907void inline_speed
908upheap (ANHE *heap, int k)
909{
910 ANHE he = heap [k];
911
912 for (;;)
913 {
914 int p = HPARENT (k);
915
916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
917 break;
918
919 heap [k] = heap [p];
920 ev_active (ANHE_w (heap [k])) = k;
921 k = p;
922 }
923
924 heap [k] = he;
925 ev_active (ANHE_w (he)) = k;
665} 926}
666 927
667void inline_size 928void inline_size
668adjustheap (WT *heap, int N, int k) 929adjustheap (ANHE *heap, int N, int k)
669{ 930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
670 upheap (heap, k); 932 upheap (heap, k);
933 else
671 downheap (heap, N, k); 934 downheap (heap, N, k);
672} 935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
943 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
944 for (i = 0; i < N; ++i)
945 upheap (heap, i + HEAP0);
946}
947
948#if EV_VERIFY
949static void
950checkheap (ANHE *heap, int N)
951{
952 int i;
953
954 for (i = HEAP0; i < N + HEAP0; ++i)
955 {
956 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
957 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
958 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
959 }
960}
961#endif
673 962
674/*****************************************************************************/ 963/*****************************************************************************/
675 964
676typedef struct 965typedef struct
677{ 966{
678 WL head; 967 WL head;
679 sig_atomic_t volatile gotsig; 968 EV_ATOMIC_T gotsig;
680} ANSIG; 969} ANSIG;
681 970
682static ANSIG *signals; 971static ANSIG *signals;
683static int signalmax; 972static int signalmax;
684 973
685static int sigpipe [2]; 974static EV_ATOMIC_T gotsig;
686static sig_atomic_t volatile gotsig;
687static ev_io sigev;
688 975
689void inline_size 976void inline_size
690signals_init (ANSIG *base, int count) 977signals_init (ANSIG *base, int count)
691{ 978{
692 while (count--) 979 while (count--)
696 983
697 ++base; 984 ++base;
698 } 985 }
699} 986}
700 987
701static void 988/*****************************************************************************/
702sighandler (int signum)
703{
704#if _WIN32
705 signal (signum, sighandler);
706#endif
707 989
708 signals [signum - 1].gotsig = 1;
709
710 if (!gotsig)
711 {
712 int old_errno = errno;
713 gotsig = 1;
714 write (sigpipe [1], &signum, 1);
715 errno = old_errno;
716 }
717}
718
719void noinline
720ev_feed_signal_event (EV_P_ int signum)
721{
722 WL w;
723
724#if EV_MULTIPLICITY
725 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
726#endif
727
728 --signum;
729
730 if (signum < 0 || signum >= signalmax)
731 return;
732
733 signals [signum].gotsig = 0;
734
735 for (w = signals [signum].head; w; w = w->next)
736 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
737}
738
739static void
740sigcb (EV_P_ ev_io *iow, int revents)
741{
742 int signum;
743
744 read (sigpipe [0], &revents, 1);
745 gotsig = 0;
746
747 for (signum = signalmax; signum--; )
748 if (signals [signum].gotsig)
749 ev_feed_signal_event (EV_A_ signum + 1);
750}
751
752void inline_size 990void inline_speed
753fd_intern (int fd) 991fd_intern (int fd)
754{ 992{
755#ifdef _WIN32 993#ifdef _WIN32
756 int arg = 1; 994 int arg = 1;
757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 995 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
760 fcntl (fd, F_SETFL, O_NONBLOCK); 998 fcntl (fd, F_SETFL, O_NONBLOCK);
761#endif 999#endif
762} 1000}
763 1001
764static void noinline 1002static void noinline
765siginit (EV_P) 1003evpipe_init (EV_P)
766{ 1004{
1005 if (!ev_is_active (&pipeev))
1006 {
1007#if EV_USE_EVENTFD
1008 if ((evfd = eventfd (0, 0)) >= 0)
1009 {
1010 evpipe [0] = -1;
1011 fd_intern (evfd);
1012 ev_io_set (&pipeev, evfd, EV_READ);
1013 }
1014 else
1015#endif
1016 {
1017 while (pipe (evpipe))
1018 syserr ("(libev) error creating signal/async pipe");
1019
767 fd_intern (sigpipe [0]); 1020 fd_intern (evpipe [0]);
768 fd_intern (sigpipe [1]); 1021 fd_intern (evpipe [1]);
1022 ev_io_set (&pipeev, evpipe [0], EV_READ);
1023 }
769 1024
770 ev_io_set (&sigev, sigpipe [0], EV_READ);
771 ev_io_start (EV_A_ &sigev); 1025 ev_io_start (EV_A_ &pipeev);
772 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1026 ev_unref (EV_A); /* watcher should not keep loop alive */
1027 }
1028}
1029
1030void inline_size
1031evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1032{
1033 if (!*flag)
1034 {
1035 int old_errno = errno; /* save errno because write might clobber it */
1036
1037 *flag = 1;
1038
1039#if EV_USE_EVENTFD
1040 if (evfd >= 0)
1041 {
1042 uint64_t counter = 1;
1043 write (evfd, &counter, sizeof (uint64_t));
1044 }
1045 else
1046#endif
1047 write (evpipe [1], &old_errno, 1);
1048
1049 errno = old_errno;
1050 }
1051}
1052
1053static void
1054pipecb (EV_P_ ev_io *iow, int revents)
1055{
1056#if EV_USE_EVENTFD
1057 if (evfd >= 0)
1058 {
1059 uint64_t counter;
1060 read (evfd, &counter, sizeof (uint64_t));
1061 }
1062 else
1063#endif
1064 {
1065 char dummy;
1066 read (evpipe [0], &dummy, 1);
1067 }
1068
1069 if (gotsig && ev_is_default_loop (EV_A))
1070 {
1071 int signum;
1072 gotsig = 0;
1073
1074 for (signum = signalmax; signum--; )
1075 if (signals [signum].gotsig)
1076 ev_feed_signal_event (EV_A_ signum + 1);
1077 }
1078
1079#if EV_ASYNC_ENABLE
1080 if (gotasync)
1081 {
1082 int i;
1083 gotasync = 0;
1084
1085 for (i = asynccnt; i--; )
1086 if (asyncs [i]->sent)
1087 {
1088 asyncs [i]->sent = 0;
1089 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1090 }
1091 }
1092#endif
773} 1093}
774 1094
775/*****************************************************************************/ 1095/*****************************************************************************/
776 1096
1097static void
1098ev_sighandler (int signum)
1099{
1100#if EV_MULTIPLICITY
1101 struct ev_loop *loop = &default_loop_struct;
1102#endif
1103
1104#if _WIN32
1105 signal (signum, ev_sighandler);
1106#endif
1107
1108 signals [signum - 1].gotsig = 1;
1109 evpipe_write (EV_A_ &gotsig);
1110}
1111
1112void noinline
1113ev_feed_signal_event (EV_P_ int signum)
1114{
1115 WL w;
1116
1117#if EV_MULTIPLICITY
1118 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1119#endif
1120
1121 --signum;
1122
1123 if (signum < 0 || signum >= signalmax)
1124 return;
1125
1126 signals [signum].gotsig = 0;
1127
1128 for (w = signals [signum].head; w; w = w->next)
1129 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1130}
1131
1132/*****************************************************************************/
1133
777static ev_child *childs [EV_PID_HASHSIZE]; 1134static WL childs [EV_PID_HASHSIZE];
778 1135
779#ifndef _WIN32 1136#ifndef _WIN32
780 1137
781static ev_signal childev; 1138static ev_signal childev;
782 1139
1140#ifndef WIFCONTINUED
1141# define WIFCONTINUED(status) 0
1142#endif
1143
783void inline_speed 1144void inline_speed
784child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1145child_reap (EV_P_ int chain, int pid, int status)
785{ 1146{
786 ev_child *w; 1147 ev_child *w;
1148 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
787 1149
788 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1150 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1151 {
789 if (w->pid == pid || !w->pid) 1152 if ((w->pid == pid || !w->pid)
1153 && (!traced || (w->flags & 1)))
790 { 1154 {
791 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1155 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
792 w->rpid = pid; 1156 w->rpid = pid;
793 w->rstatus = status; 1157 w->rstatus = status;
794 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1158 ev_feed_event (EV_A_ (W)w, EV_CHILD);
795 } 1159 }
1160 }
796} 1161}
797 1162
798#ifndef WCONTINUED 1163#ifndef WCONTINUED
799# define WCONTINUED 0 1164# define WCONTINUED 0
800#endif 1165#endif
809 if (!WCONTINUED 1174 if (!WCONTINUED
810 || errno != EINVAL 1175 || errno != EINVAL
811 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1176 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
812 return; 1177 return;
813 1178
814 /* make sure we are called again until all childs have been reaped */ 1179 /* make sure we are called again until all children have been reaped */
815 /* we need to do it this way so that the callback gets called before we continue */ 1180 /* we need to do it this way so that the callback gets called before we continue */
816 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1181 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
817 1182
818 child_reap (EV_A_ sw, pid, pid, status); 1183 child_reap (EV_A_ pid, pid, status);
819 if (EV_PID_HASHSIZE > 1) 1184 if (EV_PID_HASHSIZE > 1)
820 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1185 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
821} 1186}
822 1187
823#endif 1188#endif
824 1189
825/*****************************************************************************/ 1190/*****************************************************************************/
897} 1262}
898 1263
899unsigned int 1264unsigned int
900ev_embeddable_backends (void) 1265ev_embeddable_backends (void)
901{ 1266{
902 return EVBACKEND_EPOLL 1267 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
903 | EVBACKEND_KQUEUE 1268
904 | EVBACKEND_PORT; 1269 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1270 /* please fix it and tell me how to detect the fix */
1271 flags &= ~EVBACKEND_EPOLL;
1272
1273 return flags;
905} 1274}
906 1275
907unsigned int 1276unsigned int
908ev_backend (EV_P) 1277ev_backend (EV_P)
909{ 1278{
912 1281
913unsigned int 1282unsigned int
914ev_loop_count (EV_P) 1283ev_loop_count (EV_P)
915{ 1284{
916 return loop_count; 1285 return loop_count;
1286}
1287
1288void
1289ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1290{
1291 io_blocktime = interval;
1292}
1293
1294void
1295ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1296{
1297 timeout_blocktime = interval;
917} 1298}
918 1299
919static void noinline 1300static void noinline
920loop_init (EV_P_ unsigned int flags) 1301loop_init (EV_P_ unsigned int flags)
921{ 1302{
927 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1308 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
928 have_monotonic = 1; 1309 have_monotonic = 1;
929 } 1310 }
930#endif 1311#endif
931 1312
932 ev_rt_now = ev_time (); 1313 ev_rt_now = ev_time ();
933 mn_now = get_clock (); 1314 mn_now = get_clock ();
934 now_floor = mn_now; 1315 now_floor = mn_now;
935 rtmn_diff = ev_rt_now - mn_now; 1316 rtmn_diff = ev_rt_now - mn_now;
1317
1318 io_blocktime = 0.;
1319 timeout_blocktime = 0.;
1320 backend = 0;
1321 backend_fd = -1;
1322 gotasync = 0;
1323#if EV_USE_INOTIFY
1324 fs_fd = -2;
1325#endif
936 1326
937 /* pid check not overridable via env */ 1327 /* pid check not overridable via env */
938#ifndef _WIN32 1328#ifndef _WIN32
939 if (flags & EVFLAG_FORKCHECK) 1329 if (flags & EVFLAG_FORKCHECK)
940 curpid = getpid (); 1330 curpid = getpid ();
943 if (!(flags & EVFLAG_NOENV) 1333 if (!(flags & EVFLAG_NOENV)
944 && !enable_secure () 1334 && !enable_secure ()
945 && getenv ("LIBEV_FLAGS")) 1335 && getenv ("LIBEV_FLAGS"))
946 flags = atoi (getenv ("LIBEV_FLAGS")); 1336 flags = atoi (getenv ("LIBEV_FLAGS"));
947 1337
948 if (!(flags & 0x0000ffffUL)) 1338 if (!(flags & 0x0000ffffU))
949 flags |= ev_recommended_backends (); 1339 flags |= ev_recommended_backends ();
950
951 backend = 0;
952 backend_fd = -1;
953#if EV_USE_INOTIFY
954 fs_fd = -2;
955#endif
956 1340
957#if EV_USE_PORT 1341#if EV_USE_PORT
958 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1342 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
959#endif 1343#endif
960#if EV_USE_KQUEUE 1344#if EV_USE_KQUEUE
968#endif 1352#endif
969#if EV_USE_SELECT 1353#if EV_USE_SELECT
970 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1354 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
971#endif 1355#endif
972 1356
973 ev_init (&sigev, sigcb); 1357 ev_init (&pipeev, pipecb);
974 ev_set_priority (&sigev, EV_MAXPRI); 1358 ev_set_priority (&pipeev, EV_MAXPRI);
975 } 1359 }
976} 1360}
977 1361
978static void noinline 1362static void noinline
979loop_destroy (EV_P) 1363loop_destroy (EV_P)
980{ 1364{
981 int i; 1365 int i;
1366
1367 if (ev_is_active (&pipeev))
1368 {
1369 ev_ref (EV_A); /* signal watcher */
1370 ev_io_stop (EV_A_ &pipeev);
1371
1372#if EV_USE_EVENTFD
1373 if (evfd >= 0)
1374 close (evfd);
1375#endif
1376
1377 if (evpipe [0] >= 0)
1378 {
1379 close (evpipe [0]);
1380 close (evpipe [1]);
1381 }
1382 }
982 1383
983#if EV_USE_INOTIFY 1384#if EV_USE_INOTIFY
984 if (fs_fd >= 0) 1385 if (fs_fd >= 0)
985 close (fs_fd); 1386 close (fs_fd);
986#endif 1387#endif
1009 array_free (pending, [i]); 1410 array_free (pending, [i]);
1010#if EV_IDLE_ENABLE 1411#if EV_IDLE_ENABLE
1011 array_free (idle, [i]); 1412 array_free (idle, [i]);
1012#endif 1413#endif
1013 } 1414 }
1415
1416 ev_free (anfds); anfdmax = 0;
1014 1417
1015 /* have to use the microsoft-never-gets-it-right macro */ 1418 /* have to use the microsoft-never-gets-it-right macro */
1016 array_free (fdchange, EMPTY); 1419 array_free (fdchange, EMPTY);
1017 array_free (timer, EMPTY); 1420 array_free (timer, EMPTY);
1018#if EV_PERIODIC_ENABLE 1421#if EV_PERIODIC_ENABLE
1019 array_free (periodic, EMPTY); 1422 array_free (periodic, EMPTY);
1020#endif 1423#endif
1424#if EV_FORK_ENABLE
1425 array_free (fork, EMPTY);
1426#endif
1021 array_free (prepare, EMPTY); 1427 array_free (prepare, EMPTY);
1022 array_free (check, EMPTY); 1428 array_free (check, EMPTY);
1429#if EV_ASYNC_ENABLE
1430 array_free (async, EMPTY);
1431#endif
1023 1432
1024 backend = 0; 1433 backend = 0;
1025} 1434}
1026 1435
1436#if EV_USE_INOTIFY
1027void inline_size infy_fork (EV_P); 1437void inline_size infy_fork (EV_P);
1438#endif
1028 1439
1029void inline_size 1440void inline_size
1030loop_fork (EV_P) 1441loop_fork (EV_P)
1031{ 1442{
1032#if EV_USE_PORT 1443#if EV_USE_PORT
1040#endif 1451#endif
1041#if EV_USE_INOTIFY 1452#if EV_USE_INOTIFY
1042 infy_fork (EV_A); 1453 infy_fork (EV_A);
1043#endif 1454#endif
1044 1455
1045 if (ev_is_active (&sigev)) 1456 if (ev_is_active (&pipeev))
1046 { 1457 {
1047 /* default loop */ 1458 /* this "locks" the handlers against writing to the pipe */
1459 /* while we modify the fd vars */
1460 gotsig = 1;
1461#if EV_ASYNC_ENABLE
1462 gotasync = 1;
1463#endif
1048 1464
1049 ev_ref (EV_A); 1465 ev_ref (EV_A);
1050 ev_io_stop (EV_A_ &sigev); 1466 ev_io_stop (EV_A_ &pipeev);
1467
1468#if EV_USE_EVENTFD
1469 if (evfd >= 0)
1470 close (evfd);
1471#endif
1472
1473 if (evpipe [0] >= 0)
1474 {
1051 close (sigpipe [0]); 1475 close (evpipe [0]);
1052 close (sigpipe [1]); 1476 close (evpipe [1]);
1477 }
1053 1478
1054 while (pipe (sigpipe))
1055 syserr ("(libev) error creating pipe");
1056
1057 siginit (EV_A); 1479 evpipe_init (EV_A);
1480 /* now iterate over everything, in case we missed something */
1481 pipecb (EV_A_ &pipeev, EV_READ);
1058 } 1482 }
1059 1483
1060 postfork = 0; 1484 postfork = 0;
1061} 1485}
1062 1486
1063#if EV_MULTIPLICITY 1487#if EV_MULTIPLICITY
1488
1064struct ev_loop * 1489struct ev_loop *
1065ev_loop_new (unsigned int flags) 1490ev_loop_new (unsigned int flags)
1066{ 1491{
1067 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1492 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1068 1493
1084} 1509}
1085 1510
1086void 1511void
1087ev_loop_fork (EV_P) 1512ev_loop_fork (EV_P)
1088{ 1513{
1089 postfork = 1; 1514 postfork = 1; /* must be in line with ev_default_fork */
1090} 1515}
1091 1516
1517#if EV_VERIFY
1518static void
1519array_check (W **ws, int cnt)
1520{
1521 while (cnt--)
1522 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1523}
1092#endif 1524#endif
1525
1526void
1527ev_loop_verify (EV_P)
1528{
1529#if EV_VERIFY
1530 int i;
1531
1532 checkheap (timers, timercnt);
1533#if EV_PERIODIC_ENABLE
1534 checkheap (periodics, periodiccnt);
1535#endif
1536
1537#if EV_IDLE_ENABLE
1538 for (i = NUMPRI; i--; )
1539 array_check ((W **)idles [i], idlecnt [i]);
1540#endif
1541#if EV_FORK_ENABLE
1542 array_check ((W **)forks, forkcnt);
1543#endif
1544#if EV_ASYNC_ENABLE
1545 array_check ((W **)asyncs, asynccnt);
1546#endif
1547 array_check ((W **)prepares, preparecnt);
1548 array_check ((W **)checks, checkcnt);
1549#endif
1550}
1551
1552#endif /* multiplicity */
1093 1553
1094#if EV_MULTIPLICITY 1554#if EV_MULTIPLICITY
1095struct ev_loop * 1555struct ev_loop *
1096ev_default_loop_init (unsigned int flags) 1556ev_default_loop_init (unsigned int flags)
1097#else 1557#else
1098int 1558int
1099ev_default_loop (unsigned int flags) 1559ev_default_loop (unsigned int flags)
1100#endif 1560#endif
1101{ 1561{
1102 if (sigpipe [0] == sigpipe [1])
1103 if (pipe (sigpipe))
1104 return 0;
1105
1106 if (!ev_default_loop_ptr) 1562 if (!ev_default_loop_ptr)
1107 { 1563 {
1108#if EV_MULTIPLICITY 1564#if EV_MULTIPLICITY
1109 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1565 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1110#else 1566#else
1113 1569
1114 loop_init (EV_A_ flags); 1570 loop_init (EV_A_ flags);
1115 1571
1116 if (ev_backend (EV_A)) 1572 if (ev_backend (EV_A))
1117 { 1573 {
1118 siginit (EV_A);
1119
1120#ifndef _WIN32 1574#ifndef _WIN32
1121 ev_signal_init (&childev, childcb, SIGCHLD); 1575 ev_signal_init (&childev, childcb, SIGCHLD);
1122 ev_set_priority (&childev, EV_MAXPRI); 1576 ev_set_priority (&childev, EV_MAXPRI);
1123 ev_signal_start (EV_A_ &childev); 1577 ev_signal_start (EV_A_ &childev);
1124 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1578 ev_unref (EV_A); /* child watcher should not keep loop alive */
1141#ifndef _WIN32 1595#ifndef _WIN32
1142 ev_ref (EV_A); /* child watcher */ 1596 ev_ref (EV_A); /* child watcher */
1143 ev_signal_stop (EV_A_ &childev); 1597 ev_signal_stop (EV_A_ &childev);
1144#endif 1598#endif
1145 1599
1146 ev_ref (EV_A); /* signal watcher */
1147 ev_io_stop (EV_A_ &sigev);
1148
1149 close (sigpipe [0]); sigpipe [0] = 0;
1150 close (sigpipe [1]); sigpipe [1] = 0;
1151
1152 loop_destroy (EV_A); 1600 loop_destroy (EV_A);
1153} 1601}
1154 1602
1155void 1603void
1156ev_default_fork (void) 1604ev_default_fork (void)
1158#if EV_MULTIPLICITY 1606#if EV_MULTIPLICITY
1159 struct ev_loop *loop = ev_default_loop_ptr; 1607 struct ev_loop *loop = ev_default_loop_ptr;
1160#endif 1608#endif
1161 1609
1162 if (backend) 1610 if (backend)
1163 postfork = 1; 1611 postfork = 1; /* must be in line with ev_loop_fork */
1164} 1612}
1165 1613
1166/*****************************************************************************/ 1614/*****************************************************************************/
1615
1616void
1617ev_invoke (EV_P_ void *w, int revents)
1618{
1619 EV_CB_INVOKE ((W)w, revents);
1620}
1167 1621
1168void inline_speed 1622void inline_speed
1169call_pending (EV_P) 1623call_pending (EV_P)
1170{ 1624{
1171 int pri; 1625 int pri;
1179 { 1633 {
1180 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1634 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1181 1635
1182 p->w->pending = 0; 1636 p->w->pending = 0;
1183 EV_CB_INVOKE (p->w, p->events); 1637 EV_CB_INVOKE (p->w, p->events);
1638 EV_FREQUENT_CHECK;
1184 } 1639 }
1185 } 1640 }
1186} 1641}
1187
1188void inline_size
1189timers_reify (EV_P)
1190{
1191 while (timercnt && ((WT)timers [0])->at <= mn_now)
1192 {
1193 ev_timer *w = timers [0];
1194
1195 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1196
1197 /* first reschedule or stop timer */
1198 if (w->repeat)
1199 {
1200 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1201
1202 ((WT)w)->at += w->repeat;
1203 if (((WT)w)->at < mn_now)
1204 ((WT)w)->at = mn_now;
1205
1206 downheap ((WT *)timers, timercnt, 0);
1207 }
1208 else
1209 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1210
1211 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1212 }
1213}
1214
1215#if EV_PERIODIC_ENABLE
1216void inline_size
1217periodics_reify (EV_P)
1218{
1219 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1220 {
1221 ev_periodic *w = periodics [0];
1222
1223 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1224
1225 /* first reschedule or stop timer */
1226 if (w->reschedule_cb)
1227 {
1228 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1229 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1230 downheap ((WT *)periodics, periodiccnt, 0);
1231 }
1232 else if (w->interval)
1233 {
1234 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1235 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1236 downheap ((WT *)periodics, periodiccnt, 0);
1237 }
1238 else
1239 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1240
1241 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1242 }
1243}
1244
1245static void noinline
1246periodics_reschedule (EV_P)
1247{
1248 int i;
1249
1250 /* adjust periodics after time jump */
1251 for (i = 0; i < periodiccnt; ++i)
1252 {
1253 ev_periodic *w = periodics [i];
1254
1255 if (w->reschedule_cb)
1256 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1257 else if (w->interval)
1258 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1259 }
1260
1261 /* now rebuild the heap */
1262 for (i = periodiccnt >> 1; i--; )
1263 downheap ((WT *)periodics, periodiccnt, i);
1264}
1265#endif
1266 1642
1267#if EV_IDLE_ENABLE 1643#if EV_IDLE_ENABLE
1268void inline_size 1644void inline_size
1269idle_reify (EV_P) 1645idle_reify (EV_P)
1270{ 1646{
1285 } 1661 }
1286 } 1662 }
1287} 1663}
1288#endif 1664#endif
1289 1665
1290int inline_size 1666void inline_size
1291time_update_monotonic (EV_P) 1667timers_reify (EV_P)
1292{ 1668{
1669 EV_FREQUENT_CHECK;
1670
1671 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1672 {
1673 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1674
1675 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1676
1677 /* first reschedule or stop timer */
1678 if (w->repeat)
1679 {
1680 ev_at (w) += w->repeat;
1681 if (ev_at (w) < mn_now)
1682 ev_at (w) = mn_now;
1683
1684 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1685
1686 ANHE_at_cache (timers [HEAP0]);
1687 downheap (timers, timercnt, HEAP0);
1688 }
1689 else
1690 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1691
1692 EV_FREQUENT_CHECK;
1693 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1694 }
1695}
1696
1697#if EV_PERIODIC_ENABLE
1698void inline_size
1699periodics_reify (EV_P)
1700{
1701 EV_FREQUENT_CHECK;
1702
1703 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1704 {
1705 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1706
1707 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1708
1709 /* first reschedule or stop timer */
1710 if (w->reschedule_cb)
1711 {
1712 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1713
1714 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1715
1716 ANHE_at_cache (periodics [HEAP0]);
1717 downheap (periodics, periodiccnt, HEAP0);
1718 }
1719 else if (w->interval)
1720 {
1721 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1722 /* if next trigger time is not sufficiently in the future, put it there */
1723 /* this might happen because of floating point inexactness */
1724 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1725 {
1726 ev_at (w) += w->interval;
1727
1728 /* if interval is unreasonably low we might still have a time in the past */
1729 /* so correct this. this will make the periodic very inexact, but the user */
1730 /* has effectively asked to get triggered more often than possible */
1731 if (ev_at (w) < ev_rt_now)
1732 ev_at (w) = ev_rt_now;
1733 }
1734
1735 ANHE_at_cache (periodics [HEAP0]);
1736 downheap (periodics, periodiccnt, HEAP0);
1737 }
1738 else
1739 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1740
1741 EV_FREQUENT_CHECK;
1742 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1743 }
1744}
1745
1746static void noinline
1747periodics_reschedule (EV_P)
1748{
1749 int i;
1750
1751 /* adjust periodics after time jump */
1752 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1753 {
1754 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1755
1756 if (w->reschedule_cb)
1757 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1758 else if (w->interval)
1759 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1760
1761 ANHE_at_cache (periodics [i]);
1762 }
1763
1764 reheap (periodics, periodiccnt);
1765}
1766#endif
1767
1768void inline_speed
1769time_update (EV_P_ ev_tstamp max_block)
1770{
1771 int i;
1772
1773#if EV_USE_MONOTONIC
1774 if (expect_true (have_monotonic))
1775 {
1776 ev_tstamp odiff = rtmn_diff;
1777
1293 mn_now = get_clock (); 1778 mn_now = get_clock ();
1294 1779
1780 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1781 /* interpolate in the meantime */
1295 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1782 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1296 { 1783 {
1297 ev_rt_now = rtmn_diff + mn_now; 1784 ev_rt_now = rtmn_diff + mn_now;
1298 return 0; 1785 return;
1299 } 1786 }
1300 else 1787
1301 {
1302 now_floor = mn_now; 1788 now_floor = mn_now;
1303 ev_rt_now = ev_time (); 1789 ev_rt_now = ev_time ();
1304 return 1;
1305 }
1306}
1307 1790
1308void inline_size 1791 /* loop a few times, before making important decisions.
1309time_update (EV_P) 1792 * on the choice of "4": one iteration isn't enough,
1310{ 1793 * in case we get preempted during the calls to
1311 int i; 1794 * ev_time and get_clock. a second call is almost guaranteed
1312 1795 * to succeed in that case, though. and looping a few more times
1313#if EV_USE_MONOTONIC 1796 * doesn't hurt either as we only do this on time-jumps or
1314 if (expect_true (have_monotonic)) 1797 * in the unlikely event of having been preempted here.
1315 { 1798 */
1316 if (time_update_monotonic (EV_A)) 1799 for (i = 4; --i; )
1317 { 1800 {
1318 ev_tstamp odiff = rtmn_diff;
1319
1320 /* loop a few times, before making important decisions.
1321 * on the choice of "4": one iteration isn't enough,
1322 * in case we get preempted during the calls to
1323 * ev_time and get_clock. a second call is almost guaranteed
1324 * to succeed in that case, though. and looping a few more times
1325 * doesn't hurt either as we only do this on time-jumps or
1326 * in the unlikely event of having been preempted here.
1327 */
1328 for (i = 4; --i; )
1329 {
1330 rtmn_diff = ev_rt_now - mn_now; 1801 rtmn_diff = ev_rt_now - mn_now;
1331 1802
1332 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1803 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1333 return; /* all is well */ 1804 return; /* all is well */
1334 1805
1335 ev_rt_now = ev_time (); 1806 ev_rt_now = ev_time ();
1336 mn_now = get_clock (); 1807 mn_now = get_clock ();
1337 now_floor = mn_now; 1808 now_floor = mn_now;
1338 } 1809 }
1339 1810
1340# if EV_PERIODIC_ENABLE 1811# if EV_PERIODIC_ENABLE
1341 periodics_reschedule (EV_A); 1812 periodics_reschedule (EV_A);
1342# endif 1813# endif
1343 /* no timer adjustment, as the monotonic clock doesn't jump */ 1814 /* no timer adjustment, as the monotonic clock doesn't jump */
1344 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1815 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1345 }
1346 } 1816 }
1347 else 1817 else
1348#endif 1818#endif
1349 { 1819 {
1350 ev_rt_now = ev_time (); 1820 ev_rt_now = ev_time ();
1351 1821
1352 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1822 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1353 { 1823 {
1354#if EV_PERIODIC_ENABLE 1824#if EV_PERIODIC_ENABLE
1355 periodics_reschedule (EV_A); 1825 periodics_reschedule (EV_A);
1356#endif 1826#endif
1357
1358 /* adjust timers. this is easy, as the offset is the same for all of them */ 1827 /* adjust timers. this is easy, as the offset is the same for all of them */
1359 for (i = 0; i < timercnt; ++i) 1828 for (i = 0; i < timercnt; ++i)
1829 {
1830 ANHE *he = timers + i + HEAP0;
1360 ((WT)timers [i])->at += ev_rt_now - mn_now; 1831 ANHE_w (*he)->at += ev_rt_now - mn_now;
1832 ANHE_at_cache (*he);
1833 }
1361 } 1834 }
1362 1835
1363 mn_now = ev_rt_now; 1836 mn_now = ev_rt_now;
1364 } 1837 }
1365} 1838}
1379static int loop_done; 1852static int loop_done;
1380 1853
1381void 1854void
1382ev_loop (EV_P_ int flags) 1855ev_loop (EV_P_ int flags)
1383{ 1856{
1384 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1857 loop_done = EVUNLOOP_CANCEL;
1385 ? EVUNLOOP_ONE
1386 : EVUNLOOP_CANCEL;
1387 1858
1388 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1859 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1389 1860
1390 do 1861 do
1391 { 1862 {
1863#if EV_VERIFY >= 2
1864 ev_loop_verify (EV_A);
1865#endif
1866
1392#ifndef _WIN32 1867#ifndef _WIN32
1393 if (expect_false (curpid)) /* penalise the forking check even more */ 1868 if (expect_false (curpid)) /* penalise the forking check even more */
1394 if (expect_false (getpid () != curpid)) 1869 if (expect_false (getpid () != curpid))
1395 { 1870 {
1396 curpid = getpid (); 1871 curpid = getpid ();
1406 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1881 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1407 call_pending (EV_A); 1882 call_pending (EV_A);
1408 } 1883 }
1409#endif 1884#endif
1410 1885
1411 /* queue check watchers (and execute them) */ 1886 /* queue prepare watchers (and execute them) */
1412 if (expect_false (preparecnt)) 1887 if (expect_false (preparecnt))
1413 { 1888 {
1414 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1889 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1415 call_pending (EV_A); 1890 call_pending (EV_A);
1416 } 1891 }
1425 /* update fd-related kernel structures */ 1900 /* update fd-related kernel structures */
1426 fd_reify (EV_A); 1901 fd_reify (EV_A);
1427 1902
1428 /* calculate blocking time */ 1903 /* calculate blocking time */
1429 { 1904 {
1430 ev_tstamp block; 1905 ev_tstamp waittime = 0.;
1906 ev_tstamp sleeptime = 0.;
1431 1907
1432 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1908 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1433 block = 0.; /* do not block at all */
1434 else
1435 { 1909 {
1436 /* update time to cancel out callback processing overhead */ 1910 /* update time to cancel out callback processing overhead */
1437#if EV_USE_MONOTONIC
1438 if (expect_true (have_monotonic))
1439 time_update_monotonic (EV_A); 1911 time_update (EV_A_ 1e100);
1440 else
1441#endif
1442 {
1443 ev_rt_now = ev_time ();
1444 mn_now = ev_rt_now;
1445 }
1446 1912
1447 block = MAX_BLOCKTIME; 1913 waittime = MAX_BLOCKTIME;
1448 1914
1449 if (timercnt) 1915 if (timercnt)
1450 { 1916 {
1451 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1917 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1452 if (block > to) block = to; 1918 if (waittime > to) waittime = to;
1453 } 1919 }
1454 1920
1455#if EV_PERIODIC_ENABLE 1921#if EV_PERIODIC_ENABLE
1456 if (periodiccnt) 1922 if (periodiccnt)
1457 { 1923 {
1458 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1924 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1459 if (block > to) block = to; 1925 if (waittime > to) waittime = to;
1460 } 1926 }
1461#endif 1927#endif
1462 1928
1463 if (expect_false (block < 0.)) block = 0.; 1929 if (expect_false (waittime < timeout_blocktime))
1930 waittime = timeout_blocktime;
1931
1932 sleeptime = waittime - backend_fudge;
1933
1934 if (expect_true (sleeptime > io_blocktime))
1935 sleeptime = io_blocktime;
1936
1937 if (sleeptime)
1938 {
1939 ev_sleep (sleeptime);
1940 waittime -= sleeptime;
1941 }
1464 } 1942 }
1465 1943
1466 ++loop_count; 1944 ++loop_count;
1467 backend_poll (EV_A_ block); 1945 backend_poll (EV_A_ waittime);
1946
1947 /* update ev_rt_now, do magic */
1948 time_update (EV_A_ waittime + sleeptime);
1468 } 1949 }
1469
1470 /* update ev_rt_now, do magic */
1471 time_update (EV_A);
1472 1950
1473 /* queue pending timers and reschedule them */ 1951 /* queue pending timers and reschedule them */
1474 timers_reify (EV_A); /* relative timers called last */ 1952 timers_reify (EV_A); /* relative timers called last */
1475#if EV_PERIODIC_ENABLE 1953#if EV_PERIODIC_ENABLE
1476 periodics_reify (EV_A); /* absolute timers called first */ 1954 periodics_reify (EV_A); /* absolute timers called first */
1484 /* queue check watchers, to be executed first */ 1962 /* queue check watchers, to be executed first */
1485 if (expect_false (checkcnt)) 1963 if (expect_false (checkcnt))
1486 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1964 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1487 1965
1488 call_pending (EV_A); 1966 call_pending (EV_A);
1489
1490 } 1967 }
1491 while (expect_true (activecnt && !loop_done)); 1968 while (expect_true (
1969 activecnt
1970 && !loop_done
1971 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1972 ));
1492 1973
1493 if (loop_done == EVUNLOOP_ONE) 1974 if (loop_done == EVUNLOOP_ONE)
1494 loop_done = EVUNLOOP_CANCEL; 1975 loop_done = EVUNLOOP_CANCEL;
1495} 1976}
1496 1977
1523 head = &(*head)->next; 2004 head = &(*head)->next;
1524 } 2005 }
1525} 2006}
1526 2007
1527void inline_speed 2008void inline_speed
1528ev_clear_pending (EV_P_ W w) 2009clear_pending (EV_P_ W w)
1529{ 2010{
1530 if (w->pending) 2011 if (w->pending)
1531 { 2012 {
1532 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2013 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1533 w->pending = 0; 2014 w->pending = 0;
1534 } 2015 }
2016}
2017
2018int
2019ev_clear_pending (EV_P_ void *w)
2020{
2021 W w_ = (W)w;
2022 int pending = w_->pending;
2023
2024 if (expect_true (pending))
2025 {
2026 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2027 w_->pending = 0;
2028 p->w = 0;
2029 return p->events;
2030 }
2031 else
2032 return 0;
1535} 2033}
1536 2034
1537void inline_size 2035void inline_size
1538pri_adjust (EV_P_ W w) 2036pri_adjust (EV_P_ W w)
1539{ 2037{
1558 w->active = 0; 2056 w->active = 0;
1559} 2057}
1560 2058
1561/*****************************************************************************/ 2059/*****************************************************************************/
1562 2060
1563void 2061void noinline
1564ev_io_start (EV_P_ ev_io *w) 2062ev_io_start (EV_P_ ev_io *w)
1565{ 2063{
1566 int fd = w->fd; 2064 int fd = w->fd;
1567 2065
1568 if (expect_false (ev_is_active (w))) 2066 if (expect_false (ev_is_active (w)))
1569 return; 2067 return;
1570 2068
1571 assert (("ev_io_start called with negative fd", fd >= 0)); 2069 assert (("ev_io_start called with negative fd", fd >= 0));
1572 2070
2071 EV_FREQUENT_CHECK;
2072
1573 ev_start (EV_A_ (W)w, 1); 2073 ev_start (EV_A_ (W)w, 1);
1574 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2074 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1575 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2075 wlist_add (&anfds[fd].head, (WL)w);
1576 2076
1577 fd_change (EV_A_ fd); 2077 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1578} 2078 w->events &= ~EV_IOFDSET;
1579 2079
1580void 2080 EV_FREQUENT_CHECK;
2081}
2082
2083void noinline
1581ev_io_stop (EV_P_ ev_io *w) 2084ev_io_stop (EV_P_ ev_io *w)
1582{ 2085{
1583 ev_clear_pending (EV_A_ (W)w); 2086 clear_pending (EV_A_ (W)w);
1584 if (expect_false (!ev_is_active (w))) 2087 if (expect_false (!ev_is_active (w)))
1585 return; 2088 return;
1586 2089
1587 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2090 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1588 2091
2092 EV_FREQUENT_CHECK;
2093
1589 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2094 wlist_del (&anfds[w->fd].head, (WL)w);
1590 ev_stop (EV_A_ (W)w); 2095 ev_stop (EV_A_ (W)w);
1591 2096
1592 fd_change (EV_A_ w->fd); 2097 fd_change (EV_A_ w->fd, 1);
1593}
1594 2098
1595void 2099 EV_FREQUENT_CHECK;
2100}
2101
2102void noinline
1596ev_timer_start (EV_P_ ev_timer *w) 2103ev_timer_start (EV_P_ ev_timer *w)
1597{ 2104{
1598 if (expect_false (ev_is_active (w))) 2105 if (expect_false (ev_is_active (w)))
1599 return; 2106 return;
1600 2107
1601 ((WT)w)->at += mn_now; 2108 ev_at (w) += mn_now;
1602 2109
1603 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2110 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1604 2111
2112 EV_FREQUENT_CHECK;
2113
2114 ++timercnt;
1605 ev_start (EV_A_ (W)w, ++timercnt); 2115 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1606 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2116 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1607 timers [timercnt - 1] = w; 2117 ANHE_w (timers [ev_active (w)]) = (WT)w;
1608 upheap ((WT *)timers, timercnt - 1); 2118 ANHE_at_cache (timers [ev_active (w)]);
2119 upheap (timers, ev_active (w));
1609 2120
2121 EV_FREQUENT_CHECK;
2122
1610 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2123 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1611} 2124}
1612 2125
1613void 2126void noinline
1614ev_timer_stop (EV_P_ ev_timer *w) 2127ev_timer_stop (EV_P_ ev_timer *w)
1615{ 2128{
1616 ev_clear_pending (EV_A_ (W)w); 2129 clear_pending (EV_A_ (W)w);
1617 if (expect_false (!ev_is_active (w))) 2130 if (expect_false (!ev_is_active (w)))
1618 return; 2131 return;
1619 2132
1620 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2133 EV_FREQUENT_CHECK;
1621 2134
1622 { 2135 {
1623 int active = ((W)w)->active; 2136 int active = ev_active (w);
1624 2137
2138 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2139
2140 --timercnt;
2141
1625 if (expect_true (--active < --timercnt)) 2142 if (expect_true (active < timercnt + HEAP0))
1626 { 2143 {
1627 timers [active] = timers [timercnt]; 2144 timers [active] = timers [timercnt + HEAP0];
1628 adjustheap ((WT *)timers, timercnt, active); 2145 adjustheap (timers, timercnt, active);
1629 } 2146 }
1630 } 2147 }
1631 2148
1632 ((WT)w)->at -= mn_now; 2149 EV_FREQUENT_CHECK;
2150
2151 ev_at (w) -= mn_now;
1633 2152
1634 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
1635} 2154}
1636 2155
1637void 2156void noinline
1638ev_timer_again (EV_P_ ev_timer *w) 2157ev_timer_again (EV_P_ ev_timer *w)
1639{ 2158{
2159 EV_FREQUENT_CHECK;
2160
1640 if (ev_is_active (w)) 2161 if (ev_is_active (w))
1641 { 2162 {
1642 if (w->repeat) 2163 if (w->repeat)
1643 { 2164 {
1644 ((WT)w)->at = mn_now + w->repeat; 2165 ev_at (w) = mn_now + w->repeat;
2166 ANHE_at_cache (timers [ev_active (w)]);
1645 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2167 adjustheap (timers, timercnt, ev_active (w));
1646 } 2168 }
1647 else 2169 else
1648 ev_timer_stop (EV_A_ w); 2170 ev_timer_stop (EV_A_ w);
1649 } 2171 }
1650 else if (w->repeat) 2172 else if (w->repeat)
1651 { 2173 {
1652 w->at = w->repeat; 2174 ev_at (w) = w->repeat;
1653 ev_timer_start (EV_A_ w); 2175 ev_timer_start (EV_A_ w);
1654 } 2176 }
2177
2178 EV_FREQUENT_CHECK;
1655} 2179}
1656 2180
1657#if EV_PERIODIC_ENABLE 2181#if EV_PERIODIC_ENABLE
1658void 2182void noinline
1659ev_periodic_start (EV_P_ ev_periodic *w) 2183ev_periodic_start (EV_P_ ev_periodic *w)
1660{ 2184{
1661 if (expect_false (ev_is_active (w))) 2185 if (expect_false (ev_is_active (w)))
1662 return; 2186 return;
1663 2187
1664 if (w->reschedule_cb) 2188 if (w->reschedule_cb)
1665 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2189 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1666 else if (w->interval) 2190 else if (w->interval)
1667 { 2191 {
1668 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2192 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1669 /* this formula differs from the one in periodic_reify because we do not always round up */ 2193 /* this formula differs from the one in periodic_reify because we do not always round up */
1670 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2194 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1671 } 2195 }
2196 else
2197 ev_at (w) = w->offset;
1672 2198
2199 EV_FREQUENT_CHECK;
2200
2201 ++periodiccnt;
1673 ev_start (EV_A_ (W)w, ++periodiccnt); 2202 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1674 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2203 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1675 periodics [periodiccnt - 1] = w; 2204 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1676 upheap ((WT *)periodics, periodiccnt - 1); 2205 ANHE_at_cache (periodics [ev_active (w)]);
2206 upheap (periodics, ev_active (w));
1677 2207
2208 EV_FREQUENT_CHECK;
2209
1678 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2210 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1679} 2211}
1680 2212
1681void 2213void noinline
1682ev_periodic_stop (EV_P_ ev_periodic *w) 2214ev_periodic_stop (EV_P_ ev_periodic *w)
1683{ 2215{
1684 ev_clear_pending (EV_A_ (W)w); 2216 clear_pending (EV_A_ (W)w);
1685 if (expect_false (!ev_is_active (w))) 2217 if (expect_false (!ev_is_active (w)))
1686 return; 2218 return;
1687 2219
1688 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2220 EV_FREQUENT_CHECK;
1689 2221
1690 { 2222 {
1691 int active = ((W)w)->active; 2223 int active = ev_active (w);
1692 2224
2225 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2226
2227 --periodiccnt;
2228
1693 if (expect_true (--active < --periodiccnt)) 2229 if (expect_true (active < periodiccnt + HEAP0))
1694 { 2230 {
1695 periodics [active] = periodics [periodiccnt]; 2231 periodics [active] = periodics [periodiccnt + HEAP0];
1696 adjustheap ((WT *)periodics, periodiccnt, active); 2232 adjustheap (periodics, periodiccnt, active);
1697 } 2233 }
1698 } 2234 }
1699 2235
2236 EV_FREQUENT_CHECK;
2237
1700 ev_stop (EV_A_ (W)w); 2238 ev_stop (EV_A_ (W)w);
1701} 2239}
1702 2240
1703void 2241void noinline
1704ev_periodic_again (EV_P_ ev_periodic *w) 2242ev_periodic_again (EV_P_ ev_periodic *w)
1705{ 2243{
1706 /* TODO: use adjustheap and recalculation */ 2244 /* TODO: use adjustheap and recalculation */
1707 ev_periodic_stop (EV_A_ w); 2245 ev_periodic_stop (EV_A_ w);
1708 ev_periodic_start (EV_A_ w); 2246 ev_periodic_start (EV_A_ w);
1711 2249
1712#ifndef SA_RESTART 2250#ifndef SA_RESTART
1713# define SA_RESTART 0 2251# define SA_RESTART 0
1714#endif 2252#endif
1715 2253
1716void 2254void noinline
1717ev_signal_start (EV_P_ ev_signal *w) 2255ev_signal_start (EV_P_ ev_signal *w)
1718{ 2256{
1719#if EV_MULTIPLICITY 2257#if EV_MULTIPLICITY
1720 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2258 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1721#endif 2259#endif
1722 if (expect_false (ev_is_active (w))) 2260 if (expect_false (ev_is_active (w)))
1723 return; 2261 return;
1724 2262
1725 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2263 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1726 2264
2265 evpipe_init (EV_A);
2266
2267 EV_FREQUENT_CHECK;
2268
2269 {
2270#ifndef _WIN32
2271 sigset_t full, prev;
2272 sigfillset (&full);
2273 sigprocmask (SIG_SETMASK, &full, &prev);
2274#endif
2275
2276 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2277
2278#ifndef _WIN32
2279 sigprocmask (SIG_SETMASK, &prev, 0);
2280#endif
2281 }
2282
1727 ev_start (EV_A_ (W)w, 1); 2283 ev_start (EV_A_ (W)w, 1);
1728 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1729 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2284 wlist_add (&signals [w->signum - 1].head, (WL)w);
1730 2285
1731 if (!((WL)w)->next) 2286 if (!((WL)w)->next)
1732 { 2287 {
1733#if _WIN32 2288#if _WIN32
1734 signal (w->signum, sighandler); 2289 signal (w->signum, ev_sighandler);
1735#else 2290#else
1736 struct sigaction sa; 2291 struct sigaction sa;
1737 sa.sa_handler = sighandler; 2292 sa.sa_handler = ev_sighandler;
1738 sigfillset (&sa.sa_mask); 2293 sigfillset (&sa.sa_mask);
1739 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2294 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1740 sigaction (w->signum, &sa, 0); 2295 sigaction (w->signum, &sa, 0);
1741#endif 2296#endif
1742 } 2297 }
1743}
1744 2298
1745void 2299 EV_FREQUENT_CHECK;
2300}
2301
2302void noinline
1746ev_signal_stop (EV_P_ ev_signal *w) 2303ev_signal_stop (EV_P_ ev_signal *w)
1747{ 2304{
1748 ev_clear_pending (EV_A_ (W)w); 2305 clear_pending (EV_A_ (W)w);
1749 if (expect_false (!ev_is_active (w))) 2306 if (expect_false (!ev_is_active (w)))
1750 return; 2307 return;
1751 2308
2309 EV_FREQUENT_CHECK;
2310
1752 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2311 wlist_del (&signals [w->signum - 1].head, (WL)w);
1753 ev_stop (EV_A_ (W)w); 2312 ev_stop (EV_A_ (W)w);
1754 2313
1755 if (!signals [w->signum - 1].head) 2314 if (!signals [w->signum - 1].head)
1756 signal (w->signum, SIG_DFL); 2315 signal (w->signum, SIG_DFL);
2316
2317 EV_FREQUENT_CHECK;
1757} 2318}
1758 2319
1759void 2320void
1760ev_child_start (EV_P_ ev_child *w) 2321ev_child_start (EV_P_ ev_child *w)
1761{ 2322{
1763 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2324 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1764#endif 2325#endif
1765 if (expect_false (ev_is_active (w))) 2326 if (expect_false (ev_is_active (w)))
1766 return; 2327 return;
1767 2328
2329 EV_FREQUENT_CHECK;
2330
1768 ev_start (EV_A_ (W)w, 1); 2331 ev_start (EV_A_ (W)w, 1);
1769 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2332 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2333
2334 EV_FREQUENT_CHECK;
1770} 2335}
1771 2336
1772void 2337void
1773ev_child_stop (EV_P_ ev_child *w) 2338ev_child_stop (EV_P_ ev_child *w)
1774{ 2339{
1775 ev_clear_pending (EV_A_ (W)w); 2340 clear_pending (EV_A_ (W)w);
1776 if (expect_false (!ev_is_active (w))) 2341 if (expect_false (!ev_is_active (w)))
1777 return; 2342 return;
1778 2343
2344 EV_FREQUENT_CHECK;
2345
1779 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2346 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1780 ev_stop (EV_A_ (W)w); 2347 ev_stop (EV_A_ (W)w);
2348
2349 EV_FREQUENT_CHECK;
1781} 2350}
1782 2351
1783#if EV_STAT_ENABLE 2352#if EV_STAT_ENABLE
1784 2353
1785# ifdef _WIN32 2354# ifdef _WIN32
1803 if (w->wd < 0) 2372 if (w->wd < 0)
1804 { 2373 {
1805 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2374 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1806 2375
1807 /* monitor some parent directory for speedup hints */ 2376 /* monitor some parent directory for speedup hints */
2377 /* note that exceeding the hardcoded limit is not a correctness issue, */
2378 /* but an efficiency issue only */
1808 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2379 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1809 { 2380 {
1810 char path [4096]; 2381 char path [4096];
1811 strcpy (path, w->path); 2382 strcpy (path, w->path);
1812 2383
2011 else 2582 else
2012#endif 2583#endif
2013 ev_timer_start (EV_A_ &w->timer); 2584 ev_timer_start (EV_A_ &w->timer);
2014 2585
2015 ev_start (EV_A_ (W)w, 1); 2586 ev_start (EV_A_ (W)w, 1);
2587
2588 EV_FREQUENT_CHECK;
2016} 2589}
2017 2590
2018void 2591void
2019ev_stat_stop (EV_P_ ev_stat *w) 2592ev_stat_stop (EV_P_ ev_stat *w)
2020{ 2593{
2021 ev_clear_pending (EV_A_ (W)w); 2594 clear_pending (EV_A_ (W)w);
2022 if (expect_false (!ev_is_active (w))) 2595 if (expect_false (!ev_is_active (w)))
2023 return; 2596 return;
2024 2597
2598 EV_FREQUENT_CHECK;
2599
2025#if EV_USE_INOTIFY 2600#if EV_USE_INOTIFY
2026 infy_del (EV_A_ w); 2601 infy_del (EV_A_ w);
2027#endif 2602#endif
2028 ev_timer_stop (EV_A_ &w->timer); 2603 ev_timer_stop (EV_A_ &w->timer);
2029 2604
2030 ev_stop (EV_A_ (W)w); 2605 ev_stop (EV_A_ (W)w);
2606
2607 EV_FREQUENT_CHECK;
2031} 2608}
2032#endif 2609#endif
2033 2610
2034#if EV_IDLE_ENABLE 2611#if EV_IDLE_ENABLE
2035void 2612void
2037{ 2614{
2038 if (expect_false (ev_is_active (w))) 2615 if (expect_false (ev_is_active (w)))
2039 return; 2616 return;
2040 2617
2041 pri_adjust (EV_A_ (W)w); 2618 pri_adjust (EV_A_ (W)w);
2619
2620 EV_FREQUENT_CHECK;
2042 2621
2043 { 2622 {
2044 int active = ++idlecnt [ABSPRI (w)]; 2623 int active = ++idlecnt [ABSPRI (w)];
2045 2624
2046 ++idleall; 2625 ++idleall;
2047 ev_start (EV_A_ (W)w, active); 2626 ev_start (EV_A_ (W)w, active);
2048 2627
2049 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2628 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2050 idles [ABSPRI (w)][active - 1] = w; 2629 idles [ABSPRI (w)][active - 1] = w;
2051 } 2630 }
2631
2632 EV_FREQUENT_CHECK;
2052} 2633}
2053 2634
2054void 2635void
2055ev_idle_stop (EV_P_ ev_idle *w) 2636ev_idle_stop (EV_P_ ev_idle *w)
2056{ 2637{
2057 ev_clear_pending (EV_A_ (W)w); 2638 clear_pending (EV_A_ (W)w);
2058 if (expect_false (!ev_is_active (w))) 2639 if (expect_false (!ev_is_active (w)))
2059 return; 2640 return;
2060 2641
2642 EV_FREQUENT_CHECK;
2643
2061 { 2644 {
2062 int active = ((W)w)->active; 2645 int active = ev_active (w);
2063 2646
2064 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2647 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2065 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2648 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2066 2649
2067 ev_stop (EV_A_ (W)w); 2650 ev_stop (EV_A_ (W)w);
2068 --idleall; 2651 --idleall;
2069 } 2652 }
2653
2654 EV_FREQUENT_CHECK;
2070} 2655}
2071#endif 2656#endif
2072 2657
2073void 2658void
2074ev_prepare_start (EV_P_ ev_prepare *w) 2659ev_prepare_start (EV_P_ ev_prepare *w)
2075{ 2660{
2076 if (expect_false (ev_is_active (w))) 2661 if (expect_false (ev_is_active (w)))
2077 return; 2662 return;
2663
2664 EV_FREQUENT_CHECK;
2078 2665
2079 ev_start (EV_A_ (W)w, ++preparecnt); 2666 ev_start (EV_A_ (W)w, ++preparecnt);
2080 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2667 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2081 prepares [preparecnt - 1] = w; 2668 prepares [preparecnt - 1] = w;
2669
2670 EV_FREQUENT_CHECK;
2082} 2671}
2083 2672
2084void 2673void
2085ev_prepare_stop (EV_P_ ev_prepare *w) 2674ev_prepare_stop (EV_P_ ev_prepare *w)
2086{ 2675{
2087 ev_clear_pending (EV_A_ (W)w); 2676 clear_pending (EV_A_ (W)w);
2088 if (expect_false (!ev_is_active (w))) 2677 if (expect_false (!ev_is_active (w)))
2089 return; 2678 return;
2090 2679
2680 EV_FREQUENT_CHECK;
2681
2091 { 2682 {
2092 int active = ((W)w)->active; 2683 int active = ev_active (w);
2684
2093 prepares [active - 1] = prepares [--preparecnt]; 2685 prepares [active - 1] = prepares [--preparecnt];
2094 ((W)prepares [active - 1])->active = active; 2686 ev_active (prepares [active - 1]) = active;
2095 } 2687 }
2096 2688
2097 ev_stop (EV_A_ (W)w); 2689 ev_stop (EV_A_ (W)w);
2690
2691 EV_FREQUENT_CHECK;
2098} 2692}
2099 2693
2100void 2694void
2101ev_check_start (EV_P_ ev_check *w) 2695ev_check_start (EV_P_ ev_check *w)
2102{ 2696{
2103 if (expect_false (ev_is_active (w))) 2697 if (expect_false (ev_is_active (w)))
2104 return; 2698 return;
2699
2700 EV_FREQUENT_CHECK;
2105 2701
2106 ev_start (EV_A_ (W)w, ++checkcnt); 2702 ev_start (EV_A_ (W)w, ++checkcnt);
2107 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2703 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2108 checks [checkcnt - 1] = w; 2704 checks [checkcnt - 1] = w;
2705
2706 EV_FREQUENT_CHECK;
2109} 2707}
2110 2708
2111void 2709void
2112ev_check_stop (EV_P_ ev_check *w) 2710ev_check_stop (EV_P_ ev_check *w)
2113{ 2711{
2114 ev_clear_pending (EV_A_ (W)w); 2712 clear_pending (EV_A_ (W)w);
2115 if (expect_false (!ev_is_active (w))) 2713 if (expect_false (!ev_is_active (w)))
2116 return; 2714 return;
2117 2715
2716 EV_FREQUENT_CHECK;
2717
2118 { 2718 {
2119 int active = ((W)w)->active; 2719 int active = ev_active (w);
2720
2120 checks [active - 1] = checks [--checkcnt]; 2721 checks [active - 1] = checks [--checkcnt];
2121 ((W)checks [active - 1])->active = active; 2722 ev_active (checks [active - 1]) = active;
2122 } 2723 }
2123 2724
2124 ev_stop (EV_A_ (W)w); 2725 ev_stop (EV_A_ (W)w);
2726
2727 EV_FREQUENT_CHECK;
2125} 2728}
2126 2729
2127#if EV_EMBED_ENABLE 2730#if EV_EMBED_ENABLE
2128void noinline 2731void noinline
2129ev_embed_sweep (EV_P_ ev_embed *w) 2732ev_embed_sweep (EV_P_ ev_embed *w)
2130{ 2733{
2131 ev_loop (w->loop, EVLOOP_NONBLOCK); 2734 ev_loop (w->other, EVLOOP_NONBLOCK);
2132} 2735}
2133 2736
2134static void 2737static void
2135embed_cb (EV_P_ ev_io *io, int revents) 2738embed_io_cb (EV_P_ ev_io *io, int revents)
2136{ 2739{
2137 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2740 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2138 2741
2139 if (ev_cb (w)) 2742 if (ev_cb (w))
2140 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2743 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2141 else 2744 else
2142 ev_embed_sweep (loop, w); 2745 ev_loop (w->other, EVLOOP_NONBLOCK);
2143} 2746}
2747
2748static void
2749embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2750{
2751 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2752
2753 {
2754 struct ev_loop *loop = w->other;
2755
2756 while (fdchangecnt)
2757 {
2758 fd_reify (EV_A);
2759 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2760 }
2761 }
2762}
2763
2764#if 0
2765static void
2766embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2767{
2768 ev_idle_stop (EV_A_ idle);
2769}
2770#endif
2144 2771
2145void 2772void
2146ev_embed_start (EV_P_ ev_embed *w) 2773ev_embed_start (EV_P_ ev_embed *w)
2147{ 2774{
2148 if (expect_false (ev_is_active (w))) 2775 if (expect_false (ev_is_active (w)))
2149 return; 2776 return;
2150 2777
2151 { 2778 {
2152 struct ev_loop *loop = w->loop; 2779 struct ev_loop *loop = w->other;
2153 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2780 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2154 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2781 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2155 } 2782 }
2783
2784 EV_FREQUENT_CHECK;
2156 2785
2157 ev_set_priority (&w->io, ev_priority (w)); 2786 ev_set_priority (&w->io, ev_priority (w));
2158 ev_io_start (EV_A_ &w->io); 2787 ev_io_start (EV_A_ &w->io);
2159 2788
2789 ev_prepare_init (&w->prepare, embed_prepare_cb);
2790 ev_set_priority (&w->prepare, EV_MINPRI);
2791 ev_prepare_start (EV_A_ &w->prepare);
2792
2793 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2794
2160 ev_start (EV_A_ (W)w, 1); 2795 ev_start (EV_A_ (W)w, 1);
2796
2797 EV_FREQUENT_CHECK;
2161} 2798}
2162 2799
2163void 2800void
2164ev_embed_stop (EV_P_ ev_embed *w) 2801ev_embed_stop (EV_P_ ev_embed *w)
2165{ 2802{
2166 ev_clear_pending (EV_A_ (W)w); 2803 clear_pending (EV_A_ (W)w);
2167 if (expect_false (!ev_is_active (w))) 2804 if (expect_false (!ev_is_active (w)))
2168 return; 2805 return;
2169 2806
2807 EV_FREQUENT_CHECK;
2808
2170 ev_io_stop (EV_A_ &w->io); 2809 ev_io_stop (EV_A_ &w->io);
2810 ev_prepare_stop (EV_A_ &w->prepare);
2171 2811
2172 ev_stop (EV_A_ (W)w); 2812 ev_stop (EV_A_ (W)w);
2813
2814 EV_FREQUENT_CHECK;
2173} 2815}
2174#endif 2816#endif
2175 2817
2176#if EV_FORK_ENABLE 2818#if EV_FORK_ENABLE
2177void 2819void
2178ev_fork_start (EV_P_ ev_fork *w) 2820ev_fork_start (EV_P_ ev_fork *w)
2179{ 2821{
2180 if (expect_false (ev_is_active (w))) 2822 if (expect_false (ev_is_active (w)))
2181 return; 2823 return;
2824
2825 EV_FREQUENT_CHECK;
2182 2826
2183 ev_start (EV_A_ (W)w, ++forkcnt); 2827 ev_start (EV_A_ (W)w, ++forkcnt);
2184 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2828 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2185 forks [forkcnt - 1] = w; 2829 forks [forkcnt - 1] = w;
2830
2831 EV_FREQUENT_CHECK;
2186} 2832}
2187 2833
2188void 2834void
2189ev_fork_stop (EV_P_ ev_fork *w) 2835ev_fork_stop (EV_P_ ev_fork *w)
2190{ 2836{
2191 ev_clear_pending (EV_A_ (W)w); 2837 clear_pending (EV_A_ (W)w);
2192 if (expect_false (!ev_is_active (w))) 2838 if (expect_false (!ev_is_active (w)))
2193 return; 2839 return;
2194 2840
2841 EV_FREQUENT_CHECK;
2842
2195 { 2843 {
2196 int active = ((W)w)->active; 2844 int active = ev_active (w);
2845
2197 forks [active - 1] = forks [--forkcnt]; 2846 forks [active - 1] = forks [--forkcnt];
2198 ((W)forks [active - 1])->active = active; 2847 ev_active (forks [active - 1]) = active;
2199 } 2848 }
2200 2849
2201 ev_stop (EV_A_ (W)w); 2850 ev_stop (EV_A_ (W)w);
2851
2852 EV_FREQUENT_CHECK;
2853}
2854#endif
2855
2856#if EV_ASYNC_ENABLE
2857void
2858ev_async_start (EV_P_ ev_async *w)
2859{
2860 if (expect_false (ev_is_active (w)))
2861 return;
2862
2863 evpipe_init (EV_A);
2864
2865 EV_FREQUENT_CHECK;
2866
2867 ev_start (EV_A_ (W)w, ++asynccnt);
2868 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2869 asyncs [asynccnt - 1] = w;
2870
2871 EV_FREQUENT_CHECK;
2872}
2873
2874void
2875ev_async_stop (EV_P_ ev_async *w)
2876{
2877 clear_pending (EV_A_ (W)w);
2878 if (expect_false (!ev_is_active (w)))
2879 return;
2880
2881 EV_FREQUENT_CHECK;
2882
2883 {
2884 int active = ev_active (w);
2885
2886 asyncs [active - 1] = asyncs [--asynccnt];
2887 ev_active (asyncs [active - 1]) = active;
2888 }
2889
2890 ev_stop (EV_A_ (W)w);
2891
2892 EV_FREQUENT_CHECK;
2893}
2894
2895void
2896ev_async_send (EV_P_ ev_async *w)
2897{
2898 w->sent = 1;
2899 evpipe_write (EV_A_ &gotasync);
2202} 2900}
2203#endif 2901#endif
2204 2902
2205/*****************************************************************************/ 2903/*****************************************************************************/
2206 2904
2264 ev_timer_set (&once->to, timeout, 0.); 2962 ev_timer_set (&once->to, timeout, 0.);
2265 ev_timer_start (EV_A_ &once->to); 2963 ev_timer_start (EV_A_ &once->to);
2266 } 2964 }
2267} 2965}
2268 2966
2967#if EV_MULTIPLICITY
2968 #include "ev_wrap.h"
2969#endif
2970
2269#ifdef __cplusplus 2971#ifdef __cplusplus
2270} 2972}
2271#endif 2973#endif
2272 2974

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines