ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.166 by root, Sat Dec 8 03:53:36 2007 UTC vs.
Revision 1.208 by root, Fri Feb 1 13:22:48 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
51# ifndef EV_USE_MONOTONIC 59# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 60# define EV_USE_MONOTONIC 0
53# endif 61# endif
54# ifndef EV_USE_REALTIME 62# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 63# define EV_USE_REALTIME 0
64# endif
65# endif
66
67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
56# endif 72# endif
57# endif 73# endif
58 74
59# ifndef EV_USE_SELECT 75# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 76# if HAVE_SELECT && HAVE_SYS_SELECT_H
146 162
147#ifndef EV_USE_REALTIME 163#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 164# define EV_USE_REALTIME 0
149#endif 165#endif
150 166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
169#endif
170
151#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
153#endif 173#endif
154 174
155#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
202#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
205#endif 225#endif
206 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
207#if EV_SELECT_IS_WINSOCKET 242#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 243# include <winsock.h>
209#endif 244#endif
210 245
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
219/**/ 246/**/
247
248/*
249 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 257
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 261
225#if __GNUC__ >= 3 262#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 264# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 265#else
236# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif
240#endif 271#endif
241 272
242#define expect_false(expr) expect ((expr) != 0, 0) 273#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 274#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline
276
277#if EV_MINIMAL
278# define inline_speed static noinline
279#else
280# define inline_speed static inline
281#endif
244 282
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 285
248#define EMPTY /* required for microsofts broken pseudo-c compiler */ 286#define EMPTY /* required for microsofts broken pseudo-c compiler */
250 288
251typedef ev_watcher *W; 289typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
254 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
256 298
257#ifdef _WIN32 299#ifdef _WIN32
258# include "ev_win32.c" 300# include "ev_win32.c"
259#endif 301#endif
260 302
396{ 438{
397 return ev_rt_now; 439 return ev_rt_now;
398} 440}
399#endif 441#endif
400 442
443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep (delay * 1e3);
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
401int inline_size 470int inline_size
402array_nextsize (int elem, int cur, int cnt) 471array_nextsize (int elem, int cur, int cnt)
403{ 472{
404 int ncur = cur + 1; 473 int ncur = cur + 1;
405 474
417 } 486 }
418 487
419 return ncur; 488 return ncur;
420} 489}
421 490
422inline_speed void * 491static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 492array_realloc (int elem, void *base, int *cur, int cnt)
424{ 493{
425 *cur = array_nextsize (elem, *cur, cnt); 494 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 495 return ev_realloc (base, elem * *cur);
427} 496}
452 521
453void noinline 522void noinline
454ev_feed_event (EV_P_ void *w, int revents) 523ev_feed_event (EV_P_ void *w, int revents)
455{ 524{
456 W w_ = (W)w; 525 W w_ = (W)w;
526 int pri = ABSPRI (w_);
457 527
458 if (expect_false (w_->pending)) 528 if (expect_false (w_->pending))
529 pendings [pri][w_->pending - 1].events |= revents;
530 else
459 { 531 {
532 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 535 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 536 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 537}
469 538
470void inline_size 539void inline_speed
471queue_events (EV_P_ W *events, int eventcnt, int type) 540queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 541{
473 int i; 542 int i;
474 543
475 for (i = 0; i < eventcnt; ++i) 544 for (i = 0; i < eventcnt; ++i)
507} 576}
508 577
509void 578void
510ev_feed_fd_event (EV_P_ int fd, int revents) 579ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 580{
581 if (fd >= 0 && fd < anfdmax)
512 fd_event (EV_A_ fd, revents); 582 fd_event (EV_A_ fd, revents);
513} 583}
514 584
515void inline_size 585void inline_size
516fd_reify (EV_P) 586fd_reify (EV_P)
517{ 587{
521 { 591 {
522 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
523 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
524 ev_io *w; 594 ev_io *w;
525 595
526 int events = 0; 596 unsigned char events = 0;
527 597
528 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
529 events |= w->events; 599 events |= (unsigned char)w->events;
530 600
531#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
532 if (events) 602 if (events)
533 { 603 {
534 unsigned long argp; 604 unsigned long argp;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
535 anfd->handle = _get_osfhandle (fd); 608 anfd->handle = _get_osfhandle (fd);
609 #endif
536 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
537 } 611 }
538#endif 612#endif
539 613
614 {
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
540 anfd->reify = 0; 618 anfd->reify = 0;
541
542 backend_modify (EV_A_ fd, anfd->events, events);
543 anfd->events = events; 619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events);
623 }
544 } 624 }
545 625
546 fdchangecnt = 0; 626 fdchangecnt = 0;
547} 627}
548 628
549void inline_size 629void inline_size
550fd_change (EV_P_ int fd) 630fd_change (EV_P_ int fd, int flags)
551{ 631{
552 if (expect_false (anfds [fd].reify)) 632 unsigned char reify = anfds [fd].reify;
553 return;
554
555 anfds [fd].reify = 1; 633 anfds [fd].reify |= flags;
556 634
635 if (expect_true (!reify))
636 {
557 ++fdchangecnt; 637 ++fdchangecnt;
558 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
559 fdchanges [fdchangecnt - 1] = fd; 639 fdchanges [fdchangecnt - 1] = fd;
640 }
560} 641}
561 642
562void inline_speed 643void inline_speed
563fd_kill (EV_P_ int fd) 644fd_kill (EV_P_ int fd)
564{ 645{
615 696
616 for (fd = 0; fd < anfdmax; ++fd) 697 for (fd = 0; fd < anfdmax; ++fd)
617 if (anfds [fd].events) 698 if (anfds [fd].events)
618 { 699 {
619 anfds [fd].events = 0; 700 anfds [fd].events = 0;
620 fd_change (EV_A_ fd); 701 fd_change (EV_A_ fd, EV_IOFDSET | 1);
621 } 702 }
622} 703}
623 704
624/*****************************************************************************/ 705/*****************************************************************************/
625 706
626void inline_speed 707void inline_speed
627upheap (WT *heap, int k) 708upheap (WT *heap, int k)
628{ 709{
629 WT w = heap [k]; 710 WT w = heap [k];
630 711
631 while (k && heap [k >> 1]->at > w->at) 712 while (k)
632 { 713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
633 heap [k] = heap [k >> 1]; 719 heap [k] = heap [p];
634 ((W)heap [k])->active = k + 1; 720 ((W)heap [k])->active = k + 1;
635 k >>= 1; 721 k = p;
636 } 722 }
637 723
638 heap [k] = w; 724 heap [k] = w;
639 ((W)heap [k])->active = k + 1; 725 ((W)heap [k])->active = k + 1;
640
641} 726}
642 727
643void inline_speed 728void inline_speed
644downheap (WT *heap, int N, int k) 729downheap (WT *heap, int N, int k)
645{ 730{
646 WT w = heap [k]; 731 WT w = heap [k];
647 732
648 while (k < (N >> 1)) 733 for (;;)
649 { 734 {
650 int j = k << 1; 735 int c = (k << 1) + 1;
651 736
652 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 737 if (c >= N)
653 ++j;
654
655 if (w->at <= heap [j]->at)
656 break; 738 break;
657 739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
658 heap [k] = heap [j]; 746 heap [k] = heap [c];
659 ((W)heap [k])->active = k + 1; 747 ((W)heap [k])->active = k + 1;
748
660 k = j; 749 k = c;
661 } 750 }
662 751
663 heap [k] = w; 752 heap [k] = w;
664 ((W)heap [k])->active = k + 1; 753 ((W)heap [k])->active = k + 1;
665} 754}
674/*****************************************************************************/ 763/*****************************************************************************/
675 764
676typedef struct 765typedef struct
677{ 766{
678 WL head; 767 WL head;
679 sig_atomic_t volatile gotsig; 768 EV_ATOMIC_T gotsig;
680} ANSIG; 769} ANSIG;
681 770
682static ANSIG *signals; 771static ANSIG *signals;
683static int signalmax; 772static int signalmax;
684 773
685static int sigpipe [2]; 774static EV_ATOMIC_T gotsig;
686static sig_atomic_t volatile gotsig;
687static ev_io sigev;
688 775
689void inline_size 776void inline_size
690signals_init (ANSIG *base, int count) 777signals_init (ANSIG *base, int count)
691{ 778{
692 while (count--) 779 while (count--)
696 783
697 ++base; 784 ++base;
698 } 785 }
699} 786}
700 787
701static void 788/*****************************************************************************/
702sighandler (int signum)
703{
704#if _WIN32
705 signal (signum, sighandler);
706#endif
707 789
708 signals [signum - 1].gotsig = 1;
709
710 if (!gotsig)
711 {
712 int old_errno = errno;
713 gotsig = 1;
714 write (sigpipe [1], &signum, 1);
715 errno = old_errno;
716 }
717}
718
719void noinline
720ev_feed_signal_event (EV_P_ int signum)
721{
722 WL w;
723
724#if EV_MULTIPLICITY
725 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
726#endif
727
728 --signum;
729
730 if (signum < 0 || signum >= signalmax)
731 return;
732
733 signals [signum].gotsig = 0;
734
735 for (w = signals [signum].head; w; w = w->next)
736 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
737}
738
739static void
740sigcb (EV_P_ ev_io *iow, int revents)
741{
742 int signum;
743
744 read (sigpipe [0], &revents, 1);
745 gotsig = 0;
746
747 for (signum = signalmax; signum--; )
748 if (signals [signum].gotsig)
749 ev_feed_signal_event (EV_A_ signum + 1);
750}
751
752void inline_size 790void inline_speed
753fd_intern (int fd) 791fd_intern (int fd)
754{ 792{
755#ifdef _WIN32 793#ifdef _WIN32
756 int arg = 1; 794 int arg = 1;
757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
760 fcntl (fd, F_SETFL, O_NONBLOCK); 798 fcntl (fd, F_SETFL, O_NONBLOCK);
761#endif 799#endif
762} 800}
763 801
764static void noinline 802static void noinline
765siginit (EV_P) 803evpipe_init (EV_P)
766{ 804{
805 if (!ev_is_active (&pipeev))
806 {
807 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe");
809
767 fd_intern (sigpipe [0]); 810 fd_intern (evpipe [0]);
768 fd_intern (sigpipe [1]); 811 fd_intern (evpipe [1]);
769 812
770 ev_io_set (&sigev, sigpipe [0], EV_READ); 813 ev_io_set (&pipeev, evpipe [0], EV_READ);
771 ev_io_start (EV_A_ &sigev); 814 ev_io_start (EV_A_ &pipeev);
772 ev_unref (EV_A); /* child watcher should not keep loop alive */ 815 ev_unref (EV_A); /* child watcher should not keep loop alive */
816 }
817}
818
819void inline_size
820evpipe_write (EV_P_ int sig, int async)
821{
822 if (!(gotasync || gotsig))
823 {
824 int old_errno = errno;
825
826 if (sig) gotsig = 1;
827 if (async) gotasync = 1;
828
829 write (evpipe [1], &old_errno, 1);
830 errno = old_errno;
831 }
832}
833
834static void
835pipecb (EV_P_ ev_io *iow, int revents)
836{
837 {
838 int dummy;
839 read (evpipe [0], &dummy, 1);
840 }
841
842 if (gotsig)
843 {
844 int signum;
845 gotsig = 0;
846
847 for (signum = signalmax; signum--; )
848 if (signals [signum].gotsig)
849 ev_feed_signal_event (EV_A_ signum + 1);
850 }
851
852 if (gotasync)
853 {
854 int i;
855 gotasync = 0;
856
857 for (i = asynccnt; i--; )
858 if (asyncs [i]->sent)
859 {
860 asyncs [i]->sent = 0;
861 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
862 }
863 }
773} 864}
774 865
775/*****************************************************************************/ 866/*****************************************************************************/
776 867
868static void
869sighandler (int signum)
870{
871#if EV_MULTIPLICITY
872 struct ev_loop *loop = &default_loop_struct;
873#endif
874
875#if _WIN32
876 signal (signum, sighandler);
877#endif
878
879 signals [signum - 1].gotsig = 1;
880 evpipe_write (EV_A_ 1, 0);
881}
882
883void noinline
884ev_feed_signal_event (EV_P_ int signum)
885{
886 WL w;
887
888#if EV_MULTIPLICITY
889 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
890#endif
891
892 --signum;
893
894 if (signum < 0 || signum >= signalmax)
895 return;
896
897 signals [signum].gotsig = 0;
898
899 for (w = signals [signum].head; w; w = w->next)
900 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
901}
902
903/*****************************************************************************/
904
777static ev_child *childs [EV_PID_HASHSIZE]; 905static WL childs [EV_PID_HASHSIZE];
778 906
779#ifndef _WIN32 907#ifndef _WIN32
780 908
781static ev_signal childev; 909static ev_signal childev;
910
911#ifndef WIFCONTINUED
912# define WIFCONTINUED(status) 0
913#endif
782 914
783void inline_speed 915void inline_speed
784child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 916child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
785{ 917{
786 ev_child *w; 918 ev_child *w;
919 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
787 920
788 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 921 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
922 {
789 if (w->pid == pid || !w->pid) 923 if ((w->pid == pid || !w->pid)
924 && (!traced || (w->flags & 1)))
790 { 925 {
791 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 926 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
792 w->rpid = pid; 927 w->rpid = pid;
793 w->rstatus = status; 928 w->rstatus = status;
794 ev_feed_event (EV_A_ (W)w, EV_CHILD); 929 ev_feed_event (EV_A_ (W)w, EV_CHILD);
795 } 930 }
931 }
796} 932}
797 933
798#ifndef WCONTINUED 934#ifndef WCONTINUED
799# define WCONTINUED 0 935# define WCONTINUED 0
800#endif 936#endif
897} 1033}
898 1034
899unsigned int 1035unsigned int
900ev_embeddable_backends (void) 1036ev_embeddable_backends (void)
901{ 1037{
902 return EVBACKEND_EPOLL 1038 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
903 | EVBACKEND_KQUEUE 1039
904 | EVBACKEND_PORT; 1040 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1041 /* please fix it and tell me how to detect the fix */
1042 flags &= ~EVBACKEND_EPOLL;
1043
1044 return flags;
905} 1045}
906 1046
907unsigned int 1047unsigned int
908ev_backend (EV_P) 1048ev_backend (EV_P)
909{ 1049{
912 1052
913unsigned int 1053unsigned int
914ev_loop_count (EV_P) 1054ev_loop_count (EV_P)
915{ 1055{
916 return loop_count; 1056 return loop_count;
1057}
1058
1059void
1060ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1061{
1062 io_blocktime = interval;
1063}
1064
1065void
1066ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1067{
1068 timeout_blocktime = interval;
917} 1069}
918 1070
919static void noinline 1071static void noinline
920loop_init (EV_P_ unsigned int flags) 1072loop_init (EV_P_ unsigned int flags)
921{ 1073{
932 ev_rt_now = ev_time (); 1084 ev_rt_now = ev_time ();
933 mn_now = get_clock (); 1085 mn_now = get_clock ();
934 now_floor = mn_now; 1086 now_floor = mn_now;
935 rtmn_diff = ev_rt_now - mn_now; 1087 rtmn_diff = ev_rt_now - mn_now;
936 1088
1089 io_blocktime = 0.;
1090 timeout_blocktime = 0.;
1091
937 /* pid check not overridable via env */ 1092 /* pid check not overridable via env */
938#ifndef _WIN32 1093#ifndef _WIN32
939 if (flags & EVFLAG_FORKCHECK) 1094 if (flags & EVFLAG_FORKCHECK)
940 curpid = getpid (); 1095 curpid = getpid ();
941#endif 1096#endif
968#endif 1123#endif
969#if EV_USE_SELECT 1124#if EV_USE_SELECT
970 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1125 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
971#endif 1126#endif
972 1127
973 ev_init (&sigev, sigcb); 1128 ev_init (&pipeev, pipecb);
974 ev_set_priority (&sigev, EV_MAXPRI); 1129 ev_set_priority (&pipeev, EV_MAXPRI);
975 } 1130 }
976} 1131}
977 1132
978static void noinline 1133static void noinline
979loop_destroy (EV_P) 1134loop_destroy (EV_P)
980{ 1135{
981 int i; 1136 int i;
1137
1138 if (ev_is_active (&pipeev))
1139 {
1140 ev_ref (EV_A); /* signal watcher */
1141 ev_io_stop (EV_A_ &pipeev);
1142
1143 close (evpipe [0]); evpipe [0] = 0;
1144 close (evpipe [1]); evpipe [1] = 0;
1145 }
982 1146
983#if EV_USE_INOTIFY 1147#if EV_USE_INOTIFY
984 if (fs_fd >= 0) 1148 if (fs_fd >= 0)
985 close (fs_fd); 1149 close (fs_fd);
986#endif 1150#endif
1009 array_free (pending, [i]); 1173 array_free (pending, [i]);
1010#if EV_IDLE_ENABLE 1174#if EV_IDLE_ENABLE
1011 array_free (idle, [i]); 1175 array_free (idle, [i]);
1012#endif 1176#endif
1013 } 1177 }
1178
1179 ev_free (anfds); anfdmax = 0;
1014 1180
1015 /* have to use the microsoft-never-gets-it-right macro */ 1181 /* have to use the microsoft-never-gets-it-right macro */
1016 array_free (fdchange, EMPTY); 1182 array_free (fdchange, EMPTY);
1017 array_free (timer, EMPTY); 1183 array_free (timer, EMPTY);
1018#if EV_PERIODIC_ENABLE 1184#if EV_PERIODIC_ENABLE
1019 array_free (periodic, EMPTY); 1185 array_free (periodic, EMPTY);
1020#endif 1186#endif
1187#if EV_FORK_ENABLE
1188 array_free (fork, EMPTY);
1189#endif
1021 array_free (prepare, EMPTY); 1190 array_free (prepare, EMPTY);
1022 array_free (check, EMPTY); 1191 array_free (check, EMPTY);
1023 1192
1024 backend = 0; 1193 backend = 0;
1025} 1194}
1040#endif 1209#endif
1041#if EV_USE_INOTIFY 1210#if EV_USE_INOTIFY
1042 infy_fork (EV_A); 1211 infy_fork (EV_A);
1043#endif 1212#endif
1044 1213
1045 if (ev_is_active (&sigev)) 1214 if (ev_is_active (&pipeev))
1046 { 1215 {
1047 /* default loop */ 1216 /* this "locks" the handlers against writing to the pipe */
1217 gotsig = gotasync = 1;
1048 1218
1049 ev_ref (EV_A); 1219 ev_ref (EV_A);
1050 ev_io_stop (EV_A_ &sigev); 1220 ev_io_stop (EV_A_ &pipeev);
1051 close (sigpipe [0]); 1221 close (evpipe [0]);
1052 close (sigpipe [1]); 1222 close (evpipe [1]);
1053 1223
1054 while (pipe (sigpipe))
1055 syserr ("(libev) error creating pipe");
1056
1057 siginit (EV_A); 1224 evpipe_init (EV_A);
1225 /* now iterate over everything, in case we missed something */
1226 pipecb (EV_A_ &pipeev, EV_READ);
1058 } 1227 }
1059 1228
1060 postfork = 0; 1229 postfork = 0;
1061} 1230}
1062 1231
1084} 1253}
1085 1254
1086void 1255void
1087ev_loop_fork (EV_P) 1256ev_loop_fork (EV_P)
1088{ 1257{
1089 postfork = 1; 1258 postfork = 1; /* must be in line with ev_default_fork */
1090} 1259}
1091 1260
1092#endif 1261#endif
1093 1262
1094#if EV_MULTIPLICITY 1263#if EV_MULTIPLICITY
1097#else 1266#else
1098int 1267int
1099ev_default_loop (unsigned int flags) 1268ev_default_loop (unsigned int flags)
1100#endif 1269#endif
1101{ 1270{
1102 if (sigpipe [0] == sigpipe [1])
1103 if (pipe (sigpipe))
1104 return 0;
1105
1106 if (!ev_default_loop_ptr) 1271 if (!ev_default_loop_ptr)
1107 { 1272 {
1108#if EV_MULTIPLICITY 1273#if EV_MULTIPLICITY
1109 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1274 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1110#else 1275#else
1113 1278
1114 loop_init (EV_A_ flags); 1279 loop_init (EV_A_ flags);
1115 1280
1116 if (ev_backend (EV_A)) 1281 if (ev_backend (EV_A))
1117 { 1282 {
1118 siginit (EV_A);
1119
1120#ifndef _WIN32 1283#ifndef _WIN32
1121 ev_signal_init (&childev, childcb, SIGCHLD); 1284 ev_signal_init (&childev, childcb, SIGCHLD);
1122 ev_set_priority (&childev, EV_MAXPRI); 1285 ev_set_priority (&childev, EV_MAXPRI);
1123 ev_signal_start (EV_A_ &childev); 1286 ev_signal_start (EV_A_ &childev);
1124 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1287 ev_unref (EV_A); /* child watcher should not keep loop alive */
1141#ifndef _WIN32 1304#ifndef _WIN32
1142 ev_ref (EV_A); /* child watcher */ 1305 ev_ref (EV_A); /* child watcher */
1143 ev_signal_stop (EV_A_ &childev); 1306 ev_signal_stop (EV_A_ &childev);
1144#endif 1307#endif
1145 1308
1146 ev_ref (EV_A); /* signal watcher */
1147 ev_io_stop (EV_A_ &sigev);
1148
1149 close (sigpipe [0]); sigpipe [0] = 0;
1150 close (sigpipe [1]); sigpipe [1] = 0;
1151
1152 loop_destroy (EV_A); 1309 loop_destroy (EV_A);
1153} 1310}
1154 1311
1155void 1312void
1156ev_default_fork (void) 1313ev_default_fork (void)
1158#if EV_MULTIPLICITY 1315#if EV_MULTIPLICITY
1159 struct ev_loop *loop = ev_default_loop_ptr; 1316 struct ev_loop *loop = ev_default_loop_ptr;
1160#endif 1317#endif
1161 1318
1162 if (backend) 1319 if (backend)
1163 postfork = 1; 1320 postfork = 1; /* must be in line with ev_loop_fork */
1164} 1321}
1165 1322
1166/*****************************************************************************/ 1323/*****************************************************************************/
1324
1325void
1326ev_invoke (EV_P_ void *w, int revents)
1327{
1328 EV_CB_INVOKE ((W)w, revents);
1329}
1167 1330
1168void inline_speed 1331void inline_speed
1169call_pending (EV_P) 1332call_pending (EV_P)
1170{ 1333{
1171 int pri; 1334 int pri;
1188void inline_size 1351void inline_size
1189timers_reify (EV_P) 1352timers_reify (EV_P)
1190{ 1353{
1191 while (timercnt && ((WT)timers [0])->at <= mn_now) 1354 while (timercnt && ((WT)timers [0])->at <= mn_now)
1192 { 1355 {
1193 ev_timer *w = timers [0]; 1356 ev_timer *w = (ev_timer *)timers [0];
1194 1357
1195 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1358 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1196 1359
1197 /* first reschedule or stop timer */ 1360 /* first reschedule or stop timer */
1198 if (w->repeat) 1361 if (w->repeat)
1201 1364
1202 ((WT)w)->at += w->repeat; 1365 ((WT)w)->at += w->repeat;
1203 if (((WT)w)->at < mn_now) 1366 if (((WT)w)->at < mn_now)
1204 ((WT)w)->at = mn_now; 1367 ((WT)w)->at = mn_now;
1205 1368
1206 downheap ((WT *)timers, timercnt, 0); 1369 downheap (timers, timercnt, 0);
1207 } 1370 }
1208 else 1371 else
1209 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1372 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1210 1373
1211 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1374 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1216void inline_size 1379void inline_size
1217periodics_reify (EV_P) 1380periodics_reify (EV_P)
1218{ 1381{
1219 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1382 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1220 { 1383 {
1221 ev_periodic *w = periodics [0]; 1384 ev_periodic *w = (ev_periodic *)periodics [0];
1222 1385
1223 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1386 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1224 1387
1225 /* first reschedule or stop timer */ 1388 /* first reschedule or stop timer */
1226 if (w->reschedule_cb) 1389 if (w->reschedule_cb)
1227 { 1390 {
1228 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1391 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1229 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1392 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1230 downheap ((WT *)periodics, periodiccnt, 0); 1393 downheap (periodics, periodiccnt, 0);
1231 } 1394 }
1232 else if (w->interval) 1395 else if (w->interval)
1233 { 1396 {
1234 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1397 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1398 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1235 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1399 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1236 downheap ((WT *)periodics, periodiccnt, 0); 1400 downheap (periodics, periodiccnt, 0);
1237 } 1401 }
1238 else 1402 else
1239 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1403 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1240 1404
1241 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1405 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1248 int i; 1412 int i;
1249 1413
1250 /* adjust periodics after time jump */ 1414 /* adjust periodics after time jump */
1251 for (i = 0; i < periodiccnt; ++i) 1415 for (i = 0; i < periodiccnt; ++i)
1252 { 1416 {
1253 ev_periodic *w = periodics [i]; 1417 ev_periodic *w = (ev_periodic *)periodics [i];
1254 1418
1255 if (w->reschedule_cb) 1419 if (w->reschedule_cb)
1256 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1420 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1257 else if (w->interval) 1421 else if (w->interval)
1258 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1422 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1259 } 1423 }
1260 1424
1261 /* now rebuild the heap */ 1425 /* now rebuild the heap */
1262 for (i = periodiccnt >> 1; i--; ) 1426 for (i = periodiccnt >> 1; i--; )
1263 downheap ((WT *)periodics, periodiccnt, i); 1427 downheap (periodics, periodiccnt, i);
1264} 1428}
1265#endif 1429#endif
1266 1430
1267#if EV_IDLE_ENABLE 1431#if EV_IDLE_ENABLE
1268void inline_size 1432void inline_size
1285 } 1449 }
1286 } 1450 }
1287} 1451}
1288#endif 1452#endif
1289 1453
1290int inline_size 1454void inline_speed
1291time_update_monotonic (EV_P) 1455time_update (EV_P_ ev_tstamp max_block)
1292{ 1456{
1457 int i;
1458
1459#if EV_USE_MONOTONIC
1460 if (expect_true (have_monotonic))
1461 {
1462 ev_tstamp odiff = rtmn_diff;
1463
1293 mn_now = get_clock (); 1464 mn_now = get_clock ();
1294 1465
1466 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1467 /* interpolate in the meantime */
1295 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1468 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1296 { 1469 {
1297 ev_rt_now = rtmn_diff + mn_now; 1470 ev_rt_now = rtmn_diff + mn_now;
1298 return 0; 1471 return;
1299 } 1472 }
1300 else 1473
1301 {
1302 now_floor = mn_now; 1474 now_floor = mn_now;
1303 ev_rt_now = ev_time (); 1475 ev_rt_now = ev_time ();
1304 return 1;
1305 }
1306}
1307 1476
1308void inline_size 1477 /* loop a few times, before making important decisions.
1309time_update (EV_P) 1478 * on the choice of "4": one iteration isn't enough,
1310{ 1479 * in case we get preempted during the calls to
1311 int i; 1480 * ev_time and get_clock. a second call is almost guaranteed
1312 1481 * to succeed in that case, though. and looping a few more times
1313#if EV_USE_MONOTONIC 1482 * doesn't hurt either as we only do this on time-jumps or
1314 if (expect_true (have_monotonic)) 1483 * in the unlikely event of having been preempted here.
1315 { 1484 */
1316 if (time_update_monotonic (EV_A)) 1485 for (i = 4; --i; )
1317 { 1486 {
1318 ev_tstamp odiff = rtmn_diff;
1319
1320 /* loop a few times, before making important decisions.
1321 * on the choice of "4": one iteration isn't enough,
1322 * in case we get preempted during the calls to
1323 * ev_time and get_clock. a second call is almost guaranteed
1324 * to succeed in that case, though. and looping a few more times
1325 * doesn't hurt either as we only do this on time-jumps or
1326 * in the unlikely event of having been preempted here.
1327 */
1328 for (i = 4; --i; )
1329 {
1330 rtmn_diff = ev_rt_now - mn_now; 1487 rtmn_diff = ev_rt_now - mn_now;
1331 1488
1332 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1489 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1333 return; /* all is well */ 1490 return; /* all is well */
1334 1491
1335 ev_rt_now = ev_time (); 1492 ev_rt_now = ev_time ();
1336 mn_now = get_clock (); 1493 mn_now = get_clock ();
1337 now_floor = mn_now; 1494 now_floor = mn_now;
1338 } 1495 }
1339 1496
1340# if EV_PERIODIC_ENABLE 1497# if EV_PERIODIC_ENABLE
1341 periodics_reschedule (EV_A); 1498 periodics_reschedule (EV_A);
1342# endif 1499# endif
1343 /* no timer adjustment, as the monotonic clock doesn't jump */ 1500 /* no timer adjustment, as the monotonic clock doesn't jump */
1344 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1501 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1345 }
1346 } 1502 }
1347 else 1503 else
1348#endif 1504#endif
1349 { 1505 {
1350 ev_rt_now = ev_time (); 1506 ev_rt_now = ev_time ();
1351 1507
1352 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1508 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1353 { 1509 {
1354#if EV_PERIODIC_ENABLE 1510#if EV_PERIODIC_ENABLE
1355 periodics_reschedule (EV_A); 1511 periodics_reschedule (EV_A);
1356#endif 1512#endif
1357
1358 /* adjust timers. this is easy, as the offset is the same for all of them */ 1513 /* adjust timers. this is easy, as the offset is the same for all of them */
1359 for (i = 0; i < timercnt; ++i) 1514 for (i = 0; i < timercnt; ++i)
1360 ((WT)timers [i])->at += ev_rt_now - mn_now; 1515 ((WT)timers [i])->at += ev_rt_now - mn_now;
1361 } 1516 }
1362 1517
1406 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1561 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1407 call_pending (EV_A); 1562 call_pending (EV_A);
1408 } 1563 }
1409#endif 1564#endif
1410 1565
1411 /* queue check watchers (and execute them) */ 1566 /* queue prepare watchers (and execute them) */
1412 if (expect_false (preparecnt)) 1567 if (expect_false (preparecnt))
1413 { 1568 {
1414 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1569 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1415 call_pending (EV_A); 1570 call_pending (EV_A);
1416 } 1571 }
1425 /* update fd-related kernel structures */ 1580 /* update fd-related kernel structures */
1426 fd_reify (EV_A); 1581 fd_reify (EV_A);
1427 1582
1428 /* calculate blocking time */ 1583 /* calculate blocking time */
1429 { 1584 {
1430 ev_tstamp block; 1585 ev_tstamp waittime = 0.;
1586 ev_tstamp sleeptime = 0.;
1431 1587
1432 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1588 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1433 block = 0.; /* do not block at all */
1434 else
1435 { 1589 {
1436 /* update time to cancel out callback processing overhead */ 1590 /* update time to cancel out callback processing overhead */
1437#if EV_USE_MONOTONIC
1438 if (expect_true (have_monotonic))
1439 time_update_monotonic (EV_A); 1591 time_update (EV_A_ 1e100);
1440 else
1441#endif
1442 {
1443 ev_rt_now = ev_time ();
1444 mn_now = ev_rt_now;
1445 }
1446 1592
1447 block = MAX_BLOCKTIME; 1593 waittime = MAX_BLOCKTIME;
1448 1594
1449 if (timercnt) 1595 if (timercnt)
1450 { 1596 {
1451 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1597 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1452 if (block > to) block = to; 1598 if (waittime > to) waittime = to;
1453 } 1599 }
1454 1600
1455#if EV_PERIODIC_ENABLE 1601#if EV_PERIODIC_ENABLE
1456 if (periodiccnt) 1602 if (periodiccnt)
1457 { 1603 {
1458 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1604 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1459 if (block > to) block = to; 1605 if (waittime > to) waittime = to;
1460 } 1606 }
1461#endif 1607#endif
1462 1608
1463 if (expect_false (block < 0.)) block = 0.; 1609 if (expect_false (waittime < timeout_blocktime))
1610 waittime = timeout_blocktime;
1611
1612 sleeptime = waittime - backend_fudge;
1613
1614 if (expect_true (sleeptime > io_blocktime))
1615 sleeptime = io_blocktime;
1616
1617 if (sleeptime)
1618 {
1619 ev_sleep (sleeptime);
1620 waittime -= sleeptime;
1621 }
1464 } 1622 }
1465 1623
1466 ++loop_count; 1624 ++loop_count;
1467 backend_poll (EV_A_ block); 1625 backend_poll (EV_A_ waittime);
1626
1627 /* update ev_rt_now, do magic */
1628 time_update (EV_A_ waittime + sleeptime);
1468 } 1629 }
1469
1470 /* update ev_rt_now, do magic */
1471 time_update (EV_A);
1472 1630
1473 /* queue pending timers and reschedule them */ 1631 /* queue pending timers and reschedule them */
1474 timers_reify (EV_A); /* relative timers called last */ 1632 timers_reify (EV_A); /* relative timers called last */
1475#if EV_PERIODIC_ENABLE 1633#if EV_PERIODIC_ENABLE
1476 periodics_reify (EV_A); /* absolute timers called first */ 1634 periodics_reify (EV_A); /* absolute timers called first */
1532 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1690 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1533 w->pending = 0; 1691 w->pending = 0;
1534 } 1692 }
1535} 1693}
1536 1694
1537void 1695int
1538ev_clear_pending (EV_P_ void *w, int invoke) 1696ev_clear_pending (EV_P_ void *w)
1539{ 1697{
1540 W w_ = (W)w; 1698 W w_ = (W)w;
1541 int pending = w_->pending; 1699 int pending = w_->pending;
1542 1700
1543 if (pending) 1701 if (expect_true (pending))
1544 { 1702 {
1545 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 1703 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1546
1547 w_->pending = 0; 1704 w_->pending = 0;
1548 p->w = 0; 1705 p->w = 0;
1549 1706 return p->events;
1550 if (invoke)
1551 EV_CB_INVOKE (w_, p->events);
1552 } 1707 }
1708 else
1709 return 0;
1553} 1710}
1554 1711
1555void inline_size 1712void inline_size
1556pri_adjust (EV_P_ W w) 1713pri_adjust (EV_P_ W w)
1557{ 1714{
1576 w->active = 0; 1733 w->active = 0;
1577} 1734}
1578 1735
1579/*****************************************************************************/ 1736/*****************************************************************************/
1580 1737
1581void 1738void noinline
1582ev_io_start (EV_P_ ev_io *w) 1739ev_io_start (EV_P_ ev_io *w)
1583{ 1740{
1584 int fd = w->fd; 1741 int fd = w->fd;
1585 1742
1586 if (expect_false (ev_is_active (w))) 1743 if (expect_false (ev_is_active (w)))
1588 1745
1589 assert (("ev_io_start called with negative fd", fd >= 0)); 1746 assert (("ev_io_start called with negative fd", fd >= 0));
1590 1747
1591 ev_start (EV_A_ (W)w, 1); 1748 ev_start (EV_A_ (W)w, 1);
1592 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1749 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1593 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1750 wlist_add (&anfds[fd].head, (WL)w);
1594 1751
1595 fd_change (EV_A_ fd); 1752 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1753 w->events &= ~EV_IOFDSET;
1596} 1754}
1597 1755
1598void 1756void noinline
1599ev_io_stop (EV_P_ ev_io *w) 1757ev_io_stop (EV_P_ ev_io *w)
1600{ 1758{
1601 clear_pending (EV_A_ (W)w); 1759 clear_pending (EV_A_ (W)w);
1602 if (expect_false (!ev_is_active (w))) 1760 if (expect_false (!ev_is_active (w)))
1603 return; 1761 return;
1604 1762
1605 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1763 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1606 1764
1607 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1765 wlist_del (&anfds[w->fd].head, (WL)w);
1608 ev_stop (EV_A_ (W)w); 1766 ev_stop (EV_A_ (W)w);
1609 1767
1610 fd_change (EV_A_ w->fd); 1768 fd_change (EV_A_ w->fd, 1);
1611} 1769}
1612 1770
1613void 1771void noinline
1614ev_timer_start (EV_P_ ev_timer *w) 1772ev_timer_start (EV_P_ ev_timer *w)
1615{ 1773{
1616 if (expect_false (ev_is_active (w))) 1774 if (expect_false (ev_is_active (w)))
1617 return; 1775 return;
1618 1776
1619 ((WT)w)->at += mn_now; 1777 ((WT)w)->at += mn_now;
1620 1778
1621 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1779 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1622 1780
1623 ev_start (EV_A_ (W)w, ++timercnt); 1781 ev_start (EV_A_ (W)w, ++timercnt);
1624 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1782 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1625 timers [timercnt - 1] = w; 1783 timers [timercnt - 1] = (WT)w;
1626 upheap ((WT *)timers, timercnt - 1); 1784 upheap (timers, timercnt - 1);
1627 1785
1628 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1786 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1629} 1787}
1630 1788
1631void 1789void noinline
1632ev_timer_stop (EV_P_ ev_timer *w) 1790ev_timer_stop (EV_P_ ev_timer *w)
1633{ 1791{
1634 clear_pending (EV_A_ (W)w); 1792 clear_pending (EV_A_ (W)w);
1635 if (expect_false (!ev_is_active (w))) 1793 if (expect_false (!ev_is_active (w)))
1636 return; 1794 return;
1637 1795
1638 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1796 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1639 1797
1640 { 1798 {
1641 int active = ((W)w)->active; 1799 int active = ((W)w)->active;
1642 1800
1643 if (expect_true (--active < --timercnt)) 1801 if (expect_true (--active < --timercnt))
1644 { 1802 {
1645 timers [active] = timers [timercnt]; 1803 timers [active] = timers [timercnt];
1646 adjustheap ((WT *)timers, timercnt, active); 1804 adjustheap (timers, timercnt, active);
1647 } 1805 }
1648 } 1806 }
1649 1807
1650 ((WT)w)->at -= mn_now; 1808 ((WT)w)->at -= mn_now;
1651 1809
1652 ev_stop (EV_A_ (W)w); 1810 ev_stop (EV_A_ (W)w);
1653} 1811}
1654 1812
1655void 1813void noinline
1656ev_timer_again (EV_P_ ev_timer *w) 1814ev_timer_again (EV_P_ ev_timer *w)
1657{ 1815{
1658 if (ev_is_active (w)) 1816 if (ev_is_active (w))
1659 { 1817 {
1660 if (w->repeat) 1818 if (w->repeat)
1661 { 1819 {
1662 ((WT)w)->at = mn_now + w->repeat; 1820 ((WT)w)->at = mn_now + w->repeat;
1663 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1821 adjustheap (timers, timercnt, ((W)w)->active - 1);
1664 } 1822 }
1665 else 1823 else
1666 ev_timer_stop (EV_A_ w); 1824 ev_timer_stop (EV_A_ w);
1667 } 1825 }
1668 else if (w->repeat) 1826 else if (w->repeat)
1671 ev_timer_start (EV_A_ w); 1829 ev_timer_start (EV_A_ w);
1672 } 1830 }
1673} 1831}
1674 1832
1675#if EV_PERIODIC_ENABLE 1833#if EV_PERIODIC_ENABLE
1676void 1834void noinline
1677ev_periodic_start (EV_P_ ev_periodic *w) 1835ev_periodic_start (EV_P_ ev_periodic *w)
1678{ 1836{
1679 if (expect_false (ev_is_active (w))) 1837 if (expect_false (ev_is_active (w)))
1680 return; 1838 return;
1681 1839
1683 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1841 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1684 else if (w->interval) 1842 else if (w->interval)
1685 { 1843 {
1686 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1844 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1687 /* this formula differs from the one in periodic_reify because we do not always round up */ 1845 /* this formula differs from the one in periodic_reify because we do not always round up */
1688 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1846 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1689 } 1847 }
1848 else
1849 ((WT)w)->at = w->offset;
1690 1850
1691 ev_start (EV_A_ (W)w, ++periodiccnt); 1851 ev_start (EV_A_ (W)w, ++periodiccnt);
1692 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1852 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1693 periodics [periodiccnt - 1] = w; 1853 periodics [periodiccnt - 1] = (WT)w;
1694 upheap ((WT *)periodics, periodiccnt - 1); 1854 upheap (periodics, periodiccnt - 1);
1695 1855
1696 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1856 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1697} 1857}
1698 1858
1699void 1859void noinline
1700ev_periodic_stop (EV_P_ ev_periodic *w) 1860ev_periodic_stop (EV_P_ ev_periodic *w)
1701{ 1861{
1702 clear_pending (EV_A_ (W)w); 1862 clear_pending (EV_A_ (W)w);
1703 if (expect_false (!ev_is_active (w))) 1863 if (expect_false (!ev_is_active (w)))
1704 return; 1864 return;
1705 1865
1706 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1866 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1707 1867
1708 { 1868 {
1709 int active = ((W)w)->active; 1869 int active = ((W)w)->active;
1710 1870
1711 if (expect_true (--active < --periodiccnt)) 1871 if (expect_true (--active < --periodiccnt))
1712 { 1872 {
1713 periodics [active] = periodics [periodiccnt]; 1873 periodics [active] = periodics [periodiccnt];
1714 adjustheap ((WT *)periodics, periodiccnt, active); 1874 adjustheap (periodics, periodiccnt, active);
1715 } 1875 }
1716 } 1876 }
1717 1877
1718 ev_stop (EV_A_ (W)w); 1878 ev_stop (EV_A_ (W)w);
1719} 1879}
1720 1880
1721void 1881void noinline
1722ev_periodic_again (EV_P_ ev_periodic *w) 1882ev_periodic_again (EV_P_ ev_periodic *w)
1723{ 1883{
1724 /* TODO: use adjustheap and recalculation */ 1884 /* TODO: use adjustheap and recalculation */
1725 ev_periodic_stop (EV_A_ w); 1885 ev_periodic_stop (EV_A_ w);
1726 ev_periodic_start (EV_A_ w); 1886 ev_periodic_start (EV_A_ w);
1729 1889
1730#ifndef SA_RESTART 1890#ifndef SA_RESTART
1731# define SA_RESTART 0 1891# define SA_RESTART 0
1732#endif 1892#endif
1733 1893
1734void 1894void noinline
1735ev_signal_start (EV_P_ ev_signal *w) 1895ev_signal_start (EV_P_ ev_signal *w)
1736{ 1896{
1737#if EV_MULTIPLICITY 1897#if EV_MULTIPLICITY
1738 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1898 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1739#endif 1899#endif
1740 if (expect_false (ev_is_active (w))) 1900 if (expect_false (ev_is_active (w)))
1741 return; 1901 return;
1742 1902
1743 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1903 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1744 1904
1905 evpipe_init (EV_A);
1906
1907 {
1908#ifndef _WIN32
1909 sigset_t full, prev;
1910 sigfillset (&full);
1911 sigprocmask (SIG_SETMASK, &full, &prev);
1912#endif
1913
1914 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1915
1916#ifndef _WIN32
1917 sigprocmask (SIG_SETMASK, &prev, 0);
1918#endif
1919 }
1920
1745 ev_start (EV_A_ (W)w, 1); 1921 ev_start (EV_A_ (W)w, 1);
1746 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1747 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1922 wlist_add (&signals [w->signum - 1].head, (WL)w);
1748 1923
1749 if (!((WL)w)->next) 1924 if (!((WL)w)->next)
1750 { 1925 {
1751#if _WIN32 1926#if _WIN32
1752 signal (w->signum, sighandler); 1927 signal (w->signum, sighandler);
1758 sigaction (w->signum, &sa, 0); 1933 sigaction (w->signum, &sa, 0);
1759#endif 1934#endif
1760 } 1935 }
1761} 1936}
1762 1937
1763void 1938void noinline
1764ev_signal_stop (EV_P_ ev_signal *w) 1939ev_signal_stop (EV_P_ ev_signal *w)
1765{ 1940{
1766 clear_pending (EV_A_ (W)w); 1941 clear_pending (EV_A_ (W)w);
1767 if (expect_false (!ev_is_active (w))) 1942 if (expect_false (!ev_is_active (w)))
1768 return; 1943 return;
1769 1944
1770 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1945 wlist_del (&signals [w->signum - 1].head, (WL)w);
1771 ev_stop (EV_A_ (W)w); 1946 ev_stop (EV_A_ (W)w);
1772 1947
1773 if (!signals [w->signum - 1].head) 1948 if (!signals [w->signum - 1].head)
1774 signal (w->signum, SIG_DFL); 1949 signal (w->signum, SIG_DFL);
1775} 1950}
1782#endif 1957#endif
1783 if (expect_false (ev_is_active (w))) 1958 if (expect_false (ev_is_active (w)))
1784 return; 1959 return;
1785 1960
1786 ev_start (EV_A_ (W)w, 1); 1961 ev_start (EV_A_ (W)w, 1);
1787 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1962 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1788} 1963}
1789 1964
1790void 1965void
1791ev_child_stop (EV_P_ ev_child *w) 1966ev_child_stop (EV_P_ ev_child *w)
1792{ 1967{
1793 clear_pending (EV_A_ (W)w); 1968 clear_pending (EV_A_ (W)w);
1794 if (expect_false (!ev_is_active (w))) 1969 if (expect_false (!ev_is_active (w)))
1795 return; 1970 return;
1796 1971
1797 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1972 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1798 ev_stop (EV_A_ (W)w); 1973 ev_stop (EV_A_ (W)w);
1799} 1974}
1800 1975
1801#if EV_STAT_ENABLE 1976#if EV_STAT_ENABLE
1802 1977
2144 2319
2145#if EV_EMBED_ENABLE 2320#if EV_EMBED_ENABLE
2146void noinline 2321void noinline
2147ev_embed_sweep (EV_P_ ev_embed *w) 2322ev_embed_sweep (EV_P_ ev_embed *w)
2148{ 2323{
2149 ev_loop (w->loop, EVLOOP_NONBLOCK); 2324 ev_loop (w->other, EVLOOP_NONBLOCK);
2150} 2325}
2151 2326
2152static void 2327static void
2153embed_cb (EV_P_ ev_io *io, int revents) 2328embed_io_cb (EV_P_ ev_io *io, int revents)
2154{ 2329{
2155 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2330 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2156 2331
2157 if (ev_cb (w)) 2332 if (ev_cb (w))
2158 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2333 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2159 else 2334 else
2160 ev_embed_sweep (loop, w); 2335 ev_loop (w->other, EVLOOP_NONBLOCK);
2161} 2336}
2337
2338static void
2339embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2340{
2341 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2342
2343 {
2344 struct ev_loop *loop = w->other;
2345
2346 while (fdchangecnt)
2347 {
2348 fd_reify (EV_A);
2349 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2350 }
2351 }
2352}
2353
2354#if 0
2355static void
2356embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2357{
2358 ev_idle_stop (EV_A_ idle);
2359}
2360#endif
2162 2361
2163void 2362void
2164ev_embed_start (EV_P_ ev_embed *w) 2363ev_embed_start (EV_P_ ev_embed *w)
2165{ 2364{
2166 if (expect_false (ev_is_active (w))) 2365 if (expect_false (ev_is_active (w)))
2167 return; 2366 return;
2168 2367
2169 { 2368 {
2170 struct ev_loop *loop = w->loop; 2369 struct ev_loop *loop = w->other;
2171 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2370 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2172 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2371 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2173 } 2372 }
2174 2373
2175 ev_set_priority (&w->io, ev_priority (w)); 2374 ev_set_priority (&w->io, ev_priority (w));
2176 ev_io_start (EV_A_ &w->io); 2375 ev_io_start (EV_A_ &w->io);
2177 2376
2377 ev_prepare_init (&w->prepare, embed_prepare_cb);
2378 ev_set_priority (&w->prepare, EV_MINPRI);
2379 ev_prepare_start (EV_A_ &w->prepare);
2380
2381 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2382
2178 ev_start (EV_A_ (W)w, 1); 2383 ev_start (EV_A_ (W)w, 1);
2179} 2384}
2180 2385
2181void 2386void
2182ev_embed_stop (EV_P_ ev_embed *w) 2387ev_embed_stop (EV_P_ ev_embed *w)
2184 clear_pending (EV_A_ (W)w); 2389 clear_pending (EV_A_ (W)w);
2185 if (expect_false (!ev_is_active (w))) 2390 if (expect_false (!ev_is_active (w)))
2186 return; 2391 return;
2187 2392
2188 ev_io_stop (EV_A_ &w->io); 2393 ev_io_stop (EV_A_ &w->io);
2394 ev_prepare_stop (EV_A_ &w->prepare);
2189 2395
2190 ev_stop (EV_A_ (W)w); 2396 ev_stop (EV_A_ (W)w);
2191} 2397}
2192#endif 2398#endif
2193 2399
2218 2424
2219 ev_stop (EV_A_ (W)w); 2425 ev_stop (EV_A_ (W)w);
2220} 2426}
2221#endif 2427#endif
2222 2428
2429#if EV_ASYNC_ENABLE
2430void
2431ev_async_start (EV_P_ ev_async *w)
2432{
2433 if (expect_false (ev_is_active (w)))
2434 return;
2435
2436 evpipe_init (EV_A);
2437
2438 ev_start (EV_A_ (W)w, ++asynccnt);
2439 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2440 asyncs [asynccnt - 1] = w;
2441}
2442
2443void
2444ev_async_stop (EV_P_ ev_async *w)
2445{
2446 clear_pending (EV_A_ (W)w);
2447 if (expect_false (!ev_is_active (w)))
2448 return;
2449
2450 {
2451 int active = ((W)w)->active;
2452 asyncs [active - 1] = asyncs [--asynccnt];
2453 ((W)asyncs [active - 1])->active = active;
2454 }
2455
2456 ev_stop (EV_A_ (W)w);
2457}
2458
2459void
2460ev_async_send (EV_P_ ev_async *w)
2461{
2462 w->sent = 1;
2463 evpipe_write (EV_A_ 0, 1);
2464}
2465#endif
2466
2223/*****************************************************************************/ 2467/*****************************************************************************/
2224 2468
2225struct ev_once 2469struct ev_once
2226{ 2470{
2227 ev_io io; 2471 ev_io io;
2282 ev_timer_set (&once->to, timeout, 0.); 2526 ev_timer_set (&once->to, timeout, 0.);
2283 ev_timer_start (EV_A_ &once->to); 2527 ev_timer_start (EV_A_ &once->to);
2284 } 2528 }
2285} 2529}
2286 2530
2531#if EV_MULTIPLICITY
2532 #include "ev_wrap.h"
2533#endif
2534
2287#ifdef __cplusplus 2535#ifdef __cplusplus
2288} 2536}
2289#endif 2537#endif
2290 2538

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines