ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.166 by root, Sat Dec 8 03:53:36 2007 UTC vs.
Revision 1.263 by root, Wed Oct 1 18:50:03 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
129#ifndef _WIN32 154#ifndef _WIN32
130# include <sys/time.h> 155# include <sys/time.h>
131# include <sys/wait.h> 156# include <sys/wait.h>
132# include <unistd.h> 157# include <unistd.h>
133#else 158#else
159# include <io.h>
134# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 161# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
138# endif 164# endif
139#endif 165#endif
140 166
141/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
142 168
143#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
144# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
145#endif 175#endif
146 176
147#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
149#endif 187#endif
150 188
151#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
153#endif 191#endif
159# define EV_USE_POLL 1 197# define EV_USE_POLL 1
160# endif 198# endif
161#endif 199#endif
162 200
163#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
164# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
165#endif 207#endif
166 208
167#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
169#endif 211#endif
171#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 214# define EV_USE_PORT 0
173#endif 215#endif
174 216
175#ifndef EV_USE_INOTIFY 217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
176# define EV_USE_INOTIFY 0 221# define EV_USE_INOTIFY 0
222# endif
177#endif 223#endif
178 224
179#ifndef EV_PID_HASHSIZE 225#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 226# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 227# define EV_PID_HASHSIZE 1
190# else 236# else
191# define EV_INOTIFY_HASHSIZE 16 237# define EV_INOTIFY_HASHSIZE 16
192# endif 238# endif
193#endif 239#endif
194 240
195/**/ 241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 268
197#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
200#endif 272#endif
202#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
205#endif 277#endif
206 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/inotify.h>
292/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
293# ifndef IN_DONT_FOLLOW
294# undef EV_USE_INOTIFY
295# define EV_USE_INOTIFY 0
296# endif
297#endif
298
207#if EV_SELECT_IS_WINSOCKET 299#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 300# include <winsock.h>
209#endif 301#endif
210 302
211#if !EV_STAT_ENABLE 303#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 304/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
305# include <stdint.h>
306# ifdef __cplusplus
307extern "C" {
213#endif 308# endif
214 309int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 310# ifdef __cplusplus
216# include <sys/inotify.h> 311}
312# endif
217#endif 313#endif
218 314
219/**/ 315/**/
316
317#if EV_VERIFY >= 3
318# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
319#else
320# define EV_FREQUENT_CHECK do { } while (0)
321#endif
322
323/*
324 * This is used to avoid floating point rounding problems.
325 * It is added to ev_rt_now when scheduling periodics
326 * to ensure progress, time-wise, even when rounding
327 * errors are against us.
328 * This value is good at least till the year 4000.
329 * Better solutions welcome.
330 */
331#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 332
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 333#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 334#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 335/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 336
225#if __GNUC__ >= 3 337#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 338# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 339# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 340#else
236# define expect(expr,value) (expr) 341# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 342# define noinline
343# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
344# define inline
345# endif
240#endif 346#endif
241 347
242#define expect_false(expr) expect ((expr) != 0, 0) 348#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 349#define expect_true(expr) expect ((expr) != 0, 1)
350#define inline_size static inline
351
352#if EV_MINIMAL
353# define inline_speed static noinline
354#else
355# define inline_speed static inline
356#endif
244 357
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 358#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 359#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 360
248#define EMPTY /* required for microsofts broken pseudo-c compiler */ 361#define EMPTY /* required for microsofts broken pseudo-c compiler */
250 363
251typedef ev_watcher *W; 364typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 365typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 366typedef ev_watcher_time *WT;
254 367
368#define ev_active(w) ((W)(w))->active
369#define ev_at(w) ((WT)(w))->at
370
371#if EV_USE_MONOTONIC
372/* sig_atomic_t is used to avoid per-thread variables or locking but still */
373/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 374static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
375#endif
256 376
257#ifdef _WIN32 377#ifdef _WIN32
258# include "ev_win32.c" 378# include "ev_win32.c"
259#endif 379#endif
260 380
281 perror (msg); 401 perror (msg);
282 abort (); 402 abort ();
283 } 403 }
284} 404}
285 405
406static void *
407ev_realloc_emul (void *ptr, long size)
408{
409 /* some systems, notably openbsd and darwin, fail to properly
410 * implement realloc (x, 0) (as required by both ansi c-98 and
411 * the single unix specification, so work around them here.
412 */
413
414 if (size)
415 return realloc (ptr, size);
416
417 free (ptr);
418 return 0;
419}
420
286static void *(*alloc)(void *ptr, long size); 421static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 422
288void 423void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 424ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 425{
291 alloc = cb; 426 alloc = cb;
292} 427}
293 428
294inline_speed void * 429inline_speed void *
295ev_realloc (void *ptr, long size) 430ev_realloc (void *ptr, long size)
296{ 431{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 432 ptr = alloc (ptr, size);
298 433
299 if (!ptr && size) 434 if (!ptr && size)
300 { 435 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 436 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 437 abort ();
325 W w; 460 W w;
326 int events; 461 int events;
327} ANPENDING; 462} ANPENDING;
328 463
329#if EV_USE_INOTIFY 464#if EV_USE_INOTIFY
465/* hash table entry per inotify-id */
330typedef struct 466typedef struct
331{ 467{
332 WL head; 468 WL head;
333} ANFS; 469} ANFS;
470#endif
471
472/* Heap Entry */
473#if EV_HEAP_CACHE_AT
474 typedef struct {
475 ev_tstamp at;
476 WT w;
477 } ANHE;
478
479 #define ANHE_w(he) (he).w /* access watcher, read-write */
480 #define ANHE_at(he) (he).at /* access cached at, read-only */
481 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
482#else
483 typedef WT ANHE;
484
485 #define ANHE_w(he) (he)
486 #define ANHE_at(he) (he)->at
487 #define ANHE_at_cache(he)
334#endif 488#endif
335 489
336#if EV_MULTIPLICITY 490#if EV_MULTIPLICITY
337 491
338 struct ev_loop 492 struct ev_loop
396{ 550{
397 return ev_rt_now; 551 return ev_rt_now;
398} 552}
399#endif 553#endif
400 554
555void
556ev_sleep (ev_tstamp delay)
557{
558 if (delay > 0.)
559 {
560#if EV_USE_NANOSLEEP
561 struct timespec ts;
562
563 ts.tv_sec = (time_t)delay;
564 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
565
566 nanosleep (&ts, 0);
567#elif defined(_WIN32)
568 Sleep ((unsigned long)(delay * 1e3));
569#else
570 struct timeval tv;
571
572 tv.tv_sec = (time_t)delay;
573 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
574
575 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
576 /* somehting nto guaranteed by newer posix versions, but guaranteed */
577 /* by older ones */
578 select (0, 0, 0, 0, &tv);
579#endif
580 }
581}
582
583/*****************************************************************************/
584
585#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
586
401int inline_size 587int inline_size
402array_nextsize (int elem, int cur, int cnt) 588array_nextsize (int elem, int cur, int cnt)
403{ 589{
404 int ncur = cur + 1; 590 int ncur = cur + 1;
405 591
406 do 592 do
407 ncur <<= 1; 593 ncur <<= 1;
408 while (cnt > ncur); 594 while (cnt > ncur);
409 595
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 596 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
411 if (elem * ncur > 4096) 597 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
412 { 598 {
413 ncur *= elem; 599 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 600 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
415 ncur = ncur - sizeof (void *) * 4; 601 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem; 602 ncur /= elem;
417 } 603 }
418 604
419 return ncur; 605 return ncur;
420} 606}
421 607
422inline_speed void * 608static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 609array_realloc (int elem, void *base, int *cur, int cnt)
424{ 610{
425 *cur = array_nextsize (elem, *cur, cnt); 611 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 612 return ev_realloc (base, elem * *cur);
427} 613}
452 638
453void noinline 639void noinline
454ev_feed_event (EV_P_ void *w, int revents) 640ev_feed_event (EV_P_ void *w, int revents)
455{ 641{
456 W w_ = (W)w; 642 W w_ = (W)w;
643 int pri = ABSPRI (w_);
457 644
458 if (expect_false (w_->pending)) 645 if (expect_false (w_->pending))
646 pendings [pri][w_->pending - 1].events |= revents;
647 else
459 { 648 {
649 w_->pending = ++pendingcnt [pri];
650 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
651 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 652 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 653 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 654}
469 655
470void inline_size 656void inline_speed
471queue_events (EV_P_ W *events, int eventcnt, int type) 657queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 658{
473 int i; 659 int i;
474 660
475 for (i = 0; i < eventcnt; ++i) 661 for (i = 0; i < eventcnt; ++i)
507} 693}
508 694
509void 695void
510ev_feed_fd_event (EV_P_ int fd, int revents) 696ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 697{
698 if (fd >= 0 && fd < anfdmax)
512 fd_event (EV_A_ fd, revents); 699 fd_event (EV_A_ fd, revents);
513} 700}
514 701
515void inline_size 702void inline_size
516fd_reify (EV_P) 703fd_reify (EV_P)
517{ 704{
521 { 708 {
522 int fd = fdchanges [i]; 709 int fd = fdchanges [i];
523 ANFD *anfd = anfds + fd; 710 ANFD *anfd = anfds + fd;
524 ev_io *w; 711 ev_io *w;
525 712
526 int events = 0; 713 unsigned char events = 0;
527 714
528 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 715 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
529 events |= w->events; 716 events |= (unsigned char)w->events;
530 717
531#if EV_SELECT_IS_WINSOCKET 718#if EV_SELECT_IS_WINSOCKET
532 if (events) 719 if (events)
533 { 720 {
534 unsigned long argp; 721 unsigned long arg;
722 #ifdef EV_FD_TO_WIN32_HANDLE
723 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
724 #else
535 anfd->handle = _get_osfhandle (fd); 725 anfd->handle = _get_osfhandle (fd);
726 #endif
536 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 727 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
537 } 728 }
538#endif 729#endif
539 730
731 {
732 unsigned char o_events = anfd->events;
733 unsigned char o_reify = anfd->reify;
734
540 anfd->reify = 0; 735 anfd->reify = 0;
541
542 backend_modify (EV_A_ fd, anfd->events, events);
543 anfd->events = events; 736 anfd->events = events;
737
738 if (o_events != events || o_reify & EV_IOFDSET)
739 backend_modify (EV_A_ fd, o_events, events);
740 }
544 } 741 }
545 742
546 fdchangecnt = 0; 743 fdchangecnt = 0;
547} 744}
548 745
549void inline_size 746void inline_size
550fd_change (EV_P_ int fd) 747fd_change (EV_P_ int fd, int flags)
551{ 748{
552 if (expect_false (anfds [fd].reify)) 749 unsigned char reify = anfds [fd].reify;
553 return;
554
555 anfds [fd].reify = 1; 750 anfds [fd].reify |= flags;
556 751
752 if (expect_true (!reify))
753 {
557 ++fdchangecnt; 754 ++fdchangecnt;
558 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 755 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
559 fdchanges [fdchangecnt - 1] = fd; 756 fdchanges [fdchangecnt - 1] = fd;
757 }
560} 758}
561 759
562void inline_speed 760void inline_speed
563fd_kill (EV_P_ int fd) 761fd_kill (EV_P_ int fd)
564{ 762{
587{ 785{
588 int fd; 786 int fd;
589 787
590 for (fd = 0; fd < anfdmax; ++fd) 788 for (fd = 0; fd < anfdmax; ++fd)
591 if (anfds [fd].events) 789 if (anfds [fd].events)
592 if (!fd_valid (fd) == -1 && errno == EBADF) 790 if (!fd_valid (fd) && errno == EBADF)
593 fd_kill (EV_A_ fd); 791 fd_kill (EV_A_ fd);
594} 792}
595 793
596/* called on ENOMEM in select/poll to kill some fds and retry */ 794/* called on ENOMEM in select/poll to kill some fds and retry */
597static void noinline 795static void noinline
615 813
616 for (fd = 0; fd < anfdmax; ++fd) 814 for (fd = 0; fd < anfdmax; ++fd)
617 if (anfds [fd].events) 815 if (anfds [fd].events)
618 { 816 {
619 anfds [fd].events = 0; 817 anfds [fd].events = 0;
620 fd_change (EV_A_ fd); 818 fd_change (EV_A_ fd, EV_IOFDSET | 1);
621 } 819 }
622} 820}
623 821
624/*****************************************************************************/ 822/*****************************************************************************/
625 823
824/*
825 * the heap functions want a real array index. array index 0 uis guaranteed to not
826 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
827 * the branching factor of the d-tree.
828 */
829
830/*
831 * at the moment we allow libev the luxury of two heaps,
832 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
833 * which is more cache-efficient.
834 * the difference is about 5% with 50000+ watchers.
835 */
836#if EV_USE_4HEAP
837
838#define DHEAP 4
839#define HEAP0 (DHEAP - 1) /* index of first element in heap */
840#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
841#define UPHEAP_DONE(p,k) ((p) == (k))
842
843/* away from the root */
626void inline_speed 844void inline_speed
627upheap (WT *heap, int k) 845downheap (ANHE *heap, int N, int k)
628{ 846{
629 WT w = heap [k]; 847 ANHE he = heap [k];
848 ANHE *E = heap + N + HEAP0;
630 849
631 while (k && heap [k >> 1]->at > w->at) 850 for (;;)
632 {
633 heap [k] = heap [k >> 1];
634 ((W)heap [k])->active = k + 1;
635 k >>= 1;
636 } 851 {
852 ev_tstamp minat;
853 ANHE *minpos;
854 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
637 855
856 /* find minimum child */
857 if (expect_true (pos + DHEAP - 1 < E))
858 {
859 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
860 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
861 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
862 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
863 }
864 else if (pos < E)
865 {
866 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
867 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
868 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
869 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
870 }
871 else
872 break;
873
874 if (ANHE_at (he) <= minat)
875 break;
876
877 heap [k] = *minpos;
878 ev_active (ANHE_w (*minpos)) = k;
879
880 k = minpos - heap;
881 }
882
638 heap [k] = w; 883 heap [k] = he;
639 ((W)heap [k])->active = k + 1; 884 ev_active (ANHE_w (he)) = k;
640
641} 885}
642 886
887#else /* 4HEAP */
888
889#define HEAP0 1
890#define HPARENT(k) ((k) >> 1)
891#define UPHEAP_DONE(p,k) (!(p))
892
893/* away from the root */
643void inline_speed 894void inline_speed
644downheap (WT *heap, int N, int k) 895downheap (ANHE *heap, int N, int k)
645{ 896{
646 WT w = heap [k]; 897 ANHE he = heap [k];
647 898
648 while (k < (N >> 1)) 899 for (;;)
649 { 900 {
650 int j = k << 1; 901 int c = k << 1;
651 902
652 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 903 if (c > N + HEAP0 - 1)
653 ++j;
654
655 if (w->at <= heap [j]->at)
656 break; 904 break;
657 905
906 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
907 ? 1 : 0;
908
909 if (ANHE_at (he) <= ANHE_at (heap [c]))
910 break;
911
658 heap [k] = heap [j]; 912 heap [k] = heap [c];
659 ((W)heap [k])->active = k + 1; 913 ev_active (ANHE_w (heap [k])) = k;
914
660 k = j; 915 k = c;
661 } 916 }
662 917
663 heap [k] = w; 918 heap [k] = he;
664 ((W)heap [k])->active = k + 1; 919 ev_active (ANHE_w (he)) = k;
920}
921#endif
922
923/* towards the root */
924void inline_speed
925upheap (ANHE *heap, int k)
926{
927 ANHE he = heap [k];
928
929 for (;;)
930 {
931 int p = HPARENT (k);
932
933 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
934 break;
935
936 heap [k] = heap [p];
937 ev_active (ANHE_w (heap [k])) = k;
938 k = p;
939 }
940
941 heap [k] = he;
942 ev_active (ANHE_w (he)) = k;
665} 943}
666 944
667void inline_size 945void inline_size
668adjustheap (WT *heap, int N, int k) 946adjustheap (ANHE *heap, int N, int k)
669{ 947{
948 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
670 upheap (heap, k); 949 upheap (heap, k);
950 else
671 downheap (heap, N, k); 951 downheap (heap, N, k);
952}
953
954/* rebuild the heap: this function is used only once and executed rarely */
955void inline_size
956reheap (ANHE *heap, int N)
957{
958 int i;
959
960 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
961 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
962 for (i = 0; i < N; ++i)
963 upheap (heap, i + HEAP0);
672} 964}
673 965
674/*****************************************************************************/ 966/*****************************************************************************/
675 967
676typedef struct 968typedef struct
677{ 969{
678 WL head; 970 WL head;
679 sig_atomic_t volatile gotsig; 971 EV_ATOMIC_T gotsig;
680} ANSIG; 972} ANSIG;
681 973
682static ANSIG *signals; 974static ANSIG *signals;
683static int signalmax; 975static int signalmax;
684 976
685static int sigpipe [2]; 977static EV_ATOMIC_T gotsig;
686static sig_atomic_t volatile gotsig;
687static ev_io sigev;
688 978
689void inline_size 979void inline_size
690signals_init (ANSIG *base, int count) 980signals_init (ANSIG *base, int count)
691{ 981{
692 while (count--) 982 while (count--)
696 986
697 ++base; 987 ++base;
698 } 988 }
699} 989}
700 990
701static void 991/*****************************************************************************/
702sighandler (int signum)
703{
704#if _WIN32
705 signal (signum, sighandler);
706#endif
707 992
708 signals [signum - 1].gotsig = 1;
709
710 if (!gotsig)
711 {
712 int old_errno = errno;
713 gotsig = 1;
714 write (sigpipe [1], &signum, 1);
715 errno = old_errno;
716 }
717}
718
719void noinline
720ev_feed_signal_event (EV_P_ int signum)
721{
722 WL w;
723
724#if EV_MULTIPLICITY
725 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
726#endif
727
728 --signum;
729
730 if (signum < 0 || signum >= signalmax)
731 return;
732
733 signals [signum].gotsig = 0;
734
735 for (w = signals [signum].head; w; w = w->next)
736 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
737}
738
739static void
740sigcb (EV_P_ ev_io *iow, int revents)
741{
742 int signum;
743
744 read (sigpipe [0], &revents, 1);
745 gotsig = 0;
746
747 for (signum = signalmax; signum--; )
748 if (signals [signum].gotsig)
749 ev_feed_signal_event (EV_A_ signum + 1);
750}
751
752void inline_size 993void inline_speed
753fd_intern (int fd) 994fd_intern (int fd)
754{ 995{
755#ifdef _WIN32 996#ifdef _WIN32
756 int arg = 1; 997 unsigned long arg = 1;
757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 998 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
758#else 999#else
759 fcntl (fd, F_SETFD, FD_CLOEXEC); 1000 fcntl (fd, F_SETFD, FD_CLOEXEC);
760 fcntl (fd, F_SETFL, O_NONBLOCK); 1001 fcntl (fd, F_SETFL, O_NONBLOCK);
761#endif 1002#endif
762} 1003}
763 1004
764static void noinline 1005static void noinline
765siginit (EV_P) 1006evpipe_init (EV_P)
766{ 1007{
1008 if (!ev_is_active (&pipeev))
1009 {
1010#if EV_USE_EVENTFD
1011 if ((evfd = eventfd (0, 0)) >= 0)
1012 {
1013 evpipe [0] = -1;
1014 fd_intern (evfd);
1015 ev_io_set (&pipeev, evfd, EV_READ);
1016 }
1017 else
1018#endif
1019 {
1020 while (pipe (evpipe))
1021 syserr ("(libev) error creating signal/async pipe");
1022
767 fd_intern (sigpipe [0]); 1023 fd_intern (evpipe [0]);
768 fd_intern (sigpipe [1]); 1024 fd_intern (evpipe [1]);
1025 ev_io_set (&pipeev, evpipe [0], EV_READ);
1026 }
769 1027
770 ev_io_set (&sigev, sigpipe [0], EV_READ);
771 ev_io_start (EV_A_ &sigev); 1028 ev_io_start (EV_A_ &pipeev);
772 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1029 ev_unref (EV_A); /* watcher should not keep loop alive */
1030 }
1031}
1032
1033void inline_size
1034evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1035{
1036 if (!*flag)
1037 {
1038 int old_errno = errno; /* save errno because write might clobber it */
1039
1040 *flag = 1;
1041
1042#if EV_USE_EVENTFD
1043 if (evfd >= 0)
1044 {
1045 uint64_t counter = 1;
1046 write (evfd, &counter, sizeof (uint64_t));
1047 }
1048 else
1049#endif
1050 write (evpipe [1], &old_errno, 1);
1051
1052 errno = old_errno;
1053 }
1054}
1055
1056static void
1057pipecb (EV_P_ ev_io *iow, int revents)
1058{
1059#if EV_USE_EVENTFD
1060 if (evfd >= 0)
1061 {
1062 uint64_t counter;
1063 read (evfd, &counter, sizeof (uint64_t));
1064 }
1065 else
1066#endif
1067 {
1068 char dummy;
1069 read (evpipe [0], &dummy, 1);
1070 }
1071
1072 if (gotsig && ev_is_default_loop (EV_A))
1073 {
1074 int signum;
1075 gotsig = 0;
1076
1077 for (signum = signalmax; signum--; )
1078 if (signals [signum].gotsig)
1079 ev_feed_signal_event (EV_A_ signum + 1);
1080 }
1081
1082#if EV_ASYNC_ENABLE
1083 if (gotasync)
1084 {
1085 int i;
1086 gotasync = 0;
1087
1088 for (i = asynccnt; i--; )
1089 if (asyncs [i]->sent)
1090 {
1091 asyncs [i]->sent = 0;
1092 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1093 }
1094 }
1095#endif
773} 1096}
774 1097
775/*****************************************************************************/ 1098/*****************************************************************************/
776 1099
1100static void
1101ev_sighandler (int signum)
1102{
1103#if EV_MULTIPLICITY
1104 struct ev_loop *loop = &default_loop_struct;
1105#endif
1106
1107#if _WIN32
1108 signal (signum, ev_sighandler);
1109#endif
1110
1111 signals [signum - 1].gotsig = 1;
1112 evpipe_write (EV_A_ &gotsig);
1113}
1114
1115void noinline
1116ev_feed_signal_event (EV_P_ int signum)
1117{
1118 WL w;
1119
1120#if EV_MULTIPLICITY
1121 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1122#endif
1123
1124 --signum;
1125
1126 if (signum < 0 || signum >= signalmax)
1127 return;
1128
1129 signals [signum].gotsig = 0;
1130
1131 for (w = signals [signum].head; w; w = w->next)
1132 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1133}
1134
1135/*****************************************************************************/
1136
777static ev_child *childs [EV_PID_HASHSIZE]; 1137static WL childs [EV_PID_HASHSIZE];
778 1138
779#ifndef _WIN32 1139#ifndef _WIN32
780 1140
781static ev_signal childev; 1141static ev_signal childev;
782 1142
1143#ifndef WIFCONTINUED
1144# define WIFCONTINUED(status) 0
1145#endif
1146
783void inline_speed 1147void inline_speed
784child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1148child_reap (EV_P_ int chain, int pid, int status)
785{ 1149{
786 ev_child *w; 1150 ev_child *w;
1151 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
787 1152
788 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1153 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1154 {
789 if (w->pid == pid || !w->pid) 1155 if ((w->pid == pid || !w->pid)
1156 && (!traced || (w->flags & 1)))
790 { 1157 {
791 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1158 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
792 w->rpid = pid; 1159 w->rpid = pid;
793 w->rstatus = status; 1160 w->rstatus = status;
794 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1161 ev_feed_event (EV_A_ (W)w, EV_CHILD);
795 } 1162 }
1163 }
796} 1164}
797 1165
798#ifndef WCONTINUED 1166#ifndef WCONTINUED
799# define WCONTINUED 0 1167# define WCONTINUED 0
800#endif 1168#endif
809 if (!WCONTINUED 1177 if (!WCONTINUED
810 || errno != EINVAL 1178 || errno != EINVAL
811 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1179 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
812 return; 1180 return;
813 1181
814 /* make sure we are called again until all childs have been reaped */ 1182 /* make sure we are called again until all children have been reaped */
815 /* we need to do it this way so that the callback gets called before we continue */ 1183 /* we need to do it this way so that the callback gets called before we continue */
816 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1184 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
817 1185
818 child_reap (EV_A_ sw, pid, pid, status); 1186 child_reap (EV_A_ pid, pid, status);
819 if (EV_PID_HASHSIZE > 1) 1187 if (EV_PID_HASHSIZE > 1)
820 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1188 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
821} 1189}
822 1190
823#endif 1191#endif
824 1192
825/*****************************************************************************/ 1193/*****************************************************************************/
897} 1265}
898 1266
899unsigned int 1267unsigned int
900ev_embeddable_backends (void) 1268ev_embeddable_backends (void)
901{ 1269{
902 return EVBACKEND_EPOLL 1270 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
903 | EVBACKEND_KQUEUE 1271
904 | EVBACKEND_PORT; 1272 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1273 /* please fix it and tell me how to detect the fix */
1274 flags &= ~EVBACKEND_EPOLL;
1275
1276 return flags;
905} 1277}
906 1278
907unsigned int 1279unsigned int
908ev_backend (EV_P) 1280ev_backend (EV_P)
909{ 1281{
912 1284
913unsigned int 1285unsigned int
914ev_loop_count (EV_P) 1286ev_loop_count (EV_P)
915{ 1287{
916 return loop_count; 1288 return loop_count;
1289}
1290
1291void
1292ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1293{
1294 io_blocktime = interval;
1295}
1296
1297void
1298ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1299{
1300 timeout_blocktime = interval;
917} 1301}
918 1302
919static void noinline 1303static void noinline
920loop_init (EV_P_ unsigned int flags) 1304loop_init (EV_P_ unsigned int flags)
921{ 1305{
927 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1311 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
928 have_monotonic = 1; 1312 have_monotonic = 1;
929 } 1313 }
930#endif 1314#endif
931 1315
932 ev_rt_now = ev_time (); 1316 ev_rt_now = ev_time ();
933 mn_now = get_clock (); 1317 mn_now = get_clock ();
934 now_floor = mn_now; 1318 now_floor = mn_now;
935 rtmn_diff = ev_rt_now - mn_now; 1319 rtmn_diff = ev_rt_now - mn_now;
1320
1321 io_blocktime = 0.;
1322 timeout_blocktime = 0.;
1323 backend = 0;
1324 backend_fd = -1;
1325 gotasync = 0;
1326#if EV_USE_INOTIFY
1327 fs_fd = -2;
1328#endif
936 1329
937 /* pid check not overridable via env */ 1330 /* pid check not overridable via env */
938#ifndef _WIN32 1331#ifndef _WIN32
939 if (flags & EVFLAG_FORKCHECK) 1332 if (flags & EVFLAG_FORKCHECK)
940 curpid = getpid (); 1333 curpid = getpid ();
943 if (!(flags & EVFLAG_NOENV) 1336 if (!(flags & EVFLAG_NOENV)
944 && !enable_secure () 1337 && !enable_secure ()
945 && getenv ("LIBEV_FLAGS")) 1338 && getenv ("LIBEV_FLAGS"))
946 flags = atoi (getenv ("LIBEV_FLAGS")); 1339 flags = atoi (getenv ("LIBEV_FLAGS"));
947 1340
948 if (!(flags & 0x0000ffffUL)) 1341 if (!(flags & 0x0000ffffU))
949 flags |= ev_recommended_backends (); 1342 flags |= ev_recommended_backends ();
950
951 backend = 0;
952 backend_fd = -1;
953#if EV_USE_INOTIFY
954 fs_fd = -2;
955#endif
956 1343
957#if EV_USE_PORT 1344#if EV_USE_PORT
958 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1345 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
959#endif 1346#endif
960#if EV_USE_KQUEUE 1347#if EV_USE_KQUEUE
968#endif 1355#endif
969#if EV_USE_SELECT 1356#if EV_USE_SELECT
970 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1357 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
971#endif 1358#endif
972 1359
973 ev_init (&sigev, sigcb); 1360 ev_init (&pipeev, pipecb);
974 ev_set_priority (&sigev, EV_MAXPRI); 1361 ev_set_priority (&pipeev, EV_MAXPRI);
975 } 1362 }
976} 1363}
977 1364
978static void noinline 1365static void noinline
979loop_destroy (EV_P) 1366loop_destroy (EV_P)
980{ 1367{
981 int i; 1368 int i;
1369
1370 if (ev_is_active (&pipeev))
1371 {
1372 ev_ref (EV_A); /* signal watcher */
1373 ev_io_stop (EV_A_ &pipeev);
1374
1375#if EV_USE_EVENTFD
1376 if (evfd >= 0)
1377 close (evfd);
1378#endif
1379
1380 if (evpipe [0] >= 0)
1381 {
1382 close (evpipe [0]);
1383 close (evpipe [1]);
1384 }
1385 }
982 1386
983#if EV_USE_INOTIFY 1387#if EV_USE_INOTIFY
984 if (fs_fd >= 0) 1388 if (fs_fd >= 0)
985 close (fs_fd); 1389 close (fs_fd);
986#endif 1390#endif
1009 array_free (pending, [i]); 1413 array_free (pending, [i]);
1010#if EV_IDLE_ENABLE 1414#if EV_IDLE_ENABLE
1011 array_free (idle, [i]); 1415 array_free (idle, [i]);
1012#endif 1416#endif
1013 } 1417 }
1418
1419 ev_free (anfds); anfdmax = 0;
1014 1420
1015 /* have to use the microsoft-never-gets-it-right macro */ 1421 /* have to use the microsoft-never-gets-it-right macro */
1016 array_free (fdchange, EMPTY); 1422 array_free (fdchange, EMPTY);
1017 array_free (timer, EMPTY); 1423 array_free (timer, EMPTY);
1018#if EV_PERIODIC_ENABLE 1424#if EV_PERIODIC_ENABLE
1019 array_free (periodic, EMPTY); 1425 array_free (periodic, EMPTY);
1020#endif 1426#endif
1427#if EV_FORK_ENABLE
1428 array_free (fork, EMPTY);
1429#endif
1021 array_free (prepare, EMPTY); 1430 array_free (prepare, EMPTY);
1022 array_free (check, EMPTY); 1431 array_free (check, EMPTY);
1432#if EV_ASYNC_ENABLE
1433 array_free (async, EMPTY);
1434#endif
1023 1435
1024 backend = 0; 1436 backend = 0;
1025} 1437}
1026 1438
1439#if EV_USE_INOTIFY
1027void inline_size infy_fork (EV_P); 1440void inline_size infy_fork (EV_P);
1441#endif
1028 1442
1029void inline_size 1443void inline_size
1030loop_fork (EV_P) 1444loop_fork (EV_P)
1031{ 1445{
1032#if EV_USE_PORT 1446#if EV_USE_PORT
1040#endif 1454#endif
1041#if EV_USE_INOTIFY 1455#if EV_USE_INOTIFY
1042 infy_fork (EV_A); 1456 infy_fork (EV_A);
1043#endif 1457#endif
1044 1458
1045 if (ev_is_active (&sigev)) 1459 if (ev_is_active (&pipeev))
1046 { 1460 {
1047 /* default loop */ 1461 /* this "locks" the handlers against writing to the pipe */
1462 /* while we modify the fd vars */
1463 gotsig = 1;
1464#if EV_ASYNC_ENABLE
1465 gotasync = 1;
1466#endif
1048 1467
1049 ev_ref (EV_A); 1468 ev_ref (EV_A);
1050 ev_io_stop (EV_A_ &sigev); 1469 ev_io_stop (EV_A_ &pipeev);
1470
1471#if EV_USE_EVENTFD
1472 if (evfd >= 0)
1473 close (evfd);
1474#endif
1475
1476 if (evpipe [0] >= 0)
1477 {
1051 close (sigpipe [0]); 1478 close (evpipe [0]);
1052 close (sigpipe [1]); 1479 close (evpipe [1]);
1480 }
1053 1481
1054 while (pipe (sigpipe))
1055 syserr ("(libev) error creating pipe");
1056
1057 siginit (EV_A); 1482 evpipe_init (EV_A);
1483 /* now iterate over everything, in case we missed something */
1484 pipecb (EV_A_ &pipeev, EV_READ);
1058 } 1485 }
1059 1486
1060 postfork = 0; 1487 postfork = 0;
1061} 1488}
1062 1489
1063#if EV_MULTIPLICITY 1490#if EV_MULTIPLICITY
1491
1064struct ev_loop * 1492struct ev_loop *
1065ev_loop_new (unsigned int flags) 1493ev_loop_new (unsigned int flags)
1066{ 1494{
1067 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1495 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1068 1496
1084} 1512}
1085 1513
1086void 1514void
1087ev_loop_fork (EV_P) 1515ev_loop_fork (EV_P)
1088{ 1516{
1089 postfork = 1; 1517 postfork = 1; /* must be in line with ev_default_fork */
1090} 1518}
1091 1519
1520#if EV_VERIFY
1521static void noinline
1522verify_watcher (EV_P_ W w)
1523{
1524 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1525
1526 if (w->pending)
1527 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1528}
1529
1530static void noinline
1531verify_heap (EV_P_ ANHE *heap, int N)
1532{
1533 int i;
1534
1535 for (i = HEAP0; i < N + HEAP0; ++i)
1536 {
1537 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1538 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1539 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1540
1541 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1542 }
1543}
1544
1545static void noinline
1546array_verify (EV_P_ W *ws, int cnt)
1547{
1548 while (cnt--)
1549 {
1550 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1551 verify_watcher (EV_A_ ws [cnt]);
1552 }
1553}
1554#endif
1555
1556void
1557ev_loop_verify (EV_P)
1558{
1559#if EV_VERIFY
1560 int i;
1561 WL w;
1562
1563 assert (activecnt >= -1);
1564
1565 assert (fdchangemax >= fdchangecnt);
1566 for (i = 0; i < fdchangecnt; ++i)
1567 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1568
1569 assert (anfdmax >= 0);
1570 for (i = 0; i < anfdmax; ++i)
1571 for (w = anfds [i].head; w; w = w->next)
1572 {
1573 verify_watcher (EV_A_ (W)w);
1574 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1575 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1576 }
1577
1578 assert (timermax >= timercnt);
1579 verify_heap (EV_A_ timers, timercnt);
1580
1581#if EV_PERIODIC_ENABLE
1582 assert (periodicmax >= periodiccnt);
1583 verify_heap (EV_A_ periodics, periodiccnt);
1584#endif
1585
1586 for (i = NUMPRI; i--; )
1587 {
1588 assert (pendingmax [i] >= pendingcnt [i]);
1589#if EV_IDLE_ENABLE
1590 assert (idleall >= 0);
1591 assert (idlemax [i] >= idlecnt [i]);
1592 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1593#endif
1594 }
1595
1596#if EV_FORK_ENABLE
1597 assert (forkmax >= forkcnt);
1598 array_verify (EV_A_ (W *)forks, forkcnt);
1599#endif
1600
1601#if EV_ASYNC_ENABLE
1602 assert (asyncmax >= asynccnt);
1603 array_verify (EV_A_ (W *)asyncs, asynccnt);
1604#endif
1605
1606 assert (preparemax >= preparecnt);
1607 array_verify (EV_A_ (W *)prepares, preparecnt);
1608
1609 assert (checkmax >= checkcnt);
1610 array_verify (EV_A_ (W *)checks, checkcnt);
1611
1612# if 0
1613 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1614 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1092#endif 1615# endif
1616#endif
1617}
1618
1619#endif /* multiplicity */
1093 1620
1094#if EV_MULTIPLICITY 1621#if EV_MULTIPLICITY
1095struct ev_loop * 1622struct ev_loop *
1096ev_default_loop_init (unsigned int flags) 1623ev_default_loop_init (unsigned int flags)
1097#else 1624#else
1098int 1625int
1099ev_default_loop (unsigned int flags) 1626ev_default_loop (unsigned int flags)
1100#endif 1627#endif
1101{ 1628{
1102 if (sigpipe [0] == sigpipe [1])
1103 if (pipe (sigpipe))
1104 return 0;
1105
1106 if (!ev_default_loop_ptr) 1629 if (!ev_default_loop_ptr)
1107 { 1630 {
1108#if EV_MULTIPLICITY 1631#if EV_MULTIPLICITY
1109 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1632 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1110#else 1633#else
1113 1636
1114 loop_init (EV_A_ flags); 1637 loop_init (EV_A_ flags);
1115 1638
1116 if (ev_backend (EV_A)) 1639 if (ev_backend (EV_A))
1117 { 1640 {
1118 siginit (EV_A);
1119
1120#ifndef _WIN32 1641#ifndef _WIN32
1121 ev_signal_init (&childev, childcb, SIGCHLD); 1642 ev_signal_init (&childev, childcb, SIGCHLD);
1122 ev_set_priority (&childev, EV_MAXPRI); 1643 ev_set_priority (&childev, EV_MAXPRI);
1123 ev_signal_start (EV_A_ &childev); 1644 ev_signal_start (EV_A_ &childev);
1124 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1645 ev_unref (EV_A); /* child watcher should not keep loop alive */
1141#ifndef _WIN32 1662#ifndef _WIN32
1142 ev_ref (EV_A); /* child watcher */ 1663 ev_ref (EV_A); /* child watcher */
1143 ev_signal_stop (EV_A_ &childev); 1664 ev_signal_stop (EV_A_ &childev);
1144#endif 1665#endif
1145 1666
1146 ev_ref (EV_A); /* signal watcher */
1147 ev_io_stop (EV_A_ &sigev);
1148
1149 close (sigpipe [0]); sigpipe [0] = 0;
1150 close (sigpipe [1]); sigpipe [1] = 0;
1151
1152 loop_destroy (EV_A); 1667 loop_destroy (EV_A);
1153} 1668}
1154 1669
1155void 1670void
1156ev_default_fork (void) 1671ev_default_fork (void)
1158#if EV_MULTIPLICITY 1673#if EV_MULTIPLICITY
1159 struct ev_loop *loop = ev_default_loop_ptr; 1674 struct ev_loop *loop = ev_default_loop_ptr;
1160#endif 1675#endif
1161 1676
1162 if (backend) 1677 if (backend)
1163 postfork = 1; 1678 postfork = 1; /* must be in line with ev_loop_fork */
1164} 1679}
1165 1680
1166/*****************************************************************************/ 1681/*****************************************************************************/
1682
1683void
1684ev_invoke (EV_P_ void *w, int revents)
1685{
1686 EV_CB_INVOKE ((W)w, revents);
1687}
1167 1688
1168void inline_speed 1689void inline_speed
1169call_pending (EV_P) 1690call_pending (EV_P)
1170{ 1691{
1171 int pri; 1692 int pri;
1179 { 1700 {
1180 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1701 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1181 1702
1182 p->w->pending = 0; 1703 p->w->pending = 0;
1183 EV_CB_INVOKE (p->w, p->events); 1704 EV_CB_INVOKE (p->w, p->events);
1705 EV_FREQUENT_CHECK;
1184 } 1706 }
1185 } 1707 }
1186} 1708}
1187
1188void inline_size
1189timers_reify (EV_P)
1190{
1191 while (timercnt && ((WT)timers [0])->at <= mn_now)
1192 {
1193 ev_timer *w = timers [0];
1194
1195 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1196
1197 /* first reschedule or stop timer */
1198 if (w->repeat)
1199 {
1200 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1201
1202 ((WT)w)->at += w->repeat;
1203 if (((WT)w)->at < mn_now)
1204 ((WT)w)->at = mn_now;
1205
1206 downheap ((WT *)timers, timercnt, 0);
1207 }
1208 else
1209 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1210
1211 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1212 }
1213}
1214
1215#if EV_PERIODIC_ENABLE
1216void inline_size
1217periodics_reify (EV_P)
1218{
1219 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1220 {
1221 ev_periodic *w = periodics [0];
1222
1223 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1224
1225 /* first reschedule or stop timer */
1226 if (w->reschedule_cb)
1227 {
1228 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1229 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1230 downheap ((WT *)periodics, periodiccnt, 0);
1231 }
1232 else if (w->interval)
1233 {
1234 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1235 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1236 downheap ((WT *)periodics, periodiccnt, 0);
1237 }
1238 else
1239 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1240
1241 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1242 }
1243}
1244
1245static void noinline
1246periodics_reschedule (EV_P)
1247{
1248 int i;
1249
1250 /* adjust periodics after time jump */
1251 for (i = 0; i < periodiccnt; ++i)
1252 {
1253 ev_periodic *w = periodics [i];
1254
1255 if (w->reschedule_cb)
1256 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1257 else if (w->interval)
1258 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1259 }
1260
1261 /* now rebuild the heap */
1262 for (i = periodiccnt >> 1; i--; )
1263 downheap ((WT *)periodics, periodiccnt, i);
1264}
1265#endif
1266 1709
1267#if EV_IDLE_ENABLE 1710#if EV_IDLE_ENABLE
1268void inline_size 1711void inline_size
1269idle_reify (EV_P) 1712idle_reify (EV_P)
1270{ 1713{
1285 } 1728 }
1286 } 1729 }
1287} 1730}
1288#endif 1731#endif
1289 1732
1290int inline_size 1733void inline_size
1291time_update_monotonic (EV_P) 1734timers_reify (EV_P)
1292{ 1735{
1736 EV_FREQUENT_CHECK;
1737
1738 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1739 {
1740 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1741
1742 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1743
1744 /* first reschedule or stop timer */
1745 if (w->repeat)
1746 {
1747 ev_at (w) += w->repeat;
1748 if (ev_at (w) < mn_now)
1749 ev_at (w) = mn_now;
1750
1751 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1752
1753 ANHE_at_cache (timers [HEAP0]);
1754 downheap (timers, timercnt, HEAP0);
1755 }
1756 else
1757 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1758
1759 EV_FREQUENT_CHECK;
1760 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1761 }
1762}
1763
1764#if EV_PERIODIC_ENABLE
1765void inline_size
1766periodics_reify (EV_P)
1767{
1768 EV_FREQUENT_CHECK;
1769
1770 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1771 {
1772 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1773
1774 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1775
1776 /* first reschedule or stop timer */
1777 if (w->reschedule_cb)
1778 {
1779 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1780
1781 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1782
1783 ANHE_at_cache (periodics [HEAP0]);
1784 downheap (periodics, periodiccnt, HEAP0);
1785 }
1786 else if (w->interval)
1787 {
1788 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1789 /* if next trigger time is not sufficiently in the future, put it there */
1790 /* this might happen because of floating point inexactness */
1791 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1792 {
1793 ev_at (w) += w->interval;
1794
1795 /* if interval is unreasonably low we might still have a time in the past */
1796 /* so correct this. this will make the periodic very inexact, but the user */
1797 /* has effectively asked to get triggered more often than possible */
1798 if (ev_at (w) < ev_rt_now)
1799 ev_at (w) = ev_rt_now;
1800 }
1801
1802 ANHE_at_cache (periodics [HEAP0]);
1803 downheap (periodics, periodiccnt, HEAP0);
1804 }
1805 else
1806 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1807
1808 EV_FREQUENT_CHECK;
1809 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1810 }
1811}
1812
1813static void noinline
1814periodics_reschedule (EV_P)
1815{
1816 int i;
1817
1818 /* adjust periodics after time jump */
1819 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1820 {
1821 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1822
1823 if (w->reschedule_cb)
1824 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1825 else if (w->interval)
1826 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1827
1828 ANHE_at_cache (periodics [i]);
1829 }
1830
1831 reheap (periodics, periodiccnt);
1832}
1833#endif
1834
1835void inline_speed
1836time_update (EV_P_ ev_tstamp max_block)
1837{
1838 int i;
1839
1840#if EV_USE_MONOTONIC
1841 if (expect_true (have_monotonic))
1842 {
1843 ev_tstamp odiff = rtmn_diff;
1844
1293 mn_now = get_clock (); 1845 mn_now = get_clock ();
1294 1846
1847 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1848 /* interpolate in the meantime */
1295 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1849 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1296 { 1850 {
1297 ev_rt_now = rtmn_diff + mn_now; 1851 ev_rt_now = rtmn_diff + mn_now;
1298 return 0; 1852 return;
1299 } 1853 }
1300 else 1854
1301 {
1302 now_floor = mn_now; 1855 now_floor = mn_now;
1303 ev_rt_now = ev_time (); 1856 ev_rt_now = ev_time ();
1304 return 1;
1305 }
1306}
1307 1857
1308void inline_size 1858 /* loop a few times, before making important decisions.
1309time_update (EV_P) 1859 * on the choice of "4": one iteration isn't enough,
1310{ 1860 * in case we get preempted during the calls to
1311 int i; 1861 * ev_time and get_clock. a second call is almost guaranteed
1312 1862 * to succeed in that case, though. and looping a few more times
1313#if EV_USE_MONOTONIC 1863 * doesn't hurt either as we only do this on time-jumps or
1314 if (expect_true (have_monotonic)) 1864 * in the unlikely event of having been preempted here.
1315 { 1865 */
1316 if (time_update_monotonic (EV_A)) 1866 for (i = 4; --i; )
1317 { 1867 {
1318 ev_tstamp odiff = rtmn_diff;
1319
1320 /* loop a few times, before making important decisions.
1321 * on the choice of "4": one iteration isn't enough,
1322 * in case we get preempted during the calls to
1323 * ev_time and get_clock. a second call is almost guaranteed
1324 * to succeed in that case, though. and looping a few more times
1325 * doesn't hurt either as we only do this on time-jumps or
1326 * in the unlikely event of having been preempted here.
1327 */
1328 for (i = 4; --i; )
1329 {
1330 rtmn_diff = ev_rt_now - mn_now; 1868 rtmn_diff = ev_rt_now - mn_now;
1331 1869
1332 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1870 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1333 return; /* all is well */ 1871 return; /* all is well */
1334 1872
1335 ev_rt_now = ev_time (); 1873 ev_rt_now = ev_time ();
1336 mn_now = get_clock (); 1874 mn_now = get_clock ();
1337 now_floor = mn_now; 1875 now_floor = mn_now;
1338 } 1876 }
1339 1877
1340# if EV_PERIODIC_ENABLE 1878# if EV_PERIODIC_ENABLE
1341 periodics_reschedule (EV_A); 1879 periodics_reschedule (EV_A);
1342# endif 1880# endif
1343 /* no timer adjustment, as the monotonic clock doesn't jump */ 1881 /* no timer adjustment, as the monotonic clock doesn't jump */
1344 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1882 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1345 }
1346 } 1883 }
1347 else 1884 else
1348#endif 1885#endif
1349 { 1886 {
1350 ev_rt_now = ev_time (); 1887 ev_rt_now = ev_time ();
1351 1888
1352 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1889 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1353 { 1890 {
1354#if EV_PERIODIC_ENABLE 1891#if EV_PERIODIC_ENABLE
1355 periodics_reschedule (EV_A); 1892 periodics_reschedule (EV_A);
1356#endif 1893#endif
1357
1358 /* adjust timers. this is easy, as the offset is the same for all of them */ 1894 /* adjust timers. this is easy, as the offset is the same for all of them */
1359 for (i = 0; i < timercnt; ++i) 1895 for (i = 0; i < timercnt; ++i)
1896 {
1897 ANHE *he = timers + i + HEAP0;
1360 ((WT)timers [i])->at += ev_rt_now - mn_now; 1898 ANHE_w (*he)->at += ev_rt_now - mn_now;
1899 ANHE_at_cache (*he);
1900 }
1361 } 1901 }
1362 1902
1363 mn_now = ev_rt_now; 1903 mn_now = ev_rt_now;
1364 } 1904 }
1365} 1905}
1374ev_unref (EV_P) 1914ev_unref (EV_P)
1375{ 1915{
1376 --activecnt; 1916 --activecnt;
1377} 1917}
1378 1918
1919void
1920ev_now_update (EV_P)
1921{
1922 time_update (EV_A_ 1e100);
1923}
1924
1379static int loop_done; 1925static int loop_done;
1380 1926
1381void 1927void
1382ev_loop (EV_P_ int flags) 1928ev_loop (EV_P_ int flags)
1383{ 1929{
1384 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1930 loop_done = EVUNLOOP_CANCEL;
1385 ? EVUNLOOP_ONE
1386 : EVUNLOOP_CANCEL;
1387 1931
1388 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1932 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1389 1933
1390 do 1934 do
1391 { 1935 {
1936#if EV_VERIFY >= 2
1937 ev_loop_verify (EV_A);
1938#endif
1939
1392#ifndef _WIN32 1940#ifndef _WIN32
1393 if (expect_false (curpid)) /* penalise the forking check even more */ 1941 if (expect_false (curpid)) /* penalise the forking check even more */
1394 if (expect_false (getpid () != curpid)) 1942 if (expect_false (getpid () != curpid))
1395 { 1943 {
1396 curpid = getpid (); 1944 curpid = getpid ();
1406 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1954 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1407 call_pending (EV_A); 1955 call_pending (EV_A);
1408 } 1956 }
1409#endif 1957#endif
1410 1958
1411 /* queue check watchers (and execute them) */ 1959 /* queue prepare watchers (and execute them) */
1412 if (expect_false (preparecnt)) 1960 if (expect_false (preparecnt))
1413 { 1961 {
1414 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1962 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1415 call_pending (EV_A); 1963 call_pending (EV_A);
1416 } 1964 }
1425 /* update fd-related kernel structures */ 1973 /* update fd-related kernel structures */
1426 fd_reify (EV_A); 1974 fd_reify (EV_A);
1427 1975
1428 /* calculate blocking time */ 1976 /* calculate blocking time */
1429 { 1977 {
1430 ev_tstamp block; 1978 ev_tstamp waittime = 0.;
1979 ev_tstamp sleeptime = 0.;
1431 1980
1432 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1981 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1433 block = 0.; /* do not block at all */
1434 else
1435 { 1982 {
1436 /* update time to cancel out callback processing overhead */ 1983 /* update time to cancel out callback processing overhead */
1437#if EV_USE_MONOTONIC
1438 if (expect_true (have_monotonic))
1439 time_update_monotonic (EV_A); 1984 time_update (EV_A_ 1e100);
1440 else
1441#endif
1442 {
1443 ev_rt_now = ev_time ();
1444 mn_now = ev_rt_now;
1445 }
1446 1985
1447 block = MAX_BLOCKTIME; 1986 waittime = MAX_BLOCKTIME;
1448 1987
1449 if (timercnt) 1988 if (timercnt)
1450 { 1989 {
1451 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1990 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1452 if (block > to) block = to; 1991 if (waittime > to) waittime = to;
1453 } 1992 }
1454 1993
1455#if EV_PERIODIC_ENABLE 1994#if EV_PERIODIC_ENABLE
1456 if (periodiccnt) 1995 if (periodiccnt)
1457 { 1996 {
1458 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1997 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1459 if (block > to) block = to; 1998 if (waittime > to) waittime = to;
1460 } 1999 }
1461#endif 2000#endif
1462 2001
1463 if (expect_false (block < 0.)) block = 0.; 2002 if (expect_false (waittime < timeout_blocktime))
2003 waittime = timeout_blocktime;
2004
2005 sleeptime = waittime - backend_fudge;
2006
2007 if (expect_true (sleeptime > io_blocktime))
2008 sleeptime = io_blocktime;
2009
2010 if (sleeptime)
2011 {
2012 ev_sleep (sleeptime);
2013 waittime -= sleeptime;
2014 }
1464 } 2015 }
1465 2016
1466 ++loop_count; 2017 ++loop_count;
1467 backend_poll (EV_A_ block); 2018 backend_poll (EV_A_ waittime);
2019
2020 /* update ev_rt_now, do magic */
2021 time_update (EV_A_ waittime + sleeptime);
1468 } 2022 }
1469
1470 /* update ev_rt_now, do magic */
1471 time_update (EV_A);
1472 2023
1473 /* queue pending timers and reschedule them */ 2024 /* queue pending timers and reschedule them */
1474 timers_reify (EV_A); /* relative timers called last */ 2025 timers_reify (EV_A); /* relative timers called last */
1475#if EV_PERIODIC_ENABLE 2026#if EV_PERIODIC_ENABLE
1476 periodics_reify (EV_A); /* absolute timers called first */ 2027 periodics_reify (EV_A); /* absolute timers called first */
1484 /* queue check watchers, to be executed first */ 2035 /* queue check watchers, to be executed first */
1485 if (expect_false (checkcnt)) 2036 if (expect_false (checkcnt))
1486 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2037 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1487 2038
1488 call_pending (EV_A); 2039 call_pending (EV_A);
1489
1490 } 2040 }
1491 while (expect_true (activecnt && !loop_done)); 2041 while (expect_true (
2042 activecnt
2043 && !loop_done
2044 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2045 ));
1492 2046
1493 if (loop_done == EVUNLOOP_ONE) 2047 if (loop_done == EVUNLOOP_ONE)
1494 loop_done = EVUNLOOP_CANCEL; 2048 loop_done = EVUNLOOP_CANCEL;
1495} 2049}
1496 2050
1532 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2086 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1533 w->pending = 0; 2087 w->pending = 0;
1534 } 2088 }
1535} 2089}
1536 2090
1537void 2091int
1538ev_clear_pending (EV_P_ void *w, int invoke) 2092ev_clear_pending (EV_P_ void *w)
1539{ 2093{
1540 W w_ = (W)w; 2094 W w_ = (W)w;
1541 int pending = w_->pending; 2095 int pending = w_->pending;
1542 2096
1543 if (pending) 2097 if (expect_true (pending))
1544 { 2098 {
1545 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2099 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1546
1547 w_->pending = 0; 2100 w_->pending = 0;
1548 p->w = 0; 2101 p->w = 0;
1549 2102 return p->events;
1550 if (invoke)
1551 EV_CB_INVOKE (w_, p->events);
1552 } 2103 }
2104 else
2105 return 0;
1553} 2106}
1554 2107
1555void inline_size 2108void inline_size
1556pri_adjust (EV_P_ W w) 2109pri_adjust (EV_P_ W w)
1557{ 2110{
1576 w->active = 0; 2129 w->active = 0;
1577} 2130}
1578 2131
1579/*****************************************************************************/ 2132/*****************************************************************************/
1580 2133
1581void 2134void noinline
1582ev_io_start (EV_P_ ev_io *w) 2135ev_io_start (EV_P_ ev_io *w)
1583{ 2136{
1584 int fd = w->fd; 2137 int fd = w->fd;
1585 2138
1586 if (expect_false (ev_is_active (w))) 2139 if (expect_false (ev_is_active (w)))
1587 return; 2140 return;
1588 2141
1589 assert (("ev_io_start called with negative fd", fd >= 0)); 2142 assert (("ev_io_start called with negative fd", fd >= 0));
1590 2143
2144 EV_FREQUENT_CHECK;
2145
1591 ev_start (EV_A_ (W)w, 1); 2146 ev_start (EV_A_ (W)w, 1);
1592 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2147 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1593 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2148 wlist_add (&anfds[fd].head, (WL)w);
1594 2149
1595 fd_change (EV_A_ fd); 2150 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1596} 2151 w->events &= ~EV_IOFDSET;
1597 2152
1598void 2153 EV_FREQUENT_CHECK;
2154}
2155
2156void noinline
1599ev_io_stop (EV_P_ ev_io *w) 2157ev_io_stop (EV_P_ ev_io *w)
1600{ 2158{
1601 clear_pending (EV_A_ (W)w); 2159 clear_pending (EV_A_ (W)w);
1602 if (expect_false (!ev_is_active (w))) 2160 if (expect_false (!ev_is_active (w)))
1603 return; 2161 return;
1604 2162
1605 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2163 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1606 2164
2165 EV_FREQUENT_CHECK;
2166
1607 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2167 wlist_del (&anfds[w->fd].head, (WL)w);
1608 ev_stop (EV_A_ (W)w); 2168 ev_stop (EV_A_ (W)w);
1609 2169
1610 fd_change (EV_A_ w->fd); 2170 fd_change (EV_A_ w->fd, 1);
1611}
1612 2171
1613void 2172 EV_FREQUENT_CHECK;
2173}
2174
2175void noinline
1614ev_timer_start (EV_P_ ev_timer *w) 2176ev_timer_start (EV_P_ ev_timer *w)
1615{ 2177{
1616 if (expect_false (ev_is_active (w))) 2178 if (expect_false (ev_is_active (w)))
1617 return; 2179 return;
1618 2180
1619 ((WT)w)->at += mn_now; 2181 ev_at (w) += mn_now;
1620 2182
1621 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2183 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1622 2184
2185 EV_FREQUENT_CHECK;
2186
2187 ++timercnt;
1623 ev_start (EV_A_ (W)w, ++timercnt); 2188 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1624 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2189 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1625 timers [timercnt - 1] = w; 2190 ANHE_w (timers [ev_active (w)]) = (WT)w;
1626 upheap ((WT *)timers, timercnt - 1); 2191 ANHE_at_cache (timers [ev_active (w)]);
2192 upheap (timers, ev_active (w));
1627 2193
2194 EV_FREQUENT_CHECK;
2195
1628 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2196 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1629} 2197}
1630 2198
1631void 2199void noinline
1632ev_timer_stop (EV_P_ ev_timer *w) 2200ev_timer_stop (EV_P_ ev_timer *w)
1633{ 2201{
1634 clear_pending (EV_A_ (W)w); 2202 clear_pending (EV_A_ (W)w);
1635 if (expect_false (!ev_is_active (w))) 2203 if (expect_false (!ev_is_active (w)))
1636 return; 2204 return;
1637 2205
1638 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2206 EV_FREQUENT_CHECK;
1639 2207
1640 { 2208 {
1641 int active = ((W)w)->active; 2209 int active = ev_active (w);
1642 2210
2211 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2212
2213 --timercnt;
2214
1643 if (expect_true (--active < --timercnt)) 2215 if (expect_true (active < timercnt + HEAP0))
1644 { 2216 {
1645 timers [active] = timers [timercnt]; 2217 timers [active] = timers [timercnt + HEAP0];
1646 adjustheap ((WT *)timers, timercnt, active); 2218 adjustheap (timers, timercnt, active);
1647 } 2219 }
1648 } 2220 }
1649 2221
1650 ((WT)w)->at -= mn_now; 2222 EV_FREQUENT_CHECK;
2223
2224 ev_at (w) -= mn_now;
1651 2225
1652 ev_stop (EV_A_ (W)w); 2226 ev_stop (EV_A_ (W)w);
1653} 2227}
1654 2228
1655void 2229void noinline
1656ev_timer_again (EV_P_ ev_timer *w) 2230ev_timer_again (EV_P_ ev_timer *w)
1657{ 2231{
2232 EV_FREQUENT_CHECK;
2233
1658 if (ev_is_active (w)) 2234 if (ev_is_active (w))
1659 { 2235 {
1660 if (w->repeat) 2236 if (w->repeat)
1661 { 2237 {
1662 ((WT)w)->at = mn_now + w->repeat; 2238 ev_at (w) = mn_now + w->repeat;
2239 ANHE_at_cache (timers [ev_active (w)]);
1663 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2240 adjustheap (timers, timercnt, ev_active (w));
1664 } 2241 }
1665 else 2242 else
1666 ev_timer_stop (EV_A_ w); 2243 ev_timer_stop (EV_A_ w);
1667 } 2244 }
1668 else if (w->repeat) 2245 else if (w->repeat)
1669 { 2246 {
1670 w->at = w->repeat; 2247 ev_at (w) = w->repeat;
1671 ev_timer_start (EV_A_ w); 2248 ev_timer_start (EV_A_ w);
1672 } 2249 }
2250
2251 EV_FREQUENT_CHECK;
1673} 2252}
1674 2253
1675#if EV_PERIODIC_ENABLE 2254#if EV_PERIODIC_ENABLE
1676void 2255void noinline
1677ev_periodic_start (EV_P_ ev_periodic *w) 2256ev_periodic_start (EV_P_ ev_periodic *w)
1678{ 2257{
1679 if (expect_false (ev_is_active (w))) 2258 if (expect_false (ev_is_active (w)))
1680 return; 2259 return;
1681 2260
1682 if (w->reschedule_cb) 2261 if (w->reschedule_cb)
1683 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2262 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1684 else if (w->interval) 2263 else if (w->interval)
1685 { 2264 {
1686 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2265 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1687 /* this formula differs from the one in periodic_reify because we do not always round up */ 2266 /* this formula differs from the one in periodic_reify because we do not always round up */
1688 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2267 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1689 } 2268 }
2269 else
2270 ev_at (w) = w->offset;
1690 2271
2272 EV_FREQUENT_CHECK;
2273
2274 ++periodiccnt;
1691 ev_start (EV_A_ (W)w, ++periodiccnt); 2275 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1692 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2276 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1693 periodics [periodiccnt - 1] = w; 2277 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1694 upheap ((WT *)periodics, periodiccnt - 1); 2278 ANHE_at_cache (periodics [ev_active (w)]);
2279 upheap (periodics, ev_active (w));
1695 2280
2281 EV_FREQUENT_CHECK;
2282
1696 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2283 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1697} 2284}
1698 2285
1699void 2286void noinline
1700ev_periodic_stop (EV_P_ ev_periodic *w) 2287ev_periodic_stop (EV_P_ ev_periodic *w)
1701{ 2288{
1702 clear_pending (EV_A_ (W)w); 2289 clear_pending (EV_A_ (W)w);
1703 if (expect_false (!ev_is_active (w))) 2290 if (expect_false (!ev_is_active (w)))
1704 return; 2291 return;
1705 2292
1706 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2293 EV_FREQUENT_CHECK;
1707 2294
1708 { 2295 {
1709 int active = ((W)w)->active; 2296 int active = ev_active (w);
1710 2297
2298 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2299
2300 --periodiccnt;
2301
1711 if (expect_true (--active < --periodiccnt)) 2302 if (expect_true (active < periodiccnt + HEAP0))
1712 { 2303 {
1713 periodics [active] = periodics [periodiccnt]; 2304 periodics [active] = periodics [periodiccnt + HEAP0];
1714 adjustheap ((WT *)periodics, periodiccnt, active); 2305 adjustheap (periodics, periodiccnt, active);
1715 } 2306 }
1716 } 2307 }
1717 2308
2309 EV_FREQUENT_CHECK;
2310
1718 ev_stop (EV_A_ (W)w); 2311 ev_stop (EV_A_ (W)w);
1719} 2312}
1720 2313
1721void 2314void noinline
1722ev_periodic_again (EV_P_ ev_periodic *w) 2315ev_periodic_again (EV_P_ ev_periodic *w)
1723{ 2316{
1724 /* TODO: use adjustheap and recalculation */ 2317 /* TODO: use adjustheap and recalculation */
1725 ev_periodic_stop (EV_A_ w); 2318 ev_periodic_stop (EV_A_ w);
1726 ev_periodic_start (EV_A_ w); 2319 ev_periodic_start (EV_A_ w);
1729 2322
1730#ifndef SA_RESTART 2323#ifndef SA_RESTART
1731# define SA_RESTART 0 2324# define SA_RESTART 0
1732#endif 2325#endif
1733 2326
1734void 2327void noinline
1735ev_signal_start (EV_P_ ev_signal *w) 2328ev_signal_start (EV_P_ ev_signal *w)
1736{ 2329{
1737#if EV_MULTIPLICITY 2330#if EV_MULTIPLICITY
1738 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2331 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1739#endif 2332#endif
1740 if (expect_false (ev_is_active (w))) 2333 if (expect_false (ev_is_active (w)))
1741 return; 2334 return;
1742 2335
1743 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2336 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1744 2337
2338 evpipe_init (EV_A);
2339
2340 EV_FREQUENT_CHECK;
2341
2342 {
2343#ifndef _WIN32
2344 sigset_t full, prev;
2345 sigfillset (&full);
2346 sigprocmask (SIG_SETMASK, &full, &prev);
2347#endif
2348
2349 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2350
2351#ifndef _WIN32
2352 sigprocmask (SIG_SETMASK, &prev, 0);
2353#endif
2354 }
2355
1745 ev_start (EV_A_ (W)w, 1); 2356 ev_start (EV_A_ (W)w, 1);
1746 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1747 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2357 wlist_add (&signals [w->signum - 1].head, (WL)w);
1748 2358
1749 if (!((WL)w)->next) 2359 if (!((WL)w)->next)
1750 { 2360 {
1751#if _WIN32 2361#if _WIN32
1752 signal (w->signum, sighandler); 2362 signal (w->signum, ev_sighandler);
1753#else 2363#else
1754 struct sigaction sa; 2364 struct sigaction sa;
1755 sa.sa_handler = sighandler; 2365 sa.sa_handler = ev_sighandler;
1756 sigfillset (&sa.sa_mask); 2366 sigfillset (&sa.sa_mask);
1757 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2367 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1758 sigaction (w->signum, &sa, 0); 2368 sigaction (w->signum, &sa, 0);
1759#endif 2369#endif
1760 } 2370 }
1761}
1762 2371
1763void 2372 EV_FREQUENT_CHECK;
2373}
2374
2375void noinline
1764ev_signal_stop (EV_P_ ev_signal *w) 2376ev_signal_stop (EV_P_ ev_signal *w)
1765{ 2377{
1766 clear_pending (EV_A_ (W)w); 2378 clear_pending (EV_A_ (W)w);
1767 if (expect_false (!ev_is_active (w))) 2379 if (expect_false (!ev_is_active (w)))
1768 return; 2380 return;
1769 2381
2382 EV_FREQUENT_CHECK;
2383
1770 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2384 wlist_del (&signals [w->signum - 1].head, (WL)w);
1771 ev_stop (EV_A_ (W)w); 2385 ev_stop (EV_A_ (W)w);
1772 2386
1773 if (!signals [w->signum - 1].head) 2387 if (!signals [w->signum - 1].head)
1774 signal (w->signum, SIG_DFL); 2388 signal (w->signum, SIG_DFL);
2389
2390 EV_FREQUENT_CHECK;
1775} 2391}
1776 2392
1777void 2393void
1778ev_child_start (EV_P_ ev_child *w) 2394ev_child_start (EV_P_ ev_child *w)
1779{ 2395{
1781 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2397 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1782#endif 2398#endif
1783 if (expect_false (ev_is_active (w))) 2399 if (expect_false (ev_is_active (w)))
1784 return; 2400 return;
1785 2401
2402 EV_FREQUENT_CHECK;
2403
1786 ev_start (EV_A_ (W)w, 1); 2404 ev_start (EV_A_ (W)w, 1);
1787 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2405 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2406
2407 EV_FREQUENT_CHECK;
1788} 2408}
1789 2409
1790void 2410void
1791ev_child_stop (EV_P_ ev_child *w) 2411ev_child_stop (EV_P_ ev_child *w)
1792{ 2412{
1793 clear_pending (EV_A_ (W)w); 2413 clear_pending (EV_A_ (W)w);
1794 if (expect_false (!ev_is_active (w))) 2414 if (expect_false (!ev_is_active (w)))
1795 return; 2415 return;
1796 2416
2417 EV_FREQUENT_CHECK;
2418
1797 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2419 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1798 ev_stop (EV_A_ (W)w); 2420 ev_stop (EV_A_ (W)w);
2421
2422 EV_FREQUENT_CHECK;
1799} 2423}
1800 2424
1801#if EV_STAT_ENABLE 2425#if EV_STAT_ENABLE
1802 2426
1803# ifdef _WIN32 2427# ifdef _WIN32
1821 if (w->wd < 0) 2445 if (w->wd < 0)
1822 { 2446 {
1823 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2447 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1824 2448
1825 /* monitor some parent directory for speedup hints */ 2449 /* monitor some parent directory for speedup hints */
2450 /* note that exceeding the hardcoded limit is not a correctness issue, */
2451 /* but an efficiency issue only */
1826 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2452 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1827 { 2453 {
1828 char path [4096]; 2454 char path [4096];
1829 strcpy (path, w->path); 2455 strcpy (path, w->path);
1830 2456
1956 } 2582 }
1957 2583
1958 } 2584 }
1959} 2585}
1960 2586
2587#endif
2588
2589#ifdef _WIN32
2590# define EV_LSTAT(p,b) _stati64 (p, b)
2591#else
2592# define EV_LSTAT(p,b) lstat (p, b)
1961#endif 2593#endif
1962 2594
1963void 2595void
1964ev_stat_stat (EV_P_ ev_stat *w) 2596ev_stat_stat (EV_P_ ev_stat *w)
1965{ 2597{
2029 else 2661 else
2030#endif 2662#endif
2031 ev_timer_start (EV_A_ &w->timer); 2663 ev_timer_start (EV_A_ &w->timer);
2032 2664
2033 ev_start (EV_A_ (W)w, 1); 2665 ev_start (EV_A_ (W)w, 1);
2666
2667 EV_FREQUENT_CHECK;
2034} 2668}
2035 2669
2036void 2670void
2037ev_stat_stop (EV_P_ ev_stat *w) 2671ev_stat_stop (EV_P_ ev_stat *w)
2038{ 2672{
2039 clear_pending (EV_A_ (W)w); 2673 clear_pending (EV_A_ (W)w);
2040 if (expect_false (!ev_is_active (w))) 2674 if (expect_false (!ev_is_active (w)))
2041 return; 2675 return;
2042 2676
2677 EV_FREQUENT_CHECK;
2678
2043#if EV_USE_INOTIFY 2679#if EV_USE_INOTIFY
2044 infy_del (EV_A_ w); 2680 infy_del (EV_A_ w);
2045#endif 2681#endif
2046 ev_timer_stop (EV_A_ &w->timer); 2682 ev_timer_stop (EV_A_ &w->timer);
2047 2683
2048 ev_stop (EV_A_ (W)w); 2684 ev_stop (EV_A_ (W)w);
2685
2686 EV_FREQUENT_CHECK;
2049} 2687}
2050#endif 2688#endif
2051 2689
2052#if EV_IDLE_ENABLE 2690#if EV_IDLE_ENABLE
2053void 2691void
2055{ 2693{
2056 if (expect_false (ev_is_active (w))) 2694 if (expect_false (ev_is_active (w)))
2057 return; 2695 return;
2058 2696
2059 pri_adjust (EV_A_ (W)w); 2697 pri_adjust (EV_A_ (W)w);
2698
2699 EV_FREQUENT_CHECK;
2060 2700
2061 { 2701 {
2062 int active = ++idlecnt [ABSPRI (w)]; 2702 int active = ++idlecnt [ABSPRI (w)];
2063 2703
2064 ++idleall; 2704 ++idleall;
2065 ev_start (EV_A_ (W)w, active); 2705 ev_start (EV_A_ (W)w, active);
2066 2706
2067 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2707 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2068 idles [ABSPRI (w)][active - 1] = w; 2708 idles [ABSPRI (w)][active - 1] = w;
2069 } 2709 }
2710
2711 EV_FREQUENT_CHECK;
2070} 2712}
2071 2713
2072void 2714void
2073ev_idle_stop (EV_P_ ev_idle *w) 2715ev_idle_stop (EV_P_ ev_idle *w)
2074{ 2716{
2075 clear_pending (EV_A_ (W)w); 2717 clear_pending (EV_A_ (W)w);
2076 if (expect_false (!ev_is_active (w))) 2718 if (expect_false (!ev_is_active (w)))
2077 return; 2719 return;
2078 2720
2721 EV_FREQUENT_CHECK;
2722
2079 { 2723 {
2080 int active = ((W)w)->active; 2724 int active = ev_active (w);
2081 2725
2082 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2726 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2083 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2727 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2084 2728
2085 ev_stop (EV_A_ (W)w); 2729 ev_stop (EV_A_ (W)w);
2086 --idleall; 2730 --idleall;
2087 } 2731 }
2732
2733 EV_FREQUENT_CHECK;
2088} 2734}
2089#endif 2735#endif
2090 2736
2091void 2737void
2092ev_prepare_start (EV_P_ ev_prepare *w) 2738ev_prepare_start (EV_P_ ev_prepare *w)
2093{ 2739{
2094 if (expect_false (ev_is_active (w))) 2740 if (expect_false (ev_is_active (w)))
2095 return; 2741 return;
2742
2743 EV_FREQUENT_CHECK;
2096 2744
2097 ev_start (EV_A_ (W)w, ++preparecnt); 2745 ev_start (EV_A_ (W)w, ++preparecnt);
2098 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2746 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2099 prepares [preparecnt - 1] = w; 2747 prepares [preparecnt - 1] = w;
2748
2749 EV_FREQUENT_CHECK;
2100} 2750}
2101 2751
2102void 2752void
2103ev_prepare_stop (EV_P_ ev_prepare *w) 2753ev_prepare_stop (EV_P_ ev_prepare *w)
2104{ 2754{
2105 clear_pending (EV_A_ (W)w); 2755 clear_pending (EV_A_ (W)w);
2106 if (expect_false (!ev_is_active (w))) 2756 if (expect_false (!ev_is_active (w)))
2107 return; 2757 return;
2108 2758
2759 EV_FREQUENT_CHECK;
2760
2109 { 2761 {
2110 int active = ((W)w)->active; 2762 int active = ev_active (w);
2763
2111 prepares [active - 1] = prepares [--preparecnt]; 2764 prepares [active - 1] = prepares [--preparecnt];
2112 ((W)prepares [active - 1])->active = active; 2765 ev_active (prepares [active - 1]) = active;
2113 } 2766 }
2114 2767
2115 ev_stop (EV_A_ (W)w); 2768 ev_stop (EV_A_ (W)w);
2769
2770 EV_FREQUENT_CHECK;
2116} 2771}
2117 2772
2118void 2773void
2119ev_check_start (EV_P_ ev_check *w) 2774ev_check_start (EV_P_ ev_check *w)
2120{ 2775{
2121 if (expect_false (ev_is_active (w))) 2776 if (expect_false (ev_is_active (w)))
2122 return; 2777 return;
2778
2779 EV_FREQUENT_CHECK;
2123 2780
2124 ev_start (EV_A_ (W)w, ++checkcnt); 2781 ev_start (EV_A_ (W)w, ++checkcnt);
2125 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2782 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2126 checks [checkcnt - 1] = w; 2783 checks [checkcnt - 1] = w;
2784
2785 EV_FREQUENT_CHECK;
2127} 2786}
2128 2787
2129void 2788void
2130ev_check_stop (EV_P_ ev_check *w) 2789ev_check_stop (EV_P_ ev_check *w)
2131{ 2790{
2132 clear_pending (EV_A_ (W)w); 2791 clear_pending (EV_A_ (W)w);
2133 if (expect_false (!ev_is_active (w))) 2792 if (expect_false (!ev_is_active (w)))
2134 return; 2793 return;
2135 2794
2795 EV_FREQUENT_CHECK;
2796
2136 { 2797 {
2137 int active = ((W)w)->active; 2798 int active = ev_active (w);
2799
2138 checks [active - 1] = checks [--checkcnt]; 2800 checks [active - 1] = checks [--checkcnt];
2139 ((W)checks [active - 1])->active = active; 2801 ev_active (checks [active - 1]) = active;
2140 } 2802 }
2141 2803
2142 ev_stop (EV_A_ (W)w); 2804 ev_stop (EV_A_ (W)w);
2805
2806 EV_FREQUENT_CHECK;
2143} 2807}
2144 2808
2145#if EV_EMBED_ENABLE 2809#if EV_EMBED_ENABLE
2146void noinline 2810void noinline
2147ev_embed_sweep (EV_P_ ev_embed *w) 2811ev_embed_sweep (EV_P_ ev_embed *w)
2148{ 2812{
2149 ev_loop (w->loop, EVLOOP_NONBLOCK); 2813 ev_loop (w->other, EVLOOP_NONBLOCK);
2150} 2814}
2151 2815
2152static void 2816static void
2153embed_cb (EV_P_ ev_io *io, int revents) 2817embed_io_cb (EV_P_ ev_io *io, int revents)
2154{ 2818{
2155 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2819 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2156 2820
2157 if (ev_cb (w)) 2821 if (ev_cb (w))
2158 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2822 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2159 else 2823 else
2160 ev_embed_sweep (loop, w); 2824 ev_loop (w->other, EVLOOP_NONBLOCK);
2161} 2825}
2826
2827static void
2828embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2829{
2830 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2831
2832 {
2833 struct ev_loop *loop = w->other;
2834
2835 while (fdchangecnt)
2836 {
2837 fd_reify (EV_A);
2838 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2839 }
2840 }
2841}
2842
2843static void
2844embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2845{
2846 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2847
2848 {
2849 struct ev_loop *loop = w->other;
2850
2851 ev_loop_fork (EV_A);
2852 }
2853}
2854
2855#if 0
2856static void
2857embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2858{
2859 ev_idle_stop (EV_A_ idle);
2860}
2861#endif
2162 2862
2163void 2863void
2164ev_embed_start (EV_P_ ev_embed *w) 2864ev_embed_start (EV_P_ ev_embed *w)
2165{ 2865{
2166 if (expect_false (ev_is_active (w))) 2866 if (expect_false (ev_is_active (w)))
2167 return; 2867 return;
2168 2868
2169 { 2869 {
2170 struct ev_loop *loop = w->loop; 2870 struct ev_loop *loop = w->other;
2171 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2871 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2172 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2872 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2173 } 2873 }
2874
2875 EV_FREQUENT_CHECK;
2174 2876
2175 ev_set_priority (&w->io, ev_priority (w)); 2877 ev_set_priority (&w->io, ev_priority (w));
2176 ev_io_start (EV_A_ &w->io); 2878 ev_io_start (EV_A_ &w->io);
2177 2879
2880 ev_prepare_init (&w->prepare, embed_prepare_cb);
2881 ev_set_priority (&w->prepare, EV_MINPRI);
2882 ev_prepare_start (EV_A_ &w->prepare);
2883
2884 ev_fork_init (&w->fork, embed_fork_cb);
2885 ev_fork_start (EV_A_ &w->fork);
2886
2887 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2888
2178 ev_start (EV_A_ (W)w, 1); 2889 ev_start (EV_A_ (W)w, 1);
2890
2891 EV_FREQUENT_CHECK;
2179} 2892}
2180 2893
2181void 2894void
2182ev_embed_stop (EV_P_ ev_embed *w) 2895ev_embed_stop (EV_P_ ev_embed *w)
2183{ 2896{
2184 clear_pending (EV_A_ (W)w); 2897 clear_pending (EV_A_ (W)w);
2185 if (expect_false (!ev_is_active (w))) 2898 if (expect_false (!ev_is_active (w)))
2186 return; 2899 return;
2187 2900
2901 EV_FREQUENT_CHECK;
2902
2188 ev_io_stop (EV_A_ &w->io); 2903 ev_io_stop (EV_A_ &w->io);
2904 ev_prepare_stop (EV_A_ &w->prepare);
2905 ev_fork_stop (EV_A_ &w->fork);
2189 2906
2190 ev_stop (EV_A_ (W)w); 2907 EV_FREQUENT_CHECK;
2191} 2908}
2192#endif 2909#endif
2193 2910
2194#if EV_FORK_ENABLE 2911#if EV_FORK_ENABLE
2195void 2912void
2196ev_fork_start (EV_P_ ev_fork *w) 2913ev_fork_start (EV_P_ ev_fork *w)
2197{ 2914{
2198 if (expect_false (ev_is_active (w))) 2915 if (expect_false (ev_is_active (w)))
2199 return; 2916 return;
2917
2918 EV_FREQUENT_CHECK;
2200 2919
2201 ev_start (EV_A_ (W)w, ++forkcnt); 2920 ev_start (EV_A_ (W)w, ++forkcnt);
2202 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2921 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2203 forks [forkcnt - 1] = w; 2922 forks [forkcnt - 1] = w;
2923
2924 EV_FREQUENT_CHECK;
2204} 2925}
2205 2926
2206void 2927void
2207ev_fork_stop (EV_P_ ev_fork *w) 2928ev_fork_stop (EV_P_ ev_fork *w)
2208{ 2929{
2209 clear_pending (EV_A_ (W)w); 2930 clear_pending (EV_A_ (W)w);
2210 if (expect_false (!ev_is_active (w))) 2931 if (expect_false (!ev_is_active (w)))
2211 return; 2932 return;
2212 2933
2934 EV_FREQUENT_CHECK;
2935
2213 { 2936 {
2214 int active = ((W)w)->active; 2937 int active = ev_active (w);
2938
2215 forks [active - 1] = forks [--forkcnt]; 2939 forks [active - 1] = forks [--forkcnt];
2216 ((W)forks [active - 1])->active = active; 2940 ev_active (forks [active - 1]) = active;
2217 } 2941 }
2218 2942
2219 ev_stop (EV_A_ (W)w); 2943 ev_stop (EV_A_ (W)w);
2944
2945 EV_FREQUENT_CHECK;
2946}
2947#endif
2948
2949#if EV_ASYNC_ENABLE
2950void
2951ev_async_start (EV_P_ ev_async *w)
2952{
2953 if (expect_false (ev_is_active (w)))
2954 return;
2955
2956 evpipe_init (EV_A);
2957
2958 EV_FREQUENT_CHECK;
2959
2960 ev_start (EV_A_ (W)w, ++asynccnt);
2961 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2962 asyncs [asynccnt - 1] = w;
2963
2964 EV_FREQUENT_CHECK;
2965}
2966
2967void
2968ev_async_stop (EV_P_ ev_async *w)
2969{
2970 clear_pending (EV_A_ (W)w);
2971 if (expect_false (!ev_is_active (w)))
2972 return;
2973
2974 EV_FREQUENT_CHECK;
2975
2976 {
2977 int active = ev_active (w);
2978
2979 asyncs [active - 1] = asyncs [--asynccnt];
2980 ev_active (asyncs [active - 1]) = active;
2981 }
2982
2983 ev_stop (EV_A_ (W)w);
2984
2985 EV_FREQUENT_CHECK;
2986}
2987
2988void
2989ev_async_send (EV_P_ ev_async *w)
2990{
2991 w->sent = 1;
2992 evpipe_write (EV_A_ &gotasync);
2220} 2993}
2221#endif 2994#endif
2222 2995
2223/*****************************************************************************/ 2996/*****************************************************************************/
2224 2997
2234once_cb (EV_P_ struct ev_once *once, int revents) 3007once_cb (EV_P_ struct ev_once *once, int revents)
2235{ 3008{
2236 void (*cb)(int revents, void *arg) = once->cb; 3009 void (*cb)(int revents, void *arg) = once->cb;
2237 void *arg = once->arg; 3010 void *arg = once->arg;
2238 3011
2239 ev_io_stop (EV_A_ &once->io); 3012 ev_io_stop (EV_A_ &once->io);
2240 ev_timer_stop (EV_A_ &once->to); 3013 ev_timer_stop (EV_A_ &once->to);
2241 ev_free (once); 3014 ev_free (once);
2242 3015
2243 cb (revents, arg); 3016 cb (revents, arg);
2244} 3017}
2245 3018
2246static void 3019static void
2247once_cb_io (EV_P_ ev_io *w, int revents) 3020once_cb_io (EV_P_ ev_io *w, int revents)
2248{ 3021{
2249 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3022 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3023
3024 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2250} 3025}
2251 3026
2252static void 3027static void
2253once_cb_to (EV_P_ ev_timer *w, int revents) 3028once_cb_to (EV_P_ ev_timer *w, int revents)
2254{ 3029{
2255 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3030 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3031
3032 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2256} 3033}
2257 3034
2258void 3035void
2259ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3036ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2260{ 3037{
2282 ev_timer_set (&once->to, timeout, 0.); 3059 ev_timer_set (&once->to, timeout, 0.);
2283 ev_timer_start (EV_A_ &once->to); 3060 ev_timer_start (EV_A_ &once->to);
2284 } 3061 }
2285} 3062}
2286 3063
3064#if EV_MULTIPLICITY
3065 #include "ev_wrap.h"
3066#endif
3067
2287#ifdef __cplusplus 3068#ifdef __cplusplus
2288} 3069}
2289#endif 3070#endif
2290 3071

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines