ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.165 by root, Fri Dec 7 18:09:38 2007 UTC vs.
Revision 1.294 by root, Wed Jul 8 02:46:05 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
56# endif 87# endif
57# endif 88# endif
58 89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
107#endif 146#endif
108 147
109#include <math.h> 148#include <math.h>
110#include <stdlib.h> 149#include <stdlib.h>
111#include <fcntl.h> 150#include <fcntl.h>
129#ifndef _WIN32 168#ifndef _WIN32
130# include <sys/time.h> 169# include <sys/time.h>
131# include <sys/wait.h> 170# include <sys/wait.h>
132# include <unistd.h> 171# include <unistd.h>
133#else 172#else
173# include <io.h>
134# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 175# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
138# endif 178# endif
139#endif 179#endif
140 180
141/**/ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
142 190
143#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
144# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
145#endif 197#endif
146 198
147#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
201#endif
202
203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
207# define EV_USE_NANOSLEEP 0
208# endif
149#endif 209#endif
150 210
151#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
153#endif 213#endif
159# define EV_USE_POLL 1 219# define EV_USE_POLL 1
160# endif 220# endif
161#endif 221#endif
162 222
163#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
164# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
228# endif
165#endif 229#endif
166 230
167#ifndef EV_USE_KQUEUE 231#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 232# define EV_USE_KQUEUE 0
169#endif 233#endif
171#ifndef EV_USE_PORT 235#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 236# define EV_USE_PORT 0
173#endif 237#endif
174 238
175#ifndef EV_USE_INOTIFY 239#ifndef EV_USE_INOTIFY
240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
241# define EV_USE_INOTIFY 1
242# else
176# define EV_USE_INOTIFY 0 243# define EV_USE_INOTIFY 0
244# endif
177#endif 245#endif
178 246
179#ifndef EV_PID_HASHSIZE 247#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 248# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 249# define EV_PID_HASHSIZE 1
190# else 258# else
191# define EV_INOTIFY_HASHSIZE 16 259# define EV_INOTIFY_HASHSIZE 16
192# endif 260# endif
193#endif 261#endif
194 262
195/**/ 263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 304
197#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
200#endif 308#endif
202#ifndef CLOCK_REALTIME 310#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 311# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 312# define EV_USE_REALTIME 0
205#endif 313#endif
206 314
315#if !EV_STAT_ENABLE
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318#endif
319
320#if !EV_USE_NANOSLEEP
321# ifndef _WIN32
322# include <sys/select.h>
323# endif
324#endif
325
326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
335#endif
336
207#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 338# include <winsock.h>
209#endif 339#endif
210 340
211#if !EV_STAT_ENABLE 341#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
213#endif 346# endif
214 347int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 348# ifdef __cplusplus
216# include <sys/inotify.h> 349}
350# endif
217#endif 351#endif
218 352
219/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
360
361/*
362 * This is used to avoid floating point rounding problems.
363 * It is added to ev_rt_now when scheduling periodics
364 * to ensure progress, time-wise, even when rounding
365 * errors are against us.
366 * This value is good at least till the year 4000.
367 * Better solutions welcome.
368 */
369#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 370
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 371#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 372#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 373/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 374
225#if __GNUC__ >= 3 375#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 376# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 377# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 378#else
236# define expect(expr,value) (expr) 379# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 380# define noinline
381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
382# define inline
383# endif
240#endif 384#endif
241 385
242#define expect_false(expr) expect ((expr) != 0, 0) 386#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 387#define expect_true(expr) expect ((expr) != 0, 1)
388#define inline_size static inline
389
390#if EV_MINIMAL
391# define inline_speed static noinline
392#else
393# define inline_speed static inline
394#endif
244 395
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 397#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 398
248#define EMPTY /* required for microsofts broken pseudo-c compiler */ 399#define EMPTY /* required for microsofts broken pseudo-c compiler */
250 401
251typedef ev_watcher *W; 402typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 403typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 404typedef ev_watcher_time *WT;
254 405
406#define ev_active(w) ((W)(w))->active
407#define ev_at(w) ((WT)(w))->at
408
409#if EV_USE_REALTIME
410/* sig_atomic_t is used to avoid per-thread variables or locking but still */
411/* giving it a reasonably high chance of working on typical architetcures */
412static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
413#endif
414
415#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 416static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
417#endif
256 418
257#ifdef _WIN32 419#ifdef _WIN32
258# include "ev_win32.c" 420# include "ev_win32.c"
259#endif 421#endif
260 422
267{ 429{
268 syserr_cb = cb; 430 syserr_cb = cb;
269} 431}
270 432
271static void noinline 433static void noinline
272syserr (const char *msg) 434ev_syserr (const char *msg)
273{ 435{
274 if (!msg) 436 if (!msg)
275 msg = "(libev) system error"; 437 msg = "(libev) system error";
276 438
277 if (syserr_cb) 439 if (syserr_cb)
281 perror (msg); 443 perror (msg);
282 abort (); 444 abort ();
283 } 445 }
284} 446}
285 447
448static void *
449ev_realloc_emul (void *ptr, long size)
450{
451 /* some systems, notably openbsd and darwin, fail to properly
452 * implement realloc (x, 0) (as required by both ansi c-98 and
453 * the single unix specification, so work around them here.
454 */
455
456 if (size)
457 return realloc (ptr, size);
458
459 free (ptr);
460 return 0;
461}
462
286static void *(*alloc)(void *ptr, long size); 463static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 464
288void 465void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 466ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 467{
291 alloc = cb; 468 alloc = cb;
292} 469}
293 470
294inline_speed void * 471inline_speed void *
295ev_realloc (void *ptr, long size) 472ev_realloc (void *ptr, long size)
296{ 473{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 474 ptr = alloc (ptr, size);
298 475
299 if (!ptr && size) 476 if (!ptr && size)
300 { 477 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 478 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 479 abort ();
308#define ev_malloc(size) ev_realloc (0, (size)) 485#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 486#define ev_free(ptr) ev_realloc ((ptr), 0)
310 487
311/*****************************************************************************/ 488/*****************************************************************************/
312 489
490/* file descriptor info structure */
313typedef struct 491typedef struct
314{ 492{
315 WL head; 493 WL head;
316 unsigned char events; 494 unsigned char events; /* the events watched for */
495 unsigned char reify; /* flag set when this ANFD needs reification */
496 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 497 unsigned char unused;
498#if EV_USE_EPOLL
499 unsigned int egen; /* generation counter to counter epoll bugs */
500#endif
318#if EV_SELECT_IS_WINSOCKET 501#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 502 SOCKET handle;
320#endif 503#endif
321} ANFD; 504} ANFD;
322 505
506/* stores the pending event set for a given watcher */
323typedef struct 507typedef struct
324{ 508{
325 W w; 509 W w;
326 int events; 510 int events; /* the pending event set for the given watcher */
327} ANPENDING; 511} ANPENDING;
328 512
329#if EV_USE_INOTIFY 513#if EV_USE_INOTIFY
514/* hash table entry per inotify-id */
330typedef struct 515typedef struct
331{ 516{
332 WL head; 517 WL head;
333} ANFS; 518} ANFS;
519#endif
520
521/* Heap Entry */
522#if EV_HEAP_CACHE_AT
523 /* a heap element */
524 typedef struct {
525 ev_tstamp at;
526 WT w;
527 } ANHE;
528
529 #define ANHE_w(he) (he).w /* access watcher, read-write */
530 #define ANHE_at(he) (he).at /* access cached at, read-only */
531 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
532#else
533 /* a heap element */
534 typedef WT ANHE;
535
536 #define ANHE_w(he) (he)
537 #define ANHE_at(he) (he)->at
538 #define ANHE_at_cache(he)
334#endif 539#endif
335 540
336#if EV_MULTIPLICITY 541#if EV_MULTIPLICITY
337 542
338 struct ev_loop 543 struct ev_loop
359 564
360#endif 565#endif
361 566
362/*****************************************************************************/ 567/*****************************************************************************/
363 568
569#ifndef EV_HAVE_EV_TIME
364ev_tstamp 570ev_tstamp
365ev_time (void) 571ev_time (void)
366{ 572{
367#if EV_USE_REALTIME 573#if EV_USE_REALTIME
574 if (expect_true (have_realtime))
575 {
368 struct timespec ts; 576 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 577 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 578 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 579 }
580#endif
581
372 struct timeval tv; 582 struct timeval tv;
373 gettimeofday (&tv, 0); 583 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 584 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 585}
586#endif
377 587
378ev_tstamp inline_size 588inline_size ev_tstamp
379get_clock (void) 589get_clock (void)
380{ 590{
381#if EV_USE_MONOTONIC 591#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 592 if (expect_true (have_monotonic))
383 { 593 {
396{ 606{
397 return ev_rt_now; 607 return ev_rt_now;
398} 608}
399#endif 609#endif
400 610
401int inline_size 611void
612ev_sleep (ev_tstamp delay)
613{
614 if (delay > 0.)
615 {
616#if EV_USE_NANOSLEEP
617 struct timespec ts;
618
619 ts.tv_sec = (time_t)delay;
620 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
621
622 nanosleep (&ts, 0);
623#elif defined(_WIN32)
624 Sleep ((unsigned long)(delay * 1e3));
625#else
626 struct timeval tv;
627
628 tv.tv_sec = (time_t)delay;
629 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
630
631 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
632 /* somehting not guaranteed by newer posix versions, but guaranteed */
633 /* by older ones */
634 select (0, 0, 0, 0, &tv);
635#endif
636 }
637}
638
639/*****************************************************************************/
640
641#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
642
643/* find a suitable new size for the given array, */
644/* hopefully by rounding to a ncie-to-malloc size */
645inline_size int
402array_nextsize (int elem, int cur, int cnt) 646array_nextsize (int elem, int cur, int cnt)
403{ 647{
404 int ncur = cur + 1; 648 int ncur = cur + 1;
405 649
406 do 650 do
407 ncur <<= 1; 651 ncur <<= 1;
408 while (cnt > ncur); 652 while (cnt > ncur);
409 653
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 654 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
411 if (elem * ncur > 4096) 655 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
412 { 656 {
413 ncur *= elem; 657 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 658 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
415 ncur = ncur - sizeof (void *) * 4; 659 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem; 660 ncur /= elem;
417 } 661 }
418 662
419 return ncur; 663 return ncur;
420} 664}
421 665
422inline_speed void * 666static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 667array_realloc (int elem, void *base, int *cur, int cnt)
424{ 668{
425 *cur = array_nextsize (elem, *cur, cnt); 669 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 670 return ev_realloc (base, elem * *cur);
427} 671}
672
673#define array_init_zero(base,count) \
674 memset ((void *)(base), 0, sizeof (*(base)) * (count))
428 675
429#define array_needsize(type,base,cur,cnt,init) \ 676#define array_needsize(type,base,cur,cnt,init) \
430 if (expect_false ((cnt) > (cur))) \ 677 if (expect_false ((cnt) > (cur))) \
431 { \ 678 { \
432 int ocur_ = (cur); \ 679 int ocur_ = (cur); \
444 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 691 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
445 } 692 }
446#endif 693#endif
447 694
448#define array_free(stem, idx) \ 695#define array_free(stem, idx) \
449 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 696 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
450 697
451/*****************************************************************************/ 698/*****************************************************************************/
699
700/* dummy callback for pending events */
701static void noinline
702pendingcb (EV_P_ ev_prepare *w, int revents)
703{
704}
452 705
453void noinline 706void noinline
454ev_feed_event (EV_P_ void *w, int revents) 707ev_feed_event (EV_P_ void *w, int revents)
455{ 708{
456 W w_ = (W)w; 709 W w_ = (W)w;
710 int pri = ABSPRI (w_);
457 711
458 if (expect_false (w_->pending)) 712 if (expect_false (w_->pending))
713 pendings [pri][w_->pending - 1].events |= revents;
714 else
459 { 715 {
716 w_->pending = ++pendingcnt [pri];
717 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
718 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 719 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 720 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 721}
469 722
470void inline_size 723inline_speed void
724feed_reverse (EV_P_ W w)
725{
726 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
727 rfeeds [rfeedcnt++] = w;
728}
729
730inline_size void
731feed_reverse_done (EV_P_ int revents)
732{
733 do
734 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
735 while (rfeedcnt);
736}
737
738inline_speed void
471queue_events (EV_P_ W *events, int eventcnt, int type) 739queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 740{
473 int i; 741 int i;
474 742
475 for (i = 0; i < eventcnt; ++i) 743 for (i = 0; i < eventcnt; ++i)
476 ev_feed_event (EV_A_ events [i], type); 744 ev_feed_event (EV_A_ events [i], type);
477} 745}
478 746
479/*****************************************************************************/ 747/*****************************************************************************/
480 748
481void inline_size 749inline_speed void
482anfds_init (ANFD *base, int count)
483{
484 while (count--)
485 {
486 base->head = 0;
487 base->events = EV_NONE;
488 base->reify = 0;
489
490 ++base;
491 }
492}
493
494void inline_speed
495fd_event (EV_P_ int fd, int revents) 750fd_event (EV_P_ int fd, int revents)
496{ 751{
497 ANFD *anfd = anfds + fd; 752 ANFD *anfd = anfds + fd;
498 ev_io *w; 753 ev_io *w;
499 754
507} 762}
508 763
509void 764void
510ev_feed_fd_event (EV_P_ int fd, int revents) 765ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 766{
767 if (fd >= 0 && fd < anfdmax)
512 fd_event (EV_A_ fd, revents); 768 fd_event (EV_A_ fd, revents);
513} 769}
514 770
515void inline_size 771/* make sure the external fd watch events are in-sync */
772/* with the kernel/libev internal state */
773inline_size void
516fd_reify (EV_P) 774fd_reify (EV_P)
517{ 775{
518 int i; 776 int i;
519 777
520 for (i = 0; i < fdchangecnt; ++i) 778 for (i = 0; i < fdchangecnt; ++i)
521 { 779 {
522 int fd = fdchanges [i]; 780 int fd = fdchanges [i];
523 ANFD *anfd = anfds + fd; 781 ANFD *anfd = anfds + fd;
524 ev_io *w; 782 ev_io *w;
525 783
526 int events = 0; 784 unsigned char events = 0;
527 785
528 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 786 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
529 events |= w->events; 787 events |= (unsigned char)w->events;
530 788
531#if EV_SELECT_IS_WINSOCKET 789#if EV_SELECT_IS_WINSOCKET
532 if (events) 790 if (events)
533 { 791 {
534 unsigned long argp; 792 unsigned long arg;
793 #ifdef EV_FD_TO_WIN32_HANDLE
794 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
795 #else
535 anfd->handle = _get_osfhandle (fd); 796 anfd->handle = _get_osfhandle (fd);
797 #endif
536 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 798 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
537 } 799 }
538#endif 800#endif
539 801
802 {
803 unsigned char o_events = anfd->events;
804 unsigned char o_reify = anfd->reify;
805
540 anfd->reify = 0; 806 anfd->reify = 0;
541
542 backend_modify (EV_A_ fd, anfd->events, events);
543 anfd->events = events; 807 anfd->events = events;
808
809 if (o_events != events || o_reify & EV__IOFDSET)
810 backend_modify (EV_A_ fd, o_events, events);
811 }
544 } 812 }
545 813
546 fdchangecnt = 0; 814 fdchangecnt = 0;
547} 815}
548 816
549void inline_size 817/* something about the given fd changed */
818inline_size void
550fd_change (EV_P_ int fd) 819fd_change (EV_P_ int fd, int flags)
551{ 820{
552 if (expect_false (anfds [fd].reify)) 821 unsigned char reify = anfds [fd].reify;
553 return;
554
555 anfds [fd].reify = 1; 822 anfds [fd].reify |= flags;
556 823
824 if (expect_true (!reify))
825 {
557 ++fdchangecnt; 826 ++fdchangecnt;
558 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 827 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
559 fdchanges [fdchangecnt - 1] = fd; 828 fdchanges [fdchangecnt - 1] = fd;
829 }
560} 830}
561 831
562void inline_speed 832/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
833inline_speed void
563fd_kill (EV_P_ int fd) 834fd_kill (EV_P_ int fd)
564{ 835{
565 ev_io *w; 836 ev_io *w;
566 837
567 while ((w = (ev_io *)anfds [fd].head)) 838 while ((w = (ev_io *)anfds [fd].head))
569 ev_io_stop (EV_A_ w); 840 ev_io_stop (EV_A_ w);
570 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 841 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
571 } 842 }
572} 843}
573 844
574int inline_size 845/* check whether the given fd is atcually valid, for error recovery */
846inline_size int
575fd_valid (int fd) 847fd_valid (int fd)
576{ 848{
577#ifdef _WIN32 849#ifdef _WIN32
578 return _get_osfhandle (fd) != -1; 850 return _get_osfhandle (fd) != -1;
579#else 851#else
587{ 859{
588 int fd; 860 int fd;
589 861
590 for (fd = 0; fd < anfdmax; ++fd) 862 for (fd = 0; fd < anfdmax; ++fd)
591 if (anfds [fd].events) 863 if (anfds [fd].events)
592 if (!fd_valid (fd) == -1 && errno == EBADF) 864 if (!fd_valid (fd) && errno == EBADF)
593 fd_kill (EV_A_ fd); 865 fd_kill (EV_A_ fd);
594} 866}
595 867
596/* called on ENOMEM in select/poll to kill some fds and retry */ 868/* called on ENOMEM in select/poll to kill some fds and retry */
597static void noinline 869static void noinline
615 887
616 for (fd = 0; fd < anfdmax; ++fd) 888 for (fd = 0; fd < anfdmax; ++fd)
617 if (anfds [fd].events) 889 if (anfds [fd].events)
618 { 890 {
619 anfds [fd].events = 0; 891 anfds [fd].events = 0;
892 anfds [fd].emask = 0;
620 fd_change (EV_A_ fd); 893 fd_change (EV_A_ fd, EV__IOFDSET | 1);
621 } 894 }
622} 895}
623 896
624/*****************************************************************************/ 897/*****************************************************************************/
625 898
626void inline_speed 899/*
627upheap (WT *heap, int k) 900 * the heap functions want a real array index. array index 0 uis guaranteed to not
628{ 901 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
629 WT w = heap [k]; 902 * the branching factor of the d-tree.
903 */
630 904
631 while (k && heap [k >> 1]->at > w->at) 905/*
632 { 906 * at the moment we allow libev the luxury of two heaps,
633 heap [k] = heap [k >> 1]; 907 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
634 ((W)heap [k])->active = k + 1; 908 * which is more cache-efficient.
635 k >>= 1; 909 * the difference is about 5% with 50000+ watchers.
636 } 910 */
911#if EV_USE_4HEAP
637 912
638 heap [k] = w; 913#define DHEAP 4
639 ((W)heap [k])->active = k + 1; 914#define HEAP0 (DHEAP - 1) /* index of first element in heap */
915#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
916#define UPHEAP_DONE(p,k) ((p) == (k))
640 917
641} 918/* away from the root */
642 919inline_speed void
643void inline_speed
644downheap (WT *heap, int N, int k) 920downheap (ANHE *heap, int N, int k)
645{ 921{
646 WT w = heap [k]; 922 ANHE he = heap [k];
923 ANHE *E = heap + N + HEAP0;
647 924
648 while (k < (N >> 1)) 925 for (;;)
649 { 926 {
650 int j = k << 1; 927 ev_tstamp minat;
928 ANHE *minpos;
929 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
651 930
652 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 931 /* find minimum child */
932 if (expect_true (pos + DHEAP - 1 < E))
653 ++j; 933 {
654 934 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
655 if (w->at <= heap [j]->at) 935 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
936 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
937 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
938 }
939 else if (pos < E)
940 {
941 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
942 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
943 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
944 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
945 }
946 else
656 break; 947 break;
657 948
949 if (ANHE_at (he) <= minat)
950 break;
951
952 heap [k] = *minpos;
953 ev_active (ANHE_w (*minpos)) = k;
954
955 k = minpos - heap;
956 }
957
958 heap [k] = he;
959 ev_active (ANHE_w (he)) = k;
960}
961
962#else /* 4HEAP */
963
964#define HEAP0 1
965#define HPARENT(k) ((k) >> 1)
966#define UPHEAP_DONE(p,k) (!(p))
967
968/* away from the root */
969inline_speed void
970downheap (ANHE *heap, int N, int k)
971{
972 ANHE he = heap [k];
973
974 for (;;)
975 {
976 int c = k << 1;
977
978 if (c > N + HEAP0 - 1)
979 break;
980
981 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
982 ? 1 : 0;
983
984 if (ANHE_at (he) <= ANHE_at (heap [c]))
985 break;
986
658 heap [k] = heap [j]; 987 heap [k] = heap [c];
659 ((W)heap [k])->active = k + 1; 988 ev_active (ANHE_w (heap [k])) = k;
989
660 k = j; 990 k = c;
661 } 991 }
662 992
663 heap [k] = w; 993 heap [k] = he;
664 ((W)heap [k])->active = k + 1; 994 ev_active (ANHE_w (he)) = k;
665} 995}
996#endif
666 997
667void inline_size 998/* towards the root */
999inline_speed void
1000upheap (ANHE *heap, int k)
1001{
1002 ANHE he = heap [k];
1003
1004 for (;;)
1005 {
1006 int p = HPARENT (k);
1007
1008 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1009 break;
1010
1011 heap [k] = heap [p];
1012 ev_active (ANHE_w (heap [k])) = k;
1013 k = p;
1014 }
1015
1016 heap [k] = he;
1017 ev_active (ANHE_w (he)) = k;
1018}
1019
1020/* move an element suitably so it is in a correct place */
1021inline_size void
668adjustheap (WT *heap, int N, int k) 1022adjustheap (ANHE *heap, int N, int k)
669{ 1023{
1024 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
670 upheap (heap, k); 1025 upheap (heap, k);
1026 else
671 downheap (heap, N, k); 1027 downheap (heap, N, k);
1028}
1029
1030/* rebuild the heap: this function is used only once and executed rarely */
1031inline_size void
1032reheap (ANHE *heap, int N)
1033{
1034 int i;
1035
1036 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1037 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1038 for (i = 0; i < N; ++i)
1039 upheap (heap, i + HEAP0);
672} 1040}
673 1041
674/*****************************************************************************/ 1042/*****************************************************************************/
675 1043
1044/* associate signal watchers to a signal signal */
676typedef struct 1045typedef struct
677{ 1046{
678 WL head; 1047 WL head;
679 sig_atomic_t volatile gotsig; 1048 EV_ATOMIC_T gotsig;
680} ANSIG; 1049} ANSIG;
681 1050
682static ANSIG *signals; 1051static ANSIG *signals;
683static int signalmax; 1052static int signalmax;
684 1053
685static int sigpipe [2]; 1054static EV_ATOMIC_T gotsig;
686static sig_atomic_t volatile gotsig;
687static ev_io sigev;
688 1055
689void inline_size 1056/*****************************************************************************/
690signals_init (ANSIG *base, int count)
691{
692 while (count--)
693 {
694 base->head = 0;
695 base->gotsig = 0;
696 1057
697 ++base; 1058/* used to prepare libev internal fd's */
698 } 1059/* this is not fork-safe */
699} 1060inline_speed void
700
701static void
702sighandler (int signum)
703{
704#if _WIN32
705 signal (signum, sighandler);
706#endif
707
708 signals [signum - 1].gotsig = 1;
709
710 if (!gotsig)
711 {
712 int old_errno = errno;
713 gotsig = 1;
714 write (sigpipe [1], &signum, 1);
715 errno = old_errno;
716 }
717}
718
719void noinline
720ev_feed_signal_event (EV_P_ int signum)
721{
722 WL w;
723
724#if EV_MULTIPLICITY
725 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
726#endif
727
728 --signum;
729
730 if (signum < 0 || signum >= signalmax)
731 return;
732
733 signals [signum].gotsig = 0;
734
735 for (w = signals [signum].head; w; w = w->next)
736 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
737}
738
739static void
740sigcb (EV_P_ ev_io *iow, int revents)
741{
742 int signum;
743
744 read (sigpipe [0], &revents, 1);
745 gotsig = 0;
746
747 for (signum = signalmax; signum--; )
748 if (signals [signum].gotsig)
749 ev_feed_signal_event (EV_A_ signum + 1);
750}
751
752void inline_size
753fd_intern (int fd) 1061fd_intern (int fd)
754{ 1062{
755#ifdef _WIN32 1063#ifdef _WIN32
756 int arg = 1; 1064 unsigned long arg = 1;
757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1065 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
758#else 1066#else
759 fcntl (fd, F_SETFD, FD_CLOEXEC); 1067 fcntl (fd, F_SETFD, FD_CLOEXEC);
760 fcntl (fd, F_SETFL, O_NONBLOCK); 1068 fcntl (fd, F_SETFL, O_NONBLOCK);
761#endif 1069#endif
762} 1070}
763 1071
764static void noinline 1072static void noinline
765siginit (EV_P) 1073evpipe_init (EV_P)
766{ 1074{
1075 if (!ev_is_active (&pipe_w))
1076 {
1077#if EV_USE_EVENTFD
1078 if ((evfd = eventfd (0, 0)) >= 0)
1079 {
1080 evpipe [0] = -1;
1081 fd_intern (evfd);
1082 ev_io_set (&pipe_w, evfd, EV_READ);
1083 }
1084 else
1085#endif
1086 {
1087 while (pipe (evpipe))
1088 ev_syserr ("(libev) error creating signal/async pipe");
1089
767 fd_intern (sigpipe [0]); 1090 fd_intern (evpipe [0]);
768 fd_intern (sigpipe [1]); 1091 fd_intern (evpipe [1]);
1092 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1093 }
769 1094
770 ev_io_set (&sigev, sigpipe [0], EV_READ);
771 ev_io_start (EV_A_ &sigev); 1095 ev_io_start (EV_A_ &pipe_w);
772 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1096 ev_unref (EV_A); /* watcher should not keep loop alive */
1097 }
1098}
1099
1100inline_size void
1101evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1102{
1103 if (!*flag)
1104 {
1105 int old_errno = errno; /* save errno because write might clobber it */
1106
1107 *flag = 1;
1108
1109#if EV_USE_EVENTFD
1110 if (evfd >= 0)
1111 {
1112 uint64_t counter = 1;
1113 write (evfd, &counter, sizeof (uint64_t));
1114 }
1115 else
1116#endif
1117 write (evpipe [1], &old_errno, 1);
1118
1119 errno = old_errno;
1120 }
1121}
1122
1123/* called whenever the libev signal pipe */
1124/* got some events (signal, async) */
1125static void
1126pipecb (EV_P_ ev_io *iow, int revents)
1127{
1128#if EV_USE_EVENTFD
1129 if (evfd >= 0)
1130 {
1131 uint64_t counter;
1132 read (evfd, &counter, sizeof (uint64_t));
1133 }
1134 else
1135#endif
1136 {
1137 char dummy;
1138 read (evpipe [0], &dummy, 1);
1139 }
1140
1141 if (gotsig && ev_is_default_loop (EV_A))
1142 {
1143 int signum;
1144 gotsig = 0;
1145
1146 for (signum = signalmax; signum--; )
1147 if (signals [signum].gotsig)
1148 ev_feed_signal_event (EV_A_ signum + 1);
1149 }
1150
1151#if EV_ASYNC_ENABLE
1152 if (gotasync)
1153 {
1154 int i;
1155 gotasync = 0;
1156
1157 for (i = asynccnt; i--; )
1158 if (asyncs [i]->sent)
1159 {
1160 asyncs [i]->sent = 0;
1161 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1162 }
1163 }
1164#endif
773} 1165}
774 1166
775/*****************************************************************************/ 1167/*****************************************************************************/
776 1168
1169static void
1170ev_sighandler (int signum)
1171{
1172#if EV_MULTIPLICITY
1173 struct ev_loop *loop = &default_loop_struct;
1174#endif
1175
1176#if _WIN32
1177 signal (signum, ev_sighandler);
1178#endif
1179
1180 signals [signum - 1].gotsig = 1;
1181 evpipe_write (EV_A_ &gotsig);
1182}
1183
1184void noinline
1185ev_feed_signal_event (EV_P_ int signum)
1186{
1187 WL w;
1188
1189#if EV_MULTIPLICITY
1190 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1191#endif
1192
1193 --signum;
1194
1195 if (signum < 0 || signum >= signalmax)
1196 return;
1197
1198 signals [signum].gotsig = 0;
1199
1200 for (w = signals [signum].head; w; w = w->next)
1201 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1202}
1203
1204/*****************************************************************************/
1205
777static ev_child *childs [EV_PID_HASHSIZE]; 1206static WL childs [EV_PID_HASHSIZE];
778 1207
779#ifndef _WIN32 1208#ifndef _WIN32
780 1209
781static ev_signal childev; 1210static ev_signal childev;
782 1211
783void inline_speed 1212#ifndef WIFCONTINUED
1213# define WIFCONTINUED(status) 0
1214#endif
1215
1216/* handle a single child status event */
1217inline_speed void
784child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1218child_reap (EV_P_ int chain, int pid, int status)
785{ 1219{
786 ev_child *w; 1220 ev_child *w;
1221 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
787 1222
788 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1223 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1224 {
789 if (w->pid == pid || !w->pid) 1225 if ((w->pid == pid || !w->pid)
1226 && (!traced || (w->flags & 1)))
790 { 1227 {
791 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1228 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
792 w->rpid = pid; 1229 w->rpid = pid;
793 w->rstatus = status; 1230 w->rstatus = status;
794 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1231 ev_feed_event (EV_A_ (W)w, EV_CHILD);
795 } 1232 }
1233 }
796} 1234}
797 1235
798#ifndef WCONTINUED 1236#ifndef WCONTINUED
799# define WCONTINUED 0 1237# define WCONTINUED 0
800#endif 1238#endif
801 1239
1240/* called on sigchld etc., calls waitpid */
802static void 1241static void
803childcb (EV_P_ ev_signal *sw, int revents) 1242childcb (EV_P_ ev_signal *sw, int revents)
804{ 1243{
805 int pid, status; 1244 int pid, status;
806 1245
809 if (!WCONTINUED 1248 if (!WCONTINUED
810 || errno != EINVAL 1249 || errno != EINVAL
811 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1250 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
812 return; 1251 return;
813 1252
814 /* make sure we are called again until all childs have been reaped */ 1253 /* make sure we are called again until all children have been reaped */
815 /* we need to do it this way so that the callback gets called before we continue */ 1254 /* we need to do it this way so that the callback gets called before we continue */
816 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1255 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
817 1256
818 child_reap (EV_A_ sw, pid, pid, status); 1257 child_reap (EV_A_ pid, pid, status);
819 if (EV_PID_HASHSIZE > 1) 1258 if (EV_PID_HASHSIZE > 1)
820 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1259 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
821} 1260}
822 1261
823#endif 1262#endif
824 1263
825/*****************************************************************************/ 1264/*****************************************************************************/
887 /* kqueue is borked on everything but netbsd apparently */ 1326 /* kqueue is borked on everything but netbsd apparently */
888 /* it usually doesn't work correctly on anything but sockets and pipes */ 1327 /* it usually doesn't work correctly on anything but sockets and pipes */
889 flags &= ~EVBACKEND_KQUEUE; 1328 flags &= ~EVBACKEND_KQUEUE;
890#endif 1329#endif
891#ifdef __APPLE__ 1330#ifdef __APPLE__
892 // flags &= ~EVBACKEND_KQUEUE; for documentation 1331 /* only select works correctly on that "unix-certified" platform */
893 flags &= ~EVBACKEND_POLL; 1332 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1333 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
894#endif 1334#endif
895 1335
896 return flags; 1336 return flags;
897} 1337}
898 1338
899unsigned int 1339unsigned int
900ev_embeddable_backends (void) 1340ev_embeddable_backends (void)
901{ 1341{
902 return EVBACKEND_EPOLL 1342 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
903 | EVBACKEND_KQUEUE 1343
904 | EVBACKEND_PORT; 1344 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1345 /* please fix it and tell me how to detect the fix */
1346 flags &= ~EVBACKEND_EPOLL;
1347
1348 return flags;
905} 1349}
906 1350
907unsigned int 1351unsigned int
908ev_backend (EV_P) 1352ev_backend (EV_P)
909{ 1353{
914ev_loop_count (EV_P) 1358ev_loop_count (EV_P)
915{ 1359{
916 return loop_count; 1360 return loop_count;
917} 1361}
918 1362
1363unsigned int
1364ev_loop_depth (EV_P)
1365{
1366 return loop_depth;
1367}
1368
1369void
1370ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1371{
1372 io_blocktime = interval;
1373}
1374
1375void
1376ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1377{
1378 timeout_blocktime = interval;
1379}
1380
1381/* initialise a loop structure, must be zero-initialised */
919static void noinline 1382static void noinline
920loop_init (EV_P_ unsigned int flags) 1383loop_init (EV_P_ unsigned int flags)
921{ 1384{
922 if (!backend) 1385 if (!backend)
923 { 1386 {
1387#if EV_USE_REALTIME
1388 if (!have_realtime)
1389 {
1390 struct timespec ts;
1391
1392 if (!clock_gettime (CLOCK_REALTIME, &ts))
1393 have_realtime = 1;
1394 }
1395#endif
1396
924#if EV_USE_MONOTONIC 1397#if EV_USE_MONOTONIC
1398 if (!have_monotonic)
925 { 1399 {
926 struct timespec ts; 1400 struct timespec ts;
1401
927 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1402 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
928 have_monotonic = 1; 1403 have_monotonic = 1;
929 } 1404 }
930#endif 1405#endif
931 1406
932 ev_rt_now = ev_time (); 1407 ev_rt_now = ev_time ();
933 mn_now = get_clock (); 1408 mn_now = get_clock ();
934 now_floor = mn_now; 1409 now_floor = mn_now;
935 rtmn_diff = ev_rt_now - mn_now; 1410 rtmn_diff = ev_rt_now - mn_now;
1411
1412 io_blocktime = 0.;
1413 timeout_blocktime = 0.;
1414 backend = 0;
1415 backend_fd = -1;
1416 gotasync = 0;
1417#if EV_USE_INOTIFY
1418 fs_fd = -2;
1419#endif
936 1420
937 /* pid check not overridable via env */ 1421 /* pid check not overridable via env */
938#ifndef _WIN32 1422#ifndef _WIN32
939 if (flags & EVFLAG_FORKCHECK) 1423 if (flags & EVFLAG_FORKCHECK)
940 curpid = getpid (); 1424 curpid = getpid ();
943 if (!(flags & EVFLAG_NOENV) 1427 if (!(flags & EVFLAG_NOENV)
944 && !enable_secure () 1428 && !enable_secure ()
945 && getenv ("LIBEV_FLAGS")) 1429 && getenv ("LIBEV_FLAGS"))
946 flags = atoi (getenv ("LIBEV_FLAGS")); 1430 flags = atoi (getenv ("LIBEV_FLAGS"));
947 1431
948 if (!(flags & 0x0000ffffUL)) 1432 if (!(flags & 0x0000ffffU))
949 flags |= ev_recommended_backends (); 1433 flags |= ev_recommended_backends ();
950
951 backend = 0;
952 backend_fd = -1;
953#if EV_USE_INOTIFY
954 fs_fd = -2;
955#endif
956 1434
957#if EV_USE_PORT 1435#if EV_USE_PORT
958 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1436 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
959#endif 1437#endif
960#if EV_USE_KQUEUE 1438#if EV_USE_KQUEUE
968#endif 1446#endif
969#if EV_USE_SELECT 1447#if EV_USE_SELECT
970 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1448 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
971#endif 1449#endif
972 1450
1451 ev_prepare_init (&pending_w, pendingcb);
1452
973 ev_init (&sigev, sigcb); 1453 ev_init (&pipe_w, pipecb);
974 ev_set_priority (&sigev, EV_MAXPRI); 1454 ev_set_priority (&pipe_w, EV_MAXPRI);
975 } 1455 }
976} 1456}
977 1457
1458/* free up a loop structure */
978static void noinline 1459static void noinline
979loop_destroy (EV_P) 1460loop_destroy (EV_P)
980{ 1461{
981 int i; 1462 int i;
1463
1464 if (ev_is_active (&pipe_w))
1465 {
1466 ev_ref (EV_A); /* signal watcher */
1467 ev_io_stop (EV_A_ &pipe_w);
1468
1469#if EV_USE_EVENTFD
1470 if (evfd >= 0)
1471 close (evfd);
1472#endif
1473
1474 if (evpipe [0] >= 0)
1475 {
1476 close (evpipe [0]);
1477 close (evpipe [1]);
1478 }
1479 }
982 1480
983#if EV_USE_INOTIFY 1481#if EV_USE_INOTIFY
984 if (fs_fd >= 0) 1482 if (fs_fd >= 0)
985 close (fs_fd); 1483 close (fs_fd);
986#endif 1484#endif
1010#if EV_IDLE_ENABLE 1508#if EV_IDLE_ENABLE
1011 array_free (idle, [i]); 1509 array_free (idle, [i]);
1012#endif 1510#endif
1013 } 1511 }
1014 1512
1513 ev_free (anfds); anfdmax = 0;
1514
1015 /* have to use the microsoft-never-gets-it-right macro */ 1515 /* have to use the microsoft-never-gets-it-right macro */
1516 array_free (rfeed, EMPTY);
1016 array_free (fdchange, EMPTY); 1517 array_free (fdchange, EMPTY);
1017 array_free (timer, EMPTY); 1518 array_free (timer, EMPTY);
1018#if EV_PERIODIC_ENABLE 1519#if EV_PERIODIC_ENABLE
1019 array_free (periodic, EMPTY); 1520 array_free (periodic, EMPTY);
1020#endif 1521#endif
1522#if EV_FORK_ENABLE
1523 array_free (fork, EMPTY);
1524#endif
1021 array_free (prepare, EMPTY); 1525 array_free (prepare, EMPTY);
1022 array_free (check, EMPTY); 1526 array_free (check, EMPTY);
1527#if EV_ASYNC_ENABLE
1528 array_free (async, EMPTY);
1529#endif
1023 1530
1024 backend = 0; 1531 backend = 0;
1025} 1532}
1026 1533
1534#if EV_USE_INOTIFY
1027void inline_size infy_fork (EV_P); 1535inline_size void infy_fork (EV_P);
1536#endif
1028 1537
1029void inline_size 1538inline_size void
1030loop_fork (EV_P) 1539loop_fork (EV_P)
1031{ 1540{
1032#if EV_USE_PORT 1541#if EV_USE_PORT
1033 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1542 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1034#endif 1543#endif
1040#endif 1549#endif
1041#if EV_USE_INOTIFY 1550#if EV_USE_INOTIFY
1042 infy_fork (EV_A); 1551 infy_fork (EV_A);
1043#endif 1552#endif
1044 1553
1045 if (ev_is_active (&sigev)) 1554 if (ev_is_active (&pipe_w))
1046 { 1555 {
1047 /* default loop */ 1556 /* this "locks" the handlers against writing to the pipe */
1557 /* while we modify the fd vars */
1558 gotsig = 1;
1559#if EV_ASYNC_ENABLE
1560 gotasync = 1;
1561#endif
1048 1562
1049 ev_ref (EV_A); 1563 ev_ref (EV_A);
1050 ev_io_stop (EV_A_ &sigev); 1564 ev_io_stop (EV_A_ &pipe_w);
1565
1566#if EV_USE_EVENTFD
1567 if (evfd >= 0)
1568 close (evfd);
1569#endif
1570
1571 if (evpipe [0] >= 0)
1572 {
1051 close (sigpipe [0]); 1573 close (evpipe [0]);
1052 close (sigpipe [1]); 1574 close (evpipe [1]);
1575 }
1053 1576
1054 while (pipe (sigpipe))
1055 syserr ("(libev) error creating pipe");
1056
1057 siginit (EV_A); 1577 evpipe_init (EV_A);
1578 /* now iterate over everything, in case we missed something */
1579 pipecb (EV_A_ &pipe_w, EV_READ);
1058 } 1580 }
1059 1581
1060 postfork = 0; 1582 postfork = 0;
1061} 1583}
1062 1584
1063#if EV_MULTIPLICITY 1585#if EV_MULTIPLICITY
1586
1064struct ev_loop * 1587struct ev_loop *
1065ev_loop_new (unsigned int flags) 1588ev_loop_new (unsigned int flags)
1066{ 1589{
1067 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1590 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1068 1591
1084} 1607}
1085 1608
1086void 1609void
1087ev_loop_fork (EV_P) 1610ev_loop_fork (EV_P)
1088{ 1611{
1089 postfork = 1; 1612 postfork = 1; /* must be in line with ev_default_fork */
1090} 1613}
1091 1614
1615#if EV_VERIFY
1616static void noinline
1617verify_watcher (EV_P_ W w)
1618{
1619 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1620
1621 if (w->pending)
1622 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1623}
1624
1625static void noinline
1626verify_heap (EV_P_ ANHE *heap, int N)
1627{
1628 int i;
1629
1630 for (i = HEAP0; i < N + HEAP0; ++i)
1631 {
1632 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1633 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1634 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1635
1636 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1637 }
1638}
1639
1640static void noinline
1641array_verify (EV_P_ W *ws, int cnt)
1642{
1643 while (cnt--)
1644 {
1645 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1646 verify_watcher (EV_A_ ws [cnt]);
1647 }
1648}
1649#endif
1650
1651void
1652ev_loop_verify (EV_P)
1653{
1654#if EV_VERIFY
1655 int i;
1656 WL w;
1657
1658 assert (activecnt >= -1);
1659
1660 assert (fdchangemax >= fdchangecnt);
1661 for (i = 0; i < fdchangecnt; ++i)
1662 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1663
1664 assert (anfdmax >= 0);
1665 for (i = 0; i < anfdmax; ++i)
1666 for (w = anfds [i].head; w; w = w->next)
1667 {
1668 verify_watcher (EV_A_ (W)w);
1669 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1670 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1671 }
1672
1673 assert (timermax >= timercnt);
1674 verify_heap (EV_A_ timers, timercnt);
1675
1676#if EV_PERIODIC_ENABLE
1677 assert (periodicmax >= periodiccnt);
1678 verify_heap (EV_A_ periodics, periodiccnt);
1679#endif
1680
1681 for (i = NUMPRI; i--; )
1682 {
1683 assert (pendingmax [i] >= pendingcnt [i]);
1684#if EV_IDLE_ENABLE
1685 assert (idleall >= 0);
1686 assert (idlemax [i] >= idlecnt [i]);
1687 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1688#endif
1689 }
1690
1691#if EV_FORK_ENABLE
1692 assert (forkmax >= forkcnt);
1693 array_verify (EV_A_ (W *)forks, forkcnt);
1694#endif
1695
1696#if EV_ASYNC_ENABLE
1697 assert (asyncmax >= asynccnt);
1698 array_verify (EV_A_ (W *)asyncs, asynccnt);
1699#endif
1700
1701 assert (preparemax >= preparecnt);
1702 array_verify (EV_A_ (W *)prepares, preparecnt);
1703
1704 assert (checkmax >= checkcnt);
1705 array_verify (EV_A_ (W *)checks, checkcnt);
1706
1707# if 0
1708 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1709 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1092#endif 1710# endif
1711#endif
1712}
1713
1714#endif /* multiplicity */
1093 1715
1094#if EV_MULTIPLICITY 1716#if EV_MULTIPLICITY
1095struct ev_loop * 1717struct ev_loop *
1096ev_default_loop_init (unsigned int flags) 1718ev_default_loop_init (unsigned int flags)
1097#else 1719#else
1098int 1720int
1099ev_default_loop (unsigned int flags) 1721ev_default_loop (unsigned int flags)
1100#endif 1722#endif
1101{ 1723{
1102 if (sigpipe [0] == sigpipe [1])
1103 if (pipe (sigpipe))
1104 return 0;
1105
1106 if (!ev_default_loop_ptr) 1724 if (!ev_default_loop_ptr)
1107 { 1725 {
1108#if EV_MULTIPLICITY 1726#if EV_MULTIPLICITY
1109 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1727 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1110#else 1728#else
1113 1731
1114 loop_init (EV_A_ flags); 1732 loop_init (EV_A_ flags);
1115 1733
1116 if (ev_backend (EV_A)) 1734 if (ev_backend (EV_A))
1117 { 1735 {
1118 siginit (EV_A);
1119
1120#ifndef _WIN32 1736#ifndef _WIN32
1121 ev_signal_init (&childev, childcb, SIGCHLD); 1737 ev_signal_init (&childev, childcb, SIGCHLD);
1122 ev_set_priority (&childev, EV_MAXPRI); 1738 ev_set_priority (&childev, EV_MAXPRI);
1123 ev_signal_start (EV_A_ &childev); 1739 ev_signal_start (EV_A_ &childev);
1124 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1740 ev_unref (EV_A); /* child watcher should not keep loop alive */
1136{ 1752{
1137#if EV_MULTIPLICITY 1753#if EV_MULTIPLICITY
1138 struct ev_loop *loop = ev_default_loop_ptr; 1754 struct ev_loop *loop = ev_default_loop_ptr;
1139#endif 1755#endif
1140 1756
1757 ev_default_loop_ptr = 0;
1758
1141#ifndef _WIN32 1759#ifndef _WIN32
1142 ev_ref (EV_A); /* child watcher */ 1760 ev_ref (EV_A); /* child watcher */
1143 ev_signal_stop (EV_A_ &childev); 1761 ev_signal_stop (EV_A_ &childev);
1144#endif 1762#endif
1145 1763
1146 ev_ref (EV_A); /* signal watcher */
1147 ev_io_stop (EV_A_ &sigev);
1148
1149 close (sigpipe [0]); sigpipe [0] = 0;
1150 close (sigpipe [1]); sigpipe [1] = 0;
1151
1152 loop_destroy (EV_A); 1764 loop_destroy (EV_A);
1153} 1765}
1154 1766
1155void 1767void
1156ev_default_fork (void) 1768ev_default_fork (void)
1157{ 1769{
1158#if EV_MULTIPLICITY 1770#if EV_MULTIPLICITY
1159 struct ev_loop *loop = ev_default_loop_ptr; 1771 struct ev_loop *loop = ev_default_loop_ptr;
1160#endif 1772#endif
1161 1773
1162 if (backend) 1774 postfork = 1; /* must be in line with ev_loop_fork */
1163 postfork = 1;
1164} 1775}
1165 1776
1166/*****************************************************************************/ 1777/*****************************************************************************/
1167 1778
1168void inline_speed 1779void
1780ev_invoke (EV_P_ void *w, int revents)
1781{
1782 EV_CB_INVOKE ((W)w, revents);
1783}
1784
1785inline_speed void
1169call_pending (EV_P) 1786call_pending (EV_P)
1170{ 1787{
1171 int pri; 1788 int pri;
1172 1789
1173 for (pri = NUMPRI; pri--; ) 1790 for (pri = NUMPRI; pri--; )
1174 while (pendingcnt [pri]) 1791 while (pendingcnt [pri])
1175 { 1792 {
1176 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1793 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1177 1794
1178 if (expect_true (p->w))
1179 {
1180 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1795 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1796 /* ^ this is no longer true, as pending_w could be here */
1181 1797
1182 p->w->pending = 0; 1798 p->w->pending = 0;
1183 EV_CB_INVOKE (p->w, p->events); 1799 EV_CB_INVOKE (p->w, p->events);
1184 } 1800 EV_FREQUENT_CHECK;
1185 } 1801 }
1186} 1802}
1187 1803
1188void inline_size
1189timers_reify (EV_P)
1190{
1191 while (timercnt && ((WT)timers [0])->at <= mn_now)
1192 {
1193 ev_timer *w = timers [0];
1194
1195 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1196
1197 /* first reschedule or stop timer */
1198 if (w->repeat)
1199 {
1200 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1201
1202 ((WT)w)->at += w->repeat;
1203 if (((WT)w)->at < mn_now)
1204 ((WT)w)->at = mn_now;
1205
1206 downheap ((WT *)timers, timercnt, 0);
1207 }
1208 else
1209 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1210
1211 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1212 }
1213}
1214
1215#if EV_PERIODIC_ENABLE
1216void inline_size
1217periodics_reify (EV_P)
1218{
1219 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1220 {
1221 ev_periodic *w = periodics [0];
1222
1223 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1224
1225 /* first reschedule or stop timer */
1226 if (w->reschedule_cb)
1227 {
1228 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1229 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1230 downheap ((WT *)periodics, periodiccnt, 0);
1231 }
1232 else if (w->interval)
1233 {
1234 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1235 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1236 downheap ((WT *)periodics, periodiccnt, 0);
1237 }
1238 else
1239 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1240
1241 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1242 }
1243}
1244
1245static void noinline
1246periodics_reschedule (EV_P)
1247{
1248 int i;
1249
1250 /* adjust periodics after time jump */
1251 for (i = 0; i < periodiccnt; ++i)
1252 {
1253 ev_periodic *w = periodics [i];
1254
1255 if (w->reschedule_cb)
1256 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1257 else if (w->interval)
1258 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1259 }
1260
1261 /* now rebuild the heap */
1262 for (i = periodiccnt >> 1; i--; )
1263 downheap ((WT *)periodics, periodiccnt, i);
1264}
1265#endif
1266
1267#if EV_IDLE_ENABLE 1804#if EV_IDLE_ENABLE
1268void inline_size 1805/* make idle watchers pending. this handles the "call-idle */
1806/* only when higher priorities are idle" logic */
1807inline_size void
1269idle_reify (EV_P) 1808idle_reify (EV_P)
1270{ 1809{
1271 if (expect_false (idleall)) 1810 if (expect_false (idleall))
1272 { 1811 {
1273 int pri; 1812 int pri;
1285 } 1824 }
1286 } 1825 }
1287} 1826}
1288#endif 1827#endif
1289 1828
1290int inline_size 1829/* make timers pending */
1291time_update_monotonic (EV_P) 1830inline_size void
1831timers_reify (EV_P)
1292{ 1832{
1833 EV_FREQUENT_CHECK;
1834
1835 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1836 {
1837 do
1838 {
1839 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1840
1841 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1842
1843 /* first reschedule or stop timer */
1844 if (w->repeat)
1845 {
1846 ev_at (w) += w->repeat;
1847 if (ev_at (w) < mn_now)
1848 ev_at (w) = mn_now;
1849
1850 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1851
1852 ANHE_at_cache (timers [HEAP0]);
1853 downheap (timers, timercnt, HEAP0);
1854 }
1855 else
1856 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1857
1858 EV_FREQUENT_CHECK;
1859 feed_reverse (EV_A_ (W)w);
1860 }
1861 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1862
1863 feed_reverse_done (EV_A_ EV_TIMEOUT);
1864 }
1865}
1866
1867#if EV_PERIODIC_ENABLE
1868/* make periodics pending */
1869inline_size void
1870periodics_reify (EV_P)
1871{
1872 EV_FREQUENT_CHECK;
1873
1874 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1875 {
1876 int feed_count = 0;
1877
1878 do
1879 {
1880 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1881
1882 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1883
1884 /* first reschedule or stop timer */
1885 if (w->reschedule_cb)
1886 {
1887 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1888
1889 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1890
1891 ANHE_at_cache (periodics [HEAP0]);
1892 downheap (periodics, periodiccnt, HEAP0);
1893 }
1894 else if (w->interval)
1895 {
1896 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1897 /* if next trigger time is not sufficiently in the future, put it there */
1898 /* this might happen because of floating point inexactness */
1899 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1900 {
1901 ev_at (w) += w->interval;
1902
1903 /* if interval is unreasonably low we might still have a time in the past */
1904 /* so correct this. this will make the periodic very inexact, but the user */
1905 /* has effectively asked to get triggered more often than possible */
1906 if (ev_at (w) < ev_rt_now)
1907 ev_at (w) = ev_rt_now;
1908 }
1909
1910 ANHE_at_cache (periodics [HEAP0]);
1911 downheap (periodics, periodiccnt, HEAP0);
1912 }
1913 else
1914 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1915
1916 EV_FREQUENT_CHECK;
1917 feed_reverse (EV_A_ (W)w);
1918 }
1919 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1920
1921 feed_reverse_done (EV_A_ EV_PERIODIC);
1922 }
1923}
1924
1925/* simply recalculate all periodics */
1926/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1927static void noinline
1928periodics_reschedule (EV_P)
1929{
1930 int i;
1931
1932 /* adjust periodics after time jump */
1933 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1934 {
1935 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1936
1937 if (w->reschedule_cb)
1938 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1939 else if (w->interval)
1940 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1941
1942 ANHE_at_cache (periodics [i]);
1943 }
1944
1945 reheap (periodics, periodiccnt);
1946}
1947#endif
1948
1949/* adjust all timers by a given offset */
1950static void noinline
1951timers_reschedule (EV_P_ ev_tstamp adjust)
1952{
1953 int i;
1954
1955 for (i = 0; i < timercnt; ++i)
1956 {
1957 ANHE *he = timers + i + HEAP0;
1958 ANHE_w (*he)->at += adjust;
1959 ANHE_at_cache (*he);
1960 }
1961}
1962
1963/* fetch new monotonic and realtime times from the kernel */
1964/* also detetc if there was a timejump, and act accordingly */
1965inline_speed void
1966time_update (EV_P_ ev_tstamp max_block)
1967{
1968#if EV_USE_MONOTONIC
1969 if (expect_true (have_monotonic))
1970 {
1971 int i;
1972 ev_tstamp odiff = rtmn_diff;
1973
1293 mn_now = get_clock (); 1974 mn_now = get_clock ();
1294 1975
1976 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1977 /* interpolate in the meantime */
1295 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1978 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1296 { 1979 {
1297 ev_rt_now = rtmn_diff + mn_now; 1980 ev_rt_now = rtmn_diff + mn_now;
1298 return 0; 1981 return;
1299 } 1982 }
1300 else 1983
1301 {
1302 now_floor = mn_now; 1984 now_floor = mn_now;
1303 ev_rt_now = ev_time (); 1985 ev_rt_now = ev_time ();
1304 return 1;
1305 }
1306}
1307 1986
1308void inline_size 1987 /* loop a few times, before making important decisions.
1309time_update (EV_P) 1988 * on the choice of "4": one iteration isn't enough,
1310{ 1989 * in case we get preempted during the calls to
1311 int i; 1990 * ev_time and get_clock. a second call is almost guaranteed
1312 1991 * to succeed in that case, though. and looping a few more times
1313#if EV_USE_MONOTONIC 1992 * doesn't hurt either as we only do this on time-jumps or
1314 if (expect_true (have_monotonic)) 1993 * in the unlikely event of having been preempted here.
1315 { 1994 */
1316 if (time_update_monotonic (EV_A)) 1995 for (i = 4; --i; )
1317 { 1996 {
1318 ev_tstamp odiff = rtmn_diff;
1319
1320 /* loop a few times, before making important decisions.
1321 * on the choice of "4": one iteration isn't enough,
1322 * in case we get preempted during the calls to
1323 * ev_time and get_clock. a second call is almost guaranteed
1324 * to succeed in that case, though. and looping a few more times
1325 * doesn't hurt either as we only do this on time-jumps or
1326 * in the unlikely event of having been preempted here.
1327 */
1328 for (i = 4; --i; )
1329 {
1330 rtmn_diff = ev_rt_now - mn_now; 1997 rtmn_diff = ev_rt_now - mn_now;
1331 1998
1332 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1999 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1333 return; /* all is well */ 2000 return; /* all is well */
1334 2001
1335 ev_rt_now = ev_time (); 2002 ev_rt_now = ev_time ();
1336 mn_now = get_clock (); 2003 mn_now = get_clock ();
1337 now_floor = mn_now; 2004 now_floor = mn_now;
1338 } 2005 }
1339 2006
2007 /* no timer adjustment, as the monotonic clock doesn't jump */
2008 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1340# if EV_PERIODIC_ENABLE 2009# if EV_PERIODIC_ENABLE
1341 periodics_reschedule (EV_A); 2010 periodics_reschedule (EV_A);
1342# endif 2011# endif
1343 /* no timer adjustment, as the monotonic clock doesn't jump */
1344 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1345 }
1346 } 2012 }
1347 else 2013 else
1348#endif 2014#endif
1349 { 2015 {
1350 ev_rt_now = ev_time (); 2016 ev_rt_now = ev_time ();
1351 2017
1352 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2018 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1353 { 2019 {
2020 /* adjust timers. this is easy, as the offset is the same for all of them */
2021 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1354#if EV_PERIODIC_ENABLE 2022#if EV_PERIODIC_ENABLE
1355 periodics_reschedule (EV_A); 2023 periodics_reschedule (EV_A);
1356#endif 2024#endif
1357
1358 /* adjust timers. this is easy, as the offset is the same for all of them */
1359 for (i = 0; i < timercnt; ++i)
1360 ((WT)timers [i])->at += ev_rt_now - mn_now;
1361 } 2025 }
1362 2026
1363 mn_now = ev_rt_now; 2027 mn_now = ev_rt_now;
1364 } 2028 }
1365} 2029}
1366 2030
1367void 2031void
1368ev_ref (EV_P)
1369{
1370 ++activecnt;
1371}
1372
1373void
1374ev_unref (EV_P)
1375{
1376 --activecnt;
1377}
1378
1379static int loop_done;
1380
1381void
1382ev_loop (EV_P_ int flags) 2032ev_loop (EV_P_ int flags)
1383{ 2033{
1384 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2034 ++loop_depth;
1385 ? EVUNLOOP_ONE 2035
1386 : EVUNLOOP_CANCEL; 2036 loop_done = EVUNLOOP_CANCEL;
1387 2037
1388 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2038 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1389 2039
1390 do 2040 do
1391 { 2041 {
2042#if EV_VERIFY >= 2
2043 ev_loop_verify (EV_A);
2044#endif
2045
1392#ifndef _WIN32 2046#ifndef _WIN32
1393 if (expect_false (curpid)) /* penalise the forking check even more */ 2047 if (expect_false (curpid)) /* penalise the forking check even more */
1394 if (expect_false (getpid () != curpid)) 2048 if (expect_false (getpid () != curpid))
1395 { 2049 {
1396 curpid = getpid (); 2050 curpid = getpid ();
1406 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2060 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1407 call_pending (EV_A); 2061 call_pending (EV_A);
1408 } 2062 }
1409#endif 2063#endif
1410 2064
1411 /* queue check watchers (and execute them) */ 2065 /* queue prepare watchers (and execute them) */
1412 if (expect_false (preparecnt)) 2066 if (expect_false (preparecnt))
1413 { 2067 {
1414 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2068 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1415 call_pending (EV_A); 2069 call_pending (EV_A);
1416 } 2070 }
1417 2071
1418 if (expect_false (!activecnt))
1419 break;
1420
1421 /* we might have forked, so reify kernel state if necessary */ 2072 /* we might have forked, so reify kernel state if necessary */
1422 if (expect_false (postfork)) 2073 if (expect_false (postfork))
1423 loop_fork (EV_A); 2074 loop_fork (EV_A);
1424 2075
1425 /* update fd-related kernel structures */ 2076 /* update fd-related kernel structures */
1426 fd_reify (EV_A); 2077 fd_reify (EV_A);
1427 2078
1428 /* calculate blocking time */ 2079 /* calculate blocking time */
1429 { 2080 {
1430 ev_tstamp block; 2081 ev_tstamp waittime = 0.;
2082 ev_tstamp sleeptime = 0.;
1431 2083
1432 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2084 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1433 block = 0.; /* do not block at all */
1434 else
1435 { 2085 {
2086 /* remember old timestamp for io_blocktime calculation */
2087 ev_tstamp prev_mn_now = mn_now;
2088
1436 /* update time to cancel out callback processing overhead */ 2089 /* update time to cancel out callback processing overhead */
1437#if EV_USE_MONOTONIC
1438 if (expect_true (have_monotonic))
1439 time_update_monotonic (EV_A); 2090 time_update (EV_A_ 1e100);
1440 else
1441#endif
1442 {
1443 ev_rt_now = ev_time ();
1444 mn_now = ev_rt_now;
1445 }
1446 2091
1447 block = MAX_BLOCKTIME; 2092 waittime = MAX_BLOCKTIME;
1448 2093
1449 if (timercnt) 2094 if (timercnt)
1450 { 2095 {
1451 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2096 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1452 if (block > to) block = to; 2097 if (waittime > to) waittime = to;
1453 } 2098 }
1454 2099
1455#if EV_PERIODIC_ENABLE 2100#if EV_PERIODIC_ENABLE
1456 if (periodiccnt) 2101 if (periodiccnt)
1457 { 2102 {
1458 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2103 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1459 if (block > to) block = to; 2104 if (waittime > to) waittime = to;
1460 } 2105 }
1461#endif 2106#endif
1462 2107
2108 /* don't let timeouts decrease the waittime below timeout_blocktime */
2109 if (expect_false (waittime < timeout_blocktime))
2110 waittime = timeout_blocktime;
2111
2112 /* extra check because io_blocktime is commonly 0 */
1463 if (expect_false (block < 0.)) block = 0.; 2113 if (expect_false (io_blocktime))
2114 {
2115 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2116
2117 if (sleeptime > waittime - backend_fudge)
2118 sleeptime = waittime - backend_fudge;
2119
2120 if (expect_true (sleeptime > 0.))
2121 {
2122 ev_sleep (sleeptime);
2123 waittime -= sleeptime;
2124 }
2125 }
1464 } 2126 }
1465 2127
1466 ++loop_count; 2128 ++loop_count;
1467 backend_poll (EV_A_ block); 2129 backend_poll (EV_A_ waittime);
2130
2131 /* update ev_rt_now, do magic */
2132 time_update (EV_A_ waittime + sleeptime);
1468 } 2133 }
1469
1470 /* update ev_rt_now, do magic */
1471 time_update (EV_A);
1472 2134
1473 /* queue pending timers and reschedule them */ 2135 /* queue pending timers and reschedule them */
1474 timers_reify (EV_A); /* relative timers called last */ 2136 timers_reify (EV_A); /* relative timers called last */
1475#if EV_PERIODIC_ENABLE 2137#if EV_PERIODIC_ENABLE
1476 periodics_reify (EV_A); /* absolute timers called first */ 2138 periodics_reify (EV_A); /* absolute timers called first */
1484 /* queue check watchers, to be executed first */ 2146 /* queue check watchers, to be executed first */
1485 if (expect_false (checkcnt)) 2147 if (expect_false (checkcnt))
1486 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2148 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1487 2149
1488 call_pending (EV_A); 2150 call_pending (EV_A);
1489
1490 } 2151 }
1491 while (expect_true (activecnt && !loop_done)); 2152 while (expect_true (
2153 activecnt
2154 && !loop_done
2155 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2156 ));
1492 2157
1493 if (loop_done == EVUNLOOP_ONE) 2158 if (loop_done == EVUNLOOP_ONE)
1494 loop_done = EVUNLOOP_CANCEL; 2159 loop_done = EVUNLOOP_CANCEL;
2160
2161 --loop_depth;
1495} 2162}
1496 2163
1497void 2164void
1498ev_unloop (EV_P_ int how) 2165ev_unloop (EV_P_ int how)
1499{ 2166{
1500 loop_done = how; 2167 loop_done = how;
1501} 2168}
1502 2169
2170void
2171ev_ref (EV_P)
2172{
2173 ++activecnt;
2174}
2175
2176void
2177ev_unref (EV_P)
2178{
2179 --activecnt;
2180}
2181
2182void
2183ev_now_update (EV_P)
2184{
2185 time_update (EV_A_ 1e100);
2186}
2187
2188void
2189ev_suspend (EV_P)
2190{
2191 ev_now_update (EV_A);
2192}
2193
2194void
2195ev_resume (EV_P)
2196{
2197 ev_tstamp mn_prev = mn_now;
2198
2199 ev_now_update (EV_A);
2200 timers_reschedule (EV_A_ mn_now - mn_prev);
2201#if EV_PERIODIC_ENABLE
2202 /* TODO: really do this? */
2203 periodics_reschedule (EV_A);
2204#endif
2205}
2206
1503/*****************************************************************************/ 2207/*****************************************************************************/
2208/* singly-linked list management, used when the expected list length is short */
1504 2209
1505void inline_size 2210inline_size void
1506wlist_add (WL *head, WL elem) 2211wlist_add (WL *head, WL elem)
1507{ 2212{
1508 elem->next = *head; 2213 elem->next = *head;
1509 *head = elem; 2214 *head = elem;
1510} 2215}
1511 2216
1512void inline_size 2217inline_size void
1513wlist_del (WL *head, WL elem) 2218wlist_del (WL *head, WL elem)
1514{ 2219{
1515 while (*head) 2220 while (*head)
1516 { 2221 {
1517 if (*head == elem) 2222 if (*head == elem)
1522 2227
1523 head = &(*head)->next; 2228 head = &(*head)->next;
1524 } 2229 }
1525} 2230}
1526 2231
1527void inline_speed 2232/* internal, faster, version of ev_clear_pending */
2233inline_speed void
1528ev_clear_pending (EV_P_ W w) 2234clear_pending (EV_P_ W w)
1529{ 2235{
1530 if (w->pending) 2236 if (w->pending)
1531 { 2237 {
1532 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2238 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1533 w->pending = 0; 2239 w->pending = 0;
1534 } 2240 }
1535} 2241}
1536 2242
1537void inline_size 2243int
2244ev_clear_pending (EV_P_ void *w)
2245{
2246 W w_ = (W)w;
2247 int pending = w_->pending;
2248
2249 if (expect_true (pending))
2250 {
2251 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2252 p->w = (W)&pending_w;
2253 w_->pending = 0;
2254 return p->events;
2255 }
2256 else
2257 return 0;
2258}
2259
2260inline_size void
1538pri_adjust (EV_P_ W w) 2261pri_adjust (EV_P_ W w)
1539{ 2262{
1540 int pri = w->priority; 2263 int pri = w->priority;
1541 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2264 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1542 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2265 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1543 w->priority = pri; 2266 w->priority = pri;
1544} 2267}
1545 2268
1546void inline_speed 2269inline_speed void
1547ev_start (EV_P_ W w, int active) 2270ev_start (EV_P_ W w, int active)
1548{ 2271{
1549 pri_adjust (EV_A_ w); 2272 pri_adjust (EV_A_ w);
1550 w->active = active; 2273 w->active = active;
1551 ev_ref (EV_A); 2274 ev_ref (EV_A);
1552} 2275}
1553 2276
1554void inline_size 2277inline_size void
1555ev_stop (EV_P_ W w) 2278ev_stop (EV_P_ W w)
1556{ 2279{
1557 ev_unref (EV_A); 2280 ev_unref (EV_A);
1558 w->active = 0; 2281 w->active = 0;
1559} 2282}
1560 2283
1561/*****************************************************************************/ 2284/*****************************************************************************/
1562 2285
1563void 2286void noinline
1564ev_io_start (EV_P_ ev_io *w) 2287ev_io_start (EV_P_ ev_io *w)
1565{ 2288{
1566 int fd = w->fd; 2289 int fd = w->fd;
1567 2290
1568 if (expect_false (ev_is_active (w))) 2291 if (expect_false (ev_is_active (w)))
1569 return; 2292 return;
1570 2293
1571 assert (("ev_io_start called with negative fd", fd >= 0)); 2294 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2295 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2296
2297 EV_FREQUENT_CHECK;
1572 2298
1573 ev_start (EV_A_ (W)w, 1); 2299 ev_start (EV_A_ (W)w, 1);
1574 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2300 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1575 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2301 wlist_add (&anfds[fd].head, (WL)w);
1576 2302
1577 fd_change (EV_A_ fd); 2303 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1578} 2304 w->events &= ~EV__IOFDSET;
1579 2305
1580void 2306 EV_FREQUENT_CHECK;
2307}
2308
2309void noinline
1581ev_io_stop (EV_P_ ev_io *w) 2310ev_io_stop (EV_P_ ev_io *w)
1582{ 2311{
1583 ev_clear_pending (EV_A_ (W)w); 2312 clear_pending (EV_A_ (W)w);
1584 if (expect_false (!ev_is_active (w))) 2313 if (expect_false (!ev_is_active (w)))
1585 return; 2314 return;
1586 2315
1587 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2316 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1588 2317
2318 EV_FREQUENT_CHECK;
2319
1589 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2320 wlist_del (&anfds[w->fd].head, (WL)w);
1590 ev_stop (EV_A_ (W)w); 2321 ev_stop (EV_A_ (W)w);
1591 2322
1592 fd_change (EV_A_ w->fd); 2323 fd_change (EV_A_ w->fd, 1);
1593}
1594 2324
1595void 2325 EV_FREQUENT_CHECK;
2326}
2327
2328void noinline
1596ev_timer_start (EV_P_ ev_timer *w) 2329ev_timer_start (EV_P_ ev_timer *w)
1597{ 2330{
1598 if (expect_false (ev_is_active (w))) 2331 if (expect_false (ev_is_active (w)))
1599 return; 2332 return;
1600 2333
1601 ((WT)w)->at += mn_now; 2334 ev_at (w) += mn_now;
1602 2335
1603 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2336 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1604 2337
2338 EV_FREQUENT_CHECK;
2339
2340 ++timercnt;
1605 ev_start (EV_A_ (W)w, ++timercnt); 2341 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1606 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2342 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1607 timers [timercnt - 1] = w; 2343 ANHE_w (timers [ev_active (w)]) = (WT)w;
1608 upheap ((WT *)timers, timercnt - 1); 2344 ANHE_at_cache (timers [ev_active (w)]);
2345 upheap (timers, ev_active (w));
1609 2346
2347 EV_FREQUENT_CHECK;
2348
1610 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2349 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1611} 2350}
1612 2351
1613void 2352void noinline
1614ev_timer_stop (EV_P_ ev_timer *w) 2353ev_timer_stop (EV_P_ ev_timer *w)
1615{ 2354{
1616 ev_clear_pending (EV_A_ (W)w); 2355 clear_pending (EV_A_ (W)w);
1617 if (expect_false (!ev_is_active (w))) 2356 if (expect_false (!ev_is_active (w)))
1618 return; 2357 return;
1619 2358
1620 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2359 EV_FREQUENT_CHECK;
1621 2360
1622 { 2361 {
1623 int active = ((W)w)->active; 2362 int active = ev_active (w);
1624 2363
2364 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2365
2366 --timercnt;
2367
1625 if (expect_true (--active < --timercnt)) 2368 if (expect_true (active < timercnt + HEAP0))
1626 { 2369 {
1627 timers [active] = timers [timercnt]; 2370 timers [active] = timers [timercnt + HEAP0];
1628 adjustheap ((WT *)timers, timercnt, active); 2371 adjustheap (timers, timercnt, active);
1629 } 2372 }
1630 } 2373 }
1631 2374
1632 ((WT)w)->at -= mn_now; 2375 EV_FREQUENT_CHECK;
2376
2377 ev_at (w) -= mn_now;
1633 2378
1634 ev_stop (EV_A_ (W)w); 2379 ev_stop (EV_A_ (W)w);
1635} 2380}
1636 2381
1637void 2382void noinline
1638ev_timer_again (EV_P_ ev_timer *w) 2383ev_timer_again (EV_P_ ev_timer *w)
1639{ 2384{
2385 EV_FREQUENT_CHECK;
2386
1640 if (ev_is_active (w)) 2387 if (ev_is_active (w))
1641 { 2388 {
1642 if (w->repeat) 2389 if (w->repeat)
1643 { 2390 {
1644 ((WT)w)->at = mn_now + w->repeat; 2391 ev_at (w) = mn_now + w->repeat;
2392 ANHE_at_cache (timers [ev_active (w)]);
1645 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2393 adjustheap (timers, timercnt, ev_active (w));
1646 } 2394 }
1647 else 2395 else
1648 ev_timer_stop (EV_A_ w); 2396 ev_timer_stop (EV_A_ w);
1649 } 2397 }
1650 else if (w->repeat) 2398 else if (w->repeat)
1651 { 2399 {
1652 w->at = w->repeat; 2400 ev_at (w) = w->repeat;
1653 ev_timer_start (EV_A_ w); 2401 ev_timer_start (EV_A_ w);
1654 } 2402 }
2403
2404 EV_FREQUENT_CHECK;
1655} 2405}
1656 2406
1657#if EV_PERIODIC_ENABLE 2407#if EV_PERIODIC_ENABLE
1658void 2408void noinline
1659ev_periodic_start (EV_P_ ev_periodic *w) 2409ev_periodic_start (EV_P_ ev_periodic *w)
1660{ 2410{
1661 if (expect_false (ev_is_active (w))) 2411 if (expect_false (ev_is_active (w)))
1662 return; 2412 return;
1663 2413
1664 if (w->reschedule_cb) 2414 if (w->reschedule_cb)
1665 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2415 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1666 else if (w->interval) 2416 else if (w->interval)
1667 { 2417 {
1668 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2418 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1669 /* this formula differs from the one in periodic_reify because we do not always round up */ 2419 /* this formula differs from the one in periodic_reify because we do not always round up */
1670 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2420 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1671 } 2421 }
2422 else
2423 ev_at (w) = w->offset;
1672 2424
2425 EV_FREQUENT_CHECK;
2426
2427 ++periodiccnt;
1673 ev_start (EV_A_ (W)w, ++periodiccnt); 2428 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1674 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2429 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1675 periodics [periodiccnt - 1] = w; 2430 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1676 upheap ((WT *)periodics, periodiccnt - 1); 2431 ANHE_at_cache (periodics [ev_active (w)]);
2432 upheap (periodics, ev_active (w));
1677 2433
2434 EV_FREQUENT_CHECK;
2435
1678 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2436 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1679} 2437}
1680 2438
1681void 2439void noinline
1682ev_periodic_stop (EV_P_ ev_periodic *w) 2440ev_periodic_stop (EV_P_ ev_periodic *w)
1683{ 2441{
1684 ev_clear_pending (EV_A_ (W)w); 2442 clear_pending (EV_A_ (W)w);
1685 if (expect_false (!ev_is_active (w))) 2443 if (expect_false (!ev_is_active (w)))
1686 return; 2444 return;
1687 2445
1688 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2446 EV_FREQUENT_CHECK;
1689 2447
1690 { 2448 {
1691 int active = ((W)w)->active; 2449 int active = ev_active (w);
1692 2450
2451 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2452
2453 --periodiccnt;
2454
1693 if (expect_true (--active < --periodiccnt)) 2455 if (expect_true (active < periodiccnt + HEAP0))
1694 { 2456 {
1695 periodics [active] = periodics [periodiccnt]; 2457 periodics [active] = periodics [periodiccnt + HEAP0];
1696 adjustheap ((WT *)periodics, periodiccnt, active); 2458 adjustheap (periodics, periodiccnt, active);
1697 } 2459 }
1698 } 2460 }
1699 2461
2462 EV_FREQUENT_CHECK;
2463
1700 ev_stop (EV_A_ (W)w); 2464 ev_stop (EV_A_ (W)w);
1701} 2465}
1702 2466
1703void 2467void noinline
1704ev_periodic_again (EV_P_ ev_periodic *w) 2468ev_periodic_again (EV_P_ ev_periodic *w)
1705{ 2469{
1706 /* TODO: use adjustheap and recalculation */ 2470 /* TODO: use adjustheap and recalculation */
1707 ev_periodic_stop (EV_A_ w); 2471 ev_periodic_stop (EV_A_ w);
1708 ev_periodic_start (EV_A_ w); 2472 ev_periodic_start (EV_A_ w);
1711 2475
1712#ifndef SA_RESTART 2476#ifndef SA_RESTART
1713# define SA_RESTART 0 2477# define SA_RESTART 0
1714#endif 2478#endif
1715 2479
1716void 2480void noinline
1717ev_signal_start (EV_P_ ev_signal *w) 2481ev_signal_start (EV_P_ ev_signal *w)
1718{ 2482{
1719#if EV_MULTIPLICITY 2483#if EV_MULTIPLICITY
1720 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2484 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1721#endif 2485#endif
1722 if (expect_false (ev_is_active (w))) 2486 if (expect_false (ev_is_active (w)))
1723 return; 2487 return;
1724 2488
1725 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2489 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2490
2491 evpipe_init (EV_A);
2492
2493 EV_FREQUENT_CHECK;
2494
2495 {
2496#ifndef _WIN32
2497 sigset_t full, prev;
2498 sigfillset (&full);
2499 sigprocmask (SIG_SETMASK, &full, &prev);
2500#endif
2501
2502 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2503
2504#ifndef _WIN32
2505 sigprocmask (SIG_SETMASK, &prev, 0);
2506#endif
2507 }
1726 2508
1727 ev_start (EV_A_ (W)w, 1); 2509 ev_start (EV_A_ (W)w, 1);
1728 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1729 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2510 wlist_add (&signals [w->signum - 1].head, (WL)w);
1730 2511
1731 if (!((WL)w)->next) 2512 if (!((WL)w)->next)
1732 { 2513 {
1733#if _WIN32 2514#if _WIN32
1734 signal (w->signum, sighandler); 2515 signal (w->signum, ev_sighandler);
1735#else 2516#else
1736 struct sigaction sa; 2517 struct sigaction sa;
1737 sa.sa_handler = sighandler; 2518 sa.sa_handler = ev_sighandler;
1738 sigfillset (&sa.sa_mask); 2519 sigfillset (&sa.sa_mask);
1739 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2520 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1740 sigaction (w->signum, &sa, 0); 2521 sigaction (w->signum, &sa, 0);
1741#endif 2522#endif
1742 } 2523 }
1743}
1744 2524
1745void 2525 EV_FREQUENT_CHECK;
2526}
2527
2528void noinline
1746ev_signal_stop (EV_P_ ev_signal *w) 2529ev_signal_stop (EV_P_ ev_signal *w)
1747{ 2530{
1748 ev_clear_pending (EV_A_ (W)w); 2531 clear_pending (EV_A_ (W)w);
1749 if (expect_false (!ev_is_active (w))) 2532 if (expect_false (!ev_is_active (w)))
1750 return; 2533 return;
1751 2534
2535 EV_FREQUENT_CHECK;
2536
1752 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2537 wlist_del (&signals [w->signum - 1].head, (WL)w);
1753 ev_stop (EV_A_ (W)w); 2538 ev_stop (EV_A_ (W)w);
1754 2539
1755 if (!signals [w->signum - 1].head) 2540 if (!signals [w->signum - 1].head)
1756 signal (w->signum, SIG_DFL); 2541 signal (w->signum, SIG_DFL);
2542
2543 EV_FREQUENT_CHECK;
1757} 2544}
1758 2545
1759void 2546void
1760ev_child_start (EV_P_ ev_child *w) 2547ev_child_start (EV_P_ ev_child *w)
1761{ 2548{
1762#if EV_MULTIPLICITY 2549#if EV_MULTIPLICITY
1763 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2550 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1764#endif 2551#endif
1765 if (expect_false (ev_is_active (w))) 2552 if (expect_false (ev_is_active (w)))
1766 return; 2553 return;
1767 2554
2555 EV_FREQUENT_CHECK;
2556
1768 ev_start (EV_A_ (W)w, 1); 2557 ev_start (EV_A_ (W)w, 1);
1769 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2558 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2559
2560 EV_FREQUENT_CHECK;
1770} 2561}
1771 2562
1772void 2563void
1773ev_child_stop (EV_P_ ev_child *w) 2564ev_child_stop (EV_P_ ev_child *w)
1774{ 2565{
1775 ev_clear_pending (EV_A_ (W)w); 2566 clear_pending (EV_A_ (W)w);
1776 if (expect_false (!ev_is_active (w))) 2567 if (expect_false (!ev_is_active (w)))
1777 return; 2568 return;
1778 2569
2570 EV_FREQUENT_CHECK;
2571
1779 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2572 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1780 ev_stop (EV_A_ (W)w); 2573 ev_stop (EV_A_ (W)w);
2574
2575 EV_FREQUENT_CHECK;
1781} 2576}
1782 2577
1783#if EV_STAT_ENABLE 2578#if EV_STAT_ENABLE
1784 2579
1785# ifdef _WIN32 2580# ifdef _WIN32
1786# undef lstat 2581# undef lstat
1787# define lstat(a,b) _stati64 (a,b) 2582# define lstat(a,b) _stati64 (a,b)
1788# endif 2583# endif
1789 2584
1790#define DEF_STAT_INTERVAL 5.0074891 2585#define DEF_STAT_INTERVAL 5.0074891
2586#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1791#define MIN_STAT_INTERVAL 0.1074891 2587#define MIN_STAT_INTERVAL 0.1074891
1792 2588
1793static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2589static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1794 2590
1795#if EV_USE_INOTIFY 2591#if EV_USE_INOTIFY
1796# define EV_INOTIFY_BUFSIZE 8192 2592# define EV_INOTIFY_BUFSIZE 8192
1800{ 2596{
1801 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2597 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1802 2598
1803 if (w->wd < 0) 2599 if (w->wd < 0)
1804 { 2600 {
2601 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1805 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2602 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1806 2603
1807 /* monitor some parent directory for speedup hints */ 2604 /* monitor some parent directory for speedup hints */
2605 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2606 /* but an efficiency issue only */
1808 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2607 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1809 { 2608 {
1810 char path [4096]; 2609 char path [4096];
1811 strcpy (path, w->path); 2610 strcpy (path, w->path);
1812 2611
1815 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2614 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1816 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2615 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1817 2616
1818 char *pend = strrchr (path, '/'); 2617 char *pend = strrchr (path, '/');
1819 2618
1820 if (!pend) 2619 if (!pend || pend == path)
1821 break; /* whoops, no '/', complain to your admin */ 2620 break;
1822 2621
1823 *pend = 0; 2622 *pend = 0;
1824 w->wd = inotify_add_watch (fs_fd, path, mask); 2623 w->wd = inotify_add_watch (fs_fd, path, mask);
1825 } 2624 }
1826 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2625 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1827 } 2626 }
1828 } 2627 }
1829 else
1830 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1831 2628
1832 if (w->wd >= 0) 2629 if (w->wd >= 0)
2630 {
1833 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2631 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2632
2633 /* now local changes will be tracked by inotify, but remote changes won't */
2634 /* unless the filesystem it known to be local, we therefore still poll */
2635 /* also do poll on <2.6.25, but with normal frequency */
2636 struct statfs sfs;
2637
2638 if (fs_2625 && !statfs (w->path, &sfs))
2639 if (sfs.f_type == 0x1373 /* devfs */
2640 || sfs.f_type == 0xEF53 /* ext2/3 */
2641 || sfs.f_type == 0x3153464a /* jfs */
2642 || sfs.f_type == 0x52654973 /* reiser3 */
2643 || sfs.f_type == 0x01021994 /* tempfs */
2644 || sfs.f_type == 0x58465342 /* xfs */)
2645 return;
2646
2647 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2648 ev_timer_again (EV_A_ &w->timer);
2649 }
1834} 2650}
1835 2651
1836static void noinline 2652static void noinline
1837infy_del (EV_P_ ev_stat *w) 2653infy_del (EV_P_ ev_stat *w)
1838{ 2654{
1852 2668
1853static void noinline 2669static void noinline
1854infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2670infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1855{ 2671{
1856 if (slot < 0) 2672 if (slot < 0)
1857 /* overflow, need to check for all hahs slots */ 2673 /* overflow, need to check for all hash slots */
1858 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2674 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1859 infy_wd (EV_A_ slot, wd, ev); 2675 infy_wd (EV_A_ slot, wd, ev);
1860 else 2676 else
1861 { 2677 {
1862 WL w_; 2678 WL w_;
1868 2684
1869 if (w->wd == wd || wd == -1) 2685 if (w->wd == wd || wd == -1)
1870 { 2686 {
1871 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2687 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1872 { 2688 {
2689 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1873 w->wd = -1; 2690 w->wd = -1;
1874 infy_add (EV_A_ w); /* re-add, no matter what */ 2691 infy_add (EV_A_ w); /* re-add, no matter what */
1875 } 2692 }
1876 2693
1877 stat_timer_cb (EV_A_ &w->timer, 0); 2694 stat_timer_cb (EV_A_ &w->timer, 0);
1890 2707
1891 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2708 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1892 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2709 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1893} 2710}
1894 2711
1895void inline_size 2712inline_size void
2713check_2625 (EV_P)
2714{
2715 /* kernels < 2.6.25 are borked
2716 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2717 */
2718 struct utsname buf;
2719 int major, minor, micro;
2720
2721 if (uname (&buf))
2722 return;
2723
2724 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2725 return;
2726
2727 if (major < 2
2728 || (major == 2 && minor < 6)
2729 || (major == 2 && minor == 6 && micro < 25))
2730 return;
2731
2732 fs_2625 = 1;
2733}
2734
2735inline_size void
1896infy_init (EV_P) 2736infy_init (EV_P)
1897{ 2737{
1898 if (fs_fd != -2) 2738 if (fs_fd != -2)
1899 return; 2739 return;
2740
2741 fs_fd = -1;
2742
2743 check_2625 (EV_A);
1900 2744
1901 fs_fd = inotify_init (); 2745 fs_fd = inotify_init ();
1902 2746
1903 if (fs_fd >= 0) 2747 if (fs_fd >= 0)
1904 { 2748 {
1906 ev_set_priority (&fs_w, EV_MAXPRI); 2750 ev_set_priority (&fs_w, EV_MAXPRI);
1907 ev_io_start (EV_A_ &fs_w); 2751 ev_io_start (EV_A_ &fs_w);
1908 } 2752 }
1909} 2753}
1910 2754
1911void inline_size 2755inline_size void
1912infy_fork (EV_P) 2756infy_fork (EV_P)
1913{ 2757{
1914 int slot; 2758 int slot;
1915 2759
1916 if (fs_fd < 0) 2760 if (fs_fd < 0)
1932 w->wd = -1; 2776 w->wd = -1;
1933 2777
1934 if (fs_fd >= 0) 2778 if (fs_fd >= 0)
1935 infy_add (EV_A_ w); /* re-add, no matter what */ 2779 infy_add (EV_A_ w); /* re-add, no matter what */
1936 else 2780 else
1937 ev_timer_start (EV_A_ &w->timer); 2781 ev_timer_again (EV_A_ &w->timer);
1938 } 2782 }
1939
1940 } 2783 }
1941} 2784}
1942 2785
2786#endif
2787
2788#ifdef _WIN32
2789# define EV_LSTAT(p,b) _stati64 (p, b)
2790#else
2791# define EV_LSTAT(p,b) lstat (p, b)
1943#endif 2792#endif
1944 2793
1945void 2794void
1946ev_stat_stat (EV_P_ ev_stat *w) 2795ev_stat_stat (EV_P_ ev_stat *w)
1947{ 2796{
1974 || w->prev.st_atime != w->attr.st_atime 2823 || w->prev.st_atime != w->attr.st_atime
1975 || w->prev.st_mtime != w->attr.st_mtime 2824 || w->prev.st_mtime != w->attr.st_mtime
1976 || w->prev.st_ctime != w->attr.st_ctime 2825 || w->prev.st_ctime != w->attr.st_ctime
1977 ) { 2826 ) {
1978 #if EV_USE_INOTIFY 2827 #if EV_USE_INOTIFY
2828 if (fs_fd >= 0)
2829 {
1979 infy_del (EV_A_ w); 2830 infy_del (EV_A_ w);
1980 infy_add (EV_A_ w); 2831 infy_add (EV_A_ w);
1981 ev_stat_stat (EV_A_ w); /* avoid race... */ 2832 ev_stat_stat (EV_A_ w); /* avoid race... */
2833 }
1982 #endif 2834 #endif
1983 2835
1984 ev_feed_event (EV_A_ w, EV_STAT); 2836 ev_feed_event (EV_A_ w, EV_STAT);
1985 } 2837 }
1986} 2838}
1989ev_stat_start (EV_P_ ev_stat *w) 2841ev_stat_start (EV_P_ ev_stat *w)
1990{ 2842{
1991 if (expect_false (ev_is_active (w))) 2843 if (expect_false (ev_is_active (w)))
1992 return; 2844 return;
1993 2845
1994 /* since we use memcmp, we need to clear any padding data etc. */
1995 memset (&w->prev, 0, sizeof (ev_statdata));
1996 memset (&w->attr, 0, sizeof (ev_statdata));
1997
1998 ev_stat_stat (EV_A_ w); 2846 ev_stat_stat (EV_A_ w);
1999 2847
2848 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2000 if (w->interval < MIN_STAT_INTERVAL) 2849 w->interval = MIN_STAT_INTERVAL;
2001 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2002 2850
2003 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2851 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2004 ev_set_priority (&w->timer, ev_priority (w)); 2852 ev_set_priority (&w->timer, ev_priority (w));
2005 2853
2006#if EV_USE_INOTIFY 2854#if EV_USE_INOTIFY
2007 infy_init (EV_A); 2855 infy_init (EV_A);
2008 2856
2009 if (fs_fd >= 0) 2857 if (fs_fd >= 0)
2010 infy_add (EV_A_ w); 2858 infy_add (EV_A_ w);
2011 else 2859 else
2012#endif 2860#endif
2013 ev_timer_start (EV_A_ &w->timer); 2861 ev_timer_again (EV_A_ &w->timer);
2014 2862
2015 ev_start (EV_A_ (W)w, 1); 2863 ev_start (EV_A_ (W)w, 1);
2864
2865 EV_FREQUENT_CHECK;
2016} 2866}
2017 2867
2018void 2868void
2019ev_stat_stop (EV_P_ ev_stat *w) 2869ev_stat_stop (EV_P_ ev_stat *w)
2020{ 2870{
2021 ev_clear_pending (EV_A_ (W)w); 2871 clear_pending (EV_A_ (W)w);
2022 if (expect_false (!ev_is_active (w))) 2872 if (expect_false (!ev_is_active (w)))
2023 return; 2873 return;
2024 2874
2875 EV_FREQUENT_CHECK;
2876
2025#if EV_USE_INOTIFY 2877#if EV_USE_INOTIFY
2026 infy_del (EV_A_ w); 2878 infy_del (EV_A_ w);
2027#endif 2879#endif
2028 ev_timer_stop (EV_A_ &w->timer); 2880 ev_timer_stop (EV_A_ &w->timer);
2029 2881
2030 ev_stop (EV_A_ (W)w); 2882 ev_stop (EV_A_ (W)w);
2883
2884 EV_FREQUENT_CHECK;
2031} 2885}
2032#endif 2886#endif
2033 2887
2034#if EV_IDLE_ENABLE 2888#if EV_IDLE_ENABLE
2035void 2889void
2037{ 2891{
2038 if (expect_false (ev_is_active (w))) 2892 if (expect_false (ev_is_active (w)))
2039 return; 2893 return;
2040 2894
2041 pri_adjust (EV_A_ (W)w); 2895 pri_adjust (EV_A_ (W)w);
2896
2897 EV_FREQUENT_CHECK;
2042 2898
2043 { 2899 {
2044 int active = ++idlecnt [ABSPRI (w)]; 2900 int active = ++idlecnt [ABSPRI (w)];
2045 2901
2046 ++idleall; 2902 ++idleall;
2047 ev_start (EV_A_ (W)w, active); 2903 ev_start (EV_A_ (W)w, active);
2048 2904
2049 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2905 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2050 idles [ABSPRI (w)][active - 1] = w; 2906 idles [ABSPRI (w)][active - 1] = w;
2051 } 2907 }
2908
2909 EV_FREQUENT_CHECK;
2052} 2910}
2053 2911
2054void 2912void
2055ev_idle_stop (EV_P_ ev_idle *w) 2913ev_idle_stop (EV_P_ ev_idle *w)
2056{ 2914{
2057 ev_clear_pending (EV_A_ (W)w); 2915 clear_pending (EV_A_ (W)w);
2058 if (expect_false (!ev_is_active (w))) 2916 if (expect_false (!ev_is_active (w)))
2059 return; 2917 return;
2060 2918
2919 EV_FREQUENT_CHECK;
2920
2061 { 2921 {
2062 int active = ((W)w)->active; 2922 int active = ev_active (w);
2063 2923
2064 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2924 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2065 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2925 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2066 2926
2067 ev_stop (EV_A_ (W)w); 2927 ev_stop (EV_A_ (W)w);
2068 --idleall; 2928 --idleall;
2069 } 2929 }
2930
2931 EV_FREQUENT_CHECK;
2070} 2932}
2071#endif 2933#endif
2072 2934
2073void 2935void
2074ev_prepare_start (EV_P_ ev_prepare *w) 2936ev_prepare_start (EV_P_ ev_prepare *w)
2075{ 2937{
2076 if (expect_false (ev_is_active (w))) 2938 if (expect_false (ev_is_active (w)))
2077 return; 2939 return;
2940
2941 EV_FREQUENT_CHECK;
2078 2942
2079 ev_start (EV_A_ (W)w, ++preparecnt); 2943 ev_start (EV_A_ (W)w, ++preparecnt);
2080 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2944 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2081 prepares [preparecnt - 1] = w; 2945 prepares [preparecnt - 1] = w;
2946
2947 EV_FREQUENT_CHECK;
2082} 2948}
2083 2949
2084void 2950void
2085ev_prepare_stop (EV_P_ ev_prepare *w) 2951ev_prepare_stop (EV_P_ ev_prepare *w)
2086{ 2952{
2087 ev_clear_pending (EV_A_ (W)w); 2953 clear_pending (EV_A_ (W)w);
2088 if (expect_false (!ev_is_active (w))) 2954 if (expect_false (!ev_is_active (w)))
2089 return; 2955 return;
2090 2956
2957 EV_FREQUENT_CHECK;
2958
2091 { 2959 {
2092 int active = ((W)w)->active; 2960 int active = ev_active (w);
2961
2093 prepares [active - 1] = prepares [--preparecnt]; 2962 prepares [active - 1] = prepares [--preparecnt];
2094 ((W)prepares [active - 1])->active = active; 2963 ev_active (prepares [active - 1]) = active;
2095 } 2964 }
2096 2965
2097 ev_stop (EV_A_ (W)w); 2966 ev_stop (EV_A_ (W)w);
2967
2968 EV_FREQUENT_CHECK;
2098} 2969}
2099 2970
2100void 2971void
2101ev_check_start (EV_P_ ev_check *w) 2972ev_check_start (EV_P_ ev_check *w)
2102{ 2973{
2103 if (expect_false (ev_is_active (w))) 2974 if (expect_false (ev_is_active (w)))
2104 return; 2975 return;
2976
2977 EV_FREQUENT_CHECK;
2105 2978
2106 ev_start (EV_A_ (W)w, ++checkcnt); 2979 ev_start (EV_A_ (W)w, ++checkcnt);
2107 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2980 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2108 checks [checkcnt - 1] = w; 2981 checks [checkcnt - 1] = w;
2982
2983 EV_FREQUENT_CHECK;
2109} 2984}
2110 2985
2111void 2986void
2112ev_check_stop (EV_P_ ev_check *w) 2987ev_check_stop (EV_P_ ev_check *w)
2113{ 2988{
2114 ev_clear_pending (EV_A_ (W)w); 2989 clear_pending (EV_A_ (W)w);
2115 if (expect_false (!ev_is_active (w))) 2990 if (expect_false (!ev_is_active (w)))
2116 return; 2991 return;
2117 2992
2993 EV_FREQUENT_CHECK;
2994
2118 { 2995 {
2119 int active = ((W)w)->active; 2996 int active = ev_active (w);
2997
2120 checks [active - 1] = checks [--checkcnt]; 2998 checks [active - 1] = checks [--checkcnt];
2121 ((W)checks [active - 1])->active = active; 2999 ev_active (checks [active - 1]) = active;
2122 } 3000 }
2123 3001
2124 ev_stop (EV_A_ (W)w); 3002 ev_stop (EV_A_ (W)w);
3003
3004 EV_FREQUENT_CHECK;
2125} 3005}
2126 3006
2127#if EV_EMBED_ENABLE 3007#if EV_EMBED_ENABLE
2128void noinline 3008void noinline
2129ev_embed_sweep (EV_P_ ev_embed *w) 3009ev_embed_sweep (EV_P_ ev_embed *w)
2130{ 3010{
2131 ev_loop (w->loop, EVLOOP_NONBLOCK); 3011 ev_loop (w->other, EVLOOP_NONBLOCK);
2132} 3012}
2133 3013
2134static void 3014static void
2135embed_cb (EV_P_ ev_io *io, int revents) 3015embed_io_cb (EV_P_ ev_io *io, int revents)
2136{ 3016{
2137 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3017 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2138 3018
2139 if (ev_cb (w)) 3019 if (ev_cb (w))
2140 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3020 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2141 else 3021 else
2142 ev_embed_sweep (loop, w); 3022 ev_loop (w->other, EVLOOP_NONBLOCK);
2143} 3023}
3024
3025static void
3026embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3027{
3028 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3029
3030 {
3031 struct ev_loop *loop = w->other;
3032
3033 while (fdchangecnt)
3034 {
3035 fd_reify (EV_A);
3036 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3037 }
3038 }
3039}
3040
3041static void
3042embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3043{
3044 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3045
3046 ev_embed_stop (EV_A_ w);
3047
3048 {
3049 struct ev_loop *loop = w->other;
3050
3051 ev_loop_fork (EV_A);
3052 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3053 }
3054
3055 ev_embed_start (EV_A_ w);
3056}
3057
3058#if 0
3059static void
3060embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3061{
3062 ev_idle_stop (EV_A_ idle);
3063}
3064#endif
2144 3065
2145void 3066void
2146ev_embed_start (EV_P_ ev_embed *w) 3067ev_embed_start (EV_P_ ev_embed *w)
2147{ 3068{
2148 if (expect_false (ev_is_active (w))) 3069 if (expect_false (ev_is_active (w)))
2149 return; 3070 return;
2150 3071
2151 { 3072 {
2152 struct ev_loop *loop = w->loop; 3073 struct ev_loop *loop = w->other;
2153 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3074 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2154 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3075 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2155 } 3076 }
3077
3078 EV_FREQUENT_CHECK;
2156 3079
2157 ev_set_priority (&w->io, ev_priority (w)); 3080 ev_set_priority (&w->io, ev_priority (w));
2158 ev_io_start (EV_A_ &w->io); 3081 ev_io_start (EV_A_ &w->io);
2159 3082
3083 ev_prepare_init (&w->prepare, embed_prepare_cb);
3084 ev_set_priority (&w->prepare, EV_MINPRI);
3085 ev_prepare_start (EV_A_ &w->prepare);
3086
3087 ev_fork_init (&w->fork, embed_fork_cb);
3088 ev_fork_start (EV_A_ &w->fork);
3089
3090 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3091
2160 ev_start (EV_A_ (W)w, 1); 3092 ev_start (EV_A_ (W)w, 1);
3093
3094 EV_FREQUENT_CHECK;
2161} 3095}
2162 3096
2163void 3097void
2164ev_embed_stop (EV_P_ ev_embed *w) 3098ev_embed_stop (EV_P_ ev_embed *w)
2165{ 3099{
2166 ev_clear_pending (EV_A_ (W)w); 3100 clear_pending (EV_A_ (W)w);
2167 if (expect_false (!ev_is_active (w))) 3101 if (expect_false (!ev_is_active (w)))
2168 return; 3102 return;
2169 3103
3104 EV_FREQUENT_CHECK;
3105
2170 ev_io_stop (EV_A_ &w->io); 3106 ev_io_stop (EV_A_ &w->io);
3107 ev_prepare_stop (EV_A_ &w->prepare);
3108 ev_fork_stop (EV_A_ &w->fork);
2171 3109
2172 ev_stop (EV_A_ (W)w); 3110 EV_FREQUENT_CHECK;
2173} 3111}
2174#endif 3112#endif
2175 3113
2176#if EV_FORK_ENABLE 3114#if EV_FORK_ENABLE
2177void 3115void
2178ev_fork_start (EV_P_ ev_fork *w) 3116ev_fork_start (EV_P_ ev_fork *w)
2179{ 3117{
2180 if (expect_false (ev_is_active (w))) 3118 if (expect_false (ev_is_active (w)))
2181 return; 3119 return;
3120
3121 EV_FREQUENT_CHECK;
2182 3122
2183 ev_start (EV_A_ (W)w, ++forkcnt); 3123 ev_start (EV_A_ (W)w, ++forkcnt);
2184 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3124 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2185 forks [forkcnt - 1] = w; 3125 forks [forkcnt - 1] = w;
3126
3127 EV_FREQUENT_CHECK;
2186} 3128}
2187 3129
2188void 3130void
2189ev_fork_stop (EV_P_ ev_fork *w) 3131ev_fork_stop (EV_P_ ev_fork *w)
2190{ 3132{
2191 ev_clear_pending (EV_A_ (W)w); 3133 clear_pending (EV_A_ (W)w);
2192 if (expect_false (!ev_is_active (w))) 3134 if (expect_false (!ev_is_active (w)))
2193 return; 3135 return;
2194 3136
3137 EV_FREQUENT_CHECK;
3138
2195 { 3139 {
2196 int active = ((W)w)->active; 3140 int active = ev_active (w);
3141
2197 forks [active - 1] = forks [--forkcnt]; 3142 forks [active - 1] = forks [--forkcnt];
2198 ((W)forks [active - 1])->active = active; 3143 ev_active (forks [active - 1]) = active;
2199 } 3144 }
2200 3145
2201 ev_stop (EV_A_ (W)w); 3146 ev_stop (EV_A_ (W)w);
3147
3148 EV_FREQUENT_CHECK;
3149}
3150#endif
3151
3152#if EV_ASYNC_ENABLE
3153void
3154ev_async_start (EV_P_ ev_async *w)
3155{
3156 if (expect_false (ev_is_active (w)))
3157 return;
3158
3159 evpipe_init (EV_A);
3160
3161 EV_FREQUENT_CHECK;
3162
3163 ev_start (EV_A_ (W)w, ++asynccnt);
3164 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3165 asyncs [asynccnt - 1] = w;
3166
3167 EV_FREQUENT_CHECK;
3168}
3169
3170void
3171ev_async_stop (EV_P_ ev_async *w)
3172{
3173 clear_pending (EV_A_ (W)w);
3174 if (expect_false (!ev_is_active (w)))
3175 return;
3176
3177 EV_FREQUENT_CHECK;
3178
3179 {
3180 int active = ev_active (w);
3181
3182 asyncs [active - 1] = asyncs [--asynccnt];
3183 ev_active (asyncs [active - 1]) = active;
3184 }
3185
3186 ev_stop (EV_A_ (W)w);
3187
3188 EV_FREQUENT_CHECK;
3189}
3190
3191void
3192ev_async_send (EV_P_ ev_async *w)
3193{
3194 w->sent = 1;
3195 evpipe_write (EV_A_ &gotasync);
2202} 3196}
2203#endif 3197#endif
2204 3198
2205/*****************************************************************************/ 3199/*****************************************************************************/
2206 3200
2216once_cb (EV_P_ struct ev_once *once, int revents) 3210once_cb (EV_P_ struct ev_once *once, int revents)
2217{ 3211{
2218 void (*cb)(int revents, void *arg) = once->cb; 3212 void (*cb)(int revents, void *arg) = once->cb;
2219 void *arg = once->arg; 3213 void *arg = once->arg;
2220 3214
2221 ev_io_stop (EV_A_ &once->io); 3215 ev_io_stop (EV_A_ &once->io);
2222 ev_timer_stop (EV_A_ &once->to); 3216 ev_timer_stop (EV_A_ &once->to);
2223 ev_free (once); 3217 ev_free (once);
2224 3218
2225 cb (revents, arg); 3219 cb (revents, arg);
2226} 3220}
2227 3221
2228static void 3222static void
2229once_cb_io (EV_P_ ev_io *w, int revents) 3223once_cb_io (EV_P_ ev_io *w, int revents)
2230{ 3224{
2231 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3225 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3226
3227 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2232} 3228}
2233 3229
2234static void 3230static void
2235once_cb_to (EV_P_ ev_timer *w, int revents) 3231once_cb_to (EV_P_ ev_timer *w, int revents)
2236{ 3232{
2237 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3233 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3234
3235 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2238} 3236}
2239 3237
2240void 3238void
2241ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3239ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2242{ 3240{
2264 ev_timer_set (&once->to, timeout, 0.); 3262 ev_timer_set (&once->to, timeout, 0.);
2265 ev_timer_start (EV_A_ &once->to); 3263 ev_timer_start (EV_A_ &once->to);
2266 } 3264 }
2267} 3265}
2268 3266
3267/*****************************************************************************/
3268
3269#if EV_WALK_ENABLE
3270void
3271ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3272{
3273 int i, j;
3274 ev_watcher_list *wl, *wn;
3275
3276 if (types & (EV_IO | EV_EMBED))
3277 for (i = 0; i < anfdmax; ++i)
3278 for (wl = anfds [i].head; wl; )
3279 {
3280 wn = wl->next;
3281
3282#if EV_EMBED_ENABLE
3283 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3284 {
3285 if (types & EV_EMBED)
3286 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3287 }
3288 else
3289#endif
3290#if EV_USE_INOTIFY
3291 if (ev_cb ((ev_io *)wl) == infy_cb)
3292 ;
3293 else
3294#endif
3295 if ((ev_io *)wl != &pipe_w)
3296 if (types & EV_IO)
3297 cb (EV_A_ EV_IO, wl);
3298
3299 wl = wn;
3300 }
3301
3302 if (types & (EV_TIMER | EV_STAT))
3303 for (i = timercnt + HEAP0; i-- > HEAP0; )
3304#if EV_STAT_ENABLE
3305 /*TODO: timer is not always active*/
3306 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3307 {
3308 if (types & EV_STAT)
3309 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3310 }
3311 else
3312#endif
3313 if (types & EV_TIMER)
3314 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3315
3316#if EV_PERIODIC_ENABLE
3317 if (types & EV_PERIODIC)
3318 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3319 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3320#endif
3321
3322#if EV_IDLE_ENABLE
3323 if (types & EV_IDLE)
3324 for (j = NUMPRI; i--; )
3325 for (i = idlecnt [j]; i--; )
3326 cb (EV_A_ EV_IDLE, idles [j][i]);
3327#endif
3328
3329#if EV_FORK_ENABLE
3330 if (types & EV_FORK)
3331 for (i = forkcnt; i--; )
3332 if (ev_cb (forks [i]) != embed_fork_cb)
3333 cb (EV_A_ EV_FORK, forks [i]);
3334#endif
3335
3336#if EV_ASYNC_ENABLE
3337 if (types & EV_ASYNC)
3338 for (i = asynccnt; i--; )
3339 cb (EV_A_ EV_ASYNC, asyncs [i]);
3340#endif
3341
3342 if (types & EV_PREPARE)
3343 for (i = preparecnt; i--; )
3344#if EV_EMBED_ENABLE
3345 if (ev_cb (prepares [i]) != embed_prepare_cb)
3346#endif
3347 cb (EV_A_ EV_PREPARE, prepares [i]);
3348
3349 if (types & EV_CHECK)
3350 for (i = checkcnt; i--; )
3351 cb (EV_A_ EV_CHECK, checks [i]);
3352
3353 if (types & EV_SIGNAL)
3354 for (i = 0; i < signalmax; ++i)
3355 for (wl = signals [i].head; wl; )
3356 {
3357 wn = wl->next;
3358 cb (EV_A_ EV_SIGNAL, wl);
3359 wl = wn;
3360 }
3361
3362 if (types & EV_CHILD)
3363 for (i = EV_PID_HASHSIZE; i--; )
3364 for (wl = childs [i]; wl; )
3365 {
3366 wn = wl->next;
3367 cb (EV_A_ EV_CHILD, wl);
3368 wl = wn;
3369 }
3370/* EV_STAT 0x00001000 /* stat data changed */
3371/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3372}
3373#endif
3374
3375#if EV_MULTIPLICITY
3376 #include "ev_wrap.h"
3377#endif
3378
2269#ifdef __cplusplus 3379#ifdef __cplusplus
2270} 3380}
2271#endif 3381#endif
2272 3382

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines