ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.166 by root, Sat Dec 8 03:53:36 2007 UTC vs.
Revision 1.252 by root, Thu May 22 03:43:32 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
250#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL
252#endif
253
254#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif
257
258/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 259
197#ifndef CLOCK_MONOTONIC 260#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 261# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 262# define EV_USE_MONOTONIC 0
200#endif 263#endif
202#ifndef CLOCK_REALTIME 265#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 266# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 267# define EV_USE_REALTIME 0
205#endif 268#endif
206 269
270#if !EV_STAT_ENABLE
271# undef EV_USE_INOTIFY
272# define EV_USE_INOTIFY 0
273#endif
274
275#if !EV_USE_NANOSLEEP
276# ifndef _WIN32
277# include <sys/select.h>
278# endif
279#endif
280
281#if EV_USE_INOTIFY
282# include <sys/inotify.h>
283#endif
284
207#if EV_SELECT_IS_WINSOCKET 285#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 286# include <winsock.h>
209#endif 287#endif
210 288
211#if !EV_STAT_ENABLE 289#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 290/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
291# include <stdint.h>
292# ifdef __cplusplus
293extern "C" {
213#endif 294# endif
214 295int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 296# ifdef __cplusplus
216# include <sys/inotify.h> 297}
298# endif
217#endif 299#endif
218 300
219/**/ 301/**/
302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
308
309/*
310 * This is used to avoid floating point rounding problems.
311 * It is added to ev_rt_now when scheduling periodics
312 * to ensure progress, time-wise, even when rounding
313 * errors are against us.
314 * This value is good at least till the year 4000.
315 * Better solutions welcome.
316 */
317#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 318
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 319#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 320#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 321/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 322
225#if __GNUC__ >= 3 323#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 324# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 325# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 326#else
236# define expect(expr,value) (expr) 327# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 328# define noinline
329# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
330# define inline
331# endif
240#endif 332#endif
241 333
242#define expect_false(expr) expect ((expr) != 0, 0) 334#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 335#define expect_true(expr) expect ((expr) != 0, 1)
336#define inline_size static inline
337
338#if EV_MINIMAL
339# define inline_speed static noinline
340#else
341# define inline_speed static inline
342#endif
244 343
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 344#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 345#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 346
248#define EMPTY /* required for microsofts broken pseudo-c compiler */ 347#define EMPTY /* required for microsofts broken pseudo-c compiler */
250 349
251typedef ev_watcher *W; 350typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 351typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 352typedef ev_watcher_time *WT;
254 353
354#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at
356
357#if EV_USE_MONOTONIC
358/* sig_atomic_t is used to avoid per-thread variables or locking but still */
359/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
361#endif
256 362
257#ifdef _WIN32 363#ifdef _WIN32
258# include "ev_win32.c" 364# include "ev_win32.c"
259#endif 365#endif
260 366
281 perror (msg); 387 perror (msg);
282 abort (); 388 abort ();
283 } 389 }
284} 390}
285 391
392static void *
393ev_realloc_emul (void *ptr, long size)
394{
395 /* some systems, notably openbsd and darwin, fail to properly
396 * implement realloc (x, 0) (as required by both ansi c-98 and
397 * the single unix specification, so work around them here.
398 */
399
400 if (size)
401 return realloc (ptr, size);
402
403 free (ptr);
404 return 0;
405}
406
286static void *(*alloc)(void *ptr, long size); 407static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 408
288void 409void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 410ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 411{
291 alloc = cb; 412 alloc = cb;
292} 413}
293 414
294inline_speed void * 415inline_speed void *
295ev_realloc (void *ptr, long size) 416ev_realloc (void *ptr, long size)
296{ 417{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 418 ptr = alloc (ptr, size);
298 419
299 if (!ptr && size) 420 if (!ptr && size)
300 { 421 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 422 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 423 abort ();
325 W w; 446 W w;
326 int events; 447 int events;
327} ANPENDING; 448} ANPENDING;
328 449
329#if EV_USE_INOTIFY 450#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */
330typedef struct 452typedef struct
331{ 453{
332 WL head; 454 WL head;
333} ANFS; 455} ANFS;
456#endif
457
458/* Heap Entry */
459#if EV_HEAP_CACHE_AT
460 typedef struct {
461 ev_tstamp at;
462 WT w;
463 } ANHE;
464
465 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else
469 typedef WT ANHE;
470
471 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he)
334#endif 474#endif
335 475
336#if EV_MULTIPLICITY 476#if EV_MULTIPLICITY
337 477
338 struct ev_loop 478 struct ev_loop
396{ 536{
397 return ev_rt_now; 537 return ev_rt_now;
398} 538}
399#endif 539#endif
400 540
541void
542ev_sleep (ev_tstamp delay)
543{
544 if (delay > 0.)
545 {
546#if EV_USE_NANOSLEEP
547 struct timespec ts;
548
549 ts.tv_sec = (time_t)delay;
550 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
551
552 nanosleep (&ts, 0);
553#elif defined(_WIN32)
554 Sleep ((unsigned long)(delay * 1e3));
555#else
556 struct timeval tv;
557
558 tv.tv_sec = (time_t)delay;
559 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
560
561 select (0, 0, 0, 0, &tv);
562#endif
563 }
564}
565
566/*****************************************************************************/
567
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
569
401int inline_size 570int inline_size
402array_nextsize (int elem, int cur, int cnt) 571array_nextsize (int elem, int cur, int cnt)
403{ 572{
404 int ncur = cur + 1; 573 int ncur = cur + 1;
405 574
406 do 575 do
407 ncur <<= 1; 576 ncur <<= 1;
408 while (cnt > ncur); 577 while (cnt > ncur);
409 578
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 579 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
411 if (elem * ncur > 4096) 580 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
412 { 581 {
413 ncur *= elem; 582 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 583 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
415 ncur = ncur - sizeof (void *) * 4; 584 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem; 585 ncur /= elem;
417 } 586 }
418 587
419 return ncur; 588 return ncur;
420} 589}
421 590
422inline_speed void * 591static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 592array_realloc (int elem, void *base, int *cur, int cnt)
424{ 593{
425 *cur = array_nextsize (elem, *cur, cnt); 594 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 595 return ev_realloc (base, elem * *cur);
427} 596}
452 621
453void noinline 622void noinline
454ev_feed_event (EV_P_ void *w, int revents) 623ev_feed_event (EV_P_ void *w, int revents)
455{ 624{
456 W w_ = (W)w; 625 W w_ = (W)w;
626 int pri = ABSPRI (w_);
457 627
458 if (expect_false (w_->pending)) 628 if (expect_false (w_->pending))
629 pendings [pri][w_->pending - 1].events |= revents;
630 else
459 { 631 {
632 w_->pending = ++pendingcnt [pri];
633 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
634 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 635 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 636 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 637}
469 638
470void inline_size 639void inline_speed
471queue_events (EV_P_ W *events, int eventcnt, int type) 640queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 641{
473 int i; 642 int i;
474 643
475 for (i = 0; i < eventcnt; ++i) 644 for (i = 0; i < eventcnt; ++i)
507} 676}
508 677
509void 678void
510ev_feed_fd_event (EV_P_ int fd, int revents) 679ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 680{
681 if (fd >= 0 && fd < anfdmax)
512 fd_event (EV_A_ fd, revents); 682 fd_event (EV_A_ fd, revents);
513} 683}
514 684
515void inline_size 685void inline_size
516fd_reify (EV_P) 686fd_reify (EV_P)
517{ 687{
521 { 691 {
522 int fd = fdchanges [i]; 692 int fd = fdchanges [i];
523 ANFD *anfd = anfds + fd; 693 ANFD *anfd = anfds + fd;
524 ev_io *w; 694 ev_io *w;
525 695
526 int events = 0; 696 unsigned char events = 0;
527 697
528 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 698 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
529 events |= w->events; 699 events |= (unsigned char)w->events;
530 700
531#if EV_SELECT_IS_WINSOCKET 701#if EV_SELECT_IS_WINSOCKET
532 if (events) 702 if (events)
533 { 703 {
534 unsigned long argp; 704 unsigned long argp;
705 #ifdef EV_FD_TO_WIN32_HANDLE
706 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
707 #else
535 anfd->handle = _get_osfhandle (fd); 708 anfd->handle = _get_osfhandle (fd);
709 #endif
536 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 710 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
537 } 711 }
538#endif 712#endif
539 713
714 {
715 unsigned char o_events = anfd->events;
716 unsigned char o_reify = anfd->reify;
717
540 anfd->reify = 0; 718 anfd->reify = 0;
541
542 backend_modify (EV_A_ fd, anfd->events, events);
543 anfd->events = events; 719 anfd->events = events;
720
721 if (o_events != events || o_reify & EV_IOFDSET)
722 backend_modify (EV_A_ fd, o_events, events);
723 }
544 } 724 }
545 725
546 fdchangecnt = 0; 726 fdchangecnt = 0;
547} 727}
548 728
549void inline_size 729void inline_size
550fd_change (EV_P_ int fd) 730fd_change (EV_P_ int fd, int flags)
551{ 731{
552 if (expect_false (anfds [fd].reify)) 732 unsigned char reify = anfds [fd].reify;
553 return;
554
555 anfds [fd].reify = 1; 733 anfds [fd].reify |= flags;
556 734
735 if (expect_true (!reify))
736 {
557 ++fdchangecnt; 737 ++fdchangecnt;
558 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 738 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
559 fdchanges [fdchangecnt - 1] = fd; 739 fdchanges [fdchangecnt - 1] = fd;
740 }
560} 741}
561 742
562void inline_speed 743void inline_speed
563fd_kill (EV_P_ int fd) 744fd_kill (EV_P_ int fd)
564{ 745{
615 796
616 for (fd = 0; fd < anfdmax; ++fd) 797 for (fd = 0; fd < anfdmax; ++fd)
617 if (anfds [fd].events) 798 if (anfds [fd].events)
618 { 799 {
619 anfds [fd].events = 0; 800 anfds [fd].events = 0;
620 fd_change (EV_A_ fd); 801 fd_change (EV_A_ fd, EV_IOFDSET | 1);
621 } 802 }
622} 803}
623 804
624/*****************************************************************************/ 805/*****************************************************************************/
625 806
807/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree.
811 */
812
813/*
814 * at the moment we allow libev the luxury of two heaps,
815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
816 * which is more cache-efficient.
817 * the difference is about 5% with 50000+ watchers.
818 */
819#if EV_USE_4HEAP
820
821#define DHEAP 4
822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k))
825
826/* away from the root */
626void inline_speed 827void inline_speed
627upheap (WT *heap, int k) 828downheap (ANHE *heap, int N, int k)
628{ 829{
629 WT w = heap [k]; 830 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0;
630 832
631 while (k && heap [k >> 1]->at > w->at) 833 for (;;)
632 {
633 heap [k] = heap [k >> 1];
634 ((W)heap [k])->active = k + 1;
635 k >>= 1;
636 } 834 {
835 ev_tstamp minat;
836 ANHE *minpos;
837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
637 838
839 /* find minimum child */
840 if (expect_true (pos + DHEAP - 1 < E))
841 {
842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
846 }
847 else if (pos < E)
848 {
849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
851 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
852 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
853 }
854 else
855 break;
856
857 if (ANHE_at (he) <= minat)
858 break;
859
860 heap [k] = *minpos;
861 ev_active (ANHE_w (*minpos)) = k;
862
863 k = minpos - heap;
864 }
865
638 heap [k] = w; 866 heap [k] = he;
639 ((W)heap [k])->active = k + 1; 867 ev_active (ANHE_w (he)) = k;
640
641} 868}
642 869
870#else /* 4HEAP */
871
872#define HEAP0 1
873#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p))
875
876/* away from the root */
643void inline_speed 877void inline_speed
644downheap (WT *heap, int N, int k) 878downheap (ANHE *heap, int N, int k)
645{ 879{
646 WT w = heap [k]; 880 ANHE he = heap [k];
647 881
648 while (k < (N >> 1)) 882 for (;;)
649 { 883 {
650 int j = k << 1; 884 int c = k << 1;
651 885
652 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 886 if (c > N + HEAP0 - 1)
653 ++j;
654
655 if (w->at <= heap [j]->at)
656 break; 887 break;
657 888
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0;
891
892 if (ANHE_at (he) <= ANHE_at (heap [c]))
893 break;
894
658 heap [k] = heap [j]; 895 heap [k] = heap [c];
659 ((W)heap [k])->active = k + 1; 896 ev_active (ANHE_w (heap [k])) = k;
897
660 k = j; 898 k = c;
661 } 899 }
662 900
663 heap [k] = w; 901 heap [k] = he;
664 ((W)heap [k])->active = k + 1; 902 ev_active (ANHE_w (he)) = k;
903}
904#endif
905
906/* towards the root */
907void inline_speed
908upheap (ANHE *heap, int k)
909{
910 ANHE he = heap [k];
911
912 for (;;)
913 {
914 int p = HPARENT (k);
915
916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
917 break;
918
919 heap [k] = heap [p];
920 ev_active (ANHE_w (heap [k])) = k;
921 k = p;
922 }
923
924 heap [k] = he;
925 ev_active (ANHE_w (he)) = k;
665} 926}
666 927
667void inline_size 928void inline_size
668adjustheap (WT *heap, int N, int k) 929adjustheap (ANHE *heap, int N, int k)
669{ 930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
670 upheap (heap, k); 932 upheap (heap, k);
933 else
671 downheap (heap, N, k); 934 downheap (heap, N, k);
935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
944 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
945 for (i = 0; i < N; ++i)
946 upheap (heap, i + HEAP0);
672} 947}
673 948
674/*****************************************************************************/ 949/*****************************************************************************/
675 950
676typedef struct 951typedef struct
677{ 952{
678 WL head; 953 WL head;
679 sig_atomic_t volatile gotsig; 954 EV_ATOMIC_T gotsig;
680} ANSIG; 955} ANSIG;
681 956
682static ANSIG *signals; 957static ANSIG *signals;
683static int signalmax; 958static int signalmax;
684 959
685static int sigpipe [2]; 960static EV_ATOMIC_T gotsig;
686static sig_atomic_t volatile gotsig;
687static ev_io sigev;
688 961
689void inline_size 962void inline_size
690signals_init (ANSIG *base, int count) 963signals_init (ANSIG *base, int count)
691{ 964{
692 while (count--) 965 while (count--)
696 969
697 ++base; 970 ++base;
698 } 971 }
699} 972}
700 973
701static void 974/*****************************************************************************/
702sighandler (int signum)
703{
704#if _WIN32
705 signal (signum, sighandler);
706#endif
707 975
708 signals [signum - 1].gotsig = 1;
709
710 if (!gotsig)
711 {
712 int old_errno = errno;
713 gotsig = 1;
714 write (sigpipe [1], &signum, 1);
715 errno = old_errno;
716 }
717}
718
719void noinline
720ev_feed_signal_event (EV_P_ int signum)
721{
722 WL w;
723
724#if EV_MULTIPLICITY
725 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
726#endif
727
728 --signum;
729
730 if (signum < 0 || signum >= signalmax)
731 return;
732
733 signals [signum].gotsig = 0;
734
735 for (w = signals [signum].head; w; w = w->next)
736 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
737}
738
739static void
740sigcb (EV_P_ ev_io *iow, int revents)
741{
742 int signum;
743
744 read (sigpipe [0], &revents, 1);
745 gotsig = 0;
746
747 for (signum = signalmax; signum--; )
748 if (signals [signum].gotsig)
749 ev_feed_signal_event (EV_A_ signum + 1);
750}
751
752void inline_size 976void inline_speed
753fd_intern (int fd) 977fd_intern (int fd)
754{ 978{
755#ifdef _WIN32 979#ifdef _WIN32
756 int arg = 1; 980 int arg = 1;
757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 981 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
760 fcntl (fd, F_SETFL, O_NONBLOCK); 984 fcntl (fd, F_SETFL, O_NONBLOCK);
761#endif 985#endif
762} 986}
763 987
764static void noinline 988static void noinline
765siginit (EV_P) 989evpipe_init (EV_P)
766{ 990{
991 if (!ev_is_active (&pipeev))
992 {
993#if EV_USE_EVENTFD
994 if ((evfd = eventfd (0, 0)) >= 0)
995 {
996 evpipe [0] = -1;
997 fd_intern (evfd);
998 ev_io_set (&pipeev, evfd, EV_READ);
999 }
1000 else
1001#endif
1002 {
1003 while (pipe (evpipe))
1004 syserr ("(libev) error creating signal/async pipe");
1005
767 fd_intern (sigpipe [0]); 1006 fd_intern (evpipe [0]);
768 fd_intern (sigpipe [1]); 1007 fd_intern (evpipe [1]);
1008 ev_io_set (&pipeev, evpipe [0], EV_READ);
1009 }
769 1010
770 ev_io_set (&sigev, sigpipe [0], EV_READ);
771 ev_io_start (EV_A_ &sigev); 1011 ev_io_start (EV_A_ &pipeev);
772 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1012 ev_unref (EV_A); /* watcher should not keep loop alive */
1013 }
1014}
1015
1016void inline_size
1017evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1018{
1019 if (!*flag)
1020 {
1021 int old_errno = errno; /* save errno because write might clobber it */
1022
1023 *flag = 1;
1024
1025#if EV_USE_EVENTFD
1026 if (evfd >= 0)
1027 {
1028 uint64_t counter = 1;
1029 write (evfd, &counter, sizeof (uint64_t));
1030 }
1031 else
1032#endif
1033 write (evpipe [1], &old_errno, 1);
1034
1035 errno = old_errno;
1036 }
1037}
1038
1039static void
1040pipecb (EV_P_ ev_io *iow, int revents)
1041{
1042#if EV_USE_EVENTFD
1043 if (evfd >= 0)
1044 {
1045 uint64_t counter;
1046 read (evfd, &counter, sizeof (uint64_t));
1047 }
1048 else
1049#endif
1050 {
1051 char dummy;
1052 read (evpipe [0], &dummy, 1);
1053 }
1054
1055 if (gotsig && ev_is_default_loop (EV_A))
1056 {
1057 int signum;
1058 gotsig = 0;
1059
1060 for (signum = signalmax; signum--; )
1061 if (signals [signum].gotsig)
1062 ev_feed_signal_event (EV_A_ signum + 1);
1063 }
1064
1065#if EV_ASYNC_ENABLE
1066 if (gotasync)
1067 {
1068 int i;
1069 gotasync = 0;
1070
1071 for (i = asynccnt; i--; )
1072 if (asyncs [i]->sent)
1073 {
1074 asyncs [i]->sent = 0;
1075 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1076 }
1077 }
1078#endif
773} 1079}
774 1080
775/*****************************************************************************/ 1081/*****************************************************************************/
776 1082
1083static void
1084ev_sighandler (int signum)
1085{
1086#if EV_MULTIPLICITY
1087 struct ev_loop *loop = &default_loop_struct;
1088#endif
1089
1090#if _WIN32
1091 signal (signum, ev_sighandler);
1092#endif
1093
1094 signals [signum - 1].gotsig = 1;
1095 evpipe_write (EV_A_ &gotsig);
1096}
1097
1098void noinline
1099ev_feed_signal_event (EV_P_ int signum)
1100{
1101 WL w;
1102
1103#if EV_MULTIPLICITY
1104 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1105#endif
1106
1107 --signum;
1108
1109 if (signum < 0 || signum >= signalmax)
1110 return;
1111
1112 signals [signum].gotsig = 0;
1113
1114 for (w = signals [signum].head; w; w = w->next)
1115 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1116}
1117
1118/*****************************************************************************/
1119
777static ev_child *childs [EV_PID_HASHSIZE]; 1120static WL childs [EV_PID_HASHSIZE];
778 1121
779#ifndef _WIN32 1122#ifndef _WIN32
780 1123
781static ev_signal childev; 1124static ev_signal childev;
782 1125
1126#ifndef WIFCONTINUED
1127# define WIFCONTINUED(status) 0
1128#endif
1129
783void inline_speed 1130void inline_speed
784child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1131child_reap (EV_P_ int chain, int pid, int status)
785{ 1132{
786 ev_child *w; 1133 ev_child *w;
1134 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
787 1135
788 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1136 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1137 {
789 if (w->pid == pid || !w->pid) 1138 if ((w->pid == pid || !w->pid)
1139 && (!traced || (w->flags & 1)))
790 { 1140 {
791 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1141 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
792 w->rpid = pid; 1142 w->rpid = pid;
793 w->rstatus = status; 1143 w->rstatus = status;
794 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1144 ev_feed_event (EV_A_ (W)w, EV_CHILD);
795 } 1145 }
1146 }
796} 1147}
797 1148
798#ifndef WCONTINUED 1149#ifndef WCONTINUED
799# define WCONTINUED 0 1150# define WCONTINUED 0
800#endif 1151#endif
809 if (!WCONTINUED 1160 if (!WCONTINUED
810 || errno != EINVAL 1161 || errno != EINVAL
811 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1162 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
812 return; 1163 return;
813 1164
814 /* make sure we are called again until all childs have been reaped */ 1165 /* make sure we are called again until all children have been reaped */
815 /* we need to do it this way so that the callback gets called before we continue */ 1166 /* we need to do it this way so that the callback gets called before we continue */
816 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1167 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
817 1168
818 child_reap (EV_A_ sw, pid, pid, status); 1169 child_reap (EV_A_ pid, pid, status);
819 if (EV_PID_HASHSIZE > 1) 1170 if (EV_PID_HASHSIZE > 1)
820 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1171 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
821} 1172}
822 1173
823#endif 1174#endif
824 1175
825/*****************************************************************************/ 1176/*****************************************************************************/
897} 1248}
898 1249
899unsigned int 1250unsigned int
900ev_embeddable_backends (void) 1251ev_embeddable_backends (void)
901{ 1252{
902 return EVBACKEND_EPOLL 1253 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
903 | EVBACKEND_KQUEUE 1254
904 | EVBACKEND_PORT; 1255 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1256 /* please fix it and tell me how to detect the fix */
1257 flags &= ~EVBACKEND_EPOLL;
1258
1259 return flags;
905} 1260}
906 1261
907unsigned int 1262unsigned int
908ev_backend (EV_P) 1263ev_backend (EV_P)
909{ 1264{
912 1267
913unsigned int 1268unsigned int
914ev_loop_count (EV_P) 1269ev_loop_count (EV_P)
915{ 1270{
916 return loop_count; 1271 return loop_count;
1272}
1273
1274void
1275ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1276{
1277 io_blocktime = interval;
1278}
1279
1280void
1281ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1282{
1283 timeout_blocktime = interval;
917} 1284}
918 1285
919static void noinline 1286static void noinline
920loop_init (EV_P_ unsigned int flags) 1287loop_init (EV_P_ unsigned int flags)
921{ 1288{
927 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1294 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
928 have_monotonic = 1; 1295 have_monotonic = 1;
929 } 1296 }
930#endif 1297#endif
931 1298
932 ev_rt_now = ev_time (); 1299 ev_rt_now = ev_time ();
933 mn_now = get_clock (); 1300 mn_now = get_clock ();
934 now_floor = mn_now; 1301 now_floor = mn_now;
935 rtmn_diff = ev_rt_now - mn_now; 1302 rtmn_diff = ev_rt_now - mn_now;
1303
1304 io_blocktime = 0.;
1305 timeout_blocktime = 0.;
1306 backend = 0;
1307 backend_fd = -1;
1308 gotasync = 0;
1309#if EV_USE_INOTIFY
1310 fs_fd = -2;
1311#endif
936 1312
937 /* pid check not overridable via env */ 1313 /* pid check not overridable via env */
938#ifndef _WIN32 1314#ifndef _WIN32
939 if (flags & EVFLAG_FORKCHECK) 1315 if (flags & EVFLAG_FORKCHECK)
940 curpid = getpid (); 1316 curpid = getpid ();
943 if (!(flags & EVFLAG_NOENV) 1319 if (!(flags & EVFLAG_NOENV)
944 && !enable_secure () 1320 && !enable_secure ()
945 && getenv ("LIBEV_FLAGS")) 1321 && getenv ("LIBEV_FLAGS"))
946 flags = atoi (getenv ("LIBEV_FLAGS")); 1322 flags = atoi (getenv ("LIBEV_FLAGS"));
947 1323
948 if (!(flags & 0x0000ffffUL)) 1324 if (!(flags & 0x0000ffffU))
949 flags |= ev_recommended_backends (); 1325 flags |= ev_recommended_backends ();
950
951 backend = 0;
952 backend_fd = -1;
953#if EV_USE_INOTIFY
954 fs_fd = -2;
955#endif
956 1326
957#if EV_USE_PORT 1327#if EV_USE_PORT
958 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1328 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
959#endif 1329#endif
960#if EV_USE_KQUEUE 1330#if EV_USE_KQUEUE
968#endif 1338#endif
969#if EV_USE_SELECT 1339#if EV_USE_SELECT
970 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1340 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
971#endif 1341#endif
972 1342
973 ev_init (&sigev, sigcb); 1343 ev_init (&pipeev, pipecb);
974 ev_set_priority (&sigev, EV_MAXPRI); 1344 ev_set_priority (&pipeev, EV_MAXPRI);
975 } 1345 }
976} 1346}
977 1347
978static void noinline 1348static void noinline
979loop_destroy (EV_P) 1349loop_destroy (EV_P)
980{ 1350{
981 int i; 1351 int i;
1352
1353 if (ev_is_active (&pipeev))
1354 {
1355 ev_ref (EV_A); /* signal watcher */
1356 ev_io_stop (EV_A_ &pipeev);
1357
1358#if EV_USE_EVENTFD
1359 if (evfd >= 0)
1360 close (evfd);
1361#endif
1362
1363 if (evpipe [0] >= 0)
1364 {
1365 close (evpipe [0]);
1366 close (evpipe [1]);
1367 }
1368 }
982 1369
983#if EV_USE_INOTIFY 1370#if EV_USE_INOTIFY
984 if (fs_fd >= 0) 1371 if (fs_fd >= 0)
985 close (fs_fd); 1372 close (fs_fd);
986#endif 1373#endif
1009 array_free (pending, [i]); 1396 array_free (pending, [i]);
1010#if EV_IDLE_ENABLE 1397#if EV_IDLE_ENABLE
1011 array_free (idle, [i]); 1398 array_free (idle, [i]);
1012#endif 1399#endif
1013 } 1400 }
1401
1402 ev_free (anfds); anfdmax = 0;
1014 1403
1015 /* have to use the microsoft-never-gets-it-right macro */ 1404 /* have to use the microsoft-never-gets-it-right macro */
1016 array_free (fdchange, EMPTY); 1405 array_free (fdchange, EMPTY);
1017 array_free (timer, EMPTY); 1406 array_free (timer, EMPTY);
1018#if EV_PERIODIC_ENABLE 1407#if EV_PERIODIC_ENABLE
1019 array_free (periodic, EMPTY); 1408 array_free (periodic, EMPTY);
1020#endif 1409#endif
1410#if EV_FORK_ENABLE
1411 array_free (fork, EMPTY);
1412#endif
1021 array_free (prepare, EMPTY); 1413 array_free (prepare, EMPTY);
1022 array_free (check, EMPTY); 1414 array_free (check, EMPTY);
1415#if EV_ASYNC_ENABLE
1416 array_free (async, EMPTY);
1417#endif
1023 1418
1024 backend = 0; 1419 backend = 0;
1025} 1420}
1026 1421
1422#if EV_USE_INOTIFY
1027void inline_size infy_fork (EV_P); 1423void inline_size infy_fork (EV_P);
1424#endif
1028 1425
1029void inline_size 1426void inline_size
1030loop_fork (EV_P) 1427loop_fork (EV_P)
1031{ 1428{
1032#if EV_USE_PORT 1429#if EV_USE_PORT
1040#endif 1437#endif
1041#if EV_USE_INOTIFY 1438#if EV_USE_INOTIFY
1042 infy_fork (EV_A); 1439 infy_fork (EV_A);
1043#endif 1440#endif
1044 1441
1045 if (ev_is_active (&sigev)) 1442 if (ev_is_active (&pipeev))
1046 { 1443 {
1047 /* default loop */ 1444 /* this "locks" the handlers against writing to the pipe */
1445 /* while we modify the fd vars */
1446 gotsig = 1;
1447#if EV_ASYNC_ENABLE
1448 gotasync = 1;
1449#endif
1048 1450
1049 ev_ref (EV_A); 1451 ev_ref (EV_A);
1050 ev_io_stop (EV_A_ &sigev); 1452 ev_io_stop (EV_A_ &pipeev);
1453
1454#if EV_USE_EVENTFD
1455 if (evfd >= 0)
1456 close (evfd);
1457#endif
1458
1459 if (evpipe [0] >= 0)
1460 {
1051 close (sigpipe [0]); 1461 close (evpipe [0]);
1052 close (sigpipe [1]); 1462 close (evpipe [1]);
1463 }
1053 1464
1054 while (pipe (sigpipe))
1055 syserr ("(libev) error creating pipe");
1056
1057 siginit (EV_A); 1465 evpipe_init (EV_A);
1466 /* now iterate over everything, in case we missed something */
1467 pipecb (EV_A_ &pipeev, EV_READ);
1058 } 1468 }
1059 1469
1060 postfork = 0; 1470 postfork = 0;
1061} 1471}
1062 1472
1063#if EV_MULTIPLICITY 1473#if EV_MULTIPLICITY
1474
1064struct ev_loop * 1475struct ev_loop *
1065ev_loop_new (unsigned int flags) 1476ev_loop_new (unsigned int flags)
1066{ 1477{
1067 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1478 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1068 1479
1084} 1495}
1085 1496
1086void 1497void
1087ev_loop_fork (EV_P) 1498ev_loop_fork (EV_P)
1088{ 1499{
1089 postfork = 1; 1500 postfork = 1; /* must be in line with ev_default_fork */
1090} 1501}
1091 1502
1503#if EV_VERIFY
1504void noinline
1505verify_watcher (EV_P_ W w)
1506{
1507 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1508
1509 if (w->pending)
1510 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1511}
1512
1513static void noinline
1514verify_heap (EV_P_ ANHE *heap, int N)
1515{
1516 int i;
1517
1518 for (i = HEAP0; i < N + HEAP0; ++i)
1519 {
1520 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1521 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1522 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1523
1524 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1525 }
1526}
1527
1528static void noinline
1529array_verify (EV_P_ W *ws, int cnt)
1530{
1531 while (cnt--)
1532 {
1533 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1534 verify_watcher (EV_A_ ws [cnt]);
1535 }
1536}
1537#endif
1538
1539void
1540ev_loop_verify (EV_P)
1541{
1542#if EV_VERIFY
1543 int i;
1544 WL w;
1545
1546 assert (activecnt >= -1);
1547
1548 assert (fdchangemax >= fdchangecnt);
1549 for (i = 0; i < fdchangecnt; ++i)
1550 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1551
1552 assert (anfdmax >= 0);
1553 for (i = 0; i < anfdmax; ++i)
1554 for (w = anfds [i].head; w; w = w->next)
1555 {
1556 verify_watcher (EV_A_ (W)w);
1557 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1558 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1559 }
1560
1561 assert (timermax >= timercnt);
1562 verify_heap (EV_A_ timers, timercnt);
1563
1564#if EV_PERIODIC_ENABLE
1565 assert (periodicmax >= periodiccnt);
1566 verify_heap (EV_A_ periodics, periodiccnt);
1567#endif
1568
1569 for (i = NUMPRI; i--; )
1570 {
1571 assert (pendingmax [i] >= pendingcnt [i]);
1572#if EV_IDLE_ENABLE
1573 assert (idleall >= 0);
1574 assert (idlemax [i] >= idlecnt [i]);
1575 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1576#endif
1577 }
1578
1579#if EV_FORK_ENABLE
1580 assert (forkmax >= forkcnt);
1581 array_verify (EV_A_ (W *)forks, forkcnt);
1582#endif
1583
1584#if EV_ASYNC_ENABLE
1585 assert (asyncmax >= asynccnt);
1586 array_verify (EV_A_ (W *)asyncs, asynccnt);
1587#endif
1588
1589 assert (preparemax >= preparecnt);
1590 array_verify (EV_A_ (W *)prepares, preparecnt);
1591
1592 assert (checkmax >= checkcnt);
1593 array_verify (EV_A_ (W *)checks, checkcnt);
1594
1595# if 0
1596 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1597 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1092#endif 1598# endif
1599#endif
1600}
1601
1602#endif /* multiplicity */
1093 1603
1094#if EV_MULTIPLICITY 1604#if EV_MULTIPLICITY
1095struct ev_loop * 1605struct ev_loop *
1096ev_default_loop_init (unsigned int flags) 1606ev_default_loop_init (unsigned int flags)
1097#else 1607#else
1098int 1608int
1099ev_default_loop (unsigned int flags) 1609ev_default_loop (unsigned int flags)
1100#endif 1610#endif
1101{ 1611{
1102 if (sigpipe [0] == sigpipe [1])
1103 if (pipe (sigpipe))
1104 return 0;
1105
1106 if (!ev_default_loop_ptr) 1612 if (!ev_default_loop_ptr)
1107 { 1613 {
1108#if EV_MULTIPLICITY 1614#if EV_MULTIPLICITY
1109 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1615 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1110#else 1616#else
1113 1619
1114 loop_init (EV_A_ flags); 1620 loop_init (EV_A_ flags);
1115 1621
1116 if (ev_backend (EV_A)) 1622 if (ev_backend (EV_A))
1117 { 1623 {
1118 siginit (EV_A);
1119
1120#ifndef _WIN32 1624#ifndef _WIN32
1121 ev_signal_init (&childev, childcb, SIGCHLD); 1625 ev_signal_init (&childev, childcb, SIGCHLD);
1122 ev_set_priority (&childev, EV_MAXPRI); 1626 ev_set_priority (&childev, EV_MAXPRI);
1123 ev_signal_start (EV_A_ &childev); 1627 ev_signal_start (EV_A_ &childev);
1124 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1628 ev_unref (EV_A); /* child watcher should not keep loop alive */
1141#ifndef _WIN32 1645#ifndef _WIN32
1142 ev_ref (EV_A); /* child watcher */ 1646 ev_ref (EV_A); /* child watcher */
1143 ev_signal_stop (EV_A_ &childev); 1647 ev_signal_stop (EV_A_ &childev);
1144#endif 1648#endif
1145 1649
1146 ev_ref (EV_A); /* signal watcher */
1147 ev_io_stop (EV_A_ &sigev);
1148
1149 close (sigpipe [0]); sigpipe [0] = 0;
1150 close (sigpipe [1]); sigpipe [1] = 0;
1151
1152 loop_destroy (EV_A); 1650 loop_destroy (EV_A);
1153} 1651}
1154 1652
1155void 1653void
1156ev_default_fork (void) 1654ev_default_fork (void)
1158#if EV_MULTIPLICITY 1656#if EV_MULTIPLICITY
1159 struct ev_loop *loop = ev_default_loop_ptr; 1657 struct ev_loop *loop = ev_default_loop_ptr;
1160#endif 1658#endif
1161 1659
1162 if (backend) 1660 if (backend)
1163 postfork = 1; 1661 postfork = 1; /* must be in line with ev_loop_fork */
1164} 1662}
1165 1663
1166/*****************************************************************************/ 1664/*****************************************************************************/
1665
1666void
1667ev_invoke (EV_P_ void *w, int revents)
1668{
1669 EV_CB_INVOKE ((W)w, revents);
1670}
1167 1671
1168void inline_speed 1672void inline_speed
1169call_pending (EV_P) 1673call_pending (EV_P)
1170{ 1674{
1171 int pri; 1675 int pri;
1179 { 1683 {
1180 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1684 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1181 1685
1182 p->w->pending = 0; 1686 p->w->pending = 0;
1183 EV_CB_INVOKE (p->w, p->events); 1687 EV_CB_INVOKE (p->w, p->events);
1688 EV_FREQUENT_CHECK;
1184 } 1689 }
1185 } 1690 }
1186} 1691}
1187
1188void inline_size
1189timers_reify (EV_P)
1190{
1191 while (timercnt && ((WT)timers [0])->at <= mn_now)
1192 {
1193 ev_timer *w = timers [0];
1194
1195 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1196
1197 /* first reschedule or stop timer */
1198 if (w->repeat)
1199 {
1200 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1201
1202 ((WT)w)->at += w->repeat;
1203 if (((WT)w)->at < mn_now)
1204 ((WT)w)->at = mn_now;
1205
1206 downheap ((WT *)timers, timercnt, 0);
1207 }
1208 else
1209 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1210
1211 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1212 }
1213}
1214
1215#if EV_PERIODIC_ENABLE
1216void inline_size
1217periodics_reify (EV_P)
1218{
1219 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1220 {
1221 ev_periodic *w = periodics [0];
1222
1223 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1224
1225 /* first reschedule or stop timer */
1226 if (w->reschedule_cb)
1227 {
1228 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1229 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1230 downheap ((WT *)periodics, periodiccnt, 0);
1231 }
1232 else if (w->interval)
1233 {
1234 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1235 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1236 downheap ((WT *)periodics, periodiccnt, 0);
1237 }
1238 else
1239 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1240
1241 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1242 }
1243}
1244
1245static void noinline
1246periodics_reschedule (EV_P)
1247{
1248 int i;
1249
1250 /* adjust periodics after time jump */
1251 for (i = 0; i < periodiccnt; ++i)
1252 {
1253 ev_periodic *w = periodics [i];
1254
1255 if (w->reschedule_cb)
1256 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1257 else if (w->interval)
1258 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1259 }
1260
1261 /* now rebuild the heap */
1262 for (i = periodiccnt >> 1; i--; )
1263 downheap ((WT *)periodics, periodiccnt, i);
1264}
1265#endif
1266 1692
1267#if EV_IDLE_ENABLE 1693#if EV_IDLE_ENABLE
1268void inline_size 1694void inline_size
1269idle_reify (EV_P) 1695idle_reify (EV_P)
1270{ 1696{
1285 } 1711 }
1286 } 1712 }
1287} 1713}
1288#endif 1714#endif
1289 1715
1290int inline_size 1716void inline_size
1291time_update_monotonic (EV_P) 1717timers_reify (EV_P)
1292{ 1718{
1719 EV_FREQUENT_CHECK;
1720
1721 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1722 {
1723 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1724
1725 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1726
1727 /* first reschedule or stop timer */
1728 if (w->repeat)
1729 {
1730 ev_at (w) += w->repeat;
1731 if (ev_at (w) < mn_now)
1732 ev_at (w) = mn_now;
1733
1734 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1735
1736 ANHE_at_cache (timers [HEAP0]);
1737 downheap (timers, timercnt, HEAP0);
1738 }
1739 else
1740 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1741
1742 EV_FREQUENT_CHECK;
1743 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1744 }
1745}
1746
1747#if EV_PERIODIC_ENABLE
1748void inline_size
1749periodics_reify (EV_P)
1750{
1751 EV_FREQUENT_CHECK;
1752
1753 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1754 {
1755 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1756
1757 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1758
1759 /* first reschedule or stop timer */
1760 if (w->reschedule_cb)
1761 {
1762 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1763
1764 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1765
1766 ANHE_at_cache (periodics [HEAP0]);
1767 downheap (periodics, periodiccnt, HEAP0);
1768 }
1769 else if (w->interval)
1770 {
1771 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1772 /* if next trigger time is not sufficiently in the future, put it there */
1773 /* this might happen because of floating point inexactness */
1774 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1775 {
1776 ev_at (w) += w->interval;
1777
1778 /* if interval is unreasonably low we might still have a time in the past */
1779 /* so correct this. this will make the periodic very inexact, but the user */
1780 /* has effectively asked to get triggered more often than possible */
1781 if (ev_at (w) < ev_rt_now)
1782 ev_at (w) = ev_rt_now;
1783 }
1784
1785 ANHE_at_cache (periodics [HEAP0]);
1786 downheap (periodics, periodiccnt, HEAP0);
1787 }
1788 else
1789 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1790
1791 EV_FREQUENT_CHECK;
1792 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1793 }
1794}
1795
1796static void noinline
1797periodics_reschedule (EV_P)
1798{
1799 int i;
1800
1801 /* adjust periodics after time jump */
1802 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1803 {
1804 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1805
1806 if (w->reschedule_cb)
1807 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1808 else if (w->interval)
1809 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1810
1811 ANHE_at_cache (periodics [i]);
1812 }
1813
1814 reheap (periodics, periodiccnt);
1815}
1816#endif
1817
1818void inline_speed
1819time_update (EV_P_ ev_tstamp max_block)
1820{
1821 int i;
1822
1823#if EV_USE_MONOTONIC
1824 if (expect_true (have_monotonic))
1825 {
1826 ev_tstamp odiff = rtmn_diff;
1827
1293 mn_now = get_clock (); 1828 mn_now = get_clock ();
1294 1829
1830 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1831 /* interpolate in the meantime */
1295 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1832 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1296 { 1833 {
1297 ev_rt_now = rtmn_diff + mn_now; 1834 ev_rt_now = rtmn_diff + mn_now;
1298 return 0; 1835 return;
1299 } 1836 }
1300 else 1837
1301 {
1302 now_floor = mn_now; 1838 now_floor = mn_now;
1303 ev_rt_now = ev_time (); 1839 ev_rt_now = ev_time ();
1304 return 1;
1305 }
1306}
1307 1840
1308void inline_size 1841 /* loop a few times, before making important decisions.
1309time_update (EV_P) 1842 * on the choice of "4": one iteration isn't enough,
1310{ 1843 * in case we get preempted during the calls to
1311 int i; 1844 * ev_time and get_clock. a second call is almost guaranteed
1312 1845 * to succeed in that case, though. and looping a few more times
1313#if EV_USE_MONOTONIC 1846 * doesn't hurt either as we only do this on time-jumps or
1314 if (expect_true (have_monotonic)) 1847 * in the unlikely event of having been preempted here.
1315 { 1848 */
1316 if (time_update_monotonic (EV_A)) 1849 for (i = 4; --i; )
1317 { 1850 {
1318 ev_tstamp odiff = rtmn_diff;
1319
1320 /* loop a few times, before making important decisions.
1321 * on the choice of "4": one iteration isn't enough,
1322 * in case we get preempted during the calls to
1323 * ev_time and get_clock. a second call is almost guaranteed
1324 * to succeed in that case, though. and looping a few more times
1325 * doesn't hurt either as we only do this on time-jumps or
1326 * in the unlikely event of having been preempted here.
1327 */
1328 for (i = 4; --i; )
1329 {
1330 rtmn_diff = ev_rt_now - mn_now; 1851 rtmn_diff = ev_rt_now - mn_now;
1331 1852
1332 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1853 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1333 return; /* all is well */ 1854 return; /* all is well */
1334 1855
1335 ev_rt_now = ev_time (); 1856 ev_rt_now = ev_time ();
1336 mn_now = get_clock (); 1857 mn_now = get_clock ();
1337 now_floor = mn_now; 1858 now_floor = mn_now;
1338 } 1859 }
1339 1860
1340# if EV_PERIODIC_ENABLE 1861# if EV_PERIODIC_ENABLE
1341 periodics_reschedule (EV_A); 1862 periodics_reschedule (EV_A);
1342# endif 1863# endif
1343 /* no timer adjustment, as the monotonic clock doesn't jump */ 1864 /* no timer adjustment, as the monotonic clock doesn't jump */
1344 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1865 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1345 }
1346 } 1866 }
1347 else 1867 else
1348#endif 1868#endif
1349 { 1869 {
1350 ev_rt_now = ev_time (); 1870 ev_rt_now = ev_time ();
1351 1871
1352 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1872 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1353 { 1873 {
1354#if EV_PERIODIC_ENABLE 1874#if EV_PERIODIC_ENABLE
1355 periodics_reschedule (EV_A); 1875 periodics_reschedule (EV_A);
1356#endif 1876#endif
1357
1358 /* adjust timers. this is easy, as the offset is the same for all of them */ 1877 /* adjust timers. this is easy, as the offset is the same for all of them */
1359 for (i = 0; i < timercnt; ++i) 1878 for (i = 0; i < timercnt; ++i)
1879 {
1880 ANHE *he = timers + i + HEAP0;
1360 ((WT)timers [i])->at += ev_rt_now - mn_now; 1881 ANHE_w (*he)->at += ev_rt_now - mn_now;
1882 ANHE_at_cache (*he);
1883 }
1361 } 1884 }
1362 1885
1363 mn_now = ev_rt_now; 1886 mn_now = ev_rt_now;
1364 } 1887 }
1365} 1888}
1379static int loop_done; 1902static int loop_done;
1380 1903
1381void 1904void
1382ev_loop (EV_P_ int flags) 1905ev_loop (EV_P_ int flags)
1383{ 1906{
1384 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1907 loop_done = EVUNLOOP_CANCEL;
1385 ? EVUNLOOP_ONE
1386 : EVUNLOOP_CANCEL;
1387 1908
1388 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1909 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1389 1910
1390 do 1911 do
1391 { 1912 {
1913#if EV_VERIFY >= 2
1914 ev_loop_verify (EV_A);
1915#endif
1916
1392#ifndef _WIN32 1917#ifndef _WIN32
1393 if (expect_false (curpid)) /* penalise the forking check even more */ 1918 if (expect_false (curpid)) /* penalise the forking check even more */
1394 if (expect_false (getpid () != curpid)) 1919 if (expect_false (getpid () != curpid))
1395 { 1920 {
1396 curpid = getpid (); 1921 curpid = getpid ();
1406 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1931 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1407 call_pending (EV_A); 1932 call_pending (EV_A);
1408 } 1933 }
1409#endif 1934#endif
1410 1935
1411 /* queue check watchers (and execute them) */ 1936 /* queue prepare watchers (and execute them) */
1412 if (expect_false (preparecnt)) 1937 if (expect_false (preparecnt))
1413 { 1938 {
1414 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1939 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1415 call_pending (EV_A); 1940 call_pending (EV_A);
1416 } 1941 }
1425 /* update fd-related kernel structures */ 1950 /* update fd-related kernel structures */
1426 fd_reify (EV_A); 1951 fd_reify (EV_A);
1427 1952
1428 /* calculate blocking time */ 1953 /* calculate blocking time */
1429 { 1954 {
1430 ev_tstamp block; 1955 ev_tstamp waittime = 0.;
1956 ev_tstamp sleeptime = 0.;
1431 1957
1432 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1958 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1433 block = 0.; /* do not block at all */
1434 else
1435 { 1959 {
1436 /* update time to cancel out callback processing overhead */ 1960 /* update time to cancel out callback processing overhead */
1437#if EV_USE_MONOTONIC
1438 if (expect_true (have_monotonic))
1439 time_update_monotonic (EV_A); 1961 time_update (EV_A_ 1e100);
1440 else
1441#endif
1442 {
1443 ev_rt_now = ev_time ();
1444 mn_now = ev_rt_now;
1445 }
1446 1962
1447 block = MAX_BLOCKTIME; 1963 waittime = MAX_BLOCKTIME;
1448 1964
1449 if (timercnt) 1965 if (timercnt)
1450 { 1966 {
1451 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1967 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1452 if (block > to) block = to; 1968 if (waittime > to) waittime = to;
1453 } 1969 }
1454 1970
1455#if EV_PERIODIC_ENABLE 1971#if EV_PERIODIC_ENABLE
1456 if (periodiccnt) 1972 if (periodiccnt)
1457 { 1973 {
1458 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1974 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1459 if (block > to) block = to; 1975 if (waittime > to) waittime = to;
1460 } 1976 }
1461#endif 1977#endif
1462 1978
1463 if (expect_false (block < 0.)) block = 0.; 1979 if (expect_false (waittime < timeout_blocktime))
1980 waittime = timeout_blocktime;
1981
1982 sleeptime = waittime - backend_fudge;
1983
1984 if (expect_true (sleeptime > io_blocktime))
1985 sleeptime = io_blocktime;
1986
1987 if (sleeptime)
1988 {
1989 ev_sleep (sleeptime);
1990 waittime -= sleeptime;
1991 }
1464 } 1992 }
1465 1993
1466 ++loop_count; 1994 ++loop_count;
1467 backend_poll (EV_A_ block); 1995 backend_poll (EV_A_ waittime);
1996
1997 /* update ev_rt_now, do magic */
1998 time_update (EV_A_ waittime + sleeptime);
1468 } 1999 }
1469
1470 /* update ev_rt_now, do magic */
1471 time_update (EV_A);
1472 2000
1473 /* queue pending timers and reschedule them */ 2001 /* queue pending timers and reschedule them */
1474 timers_reify (EV_A); /* relative timers called last */ 2002 timers_reify (EV_A); /* relative timers called last */
1475#if EV_PERIODIC_ENABLE 2003#if EV_PERIODIC_ENABLE
1476 periodics_reify (EV_A); /* absolute timers called first */ 2004 periodics_reify (EV_A); /* absolute timers called first */
1484 /* queue check watchers, to be executed first */ 2012 /* queue check watchers, to be executed first */
1485 if (expect_false (checkcnt)) 2013 if (expect_false (checkcnt))
1486 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2014 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1487 2015
1488 call_pending (EV_A); 2016 call_pending (EV_A);
1489
1490 } 2017 }
1491 while (expect_true (activecnt && !loop_done)); 2018 while (expect_true (
2019 activecnt
2020 && !loop_done
2021 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2022 ));
1492 2023
1493 if (loop_done == EVUNLOOP_ONE) 2024 if (loop_done == EVUNLOOP_ONE)
1494 loop_done = EVUNLOOP_CANCEL; 2025 loop_done = EVUNLOOP_CANCEL;
1495} 2026}
1496 2027
1532 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2063 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1533 w->pending = 0; 2064 w->pending = 0;
1534 } 2065 }
1535} 2066}
1536 2067
1537void 2068int
1538ev_clear_pending (EV_P_ void *w, int invoke) 2069ev_clear_pending (EV_P_ void *w)
1539{ 2070{
1540 W w_ = (W)w; 2071 W w_ = (W)w;
1541 int pending = w_->pending; 2072 int pending = w_->pending;
1542 2073
1543 if (pending) 2074 if (expect_true (pending))
1544 { 2075 {
1545 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2076 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1546
1547 w_->pending = 0; 2077 w_->pending = 0;
1548 p->w = 0; 2078 p->w = 0;
1549 2079 return p->events;
1550 if (invoke)
1551 EV_CB_INVOKE (w_, p->events);
1552 } 2080 }
2081 else
2082 return 0;
1553} 2083}
1554 2084
1555void inline_size 2085void inline_size
1556pri_adjust (EV_P_ W w) 2086pri_adjust (EV_P_ W w)
1557{ 2087{
1576 w->active = 0; 2106 w->active = 0;
1577} 2107}
1578 2108
1579/*****************************************************************************/ 2109/*****************************************************************************/
1580 2110
1581void 2111void noinline
1582ev_io_start (EV_P_ ev_io *w) 2112ev_io_start (EV_P_ ev_io *w)
1583{ 2113{
1584 int fd = w->fd; 2114 int fd = w->fd;
1585 2115
1586 if (expect_false (ev_is_active (w))) 2116 if (expect_false (ev_is_active (w)))
1587 return; 2117 return;
1588 2118
1589 assert (("ev_io_start called with negative fd", fd >= 0)); 2119 assert (("ev_io_start called with negative fd", fd >= 0));
1590 2120
2121 EV_FREQUENT_CHECK;
2122
1591 ev_start (EV_A_ (W)w, 1); 2123 ev_start (EV_A_ (W)w, 1);
1592 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2124 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1593 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2125 wlist_add (&anfds[fd].head, (WL)w);
1594 2126
1595 fd_change (EV_A_ fd); 2127 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1596} 2128 w->events &= ~EV_IOFDSET;
1597 2129
1598void 2130 EV_FREQUENT_CHECK;
2131}
2132
2133void noinline
1599ev_io_stop (EV_P_ ev_io *w) 2134ev_io_stop (EV_P_ ev_io *w)
1600{ 2135{
1601 clear_pending (EV_A_ (W)w); 2136 clear_pending (EV_A_ (W)w);
1602 if (expect_false (!ev_is_active (w))) 2137 if (expect_false (!ev_is_active (w)))
1603 return; 2138 return;
1604 2139
1605 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2140 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1606 2141
2142 EV_FREQUENT_CHECK;
2143
1607 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2144 wlist_del (&anfds[w->fd].head, (WL)w);
1608 ev_stop (EV_A_ (W)w); 2145 ev_stop (EV_A_ (W)w);
1609 2146
1610 fd_change (EV_A_ w->fd); 2147 fd_change (EV_A_ w->fd, 1);
1611}
1612 2148
1613void 2149 EV_FREQUENT_CHECK;
2150}
2151
2152void noinline
1614ev_timer_start (EV_P_ ev_timer *w) 2153ev_timer_start (EV_P_ ev_timer *w)
1615{ 2154{
1616 if (expect_false (ev_is_active (w))) 2155 if (expect_false (ev_is_active (w)))
1617 return; 2156 return;
1618 2157
1619 ((WT)w)->at += mn_now; 2158 ev_at (w) += mn_now;
1620 2159
1621 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2160 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1622 2161
2162 EV_FREQUENT_CHECK;
2163
2164 ++timercnt;
1623 ev_start (EV_A_ (W)w, ++timercnt); 2165 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1624 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2166 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1625 timers [timercnt - 1] = w; 2167 ANHE_w (timers [ev_active (w)]) = (WT)w;
1626 upheap ((WT *)timers, timercnt - 1); 2168 ANHE_at_cache (timers [ev_active (w)]);
2169 upheap (timers, ev_active (w));
1627 2170
2171 EV_FREQUENT_CHECK;
2172
1628 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2173 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1629} 2174}
1630 2175
1631void 2176void noinline
1632ev_timer_stop (EV_P_ ev_timer *w) 2177ev_timer_stop (EV_P_ ev_timer *w)
1633{ 2178{
1634 clear_pending (EV_A_ (W)w); 2179 clear_pending (EV_A_ (W)w);
1635 if (expect_false (!ev_is_active (w))) 2180 if (expect_false (!ev_is_active (w)))
1636 return; 2181 return;
1637 2182
1638 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2183 EV_FREQUENT_CHECK;
1639 2184
1640 { 2185 {
1641 int active = ((W)w)->active; 2186 int active = ev_active (w);
1642 2187
2188 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2189
2190 --timercnt;
2191
1643 if (expect_true (--active < --timercnt)) 2192 if (expect_true (active < timercnt + HEAP0))
1644 { 2193 {
1645 timers [active] = timers [timercnt]; 2194 timers [active] = timers [timercnt + HEAP0];
1646 adjustheap ((WT *)timers, timercnt, active); 2195 adjustheap (timers, timercnt, active);
1647 } 2196 }
1648 } 2197 }
1649 2198
1650 ((WT)w)->at -= mn_now; 2199 EV_FREQUENT_CHECK;
2200
2201 ev_at (w) -= mn_now;
1651 2202
1652 ev_stop (EV_A_ (W)w); 2203 ev_stop (EV_A_ (W)w);
1653} 2204}
1654 2205
1655void 2206void noinline
1656ev_timer_again (EV_P_ ev_timer *w) 2207ev_timer_again (EV_P_ ev_timer *w)
1657{ 2208{
2209 EV_FREQUENT_CHECK;
2210
1658 if (ev_is_active (w)) 2211 if (ev_is_active (w))
1659 { 2212 {
1660 if (w->repeat) 2213 if (w->repeat)
1661 { 2214 {
1662 ((WT)w)->at = mn_now + w->repeat; 2215 ev_at (w) = mn_now + w->repeat;
2216 ANHE_at_cache (timers [ev_active (w)]);
1663 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2217 adjustheap (timers, timercnt, ev_active (w));
1664 } 2218 }
1665 else 2219 else
1666 ev_timer_stop (EV_A_ w); 2220 ev_timer_stop (EV_A_ w);
1667 } 2221 }
1668 else if (w->repeat) 2222 else if (w->repeat)
1669 { 2223 {
1670 w->at = w->repeat; 2224 ev_at (w) = w->repeat;
1671 ev_timer_start (EV_A_ w); 2225 ev_timer_start (EV_A_ w);
1672 } 2226 }
2227
2228 EV_FREQUENT_CHECK;
1673} 2229}
1674 2230
1675#if EV_PERIODIC_ENABLE 2231#if EV_PERIODIC_ENABLE
1676void 2232void noinline
1677ev_periodic_start (EV_P_ ev_periodic *w) 2233ev_periodic_start (EV_P_ ev_periodic *w)
1678{ 2234{
1679 if (expect_false (ev_is_active (w))) 2235 if (expect_false (ev_is_active (w)))
1680 return; 2236 return;
1681 2237
1682 if (w->reschedule_cb) 2238 if (w->reschedule_cb)
1683 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2239 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1684 else if (w->interval) 2240 else if (w->interval)
1685 { 2241 {
1686 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2242 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1687 /* this formula differs from the one in periodic_reify because we do not always round up */ 2243 /* this formula differs from the one in periodic_reify because we do not always round up */
1688 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2244 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1689 } 2245 }
2246 else
2247 ev_at (w) = w->offset;
1690 2248
2249 EV_FREQUENT_CHECK;
2250
2251 ++periodiccnt;
1691 ev_start (EV_A_ (W)w, ++periodiccnt); 2252 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1692 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2253 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1693 periodics [periodiccnt - 1] = w; 2254 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1694 upheap ((WT *)periodics, periodiccnt - 1); 2255 ANHE_at_cache (periodics [ev_active (w)]);
2256 upheap (periodics, ev_active (w));
1695 2257
2258 EV_FREQUENT_CHECK;
2259
1696 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2260 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1697} 2261}
1698 2262
1699void 2263void noinline
1700ev_periodic_stop (EV_P_ ev_periodic *w) 2264ev_periodic_stop (EV_P_ ev_periodic *w)
1701{ 2265{
1702 clear_pending (EV_A_ (W)w); 2266 clear_pending (EV_A_ (W)w);
1703 if (expect_false (!ev_is_active (w))) 2267 if (expect_false (!ev_is_active (w)))
1704 return; 2268 return;
1705 2269
1706 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2270 EV_FREQUENT_CHECK;
1707 2271
1708 { 2272 {
1709 int active = ((W)w)->active; 2273 int active = ev_active (w);
1710 2274
2275 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2276
2277 --periodiccnt;
2278
1711 if (expect_true (--active < --periodiccnt)) 2279 if (expect_true (active < periodiccnt + HEAP0))
1712 { 2280 {
1713 periodics [active] = periodics [periodiccnt]; 2281 periodics [active] = periodics [periodiccnt + HEAP0];
1714 adjustheap ((WT *)periodics, periodiccnt, active); 2282 adjustheap (periodics, periodiccnt, active);
1715 } 2283 }
1716 } 2284 }
1717 2285
2286 EV_FREQUENT_CHECK;
2287
1718 ev_stop (EV_A_ (W)w); 2288 ev_stop (EV_A_ (W)w);
1719} 2289}
1720 2290
1721void 2291void noinline
1722ev_periodic_again (EV_P_ ev_periodic *w) 2292ev_periodic_again (EV_P_ ev_periodic *w)
1723{ 2293{
1724 /* TODO: use adjustheap and recalculation */ 2294 /* TODO: use adjustheap and recalculation */
1725 ev_periodic_stop (EV_A_ w); 2295 ev_periodic_stop (EV_A_ w);
1726 ev_periodic_start (EV_A_ w); 2296 ev_periodic_start (EV_A_ w);
1729 2299
1730#ifndef SA_RESTART 2300#ifndef SA_RESTART
1731# define SA_RESTART 0 2301# define SA_RESTART 0
1732#endif 2302#endif
1733 2303
1734void 2304void noinline
1735ev_signal_start (EV_P_ ev_signal *w) 2305ev_signal_start (EV_P_ ev_signal *w)
1736{ 2306{
1737#if EV_MULTIPLICITY 2307#if EV_MULTIPLICITY
1738 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2308 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1739#endif 2309#endif
1740 if (expect_false (ev_is_active (w))) 2310 if (expect_false (ev_is_active (w)))
1741 return; 2311 return;
1742 2312
1743 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2313 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1744 2314
2315 evpipe_init (EV_A);
2316
2317 EV_FREQUENT_CHECK;
2318
2319 {
2320#ifndef _WIN32
2321 sigset_t full, prev;
2322 sigfillset (&full);
2323 sigprocmask (SIG_SETMASK, &full, &prev);
2324#endif
2325
2326 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2327
2328#ifndef _WIN32
2329 sigprocmask (SIG_SETMASK, &prev, 0);
2330#endif
2331 }
2332
1745 ev_start (EV_A_ (W)w, 1); 2333 ev_start (EV_A_ (W)w, 1);
1746 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1747 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2334 wlist_add (&signals [w->signum - 1].head, (WL)w);
1748 2335
1749 if (!((WL)w)->next) 2336 if (!((WL)w)->next)
1750 { 2337 {
1751#if _WIN32 2338#if _WIN32
1752 signal (w->signum, sighandler); 2339 signal (w->signum, ev_sighandler);
1753#else 2340#else
1754 struct sigaction sa; 2341 struct sigaction sa;
1755 sa.sa_handler = sighandler; 2342 sa.sa_handler = ev_sighandler;
1756 sigfillset (&sa.sa_mask); 2343 sigfillset (&sa.sa_mask);
1757 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2344 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1758 sigaction (w->signum, &sa, 0); 2345 sigaction (w->signum, &sa, 0);
1759#endif 2346#endif
1760 } 2347 }
1761}
1762 2348
1763void 2349 EV_FREQUENT_CHECK;
2350}
2351
2352void noinline
1764ev_signal_stop (EV_P_ ev_signal *w) 2353ev_signal_stop (EV_P_ ev_signal *w)
1765{ 2354{
1766 clear_pending (EV_A_ (W)w); 2355 clear_pending (EV_A_ (W)w);
1767 if (expect_false (!ev_is_active (w))) 2356 if (expect_false (!ev_is_active (w)))
1768 return; 2357 return;
1769 2358
2359 EV_FREQUENT_CHECK;
2360
1770 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2361 wlist_del (&signals [w->signum - 1].head, (WL)w);
1771 ev_stop (EV_A_ (W)w); 2362 ev_stop (EV_A_ (W)w);
1772 2363
1773 if (!signals [w->signum - 1].head) 2364 if (!signals [w->signum - 1].head)
1774 signal (w->signum, SIG_DFL); 2365 signal (w->signum, SIG_DFL);
2366
2367 EV_FREQUENT_CHECK;
1775} 2368}
1776 2369
1777void 2370void
1778ev_child_start (EV_P_ ev_child *w) 2371ev_child_start (EV_P_ ev_child *w)
1779{ 2372{
1781 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2374 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1782#endif 2375#endif
1783 if (expect_false (ev_is_active (w))) 2376 if (expect_false (ev_is_active (w)))
1784 return; 2377 return;
1785 2378
2379 EV_FREQUENT_CHECK;
2380
1786 ev_start (EV_A_ (W)w, 1); 2381 ev_start (EV_A_ (W)w, 1);
1787 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2382 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2383
2384 EV_FREQUENT_CHECK;
1788} 2385}
1789 2386
1790void 2387void
1791ev_child_stop (EV_P_ ev_child *w) 2388ev_child_stop (EV_P_ ev_child *w)
1792{ 2389{
1793 clear_pending (EV_A_ (W)w); 2390 clear_pending (EV_A_ (W)w);
1794 if (expect_false (!ev_is_active (w))) 2391 if (expect_false (!ev_is_active (w)))
1795 return; 2392 return;
1796 2393
2394 EV_FREQUENT_CHECK;
2395
1797 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2396 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1798 ev_stop (EV_A_ (W)w); 2397 ev_stop (EV_A_ (W)w);
2398
2399 EV_FREQUENT_CHECK;
1799} 2400}
1800 2401
1801#if EV_STAT_ENABLE 2402#if EV_STAT_ENABLE
1802 2403
1803# ifdef _WIN32 2404# ifdef _WIN32
1821 if (w->wd < 0) 2422 if (w->wd < 0)
1822 { 2423 {
1823 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2424 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1824 2425
1825 /* monitor some parent directory for speedup hints */ 2426 /* monitor some parent directory for speedup hints */
2427 /* note that exceeding the hardcoded limit is not a correctness issue, */
2428 /* but an efficiency issue only */
1826 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2429 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1827 { 2430 {
1828 char path [4096]; 2431 char path [4096];
1829 strcpy (path, w->path); 2432 strcpy (path, w->path);
1830 2433
2029 else 2632 else
2030#endif 2633#endif
2031 ev_timer_start (EV_A_ &w->timer); 2634 ev_timer_start (EV_A_ &w->timer);
2032 2635
2033 ev_start (EV_A_ (W)w, 1); 2636 ev_start (EV_A_ (W)w, 1);
2637
2638 EV_FREQUENT_CHECK;
2034} 2639}
2035 2640
2036void 2641void
2037ev_stat_stop (EV_P_ ev_stat *w) 2642ev_stat_stop (EV_P_ ev_stat *w)
2038{ 2643{
2039 clear_pending (EV_A_ (W)w); 2644 clear_pending (EV_A_ (W)w);
2040 if (expect_false (!ev_is_active (w))) 2645 if (expect_false (!ev_is_active (w)))
2041 return; 2646 return;
2042 2647
2648 EV_FREQUENT_CHECK;
2649
2043#if EV_USE_INOTIFY 2650#if EV_USE_INOTIFY
2044 infy_del (EV_A_ w); 2651 infy_del (EV_A_ w);
2045#endif 2652#endif
2046 ev_timer_stop (EV_A_ &w->timer); 2653 ev_timer_stop (EV_A_ &w->timer);
2047 2654
2048 ev_stop (EV_A_ (W)w); 2655 ev_stop (EV_A_ (W)w);
2656
2657 EV_FREQUENT_CHECK;
2049} 2658}
2050#endif 2659#endif
2051 2660
2052#if EV_IDLE_ENABLE 2661#if EV_IDLE_ENABLE
2053void 2662void
2055{ 2664{
2056 if (expect_false (ev_is_active (w))) 2665 if (expect_false (ev_is_active (w)))
2057 return; 2666 return;
2058 2667
2059 pri_adjust (EV_A_ (W)w); 2668 pri_adjust (EV_A_ (W)w);
2669
2670 EV_FREQUENT_CHECK;
2060 2671
2061 { 2672 {
2062 int active = ++idlecnt [ABSPRI (w)]; 2673 int active = ++idlecnt [ABSPRI (w)];
2063 2674
2064 ++idleall; 2675 ++idleall;
2065 ev_start (EV_A_ (W)w, active); 2676 ev_start (EV_A_ (W)w, active);
2066 2677
2067 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2678 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2068 idles [ABSPRI (w)][active - 1] = w; 2679 idles [ABSPRI (w)][active - 1] = w;
2069 } 2680 }
2681
2682 EV_FREQUENT_CHECK;
2070} 2683}
2071 2684
2072void 2685void
2073ev_idle_stop (EV_P_ ev_idle *w) 2686ev_idle_stop (EV_P_ ev_idle *w)
2074{ 2687{
2075 clear_pending (EV_A_ (W)w); 2688 clear_pending (EV_A_ (W)w);
2076 if (expect_false (!ev_is_active (w))) 2689 if (expect_false (!ev_is_active (w)))
2077 return; 2690 return;
2078 2691
2692 EV_FREQUENT_CHECK;
2693
2079 { 2694 {
2080 int active = ((W)w)->active; 2695 int active = ev_active (w);
2081 2696
2082 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2697 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2083 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2698 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2084 2699
2085 ev_stop (EV_A_ (W)w); 2700 ev_stop (EV_A_ (W)w);
2086 --idleall; 2701 --idleall;
2087 } 2702 }
2703
2704 EV_FREQUENT_CHECK;
2088} 2705}
2089#endif 2706#endif
2090 2707
2091void 2708void
2092ev_prepare_start (EV_P_ ev_prepare *w) 2709ev_prepare_start (EV_P_ ev_prepare *w)
2093{ 2710{
2094 if (expect_false (ev_is_active (w))) 2711 if (expect_false (ev_is_active (w)))
2095 return; 2712 return;
2713
2714 EV_FREQUENT_CHECK;
2096 2715
2097 ev_start (EV_A_ (W)w, ++preparecnt); 2716 ev_start (EV_A_ (W)w, ++preparecnt);
2098 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2717 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2099 prepares [preparecnt - 1] = w; 2718 prepares [preparecnt - 1] = w;
2719
2720 EV_FREQUENT_CHECK;
2100} 2721}
2101 2722
2102void 2723void
2103ev_prepare_stop (EV_P_ ev_prepare *w) 2724ev_prepare_stop (EV_P_ ev_prepare *w)
2104{ 2725{
2105 clear_pending (EV_A_ (W)w); 2726 clear_pending (EV_A_ (W)w);
2106 if (expect_false (!ev_is_active (w))) 2727 if (expect_false (!ev_is_active (w)))
2107 return; 2728 return;
2108 2729
2730 EV_FREQUENT_CHECK;
2731
2109 { 2732 {
2110 int active = ((W)w)->active; 2733 int active = ev_active (w);
2734
2111 prepares [active - 1] = prepares [--preparecnt]; 2735 prepares [active - 1] = prepares [--preparecnt];
2112 ((W)prepares [active - 1])->active = active; 2736 ev_active (prepares [active - 1]) = active;
2113 } 2737 }
2114 2738
2115 ev_stop (EV_A_ (W)w); 2739 ev_stop (EV_A_ (W)w);
2740
2741 EV_FREQUENT_CHECK;
2116} 2742}
2117 2743
2118void 2744void
2119ev_check_start (EV_P_ ev_check *w) 2745ev_check_start (EV_P_ ev_check *w)
2120{ 2746{
2121 if (expect_false (ev_is_active (w))) 2747 if (expect_false (ev_is_active (w)))
2122 return; 2748 return;
2749
2750 EV_FREQUENT_CHECK;
2123 2751
2124 ev_start (EV_A_ (W)w, ++checkcnt); 2752 ev_start (EV_A_ (W)w, ++checkcnt);
2125 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2753 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2126 checks [checkcnt - 1] = w; 2754 checks [checkcnt - 1] = w;
2755
2756 EV_FREQUENT_CHECK;
2127} 2757}
2128 2758
2129void 2759void
2130ev_check_stop (EV_P_ ev_check *w) 2760ev_check_stop (EV_P_ ev_check *w)
2131{ 2761{
2132 clear_pending (EV_A_ (W)w); 2762 clear_pending (EV_A_ (W)w);
2133 if (expect_false (!ev_is_active (w))) 2763 if (expect_false (!ev_is_active (w)))
2134 return; 2764 return;
2135 2765
2766 EV_FREQUENT_CHECK;
2767
2136 { 2768 {
2137 int active = ((W)w)->active; 2769 int active = ev_active (w);
2770
2138 checks [active - 1] = checks [--checkcnt]; 2771 checks [active - 1] = checks [--checkcnt];
2139 ((W)checks [active - 1])->active = active; 2772 ev_active (checks [active - 1]) = active;
2140 } 2773 }
2141 2774
2142 ev_stop (EV_A_ (W)w); 2775 ev_stop (EV_A_ (W)w);
2776
2777 EV_FREQUENT_CHECK;
2143} 2778}
2144 2779
2145#if EV_EMBED_ENABLE 2780#if EV_EMBED_ENABLE
2146void noinline 2781void noinline
2147ev_embed_sweep (EV_P_ ev_embed *w) 2782ev_embed_sweep (EV_P_ ev_embed *w)
2148{ 2783{
2149 ev_loop (w->loop, EVLOOP_NONBLOCK); 2784 ev_loop (w->other, EVLOOP_NONBLOCK);
2150} 2785}
2151 2786
2152static void 2787static void
2153embed_cb (EV_P_ ev_io *io, int revents) 2788embed_io_cb (EV_P_ ev_io *io, int revents)
2154{ 2789{
2155 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2790 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2156 2791
2157 if (ev_cb (w)) 2792 if (ev_cb (w))
2158 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2793 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2159 else 2794 else
2160 ev_embed_sweep (loop, w); 2795 ev_loop (w->other, EVLOOP_NONBLOCK);
2161} 2796}
2797
2798static void
2799embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2800{
2801 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2802
2803 {
2804 struct ev_loop *loop = w->other;
2805
2806 while (fdchangecnt)
2807 {
2808 fd_reify (EV_A);
2809 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2810 }
2811 }
2812}
2813
2814#if 0
2815static void
2816embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2817{
2818 ev_idle_stop (EV_A_ idle);
2819}
2820#endif
2162 2821
2163void 2822void
2164ev_embed_start (EV_P_ ev_embed *w) 2823ev_embed_start (EV_P_ ev_embed *w)
2165{ 2824{
2166 if (expect_false (ev_is_active (w))) 2825 if (expect_false (ev_is_active (w)))
2167 return; 2826 return;
2168 2827
2169 { 2828 {
2170 struct ev_loop *loop = w->loop; 2829 struct ev_loop *loop = w->other;
2171 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2830 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2172 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2831 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2173 } 2832 }
2833
2834 EV_FREQUENT_CHECK;
2174 2835
2175 ev_set_priority (&w->io, ev_priority (w)); 2836 ev_set_priority (&w->io, ev_priority (w));
2176 ev_io_start (EV_A_ &w->io); 2837 ev_io_start (EV_A_ &w->io);
2177 2838
2839 ev_prepare_init (&w->prepare, embed_prepare_cb);
2840 ev_set_priority (&w->prepare, EV_MINPRI);
2841 ev_prepare_start (EV_A_ &w->prepare);
2842
2843 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2844
2178 ev_start (EV_A_ (W)w, 1); 2845 ev_start (EV_A_ (W)w, 1);
2846
2847 EV_FREQUENT_CHECK;
2179} 2848}
2180 2849
2181void 2850void
2182ev_embed_stop (EV_P_ ev_embed *w) 2851ev_embed_stop (EV_P_ ev_embed *w)
2183{ 2852{
2184 clear_pending (EV_A_ (W)w); 2853 clear_pending (EV_A_ (W)w);
2185 if (expect_false (!ev_is_active (w))) 2854 if (expect_false (!ev_is_active (w)))
2186 return; 2855 return;
2187 2856
2857 EV_FREQUENT_CHECK;
2858
2188 ev_io_stop (EV_A_ &w->io); 2859 ev_io_stop (EV_A_ &w->io);
2860 ev_prepare_stop (EV_A_ &w->prepare);
2189 2861
2190 ev_stop (EV_A_ (W)w); 2862 ev_stop (EV_A_ (W)w);
2863
2864 EV_FREQUENT_CHECK;
2191} 2865}
2192#endif 2866#endif
2193 2867
2194#if EV_FORK_ENABLE 2868#if EV_FORK_ENABLE
2195void 2869void
2196ev_fork_start (EV_P_ ev_fork *w) 2870ev_fork_start (EV_P_ ev_fork *w)
2197{ 2871{
2198 if (expect_false (ev_is_active (w))) 2872 if (expect_false (ev_is_active (w)))
2199 return; 2873 return;
2874
2875 EV_FREQUENT_CHECK;
2200 2876
2201 ev_start (EV_A_ (W)w, ++forkcnt); 2877 ev_start (EV_A_ (W)w, ++forkcnt);
2202 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2878 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2203 forks [forkcnt - 1] = w; 2879 forks [forkcnt - 1] = w;
2880
2881 EV_FREQUENT_CHECK;
2204} 2882}
2205 2883
2206void 2884void
2207ev_fork_stop (EV_P_ ev_fork *w) 2885ev_fork_stop (EV_P_ ev_fork *w)
2208{ 2886{
2209 clear_pending (EV_A_ (W)w); 2887 clear_pending (EV_A_ (W)w);
2210 if (expect_false (!ev_is_active (w))) 2888 if (expect_false (!ev_is_active (w)))
2211 return; 2889 return;
2212 2890
2891 EV_FREQUENT_CHECK;
2892
2213 { 2893 {
2214 int active = ((W)w)->active; 2894 int active = ev_active (w);
2895
2215 forks [active - 1] = forks [--forkcnt]; 2896 forks [active - 1] = forks [--forkcnt];
2216 ((W)forks [active - 1])->active = active; 2897 ev_active (forks [active - 1]) = active;
2217 } 2898 }
2218 2899
2219 ev_stop (EV_A_ (W)w); 2900 ev_stop (EV_A_ (W)w);
2901
2902 EV_FREQUENT_CHECK;
2903}
2904#endif
2905
2906#if EV_ASYNC_ENABLE
2907void
2908ev_async_start (EV_P_ ev_async *w)
2909{
2910 if (expect_false (ev_is_active (w)))
2911 return;
2912
2913 evpipe_init (EV_A);
2914
2915 EV_FREQUENT_CHECK;
2916
2917 ev_start (EV_A_ (W)w, ++asynccnt);
2918 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2919 asyncs [asynccnt - 1] = w;
2920
2921 EV_FREQUENT_CHECK;
2922}
2923
2924void
2925ev_async_stop (EV_P_ ev_async *w)
2926{
2927 clear_pending (EV_A_ (W)w);
2928 if (expect_false (!ev_is_active (w)))
2929 return;
2930
2931 EV_FREQUENT_CHECK;
2932
2933 {
2934 int active = ev_active (w);
2935
2936 asyncs [active - 1] = asyncs [--asynccnt];
2937 ev_active (asyncs [active - 1]) = active;
2938 }
2939
2940 ev_stop (EV_A_ (W)w);
2941
2942 EV_FREQUENT_CHECK;
2943}
2944
2945void
2946ev_async_send (EV_P_ ev_async *w)
2947{
2948 w->sent = 1;
2949 evpipe_write (EV_A_ &gotasync);
2220} 2950}
2221#endif 2951#endif
2222 2952
2223/*****************************************************************************/ 2953/*****************************************************************************/
2224 2954
2282 ev_timer_set (&once->to, timeout, 0.); 3012 ev_timer_set (&once->to, timeout, 0.);
2283 ev_timer_start (EV_A_ &once->to); 3013 ev_timer_start (EV_A_ &once->to);
2284 } 3014 }
2285} 3015}
2286 3016
3017#if EV_MULTIPLICITY
3018 #include "ev_wrap.h"
3019#endif
3020
2287#ifdef __cplusplus 3021#ifdef __cplusplus
2288} 3022}
2289#endif 3023#endif
2290 3024

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines