ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.165 by root, Fri Dec 7 18:09:38 2007 UTC vs.
Revision 1.300 by root, Tue Jul 14 20:31:21 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
56# endif 87# endif
57# endif 88# endif
58 89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
107#endif 146#endif
108 147
109#include <math.h> 148#include <math.h>
110#include <stdlib.h> 149#include <stdlib.h>
111#include <fcntl.h> 150#include <fcntl.h>
129#ifndef _WIN32 168#ifndef _WIN32
130# include <sys/time.h> 169# include <sys/time.h>
131# include <sys/wait.h> 170# include <sys/wait.h>
132# include <unistd.h> 171# include <unistd.h>
133#else 172#else
173# include <io.h>
134# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 175# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
138# endif 178# endif
139#endif 179#endif
140 180
141/**/ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
142 190
143#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
144# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
145#endif 197#endif
146 198
147#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
201#endif
202
203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
207# define EV_USE_NANOSLEEP 0
208# endif
149#endif 209#endif
150 210
151#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
153#endif 213#endif
159# define EV_USE_POLL 1 219# define EV_USE_POLL 1
160# endif 220# endif
161#endif 221#endif
162 222
163#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
164# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
228# endif
165#endif 229#endif
166 230
167#ifndef EV_USE_KQUEUE 231#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 232# define EV_USE_KQUEUE 0
169#endif 233#endif
171#ifndef EV_USE_PORT 235#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 236# define EV_USE_PORT 0
173#endif 237#endif
174 238
175#ifndef EV_USE_INOTIFY 239#ifndef EV_USE_INOTIFY
240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
241# define EV_USE_INOTIFY 1
242# else
176# define EV_USE_INOTIFY 0 243# define EV_USE_INOTIFY 0
244# endif
177#endif 245#endif
178 246
179#ifndef EV_PID_HASHSIZE 247#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 248# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 249# define EV_PID_HASHSIZE 1
190# else 258# else
191# define EV_INOTIFY_HASHSIZE 16 259# define EV_INOTIFY_HASHSIZE 16
192# endif 260# endif
193#endif 261#endif
194 262
195/**/ 263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 304
197#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
200#endif 308#endif
202#ifndef CLOCK_REALTIME 310#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 311# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 312# define EV_USE_REALTIME 0
205#endif 313#endif
206 314
315#if !EV_STAT_ENABLE
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318#endif
319
320#if !EV_USE_NANOSLEEP
321# ifndef _WIN32
322# include <sys/select.h>
323# endif
324#endif
325
326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
335#endif
336
207#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 338# include <winsock.h>
209#endif 339#endif
210 340
211#if !EV_STAT_ENABLE 341#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
213#endif 346# endif
214 347int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 348# ifdef __cplusplus
216# include <sys/inotify.h> 349}
350# endif
217#endif 351#endif
218 352
219/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
360
361/*
362 * This is used to avoid floating point rounding problems.
363 * It is added to ev_rt_now when scheduling periodics
364 * to ensure progress, time-wise, even when rounding
365 * errors are against us.
366 * This value is good at least till the year 4000.
367 * Better solutions welcome.
368 */
369#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 370
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 371#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 372#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 373/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 374
225#if __GNUC__ >= 3 375#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 376# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 377# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 378#else
236# define expect(expr,value) (expr) 379# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 380# define noinline
381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
382# define inline
383# endif
240#endif 384#endif
241 385
242#define expect_false(expr) expect ((expr) != 0, 0) 386#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 387#define expect_true(expr) expect ((expr) != 0, 1)
388#define inline_size static inline
244 389
390#if EV_MINIMAL
391# define inline_speed static noinline
392#else
393# define inline_speed static inline
394#endif
395
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
247 403
248#define EMPTY /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
250 406
251typedef ev_watcher *W; 407typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 408typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
254 410
411#define ev_active(w) ((W)(w))->active
412#define ev_at(w) ((WT)(w))->at
413
414#if EV_USE_REALTIME
415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
422#endif
256 423
257#ifdef _WIN32 424#ifdef _WIN32
258# include "ev_win32.c" 425# include "ev_win32.c"
259#endif 426#endif
260 427
267{ 434{
268 syserr_cb = cb; 435 syserr_cb = cb;
269} 436}
270 437
271static void noinline 438static void noinline
272syserr (const char *msg) 439ev_syserr (const char *msg)
273{ 440{
274 if (!msg) 441 if (!msg)
275 msg = "(libev) system error"; 442 msg = "(libev) system error";
276 443
277 if (syserr_cb) 444 if (syserr_cb)
281 perror (msg); 448 perror (msg);
282 abort (); 449 abort ();
283 } 450 }
284} 451}
285 452
453static void *
454ev_realloc_emul (void *ptr, long size)
455{
456 /* some systems, notably openbsd and darwin, fail to properly
457 * implement realloc (x, 0) (as required by both ansi c-98 and
458 * the single unix specification, so work around them here.
459 */
460
461 if (size)
462 return realloc (ptr, size);
463
464 free (ptr);
465 return 0;
466}
467
286static void *(*alloc)(void *ptr, long size); 468static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 469
288void 470void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 471ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 472{
291 alloc = cb; 473 alloc = cb;
292} 474}
293 475
294inline_speed void * 476inline_speed void *
295ev_realloc (void *ptr, long size) 477ev_realloc (void *ptr, long size)
296{ 478{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 479 ptr = alloc (ptr, size);
298 480
299 if (!ptr && size) 481 if (!ptr && size)
300 { 482 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 483 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 484 abort ();
308#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
310 492
311/*****************************************************************************/ 493/*****************************************************************************/
312 494
495/* set in reify when reification needed */
496#define EV_ANFD_REIFY 1
497
498/* file descriptor info structure */
313typedef struct 499typedef struct
314{ 500{
315 WL head; 501 WL head;
316 unsigned char events; 502 unsigned char events; /* the events watched for */
503 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
504 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 505 unsigned char unused;
506#if EV_USE_EPOLL
507 unsigned int egen; /* generation counter to counter epoll bugs */
508#endif
318#if EV_SELECT_IS_WINSOCKET 509#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 510 SOCKET handle;
320#endif 511#endif
321} ANFD; 512} ANFD;
322 513
514/* stores the pending event set for a given watcher */
323typedef struct 515typedef struct
324{ 516{
325 W w; 517 W w;
326 int events; 518 int events; /* the pending event set for the given watcher */
327} ANPENDING; 519} ANPENDING;
328 520
329#if EV_USE_INOTIFY 521#if EV_USE_INOTIFY
522/* hash table entry per inotify-id */
330typedef struct 523typedef struct
331{ 524{
332 WL head; 525 WL head;
333} ANFS; 526} ANFS;
527#endif
528
529/* Heap Entry */
530#if EV_HEAP_CACHE_AT
531 /* a heap element */
532 typedef struct {
533 ev_tstamp at;
534 WT w;
535 } ANHE;
536
537 #define ANHE_w(he) (he).w /* access watcher, read-write */
538 #define ANHE_at(he) (he).at /* access cached at, read-only */
539 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
540#else
541 /* a heap element */
542 typedef WT ANHE;
543
544 #define ANHE_w(he) (he)
545 #define ANHE_at(he) (he)->at
546 #define ANHE_at_cache(he)
334#endif 547#endif
335 548
336#if EV_MULTIPLICITY 549#if EV_MULTIPLICITY
337 550
338 struct ev_loop 551 struct ev_loop
357 570
358 static int ev_default_loop_ptr; 571 static int ev_default_loop_ptr;
359 572
360#endif 573#endif
361 574
575#if EV_MINIMAL < 2
576# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
577# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
578# define EV_INVOKE_PENDING invoke_cb (EV_A)
579#else
580# define EV_RELEASE_CB (void)0
581# define EV_ACQUIRE_CB (void)0
582# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
583#endif
584
585#define EVUNLOOP_RECURSE 0x80
586
362/*****************************************************************************/ 587/*****************************************************************************/
363 588
589#ifndef EV_HAVE_EV_TIME
364ev_tstamp 590ev_tstamp
365ev_time (void) 591ev_time (void)
366{ 592{
367#if EV_USE_REALTIME 593#if EV_USE_REALTIME
594 if (expect_true (have_realtime))
595 {
368 struct timespec ts; 596 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 597 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 598 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 599 }
600#endif
601
372 struct timeval tv; 602 struct timeval tv;
373 gettimeofday (&tv, 0); 603 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 604 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 605}
606#endif
377 607
378ev_tstamp inline_size 608inline_size ev_tstamp
379get_clock (void) 609get_clock (void)
380{ 610{
381#if EV_USE_MONOTONIC 611#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 612 if (expect_true (have_monotonic))
383 { 613 {
396{ 626{
397 return ev_rt_now; 627 return ev_rt_now;
398} 628}
399#endif 629#endif
400 630
401int inline_size 631void
632ev_sleep (ev_tstamp delay)
633{
634 if (delay > 0.)
635 {
636#if EV_USE_NANOSLEEP
637 struct timespec ts;
638
639 ts.tv_sec = (time_t)delay;
640 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
641
642 nanosleep (&ts, 0);
643#elif defined(_WIN32)
644 Sleep ((unsigned long)(delay * 1e3));
645#else
646 struct timeval tv;
647
648 tv.tv_sec = (time_t)delay;
649 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
650
651 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
652 /* somehting not guaranteed by newer posix versions, but guaranteed */
653 /* by older ones */
654 select (0, 0, 0, 0, &tv);
655#endif
656 }
657}
658
659/*****************************************************************************/
660
661#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
662
663/* find a suitable new size for the given array, */
664/* hopefully by rounding to a ncie-to-malloc size */
665inline_size int
402array_nextsize (int elem, int cur, int cnt) 666array_nextsize (int elem, int cur, int cnt)
403{ 667{
404 int ncur = cur + 1; 668 int ncur = cur + 1;
405 669
406 do 670 do
407 ncur <<= 1; 671 ncur <<= 1;
408 while (cnt > ncur); 672 while (cnt > ncur);
409 673
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 674 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
411 if (elem * ncur > 4096) 675 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
412 { 676 {
413 ncur *= elem; 677 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 678 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
415 ncur = ncur - sizeof (void *) * 4; 679 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem; 680 ncur /= elem;
417 } 681 }
418 682
419 return ncur; 683 return ncur;
420} 684}
421 685
422inline_speed void * 686static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 687array_realloc (int elem, void *base, int *cur, int cnt)
424{ 688{
425 *cur = array_nextsize (elem, *cur, cnt); 689 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 690 return ev_realloc (base, elem * *cur);
427} 691}
692
693#define array_init_zero(base,count) \
694 memset ((void *)(base), 0, sizeof (*(base)) * (count))
428 695
429#define array_needsize(type,base,cur,cnt,init) \ 696#define array_needsize(type,base,cur,cnt,init) \
430 if (expect_false ((cnt) > (cur))) \ 697 if (expect_false ((cnt) > (cur))) \
431 { \ 698 { \
432 int ocur_ = (cur); \ 699 int ocur_ = (cur); \
444 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 711 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
445 } 712 }
446#endif 713#endif
447 714
448#define array_free(stem, idx) \ 715#define array_free(stem, idx) \
449 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 716 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
450 717
451/*****************************************************************************/ 718/*****************************************************************************/
719
720/* dummy callback for pending events */
721static void noinline
722pendingcb (EV_P_ ev_prepare *w, int revents)
723{
724}
452 725
453void noinline 726void noinline
454ev_feed_event (EV_P_ void *w, int revents) 727ev_feed_event (EV_P_ void *w, int revents)
455{ 728{
456 W w_ = (W)w; 729 W w_ = (W)w;
730 int pri = ABSPRI (w_);
457 731
458 if (expect_false (w_->pending)) 732 if (expect_false (w_->pending))
733 pendings [pri][w_->pending - 1].events |= revents;
734 else
459 { 735 {
736 w_->pending = ++pendingcnt [pri];
737 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
738 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 739 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 740 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 741}
469 742
470void inline_size 743inline_speed void
744feed_reverse (EV_P_ W w)
745{
746 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
747 rfeeds [rfeedcnt++] = w;
748}
749
750inline_size void
751feed_reverse_done (EV_P_ int revents)
752{
753 do
754 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
755 while (rfeedcnt);
756}
757
758inline_speed void
471queue_events (EV_P_ W *events, int eventcnt, int type) 759queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 760{
473 int i; 761 int i;
474 762
475 for (i = 0; i < eventcnt; ++i) 763 for (i = 0; i < eventcnt; ++i)
476 ev_feed_event (EV_A_ events [i], type); 764 ev_feed_event (EV_A_ events [i], type);
477} 765}
478 766
479/*****************************************************************************/ 767/*****************************************************************************/
480 768
481void inline_size 769inline_speed void
482anfds_init (ANFD *base, int count)
483{
484 while (count--)
485 {
486 base->head = 0;
487 base->events = EV_NONE;
488 base->reify = 0;
489
490 ++base;
491 }
492}
493
494void inline_speed
495fd_event (EV_P_ int fd, int revents) 770fd_event_nc (EV_P_ int fd, int revents)
496{ 771{
497 ANFD *anfd = anfds + fd; 772 ANFD *anfd = anfds + fd;
498 ev_io *w; 773 ev_io *w;
499 774
500 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 775 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
504 if (ev) 779 if (ev)
505 ev_feed_event (EV_A_ (W)w, ev); 780 ev_feed_event (EV_A_ (W)w, ev);
506 } 781 }
507} 782}
508 783
784/* do not submit kernel events for fds that have reify set */
785/* because that means they changed while we were polling for new events */
786inline_speed void
787fd_event (EV_P_ int fd, int revents)
788{
789 ANFD *anfd = anfds + fd;
790
791 if (expect_true (!anfd->reify))
792 fd_event_nc (EV_A_ fd, revents);
793}
794
509void 795void
510ev_feed_fd_event (EV_P_ int fd, int revents) 796ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 797{
798 if (fd >= 0 && fd < anfdmax)
512 fd_event (EV_A_ fd, revents); 799 fd_event_nc (EV_A_ fd, revents);
513} 800}
514 801
515void inline_size 802/* make sure the external fd watch events are in-sync */
803/* with the kernel/libev internal state */
804inline_size void
516fd_reify (EV_P) 805fd_reify (EV_P)
517{ 806{
518 int i; 807 int i;
519 808
520 for (i = 0; i < fdchangecnt; ++i) 809 for (i = 0; i < fdchangecnt; ++i)
521 { 810 {
522 int fd = fdchanges [i]; 811 int fd = fdchanges [i];
523 ANFD *anfd = anfds + fd; 812 ANFD *anfd = anfds + fd;
524 ev_io *w; 813 ev_io *w;
525 814
526 int events = 0; 815 unsigned char events = 0;
527 816
528 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 817 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
529 events |= w->events; 818 events |= (unsigned char)w->events;
530 819
531#if EV_SELECT_IS_WINSOCKET 820#if EV_SELECT_IS_WINSOCKET
532 if (events) 821 if (events)
533 { 822 {
534 unsigned long argp; 823 unsigned long arg;
824 #ifdef EV_FD_TO_WIN32_HANDLE
825 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
826 #else
535 anfd->handle = _get_osfhandle (fd); 827 anfd->handle = _get_osfhandle (fd);
828 #endif
536 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 829 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
537 } 830 }
538#endif 831#endif
539 832
833 {
834 unsigned char o_events = anfd->events;
835 unsigned char o_reify = anfd->reify;
836
540 anfd->reify = 0; 837 anfd->reify = 0;
541
542 backend_modify (EV_A_ fd, anfd->events, events);
543 anfd->events = events; 838 anfd->events = events;
839
840 if (o_events != events || o_reify & EV__IOFDSET)
841 backend_modify (EV_A_ fd, o_events, events);
842 }
544 } 843 }
545 844
546 fdchangecnt = 0; 845 fdchangecnt = 0;
547} 846}
548 847
549void inline_size 848/* something about the given fd changed */
849inline_size void
550fd_change (EV_P_ int fd) 850fd_change (EV_P_ int fd, int flags)
551{ 851{
552 if (expect_false (anfds [fd].reify)) 852 unsigned char reify = anfds [fd].reify;
553 return;
554
555 anfds [fd].reify = 1; 853 anfds [fd].reify |= flags;
556 854
855 if (expect_true (!reify))
856 {
557 ++fdchangecnt; 857 ++fdchangecnt;
558 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 858 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
559 fdchanges [fdchangecnt - 1] = fd; 859 fdchanges [fdchangecnt - 1] = fd;
860 }
560} 861}
561 862
562void inline_speed 863/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
864inline_speed void
563fd_kill (EV_P_ int fd) 865fd_kill (EV_P_ int fd)
564{ 866{
565 ev_io *w; 867 ev_io *w;
566 868
567 while ((w = (ev_io *)anfds [fd].head)) 869 while ((w = (ev_io *)anfds [fd].head))
569 ev_io_stop (EV_A_ w); 871 ev_io_stop (EV_A_ w);
570 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 872 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
571 } 873 }
572} 874}
573 875
574int inline_size 876/* check whether the given fd is atcually valid, for error recovery */
877inline_size int
575fd_valid (int fd) 878fd_valid (int fd)
576{ 879{
577#ifdef _WIN32 880#ifdef _WIN32
578 return _get_osfhandle (fd) != -1; 881 return _get_osfhandle (fd) != -1;
579#else 882#else
587{ 890{
588 int fd; 891 int fd;
589 892
590 for (fd = 0; fd < anfdmax; ++fd) 893 for (fd = 0; fd < anfdmax; ++fd)
591 if (anfds [fd].events) 894 if (anfds [fd].events)
592 if (!fd_valid (fd) == -1 && errno == EBADF) 895 if (!fd_valid (fd) && errno == EBADF)
593 fd_kill (EV_A_ fd); 896 fd_kill (EV_A_ fd);
594} 897}
595 898
596/* called on ENOMEM in select/poll to kill some fds and retry */ 899/* called on ENOMEM in select/poll to kill some fds and retry */
597static void noinline 900static void noinline
615 918
616 for (fd = 0; fd < anfdmax; ++fd) 919 for (fd = 0; fd < anfdmax; ++fd)
617 if (anfds [fd].events) 920 if (anfds [fd].events)
618 { 921 {
619 anfds [fd].events = 0; 922 anfds [fd].events = 0;
620 fd_change (EV_A_ fd); 923 anfds [fd].emask = 0;
924 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
621 } 925 }
622} 926}
623 927
624/*****************************************************************************/ 928/*****************************************************************************/
625 929
626void inline_speed 930/*
627upheap (WT *heap, int k) 931 * the heap functions want a real array index. array index 0 uis guaranteed to not
628{ 932 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
629 WT w = heap [k]; 933 * the branching factor of the d-tree.
934 */
630 935
631 while (k && heap [k >> 1]->at > w->at) 936/*
632 { 937 * at the moment we allow libev the luxury of two heaps,
633 heap [k] = heap [k >> 1]; 938 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
634 ((W)heap [k])->active = k + 1; 939 * which is more cache-efficient.
635 k >>= 1; 940 * the difference is about 5% with 50000+ watchers.
636 } 941 */
942#if EV_USE_4HEAP
637 943
638 heap [k] = w; 944#define DHEAP 4
639 ((W)heap [k])->active = k + 1; 945#define HEAP0 (DHEAP - 1) /* index of first element in heap */
946#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
947#define UPHEAP_DONE(p,k) ((p) == (k))
640 948
641} 949/* away from the root */
642 950inline_speed void
643void inline_speed
644downheap (WT *heap, int N, int k) 951downheap (ANHE *heap, int N, int k)
645{ 952{
646 WT w = heap [k]; 953 ANHE he = heap [k];
954 ANHE *E = heap + N + HEAP0;
647 955
648 while (k < (N >> 1)) 956 for (;;)
649 { 957 {
650 int j = k << 1; 958 ev_tstamp minat;
959 ANHE *minpos;
960 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
651 961
652 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 962 /* find minimum child */
963 if (expect_true (pos + DHEAP - 1 < E))
653 ++j; 964 {
654 965 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
655 if (w->at <= heap [j]->at) 966 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
967 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
968 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
969 }
970 else if (pos < E)
971 {
972 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
973 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
974 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
975 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
976 }
977 else
656 break; 978 break;
657 979
980 if (ANHE_at (he) <= minat)
981 break;
982
983 heap [k] = *minpos;
984 ev_active (ANHE_w (*minpos)) = k;
985
986 k = minpos - heap;
987 }
988
989 heap [k] = he;
990 ev_active (ANHE_w (he)) = k;
991}
992
993#else /* 4HEAP */
994
995#define HEAP0 1
996#define HPARENT(k) ((k) >> 1)
997#define UPHEAP_DONE(p,k) (!(p))
998
999/* away from the root */
1000inline_speed void
1001downheap (ANHE *heap, int N, int k)
1002{
1003 ANHE he = heap [k];
1004
1005 for (;;)
1006 {
1007 int c = k << 1;
1008
1009 if (c > N + HEAP0 - 1)
1010 break;
1011
1012 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1013 ? 1 : 0;
1014
1015 if (ANHE_at (he) <= ANHE_at (heap [c]))
1016 break;
1017
658 heap [k] = heap [j]; 1018 heap [k] = heap [c];
659 ((W)heap [k])->active = k + 1; 1019 ev_active (ANHE_w (heap [k])) = k;
1020
660 k = j; 1021 k = c;
661 } 1022 }
662 1023
663 heap [k] = w; 1024 heap [k] = he;
664 ((W)heap [k])->active = k + 1; 1025 ev_active (ANHE_w (he)) = k;
665} 1026}
1027#endif
666 1028
667void inline_size 1029/* towards the root */
1030inline_speed void
1031upheap (ANHE *heap, int k)
1032{
1033 ANHE he = heap [k];
1034
1035 for (;;)
1036 {
1037 int p = HPARENT (k);
1038
1039 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1040 break;
1041
1042 heap [k] = heap [p];
1043 ev_active (ANHE_w (heap [k])) = k;
1044 k = p;
1045 }
1046
1047 heap [k] = he;
1048 ev_active (ANHE_w (he)) = k;
1049}
1050
1051/* move an element suitably so it is in a correct place */
1052inline_size void
668adjustheap (WT *heap, int N, int k) 1053adjustheap (ANHE *heap, int N, int k)
669{ 1054{
1055 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
670 upheap (heap, k); 1056 upheap (heap, k);
1057 else
671 downheap (heap, N, k); 1058 downheap (heap, N, k);
1059}
1060
1061/* rebuild the heap: this function is used only once and executed rarely */
1062inline_size void
1063reheap (ANHE *heap, int N)
1064{
1065 int i;
1066
1067 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1068 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1069 for (i = 0; i < N; ++i)
1070 upheap (heap, i + HEAP0);
672} 1071}
673 1072
674/*****************************************************************************/ 1073/*****************************************************************************/
675 1074
1075/* associate signal watchers to a signal signal */
676typedef struct 1076typedef struct
677{ 1077{
678 WL head; 1078 WL head;
679 sig_atomic_t volatile gotsig; 1079 EV_ATOMIC_T gotsig;
680} ANSIG; 1080} ANSIG;
681 1081
682static ANSIG *signals; 1082static ANSIG *signals;
683static int signalmax; 1083static int signalmax;
684 1084
685static int sigpipe [2]; 1085static EV_ATOMIC_T gotsig;
686static sig_atomic_t volatile gotsig;
687static ev_io sigev;
688 1086
689void inline_size 1087/*****************************************************************************/
690signals_init (ANSIG *base, int count)
691{
692 while (count--)
693 {
694 base->head = 0;
695 base->gotsig = 0;
696 1088
697 ++base; 1089/* used to prepare libev internal fd's */
698 } 1090/* this is not fork-safe */
699} 1091inline_speed void
700
701static void
702sighandler (int signum)
703{
704#if _WIN32
705 signal (signum, sighandler);
706#endif
707
708 signals [signum - 1].gotsig = 1;
709
710 if (!gotsig)
711 {
712 int old_errno = errno;
713 gotsig = 1;
714 write (sigpipe [1], &signum, 1);
715 errno = old_errno;
716 }
717}
718
719void noinline
720ev_feed_signal_event (EV_P_ int signum)
721{
722 WL w;
723
724#if EV_MULTIPLICITY
725 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
726#endif
727
728 --signum;
729
730 if (signum < 0 || signum >= signalmax)
731 return;
732
733 signals [signum].gotsig = 0;
734
735 for (w = signals [signum].head; w; w = w->next)
736 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
737}
738
739static void
740sigcb (EV_P_ ev_io *iow, int revents)
741{
742 int signum;
743
744 read (sigpipe [0], &revents, 1);
745 gotsig = 0;
746
747 for (signum = signalmax; signum--; )
748 if (signals [signum].gotsig)
749 ev_feed_signal_event (EV_A_ signum + 1);
750}
751
752void inline_size
753fd_intern (int fd) 1092fd_intern (int fd)
754{ 1093{
755#ifdef _WIN32 1094#ifdef _WIN32
756 int arg = 1; 1095 unsigned long arg = 1;
757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1096 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
758#else 1097#else
759 fcntl (fd, F_SETFD, FD_CLOEXEC); 1098 fcntl (fd, F_SETFD, FD_CLOEXEC);
760 fcntl (fd, F_SETFL, O_NONBLOCK); 1099 fcntl (fd, F_SETFL, O_NONBLOCK);
761#endif 1100#endif
762} 1101}
763 1102
764static void noinline 1103static void noinline
765siginit (EV_P) 1104evpipe_init (EV_P)
766{ 1105{
1106 if (!ev_is_active (&pipe_w))
1107 {
1108#if EV_USE_EVENTFD
1109 if ((evfd = eventfd (0, 0)) >= 0)
1110 {
1111 evpipe [0] = -1;
1112 fd_intern (evfd);
1113 ev_io_set (&pipe_w, evfd, EV_READ);
1114 }
1115 else
1116#endif
1117 {
1118 while (pipe (evpipe))
1119 ev_syserr ("(libev) error creating signal/async pipe");
1120
767 fd_intern (sigpipe [0]); 1121 fd_intern (evpipe [0]);
768 fd_intern (sigpipe [1]); 1122 fd_intern (evpipe [1]);
1123 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1124 }
769 1125
770 ev_io_set (&sigev, sigpipe [0], EV_READ);
771 ev_io_start (EV_A_ &sigev); 1126 ev_io_start (EV_A_ &pipe_w);
772 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1127 ev_unref (EV_A); /* watcher should not keep loop alive */
1128 }
1129}
1130
1131inline_size void
1132evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1133{
1134 if (!*flag)
1135 {
1136 int old_errno = errno; /* save errno because write might clobber it */
1137
1138 *flag = 1;
1139
1140#if EV_USE_EVENTFD
1141 if (evfd >= 0)
1142 {
1143 uint64_t counter = 1;
1144 write (evfd, &counter, sizeof (uint64_t));
1145 }
1146 else
1147#endif
1148 write (evpipe [1], &old_errno, 1);
1149
1150 errno = old_errno;
1151 }
1152}
1153
1154/* called whenever the libev signal pipe */
1155/* got some events (signal, async) */
1156static void
1157pipecb (EV_P_ ev_io *iow, int revents)
1158{
1159#if EV_USE_EVENTFD
1160 if (evfd >= 0)
1161 {
1162 uint64_t counter;
1163 read (evfd, &counter, sizeof (uint64_t));
1164 }
1165 else
1166#endif
1167 {
1168 char dummy;
1169 read (evpipe [0], &dummy, 1);
1170 }
1171
1172 if (gotsig && ev_is_default_loop (EV_A))
1173 {
1174 int signum;
1175 gotsig = 0;
1176
1177 for (signum = signalmax; signum--; )
1178 if (signals [signum].gotsig)
1179 ev_feed_signal_event (EV_A_ signum + 1);
1180 }
1181
1182#if EV_ASYNC_ENABLE
1183 if (gotasync)
1184 {
1185 int i;
1186 gotasync = 0;
1187
1188 for (i = asynccnt; i--; )
1189 if (asyncs [i]->sent)
1190 {
1191 asyncs [i]->sent = 0;
1192 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1193 }
1194 }
1195#endif
773} 1196}
774 1197
775/*****************************************************************************/ 1198/*****************************************************************************/
776 1199
1200static void
1201ev_sighandler (int signum)
1202{
1203#if EV_MULTIPLICITY
1204 struct ev_loop *loop = &default_loop_struct;
1205#endif
1206
1207#if _WIN32
1208 signal (signum, ev_sighandler);
1209#endif
1210
1211 signals [signum - 1].gotsig = 1;
1212 evpipe_write (EV_A_ &gotsig);
1213}
1214
1215void noinline
1216ev_feed_signal_event (EV_P_ int signum)
1217{
1218 WL w;
1219
1220#if EV_MULTIPLICITY
1221 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1222#endif
1223
1224 --signum;
1225
1226 if (signum < 0 || signum >= signalmax)
1227 return;
1228
1229 signals [signum].gotsig = 0;
1230
1231 for (w = signals [signum].head; w; w = w->next)
1232 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1233}
1234
1235/*****************************************************************************/
1236
777static ev_child *childs [EV_PID_HASHSIZE]; 1237static WL childs [EV_PID_HASHSIZE];
778 1238
779#ifndef _WIN32 1239#ifndef _WIN32
780 1240
781static ev_signal childev; 1241static ev_signal childev;
782 1242
783void inline_speed 1243#ifndef WIFCONTINUED
1244# define WIFCONTINUED(status) 0
1245#endif
1246
1247/* handle a single child status event */
1248inline_speed void
784child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1249child_reap (EV_P_ int chain, int pid, int status)
785{ 1250{
786 ev_child *w; 1251 ev_child *w;
1252 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
787 1253
788 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1254 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1255 {
789 if (w->pid == pid || !w->pid) 1256 if ((w->pid == pid || !w->pid)
1257 && (!traced || (w->flags & 1)))
790 { 1258 {
791 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1259 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
792 w->rpid = pid; 1260 w->rpid = pid;
793 w->rstatus = status; 1261 w->rstatus = status;
794 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1262 ev_feed_event (EV_A_ (W)w, EV_CHILD);
795 } 1263 }
1264 }
796} 1265}
797 1266
798#ifndef WCONTINUED 1267#ifndef WCONTINUED
799# define WCONTINUED 0 1268# define WCONTINUED 0
800#endif 1269#endif
801 1270
1271/* called on sigchld etc., calls waitpid */
802static void 1272static void
803childcb (EV_P_ ev_signal *sw, int revents) 1273childcb (EV_P_ ev_signal *sw, int revents)
804{ 1274{
805 int pid, status; 1275 int pid, status;
806 1276
809 if (!WCONTINUED 1279 if (!WCONTINUED
810 || errno != EINVAL 1280 || errno != EINVAL
811 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1281 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
812 return; 1282 return;
813 1283
814 /* make sure we are called again until all childs have been reaped */ 1284 /* make sure we are called again until all children have been reaped */
815 /* we need to do it this way so that the callback gets called before we continue */ 1285 /* we need to do it this way so that the callback gets called before we continue */
816 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1286 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
817 1287
818 child_reap (EV_A_ sw, pid, pid, status); 1288 child_reap (EV_A_ pid, pid, status);
819 if (EV_PID_HASHSIZE > 1) 1289 if (EV_PID_HASHSIZE > 1)
820 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1290 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
821} 1291}
822 1292
823#endif 1293#endif
824 1294
825/*****************************************************************************/ 1295/*****************************************************************************/
887 /* kqueue is borked on everything but netbsd apparently */ 1357 /* kqueue is borked on everything but netbsd apparently */
888 /* it usually doesn't work correctly on anything but sockets and pipes */ 1358 /* it usually doesn't work correctly on anything but sockets and pipes */
889 flags &= ~EVBACKEND_KQUEUE; 1359 flags &= ~EVBACKEND_KQUEUE;
890#endif 1360#endif
891#ifdef __APPLE__ 1361#ifdef __APPLE__
892 // flags &= ~EVBACKEND_KQUEUE; for documentation 1362 /* only select works correctly on that "unix-certified" platform */
893 flags &= ~EVBACKEND_POLL; 1363 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1364 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
894#endif 1365#endif
895 1366
896 return flags; 1367 return flags;
897} 1368}
898 1369
899unsigned int 1370unsigned int
900ev_embeddable_backends (void) 1371ev_embeddable_backends (void)
901{ 1372{
902 return EVBACKEND_EPOLL 1373 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
903 | EVBACKEND_KQUEUE 1374
904 | EVBACKEND_PORT; 1375 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1376 /* please fix it and tell me how to detect the fix */
1377 flags &= ~EVBACKEND_EPOLL;
1378
1379 return flags;
905} 1380}
906 1381
907unsigned int 1382unsigned int
908ev_backend (EV_P) 1383ev_backend (EV_P)
909{ 1384{
910 return backend; 1385 return backend;
911} 1386}
912 1387
1388#if EV_MINIMAL < 2
913unsigned int 1389unsigned int
914ev_loop_count (EV_P) 1390ev_loop_count (EV_P)
915{ 1391{
916 return loop_count; 1392 return loop_count;
917} 1393}
918 1394
1395unsigned int
1396ev_loop_depth (EV_P)
1397{
1398 return loop_depth;
1399}
1400
1401void
1402ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1403{
1404 io_blocktime = interval;
1405}
1406
1407void
1408ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1409{
1410 timeout_blocktime = interval;
1411}
1412
1413void
1414ev_set_userdata (EV_P_ void *data)
1415{
1416 userdata = data;
1417}
1418
1419void *
1420ev_userdata (EV_P)
1421{
1422 return userdata;
1423}
1424
1425void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1426{
1427 invoke_cb = invoke_pending_cb;
1428}
1429
1430void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1431{
1432 release_cb = release;
1433 acquire_cb = acquire;
1434}
1435#endif
1436
1437/* initialise a loop structure, must be zero-initialised */
919static void noinline 1438static void noinline
920loop_init (EV_P_ unsigned int flags) 1439loop_init (EV_P_ unsigned int flags)
921{ 1440{
922 if (!backend) 1441 if (!backend)
923 { 1442 {
1443#if EV_USE_REALTIME
1444 if (!have_realtime)
1445 {
1446 struct timespec ts;
1447
1448 if (!clock_gettime (CLOCK_REALTIME, &ts))
1449 have_realtime = 1;
1450 }
1451#endif
1452
924#if EV_USE_MONOTONIC 1453#if EV_USE_MONOTONIC
1454 if (!have_monotonic)
925 { 1455 {
926 struct timespec ts; 1456 struct timespec ts;
1457
927 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1458 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
928 have_monotonic = 1; 1459 have_monotonic = 1;
929 } 1460 }
930#endif 1461#endif
931 1462
932 ev_rt_now = ev_time (); 1463 ev_rt_now = ev_time ();
933 mn_now = get_clock (); 1464 mn_now = get_clock ();
934 now_floor = mn_now; 1465 now_floor = mn_now;
935 rtmn_diff = ev_rt_now - mn_now; 1466 rtmn_diff = ev_rt_now - mn_now;
1467#if EV_MINIMAL < 2
1468 invoke_cb = ev_invoke_pending;
1469#endif
1470
1471 io_blocktime = 0.;
1472 timeout_blocktime = 0.;
1473 backend = 0;
1474 backend_fd = -1;
1475 gotasync = 0;
1476#if EV_USE_INOTIFY
1477 fs_fd = -2;
1478#endif
936 1479
937 /* pid check not overridable via env */ 1480 /* pid check not overridable via env */
938#ifndef _WIN32 1481#ifndef _WIN32
939 if (flags & EVFLAG_FORKCHECK) 1482 if (flags & EVFLAG_FORKCHECK)
940 curpid = getpid (); 1483 curpid = getpid ();
943 if (!(flags & EVFLAG_NOENV) 1486 if (!(flags & EVFLAG_NOENV)
944 && !enable_secure () 1487 && !enable_secure ()
945 && getenv ("LIBEV_FLAGS")) 1488 && getenv ("LIBEV_FLAGS"))
946 flags = atoi (getenv ("LIBEV_FLAGS")); 1489 flags = atoi (getenv ("LIBEV_FLAGS"));
947 1490
948 if (!(flags & 0x0000ffffUL)) 1491 if (!(flags & 0x0000ffffU))
949 flags |= ev_recommended_backends (); 1492 flags |= ev_recommended_backends ();
950
951 backend = 0;
952 backend_fd = -1;
953#if EV_USE_INOTIFY
954 fs_fd = -2;
955#endif
956 1493
957#if EV_USE_PORT 1494#if EV_USE_PORT
958 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1495 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
959#endif 1496#endif
960#if EV_USE_KQUEUE 1497#if EV_USE_KQUEUE
968#endif 1505#endif
969#if EV_USE_SELECT 1506#if EV_USE_SELECT
970 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1507 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
971#endif 1508#endif
972 1509
1510 ev_prepare_init (&pending_w, pendingcb);
1511
973 ev_init (&sigev, sigcb); 1512 ev_init (&pipe_w, pipecb);
974 ev_set_priority (&sigev, EV_MAXPRI); 1513 ev_set_priority (&pipe_w, EV_MAXPRI);
975 } 1514 }
976} 1515}
977 1516
1517/* free up a loop structure */
978static void noinline 1518static void noinline
979loop_destroy (EV_P) 1519loop_destroy (EV_P)
980{ 1520{
981 int i; 1521 int i;
1522
1523 if (ev_is_active (&pipe_w))
1524 {
1525 ev_ref (EV_A); /* signal watcher */
1526 ev_io_stop (EV_A_ &pipe_w);
1527
1528#if EV_USE_EVENTFD
1529 if (evfd >= 0)
1530 close (evfd);
1531#endif
1532
1533 if (evpipe [0] >= 0)
1534 {
1535 close (evpipe [0]);
1536 close (evpipe [1]);
1537 }
1538 }
982 1539
983#if EV_USE_INOTIFY 1540#if EV_USE_INOTIFY
984 if (fs_fd >= 0) 1541 if (fs_fd >= 0)
985 close (fs_fd); 1542 close (fs_fd);
986#endif 1543#endif
1010#if EV_IDLE_ENABLE 1567#if EV_IDLE_ENABLE
1011 array_free (idle, [i]); 1568 array_free (idle, [i]);
1012#endif 1569#endif
1013 } 1570 }
1014 1571
1572 ev_free (anfds); anfdmax = 0;
1573
1015 /* have to use the microsoft-never-gets-it-right macro */ 1574 /* have to use the microsoft-never-gets-it-right macro */
1575 array_free (rfeed, EMPTY);
1016 array_free (fdchange, EMPTY); 1576 array_free (fdchange, EMPTY);
1017 array_free (timer, EMPTY); 1577 array_free (timer, EMPTY);
1018#if EV_PERIODIC_ENABLE 1578#if EV_PERIODIC_ENABLE
1019 array_free (periodic, EMPTY); 1579 array_free (periodic, EMPTY);
1020#endif 1580#endif
1581#if EV_FORK_ENABLE
1582 array_free (fork, EMPTY);
1583#endif
1021 array_free (prepare, EMPTY); 1584 array_free (prepare, EMPTY);
1022 array_free (check, EMPTY); 1585 array_free (check, EMPTY);
1586#if EV_ASYNC_ENABLE
1587 array_free (async, EMPTY);
1588#endif
1023 1589
1024 backend = 0; 1590 backend = 0;
1025} 1591}
1026 1592
1593#if EV_USE_INOTIFY
1027void inline_size infy_fork (EV_P); 1594inline_size void infy_fork (EV_P);
1595#endif
1028 1596
1029void inline_size 1597inline_size void
1030loop_fork (EV_P) 1598loop_fork (EV_P)
1031{ 1599{
1032#if EV_USE_PORT 1600#if EV_USE_PORT
1033 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1601 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1034#endif 1602#endif
1040#endif 1608#endif
1041#if EV_USE_INOTIFY 1609#if EV_USE_INOTIFY
1042 infy_fork (EV_A); 1610 infy_fork (EV_A);
1043#endif 1611#endif
1044 1612
1045 if (ev_is_active (&sigev)) 1613 if (ev_is_active (&pipe_w))
1046 { 1614 {
1047 /* default loop */ 1615 /* this "locks" the handlers against writing to the pipe */
1616 /* while we modify the fd vars */
1617 gotsig = 1;
1618#if EV_ASYNC_ENABLE
1619 gotasync = 1;
1620#endif
1048 1621
1049 ev_ref (EV_A); 1622 ev_ref (EV_A);
1050 ev_io_stop (EV_A_ &sigev); 1623 ev_io_stop (EV_A_ &pipe_w);
1624
1625#if EV_USE_EVENTFD
1626 if (evfd >= 0)
1627 close (evfd);
1628#endif
1629
1630 if (evpipe [0] >= 0)
1631 {
1051 close (sigpipe [0]); 1632 close (evpipe [0]);
1052 close (sigpipe [1]); 1633 close (evpipe [1]);
1634 }
1053 1635
1054 while (pipe (sigpipe))
1055 syserr ("(libev) error creating pipe");
1056
1057 siginit (EV_A); 1636 evpipe_init (EV_A);
1637 /* now iterate over everything, in case we missed something */
1638 pipecb (EV_A_ &pipe_w, EV_READ);
1058 } 1639 }
1059 1640
1060 postfork = 0; 1641 postfork = 0;
1061} 1642}
1062 1643
1063#if EV_MULTIPLICITY 1644#if EV_MULTIPLICITY
1645
1064struct ev_loop * 1646struct ev_loop *
1065ev_loop_new (unsigned int flags) 1647ev_loop_new (unsigned int flags)
1066{ 1648{
1067 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1649 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1068 1650
1084} 1666}
1085 1667
1086void 1668void
1087ev_loop_fork (EV_P) 1669ev_loop_fork (EV_P)
1088{ 1670{
1089 postfork = 1; 1671 postfork = 1; /* must be in line with ev_default_fork */
1090} 1672}
1673#endif /* multiplicity */
1091 1674
1675#if EV_VERIFY
1676static void noinline
1677verify_watcher (EV_P_ W w)
1678{
1679 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1680
1681 if (w->pending)
1682 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1683}
1684
1685static void noinline
1686verify_heap (EV_P_ ANHE *heap, int N)
1687{
1688 int i;
1689
1690 for (i = HEAP0; i < N + HEAP0; ++i)
1691 {
1692 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1693 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1694 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1695
1696 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1697 }
1698}
1699
1700static void noinline
1701array_verify (EV_P_ W *ws, int cnt)
1702{
1703 while (cnt--)
1704 {
1705 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1706 verify_watcher (EV_A_ ws [cnt]);
1707 }
1708}
1709#endif
1710
1711#if EV_MINIMAL < 2
1712void
1713ev_loop_verify (EV_P)
1714{
1715#if EV_VERIFY
1716 int i;
1717 WL w;
1718
1719 assert (activecnt >= -1);
1720
1721 assert (fdchangemax >= fdchangecnt);
1722 for (i = 0; i < fdchangecnt; ++i)
1723 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1724
1725 assert (anfdmax >= 0);
1726 for (i = 0; i < anfdmax; ++i)
1727 for (w = anfds [i].head; w; w = w->next)
1728 {
1729 verify_watcher (EV_A_ (W)w);
1730 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1731 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1732 }
1733
1734 assert (timermax >= timercnt);
1735 verify_heap (EV_A_ timers, timercnt);
1736
1737#if EV_PERIODIC_ENABLE
1738 assert (periodicmax >= periodiccnt);
1739 verify_heap (EV_A_ periodics, periodiccnt);
1740#endif
1741
1742 for (i = NUMPRI; i--; )
1743 {
1744 assert (pendingmax [i] >= pendingcnt [i]);
1745#if EV_IDLE_ENABLE
1746 assert (idleall >= 0);
1747 assert (idlemax [i] >= idlecnt [i]);
1748 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1749#endif
1750 }
1751
1752#if EV_FORK_ENABLE
1753 assert (forkmax >= forkcnt);
1754 array_verify (EV_A_ (W *)forks, forkcnt);
1755#endif
1756
1757#if EV_ASYNC_ENABLE
1758 assert (asyncmax >= asynccnt);
1759 array_verify (EV_A_ (W *)asyncs, asynccnt);
1760#endif
1761
1762 assert (preparemax >= preparecnt);
1763 array_verify (EV_A_ (W *)prepares, preparecnt);
1764
1765 assert (checkmax >= checkcnt);
1766 array_verify (EV_A_ (W *)checks, checkcnt);
1767
1768# if 0
1769 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1770 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1771# endif
1772#endif
1773}
1092#endif 1774#endif
1093 1775
1094#if EV_MULTIPLICITY 1776#if EV_MULTIPLICITY
1095struct ev_loop * 1777struct ev_loop *
1096ev_default_loop_init (unsigned int flags) 1778ev_default_loop_init (unsigned int flags)
1097#else 1779#else
1098int 1780int
1099ev_default_loop (unsigned int flags) 1781ev_default_loop (unsigned int flags)
1100#endif 1782#endif
1101{ 1783{
1102 if (sigpipe [0] == sigpipe [1])
1103 if (pipe (sigpipe))
1104 return 0;
1105
1106 if (!ev_default_loop_ptr) 1784 if (!ev_default_loop_ptr)
1107 { 1785 {
1108#if EV_MULTIPLICITY 1786#if EV_MULTIPLICITY
1109 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1787 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1110#else 1788#else
1113 1791
1114 loop_init (EV_A_ flags); 1792 loop_init (EV_A_ flags);
1115 1793
1116 if (ev_backend (EV_A)) 1794 if (ev_backend (EV_A))
1117 { 1795 {
1118 siginit (EV_A);
1119
1120#ifndef _WIN32 1796#ifndef _WIN32
1121 ev_signal_init (&childev, childcb, SIGCHLD); 1797 ev_signal_init (&childev, childcb, SIGCHLD);
1122 ev_set_priority (&childev, EV_MAXPRI); 1798 ev_set_priority (&childev, EV_MAXPRI);
1123 ev_signal_start (EV_A_ &childev); 1799 ev_signal_start (EV_A_ &childev);
1124 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1800 ev_unref (EV_A); /* child watcher should not keep loop alive */
1136{ 1812{
1137#if EV_MULTIPLICITY 1813#if EV_MULTIPLICITY
1138 struct ev_loop *loop = ev_default_loop_ptr; 1814 struct ev_loop *loop = ev_default_loop_ptr;
1139#endif 1815#endif
1140 1816
1817 ev_default_loop_ptr = 0;
1818
1141#ifndef _WIN32 1819#ifndef _WIN32
1142 ev_ref (EV_A); /* child watcher */ 1820 ev_ref (EV_A); /* child watcher */
1143 ev_signal_stop (EV_A_ &childev); 1821 ev_signal_stop (EV_A_ &childev);
1144#endif 1822#endif
1145 1823
1146 ev_ref (EV_A); /* signal watcher */
1147 ev_io_stop (EV_A_ &sigev);
1148
1149 close (sigpipe [0]); sigpipe [0] = 0;
1150 close (sigpipe [1]); sigpipe [1] = 0;
1151
1152 loop_destroy (EV_A); 1824 loop_destroy (EV_A);
1153} 1825}
1154 1826
1155void 1827void
1156ev_default_fork (void) 1828ev_default_fork (void)
1157{ 1829{
1158#if EV_MULTIPLICITY 1830#if EV_MULTIPLICITY
1159 struct ev_loop *loop = ev_default_loop_ptr; 1831 struct ev_loop *loop = ev_default_loop_ptr;
1160#endif 1832#endif
1161 1833
1162 if (backend) 1834 postfork = 1; /* must be in line with ev_loop_fork */
1163 postfork = 1;
1164} 1835}
1165 1836
1166/*****************************************************************************/ 1837/*****************************************************************************/
1167 1838
1168void inline_speed 1839void
1169call_pending (EV_P) 1840ev_invoke (EV_P_ void *w, int revents)
1841{
1842 EV_CB_INVOKE ((W)w, revents);
1843}
1844
1845unsigned int
1846ev_pending_count (EV_P)
1847{
1848 int pri;
1849 unsigned int count = 0;
1850
1851 for (pri = NUMPRI; pri--; )
1852 count += pendingcnt [pri];
1853
1854 return count;
1855}
1856
1857void noinline
1858ev_invoke_pending (EV_P)
1170{ 1859{
1171 int pri; 1860 int pri;
1172 1861
1173 for (pri = NUMPRI; pri--; ) 1862 for (pri = NUMPRI; pri--; )
1174 while (pendingcnt [pri]) 1863 while (pendingcnt [pri])
1175 { 1864 {
1176 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1865 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1177 1866
1178 if (expect_true (p->w))
1179 {
1180 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1867 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1868 /* ^ this is no longer true, as pending_w could be here */
1181 1869
1182 p->w->pending = 0; 1870 p->w->pending = 0;
1183 EV_CB_INVOKE (p->w, p->events); 1871 EV_CB_INVOKE (p->w, p->events);
1184 } 1872 EV_FREQUENT_CHECK;
1185 } 1873 }
1186} 1874}
1187 1875
1188void inline_size
1189timers_reify (EV_P)
1190{
1191 while (timercnt && ((WT)timers [0])->at <= mn_now)
1192 {
1193 ev_timer *w = timers [0];
1194
1195 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1196
1197 /* first reschedule or stop timer */
1198 if (w->repeat)
1199 {
1200 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1201
1202 ((WT)w)->at += w->repeat;
1203 if (((WT)w)->at < mn_now)
1204 ((WT)w)->at = mn_now;
1205
1206 downheap ((WT *)timers, timercnt, 0);
1207 }
1208 else
1209 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1210
1211 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1212 }
1213}
1214
1215#if EV_PERIODIC_ENABLE
1216void inline_size
1217periodics_reify (EV_P)
1218{
1219 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1220 {
1221 ev_periodic *w = periodics [0];
1222
1223 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1224
1225 /* first reschedule or stop timer */
1226 if (w->reschedule_cb)
1227 {
1228 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1229 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1230 downheap ((WT *)periodics, periodiccnt, 0);
1231 }
1232 else if (w->interval)
1233 {
1234 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1235 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1236 downheap ((WT *)periodics, periodiccnt, 0);
1237 }
1238 else
1239 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1240
1241 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1242 }
1243}
1244
1245static void noinline
1246periodics_reschedule (EV_P)
1247{
1248 int i;
1249
1250 /* adjust periodics after time jump */
1251 for (i = 0; i < periodiccnt; ++i)
1252 {
1253 ev_periodic *w = periodics [i];
1254
1255 if (w->reschedule_cb)
1256 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1257 else if (w->interval)
1258 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1259 }
1260
1261 /* now rebuild the heap */
1262 for (i = periodiccnt >> 1; i--; )
1263 downheap ((WT *)periodics, periodiccnt, i);
1264}
1265#endif
1266
1267#if EV_IDLE_ENABLE 1876#if EV_IDLE_ENABLE
1268void inline_size 1877/* make idle watchers pending. this handles the "call-idle */
1878/* only when higher priorities are idle" logic */
1879inline_size void
1269idle_reify (EV_P) 1880idle_reify (EV_P)
1270{ 1881{
1271 if (expect_false (idleall)) 1882 if (expect_false (idleall))
1272 { 1883 {
1273 int pri; 1884 int pri;
1285 } 1896 }
1286 } 1897 }
1287} 1898}
1288#endif 1899#endif
1289 1900
1290int inline_size 1901/* make timers pending */
1291time_update_monotonic (EV_P) 1902inline_size void
1903timers_reify (EV_P)
1292{ 1904{
1905 EV_FREQUENT_CHECK;
1906
1907 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1908 {
1909 do
1910 {
1911 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1912
1913 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1914
1915 /* first reschedule or stop timer */
1916 if (w->repeat)
1917 {
1918 ev_at (w) += w->repeat;
1919 if (ev_at (w) < mn_now)
1920 ev_at (w) = mn_now;
1921
1922 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1923
1924 ANHE_at_cache (timers [HEAP0]);
1925 downheap (timers, timercnt, HEAP0);
1926 }
1927 else
1928 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1929
1930 EV_FREQUENT_CHECK;
1931 feed_reverse (EV_A_ (W)w);
1932 }
1933 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1934
1935 feed_reverse_done (EV_A_ EV_TIMEOUT);
1936 }
1937}
1938
1939#if EV_PERIODIC_ENABLE
1940/* make periodics pending */
1941inline_size void
1942periodics_reify (EV_P)
1943{
1944 EV_FREQUENT_CHECK;
1945
1946 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1947 {
1948 int feed_count = 0;
1949
1950 do
1951 {
1952 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1953
1954 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1955
1956 /* first reschedule or stop timer */
1957 if (w->reschedule_cb)
1958 {
1959 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1960
1961 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1962
1963 ANHE_at_cache (periodics [HEAP0]);
1964 downheap (periodics, periodiccnt, HEAP0);
1965 }
1966 else if (w->interval)
1967 {
1968 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1969 /* if next trigger time is not sufficiently in the future, put it there */
1970 /* this might happen because of floating point inexactness */
1971 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1972 {
1973 ev_at (w) += w->interval;
1974
1975 /* if interval is unreasonably low we might still have a time in the past */
1976 /* so correct this. this will make the periodic very inexact, but the user */
1977 /* has effectively asked to get triggered more often than possible */
1978 if (ev_at (w) < ev_rt_now)
1979 ev_at (w) = ev_rt_now;
1980 }
1981
1982 ANHE_at_cache (periodics [HEAP0]);
1983 downheap (periodics, periodiccnt, HEAP0);
1984 }
1985 else
1986 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1987
1988 EV_FREQUENT_CHECK;
1989 feed_reverse (EV_A_ (W)w);
1990 }
1991 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1992
1993 feed_reverse_done (EV_A_ EV_PERIODIC);
1994 }
1995}
1996
1997/* simply recalculate all periodics */
1998/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1999static void noinline
2000periodics_reschedule (EV_P)
2001{
2002 int i;
2003
2004 /* adjust periodics after time jump */
2005 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2006 {
2007 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2008
2009 if (w->reschedule_cb)
2010 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2011 else if (w->interval)
2012 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2013
2014 ANHE_at_cache (periodics [i]);
2015 }
2016
2017 reheap (periodics, periodiccnt);
2018}
2019#endif
2020
2021/* adjust all timers by a given offset */
2022static void noinline
2023timers_reschedule (EV_P_ ev_tstamp adjust)
2024{
2025 int i;
2026
2027 for (i = 0; i < timercnt; ++i)
2028 {
2029 ANHE *he = timers + i + HEAP0;
2030 ANHE_w (*he)->at += adjust;
2031 ANHE_at_cache (*he);
2032 }
2033}
2034
2035/* fetch new monotonic and realtime times from the kernel */
2036/* also detetc if there was a timejump, and act accordingly */
2037inline_speed void
2038time_update (EV_P_ ev_tstamp max_block)
2039{
2040#if EV_USE_MONOTONIC
2041 if (expect_true (have_monotonic))
2042 {
2043 int i;
2044 ev_tstamp odiff = rtmn_diff;
2045
1293 mn_now = get_clock (); 2046 mn_now = get_clock ();
1294 2047
2048 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2049 /* interpolate in the meantime */
1295 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2050 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1296 { 2051 {
1297 ev_rt_now = rtmn_diff + mn_now; 2052 ev_rt_now = rtmn_diff + mn_now;
1298 return 0; 2053 return;
1299 } 2054 }
1300 else 2055
1301 {
1302 now_floor = mn_now; 2056 now_floor = mn_now;
1303 ev_rt_now = ev_time (); 2057 ev_rt_now = ev_time ();
1304 return 1;
1305 }
1306}
1307 2058
1308void inline_size 2059 /* loop a few times, before making important decisions.
1309time_update (EV_P) 2060 * on the choice of "4": one iteration isn't enough,
1310{ 2061 * in case we get preempted during the calls to
1311 int i; 2062 * ev_time and get_clock. a second call is almost guaranteed
1312 2063 * to succeed in that case, though. and looping a few more times
1313#if EV_USE_MONOTONIC 2064 * doesn't hurt either as we only do this on time-jumps or
1314 if (expect_true (have_monotonic)) 2065 * in the unlikely event of having been preempted here.
1315 { 2066 */
1316 if (time_update_monotonic (EV_A)) 2067 for (i = 4; --i; )
1317 { 2068 {
1318 ev_tstamp odiff = rtmn_diff;
1319
1320 /* loop a few times, before making important decisions.
1321 * on the choice of "4": one iteration isn't enough,
1322 * in case we get preempted during the calls to
1323 * ev_time and get_clock. a second call is almost guaranteed
1324 * to succeed in that case, though. and looping a few more times
1325 * doesn't hurt either as we only do this on time-jumps or
1326 * in the unlikely event of having been preempted here.
1327 */
1328 for (i = 4; --i; )
1329 {
1330 rtmn_diff = ev_rt_now - mn_now; 2069 rtmn_diff = ev_rt_now - mn_now;
1331 2070
1332 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2071 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1333 return; /* all is well */ 2072 return; /* all is well */
1334 2073
1335 ev_rt_now = ev_time (); 2074 ev_rt_now = ev_time ();
1336 mn_now = get_clock (); 2075 mn_now = get_clock ();
1337 now_floor = mn_now; 2076 now_floor = mn_now;
1338 } 2077 }
1339 2078
2079 /* no timer adjustment, as the monotonic clock doesn't jump */
2080 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1340# if EV_PERIODIC_ENABLE 2081# if EV_PERIODIC_ENABLE
1341 periodics_reschedule (EV_A); 2082 periodics_reschedule (EV_A);
1342# endif 2083# endif
1343 /* no timer adjustment, as the monotonic clock doesn't jump */
1344 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1345 }
1346 } 2084 }
1347 else 2085 else
1348#endif 2086#endif
1349 { 2087 {
1350 ev_rt_now = ev_time (); 2088 ev_rt_now = ev_time ();
1351 2089
1352 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2090 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1353 { 2091 {
2092 /* adjust timers. this is easy, as the offset is the same for all of them */
2093 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1354#if EV_PERIODIC_ENABLE 2094#if EV_PERIODIC_ENABLE
1355 periodics_reschedule (EV_A); 2095 periodics_reschedule (EV_A);
1356#endif 2096#endif
1357
1358 /* adjust timers. this is easy, as the offset is the same for all of them */
1359 for (i = 0; i < timercnt; ++i)
1360 ((WT)timers [i])->at += ev_rt_now - mn_now;
1361 } 2097 }
1362 2098
1363 mn_now = ev_rt_now; 2099 mn_now = ev_rt_now;
1364 } 2100 }
1365} 2101}
1366 2102
1367void 2103void
1368ev_ref (EV_P)
1369{
1370 ++activecnt;
1371}
1372
1373void
1374ev_unref (EV_P)
1375{
1376 --activecnt;
1377}
1378
1379static int loop_done;
1380
1381void
1382ev_loop (EV_P_ int flags) 2104ev_loop (EV_P_ int flags)
1383{ 2105{
1384 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2106#if EV_MINIMAL < 2
1385 ? EVUNLOOP_ONE 2107 ++loop_depth;
1386 : EVUNLOOP_CANCEL; 2108#endif
1387 2109
2110 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2111
2112 loop_done = EVUNLOOP_CANCEL;
2113
1388 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2114 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1389 2115
1390 do 2116 do
1391 { 2117 {
2118#if EV_VERIFY >= 2
2119 ev_loop_verify (EV_A);
2120#endif
2121
1392#ifndef _WIN32 2122#ifndef _WIN32
1393 if (expect_false (curpid)) /* penalise the forking check even more */ 2123 if (expect_false (curpid)) /* penalise the forking check even more */
1394 if (expect_false (getpid () != curpid)) 2124 if (expect_false (getpid () != curpid))
1395 { 2125 {
1396 curpid = getpid (); 2126 curpid = getpid ();
1402 /* we might have forked, so queue fork handlers */ 2132 /* we might have forked, so queue fork handlers */
1403 if (expect_false (postfork)) 2133 if (expect_false (postfork))
1404 if (forkcnt) 2134 if (forkcnt)
1405 { 2135 {
1406 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2136 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1407 call_pending (EV_A); 2137 EV_INVOKE_PENDING;
1408 } 2138 }
1409#endif 2139#endif
1410 2140
1411 /* queue check watchers (and execute them) */ 2141 /* queue prepare watchers (and execute them) */
1412 if (expect_false (preparecnt)) 2142 if (expect_false (preparecnt))
1413 { 2143 {
1414 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2144 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1415 call_pending (EV_A); 2145 EV_INVOKE_PENDING;
1416 } 2146 }
1417 2147
1418 if (expect_false (!activecnt)) 2148 if (expect_false (loop_done))
1419 break; 2149 break;
1420 2150
1421 /* we might have forked, so reify kernel state if necessary */ 2151 /* we might have forked, so reify kernel state if necessary */
1422 if (expect_false (postfork)) 2152 if (expect_false (postfork))
1423 loop_fork (EV_A); 2153 loop_fork (EV_A);
1425 /* update fd-related kernel structures */ 2155 /* update fd-related kernel structures */
1426 fd_reify (EV_A); 2156 fd_reify (EV_A);
1427 2157
1428 /* calculate blocking time */ 2158 /* calculate blocking time */
1429 { 2159 {
1430 ev_tstamp block; 2160 ev_tstamp waittime = 0.;
2161 ev_tstamp sleeptime = 0.;
1431 2162
1432 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2163 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1433 block = 0.; /* do not block at all */
1434 else
1435 { 2164 {
2165 /* remember old timestamp for io_blocktime calculation */
2166 ev_tstamp prev_mn_now = mn_now;
2167
1436 /* update time to cancel out callback processing overhead */ 2168 /* update time to cancel out callback processing overhead */
1437#if EV_USE_MONOTONIC
1438 if (expect_true (have_monotonic))
1439 time_update_monotonic (EV_A); 2169 time_update (EV_A_ 1e100);
1440 else
1441#endif
1442 {
1443 ev_rt_now = ev_time ();
1444 mn_now = ev_rt_now;
1445 }
1446 2170
1447 block = MAX_BLOCKTIME; 2171 waittime = MAX_BLOCKTIME;
1448 2172
1449 if (timercnt) 2173 if (timercnt)
1450 { 2174 {
1451 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2175 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1452 if (block > to) block = to; 2176 if (waittime > to) waittime = to;
1453 } 2177 }
1454 2178
1455#if EV_PERIODIC_ENABLE 2179#if EV_PERIODIC_ENABLE
1456 if (periodiccnt) 2180 if (periodiccnt)
1457 { 2181 {
1458 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2182 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1459 if (block > to) block = to; 2183 if (waittime > to) waittime = to;
1460 } 2184 }
1461#endif 2185#endif
1462 2186
2187 /* don't let timeouts decrease the waittime below timeout_blocktime */
2188 if (expect_false (waittime < timeout_blocktime))
2189 waittime = timeout_blocktime;
2190
2191 /* extra check because io_blocktime is commonly 0 */
1463 if (expect_false (block < 0.)) block = 0.; 2192 if (expect_false (io_blocktime))
2193 {
2194 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2195
2196 if (sleeptime > waittime - backend_fudge)
2197 sleeptime = waittime - backend_fudge;
2198
2199 if (expect_true (sleeptime > 0.))
2200 {
2201 ev_sleep (sleeptime);
2202 waittime -= sleeptime;
2203 }
2204 }
1464 } 2205 }
1465 2206
2207#if EV_MINIMAL < 2
1466 ++loop_count; 2208 ++loop_count;
2209#endif
2210 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1467 backend_poll (EV_A_ block); 2211 backend_poll (EV_A_ waittime);
2212 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2213
2214 /* update ev_rt_now, do magic */
2215 time_update (EV_A_ waittime + sleeptime);
1468 } 2216 }
1469
1470 /* update ev_rt_now, do magic */
1471 time_update (EV_A);
1472 2217
1473 /* queue pending timers and reschedule them */ 2218 /* queue pending timers and reschedule them */
1474 timers_reify (EV_A); /* relative timers called last */ 2219 timers_reify (EV_A); /* relative timers called last */
1475#if EV_PERIODIC_ENABLE 2220#if EV_PERIODIC_ENABLE
1476 periodics_reify (EV_A); /* absolute timers called first */ 2221 periodics_reify (EV_A); /* absolute timers called first */
1483 2228
1484 /* queue check watchers, to be executed first */ 2229 /* queue check watchers, to be executed first */
1485 if (expect_false (checkcnt)) 2230 if (expect_false (checkcnt))
1486 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2231 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1487 2232
1488 call_pending (EV_A); 2233 EV_INVOKE_PENDING;
1489
1490 } 2234 }
1491 while (expect_true (activecnt && !loop_done)); 2235 while (expect_true (
2236 activecnt
2237 && !loop_done
2238 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2239 ));
1492 2240
1493 if (loop_done == EVUNLOOP_ONE) 2241 if (loop_done == EVUNLOOP_ONE)
1494 loop_done = EVUNLOOP_CANCEL; 2242 loop_done = EVUNLOOP_CANCEL;
2243
2244#if EV_MINIMAL < 2
2245 --loop_depth;
2246#endif
1495} 2247}
1496 2248
1497void 2249void
1498ev_unloop (EV_P_ int how) 2250ev_unloop (EV_P_ int how)
1499{ 2251{
1500 loop_done = how; 2252 loop_done = how;
1501} 2253}
1502 2254
2255void
2256ev_ref (EV_P)
2257{
2258 ++activecnt;
2259}
2260
2261void
2262ev_unref (EV_P)
2263{
2264 --activecnt;
2265}
2266
2267void
2268ev_now_update (EV_P)
2269{
2270 time_update (EV_A_ 1e100);
2271}
2272
2273void
2274ev_suspend (EV_P)
2275{
2276 ev_now_update (EV_A);
2277}
2278
2279void
2280ev_resume (EV_P)
2281{
2282 ev_tstamp mn_prev = mn_now;
2283
2284 ev_now_update (EV_A);
2285 timers_reschedule (EV_A_ mn_now - mn_prev);
2286#if EV_PERIODIC_ENABLE
2287 /* TODO: really do this? */
2288 periodics_reschedule (EV_A);
2289#endif
2290}
2291
1503/*****************************************************************************/ 2292/*****************************************************************************/
2293/* singly-linked list management, used when the expected list length is short */
1504 2294
1505void inline_size 2295inline_size void
1506wlist_add (WL *head, WL elem) 2296wlist_add (WL *head, WL elem)
1507{ 2297{
1508 elem->next = *head; 2298 elem->next = *head;
1509 *head = elem; 2299 *head = elem;
1510} 2300}
1511 2301
1512void inline_size 2302inline_size void
1513wlist_del (WL *head, WL elem) 2303wlist_del (WL *head, WL elem)
1514{ 2304{
1515 while (*head) 2305 while (*head)
1516 { 2306 {
1517 if (*head == elem) 2307 if (*head == elem)
1522 2312
1523 head = &(*head)->next; 2313 head = &(*head)->next;
1524 } 2314 }
1525} 2315}
1526 2316
1527void inline_speed 2317/* internal, faster, version of ev_clear_pending */
2318inline_speed void
1528ev_clear_pending (EV_P_ W w) 2319clear_pending (EV_P_ W w)
1529{ 2320{
1530 if (w->pending) 2321 if (w->pending)
1531 { 2322 {
1532 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2323 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1533 w->pending = 0; 2324 w->pending = 0;
1534 } 2325 }
1535} 2326}
1536 2327
1537void inline_size 2328int
2329ev_clear_pending (EV_P_ void *w)
2330{
2331 W w_ = (W)w;
2332 int pending = w_->pending;
2333
2334 if (expect_true (pending))
2335 {
2336 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2337 p->w = (W)&pending_w;
2338 w_->pending = 0;
2339 return p->events;
2340 }
2341 else
2342 return 0;
2343}
2344
2345inline_size void
1538pri_adjust (EV_P_ W w) 2346pri_adjust (EV_P_ W w)
1539{ 2347{
1540 int pri = w->priority; 2348 int pri = ev_priority (w);
1541 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2349 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1542 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2350 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1543 w->priority = pri; 2351 ev_set_priority (w, pri);
1544} 2352}
1545 2353
1546void inline_speed 2354inline_speed void
1547ev_start (EV_P_ W w, int active) 2355ev_start (EV_P_ W w, int active)
1548{ 2356{
1549 pri_adjust (EV_A_ w); 2357 pri_adjust (EV_A_ w);
1550 w->active = active; 2358 w->active = active;
1551 ev_ref (EV_A); 2359 ev_ref (EV_A);
1552} 2360}
1553 2361
1554void inline_size 2362inline_size void
1555ev_stop (EV_P_ W w) 2363ev_stop (EV_P_ W w)
1556{ 2364{
1557 ev_unref (EV_A); 2365 ev_unref (EV_A);
1558 w->active = 0; 2366 w->active = 0;
1559} 2367}
1560 2368
1561/*****************************************************************************/ 2369/*****************************************************************************/
1562 2370
1563void 2371void noinline
1564ev_io_start (EV_P_ ev_io *w) 2372ev_io_start (EV_P_ ev_io *w)
1565{ 2373{
1566 int fd = w->fd; 2374 int fd = w->fd;
1567 2375
1568 if (expect_false (ev_is_active (w))) 2376 if (expect_false (ev_is_active (w)))
1569 return; 2377 return;
1570 2378
1571 assert (("ev_io_start called with negative fd", fd >= 0)); 2379 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2380 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2381
2382 EV_FREQUENT_CHECK;
1572 2383
1573 ev_start (EV_A_ (W)w, 1); 2384 ev_start (EV_A_ (W)w, 1);
1574 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2385 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1575 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2386 wlist_add (&anfds[fd].head, (WL)w);
1576 2387
1577 fd_change (EV_A_ fd); 2388 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1578} 2389 w->events &= ~EV__IOFDSET;
1579 2390
1580void 2391 EV_FREQUENT_CHECK;
2392}
2393
2394void noinline
1581ev_io_stop (EV_P_ ev_io *w) 2395ev_io_stop (EV_P_ ev_io *w)
1582{ 2396{
1583 ev_clear_pending (EV_A_ (W)w); 2397 clear_pending (EV_A_ (W)w);
1584 if (expect_false (!ev_is_active (w))) 2398 if (expect_false (!ev_is_active (w)))
1585 return; 2399 return;
1586 2400
1587 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2401 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1588 2402
2403 EV_FREQUENT_CHECK;
2404
1589 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2405 wlist_del (&anfds[w->fd].head, (WL)w);
1590 ev_stop (EV_A_ (W)w); 2406 ev_stop (EV_A_ (W)w);
1591 2407
1592 fd_change (EV_A_ w->fd); 2408 fd_change (EV_A_ w->fd, 1);
1593}
1594 2409
1595void 2410 EV_FREQUENT_CHECK;
2411}
2412
2413void noinline
1596ev_timer_start (EV_P_ ev_timer *w) 2414ev_timer_start (EV_P_ ev_timer *w)
1597{ 2415{
1598 if (expect_false (ev_is_active (w))) 2416 if (expect_false (ev_is_active (w)))
1599 return; 2417 return;
1600 2418
1601 ((WT)w)->at += mn_now; 2419 ev_at (w) += mn_now;
1602 2420
1603 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2421 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1604 2422
2423 EV_FREQUENT_CHECK;
2424
2425 ++timercnt;
1605 ev_start (EV_A_ (W)w, ++timercnt); 2426 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1606 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2427 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1607 timers [timercnt - 1] = w; 2428 ANHE_w (timers [ev_active (w)]) = (WT)w;
1608 upheap ((WT *)timers, timercnt - 1); 2429 ANHE_at_cache (timers [ev_active (w)]);
2430 upheap (timers, ev_active (w));
1609 2431
2432 EV_FREQUENT_CHECK;
2433
1610 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2434 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1611} 2435}
1612 2436
1613void 2437void noinline
1614ev_timer_stop (EV_P_ ev_timer *w) 2438ev_timer_stop (EV_P_ ev_timer *w)
1615{ 2439{
1616 ev_clear_pending (EV_A_ (W)w); 2440 clear_pending (EV_A_ (W)w);
1617 if (expect_false (!ev_is_active (w))) 2441 if (expect_false (!ev_is_active (w)))
1618 return; 2442 return;
1619 2443
1620 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2444 EV_FREQUENT_CHECK;
1621 2445
1622 { 2446 {
1623 int active = ((W)w)->active; 2447 int active = ev_active (w);
1624 2448
2449 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2450
2451 --timercnt;
2452
1625 if (expect_true (--active < --timercnt)) 2453 if (expect_true (active < timercnt + HEAP0))
1626 { 2454 {
1627 timers [active] = timers [timercnt]; 2455 timers [active] = timers [timercnt + HEAP0];
1628 adjustheap ((WT *)timers, timercnt, active); 2456 adjustheap (timers, timercnt, active);
1629 } 2457 }
1630 } 2458 }
1631 2459
1632 ((WT)w)->at -= mn_now; 2460 EV_FREQUENT_CHECK;
2461
2462 ev_at (w) -= mn_now;
1633 2463
1634 ev_stop (EV_A_ (W)w); 2464 ev_stop (EV_A_ (W)w);
1635} 2465}
1636 2466
1637void 2467void noinline
1638ev_timer_again (EV_P_ ev_timer *w) 2468ev_timer_again (EV_P_ ev_timer *w)
1639{ 2469{
2470 EV_FREQUENT_CHECK;
2471
1640 if (ev_is_active (w)) 2472 if (ev_is_active (w))
1641 { 2473 {
1642 if (w->repeat) 2474 if (w->repeat)
1643 { 2475 {
1644 ((WT)w)->at = mn_now + w->repeat; 2476 ev_at (w) = mn_now + w->repeat;
2477 ANHE_at_cache (timers [ev_active (w)]);
1645 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2478 adjustheap (timers, timercnt, ev_active (w));
1646 } 2479 }
1647 else 2480 else
1648 ev_timer_stop (EV_A_ w); 2481 ev_timer_stop (EV_A_ w);
1649 } 2482 }
1650 else if (w->repeat) 2483 else if (w->repeat)
1651 { 2484 {
1652 w->at = w->repeat; 2485 ev_at (w) = w->repeat;
1653 ev_timer_start (EV_A_ w); 2486 ev_timer_start (EV_A_ w);
1654 } 2487 }
2488
2489 EV_FREQUENT_CHECK;
1655} 2490}
1656 2491
1657#if EV_PERIODIC_ENABLE 2492#if EV_PERIODIC_ENABLE
1658void 2493void noinline
1659ev_periodic_start (EV_P_ ev_periodic *w) 2494ev_periodic_start (EV_P_ ev_periodic *w)
1660{ 2495{
1661 if (expect_false (ev_is_active (w))) 2496 if (expect_false (ev_is_active (w)))
1662 return; 2497 return;
1663 2498
1664 if (w->reschedule_cb) 2499 if (w->reschedule_cb)
1665 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2500 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1666 else if (w->interval) 2501 else if (w->interval)
1667 { 2502 {
1668 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2503 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1669 /* this formula differs from the one in periodic_reify because we do not always round up */ 2504 /* this formula differs from the one in periodic_reify because we do not always round up */
1670 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2505 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1671 } 2506 }
2507 else
2508 ev_at (w) = w->offset;
1672 2509
2510 EV_FREQUENT_CHECK;
2511
2512 ++periodiccnt;
1673 ev_start (EV_A_ (W)w, ++periodiccnt); 2513 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1674 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2514 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1675 periodics [periodiccnt - 1] = w; 2515 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1676 upheap ((WT *)periodics, periodiccnt - 1); 2516 ANHE_at_cache (periodics [ev_active (w)]);
2517 upheap (periodics, ev_active (w));
1677 2518
2519 EV_FREQUENT_CHECK;
2520
1678 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2521 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1679} 2522}
1680 2523
1681void 2524void noinline
1682ev_periodic_stop (EV_P_ ev_periodic *w) 2525ev_periodic_stop (EV_P_ ev_periodic *w)
1683{ 2526{
1684 ev_clear_pending (EV_A_ (W)w); 2527 clear_pending (EV_A_ (W)w);
1685 if (expect_false (!ev_is_active (w))) 2528 if (expect_false (!ev_is_active (w)))
1686 return; 2529 return;
1687 2530
1688 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2531 EV_FREQUENT_CHECK;
1689 2532
1690 { 2533 {
1691 int active = ((W)w)->active; 2534 int active = ev_active (w);
1692 2535
2536 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2537
2538 --periodiccnt;
2539
1693 if (expect_true (--active < --periodiccnt)) 2540 if (expect_true (active < periodiccnt + HEAP0))
1694 { 2541 {
1695 periodics [active] = periodics [periodiccnt]; 2542 periodics [active] = periodics [periodiccnt + HEAP0];
1696 adjustheap ((WT *)periodics, periodiccnt, active); 2543 adjustheap (periodics, periodiccnt, active);
1697 } 2544 }
1698 } 2545 }
1699 2546
2547 EV_FREQUENT_CHECK;
2548
1700 ev_stop (EV_A_ (W)w); 2549 ev_stop (EV_A_ (W)w);
1701} 2550}
1702 2551
1703void 2552void noinline
1704ev_periodic_again (EV_P_ ev_periodic *w) 2553ev_periodic_again (EV_P_ ev_periodic *w)
1705{ 2554{
1706 /* TODO: use adjustheap and recalculation */ 2555 /* TODO: use adjustheap and recalculation */
1707 ev_periodic_stop (EV_A_ w); 2556 ev_periodic_stop (EV_A_ w);
1708 ev_periodic_start (EV_A_ w); 2557 ev_periodic_start (EV_A_ w);
1711 2560
1712#ifndef SA_RESTART 2561#ifndef SA_RESTART
1713# define SA_RESTART 0 2562# define SA_RESTART 0
1714#endif 2563#endif
1715 2564
1716void 2565void noinline
1717ev_signal_start (EV_P_ ev_signal *w) 2566ev_signal_start (EV_P_ ev_signal *w)
1718{ 2567{
1719#if EV_MULTIPLICITY 2568#if EV_MULTIPLICITY
1720 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2569 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1721#endif 2570#endif
1722 if (expect_false (ev_is_active (w))) 2571 if (expect_false (ev_is_active (w)))
1723 return; 2572 return;
1724 2573
1725 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2574 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2575
2576 evpipe_init (EV_A);
2577
2578 EV_FREQUENT_CHECK;
2579
2580 {
2581#ifndef _WIN32
2582 sigset_t full, prev;
2583 sigfillset (&full);
2584 sigprocmask (SIG_SETMASK, &full, &prev);
2585#endif
2586
2587 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2588
2589#ifndef _WIN32
2590 sigprocmask (SIG_SETMASK, &prev, 0);
2591#endif
2592 }
1726 2593
1727 ev_start (EV_A_ (W)w, 1); 2594 ev_start (EV_A_ (W)w, 1);
1728 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1729 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2595 wlist_add (&signals [w->signum - 1].head, (WL)w);
1730 2596
1731 if (!((WL)w)->next) 2597 if (!((WL)w)->next)
1732 { 2598 {
1733#if _WIN32 2599#if _WIN32
1734 signal (w->signum, sighandler); 2600 signal (w->signum, ev_sighandler);
1735#else 2601#else
1736 struct sigaction sa; 2602 struct sigaction sa = { };
1737 sa.sa_handler = sighandler; 2603 sa.sa_handler = ev_sighandler;
1738 sigfillset (&sa.sa_mask); 2604 sigfillset (&sa.sa_mask);
1739 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2605 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1740 sigaction (w->signum, &sa, 0); 2606 sigaction (w->signum, &sa, 0);
1741#endif 2607#endif
1742 } 2608 }
1743}
1744 2609
1745void 2610 EV_FREQUENT_CHECK;
2611}
2612
2613void noinline
1746ev_signal_stop (EV_P_ ev_signal *w) 2614ev_signal_stop (EV_P_ ev_signal *w)
1747{ 2615{
1748 ev_clear_pending (EV_A_ (W)w); 2616 clear_pending (EV_A_ (W)w);
1749 if (expect_false (!ev_is_active (w))) 2617 if (expect_false (!ev_is_active (w)))
1750 return; 2618 return;
1751 2619
2620 EV_FREQUENT_CHECK;
2621
1752 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2622 wlist_del (&signals [w->signum - 1].head, (WL)w);
1753 ev_stop (EV_A_ (W)w); 2623 ev_stop (EV_A_ (W)w);
1754 2624
1755 if (!signals [w->signum - 1].head) 2625 if (!signals [w->signum - 1].head)
1756 signal (w->signum, SIG_DFL); 2626 signal (w->signum, SIG_DFL);
2627
2628 EV_FREQUENT_CHECK;
1757} 2629}
1758 2630
1759void 2631void
1760ev_child_start (EV_P_ ev_child *w) 2632ev_child_start (EV_P_ ev_child *w)
1761{ 2633{
1762#if EV_MULTIPLICITY 2634#if EV_MULTIPLICITY
1763 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2635 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1764#endif 2636#endif
1765 if (expect_false (ev_is_active (w))) 2637 if (expect_false (ev_is_active (w)))
1766 return; 2638 return;
1767 2639
2640 EV_FREQUENT_CHECK;
2641
1768 ev_start (EV_A_ (W)w, 1); 2642 ev_start (EV_A_ (W)w, 1);
1769 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2643 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2644
2645 EV_FREQUENT_CHECK;
1770} 2646}
1771 2647
1772void 2648void
1773ev_child_stop (EV_P_ ev_child *w) 2649ev_child_stop (EV_P_ ev_child *w)
1774{ 2650{
1775 ev_clear_pending (EV_A_ (W)w); 2651 clear_pending (EV_A_ (W)w);
1776 if (expect_false (!ev_is_active (w))) 2652 if (expect_false (!ev_is_active (w)))
1777 return; 2653 return;
1778 2654
2655 EV_FREQUENT_CHECK;
2656
1779 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2657 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1780 ev_stop (EV_A_ (W)w); 2658 ev_stop (EV_A_ (W)w);
2659
2660 EV_FREQUENT_CHECK;
1781} 2661}
1782 2662
1783#if EV_STAT_ENABLE 2663#if EV_STAT_ENABLE
1784 2664
1785# ifdef _WIN32 2665# ifdef _WIN32
1786# undef lstat 2666# undef lstat
1787# define lstat(a,b) _stati64 (a,b) 2667# define lstat(a,b) _stati64 (a,b)
1788# endif 2668# endif
1789 2669
1790#define DEF_STAT_INTERVAL 5.0074891 2670#define DEF_STAT_INTERVAL 5.0074891
2671#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1791#define MIN_STAT_INTERVAL 0.1074891 2672#define MIN_STAT_INTERVAL 0.1074891
1792 2673
1793static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2674static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1794 2675
1795#if EV_USE_INOTIFY 2676#if EV_USE_INOTIFY
1796# define EV_INOTIFY_BUFSIZE 8192 2677# define EV_INOTIFY_BUFSIZE 8192
1800{ 2681{
1801 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2682 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1802 2683
1803 if (w->wd < 0) 2684 if (w->wd < 0)
1804 { 2685 {
2686 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1805 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2687 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1806 2688
1807 /* monitor some parent directory for speedup hints */ 2689 /* monitor some parent directory for speedup hints */
2690 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2691 /* but an efficiency issue only */
1808 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2692 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1809 { 2693 {
1810 char path [4096]; 2694 char path [4096];
1811 strcpy (path, w->path); 2695 strcpy (path, w->path);
1812 2696
1815 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2699 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1816 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2700 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1817 2701
1818 char *pend = strrchr (path, '/'); 2702 char *pend = strrchr (path, '/');
1819 2703
1820 if (!pend) 2704 if (!pend || pend == path)
1821 break; /* whoops, no '/', complain to your admin */ 2705 break;
1822 2706
1823 *pend = 0; 2707 *pend = 0;
1824 w->wd = inotify_add_watch (fs_fd, path, mask); 2708 w->wd = inotify_add_watch (fs_fd, path, mask);
1825 } 2709 }
1826 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2710 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1827 } 2711 }
1828 } 2712 }
1829 else
1830 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1831 2713
1832 if (w->wd >= 0) 2714 if (w->wd >= 0)
2715 {
1833 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2716 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2717
2718 /* now local changes will be tracked by inotify, but remote changes won't */
2719 /* unless the filesystem it known to be local, we therefore still poll */
2720 /* also do poll on <2.6.25, but with normal frequency */
2721 struct statfs sfs;
2722
2723 if (fs_2625 && !statfs (w->path, &sfs))
2724 if (sfs.f_type == 0x1373 /* devfs */
2725 || sfs.f_type == 0xEF53 /* ext2/3 */
2726 || sfs.f_type == 0x3153464a /* jfs */
2727 || sfs.f_type == 0x52654973 /* reiser3 */
2728 || sfs.f_type == 0x01021994 /* tempfs */
2729 || sfs.f_type == 0x58465342 /* xfs */)
2730 return;
2731
2732 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2733 ev_timer_again (EV_A_ &w->timer);
2734 }
1834} 2735}
1835 2736
1836static void noinline 2737static void noinline
1837infy_del (EV_P_ ev_stat *w) 2738infy_del (EV_P_ ev_stat *w)
1838{ 2739{
1852 2753
1853static void noinline 2754static void noinline
1854infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2755infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1855{ 2756{
1856 if (slot < 0) 2757 if (slot < 0)
1857 /* overflow, need to check for all hahs slots */ 2758 /* overflow, need to check for all hash slots */
1858 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2759 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1859 infy_wd (EV_A_ slot, wd, ev); 2760 infy_wd (EV_A_ slot, wd, ev);
1860 else 2761 else
1861 { 2762 {
1862 WL w_; 2763 WL w_;
1868 2769
1869 if (w->wd == wd || wd == -1) 2770 if (w->wd == wd || wd == -1)
1870 { 2771 {
1871 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2772 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1872 { 2773 {
2774 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1873 w->wd = -1; 2775 w->wd = -1;
1874 infy_add (EV_A_ w); /* re-add, no matter what */ 2776 infy_add (EV_A_ w); /* re-add, no matter what */
1875 } 2777 }
1876 2778
1877 stat_timer_cb (EV_A_ &w->timer, 0); 2779 stat_timer_cb (EV_A_ &w->timer, 0);
1890 2792
1891 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2793 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1892 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2794 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1893} 2795}
1894 2796
1895void inline_size 2797inline_size void
2798check_2625 (EV_P)
2799{
2800 /* kernels < 2.6.25 are borked
2801 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2802 */
2803 struct utsname buf;
2804 int major, minor, micro;
2805
2806 if (uname (&buf))
2807 return;
2808
2809 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2810 return;
2811
2812 if (major < 2
2813 || (major == 2 && minor < 6)
2814 || (major == 2 && minor == 6 && micro < 25))
2815 return;
2816
2817 fs_2625 = 1;
2818}
2819
2820inline_size void
1896infy_init (EV_P) 2821infy_init (EV_P)
1897{ 2822{
1898 if (fs_fd != -2) 2823 if (fs_fd != -2)
1899 return; 2824 return;
2825
2826 fs_fd = -1;
2827
2828 check_2625 (EV_A);
1900 2829
1901 fs_fd = inotify_init (); 2830 fs_fd = inotify_init ();
1902 2831
1903 if (fs_fd >= 0) 2832 if (fs_fd >= 0)
1904 { 2833 {
1906 ev_set_priority (&fs_w, EV_MAXPRI); 2835 ev_set_priority (&fs_w, EV_MAXPRI);
1907 ev_io_start (EV_A_ &fs_w); 2836 ev_io_start (EV_A_ &fs_w);
1908 } 2837 }
1909} 2838}
1910 2839
1911void inline_size 2840inline_size void
1912infy_fork (EV_P) 2841infy_fork (EV_P)
1913{ 2842{
1914 int slot; 2843 int slot;
1915 2844
1916 if (fs_fd < 0) 2845 if (fs_fd < 0)
1932 w->wd = -1; 2861 w->wd = -1;
1933 2862
1934 if (fs_fd >= 0) 2863 if (fs_fd >= 0)
1935 infy_add (EV_A_ w); /* re-add, no matter what */ 2864 infy_add (EV_A_ w); /* re-add, no matter what */
1936 else 2865 else
1937 ev_timer_start (EV_A_ &w->timer); 2866 ev_timer_again (EV_A_ &w->timer);
1938 } 2867 }
1939
1940 } 2868 }
1941} 2869}
1942 2870
2871#endif
2872
2873#ifdef _WIN32
2874# define EV_LSTAT(p,b) _stati64 (p, b)
2875#else
2876# define EV_LSTAT(p,b) lstat (p, b)
1943#endif 2877#endif
1944 2878
1945void 2879void
1946ev_stat_stat (EV_P_ ev_stat *w) 2880ev_stat_stat (EV_P_ ev_stat *w)
1947{ 2881{
1974 || w->prev.st_atime != w->attr.st_atime 2908 || w->prev.st_atime != w->attr.st_atime
1975 || w->prev.st_mtime != w->attr.st_mtime 2909 || w->prev.st_mtime != w->attr.st_mtime
1976 || w->prev.st_ctime != w->attr.st_ctime 2910 || w->prev.st_ctime != w->attr.st_ctime
1977 ) { 2911 ) {
1978 #if EV_USE_INOTIFY 2912 #if EV_USE_INOTIFY
2913 if (fs_fd >= 0)
2914 {
1979 infy_del (EV_A_ w); 2915 infy_del (EV_A_ w);
1980 infy_add (EV_A_ w); 2916 infy_add (EV_A_ w);
1981 ev_stat_stat (EV_A_ w); /* avoid race... */ 2917 ev_stat_stat (EV_A_ w); /* avoid race... */
2918 }
1982 #endif 2919 #endif
1983 2920
1984 ev_feed_event (EV_A_ w, EV_STAT); 2921 ev_feed_event (EV_A_ w, EV_STAT);
1985 } 2922 }
1986} 2923}
1989ev_stat_start (EV_P_ ev_stat *w) 2926ev_stat_start (EV_P_ ev_stat *w)
1990{ 2927{
1991 if (expect_false (ev_is_active (w))) 2928 if (expect_false (ev_is_active (w)))
1992 return; 2929 return;
1993 2930
1994 /* since we use memcmp, we need to clear any padding data etc. */
1995 memset (&w->prev, 0, sizeof (ev_statdata));
1996 memset (&w->attr, 0, sizeof (ev_statdata));
1997
1998 ev_stat_stat (EV_A_ w); 2931 ev_stat_stat (EV_A_ w);
1999 2932
2933 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2000 if (w->interval < MIN_STAT_INTERVAL) 2934 w->interval = MIN_STAT_INTERVAL;
2001 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2002 2935
2003 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2936 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2004 ev_set_priority (&w->timer, ev_priority (w)); 2937 ev_set_priority (&w->timer, ev_priority (w));
2005 2938
2006#if EV_USE_INOTIFY 2939#if EV_USE_INOTIFY
2007 infy_init (EV_A); 2940 infy_init (EV_A);
2008 2941
2009 if (fs_fd >= 0) 2942 if (fs_fd >= 0)
2010 infy_add (EV_A_ w); 2943 infy_add (EV_A_ w);
2011 else 2944 else
2012#endif 2945#endif
2013 ev_timer_start (EV_A_ &w->timer); 2946 ev_timer_again (EV_A_ &w->timer);
2014 2947
2015 ev_start (EV_A_ (W)w, 1); 2948 ev_start (EV_A_ (W)w, 1);
2949
2950 EV_FREQUENT_CHECK;
2016} 2951}
2017 2952
2018void 2953void
2019ev_stat_stop (EV_P_ ev_stat *w) 2954ev_stat_stop (EV_P_ ev_stat *w)
2020{ 2955{
2021 ev_clear_pending (EV_A_ (W)w); 2956 clear_pending (EV_A_ (W)w);
2022 if (expect_false (!ev_is_active (w))) 2957 if (expect_false (!ev_is_active (w)))
2023 return; 2958 return;
2024 2959
2960 EV_FREQUENT_CHECK;
2961
2025#if EV_USE_INOTIFY 2962#if EV_USE_INOTIFY
2026 infy_del (EV_A_ w); 2963 infy_del (EV_A_ w);
2027#endif 2964#endif
2028 ev_timer_stop (EV_A_ &w->timer); 2965 ev_timer_stop (EV_A_ &w->timer);
2029 2966
2030 ev_stop (EV_A_ (W)w); 2967 ev_stop (EV_A_ (W)w);
2968
2969 EV_FREQUENT_CHECK;
2031} 2970}
2032#endif 2971#endif
2033 2972
2034#if EV_IDLE_ENABLE 2973#if EV_IDLE_ENABLE
2035void 2974void
2037{ 2976{
2038 if (expect_false (ev_is_active (w))) 2977 if (expect_false (ev_is_active (w)))
2039 return; 2978 return;
2040 2979
2041 pri_adjust (EV_A_ (W)w); 2980 pri_adjust (EV_A_ (W)w);
2981
2982 EV_FREQUENT_CHECK;
2042 2983
2043 { 2984 {
2044 int active = ++idlecnt [ABSPRI (w)]; 2985 int active = ++idlecnt [ABSPRI (w)];
2045 2986
2046 ++idleall; 2987 ++idleall;
2047 ev_start (EV_A_ (W)w, active); 2988 ev_start (EV_A_ (W)w, active);
2048 2989
2049 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2990 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2050 idles [ABSPRI (w)][active - 1] = w; 2991 idles [ABSPRI (w)][active - 1] = w;
2051 } 2992 }
2993
2994 EV_FREQUENT_CHECK;
2052} 2995}
2053 2996
2054void 2997void
2055ev_idle_stop (EV_P_ ev_idle *w) 2998ev_idle_stop (EV_P_ ev_idle *w)
2056{ 2999{
2057 ev_clear_pending (EV_A_ (W)w); 3000 clear_pending (EV_A_ (W)w);
2058 if (expect_false (!ev_is_active (w))) 3001 if (expect_false (!ev_is_active (w)))
2059 return; 3002 return;
2060 3003
3004 EV_FREQUENT_CHECK;
3005
2061 { 3006 {
2062 int active = ((W)w)->active; 3007 int active = ev_active (w);
2063 3008
2064 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3009 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2065 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3010 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2066 3011
2067 ev_stop (EV_A_ (W)w); 3012 ev_stop (EV_A_ (W)w);
2068 --idleall; 3013 --idleall;
2069 } 3014 }
3015
3016 EV_FREQUENT_CHECK;
2070} 3017}
2071#endif 3018#endif
2072 3019
2073void 3020void
2074ev_prepare_start (EV_P_ ev_prepare *w) 3021ev_prepare_start (EV_P_ ev_prepare *w)
2075{ 3022{
2076 if (expect_false (ev_is_active (w))) 3023 if (expect_false (ev_is_active (w)))
2077 return; 3024 return;
3025
3026 EV_FREQUENT_CHECK;
2078 3027
2079 ev_start (EV_A_ (W)w, ++preparecnt); 3028 ev_start (EV_A_ (W)w, ++preparecnt);
2080 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3029 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2081 prepares [preparecnt - 1] = w; 3030 prepares [preparecnt - 1] = w;
3031
3032 EV_FREQUENT_CHECK;
2082} 3033}
2083 3034
2084void 3035void
2085ev_prepare_stop (EV_P_ ev_prepare *w) 3036ev_prepare_stop (EV_P_ ev_prepare *w)
2086{ 3037{
2087 ev_clear_pending (EV_A_ (W)w); 3038 clear_pending (EV_A_ (W)w);
2088 if (expect_false (!ev_is_active (w))) 3039 if (expect_false (!ev_is_active (w)))
2089 return; 3040 return;
2090 3041
3042 EV_FREQUENT_CHECK;
3043
2091 { 3044 {
2092 int active = ((W)w)->active; 3045 int active = ev_active (w);
3046
2093 prepares [active - 1] = prepares [--preparecnt]; 3047 prepares [active - 1] = prepares [--preparecnt];
2094 ((W)prepares [active - 1])->active = active; 3048 ev_active (prepares [active - 1]) = active;
2095 } 3049 }
2096 3050
2097 ev_stop (EV_A_ (W)w); 3051 ev_stop (EV_A_ (W)w);
3052
3053 EV_FREQUENT_CHECK;
2098} 3054}
2099 3055
2100void 3056void
2101ev_check_start (EV_P_ ev_check *w) 3057ev_check_start (EV_P_ ev_check *w)
2102{ 3058{
2103 if (expect_false (ev_is_active (w))) 3059 if (expect_false (ev_is_active (w)))
2104 return; 3060 return;
3061
3062 EV_FREQUENT_CHECK;
2105 3063
2106 ev_start (EV_A_ (W)w, ++checkcnt); 3064 ev_start (EV_A_ (W)w, ++checkcnt);
2107 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3065 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2108 checks [checkcnt - 1] = w; 3066 checks [checkcnt - 1] = w;
3067
3068 EV_FREQUENT_CHECK;
2109} 3069}
2110 3070
2111void 3071void
2112ev_check_stop (EV_P_ ev_check *w) 3072ev_check_stop (EV_P_ ev_check *w)
2113{ 3073{
2114 ev_clear_pending (EV_A_ (W)w); 3074 clear_pending (EV_A_ (W)w);
2115 if (expect_false (!ev_is_active (w))) 3075 if (expect_false (!ev_is_active (w)))
2116 return; 3076 return;
2117 3077
3078 EV_FREQUENT_CHECK;
3079
2118 { 3080 {
2119 int active = ((W)w)->active; 3081 int active = ev_active (w);
3082
2120 checks [active - 1] = checks [--checkcnt]; 3083 checks [active - 1] = checks [--checkcnt];
2121 ((W)checks [active - 1])->active = active; 3084 ev_active (checks [active - 1]) = active;
2122 } 3085 }
2123 3086
2124 ev_stop (EV_A_ (W)w); 3087 ev_stop (EV_A_ (W)w);
3088
3089 EV_FREQUENT_CHECK;
2125} 3090}
2126 3091
2127#if EV_EMBED_ENABLE 3092#if EV_EMBED_ENABLE
2128void noinline 3093void noinline
2129ev_embed_sweep (EV_P_ ev_embed *w) 3094ev_embed_sweep (EV_P_ ev_embed *w)
2130{ 3095{
2131 ev_loop (w->loop, EVLOOP_NONBLOCK); 3096 ev_loop (w->other, EVLOOP_NONBLOCK);
2132} 3097}
2133 3098
2134static void 3099static void
2135embed_cb (EV_P_ ev_io *io, int revents) 3100embed_io_cb (EV_P_ ev_io *io, int revents)
2136{ 3101{
2137 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3102 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2138 3103
2139 if (ev_cb (w)) 3104 if (ev_cb (w))
2140 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3105 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2141 else 3106 else
2142 ev_embed_sweep (loop, w); 3107 ev_loop (w->other, EVLOOP_NONBLOCK);
2143} 3108}
3109
3110static void
3111embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3112{
3113 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3114
3115 {
3116 struct ev_loop *loop = w->other;
3117
3118 while (fdchangecnt)
3119 {
3120 fd_reify (EV_A);
3121 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3122 }
3123 }
3124}
3125
3126static void
3127embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3128{
3129 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3130
3131 ev_embed_stop (EV_A_ w);
3132
3133 {
3134 struct ev_loop *loop = w->other;
3135
3136 ev_loop_fork (EV_A);
3137 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3138 }
3139
3140 ev_embed_start (EV_A_ w);
3141}
3142
3143#if 0
3144static void
3145embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3146{
3147 ev_idle_stop (EV_A_ idle);
3148}
3149#endif
2144 3150
2145void 3151void
2146ev_embed_start (EV_P_ ev_embed *w) 3152ev_embed_start (EV_P_ ev_embed *w)
2147{ 3153{
2148 if (expect_false (ev_is_active (w))) 3154 if (expect_false (ev_is_active (w)))
2149 return; 3155 return;
2150 3156
2151 { 3157 {
2152 struct ev_loop *loop = w->loop; 3158 struct ev_loop *loop = w->other;
2153 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3159 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2154 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3160 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2155 } 3161 }
3162
3163 EV_FREQUENT_CHECK;
2156 3164
2157 ev_set_priority (&w->io, ev_priority (w)); 3165 ev_set_priority (&w->io, ev_priority (w));
2158 ev_io_start (EV_A_ &w->io); 3166 ev_io_start (EV_A_ &w->io);
2159 3167
3168 ev_prepare_init (&w->prepare, embed_prepare_cb);
3169 ev_set_priority (&w->prepare, EV_MINPRI);
3170 ev_prepare_start (EV_A_ &w->prepare);
3171
3172 ev_fork_init (&w->fork, embed_fork_cb);
3173 ev_fork_start (EV_A_ &w->fork);
3174
3175 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3176
2160 ev_start (EV_A_ (W)w, 1); 3177 ev_start (EV_A_ (W)w, 1);
3178
3179 EV_FREQUENT_CHECK;
2161} 3180}
2162 3181
2163void 3182void
2164ev_embed_stop (EV_P_ ev_embed *w) 3183ev_embed_stop (EV_P_ ev_embed *w)
2165{ 3184{
2166 ev_clear_pending (EV_A_ (W)w); 3185 clear_pending (EV_A_ (W)w);
2167 if (expect_false (!ev_is_active (w))) 3186 if (expect_false (!ev_is_active (w)))
2168 return; 3187 return;
2169 3188
3189 EV_FREQUENT_CHECK;
3190
2170 ev_io_stop (EV_A_ &w->io); 3191 ev_io_stop (EV_A_ &w->io);
3192 ev_prepare_stop (EV_A_ &w->prepare);
3193 ev_fork_stop (EV_A_ &w->fork);
2171 3194
2172 ev_stop (EV_A_ (W)w); 3195 EV_FREQUENT_CHECK;
2173} 3196}
2174#endif 3197#endif
2175 3198
2176#if EV_FORK_ENABLE 3199#if EV_FORK_ENABLE
2177void 3200void
2178ev_fork_start (EV_P_ ev_fork *w) 3201ev_fork_start (EV_P_ ev_fork *w)
2179{ 3202{
2180 if (expect_false (ev_is_active (w))) 3203 if (expect_false (ev_is_active (w)))
2181 return; 3204 return;
3205
3206 EV_FREQUENT_CHECK;
2182 3207
2183 ev_start (EV_A_ (W)w, ++forkcnt); 3208 ev_start (EV_A_ (W)w, ++forkcnt);
2184 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3209 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2185 forks [forkcnt - 1] = w; 3210 forks [forkcnt - 1] = w;
3211
3212 EV_FREQUENT_CHECK;
2186} 3213}
2187 3214
2188void 3215void
2189ev_fork_stop (EV_P_ ev_fork *w) 3216ev_fork_stop (EV_P_ ev_fork *w)
2190{ 3217{
2191 ev_clear_pending (EV_A_ (W)w); 3218 clear_pending (EV_A_ (W)w);
2192 if (expect_false (!ev_is_active (w))) 3219 if (expect_false (!ev_is_active (w)))
2193 return; 3220 return;
2194 3221
3222 EV_FREQUENT_CHECK;
3223
2195 { 3224 {
2196 int active = ((W)w)->active; 3225 int active = ev_active (w);
3226
2197 forks [active - 1] = forks [--forkcnt]; 3227 forks [active - 1] = forks [--forkcnt];
2198 ((W)forks [active - 1])->active = active; 3228 ev_active (forks [active - 1]) = active;
2199 } 3229 }
2200 3230
2201 ev_stop (EV_A_ (W)w); 3231 ev_stop (EV_A_ (W)w);
3232
3233 EV_FREQUENT_CHECK;
3234}
3235#endif
3236
3237#if EV_ASYNC_ENABLE
3238void
3239ev_async_start (EV_P_ ev_async *w)
3240{
3241 if (expect_false (ev_is_active (w)))
3242 return;
3243
3244 evpipe_init (EV_A);
3245
3246 EV_FREQUENT_CHECK;
3247
3248 ev_start (EV_A_ (W)w, ++asynccnt);
3249 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3250 asyncs [asynccnt - 1] = w;
3251
3252 EV_FREQUENT_CHECK;
3253}
3254
3255void
3256ev_async_stop (EV_P_ ev_async *w)
3257{
3258 clear_pending (EV_A_ (W)w);
3259 if (expect_false (!ev_is_active (w)))
3260 return;
3261
3262 EV_FREQUENT_CHECK;
3263
3264 {
3265 int active = ev_active (w);
3266
3267 asyncs [active - 1] = asyncs [--asynccnt];
3268 ev_active (asyncs [active - 1]) = active;
3269 }
3270
3271 ev_stop (EV_A_ (W)w);
3272
3273 EV_FREQUENT_CHECK;
3274}
3275
3276void
3277ev_async_send (EV_P_ ev_async *w)
3278{
3279 w->sent = 1;
3280 evpipe_write (EV_A_ &gotasync);
2202} 3281}
2203#endif 3282#endif
2204 3283
2205/*****************************************************************************/ 3284/*****************************************************************************/
2206 3285
2216once_cb (EV_P_ struct ev_once *once, int revents) 3295once_cb (EV_P_ struct ev_once *once, int revents)
2217{ 3296{
2218 void (*cb)(int revents, void *arg) = once->cb; 3297 void (*cb)(int revents, void *arg) = once->cb;
2219 void *arg = once->arg; 3298 void *arg = once->arg;
2220 3299
2221 ev_io_stop (EV_A_ &once->io); 3300 ev_io_stop (EV_A_ &once->io);
2222 ev_timer_stop (EV_A_ &once->to); 3301 ev_timer_stop (EV_A_ &once->to);
2223 ev_free (once); 3302 ev_free (once);
2224 3303
2225 cb (revents, arg); 3304 cb (revents, arg);
2226} 3305}
2227 3306
2228static void 3307static void
2229once_cb_io (EV_P_ ev_io *w, int revents) 3308once_cb_io (EV_P_ ev_io *w, int revents)
2230{ 3309{
2231 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3310 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3311
3312 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2232} 3313}
2233 3314
2234static void 3315static void
2235once_cb_to (EV_P_ ev_timer *w, int revents) 3316once_cb_to (EV_P_ ev_timer *w, int revents)
2236{ 3317{
2237 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3318 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3319
3320 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2238} 3321}
2239 3322
2240void 3323void
2241ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3324ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2242{ 3325{
2264 ev_timer_set (&once->to, timeout, 0.); 3347 ev_timer_set (&once->to, timeout, 0.);
2265 ev_timer_start (EV_A_ &once->to); 3348 ev_timer_start (EV_A_ &once->to);
2266 } 3349 }
2267} 3350}
2268 3351
3352/*****************************************************************************/
3353
3354#if EV_WALK_ENABLE
3355void
3356ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3357{
3358 int i, j;
3359 ev_watcher_list *wl, *wn;
3360
3361 if (types & (EV_IO | EV_EMBED))
3362 for (i = 0; i < anfdmax; ++i)
3363 for (wl = anfds [i].head; wl; )
3364 {
3365 wn = wl->next;
3366
3367#if EV_EMBED_ENABLE
3368 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3369 {
3370 if (types & EV_EMBED)
3371 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3372 }
3373 else
3374#endif
3375#if EV_USE_INOTIFY
3376 if (ev_cb ((ev_io *)wl) == infy_cb)
3377 ;
3378 else
3379#endif
3380 if ((ev_io *)wl != &pipe_w)
3381 if (types & EV_IO)
3382 cb (EV_A_ EV_IO, wl);
3383
3384 wl = wn;
3385 }
3386
3387 if (types & (EV_TIMER | EV_STAT))
3388 for (i = timercnt + HEAP0; i-- > HEAP0; )
3389#if EV_STAT_ENABLE
3390 /*TODO: timer is not always active*/
3391 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3392 {
3393 if (types & EV_STAT)
3394 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3395 }
3396 else
3397#endif
3398 if (types & EV_TIMER)
3399 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3400
3401#if EV_PERIODIC_ENABLE
3402 if (types & EV_PERIODIC)
3403 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3404 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3405#endif
3406
3407#if EV_IDLE_ENABLE
3408 if (types & EV_IDLE)
3409 for (j = NUMPRI; i--; )
3410 for (i = idlecnt [j]; i--; )
3411 cb (EV_A_ EV_IDLE, idles [j][i]);
3412#endif
3413
3414#if EV_FORK_ENABLE
3415 if (types & EV_FORK)
3416 for (i = forkcnt; i--; )
3417 if (ev_cb (forks [i]) != embed_fork_cb)
3418 cb (EV_A_ EV_FORK, forks [i]);
3419#endif
3420
3421#if EV_ASYNC_ENABLE
3422 if (types & EV_ASYNC)
3423 for (i = asynccnt; i--; )
3424 cb (EV_A_ EV_ASYNC, asyncs [i]);
3425#endif
3426
3427 if (types & EV_PREPARE)
3428 for (i = preparecnt; i--; )
3429#if EV_EMBED_ENABLE
3430 if (ev_cb (prepares [i]) != embed_prepare_cb)
3431#endif
3432 cb (EV_A_ EV_PREPARE, prepares [i]);
3433
3434 if (types & EV_CHECK)
3435 for (i = checkcnt; i--; )
3436 cb (EV_A_ EV_CHECK, checks [i]);
3437
3438 if (types & EV_SIGNAL)
3439 for (i = 0; i < signalmax; ++i)
3440 for (wl = signals [i].head; wl; )
3441 {
3442 wn = wl->next;
3443 cb (EV_A_ EV_SIGNAL, wl);
3444 wl = wn;
3445 }
3446
3447 if (types & EV_CHILD)
3448 for (i = EV_PID_HASHSIZE; i--; )
3449 for (wl = childs [i]; wl; )
3450 {
3451 wn = wl->next;
3452 cb (EV_A_ EV_CHILD, wl);
3453 wl = wn;
3454 }
3455/* EV_STAT 0x00001000 /* stat data changed */
3456/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3457}
3458#endif
3459
3460#if EV_MULTIPLICITY
3461 #include "ev_wrap.h"
3462#endif
3463
2269#ifdef __cplusplus 3464#ifdef __cplusplus
2270} 3465}
2271#endif 3466#endif
2272 3467

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines