ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.165 by root, Fri Dec 7 18:09:38 2007 UTC vs.
Revision 1.310 by root, Sun Jul 26 04:43:03 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
56# endif 87# endif
57# endif 88# endif
58 89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
107#endif 154#endif
108 155
109#include <math.h> 156#include <math.h>
110#include <stdlib.h> 157#include <stdlib.h>
111#include <fcntl.h> 158#include <fcntl.h>
129#ifndef _WIN32 176#ifndef _WIN32
130# include <sys/time.h> 177# include <sys/time.h>
131# include <sys/wait.h> 178# include <sys/wait.h>
132# include <unistd.h> 179# include <unistd.h>
133#else 180#else
181# include <io.h>
134# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 183# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
138# endif 186# endif
139#endif 187#endif
140 188
141/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
142 225
143#ifndef EV_USE_MONOTONIC 226#ifndef EV_USE_MONOTONIC
227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
228# define EV_USE_MONOTONIC 1
229# else
144# define EV_USE_MONOTONIC 0 230# define EV_USE_MONOTONIC 0
231# endif
145#endif 232#endif
146 233
147#ifndef EV_USE_REALTIME 234#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
236#endif
237
238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
242# define EV_USE_NANOSLEEP 0
243# endif
149#endif 244#endif
150 245
151#ifndef EV_USE_SELECT 246#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 247# define EV_USE_SELECT 1
153#endif 248#endif
159# define EV_USE_POLL 1 254# define EV_USE_POLL 1
160# endif 255# endif
161#endif 256#endif
162 257
163#ifndef EV_USE_EPOLL 258#ifndef EV_USE_EPOLL
259# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
260# define EV_USE_EPOLL 1
261# else
164# define EV_USE_EPOLL 0 262# define EV_USE_EPOLL 0
263# endif
165#endif 264#endif
166 265
167#ifndef EV_USE_KQUEUE 266#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 267# define EV_USE_KQUEUE 0
169#endif 268#endif
171#ifndef EV_USE_PORT 270#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 271# define EV_USE_PORT 0
173#endif 272#endif
174 273
175#ifndef EV_USE_INOTIFY 274#ifndef EV_USE_INOTIFY
275# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
276# define EV_USE_INOTIFY 1
277# else
176# define EV_USE_INOTIFY 0 278# define EV_USE_INOTIFY 0
279# endif
177#endif 280#endif
178 281
179#ifndef EV_PID_HASHSIZE 282#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 283# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 284# define EV_PID_HASHSIZE 1
190# else 293# else
191# define EV_INOTIFY_HASHSIZE 16 294# define EV_INOTIFY_HASHSIZE 16
192# endif 295# endif
193#endif 296#endif
194 297
195/**/ 298#ifndef EV_USE_EVENTFD
299# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
300# define EV_USE_EVENTFD 1
301# else
302# define EV_USE_EVENTFD 0
303# endif
304#endif
305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
324#ifndef EV_USE_4HEAP
325# define EV_USE_4HEAP !EV_MINIMAL
326#endif
327
328#ifndef EV_HEAP_CACHE_AT
329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
344#endif
345
346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 347
197#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 349# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 350# define EV_USE_MONOTONIC 0
200#endif 351#endif
202#ifndef CLOCK_REALTIME 353#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 354# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 355# define EV_USE_REALTIME 0
205#endif 356#endif
206 357
358#if !EV_STAT_ENABLE
359# undef EV_USE_INOTIFY
360# define EV_USE_INOTIFY 0
361#endif
362
363#if !EV_USE_NANOSLEEP
364# ifndef _WIN32
365# include <sys/select.h>
366# endif
367#endif
368
369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
378#endif
379
207#if EV_SELECT_IS_WINSOCKET 380#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 381# include <winsock.h>
209#endif 382#endif
210 383
211#if !EV_STAT_ENABLE 384#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
213#endif 389# endif
390# ifndef EFD_CLOEXEC
391# define EFD_CLOEXEC O_CLOEXEC
392# endif
393# ifdef __cplusplus
394extern "C" {
395# endif
396int eventfd (unsigned int initval, int flags);
397# ifdef __cplusplus
398}
399# endif
400#endif
214 401
215#if EV_USE_INOTIFY 402#if EV_USE_SIGNALFD
216# include <sys/inotify.h> 403# include <sys/signalfd.h>
217#endif 404#endif
218 405
219/**/ 406/**/
407
408#if EV_VERIFY >= 3
409# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
410#else
411# define EV_FREQUENT_CHECK do { } while (0)
412#endif
413
414/*
415 * This is used to avoid floating point rounding problems.
416 * It is added to ev_rt_now when scheduling periodics
417 * to ensure progress, time-wise, even when rounding
418 * errors are against us.
419 * This value is good at least till the year 4000.
420 * Better solutions welcome.
421 */
422#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 423
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 424#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 425#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 426/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 427
225#if __GNUC__ >= 3 428#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 429# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 430# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 431#else
236# define expect(expr,value) (expr) 432# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 433# define noinline
434# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
435# define inline
436# endif
240#endif 437#endif
241 438
242#define expect_false(expr) expect ((expr) != 0, 0) 439#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 440#define expect_true(expr) expect ((expr) != 0, 1)
441#define inline_size static inline
244 442
443#if EV_MINIMAL
444# define inline_speed static noinline
445#else
446# define inline_speed static inline
447#endif
448
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 449#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
450
451#if EV_MINPRI == EV_MAXPRI
452# define ABSPRI(w) (((W)w), 0)
453#else
246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 454# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
455#endif
247 456
248#define EMPTY /* required for microsofts broken pseudo-c compiler */ 457#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 458#define EMPTY2(a,b) /* used to suppress some warnings */
250 459
251typedef ev_watcher *W; 460typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 461typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 462typedef ev_watcher_time *WT;
254 463
464#define ev_active(w) ((W)(w))->active
465#define ev_at(w) ((WT)(w))->at
466
467#if EV_USE_REALTIME
468/* sig_atomic_t is used to avoid per-thread variables or locking but still */
469/* giving it a reasonably high chance of working on typical architetcures */
470static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
471#endif
472
473#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 474static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
475#endif
256 476
257#ifdef _WIN32 477#ifdef _WIN32
258# include "ev_win32.c" 478# include "ev_win32.c"
259#endif 479#endif
260 480
267{ 487{
268 syserr_cb = cb; 488 syserr_cb = cb;
269} 489}
270 490
271static void noinline 491static void noinline
272syserr (const char *msg) 492ev_syserr (const char *msg)
273{ 493{
274 if (!msg) 494 if (!msg)
275 msg = "(libev) system error"; 495 msg = "(libev) system error";
276 496
277 if (syserr_cb) 497 if (syserr_cb)
281 perror (msg); 501 perror (msg);
282 abort (); 502 abort ();
283 } 503 }
284} 504}
285 505
506static void *
507ev_realloc_emul (void *ptr, long size)
508{
509 /* some systems, notably openbsd and darwin, fail to properly
510 * implement realloc (x, 0) (as required by both ansi c-98 and
511 * the single unix specification, so work around them here.
512 */
513
514 if (size)
515 return realloc (ptr, size);
516
517 free (ptr);
518 return 0;
519}
520
286static void *(*alloc)(void *ptr, long size); 521static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 522
288void 523void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 524ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 525{
291 alloc = cb; 526 alloc = cb;
292} 527}
293 528
294inline_speed void * 529inline_speed void *
295ev_realloc (void *ptr, long size) 530ev_realloc (void *ptr, long size)
296{ 531{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 532 ptr = alloc (ptr, size);
298 533
299 if (!ptr && size) 534 if (!ptr && size)
300 { 535 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 536 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 537 abort ();
308#define ev_malloc(size) ev_realloc (0, (size)) 543#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 544#define ev_free(ptr) ev_realloc ((ptr), 0)
310 545
311/*****************************************************************************/ 546/*****************************************************************************/
312 547
548/* set in reify when reification needed */
549#define EV_ANFD_REIFY 1
550
551/* file descriptor info structure */
313typedef struct 552typedef struct
314{ 553{
315 WL head; 554 WL head;
316 unsigned char events; 555 unsigned char events; /* the events watched for */
556 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
557 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 558 unsigned char unused;
559#if EV_USE_EPOLL
560 unsigned int egen; /* generation counter to counter epoll bugs */
561#endif
318#if EV_SELECT_IS_WINSOCKET 562#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 563 SOCKET handle;
320#endif 564#endif
321} ANFD; 565} ANFD;
322 566
567/* stores the pending event set for a given watcher */
323typedef struct 568typedef struct
324{ 569{
325 W w; 570 W w;
326 int events; 571 int events; /* the pending event set for the given watcher */
327} ANPENDING; 572} ANPENDING;
328 573
329#if EV_USE_INOTIFY 574#if EV_USE_INOTIFY
575/* hash table entry per inotify-id */
330typedef struct 576typedef struct
331{ 577{
332 WL head; 578 WL head;
333} ANFS; 579} ANFS;
580#endif
581
582/* Heap Entry */
583#if EV_HEAP_CACHE_AT
584 /* a heap element */
585 typedef struct {
586 ev_tstamp at;
587 WT w;
588 } ANHE;
589
590 #define ANHE_w(he) (he).w /* access watcher, read-write */
591 #define ANHE_at(he) (he).at /* access cached at, read-only */
592 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
593#else
594 /* a heap element */
595 typedef WT ANHE;
596
597 #define ANHE_w(he) (he)
598 #define ANHE_at(he) (he)->at
599 #define ANHE_at_cache(he)
334#endif 600#endif
335 601
336#if EV_MULTIPLICITY 602#if EV_MULTIPLICITY
337 603
338 struct ev_loop 604 struct ev_loop
357 623
358 static int ev_default_loop_ptr; 624 static int ev_default_loop_ptr;
359 625
360#endif 626#endif
361 627
628#if EV_MINIMAL < 2
629# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
630# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
631# define EV_INVOKE_PENDING invoke_cb (EV_A)
632#else
633# define EV_RELEASE_CB (void)0
634# define EV_ACQUIRE_CB (void)0
635# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
636#endif
637
638#define EVUNLOOP_RECURSE 0x80
639
362/*****************************************************************************/ 640/*****************************************************************************/
363 641
642#ifndef EV_HAVE_EV_TIME
364ev_tstamp 643ev_tstamp
365ev_time (void) 644ev_time (void)
366{ 645{
367#if EV_USE_REALTIME 646#if EV_USE_REALTIME
647 if (expect_true (have_realtime))
648 {
368 struct timespec ts; 649 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 650 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 651 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 652 }
653#endif
654
372 struct timeval tv; 655 struct timeval tv;
373 gettimeofday (&tv, 0); 656 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 657 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 658}
659#endif
377 660
378ev_tstamp inline_size 661inline_size ev_tstamp
379get_clock (void) 662get_clock (void)
380{ 663{
381#if EV_USE_MONOTONIC 664#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 665 if (expect_true (have_monotonic))
383 { 666 {
396{ 679{
397 return ev_rt_now; 680 return ev_rt_now;
398} 681}
399#endif 682#endif
400 683
401int inline_size 684void
685ev_sleep (ev_tstamp delay)
686{
687 if (delay > 0.)
688 {
689#if EV_USE_NANOSLEEP
690 struct timespec ts;
691
692 ts.tv_sec = (time_t)delay;
693 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
694
695 nanosleep (&ts, 0);
696#elif defined(_WIN32)
697 Sleep ((unsigned long)(delay * 1e3));
698#else
699 struct timeval tv;
700
701 tv.tv_sec = (time_t)delay;
702 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
703
704 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
705 /* something not guaranteed by newer posix versions, but guaranteed */
706 /* by older ones */
707 select (0, 0, 0, 0, &tv);
708#endif
709 }
710}
711
712/*****************************************************************************/
713
714#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
715
716/* find a suitable new size for the given array, */
717/* hopefully by rounding to a ncie-to-malloc size */
718inline_size int
402array_nextsize (int elem, int cur, int cnt) 719array_nextsize (int elem, int cur, int cnt)
403{ 720{
404 int ncur = cur + 1; 721 int ncur = cur + 1;
405 722
406 do 723 do
407 ncur <<= 1; 724 ncur <<= 1;
408 while (cnt > ncur); 725 while (cnt > ncur);
409 726
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 727 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
411 if (elem * ncur > 4096) 728 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
412 { 729 {
413 ncur *= elem; 730 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 731 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
415 ncur = ncur - sizeof (void *) * 4; 732 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem; 733 ncur /= elem;
417 } 734 }
418 735
419 return ncur; 736 return ncur;
420} 737}
421 738
422inline_speed void * 739static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 740array_realloc (int elem, void *base, int *cur, int cnt)
424{ 741{
425 *cur = array_nextsize (elem, *cur, cnt); 742 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 743 return ev_realloc (base, elem * *cur);
427} 744}
745
746#define array_init_zero(base,count) \
747 memset ((void *)(base), 0, sizeof (*(base)) * (count))
428 748
429#define array_needsize(type,base,cur,cnt,init) \ 749#define array_needsize(type,base,cur,cnt,init) \
430 if (expect_false ((cnt) > (cur))) \ 750 if (expect_false ((cnt) > (cur))) \
431 { \ 751 { \
432 int ocur_ = (cur); \ 752 int ocur_ = (cur); \
444 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 764 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
445 } 765 }
446#endif 766#endif
447 767
448#define array_free(stem, idx) \ 768#define array_free(stem, idx) \
449 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 769 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
450 770
451/*****************************************************************************/ 771/*****************************************************************************/
772
773/* dummy callback for pending events */
774static void noinline
775pendingcb (EV_P_ ev_prepare *w, int revents)
776{
777}
452 778
453void noinline 779void noinline
454ev_feed_event (EV_P_ void *w, int revents) 780ev_feed_event (EV_P_ void *w, int revents)
455{ 781{
456 W w_ = (W)w; 782 W w_ = (W)w;
783 int pri = ABSPRI (w_);
457 784
458 if (expect_false (w_->pending)) 785 if (expect_false (w_->pending))
786 pendings [pri][w_->pending - 1].events |= revents;
787 else
459 { 788 {
789 w_->pending = ++pendingcnt [pri];
790 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
791 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 792 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 793 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 794}
469 795
470void inline_size 796inline_speed void
797feed_reverse (EV_P_ W w)
798{
799 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
800 rfeeds [rfeedcnt++] = w;
801}
802
803inline_size void
804feed_reverse_done (EV_P_ int revents)
805{
806 do
807 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
808 while (rfeedcnt);
809}
810
811inline_speed void
471queue_events (EV_P_ W *events, int eventcnt, int type) 812queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 813{
473 int i; 814 int i;
474 815
475 for (i = 0; i < eventcnt; ++i) 816 for (i = 0; i < eventcnt; ++i)
476 ev_feed_event (EV_A_ events [i], type); 817 ev_feed_event (EV_A_ events [i], type);
477} 818}
478 819
479/*****************************************************************************/ 820/*****************************************************************************/
480 821
481void inline_size 822inline_speed void
482anfds_init (ANFD *base, int count)
483{
484 while (count--)
485 {
486 base->head = 0;
487 base->events = EV_NONE;
488 base->reify = 0;
489
490 ++base;
491 }
492}
493
494void inline_speed
495fd_event (EV_P_ int fd, int revents) 823fd_event_nc (EV_P_ int fd, int revents)
496{ 824{
497 ANFD *anfd = anfds + fd; 825 ANFD *anfd = anfds + fd;
498 ev_io *w; 826 ev_io *w;
499 827
500 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 828 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
504 if (ev) 832 if (ev)
505 ev_feed_event (EV_A_ (W)w, ev); 833 ev_feed_event (EV_A_ (W)w, ev);
506 } 834 }
507} 835}
508 836
837/* do not submit kernel events for fds that have reify set */
838/* because that means they changed while we were polling for new events */
839inline_speed void
840fd_event (EV_P_ int fd, int revents)
841{
842 ANFD *anfd = anfds + fd;
843
844 if (expect_true (!anfd->reify))
845 fd_event_nc (EV_A_ fd, revents);
846}
847
509void 848void
510ev_feed_fd_event (EV_P_ int fd, int revents) 849ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 850{
851 if (fd >= 0 && fd < anfdmax)
512 fd_event (EV_A_ fd, revents); 852 fd_event_nc (EV_A_ fd, revents);
513} 853}
514 854
515void inline_size 855/* make sure the external fd watch events are in-sync */
856/* with the kernel/libev internal state */
857inline_size void
516fd_reify (EV_P) 858fd_reify (EV_P)
517{ 859{
518 int i; 860 int i;
519 861
520 for (i = 0; i < fdchangecnt; ++i) 862 for (i = 0; i < fdchangecnt; ++i)
521 { 863 {
522 int fd = fdchanges [i]; 864 int fd = fdchanges [i];
523 ANFD *anfd = anfds + fd; 865 ANFD *anfd = anfds + fd;
524 ev_io *w; 866 ev_io *w;
525 867
526 int events = 0; 868 unsigned char events = 0;
527 869
528 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 870 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
529 events |= w->events; 871 events |= (unsigned char)w->events;
530 872
531#if EV_SELECT_IS_WINSOCKET 873#if EV_SELECT_IS_WINSOCKET
532 if (events) 874 if (events)
533 { 875 {
534 unsigned long argp; 876 unsigned long arg;
877 #ifdef EV_FD_TO_WIN32_HANDLE
878 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
879 #else
535 anfd->handle = _get_osfhandle (fd); 880 anfd->handle = _get_osfhandle (fd);
881 #endif
536 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 882 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
537 } 883 }
538#endif 884#endif
539 885
886 {
887 unsigned char o_events = anfd->events;
888 unsigned char o_reify = anfd->reify;
889
540 anfd->reify = 0; 890 anfd->reify = 0;
541
542 backend_modify (EV_A_ fd, anfd->events, events);
543 anfd->events = events; 891 anfd->events = events;
892
893 if (o_events != events || o_reify & EV__IOFDSET)
894 backend_modify (EV_A_ fd, o_events, events);
895 }
544 } 896 }
545 897
546 fdchangecnt = 0; 898 fdchangecnt = 0;
547} 899}
548 900
549void inline_size 901/* something about the given fd changed */
902inline_size void
550fd_change (EV_P_ int fd) 903fd_change (EV_P_ int fd, int flags)
551{ 904{
552 if (expect_false (anfds [fd].reify)) 905 unsigned char reify = anfds [fd].reify;
553 return;
554
555 anfds [fd].reify = 1; 906 anfds [fd].reify |= flags;
556 907
908 if (expect_true (!reify))
909 {
557 ++fdchangecnt; 910 ++fdchangecnt;
558 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 911 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
559 fdchanges [fdchangecnt - 1] = fd; 912 fdchanges [fdchangecnt - 1] = fd;
913 }
560} 914}
561 915
562void inline_speed 916/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
917inline_speed void
563fd_kill (EV_P_ int fd) 918fd_kill (EV_P_ int fd)
564{ 919{
565 ev_io *w; 920 ev_io *w;
566 921
567 while ((w = (ev_io *)anfds [fd].head)) 922 while ((w = (ev_io *)anfds [fd].head))
569 ev_io_stop (EV_A_ w); 924 ev_io_stop (EV_A_ w);
570 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 925 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
571 } 926 }
572} 927}
573 928
574int inline_size 929/* check whether the given fd is atcually valid, for error recovery */
930inline_size int
575fd_valid (int fd) 931fd_valid (int fd)
576{ 932{
577#ifdef _WIN32 933#ifdef _WIN32
578 return _get_osfhandle (fd) != -1; 934 return _get_osfhandle (fd) != -1;
579#else 935#else
587{ 943{
588 int fd; 944 int fd;
589 945
590 for (fd = 0; fd < anfdmax; ++fd) 946 for (fd = 0; fd < anfdmax; ++fd)
591 if (anfds [fd].events) 947 if (anfds [fd].events)
592 if (!fd_valid (fd) == -1 && errno == EBADF) 948 if (!fd_valid (fd) && errno == EBADF)
593 fd_kill (EV_A_ fd); 949 fd_kill (EV_A_ fd);
594} 950}
595 951
596/* called on ENOMEM in select/poll to kill some fds and retry */ 952/* called on ENOMEM in select/poll to kill some fds and retry */
597static void noinline 953static void noinline
601 957
602 for (fd = anfdmax; fd--; ) 958 for (fd = anfdmax; fd--; )
603 if (anfds [fd].events) 959 if (anfds [fd].events)
604 { 960 {
605 fd_kill (EV_A_ fd); 961 fd_kill (EV_A_ fd);
606 return; 962 break;
607 } 963 }
608} 964}
609 965
610/* usually called after fork if backend needs to re-arm all fds from scratch */ 966/* usually called after fork if backend needs to re-arm all fds from scratch */
611static void noinline 967static void noinline
615 971
616 for (fd = 0; fd < anfdmax; ++fd) 972 for (fd = 0; fd < anfdmax; ++fd)
617 if (anfds [fd].events) 973 if (anfds [fd].events)
618 { 974 {
619 anfds [fd].events = 0; 975 anfds [fd].events = 0;
620 fd_change (EV_A_ fd); 976 anfds [fd].emask = 0;
977 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
621 } 978 }
622} 979}
623 980
624/*****************************************************************************/ 981/*****************************************************************************/
625 982
626void inline_speed 983/*
627upheap (WT *heap, int k) 984 * the heap functions want a real array index. array index 0 uis guaranteed to not
628{ 985 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
629 WT w = heap [k]; 986 * the branching factor of the d-tree.
987 */
630 988
631 while (k && heap [k >> 1]->at > w->at) 989/*
632 { 990 * at the moment we allow libev the luxury of two heaps,
633 heap [k] = heap [k >> 1]; 991 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
634 ((W)heap [k])->active = k + 1; 992 * which is more cache-efficient.
635 k >>= 1; 993 * the difference is about 5% with 50000+ watchers.
636 } 994 */
995#if EV_USE_4HEAP
637 996
638 heap [k] = w; 997#define DHEAP 4
639 ((W)heap [k])->active = k + 1; 998#define HEAP0 (DHEAP - 1) /* index of first element in heap */
999#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1000#define UPHEAP_DONE(p,k) ((p) == (k))
640 1001
641} 1002/* away from the root */
642 1003inline_speed void
643void inline_speed
644downheap (WT *heap, int N, int k) 1004downheap (ANHE *heap, int N, int k)
645{ 1005{
646 WT w = heap [k]; 1006 ANHE he = heap [k];
1007 ANHE *E = heap + N + HEAP0;
647 1008
648 while (k < (N >> 1)) 1009 for (;;)
649 { 1010 {
650 int j = k << 1; 1011 ev_tstamp minat;
1012 ANHE *minpos;
1013 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
651 1014
652 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1015 /* find minimum child */
1016 if (expect_true (pos + DHEAP - 1 < E))
653 ++j; 1017 {
654 1018 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
655 if (w->at <= heap [j]->at) 1019 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1020 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1021 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1022 }
1023 else if (pos < E)
1024 {
1025 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1026 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1027 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1028 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1029 }
1030 else
656 break; 1031 break;
657 1032
1033 if (ANHE_at (he) <= minat)
1034 break;
1035
1036 heap [k] = *minpos;
1037 ev_active (ANHE_w (*minpos)) = k;
1038
1039 k = minpos - heap;
1040 }
1041
1042 heap [k] = he;
1043 ev_active (ANHE_w (he)) = k;
1044}
1045
1046#else /* 4HEAP */
1047
1048#define HEAP0 1
1049#define HPARENT(k) ((k) >> 1)
1050#define UPHEAP_DONE(p,k) (!(p))
1051
1052/* away from the root */
1053inline_speed void
1054downheap (ANHE *heap, int N, int k)
1055{
1056 ANHE he = heap [k];
1057
1058 for (;;)
1059 {
1060 int c = k << 1;
1061
1062 if (c >= N + HEAP0)
1063 break;
1064
1065 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1066 ? 1 : 0;
1067
1068 if (ANHE_at (he) <= ANHE_at (heap [c]))
1069 break;
1070
658 heap [k] = heap [j]; 1071 heap [k] = heap [c];
659 ((W)heap [k])->active = k + 1; 1072 ev_active (ANHE_w (heap [k])) = k;
1073
660 k = j; 1074 k = c;
661 } 1075 }
662 1076
663 heap [k] = w; 1077 heap [k] = he;
664 ((W)heap [k])->active = k + 1; 1078 ev_active (ANHE_w (he)) = k;
665} 1079}
1080#endif
666 1081
667void inline_size 1082/* towards the root */
1083inline_speed void
1084upheap (ANHE *heap, int k)
1085{
1086 ANHE he = heap [k];
1087
1088 for (;;)
1089 {
1090 int p = HPARENT (k);
1091
1092 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1093 break;
1094
1095 heap [k] = heap [p];
1096 ev_active (ANHE_w (heap [k])) = k;
1097 k = p;
1098 }
1099
1100 heap [k] = he;
1101 ev_active (ANHE_w (he)) = k;
1102}
1103
1104/* move an element suitably so it is in a correct place */
1105inline_size void
668adjustheap (WT *heap, int N, int k) 1106adjustheap (ANHE *heap, int N, int k)
669{ 1107{
1108 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
670 upheap (heap, k); 1109 upheap (heap, k);
1110 else
671 downheap (heap, N, k); 1111 downheap (heap, N, k);
1112}
1113
1114/* rebuild the heap: this function is used only once and executed rarely */
1115inline_size void
1116reheap (ANHE *heap, int N)
1117{
1118 int i;
1119
1120 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1121 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1122 for (i = 0; i < N; ++i)
1123 upheap (heap, i + HEAP0);
672} 1124}
673 1125
674/*****************************************************************************/ 1126/*****************************************************************************/
675 1127
1128/* associate signal watchers to a signal signal */
676typedef struct 1129typedef struct
677{ 1130{
1131 EV_ATOMIC_T pending;
1132#if EV_MULTIPLICITY
1133 EV_P;
1134#endif
678 WL head; 1135 WL head;
679 sig_atomic_t volatile gotsig;
680} ANSIG; 1136} ANSIG;
681 1137
682static ANSIG *signals; 1138static ANSIG signals [EV_NSIG - 1];
683static int signalmax;
684 1139
685static int sigpipe [2]; 1140/*****************************************************************************/
686static sig_atomic_t volatile gotsig;
687static ev_io sigev;
688 1141
689void inline_size 1142/* used to prepare libev internal fd's */
690signals_init (ANSIG *base, int count) 1143/* this is not fork-safe */
691{ 1144inline_speed void
692 while (count--)
693 {
694 base->head = 0;
695 base->gotsig = 0;
696
697 ++base;
698 }
699}
700
701static void
702sighandler (int signum)
703{
704#if _WIN32
705 signal (signum, sighandler);
706#endif
707
708 signals [signum - 1].gotsig = 1;
709
710 if (!gotsig)
711 {
712 int old_errno = errno;
713 gotsig = 1;
714 write (sigpipe [1], &signum, 1);
715 errno = old_errno;
716 }
717}
718
719void noinline
720ev_feed_signal_event (EV_P_ int signum)
721{
722 WL w;
723
724#if EV_MULTIPLICITY
725 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
726#endif
727
728 --signum;
729
730 if (signum < 0 || signum >= signalmax)
731 return;
732
733 signals [signum].gotsig = 0;
734
735 for (w = signals [signum].head; w; w = w->next)
736 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
737}
738
739static void
740sigcb (EV_P_ ev_io *iow, int revents)
741{
742 int signum;
743
744 read (sigpipe [0], &revents, 1);
745 gotsig = 0;
746
747 for (signum = signalmax; signum--; )
748 if (signals [signum].gotsig)
749 ev_feed_signal_event (EV_A_ signum + 1);
750}
751
752void inline_size
753fd_intern (int fd) 1145fd_intern (int fd)
754{ 1146{
755#ifdef _WIN32 1147#ifdef _WIN32
756 int arg = 1; 1148 unsigned long arg = 1;
757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1149 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
758#else 1150#else
759 fcntl (fd, F_SETFD, FD_CLOEXEC); 1151 fcntl (fd, F_SETFD, FD_CLOEXEC);
760 fcntl (fd, F_SETFL, O_NONBLOCK); 1152 fcntl (fd, F_SETFL, O_NONBLOCK);
761#endif 1153#endif
762} 1154}
763 1155
764static void noinline 1156static void noinline
765siginit (EV_P) 1157evpipe_init (EV_P)
766{ 1158{
1159 if (!ev_is_active (&pipe_w))
1160 {
1161#if EV_USE_EVENTFD
1162 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1163 if (evfd < 0 && errno == EINVAL)
1164 evfd = eventfd (0, 0);
1165
1166 if (evfd >= 0)
1167 {
1168 evpipe [0] = -1;
1169 fd_intern (evfd); /* doing it twice doesn't hurt */
1170 ev_io_set (&pipe_w, evfd, EV_READ);
1171 }
1172 else
1173#endif
1174 {
1175 while (pipe (evpipe))
1176 ev_syserr ("(libev) error creating signal/async pipe");
1177
767 fd_intern (sigpipe [0]); 1178 fd_intern (evpipe [0]);
768 fd_intern (sigpipe [1]); 1179 fd_intern (evpipe [1]);
1180 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1181 }
769 1182
770 ev_io_set (&sigev, sigpipe [0], EV_READ);
771 ev_io_start (EV_A_ &sigev); 1183 ev_io_start (EV_A_ &pipe_w);
772 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1184 ev_unref (EV_A); /* watcher should not keep loop alive */
1185 }
1186}
1187
1188inline_size void
1189evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1190{
1191 if (!*flag)
1192 {
1193 int old_errno = errno; /* save errno because write might clobber it */
1194
1195 *flag = 1;
1196
1197#if EV_USE_EVENTFD
1198 if (evfd >= 0)
1199 {
1200 uint64_t counter = 1;
1201 write (evfd, &counter, sizeof (uint64_t));
1202 }
1203 else
1204#endif
1205 write (evpipe [1], &old_errno, 1);
1206
1207 errno = old_errno;
1208 }
1209}
1210
1211/* called whenever the libev signal pipe */
1212/* got some events (signal, async) */
1213static void
1214pipecb (EV_P_ ev_io *iow, int revents)
1215{
1216 int i;
1217
1218#if EV_USE_EVENTFD
1219 if (evfd >= 0)
1220 {
1221 uint64_t counter;
1222 read (evfd, &counter, sizeof (uint64_t));
1223 }
1224 else
1225#endif
1226 {
1227 char dummy;
1228 read (evpipe [0], &dummy, 1);
1229 }
1230
1231 if (sig_pending)
1232 {
1233 sig_pending = 0;
1234
1235 for (i = EV_NSIG - 1; i--; )
1236 if (expect_false (signals [i].pending))
1237 ev_feed_signal_event (EV_A_ i + 1);
1238 }
1239
1240#if EV_ASYNC_ENABLE
1241 if (async_pending)
1242 {
1243 async_pending = 0;
1244
1245 for (i = asynccnt; i--; )
1246 if (asyncs [i]->sent)
1247 {
1248 asyncs [i]->sent = 0;
1249 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1250 }
1251 }
1252#endif
773} 1253}
774 1254
775/*****************************************************************************/ 1255/*****************************************************************************/
776 1256
1257static void
1258ev_sighandler (int signum)
1259{
1260#if EV_MULTIPLICITY
1261 EV_P = signals [signum - 1].loop;
1262#endif
1263
1264#if _WIN32
1265 signal (signum, ev_sighandler);
1266#endif
1267
1268 signals [signum - 1].pending = 1;
1269 evpipe_write (EV_A_ &sig_pending);
1270}
1271
1272void noinline
1273ev_feed_signal_event (EV_P_ int signum)
1274{
1275 WL w;
1276
1277 if (expect_false (signum <= 0 || signum > EV_NSIG))
1278 return;
1279
1280 --signum;
1281
1282#if EV_MULTIPLICITY
1283 /* it is permissible to try to feed a signal to the wrong loop */
1284 /* or, likely more useful, feeding a signal nobody is waiting for */
1285
1286 if (expect_false (signals [signum].loop != EV_A))
1287 return;
1288#endif
1289
1290 signals [signum].pending = 0;
1291
1292 for (w = signals [signum].head; w; w = w->next)
1293 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1294}
1295
1296#if EV_USE_SIGNALFD
1297static void
1298sigfdcb (EV_P_ ev_io *iow, int revents)
1299{
1300 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1301
1302 for (;;)
1303 {
1304 ssize_t res = read (sigfd, si, sizeof (si));
1305
1306 /* not ISO-C, as res might be -1, but works with SuS */
1307 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1308 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1309
1310 if (res < (ssize_t)sizeof (si))
1311 break;
1312 }
1313}
1314#endif
1315
1316/*****************************************************************************/
1317
777static ev_child *childs [EV_PID_HASHSIZE]; 1318static WL childs [EV_PID_HASHSIZE];
778 1319
779#ifndef _WIN32 1320#ifndef _WIN32
780 1321
781static ev_signal childev; 1322static ev_signal childev;
782 1323
783void inline_speed 1324#ifndef WIFCONTINUED
1325# define WIFCONTINUED(status) 0
1326#endif
1327
1328/* handle a single child status event */
1329inline_speed void
784child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1330child_reap (EV_P_ int chain, int pid, int status)
785{ 1331{
786 ev_child *w; 1332 ev_child *w;
1333 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
787 1334
788 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1335 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1336 {
789 if (w->pid == pid || !w->pid) 1337 if ((w->pid == pid || !w->pid)
1338 && (!traced || (w->flags & 1)))
790 { 1339 {
791 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1340 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
792 w->rpid = pid; 1341 w->rpid = pid;
793 w->rstatus = status; 1342 w->rstatus = status;
794 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1343 ev_feed_event (EV_A_ (W)w, EV_CHILD);
795 } 1344 }
1345 }
796} 1346}
797 1347
798#ifndef WCONTINUED 1348#ifndef WCONTINUED
799# define WCONTINUED 0 1349# define WCONTINUED 0
800#endif 1350#endif
801 1351
1352/* called on sigchld etc., calls waitpid */
802static void 1353static void
803childcb (EV_P_ ev_signal *sw, int revents) 1354childcb (EV_P_ ev_signal *sw, int revents)
804{ 1355{
805 int pid, status; 1356 int pid, status;
806 1357
809 if (!WCONTINUED 1360 if (!WCONTINUED
810 || errno != EINVAL 1361 || errno != EINVAL
811 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1362 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
812 return; 1363 return;
813 1364
814 /* make sure we are called again until all childs have been reaped */ 1365 /* make sure we are called again until all children have been reaped */
815 /* we need to do it this way so that the callback gets called before we continue */ 1366 /* we need to do it this way so that the callback gets called before we continue */
816 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1367 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
817 1368
818 child_reap (EV_A_ sw, pid, pid, status); 1369 child_reap (EV_A_ pid, pid, status);
819 if (EV_PID_HASHSIZE > 1) 1370 if (EV_PID_HASHSIZE > 1)
820 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1371 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
821} 1372}
822 1373
823#endif 1374#endif
824 1375
825/*****************************************************************************/ 1376/*****************************************************************************/
887 /* kqueue is borked on everything but netbsd apparently */ 1438 /* kqueue is borked on everything but netbsd apparently */
888 /* it usually doesn't work correctly on anything but sockets and pipes */ 1439 /* it usually doesn't work correctly on anything but sockets and pipes */
889 flags &= ~EVBACKEND_KQUEUE; 1440 flags &= ~EVBACKEND_KQUEUE;
890#endif 1441#endif
891#ifdef __APPLE__ 1442#ifdef __APPLE__
892 // flags &= ~EVBACKEND_KQUEUE; for documentation 1443 /* only select works correctly on that "unix-certified" platform */
893 flags &= ~EVBACKEND_POLL; 1444 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1445 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
894#endif 1446#endif
895 1447
896 return flags; 1448 return flags;
897} 1449}
898 1450
899unsigned int 1451unsigned int
900ev_embeddable_backends (void) 1452ev_embeddable_backends (void)
901{ 1453{
902 return EVBACKEND_EPOLL 1454 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
903 | EVBACKEND_KQUEUE 1455
904 | EVBACKEND_PORT; 1456 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1457 /* please fix it and tell me how to detect the fix */
1458 flags &= ~EVBACKEND_EPOLL;
1459
1460 return flags;
905} 1461}
906 1462
907unsigned int 1463unsigned int
908ev_backend (EV_P) 1464ev_backend (EV_P)
909{ 1465{
910 return backend; 1466 return backend;
911} 1467}
912 1468
1469#if EV_MINIMAL < 2
913unsigned int 1470unsigned int
914ev_loop_count (EV_P) 1471ev_loop_count (EV_P)
915{ 1472{
916 return loop_count; 1473 return loop_count;
917} 1474}
918 1475
1476unsigned int
1477ev_loop_depth (EV_P)
1478{
1479 return loop_depth;
1480}
1481
1482void
1483ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1484{
1485 io_blocktime = interval;
1486}
1487
1488void
1489ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1490{
1491 timeout_blocktime = interval;
1492}
1493
1494void
1495ev_set_userdata (EV_P_ void *data)
1496{
1497 userdata = data;
1498}
1499
1500void *
1501ev_userdata (EV_P)
1502{
1503 return userdata;
1504}
1505
1506void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1507{
1508 invoke_cb = invoke_pending_cb;
1509}
1510
1511void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1512{
1513 release_cb = release;
1514 acquire_cb = acquire;
1515}
1516#endif
1517
1518/* initialise a loop structure, must be zero-initialised */
919static void noinline 1519static void noinline
920loop_init (EV_P_ unsigned int flags) 1520loop_init (EV_P_ unsigned int flags)
921{ 1521{
922 if (!backend) 1522 if (!backend)
923 { 1523 {
1524#if EV_USE_REALTIME
1525 if (!have_realtime)
1526 {
1527 struct timespec ts;
1528
1529 if (!clock_gettime (CLOCK_REALTIME, &ts))
1530 have_realtime = 1;
1531 }
1532#endif
1533
924#if EV_USE_MONOTONIC 1534#if EV_USE_MONOTONIC
1535 if (!have_monotonic)
925 { 1536 {
926 struct timespec ts; 1537 struct timespec ts;
1538
927 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1539 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
928 have_monotonic = 1; 1540 have_monotonic = 1;
929 } 1541 }
930#endif 1542#endif
931
932 ev_rt_now = ev_time ();
933 mn_now = get_clock ();
934 now_floor = mn_now;
935 rtmn_diff = ev_rt_now - mn_now;
936 1543
937 /* pid check not overridable via env */ 1544 /* pid check not overridable via env */
938#ifndef _WIN32 1545#ifndef _WIN32
939 if (flags & EVFLAG_FORKCHECK) 1546 if (flags & EVFLAG_FORKCHECK)
940 curpid = getpid (); 1547 curpid = getpid ();
943 if (!(flags & EVFLAG_NOENV) 1550 if (!(flags & EVFLAG_NOENV)
944 && !enable_secure () 1551 && !enable_secure ()
945 && getenv ("LIBEV_FLAGS")) 1552 && getenv ("LIBEV_FLAGS"))
946 flags = atoi (getenv ("LIBEV_FLAGS")); 1553 flags = atoi (getenv ("LIBEV_FLAGS"));
947 1554
1555 ev_rt_now = ev_time ();
1556 mn_now = get_clock ();
1557 now_floor = mn_now;
1558 rtmn_diff = ev_rt_now - mn_now;
1559#if EV_MINIMAL < 2
1560 invoke_cb = ev_invoke_pending;
1561#endif
1562
1563 io_blocktime = 0.;
1564 timeout_blocktime = 0.;
1565 backend = 0;
1566 backend_fd = -1;
1567 sig_pending = 0;
1568#if EV_ASYNC_ENABLE
1569 async_pending = 0;
1570#endif
1571#if EV_USE_INOTIFY
1572 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1573#endif
1574#if EV_USE_SIGNALFD
1575 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1576#endif
1577
948 if (!(flags & 0x0000ffffUL)) 1578 if (!(flags & 0x0000ffffU))
949 flags |= ev_recommended_backends (); 1579 flags |= ev_recommended_backends ();
950
951 backend = 0;
952 backend_fd = -1;
953#if EV_USE_INOTIFY
954 fs_fd = -2;
955#endif
956 1580
957#if EV_USE_PORT 1581#if EV_USE_PORT
958 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1582 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
959#endif 1583#endif
960#if EV_USE_KQUEUE 1584#if EV_USE_KQUEUE
968#endif 1592#endif
969#if EV_USE_SELECT 1593#if EV_USE_SELECT
970 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1594 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
971#endif 1595#endif
972 1596
1597 ev_prepare_init (&pending_w, pendingcb);
1598
973 ev_init (&sigev, sigcb); 1599 ev_init (&pipe_w, pipecb);
974 ev_set_priority (&sigev, EV_MAXPRI); 1600 ev_set_priority (&pipe_w, EV_MAXPRI);
975 } 1601 }
976} 1602}
977 1603
1604/* free up a loop structure */
978static void noinline 1605static void noinline
979loop_destroy (EV_P) 1606loop_destroy (EV_P)
980{ 1607{
981 int i; 1608 int i;
1609
1610 if (ev_is_active (&pipe_w))
1611 {
1612 /*ev_ref (EV_A);*/
1613 /*ev_io_stop (EV_A_ &pipe_w);*/
1614
1615#if EV_USE_EVENTFD
1616 if (evfd >= 0)
1617 close (evfd);
1618#endif
1619
1620 if (evpipe [0] >= 0)
1621 {
1622 close (evpipe [0]);
1623 close (evpipe [1]);
1624 }
1625 }
1626
1627#if EV_USE_SIGNALFD
1628 if (ev_is_active (&sigfd_w))
1629 {
1630 /*ev_ref (EV_A);*/
1631 /*ev_io_stop (EV_A_ &sigfd_w);*/
1632
1633 close (sigfd);
1634 }
1635#endif
982 1636
983#if EV_USE_INOTIFY 1637#if EV_USE_INOTIFY
984 if (fs_fd >= 0) 1638 if (fs_fd >= 0)
985 close (fs_fd); 1639 close (fs_fd);
986#endif 1640#endif
1010#if EV_IDLE_ENABLE 1664#if EV_IDLE_ENABLE
1011 array_free (idle, [i]); 1665 array_free (idle, [i]);
1012#endif 1666#endif
1013 } 1667 }
1014 1668
1669 ev_free (anfds); anfds = 0; anfdmax = 0;
1670
1015 /* have to use the microsoft-never-gets-it-right macro */ 1671 /* have to use the microsoft-never-gets-it-right macro */
1672 array_free (rfeed, EMPTY);
1016 array_free (fdchange, EMPTY); 1673 array_free (fdchange, EMPTY);
1017 array_free (timer, EMPTY); 1674 array_free (timer, EMPTY);
1018#if EV_PERIODIC_ENABLE 1675#if EV_PERIODIC_ENABLE
1019 array_free (periodic, EMPTY); 1676 array_free (periodic, EMPTY);
1020#endif 1677#endif
1678#if EV_FORK_ENABLE
1679 array_free (fork, EMPTY);
1680#endif
1021 array_free (prepare, EMPTY); 1681 array_free (prepare, EMPTY);
1022 array_free (check, EMPTY); 1682 array_free (check, EMPTY);
1683#if EV_ASYNC_ENABLE
1684 array_free (async, EMPTY);
1685#endif
1023 1686
1024 backend = 0; 1687 backend = 0;
1025} 1688}
1026 1689
1690#if EV_USE_INOTIFY
1027void inline_size infy_fork (EV_P); 1691inline_size void infy_fork (EV_P);
1692#endif
1028 1693
1029void inline_size 1694inline_size void
1030loop_fork (EV_P) 1695loop_fork (EV_P)
1031{ 1696{
1032#if EV_USE_PORT 1697#if EV_USE_PORT
1033 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1698 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1034#endif 1699#endif
1040#endif 1705#endif
1041#if EV_USE_INOTIFY 1706#if EV_USE_INOTIFY
1042 infy_fork (EV_A); 1707 infy_fork (EV_A);
1043#endif 1708#endif
1044 1709
1045 if (ev_is_active (&sigev)) 1710 if (ev_is_active (&pipe_w))
1046 { 1711 {
1047 /* default loop */ 1712 /* this "locks" the handlers against writing to the pipe */
1713 /* while we modify the fd vars */
1714 sig_pending = 1;
1715#if EV_ASYNC_ENABLE
1716 async_pending = 1;
1717#endif
1048 1718
1049 ev_ref (EV_A); 1719 ev_ref (EV_A);
1050 ev_io_stop (EV_A_ &sigev); 1720 ev_io_stop (EV_A_ &pipe_w);
1721
1722#if EV_USE_EVENTFD
1723 if (evfd >= 0)
1724 close (evfd);
1725#endif
1726
1727 if (evpipe [0] >= 0)
1728 {
1051 close (sigpipe [0]); 1729 close (evpipe [0]);
1052 close (sigpipe [1]); 1730 close (evpipe [1]);
1731 }
1053 1732
1054 while (pipe (sigpipe))
1055 syserr ("(libev) error creating pipe");
1056
1057 siginit (EV_A); 1733 evpipe_init (EV_A);
1734 /* now iterate over everything, in case we missed something */
1735 pipecb (EV_A_ &pipe_w, EV_READ);
1058 } 1736 }
1059 1737
1060 postfork = 0; 1738 postfork = 0;
1061} 1739}
1062 1740
1063#if EV_MULTIPLICITY 1741#if EV_MULTIPLICITY
1742
1064struct ev_loop * 1743struct ev_loop *
1065ev_loop_new (unsigned int flags) 1744ev_loop_new (unsigned int flags)
1066{ 1745{
1067 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1746 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1068 1747
1069 memset (loop, 0, sizeof (struct ev_loop)); 1748 memset (EV_A, 0, sizeof (struct ev_loop));
1070
1071 loop_init (EV_A_ flags); 1749 loop_init (EV_A_ flags);
1072 1750
1073 if (ev_backend (EV_A)) 1751 if (ev_backend (EV_A))
1074 return loop; 1752 return EV_A;
1075 1753
1076 return 0; 1754 return 0;
1077} 1755}
1078 1756
1079void 1757void
1084} 1762}
1085 1763
1086void 1764void
1087ev_loop_fork (EV_P) 1765ev_loop_fork (EV_P)
1088{ 1766{
1089 postfork = 1; 1767 postfork = 1; /* must be in line with ev_default_fork */
1090} 1768}
1769#endif /* multiplicity */
1091 1770
1771#if EV_VERIFY
1772static void noinline
1773verify_watcher (EV_P_ W w)
1774{
1775 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1776
1777 if (w->pending)
1778 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1779}
1780
1781static void noinline
1782verify_heap (EV_P_ ANHE *heap, int N)
1783{
1784 int i;
1785
1786 for (i = HEAP0; i < N + HEAP0; ++i)
1787 {
1788 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1789 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1790 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1791
1792 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1793 }
1794}
1795
1796static void noinline
1797array_verify (EV_P_ W *ws, int cnt)
1798{
1799 while (cnt--)
1800 {
1801 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1802 verify_watcher (EV_A_ ws [cnt]);
1803 }
1804}
1805#endif
1806
1807#if EV_MINIMAL < 2
1808void
1809ev_loop_verify (EV_P)
1810{
1811#if EV_VERIFY
1812 int i;
1813 WL w;
1814
1815 assert (activecnt >= -1);
1816
1817 assert (fdchangemax >= fdchangecnt);
1818 for (i = 0; i < fdchangecnt; ++i)
1819 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1820
1821 assert (anfdmax >= 0);
1822 for (i = 0; i < anfdmax; ++i)
1823 for (w = anfds [i].head; w; w = w->next)
1824 {
1825 verify_watcher (EV_A_ (W)w);
1826 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1827 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1828 }
1829
1830 assert (timermax >= timercnt);
1831 verify_heap (EV_A_ timers, timercnt);
1832
1833#if EV_PERIODIC_ENABLE
1834 assert (periodicmax >= periodiccnt);
1835 verify_heap (EV_A_ periodics, periodiccnt);
1836#endif
1837
1838 for (i = NUMPRI; i--; )
1839 {
1840 assert (pendingmax [i] >= pendingcnt [i]);
1841#if EV_IDLE_ENABLE
1842 assert (idleall >= 0);
1843 assert (idlemax [i] >= idlecnt [i]);
1844 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1845#endif
1846 }
1847
1848#if EV_FORK_ENABLE
1849 assert (forkmax >= forkcnt);
1850 array_verify (EV_A_ (W *)forks, forkcnt);
1851#endif
1852
1853#if EV_ASYNC_ENABLE
1854 assert (asyncmax >= asynccnt);
1855 array_verify (EV_A_ (W *)asyncs, asynccnt);
1856#endif
1857
1858 assert (preparemax >= preparecnt);
1859 array_verify (EV_A_ (W *)prepares, preparecnt);
1860
1861 assert (checkmax >= checkcnt);
1862 array_verify (EV_A_ (W *)checks, checkcnt);
1863
1864# if 0
1865 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1866 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1867# endif
1868#endif
1869}
1092#endif 1870#endif
1093 1871
1094#if EV_MULTIPLICITY 1872#if EV_MULTIPLICITY
1095struct ev_loop * 1873struct ev_loop *
1096ev_default_loop_init (unsigned int flags) 1874ev_default_loop_init (unsigned int flags)
1097#else 1875#else
1098int 1876int
1099ev_default_loop (unsigned int flags) 1877ev_default_loop (unsigned int flags)
1100#endif 1878#endif
1101{ 1879{
1102 if (sigpipe [0] == sigpipe [1])
1103 if (pipe (sigpipe))
1104 return 0;
1105
1106 if (!ev_default_loop_ptr) 1880 if (!ev_default_loop_ptr)
1107 { 1881 {
1108#if EV_MULTIPLICITY 1882#if EV_MULTIPLICITY
1109 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1883 EV_P = ev_default_loop_ptr = &default_loop_struct;
1110#else 1884#else
1111 ev_default_loop_ptr = 1; 1885 ev_default_loop_ptr = 1;
1112#endif 1886#endif
1113 1887
1114 loop_init (EV_A_ flags); 1888 loop_init (EV_A_ flags);
1115 1889
1116 if (ev_backend (EV_A)) 1890 if (ev_backend (EV_A))
1117 { 1891 {
1118 siginit (EV_A);
1119
1120#ifndef _WIN32 1892#ifndef _WIN32
1121 ev_signal_init (&childev, childcb, SIGCHLD); 1893 ev_signal_init (&childev, childcb, SIGCHLD);
1122 ev_set_priority (&childev, EV_MAXPRI); 1894 ev_set_priority (&childev, EV_MAXPRI);
1123 ev_signal_start (EV_A_ &childev); 1895 ev_signal_start (EV_A_ &childev);
1124 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1896 ev_unref (EV_A); /* child watcher should not keep loop alive */
1133 1905
1134void 1906void
1135ev_default_destroy (void) 1907ev_default_destroy (void)
1136{ 1908{
1137#if EV_MULTIPLICITY 1909#if EV_MULTIPLICITY
1138 struct ev_loop *loop = ev_default_loop_ptr; 1910 EV_P = ev_default_loop_ptr;
1139#endif 1911#endif
1912
1913 ev_default_loop_ptr = 0;
1140 1914
1141#ifndef _WIN32 1915#ifndef _WIN32
1142 ev_ref (EV_A); /* child watcher */ 1916 ev_ref (EV_A); /* child watcher */
1143 ev_signal_stop (EV_A_ &childev); 1917 ev_signal_stop (EV_A_ &childev);
1144#endif 1918#endif
1145 1919
1146 ev_ref (EV_A); /* signal watcher */
1147 ev_io_stop (EV_A_ &sigev);
1148
1149 close (sigpipe [0]); sigpipe [0] = 0;
1150 close (sigpipe [1]); sigpipe [1] = 0;
1151
1152 loop_destroy (EV_A); 1920 loop_destroy (EV_A);
1153} 1921}
1154 1922
1155void 1923void
1156ev_default_fork (void) 1924ev_default_fork (void)
1157{ 1925{
1158#if EV_MULTIPLICITY 1926#if EV_MULTIPLICITY
1159 struct ev_loop *loop = ev_default_loop_ptr; 1927 EV_P = ev_default_loop_ptr;
1160#endif 1928#endif
1161 1929
1162 if (backend) 1930 postfork = 1; /* must be in line with ev_loop_fork */
1163 postfork = 1;
1164} 1931}
1165 1932
1166/*****************************************************************************/ 1933/*****************************************************************************/
1167 1934
1168void inline_speed 1935void
1169call_pending (EV_P) 1936ev_invoke (EV_P_ void *w, int revents)
1937{
1938 EV_CB_INVOKE ((W)w, revents);
1939}
1940
1941unsigned int
1942ev_pending_count (EV_P)
1943{
1944 int pri;
1945 unsigned int count = 0;
1946
1947 for (pri = NUMPRI; pri--; )
1948 count += pendingcnt [pri];
1949
1950 return count;
1951}
1952
1953void noinline
1954ev_invoke_pending (EV_P)
1170{ 1955{
1171 int pri; 1956 int pri;
1172 1957
1173 for (pri = NUMPRI; pri--; ) 1958 for (pri = NUMPRI; pri--; )
1174 while (pendingcnt [pri]) 1959 while (pendingcnt [pri])
1175 { 1960 {
1176 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1961 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1177 1962
1178 if (expect_true (p->w))
1179 {
1180 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1963 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1964 /* ^ this is no longer true, as pending_w could be here */
1181 1965
1182 p->w->pending = 0; 1966 p->w->pending = 0;
1183 EV_CB_INVOKE (p->w, p->events); 1967 EV_CB_INVOKE (p->w, p->events);
1184 } 1968 EV_FREQUENT_CHECK;
1185 } 1969 }
1186} 1970}
1187 1971
1188void inline_size
1189timers_reify (EV_P)
1190{
1191 while (timercnt && ((WT)timers [0])->at <= mn_now)
1192 {
1193 ev_timer *w = timers [0];
1194
1195 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1196
1197 /* first reschedule or stop timer */
1198 if (w->repeat)
1199 {
1200 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1201
1202 ((WT)w)->at += w->repeat;
1203 if (((WT)w)->at < mn_now)
1204 ((WT)w)->at = mn_now;
1205
1206 downheap ((WT *)timers, timercnt, 0);
1207 }
1208 else
1209 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1210
1211 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1212 }
1213}
1214
1215#if EV_PERIODIC_ENABLE
1216void inline_size
1217periodics_reify (EV_P)
1218{
1219 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1220 {
1221 ev_periodic *w = periodics [0];
1222
1223 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1224
1225 /* first reschedule or stop timer */
1226 if (w->reschedule_cb)
1227 {
1228 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1229 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1230 downheap ((WT *)periodics, periodiccnt, 0);
1231 }
1232 else if (w->interval)
1233 {
1234 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1235 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1236 downheap ((WT *)periodics, periodiccnt, 0);
1237 }
1238 else
1239 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1240
1241 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1242 }
1243}
1244
1245static void noinline
1246periodics_reschedule (EV_P)
1247{
1248 int i;
1249
1250 /* adjust periodics after time jump */
1251 for (i = 0; i < periodiccnt; ++i)
1252 {
1253 ev_periodic *w = periodics [i];
1254
1255 if (w->reschedule_cb)
1256 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1257 else if (w->interval)
1258 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1259 }
1260
1261 /* now rebuild the heap */
1262 for (i = periodiccnt >> 1; i--; )
1263 downheap ((WT *)periodics, periodiccnt, i);
1264}
1265#endif
1266
1267#if EV_IDLE_ENABLE 1972#if EV_IDLE_ENABLE
1268void inline_size 1973/* make idle watchers pending. this handles the "call-idle */
1974/* only when higher priorities are idle" logic */
1975inline_size void
1269idle_reify (EV_P) 1976idle_reify (EV_P)
1270{ 1977{
1271 if (expect_false (idleall)) 1978 if (expect_false (idleall))
1272 { 1979 {
1273 int pri; 1980 int pri;
1285 } 1992 }
1286 } 1993 }
1287} 1994}
1288#endif 1995#endif
1289 1996
1290int inline_size 1997/* make timers pending */
1291time_update_monotonic (EV_P) 1998inline_size void
1999timers_reify (EV_P)
1292{ 2000{
2001 EV_FREQUENT_CHECK;
2002
2003 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2004 {
2005 do
2006 {
2007 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2008
2009 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2010
2011 /* first reschedule or stop timer */
2012 if (w->repeat)
2013 {
2014 ev_at (w) += w->repeat;
2015 if (ev_at (w) < mn_now)
2016 ev_at (w) = mn_now;
2017
2018 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2019
2020 ANHE_at_cache (timers [HEAP0]);
2021 downheap (timers, timercnt, HEAP0);
2022 }
2023 else
2024 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2025
2026 EV_FREQUENT_CHECK;
2027 feed_reverse (EV_A_ (W)w);
2028 }
2029 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2030
2031 feed_reverse_done (EV_A_ EV_TIMEOUT);
2032 }
2033}
2034
2035#if EV_PERIODIC_ENABLE
2036/* make periodics pending */
2037inline_size void
2038periodics_reify (EV_P)
2039{
2040 EV_FREQUENT_CHECK;
2041
2042 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2043 {
2044 int feed_count = 0;
2045
2046 do
2047 {
2048 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2049
2050 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2051
2052 /* first reschedule or stop timer */
2053 if (w->reschedule_cb)
2054 {
2055 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2056
2057 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2058
2059 ANHE_at_cache (periodics [HEAP0]);
2060 downheap (periodics, periodiccnt, HEAP0);
2061 }
2062 else if (w->interval)
2063 {
2064 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2065 /* if next trigger time is not sufficiently in the future, put it there */
2066 /* this might happen because of floating point inexactness */
2067 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2068 {
2069 ev_at (w) += w->interval;
2070
2071 /* if interval is unreasonably low we might still have a time in the past */
2072 /* so correct this. this will make the periodic very inexact, but the user */
2073 /* has effectively asked to get triggered more often than possible */
2074 if (ev_at (w) < ev_rt_now)
2075 ev_at (w) = ev_rt_now;
2076 }
2077
2078 ANHE_at_cache (periodics [HEAP0]);
2079 downheap (periodics, periodiccnt, HEAP0);
2080 }
2081 else
2082 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2083
2084 EV_FREQUENT_CHECK;
2085 feed_reverse (EV_A_ (W)w);
2086 }
2087 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2088
2089 feed_reverse_done (EV_A_ EV_PERIODIC);
2090 }
2091}
2092
2093/* simply recalculate all periodics */
2094/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2095static void noinline
2096periodics_reschedule (EV_P)
2097{
2098 int i;
2099
2100 /* adjust periodics after time jump */
2101 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2102 {
2103 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2104
2105 if (w->reschedule_cb)
2106 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2107 else if (w->interval)
2108 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2109
2110 ANHE_at_cache (periodics [i]);
2111 }
2112
2113 reheap (periodics, periodiccnt);
2114}
2115#endif
2116
2117/* adjust all timers by a given offset */
2118static void noinline
2119timers_reschedule (EV_P_ ev_tstamp adjust)
2120{
2121 int i;
2122
2123 for (i = 0; i < timercnt; ++i)
2124 {
2125 ANHE *he = timers + i + HEAP0;
2126 ANHE_w (*he)->at += adjust;
2127 ANHE_at_cache (*he);
2128 }
2129}
2130
2131/* fetch new monotonic and realtime times from the kernel */
2132/* also detetc if there was a timejump, and act accordingly */
2133inline_speed void
2134time_update (EV_P_ ev_tstamp max_block)
2135{
2136#if EV_USE_MONOTONIC
2137 if (expect_true (have_monotonic))
2138 {
2139 int i;
2140 ev_tstamp odiff = rtmn_diff;
2141
1293 mn_now = get_clock (); 2142 mn_now = get_clock ();
1294 2143
2144 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2145 /* interpolate in the meantime */
1295 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2146 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1296 { 2147 {
1297 ev_rt_now = rtmn_diff + mn_now; 2148 ev_rt_now = rtmn_diff + mn_now;
1298 return 0; 2149 return;
1299 } 2150 }
1300 else 2151
1301 {
1302 now_floor = mn_now; 2152 now_floor = mn_now;
1303 ev_rt_now = ev_time (); 2153 ev_rt_now = ev_time ();
1304 return 1;
1305 }
1306}
1307 2154
1308void inline_size 2155 /* loop a few times, before making important decisions.
1309time_update (EV_P) 2156 * on the choice of "4": one iteration isn't enough,
1310{ 2157 * in case we get preempted during the calls to
1311 int i; 2158 * ev_time and get_clock. a second call is almost guaranteed
1312 2159 * to succeed in that case, though. and looping a few more times
1313#if EV_USE_MONOTONIC 2160 * doesn't hurt either as we only do this on time-jumps or
1314 if (expect_true (have_monotonic)) 2161 * in the unlikely event of having been preempted here.
1315 { 2162 */
1316 if (time_update_monotonic (EV_A)) 2163 for (i = 4; --i; )
1317 { 2164 {
1318 ev_tstamp odiff = rtmn_diff;
1319
1320 /* loop a few times, before making important decisions.
1321 * on the choice of "4": one iteration isn't enough,
1322 * in case we get preempted during the calls to
1323 * ev_time and get_clock. a second call is almost guaranteed
1324 * to succeed in that case, though. and looping a few more times
1325 * doesn't hurt either as we only do this on time-jumps or
1326 * in the unlikely event of having been preempted here.
1327 */
1328 for (i = 4; --i; )
1329 {
1330 rtmn_diff = ev_rt_now - mn_now; 2165 rtmn_diff = ev_rt_now - mn_now;
1331 2166
1332 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2167 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1333 return; /* all is well */ 2168 return; /* all is well */
1334 2169
1335 ev_rt_now = ev_time (); 2170 ev_rt_now = ev_time ();
1336 mn_now = get_clock (); 2171 mn_now = get_clock ();
1337 now_floor = mn_now; 2172 now_floor = mn_now;
1338 } 2173 }
1339 2174
2175 /* no timer adjustment, as the monotonic clock doesn't jump */
2176 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1340# if EV_PERIODIC_ENABLE 2177# if EV_PERIODIC_ENABLE
1341 periodics_reschedule (EV_A); 2178 periodics_reschedule (EV_A);
1342# endif 2179# endif
1343 /* no timer adjustment, as the monotonic clock doesn't jump */
1344 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1345 }
1346 } 2180 }
1347 else 2181 else
1348#endif 2182#endif
1349 { 2183 {
1350 ev_rt_now = ev_time (); 2184 ev_rt_now = ev_time ();
1351 2185
1352 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2186 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1353 { 2187 {
2188 /* adjust timers. this is easy, as the offset is the same for all of them */
2189 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1354#if EV_PERIODIC_ENABLE 2190#if EV_PERIODIC_ENABLE
1355 periodics_reschedule (EV_A); 2191 periodics_reschedule (EV_A);
1356#endif 2192#endif
1357
1358 /* adjust timers. this is easy, as the offset is the same for all of them */
1359 for (i = 0; i < timercnt; ++i)
1360 ((WT)timers [i])->at += ev_rt_now - mn_now;
1361 } 2193 }
1362 2194
1363 mn_now = ev_rt_now; 2195 mn_now = ev_rt_now;
1364 } 2196 }
1365} 2197}
1366 2198
1367void 2199void
1368ev_ref (EV_P)
1369{
1370 ++activecnt;
1371}
1372
1373void
1374ev_unref (EV_P)
1375{
1376 --activecnt;
1377}
1378
1379static int loop_done;
1380
1381void
1382ev_loop (EV_P_ int flags) 2200ev_loop (EV_P_ int flags)
1383{ 2201{
1384 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2202#if EV_MINIMAL < 2
1385 ? EVUNLOOP_ONE 2203 ++loop_depth;
1386 : EVUNLOOP_CANCEL; 2204#endif
1387 2205
2206 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2207
2208 loop_done = EVUNLOOP_CANCEL;
2209
1388 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2210 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1389 2211
1390 do 2212 do
1391 { 2213 {
2214#if EV_VERIFY >= 2
2215 ev_loop_verify (EV_A);
2216#endif
2217
1392#ifndef _WIN32 2218#ifndef _WIN32
1393 if (expect_false (curpid)) /* penalise the forking check even more */ 2219 if (expect_false (curpid)) /* penalise the forking check even more */
1394 if (expect_false (getpid () != curpid)) 2220 if (expect_false (getpid () != curpid))
1395 { 2221 {
1396 curpid = getpid (); 2222 curpid = getpid ();
1402 /* we might have forked, so queue fork handlers */ 2228 /* we might have forked, so queue fork handlers */
1403 if (expect_false (postfork)) 2229 if (expect_false (postfork))
1404 if (forkcnt) 2230 if (forkcnt)
1405 { 2231 {
1406 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2232 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1407 call_pending (EV_A); 2233 EV_INVOKE_PENDING;
1408 } 2234 }
1409#endif 2235#endif
1410 2236
1411 /* queue check watchers (and execute them) */ 2237 /* queue prepare watchers (and execute them) */
1412 if (expect_false (preparecnt)) 2238 if (expect_false (preparecnt))
1413 { 2239 {
1414 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2240 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1415 call_pending (EV_A); 2241 EV_INVOKE_PENDING;
1416 } 2242 }
1417 2243
1418 if (expect_false (!activecnt)) 2244 if (expect_false (loop_done))
1419 break; 2245 break;
1420 2246
1421 /* we might have forked, so reify kernel state if necessary */ 2247 /* we might have forked, so reify kernel state if necessary */
1422 if (expect_false (postfork)) 2248 if (expect_false (postfork))
1423 loop_fork (EV_A); 2249 loop_fork (EV_A);
1425 /* update fd-related kernel structures */ 2251 /* update fd-related kernel structures */
1426 fd_reify (EV_A); 2252 fd_reify (EV_A);
1427 2253
1428 /* calculate blocking time */ 2254 /* calculate blocking time */
1429 { 2255 {
1430 ev_tstamp block; 2256 ev_tstamp waittime = 0.;
2257 ev_tstamp sleeptime = 0.;
1431 2258
1432 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2259 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1433 block = 0.; /* do not block at all */
1434 else
1435 { 2260 {
2261 /* remember old timestamp for io_blocktime calculation */
2262 ev_tstamp prev_mn_now = mn_now;
2263
1436 /* update time to cancel out callback processing overhead */ 2264 /* update time to cancel out callback processing overhead */
1437#if EV_USE_MONOTONIC
1438 if (expect_true (have_monotonic))
1439 time_update_monotonic (EV_A); 2265 time_update (EV_A_ 1e100);
1440 else
1441#endif
1442 {
1443 ev_rt_now = ev_time ();
1444 mn_now = ev_rt_now;
1445 }
1446 2266
1447 block = MAX_BLOCKTIME; 2267 waittime = MAX_BLOCKTIME;
1448 2268
1449 if (timercnt) 2269 if (timercnt)
1450 { 2270 {
1451 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2271 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1452 if (block > to) block = to; 2272 if (waittime > to) waittime = to;
1453 } 2273 }
1454 2274
1455#if EV_PERIODIC_ENABLE 2275#if EV_PERIODIC_ENABLE
1456 if (periodiccnt) 2276 if (periodiccnt)
1457 { 2277 {
1458 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2278 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1459 if (block > to) block = to; 2279 if (waittime > to) waittime = to;
1460 } 2280 }
1461#endif 2281#endif
1462 2282
2283 /* don't let timeouts decrease the waittime below timeout_blocktime */
2284 if (expect_false (waittime < timeout_blocktime))
2285 waittime = timeout_blocktime;
2286
2287 /* extra check because io_blocktime is commonly 0 */
1463 if (expect_false (block < 0.)) block = 0.; 2288 if (expect_false (io_blocktime))
2289 {
2290 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2291
2292 if (sleeptime > waittime - backend_fudge)
2293 sleeptime = waittime - backend_fudge;
2294
2295 if (expect_true (sleeptime > 0.))
2296 {
2297 ev_sleep (sleeptime);
2298 waittime -= sleeptime;
2299 }
2300 }
1464 } 2301 }
1465 2302
2303#if EV_MINIMAL < 2
1466 ++loop_count; 2304 ++loop_count;
2305#endif
2306 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1467 backend_poll (EV_A_ block); 2307 backend_poll (EV_A_ waittime);
2308 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2309
2310 /* update ev_rt_now, do magic */
2311 time_update (EV_A_ waittime + sleeptime);
1468 } 2312 }
1469
1470 /* update ev_rt_now, do magic */
1471 time_update (EV_A);
1472 2313
1473 /* queue pending timers and reschedule them */ 2314 /* queue pending timers and reschedule them */
1474 timers_reify (EV_A); /* relative timers called last */ 2315 timers_reify (EV_A); /* relative timers called last */
1475#if EV_PERIODIC_ENABLE 2316#if EV_PERIODIC_ENABLE
1476 periodics_reify (EV_A); /* absolute timers called first */ 2317 periodics_reify (EV_A); /* absolute timers called first */
1483 2324
1484 /* queue check watchers, to be executed first */ 2325 /* queue check watchers, to be executed first */
1485 if (expect_false (checkcnt)) 2326 if (expect_false (checkcnt))
1486 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2327 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1487 2328
1488 call_pending (EV_A); 2329 EV_INVOKE_PENDING;
1489
1490 } 2330 }
1491 while (expect_true (activecnt && !loop_done)); 2331 while (expect_true (
2332 activecnt
2333 && !loop_done
2334 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2335 ));
1492 2336
1493 if (loop_done == EVUNLOOP_ONE) 2337 if (loop_done == EVUNLOOP_ONE)
1494 loop_done = EVUNLOOP_CANCEL; 2338 loop_done = EVUNLOOP_CANCEL;
2339
2340#if EV_MINIMAL < 2
2341 --loop_depth;
2342#endif
1495} 2343}
1496 2344
1497void 2345void
1498ev_unloop (EV_P_ int how) 2346ev_unloop (EV_P_ int how)
1499{ 2347{
1500 loop_done = how; 2348 loop_done = how;
1501} 2349}
1502 2350
2351void
2352ev_ref (EV_P)
2353{
2354 ++activecnt;
2355}
2356
2357void
2358ev_unref (EV_P)
2359{
2360 --activecnt;
2361}
2362
2363void
2364ev_now_update (EV_P)
2365{
2366 time_update (EV_A_ 1e100);
2367}
2368
2369void
2370ev_suspend (EV_P)
2371{
2372 ev_now_update (EV_A);
2373}
2374
2375void
2376ev_resume (EV_P)
2377{
2378 ev_tstamp mn_prev = mn_now;
2379
2380 ev_now_update (EV_A);
2381 timers_reschedule (EV_A_ mn_now - mn_prev);
2382#if EV_PERIODIC_ENABLE
2383 /* TODO: really do this? */
2384 periodics_reschedule (EV_A);
2385#endif
2386}
2387
1503/*****************************************************************************/ 2388/*****************************************************************************/
2389/* singly-linked list management, used when the expected list length is short */
1504 2390
1505void inline_size 2391inline_size void
1506wlist_add (WL *head, WL elem) 2392wlist_add (WL *head, WL elem)
1507{ 2393{
1508 elem->next = *head; 2394 elem->next = *head;
1509 *head = elem; 2395 *head = elem;
1510} 2396}
1511 2397
1512void inline_size 2398inline_size void
1513wlist_del (WL *head, WL elem) 2399wlist_del (WL *head, WL elem)
1514{ 2400{
1515 while (*head) 2401 while (*head)
1516 { 2402 {
1517 if (*head == elem) 2403 if (expect_true (*head == elem))
1518 { 2404 {
1519 *head = elem->next; 2405 *head = elem->next;
1520 return; 2406 break;
1521 } 2407 }
1522 2408
1523 head = &(*head)->next; 2409 head = &(*head)->next;
1524 } 2410 }
1525} 2411}
1526 2412
1527void inline_speed 2413/* internal, faster, version of ev_clear_pending */
2414inline_speed void
1528ev_clear_pending (EV_P_ W w) 2415clear_pending (EV_P_ W w)
1529{ 2416{
1530 if (w->pending) 2417 if (w->pending)
1531 { 2418 {
1532 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2419 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1533 w->pending = 0; 2420 w->pending = 0;
1534 } 2421 }
1535} 2422}
1536 2423
1537void inline_size 2424int
2425ev_clear_pending (EV_P_ void *w)
2426{
2427 W w_ = (W)w;
2428 int pending = w_->pending;
2429
2430 if (expect_true (pending))
2431 {
2432 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2433 p->w = (W)&pending_w;
2434 w_->pending = 0;
2435 return p->events;
2436 }
2437 else
2438 return 0;
2439}
2440
2441inline_size void
1538pri_adjust (EV_P_ W w) 2442pri_adjust (EV_P_ W w)
1539{ 2443{
1540 int pri = w->priority; 2444 int pri = ev_priority (w);
1541 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2445 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1542 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2446 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1543 w->priority = pri; 2447 ev_set_priority (w, pri);
1544} 2448}
1545 2449
1546void inline_speed 2450inline_speed void
1547ev_start (EV_P_ W w, int active) 2451ev_start (EV_P_ W w, int active)
1548{ 2452{
1549 pri_adjust (EV_A_ w); 2453 pri_adjust (EV_A_ w);
1550 w->active = active; 2454 w->active = active;
1551 ev_ref (EV_A); 2455 ev_ref (EV_A);
1552} 2456}
1553 2457
1554void inline_size 2458inline_size void
1555ev_stop (EV_P_ W w) 2459ev_stop (EV_P_ W w)
1556{ 2460{
1557 ev_unref (EV_A); 2461 ev_unref (EV_A);
1558 w->active = 0; 2462 w->active = 0;
1559} 2463}
1560 2464
1561/*****************************************************************************/ 2465/*****************************************************************************/
1562 2466
1563void 2467void noinline
1564ev_io_start (EV_P_ ev_io *w) 2468ev_io_start (EV_P_ ev_io *w)
1565{ 2469{
1566 int fd = w->fd; 2470 int fd = w->fd;
1567 2471
1568 if (expect_false (ev_is_active (w))) 2472 if (expect_false (ev_is_active (w)))
1569 return; 2473 return;
1570 2474
1571 assert (("ev_io_start called with negative fd", fd >= 0)); 2475 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2476 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2477
2478 EV_FREQUENT_CHECK;
1572 2479
1573 ev_start (EV_A_ (W)w, 1); 2480 ev_start (EV_A_ (W)w, 1);
1574 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2481 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1575 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2482 wlist_add (&anfds[fd].head, (WL)w);
1576 2483
1577 fd_change (EV_A_ fd); 2484 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1578} 2485 w->events &= ~EV__IOFDSET;
1579 2486
1580void 2487 EV_FREQUENT_CHECK;
2488}
2489
2490void noinline
1581ev_io_stop (EV_P_ ev_io *w) 2491ev_io_stop (EV_P_ ev_io *w)
1582{ 2492{
1583 ev_clear_pending (EV_A_ (W)w); 2493 clear_pending (EV_A_ (W)w);
1584 if (expect_false (!ev_is_active (w))) 2494 if (expect_false (!ev_is_active (w)))
1585 return; 2495 return;
1586 2496
1587 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2497 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1588 2498
2499 EV_FREQUENT_CHECK;
2500
1589 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2501 wlist_del (&anfds[w->fd].head, (WL)w);
1590 ev_stop (EV_A_ (W)w); 2502 ev_stop (EV_A_ (W)w);
1591 2503
1592 fd_change (EV_A_ w->fd); 2504 fd_change (EV_A_ w->fd, 1);
1593}
1594 2505
1595void 2506 EV_FREQUENT_CHECK;
2507}
2508
2509void noinline
1596ev_timer_start (EV_P_ ev_timer *w) 2510ev_timer_start (EV_P_ ev_timer *w)
1597{ 2511{
1598 if (expect_false (ev_is_active (w))) 2512 if (expect_false (ev_is_active (w)))
1599 return; 2513 return;
1600 2514
1601 ((WT)w)->at += mn_now; 2515 ev_at (w) += mn_now;
1602 2516
1603 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2517 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1604 2518
2519 EV_FREQUENT_CHECK;
2520
2521 ++timercnt;
1605 ev_start (EV_A_ (W)w, ++timercnt); 2522 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1606 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2523 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1607 timers [timercnt - 1] = w; 2524 ANHE_w (timers [ev_active (w)]) = (WT)w;
1608 upheap ((WT *)timers, timercnt - 1); 2525 ANHE_at_cache (timers [ev_active (w)]);
2526 upheap (timers, ev_active (w));
1609 2527
2528 EV_FREQUENT_CHECK;
2529
1610 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2530 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1611} 2531}
1612 2532
1613void 2533void noinline
1614ev_timer_stop (EV_P_ ev_timer *w) 2534ev_timer_stop (EV_P_ ev_timer *w)
1615{ 2535{
1616 ev_clear_pending (EV_A_ (W)w); 2536 clear_pending (EV_A_ (W)w);
1617 if (expect_false (!ev_is_active (w))) 2537 if (expect_false (!ev_is_active (w)))
1618 return; 2538 return;
1619 2539
1620 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2540 EV_FREQUENT_CHECK;
1621 2541
1622 { 2542 {
1623 int active = ((W)w)->active; 2543 int active = ev_active (w);
1624 2544
2545 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2546
2547 --timercnt;
2548
1625 if (expect_true (--active < --timercnt)) 2549 if (expect_true (active < timercnt + HEAP0))
1626 { 2550 {
1627 timers [active] = timers [timercnt]; 2551 timers [active] = timers [timercnt + HEAP0];
1628 adjustheap ((WT *)timers, timercnt, active); 2552 adjustheap (timers, timercnt, active);
1629 } 2553 }
1630 } 2554 }
1631 2555
1632 ((WT)w)->at -= mn_now; 2556 EV_FREQUENT_CHECK;
2557
2558 ev_at (w) -= mn_now;
1633 2559
1634 ev_stop (EV_A_ (W)w); 2560 ev_stop (EV_A_ (W)w);
1635} 2561}
1636 2562
1637void 2563void noinline
1638ev_timer_again (EV_P_ ev_timer *w) 2564ev_timer_again (EV_P_ ev_timer *w)
1639{ 2565{
2566 EV_FREQUENT_CHECK;
2567
1640 if (ev_is_active (w)) 2568 if (ev_is_active (w))
1641 { 2569 {
1642 if (w->repeat) 2570 if (w->repeat)
1643 { 2571 {
1644 ((WT)w)->at = mn_now + w->repeat; 2572 ev_at (w) = mn_now + w->repeat;
2573 ANHE_at_cache (timers [ev_active (w)]);
1645 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2574 adjustheap (timers, timercnt, ev_active (w));
1646 } 2575 }
1647 else 2576 else
1648 ev_timer_stop (EV_A_ w); 2577 ev_timer_stop (EV_A_ w);
1649 } 2578 }
1650 else if (w->repeat) 2579 else if (w->repeat)
1651 { 2580 {
1652 w->at = w->repeat; 2581 ev_at (w) = w->repeat;
1653 ev_timer_start (EV_A_ w); 2582 ev_timer_start (EV_A_ w);
1654 } 2583 }
2584
2585 EV_FREQUENT_CHECK;
2586}
2587
2588ev_tstamp
2589ev_timer_remaining (EV_P_ ev_timer *w)
2590{
2591 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1655} 2592}
1656 2593
1657#if EV_PERIODIC_ENABLE 2594#if EV_PERIODIC_ENABLE
1658void 2595void noinline
1659ev_periodic_start (EV_P_ ev_periodic *w) 2596ev_periodic_start (EV_P_ ev_periodic *w)
1660{ 2597{
1661 if (expect_false (ev_is_active (w))) 2598 if (expect_false (ev_is_active (w)))
1662 return; 2599 return;
1663 2600
1664 if (w->reschedule_cb) 2601 if (w->reschedule_cb)
1665 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2602 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1666 else if (w->interval) 2603 else if (w->interval)
1667 { 2604 {
1668 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2605 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1669 /* this formula differs from the one in periodic_reify because we do not always round up */ 2606 /* this formula differs from the one in periodic_reify because we do not always round up */
1670 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2607 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1671 } 2608 }
2609 else
2610 ev_at (w) = w->offset;
1672 2611
2612 EV_FREQUENT_CHECK;
2613
2614 ++periodiccnt;
1673 ev_start (EV_A_ (W)w, ++periodiccnt); 2615 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1674 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2616 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1675 periodics [periodiccnt - 1] = w; 2617 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1676 upheap ((WT *)periodics, periodiccnt - 1); 2618 ANHE_at_cache (periodics [ev_active (w)]);
2619 upheap (periodics, ev_active (w));
1677 2620
2621 EV_FREQUENT_CHECK;
2622
1678 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2623 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1679} 2624}
1680 2625
1681void 2626void noinline
1682ev_periodic_stop (EV_P_ ev_periodic *w) 2627ev_periodic_stop (EV_P_ ev_periodic *w)
1683{ 2628{
1684 ev_clear_pending (EV_A_ (W)w); 2629 clear_pending (EV_A_ (W)w);
1685 if (expect_false (!ev_is_active (w))) 2630 if (expect_false (!ev_is_active (w)))
1686 return; 2631 return;
1687 2632
1688 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2633 EV_FREQUENT_CHECK;
1689 2634
1690 { 2635 {
1691 int active = ((W)w)->active; 2636 int active = ev_active (w);
1692 2637
2638 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2639
2640 --periodiccnt;
2641
1693 if (expect_true (--active < --periodiccnt)) 2642 if (expect_true (active < periodiccnt + HEAP0))
1694 { 2643 {
1695 periodics [active] = periodics [periodiccnt]; 2644 periodics [active] = periodics [periodiccnt + HEAP0];
1696 adjustheap ((WT *)periodics, periodiccnt, active); 2645 adjustheap (periodics, periodiccnt, active);
1697 } 2646 }
1698 } 2647 }
1699 2648
2649 EV_FREQUENT_CHECK;
2650
1700 ev_stop (EV_A_ (W)w); 2651 ev_stop (EV_A_ (W)w);
1701} 2652}
1702 2653
1703void 2654void noinline
1704ev_periodic_again (EV_P_ ev_periodic *w) 2655ev_periodic_again (EV_P_ ev_periodic *w)
1705{ 2656{
1706 /* TODO: use adjustheap and recalculation */ 2657 /* TODO: use adjustheap and recalculation */
1707 ev_periodic_stop (EV_A_ w); 2658 ev_periodic_stop (EV_A_ w);
1708 ev_periodic_start (EV_A_ w); 2659 ev_periodic_start (EV_A_ w);
1711 2662
1712#ifndef SA_RESTART 2663#ifndef SA_RESTART
1713# define SA_RESTART 0 2664# define SA_RESTART 0
1714#endif 2665#endif
1715 2666
1716void 2667void noinline
1717ev_signal_start (EV_P_ ev_signal *w) 2668ev_signal_start (EV_P_ ev_signal *w)
1718{ 2669{
1719#if EV_MULTIPLICITY
1720 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1721#endif
1722 if (expect_false (ev_is_active (w))) 2670 if (expect_false (ev_is_active (w)))
1723 return; 2671 return;
1724 2672
1725 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2673 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2674
2675#if EV_MULTIPLICITY
2676 assert (("libev: a signal must not be attached to two different loops",
2677 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2678
2679 signals [w->signum - 1].loop = EV_A;
2680#endif
2681
2682 EV_FREQUENT_CHECK;
2683
2684#if EV_USE_SIGNALFD
2685 if (sigfd == -2)
2686 {
2687 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2688 if (sigfd < 0 && errno == EINVAL)
2689 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2690
2691 if (sigfd >= 0)
2692 {
2693 fd_intern (sigfd); /* doing it twice will not hurt */
2694
2695 sigemptyset (&sigfd_set);
2696
2697 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2698 ev_set_priority (&sigfd_w, EV_MAXPRI);
2699 ev_io_start (EV_A_ &sigfd_w);
2700 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2701 }
2702 }
2703
2704 if (sigfd >= 0)
2705 {
2706 /* TODO: check .head */
2707 sigaddset (&sigfd_set, w->signum);
2708 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2709
2710 signalfd (sigfd, &sigfd_set, 0);
2711 }
2712#endif
1726 2713
1727 ev_start (EV_A_ (W)w, 1); 2714 ev_start (EV_A_ (W)w, 1);
1728 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1729 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2715 wlist_add (&signals [w->signum - 1].head, (WL)w);
1730 2716
1731 if (!((WL)w)->next) 2717 if (!((WL)w)->next)
2718# if EV_USE_SIGNALFD
2719 if (sigfd < 0) /*TODO*/
2720# endif
1732 { 2721 {
1733#if _WIN32 2722# if _WIN32
1734 signal (w->signum, sighandler); 2723 signal (w->signum, ev_sighandler);
1735#else 2724# else
1736 struct sigaction sa; 2725 struct sigaction sa;
2726
2727 evpipe_init (EV_A);
2728
1737 sa.sa_handler = sighandler; 2729 sa.sa_handler = ev_sighandler;
1738 sigfillset (&sa.sa_mask); 2730 sigfillset (&sa.sa_mask);
1739 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2731 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1740 sigaction (w->signum, &sa, 0); 2732 sigaction (w->signum, &sa, 0);
2733
2734 sigemptyset (&sa.sa_mask);
2735 sigaddset (&sa.sa_mask, w->signum);
2736 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1741#endif 2737#endif
1742 } 2738 }
1743}
1744 2739
1745void 2740 EV_FREQUENT_CHECK;
2741}
2742
2743void noinline
1746ev_signal_stop (EV_P_ ev_signal *w) 2744ev_signal_stop (EV_P_ ev_signal *w)
1747{ 2745{
1748 ev_clear_pending (EV_A_ (W)w); 2746 clear_pending (EV_A_ (W)w);
1749 if (expect_false (!ev_is_active (w))) 2747 if (expect_false (!ev_is_active (w)))
1750 return; 2748 return;
1751 2749
2750 EV_FREQUENT_CHECK;
2751
1752 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2752 wlist_del (&signals [w->signum - 1].head, (WL)w);
1753 ev_stop (EV_A_ (W)w); 2753 ev_stop (EV_A_ (W)w);
1754 2754
1755 if (!signals [w->signum - 1].head) 2755 if (!signals [w->signum - 1].head)
2756 {
2757#if EV_MULTIPLICITY
2758 signals [w->signum - 1].loop = 0; /* unattach from signal */
2759#endif
2760#if EV_USE_SIGNALFD
2761 if (sigfd >= 0)
2762 {
2763 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2764 sigdelset (&sigfd_set, w->signum);
2765 signalfd (sigfd, &sigfd_set, 0);
2766 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2767 /*TODO: maybe unblock signal? */
2768 }
2769 else
2770#endif
1756 signal (w->signum, SIG_DFL); 2771 signal (w->signum, SIG_DFL);
2772 }
2773
2774 EV_FREQUENT_CHECK;
1757} 2775}
1758 2776
1759void 2777void
1760ev_child_start (EV_P_ ev_child *w) 2778ev_child_start (EV_P_ ev_child *w)
1761{ 2779{
1762#if EV_MULTIPLICITY 2780#if EV_MULTIPLICITY
1763 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2781 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1764#endif 2782#endif
1765 if (expect_false (ev_is_active (w))) 2783 if (expect_false (ev_is_active (w)))
1766 return; 2784 return;
1767 2785
2786 EV_FREQUENT_CHECK;
2787
1768 ev_start (EV_A_ (W)w, 1); 2788 ev_start (EV_A_ (W)w, 1);
1769 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2789 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2790
2791 EV_FREQUENT_CHECK;
1770} 2792}
1771 2793
1772void 2794void
1773ev_child_stop (EV_P_ ev_child *w) 2795ev_child_stop (EV_P_ ev_child *w)
1774{ 2796{
1775 ev_clear_pending (EV_A_ (W)w); 2797 clear_pending (EV_A_ (W)w);
1776 if (expect_false (!ev_is_active (w))) 2798 if (expect_false (!ev_is_active (w)))
1777 return; 2799 return;
1778 2800
2801 EV_FREQUENT_CHECK;
2802
1779 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2803 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1780 ev_stop (EV_A_ (W)w); 2804 ev_stop (EV_A_ (W)w);
2805
2806 EV_FREQUENT_CHECK;
1781} 2807}
1782 2808
1783#if EV_STAT_ENABLE 2809#if EV_STAT_ENABLE
1784 2810
1785# ifdef _WIN32 2811# ifdef _WIN32
1786# undef lstat 2812# undef lstat
1787# define lstat(a,b) _stati64 (a,b) 2813# define lstat(a,b) _stati64 (a,b)
1788# endif 2814# endif
1789 2815
1790#define DEF_STAT_INTERVAL 5.0074891 2816#define DEF_STAT_INTERVAL 5.0074891
2817#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1791#define MIN_STAT_INTERVAL 0.1074891 2818#define MIN_STAT_INTERVAL 0.1074891
1792 2819
1793static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2820static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1794 2821
1795#if EV_USE_INOTIFY 2822#if EV_USE_INOTIFY
1796# define EV_INOTIFY_BUFSIZE 8192 2823# define EV_INOTIFY_BUFSIZE 8192
1800{ 2827{
1801 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2828 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1802 2829
1803 if (w->wd < 0) 2830 if (w->wd < 0)
1804 { 2831 {
2832 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1805 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2833 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1806 2834
1807 /* monitor some parent directory for speedup hints */ 2835 /* monitor some parent directory for speedup hints */
2836 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2837 /* but an efficiency issue only */
1808 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2838 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1809 { 2839 {
1810 char path [4096]; 2840 char path [4096];
1811 strcpy (path, w->path); 2841 strcpy (path, w->path);
1812 2842
1815 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2845 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1816 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2846 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1817 2847
1818 char *pend = strrchr (path, '/'); 2848 char *pend = strrchr (path, '/');
1819 2849
1820 if (!pend) 2850 if (!pend || pend == path)
1821 break; /* whoops, no '/', complain to your admin */ 2851 break;
1822 2852
1823 *pend = 0; 2853 *pend = 0;
1824 w->wd = inotify_add_watch (fs_fd, path, mask); 2854 w->wd = inotify_add_watch (fs_fd, path, mask);
1825 } 2855 }
1826 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2856 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1827 } 2857 }
1828 } 2858 }
1829 else
1830 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1831 2859
1832 if (w->wd >= 0) 2860 if (w->wd >= 0)
2861 {
1833 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2862 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2863
2864 /* now local changes will be tracked by inotify, but remote changes won't */
2865 /* unless the filesystem it known to be local, we therefore still poll */
2866 /* also do poll on <2.6.25, but with normal frequency */
2867 struct statfs sfs;
2868
2869 if (fs_2625 && !statfs (w->path, &sfs))
2870 if (sfs.f_type == 0x1373 /* devfs */
2871 || sfs.f_type == 0xEF53 /* ext2/3 */
2872 || sfs.f_type == 0x3153464a /* jfs */
2873 || sfs.f_type == 0x52654973 /* reiser3 */
2874 || sfs.f_type == 0x01021994 /* tempfs */
2875 || sfs.f_type == 0x58465342 /* xfs */)
2876 return;
2877
2878 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2879 ev_timer_again (EV_A_ &w->timer);
2880 }
1834} 2881}
1835 2882
1836static void noinline 2883static void noinline
1837infy_del (EV_P_ ev_stat *w) 2884infy_del (EV_P_ ev_stat *w)
1838{ 2885{
1852 2899
1853static void noinline 2900static void noinline
1854infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2901infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1855{ 2902{
1856 if (slot < 0) 2903 if (slot < 0)
1857 /* overflow, need to check for all hahs slots */ 2904 /* overflow, need to check for all hash slots */
1858 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2905 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1859 infy_wd (EV_A_ slot, wd, ev); 2906 infy_wd (EV_A_ slot, wd, ev);
1860 else 2907 else
1861 { 2908 {
1862 WL w_; 2909 WL w_;
1868 2915
1869 if (w->wd == wd || wd == -1) 2916 if (w->wd == wd || wd == -1)
1870 { 2917 {
1871 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2918 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1872 { 2919 {
2920 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1873 w->wd = -1; 2921 w->wd = -1;
1874 infy_add (EV_A_ w); /* re-add, no matter what */ 2922 infy_add (EV_A_ w); /* re-add, no matter what */
1875 } 2923 }
1876 2924
1877 stat_timer_cb (EV_A_ &w->timer, 0); 2925 stat_timer_cb (EV_A_ &w->timer, 0);
1890 2938
1891 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2939 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1892 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2940 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1893} 2941}
1894 2942
1895void inline_size 2943inline_size void
2944check_2625 (EV_P)
2945{
2946 /* kernels < 2.6.25 are borked
2947 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2948 */
2949 struct utsname buf;
2950 int major, minor, micro;
2951
2952 if (uname (&buf))
2953 return;
2954
2955 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2956 return;
2957
2958 if (major < 2
2959 || (major == 2 && minor < 6)
2960 || (major == 2 && minor == 6 && micro < 25))
2961 return;
2962
2963 fs_2625 = 1;
2964}
2965
2966inline_size void
1896infy_init (EV_P) 2967infy_init (EV_P)
1897{ 2968{
1898 if (fs_fd != -2) 2969 if (fs_fd != -2)
1899 return; 2970 return;
2971
2972 fs_fd = -1;
2973
2974 check_2625 (EV_A);
1900 2975
1901 fs_fd = inotify_init (); 2976 fs_fd = inotify_init ();
1902 2977
1903 if (fs_fd >= 0) 2978 if (fs_fd >= 0)
1904 { 2979 {
1906 ev_set_priority (&fs_w, EV_MAXPRI); 2981 ev_set_priority (&fs_w, EV_MAXPRI);
1907 ev_io_start (EV_A_ &fs_w); 2982 ev_io_start (EV_A_ &fs_w);
1908 } 2983 }
1909} 2984}
1910 2985
1911void inline_size 2986inline_size void
1912infy_fork (EV_P) 2987infy_fork (EV_P)
1913{ 2988{
1914 int slot; 2989 int slot;
1915 2990
1916 if (fs_fd < 0) 2991 if (fs_fd < 0)
1932 w->wd = -1; 3007 w->wd = -1;
1933 3008
1934 if (fs_fd >= 0) 3009 if (fs_fd >= 0)
1935 infy_add (EV_A_ w); /* re-add, no matter what */ 3010 infy_add (EV_A_ w); /* re-add, no matter what */
1936 else 3011 else
1937 ev_timer_start (EV_A_ &w->timer); 3012 ev_timer_again (EV_A_ &w->timer);
1938 } 3013 }
1939
1940 } 3014 }
1941} 3015}
1942 3016
3017#endif
3018
3019#ifdef _WIN32
3020# define EV_LSTAT(p,b) _stati64 (p, b)
3021#else
3022# define EV_LSTAT(p,b) lstat (p, b)
1943#endif 3023#endif
1944 3024
1945void 3025void
1946ev_stat_stat (EV_P_ ev_stat *w) 3026ev_stat_stat (EV_P_ ev_stat *w)
1947{ 3027{
1974 || w->prev.st_atime != w->attr.st_atime 3054 || w->prev.st_atime != w->attr.st_atime
1975 || w->prev.st_mtime != w->attr.st_mtime 3055 || w->prev.st_mtime != w->attr.st_mtime
1976 || w->prev.st_ctime != w->attr.st_ctime 3056 || w->prev.st_ctime != w->attr.st_ctime
1977 ) { 3057 ) {
1978 #if EV_USE_INOTIFY 3058 #if EV_USE_INOTIFY
3059 if (fs_fd >= 0)
3060 {
1979 infy_del (EV_A_ w); 3061 infy_del (EV_A_ w);
1980 infy_add (EV_A_ w); 3062 infy_add (EV_A_ w);
1981 ev_stat_stat (EV_A_ w); /* avoid race... */ 3063 ev_stat_stat (EV_A_ w); /* avoid race... */
3064 }
1982 #endif 3065 #endif
1983 3066
1984 ev_feed_event (EV_A_ w, EV_STAT); 3067 ev_feed_event (EV_A_ w, EV_STAT);
1985 } 3068 }
1986} 3069}
1989ev_stat_start (EV_P_ ev_stat *w) 3072ev_stat_start (EV_P_ ev_stat *w)
1990{ 3073{
1991 if (expect_false (ev_is_active (w))) 3074 if (expect_false (ev_is_active (w)))
1992 return; 3075 return;
1993 3076
1994 /* since we use memcmp, we need to clear any padding data etc. */
1995 memset (&w->prev, 0, sizeof (ev_statdata));
1996 memset (&w->attr, 0, sizeof (ev_statdata));
1997
1998 ev_stat_stat (EV_A_ w); 3077 ev_stat_stat (EV_A_ w);
1999 3078
3079 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2000 if (w->interval < MIN_STAT_INTERVAL) 3080 w->interval = MIN_STAT_INTERVAL;
2001 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2002 3081
2003 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3082 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2004 ev_set_priority (&w->timer, ev_priority (w)); 3083 ev_set_priority (&w->timer, ev_priority (w));
2005 3084
2006#if EV_USE_INOTIFY 3085#if EV_USE_INOTIFY
2007 infy_init (EV_A); 3086 infy_init (EV_A);
2008 3087
2009 if (fs_fd >= 0) 3088 if (fs_fd >= 0)
2010 infy_add (EV_A_ w); 3089 infy_add (EV_A_ w);
2011 else 3090 else
2012#endif 3091#endif
2013 ev_timer_start (EV_A_ &w->timer); 3092 ev_timer_again (EV_A_ &w->timer);
2014 3093
2015 ev_start (EV_A_ (W)w, 1); 3094 ev_start (EV_A_ (W)w, 1);
3095
3096 EV_FREQUENT_CHECK;
2016} 3097}
2017 3098
2018void 3099void
2019ev_stat_stop (EV_P_ ev_stat *w) 3100ev_stat_stop (EV_P_ ev_stat *w)
2020{ 3101{
2021 ev_clear_pending (EV_A_ (W)w); 3102 clear_pending (EV_A_ (W)w);
2022 if (expect_false (!ev_is_active (w))) 3103 if (expect_false (!ev_is_active (w)))
2023 return; 3104 return;
2024 3105
3106 EV_FREQUENT_CHECK;
3107
2025#if EV_USE_INOTIFY 3108#if EV_USE_INOTIFY
2026 infy_del (EV_A_ w); 3109 infy_del (EV_A_ w);
2027#endif 3110#endif
2028 ev_timer_stop (EV_A_ &w->timer); 3111 ev_timer_stop (EV_A_ &w->timer);
2029 3112
2030 ev_stop (EV_A_ (W)w); 3113 ev_stop (EV_A_ (W)w);
3114
3115 EV_FREQUENT_CHECK;
2031} 3116}
2032#endif 3117#endif
2033 3118
2034#if EV_IDLE_ENABLE 3119#if EV_IDLE_ENABLE
2035void 3120void
2037{ 3122{
2038 if (expect_false (ev_is_active (w))) 3123 if (expect_false (ev_is_active (w)))
2039 return; 3124 return;
2040 3125
2041 pri_adjust (EV_A_ (W)w); 3126 pri_adjust (EV_A_ (W)w);
3127
3128 EV_FREQUENT_CHECK;
2042 3129
2043 { 3130 {
2044 int active = ++idlecnt [ABSPRI (w)]; 3131 int active = ++idlecnt [ABSPRI (w)];
2045 3132
2046 ++idleall; 3133 ++idleall;
2047 ev_start (EV_A_ (W)w, active); 3134 ev_start (EV_A_ (W)w, active);
2048 3135
2049 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3136 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2050 idles [ABSPRI (w)][active - 1] = w; 3137 idles [ABSPRI (w)][active - 1] = w;
2051 } 3138 }
3139
3140 EV_FREQUENT_CHECK;
2052} 3141}
2053 3142
2054void 3143void
2055ev_idle_stop (EV_P_ ev_idle *w) 3144ev_idle_stop (EV_P_ ev_idle *w)
2056{ 3145{
2057 ev_clear_pending (EV_A_ (W)w); 3146 clear_pending (EV_A_ (W)w);
2058 if (expect_false (!ev_is_active (w))) 3147 if (expect_false (!ev_is_active (w)))
2059 return; 3148 return;
2060 3149
3150 EV_FREQUENT_CHECK;
3151
2061 { 3152 {
2062 int active = ((W)w)->active; 3153 int active = ev_active (w);
2063 3154
2064 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3155 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2065 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3156 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2066 3157
2067 ev_stop (EV_A_ (W)w); 3158 ev_stop (EV_A_ (W)w);
2068 --idleall; 3159 --idleall;
2069 } 3160 }
3161
3162 EV_FREQUENT_CHECK;
2070} 3163}
2071#endif 3164#endif
2072 3165
2073void 3166void
2074ev_prepare_start (EV_P_ ev_prepare *w) 3167ev_prepare_start (EV_P_ ev_prepare *w)
2075{ 3168{
2076 if (expect_false (ev_is_active (w))) 3169 if (expect_false (ev_is_active (w)))
2077 return; 3170 return;
3171
3172 EV_FREQUENT_CHECK;
2078 3173
2079 ev_start (EV_A_ (W)w, ++preparecnt); 3174 ev_start (EV_A_ (W)w, ++preparecnt);
2080 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3175 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2081 prepares [preparecnt - 1] = w; 3176 prepares [preparecnt - 1] = w;
3177
3178 EV_FREQUENT_CHECK;
2082} 3179}
2083 3180
2084void 3181void
2085ev_prepare_stop (EV_P_ ev_prepare *w) 3182ev_prepare_stop (EV_P_ ev_prepare *w)
2086{ 3183{
2087 ev_clear_pending (EV_A_ (W)w); 3184 clear_pending (EV_A_ (W)w);
2088 if (expect_false (!ev_is_active (w))) 3185 if (expect_false (!ev_is_active (w)))
2089 return; 3186 return;
2090 3187
3188 EV_FREQUENT_CHECK;
3189
2091 { 3190 {
2092 int active = ((W)w)->active; 3191 int active = ev_active (w);
3192
2093 prepares [active - 1] = prepares [--preparecnt]; 3193 prepares [active - 1] = prepares [--preparecnt];
2094 ((W)prepares [active - 1])->active = active; 3194 ev_active (prepares [active - 1]) = active;
2095 } 3195 }
2096 3196
2097 ev_stop (EV_A_ (W)w); 3197 ev_stop (EV_A_ (W)w);
3198
3199 EV_FREQUENT_CHECK;
2098} 3200}
2099 3201
2100void 3202void
2101ev_check_start (EV_P_ ev_check *w) 3203ev_check_start (EV_P_ ev_check *w)
2102{ 3204{
2103 if (expect_false (ev_is_active (w))) 3205 if (expect_false (ev_is_active (w)))
2104 return; 3206 return;
3207
3208 EV_FREQUENT_CHECK;
2105 3209
2106 ev_start (EV_A_ (W)w, ++checkcnt); 3210 ev_start (EV_A_ (W)w, ++checkcnt);
2107 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3211 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2108 checks [checkcnt - 1] = w; 3212 checks [checkcnt - 1] = w;
3213
3214 EV_FREQUENT_CHECK;
2109} 3215}
2110 3216
2111void 3217void
2112ev_check_stop (EV_P_ ev_check *w) 3218ev_check_stop (EV_P_ ev_check *w)
2113{ 3219{
2114 ev_clear_pending (EV_A_ (W)w); 3220 clear_pending (EV_A_ (W)w);
2115 if (expect_false (!ev_is_active (w))) 3221 if (expect_false (!ev_is_active (w)))
2116 return; 3222 return;
2117 3223
3224 EV_FREQUENT_CHECK;
3225
2118 { 3226 {
2119 int active = ((W)w)->active; 3227 int active = ev_active (w);
3228
2120 checks [active - 1] = checks [--checkcnt]; 3229 checks [active - 1] = checks [--checkcnt];
2121 ((W)checks [active - 1])->active = active; 3230 ev_active (checks [active - 1]) = active;
2122 } 3231 }
2123 3232
2124 ev_stop (EV_A_ (W)w); 3233 ev_stop (EV_A_ (W)w);
3234
3235 EV_FREQUENT_CHECK;
2125} 3236}
2126 3237
2127#if EV_EMBED_ENABLE 3238#if EV_EMBED_ENABLE
2128void noinline 3239void noinline
2129ev_embed_sweep (EV_P_ ev_embed *w) 3240ev_embed_sweep (EV_P_ ev_embed *w)
2130{ 3241{
2131 ev_loop (w->loop, EVLOOP_NONBLOCK); 3242 ev_loop (w->other, EVLOOP_NONBLOCK);
2132} 3243}
2133 3244
2134static void 3245static void
2135embed_cb (EV_P_ ev_io *io, int revents) 3246embed_io_cb (EV_P_ ev_io *io, int revents)
2136{ 3247{
2137 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3248 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2138 3249
2139 if (ev_cb (w)) 3250 if (ev_cb (w))
2140 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3251 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2141 else 3252 else
2142 ev_embed_sweep (loop, w); 3253 ev_loop (w->other, EVLOOP_NONBLOCK);
2143} 3254}
3255
3256static void
3257embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3258{
3259 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3260
3261 {
3262 EV_P = w->other;
3263
3264 while (fdchangecnt)
3265 {
3266 fd_reify (EV_A);
3267 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3268 }
3269 }
3270}
3271
3272static void
3273embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3274{
3275 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3276
3277 ev_embed_stop (EV_A_ w);
3278
3279 {
3280 EV_P = w->other;
3281
3282 ev_loop_fork (EV_A);
3283 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3284 }
3285
3286 ev_embed_start (EV_A_ w);
3287}
3288
3289#if 0
3290static void
3291embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3292{
3293 ev_idle_stop (EV_A_ idle);
3294}
3295#endif
2144 3296
2145void 3297void
2146ev_embed_start (EV_P_ ev_embed *w) 3298ev_embed_start (EV_P_ ev_embed *w)
2147{ 3299{
2148 if (expect_false (ev_is_active (w))) 3300 if (expect_false (ev_is_active (w)))
2149 return; 3301 return;
2150 3302
2151 { 3303 {
2152 struct ev_loop *loop = w->loop; 3304 EV_P = w->other;
2153 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3305 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2154 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3306 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2155 } 3307 }
3308
3309 EV_FREQUENT_CHECK;
2156 3310
2157 ev_set_priority (&w->io, ev_priority (w)); 3311 ev_set_priority (&w->io, ev_priority (w));
2158 ev_io_start (EV_A_ &w->io); 3312 ev_io_start (EV_A_ &w->io);
2159 3313
3314 ev_prepare_init (&w->prepare, embed_prepare_cb);
3315 ev_set_priority (&w->prepare, EV_MINPRI);
3316 ev_prepare_start (EV_A_ &w->prepare);
3317
3318 ev_fork_init (&w->fork, embed_fork_cb);
3319 ev_fork_start (EV_A_ &w->fork);
3320
3321 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3322
2160 ev_start (EV_A_ (W)w, 1); 3323 ev_start (EV_A_ (W)w, 1);
3324
3325 EV_FREQUENT_CHECK;
2161} 3326}
2162 3327
2163void 3328void
2164ev_embed_stop (EV_P_ ev_embed *w) 3329ev_embed_stop (EV_P_ ev_embed *w)
2165{ 3330{
2166 ev_clear_pending (EV_A_ (W)w); 3331 clear_pending (EV_A_ (W)w);
2167 if (expect_false (!ev_is_active (w))) 3332 if (expect_false (!ev_is_active (w)))
2168 return; 3333 return;
2169 3334
3335 EV_FREQUENT_CHECK;
3336
2170 ev_io_stop (EV_A_ &w->io); 3337 ev_io_stop (EV_A_ &w->io);
3338 ev_prepare_stop (EV_A_ &w->prepare);
3339 ev_fork_stop (EV_A_ &w->fork);
2171 3340
2172 ev_stop (EV_A_ (W)w); 3341 EV_FREQUENT_CHECK;
2173} 3342}
2174#endif 3343#endif
2175 3344
2176#if EV_FORK_ENABLE 3345#if EV_FORK_ENABLE
2177void 3346void
2178ev_fork_start (EV_P_ ev_fork *w) 3347ev_fork_start (EV_P_ ev_fork *w)
2179{ 3348{
2180 if (expect_false (ev_is_active (w))) 3349 if (expect_false (ev_is_active (w)))
2181 return; 3350 return;
3351
3352 EV_FREQUENT_CHECK;
2182 3353
2183 ev_start (EV_A_ (W)w, ++forkcnt); 3354 ev_start (EV_A_ (W)w, ++forkcnt);
2184 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3355 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2185 forks [forkcnt - 1] = w; 3356 forks [forkcnt - 1] = w;
3357
3358 EV_FREQUENT_CHECK;
2186} 3359}
2187 3360
2188void 3361void
2189ev_fork_stop (EV_P_ ev_fork *w) 3362ev_fork_stop (EV_P_ ev_fork *w)
2190{ 3363{
2191 ev_clear_pending (EV_A_ (W)w); 3364 clear_pending (EV_A_ (W)w);
2192 if (expect_false (!ev_is_active (w))) 3365 if (expect_false (!ev_is_active (w)))
2193 return; 3366 return;
2194 3367
3368 EV_FREQUENT_CHECK;
3369
2195 { 3370 {
2196 int active = ((W)w)->active; 3371 int active = ev_active (w);
3372
2197 forks [active - 1] = forks [--forkcnt]; 3373 forks [active - 1] = forks [--forkcnt];
2198 ((W)forks [active - 1])->active = active; 3374 ev_active (forks [active - 1]) = active;
2199 } 3375 }
2200 3376
2201 ev_stop (EV_A_ (W)w); 3377 ev_stop (EV_A_ (W)w);
3378
3379 EV_FREQUENT_CHECK;
3380}
3381#endif
3382
3383#if EV_ASYNC_ENABLE
3384void
3385ev_async_start (EV_P_ ev_async *w)
3386{
3387 if (expect_false (ev_is_active (w)))
3388 return;
3389
3390 evpipe_init (EV_A);
3391
3392 EV_FREQUENT_CHECK;
3393
3394 ev_start (EV_A_ (W)w, ++asynccnt);
3395 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3396 asyncs [asynccnt - 1] = w;
3397
3398 EV_FREQUENT_CHECK;
3399}
3400
3401void
3402ev_async_stop (EV_P_ ev_async *w)
3403{
3404 clear_pending (EV_A_ (W)w);
3405 if (expect_false (!ev_is_active (w)))
3406 return;
3407
3408 EV_FREQUENT_CHECK;
3409
3410 {
3411 int active = ev_active (w);
3412
3413 asyncs [active - 1] = asyncs [--asynccnt];
3414 ev_active (asyncs [active - 1]) = active;
3415 }
3416
3417 ev_stop (EV_A_ (W)w);
3418
3419 EV_FREQUENT_CHECK;
3420}
3421
3422void
3423ev_async_send (EV_P_ ev_async *w)
3424{
3425 w->sent = 1;
3426 evpipe_write (EV_A_ &async_pending);
2202} 3427}
2203#endif 3428#endif
2204 3429
2205/*****************************************************************************/ 3430/*****************************************************************************/
2206 3431
2216once_cb (EV_P_ struct ev_once *once, int revents) 3441once_cb (EV_P_ struct ev_once *once, int revents)
2217{ 3442{
2218 void (*cb)(int revents, void *arg) = once->cb; 3443 void (*cb)(int revents, void *arg) = once->cb;
2219 void *arg = once->arg; 3444 void *arg = once->arg;
2220 3445
2221 ev_io_stop (EV_A_ &once->io); 3446 ev_io_stop (EV_A_ &once->io);
2222 ev_timer_stop (EV_A_ &once->to); 3447 ev_timer_stop (EV_A_ &once->to);
2223 ev_free (once); 3448 ev_free (once);
2224 3449
2225 cb (revents, arg); 3450 cb (revents, arg);
2226} 3451}
2227 3452
2228static void 3453static void
2229once_cb_io (EV_P_ ev_io *w, int revents) 3454once_cb_io (EV_P_ ev_io *w, int revents)
2230{ 3455{
2231 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3456 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3457
3458 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2232} 3459}
2233 3460
2234static void 3461static void
2235once_cb_to (EV_P_ ev_timer *w, int revents) 3462once_cb_to (EV_P_ ev_timer *w, int revents)
2236{ 3463{
2237 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3464 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3465
3466 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2238} 3467}
2239 3468
2240void 3469void
2241ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3470ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2242{ 3471{
2264 ev_timer_set (&once->to, timeout, 0.); 3493 ev_timer_set (&once->to, timeout, 0.);
2265 ev_timer_start (EV_A_ &once->to); 3494 ev_timer_start (EV_A_ &once->to);
2266 } 3495 }
2267} 3496}
2268 3497
3498/*****************************************************************************/
3499
3500#if EV_WALK_ENABLE
3501void
3502ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3503{
3504 int i, j;
3505 ev_watcher_list *wl, *wn;
3506
3507 if (types & (EV_IO | EV_EMBED))
3508 for (i = 0; i < anfdmax; ++i)
3509 for (wl = anfds [i].head; wl; )
3510 {
3511 wn = wl->next;
3512
3513#if EV_EMBED_ENABLE
3514 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3515 {
3516 if (types & EV_EMBED)
3517 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3518 }
3519 else
3520#endif
3521#if EV_USE_INOTIFY
3522 if (ev_cb ((ev_io *)wl) == infy_cb)
3523 ;
3524 else
3525#endif
3526 if ((ev_io *)wl != &pipe_w)
3527 if (types & EV_IO)
3528 cb (EV_A_ EV_IO, wl);
3529
3530 wl = wn;
3531 }
3532
3533 if (types & (EV_TIMER | EV_STAT))
3534 for (i = timercnt + HEAP0; i-- > HEAP0; )
3535#if EV_STAT_ENABLE
3536 /*TODO: timer is not always active*/
3537 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3538 {
3539 if (types & EV_STAT)
3540 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3541 }
3542 else
3543#endif
3544 if (types & EV_TIMER)
3545 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3546
3547#if EV_PERIODIC_ENABLE
3548 if (types & EV_PERIODIC)
3549 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3550 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3551#endif
3552
3553#if EV_IDLE_ENABLE
3554 if (types & EV_IDLE)
3555 for (j = NUMPRI; i--; )
3556 for (i = idlecnt [j]; i--; )
3557 cb (EV_A_ EV_IDLE, idles [j][i]);
3558#endif
3559
3560#if EV_FORK_ENABLE
3561 if (types & EV_FORK)
3562 for (i = forkcnt; i--; )
3563 if (ev_cb (forks [i]) != embed_fork_cb)
3564 cb (EV_A_ EV_FORK, forks [i]);
3565#endif
3566
3567#if EV_ASYNC_ENABLE
3568 if (types & EV_ASYNC)
3569 for (i = asynccnt; i--; )
3570 cb (EV_A_ EV_ASYNC, asyncs [i]);
3571#endif
3572
3573 if (types & EV_PREPARE)
3574 for (i = preparecnt; i--; )
3575#if EV_EMBED_ENABLE
3576 if (ev_cb (prepares [i]) != embed_prepare_cb)
3577#endif
3578 cb (EV_A_ EV_PREPARE, prepares [i]);
3579
3580 if (types & EV_CHECK)
3581 for (i = checkcnt; i--; )
3582 cb (EV_A_ EV_CHECK, checks [i]);
3583
3584 if (types & EV_SIGNAL)
3585 for (i = 0; i < EV_NSIG - 1; ++i)
3586 for (wl = signals [i].head; wl; )
3587 {
3588 wn = wl->next;
3589 cb (EV_A_ EV_SIGNAL, wl);
3590 wl = wn;
3591 }
3592
3593 if (types & EV_CHILD)
3594 for (i = EV_PID_HASHSIZE; i--; )
3595 for (wl = childs [i]; wl; )
3596 {
3597 wn = wl->next;
3598 cb (EV_A_ EV_CHILD, wl);
3599 wl = wn;
3600 }
3601/* EV_STAT 0x00001000 /* stat data changed */
3602/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3603}
3604#endif
3605
3606#if EV_MULTIPLICITY
3607 #include "ev_wrap.h"
3608#endif
3609
2269#ifdef __cplusplus 3610#ifdef __cplusplus
2270} 3611}
2271#endif 3612#endif
2272 3613

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines