ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.166 by root, Sat Dec 8 03:53:36 2007 UTC vs.
Revision 1.478 by root, Sun Oct 11 13:38:44 2015 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
65# endif 91# endif
66 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
73# endif 109# endif
74 110
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
78# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
81# endif 118# endif
82 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
89# endif 127# endif
90 128
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
94# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
97# endif 136# endif
98 137
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
102# else
103# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
104# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
105# endif 145# endif
106 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
107#endif 154# endif
108 155
109#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
110#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
111#include <fcntl.h> 169#include <fcntl.h>
112#include <stddef.h> 170#include <stddef.h>
113 171
114#include <stdio.h> 172#include <stdio.h>
115 173
116#include <assert.h> 174#include <assert.h>
117#include <errno.h> 175#include <errno.h>
118#include <sys/types.h> 176#include <sys/types.h>
119#include <time.h> 177#include <time.h>
178#include <limits.h>
120 179
121#include <signal.h> 180#include <signal.h>
122 181
123#ifdef EV_H 182#ifdef EV_H
124# include EV_H 183# include EV_H
125#else 184#else
126# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
127#endif 197#endif
128 198
129#ifndef _WIN32 199#ifndef _WIN32
130# include <sys/time.h> 200# include <sys/time.h>
131# include <sys/wait.h> 201# include <sys/wait.h>
132# include <unistd.h> 202# include <unistd.h>
133#else 203#else
204# include <io.h>
134# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
135# include <windows.h> 207# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
138# endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
253#ifndef EV_USE_CLOCK_SYSCALL
254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256# else
257# define EV_USE_CLOCK_SYSCALL 0
139#endif 258# endif
259#endif
140 260
141/**/ 261#if !(_POSIX_TIMERS > 0)
262# ifndef EV_USE_MONOTONIC
263# define EV_USE_MONOTONIC 0
264# endif
265# ifndef EV_USE_REALTIME
266# define EV_USE_REALTIME 0
267# endif
268#endif
142 269
143#ifndef EV_USE_MONOTONIC 270#ifndef EV_USE_MONOTONIC
271# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
272# define EV_USE_MONOTONIC EV_FEATURE_OS
273# else
144# define EV_USE_MONOTONIC 0 274# define EV_USE_MONOTONIC 0
275# endif
145#endif 276#endif
146 277
147#ifndef EV_USE_REALTIME 278#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 279# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
280#endif
281
282#ifndef EV_USE_NANOSLEEP
283# if _POSIX_C_SOURCE >= 199309L
284# define EV_USE_NANOSLEEP EV_FEATURE_OS
285# else
286# define EV_USE_NANOSLEEP 0
287# endif
149#endif 288#endif
150 289
151#ifndef EV_USE_SELECT 290#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 291# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 292#endif
154 293
155#ifndef EV_USE_POLL 294#ifndef EV_USE_POLL
156# ifdef _WIN32 295# ifdef _WIN32
157# define EV_USE_POLL 0 296# define EV_USE_POLL 0
158# else 297# else
159# define EV_USE_POLL 1 298# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 299# endif
161#endif 300#endif
162 301
163#ifndef EV_USE_EPOLL 302#ifndef EV_USE_EPOLL
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304# define EV_USE_EPOLL EV_FEATURE_BACKENDS
305# else
164# define EV_USE_EPOLL 0 306# define EV_USE_EPOLL 0
307# endif
165#endif 308#endif
166 309
167#ifndef EV_USE_KQUEUE 310#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 311# define EV_USE_KQUEUE 0
169#endif 312#endif
171#ifndef EV_USE_PORT 314#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 315# define EV_USE_PORT 0
173#endif 316#endif
174 317
175#ifndef EV_USE_INOTIFY 318#ifndef EV_USE_INOTIFY
319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
320# define EV_USE_INOTIFY EV_FEATURE_OS
321# else
176# define EV_USE_INOTIFY 0 322# define EV_USE_INOTIFY 0
323# endif
177#endif 324#endif
178 325
179#ifndef EV_PID_HASHSIZE 326#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 327# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 328#endif
329
330#ifndef EV_INOTIFY_HASHSIZE
331# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
332#endif
333
334#ifndef EV_USE_EVENTFD
335# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
336# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 337# else
183# define EV_PID_HASHSIZE 16 338# define EV_USE_EVENTFD 0
184# endif 339# endif
185#endif 340#endif
186 341
187#ifndef EV_INOTIFY_HASHSIZE 342#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 343# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 344# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 345# else
191# define EV_INOTIFY_HASHSIZE 16 346# define EV_USE_SIGNALFD 0
192# endif 347# endif
193#endif 348#endif
194 349
195/**/ 350#if 0 /* debugging */
351# define EV_VERIFY 3
352# define EV_USE_4HEAP 1
353# define EV_HEAP_CACHE_AT 1
354#endif
355
356#ifndef EV_VERIFY
357# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
358#endif
359
360#ifndef EV_USE_4HEAP
361# define EV_USE_4HEAP EV_FEATURE_DATA
362#endif
363
364#ifndef EV_HEAP_CACHE_AT
365# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
366#endif
367
368#ifdef ANDROID
369/* supposedly, android doesn't typedef fd_mask */
370# undef EV_USE_SELECT
371# define EV_USE_SELECT 0
372/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
373# undef EV_USE_CLOCK_SYSCALL
374# define EV_USE_CLOCK_SYSCALL 0
375#endif
376
377/* aix's poll.h seems to cause lots of trouble */
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
383
384/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
385/* which makes programs even slower. might work on other unices, too. */
386#if EV_USE_CLOCK_SYSCALL
387# include <sys/syscall.h>
388# ifdef SYS_clock_gettime
389# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
390# undef EV_USE_MONOTONIC
391# define EV_USE_MONOTONIC 1
392# else
393# undef EV_USE_CLOCK_SYSCALL
394# define EV_USE_CLOCK_SYSCALL 0
395# endif
396#endif
397
398/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 399
197#ifndef CLOCK_MONOTONIC 400#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 401# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 402# define EV_USE_MONOTONIC 0
200#endif 403#endif
202#ifndef CLOCK_REALTIME 405#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 406# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 407# define EV_USE_REALTIME 0
205#endif 408#endif
206 409
207#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h>
209#endif
210
211#if !EV_STAT_ENABLE 410#if !EV_STAT_ENABLE
411# undef EV_USE_INOTIFY
212# define EV_USE_INOTIFY 0 412# define EV_USE_INOTIFY 0
213#endif 413#endif
214 414
415#if !EV_USE_NANOSLEEP
416/* hp-ux has it in sys/time.h, which we unconditionally include above */
417# if !defined _WIN32 && !defined __hpux
418# include <sys/select.h>
419# endif
420#endif
421
215#if EV_USE_INOTIFY 422#if EV_USE_INOTIFY
423# include <sys/statfs.h>
216# include <sys/inotify.h> 424# include <sys/inotify.h>
425/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
426# ifndef IN_DONT_FOLLOW
427# undef EV_USE_INOTIFY
428# define EV_USE_INOTIFY 0
429# endif
430#endif
431
432#if EV_USE_EVENTFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef EFD_NONBLOCK
436# define EFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef EFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define EFD_CLOEXEC O_CLOEXEC
441# else
442# define EFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
446#endif
447
448#if EV_USE_SIGNALFD
449/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
450# include <stdint.h>
451# ifndef SFD_NONBLOCK
452# define SFD_NONBLOCK O_NONBLOCK
453# endif
454# ifndef SFD_CLOEXEC
455# ifdef O_CLOEXEC
456# define SFD_CLOEXEC O_CLOEXEC
457# else
458# define SFD_CLOEXEC 02000000
459# endif
460# endif
461EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
462
463struct signalfd_siginfo
464{
465 uint32_t ssi_signo;
466 char pad[128 - sizeof (uint32_t)];
467};
217#endif 468#endif
218 469
219/**/ 470/**/
471
472#if EV_VERIFY >= 3
473# define EV_FREQUENT_CHECK ev_verify (EV_A)
474#else
475# define EV_FREQUENT_CHECK do { } while (0)
476#endif
477
478/*
479 * This is used to work around floating point rounding problems.
480 * This value is good at least till the year 4000.
481 */
482#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
483/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
220 484
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 485#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 486#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 487
488#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
489#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
490
491/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
492/* ECB.H BEGIN */
493/*
494 * libecb - http://software.schmorp.de/pkg/libecb
495 *
496 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
497 * Copyright (©) 2011 Emanuele Giaquinta
498 * All rights reserved.
499 *
500 * Redistribution and use in source and binary forms, with or without modifica-
501 * tion, are permitted provided that the following conditions are met:
502 *
503 * 1. Redistributions of source code must retain the above copyright notice,
504 * this list of conditions and the following disclaimer.
505 *
506 * 2. Redistributions in binary form must reproduce the above copyright
507 * notice, this list of conditions and the following disclaimer in the
508 * documentation and/or other materials provided with the distribution.
509 *
510 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
511 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
512 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
513 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
514 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
515 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
516 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
517 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
518 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
519 * OF THE POSSIBILITY OF SUCH DAMAGE.
520 *
521 * Alternatively, the contents of this file may be used under the terms of
522 * the GNU General Public License ("GPL") version 2 or any later version,
523 * in which case the provisions of the GPL are applicable instead of
524 * the above. If you wish to allow the use of your version of this file
525 * only under the terms of the GPL and not to allow others to use your
526 * version of this file under the BSD license, indicate your decision
527 * by deleting the provisions above and replace them with the notice
528 * and other provisions required by the GPL. If you do not delete the
529 * provisions above, a recipient may use your version of this file under
530 * either the BSD or the GPL.
531 */
532
533#ifndef ECB_H
534#define ECB_H
535
536/* 16 bits major, 16 bits minor */
537#define ECB_VERSION 0x00010004
538
539#ifdef _WIN32
540 typedef signed char int8_t;
541 typedef unsigned char uint8_t;
542 typedef signed short int16_t;
543 typedef unsigned short uint16_t;
544 typedef signed int int32_t;
545 typedef unsigned int uint32_t;
225#if __GNUC__ >= 3 546 #if __GNUC__
226# define expect(expr,value) __builtin_expect ((expr),(value)) 547 typedef signed long long int64_t;
227# define inline_size static inline /* inline for codesize */ 548 typedef unsigned long long uint64_t;
228# if EV_MINIMAL 549 #else /* _MSC_VER || __BORLANDC__ */
229# define noinline __attribute__ ((noinline)) 550 typedef signed __int64 int64_t;
230# define inline_speed static noinline 551 typedef unsigned __int64 uint64_t;
231# else
232# define noinline
233# define inline_speed static inline
234# endif 552 #endif
553 #ifdef _WIN64
554 #define ECB_PTRSIZE 8
555 typedef uint64_t uintptr_t;
556 typedef int64_t intptr_t;
557 #else
558 #define ECB_PTRSIZE 4
559 typedef uint32_t uintptr_t;
560 typedef int32_t intptr_t;
561 #endif
235#else 562#else
563 #include <inttypes.h>
564 #if UINTMAX_MAX > 0xffffffffU
565 #define ECB_PTRSIZE 8
566 #else
567 #define ECB_PTRSIZE 4
568 #endif
569#endif
570
571#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
572#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
573
574/* work around x32 idiocy by defining proper macros */
575#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
576 #if _ILP32
577 #define ECB_AMD64_X32 1
578 #else
579 #define ECB_AMD64 1
580 #endif
581#endif
582
583/* many compilers define _GNUC_ to some versions but then only implement
584 * what their idiot authors think are the "more important" extensions,
585 * causing enormous grief in return for some better fake benchmark numbers.
586 * or so.
587 * we try to detect these and simply assume they are not gcc - if they have
588 * an issue with that they should have done it right in the first place.
589 */
590#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
591 #define ECB_GCC_VERSION(major,minor) 0
592#else
593 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
594#endif
595
596#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
597
598#if __clang__ && defined __has_builtin
599 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
600#else
601 #define ECB_CLANG_BUILTIN(x) 0
602#endif
603
604#if __clang__ && defined __has_extension
605 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
606#else
607 #define ECB_CLANG_EXTENSION(x) 0
608#endif
609
610#define ECB_CPP (__cplusplus+0)
611#define ECB_CPP11 (__cplusplus >= 201103L)
612
613#if ECB_CPP
614 #define ECB_C 0
615 #define ECB_STDC_VERSION 0
616#else
617 #define ECB_C 1
618 #define ECB_STDC_VERSION __STDC_VERSION__
619#endif
620
621#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
622#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
623
624#if ECB_CPP
625 #define ECB_EXTERN_C extern "C"
626 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
627 #define ECB_EXTERN_C_END }
628#else
629 #define ECB_EXTERN_C extern
630 #define ECB_EXTERN_C_BEG
631 #define ECB_EXTERN_C_END
632#endif
633
634/*****************************************************************************/
635
636/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
637/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
638
639#if ECB_NO_THREADS
640 #define ECB_NO_SMP 1
641#endif
642
643#if ECB_NO_SMP
644 #define ECB_MEMORY_FENCE do { } while (0)
645#endif
646
647/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
648#if __xlC__ && ECB_CPP
649 #include <builtins.h>
650#endif
651
652#ifndef ECB_MEMORY_FENCE
653 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
654 #if __i386 || __i386__
655 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
656 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
657 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
658 #elif ECB_GCC_AMD64
659 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
660 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
661 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
662 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
663 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
664 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
665 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
666 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
667 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
668 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
669 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
670 #elif __aarch64__
671 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
672 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
673 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
674 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
675 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
676 #elif defined __s390__ || defined __s390x__
677 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
678 #elif defined __mips__
679 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
680 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
681 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
682 #elif defined __alpha__
683 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
684 #elif defined __hppa__
685 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
686 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
687 #elif defined __ia64__
688 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
689 #elif defined __m68k__
690 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
691 #elif defined __m88k__
692 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
693 #elif defined __sh__
694 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
695 #endif
696 #endif
697#endif
698
699#ifndef ECB_MEMORY_FENCE
700 #if ECB_GCC_VERSION(4,7)
701 /* see comment below (stdatomic.h) about the C11 memory model. */
702 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
703 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
704 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
705
706 #elif ECB_CLANG_EXTENSION(c_atomic)
707 /* see comment below (stdatomic.h) about the C11 memory model. */
708 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
709 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
710 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
711
712 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
713 #define ECB_MEMORY_FENCE __sync_synchronize ()
714 #elif _MSC_VER >= 1500 /* VC++ 2008 */
715 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
716 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
717 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
718 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
719 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
720 #elif _MSC_VER >= 1400 /* VC++ 2005 */
721 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
722 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
723 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
724 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
725 #elif defined _WIN32
726 #include <WinNT.h>
727 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
728 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
729 #include <mbarrier.h>
730 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
731 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
732 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
733 #elif __xlC__
734 #define ECB_MEMORY_FENCE __sync ()
735 #endif
736#endif
737
738#ifndef ECB_MEMORY_FENCE
739 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
740 /* we assume that these memory fences work on all variables/all memory accesses, */
741 /* not just C11 atomics and atomic accesses */
742 #include <stdatomic.h>
743 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
744 /* any fence other than seq_cst, which isn't very efficient for us. */
745 /* Why that is, we don't know - either the C11 memory model is quite useless */
746 /* for most usages, or gcc and clang have a bug */
747 /* I *currently* lean towards the latter, and inefficiently implement */
748 /* all three of ecb's fences as a seq_cst fence */
749 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
750 /* for all __atomic_thread_fence's except seq_cst */
751 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
752 #endif
753#endif
754
755#ifndef ECB_MEMORY_FENCE
756 #if !ECB_AVOID_PTHREADS
757 /*
758 * if you get undefined symbol references to pthread_mutex_lock,
759 * or failure to find pthread.h, then you should implement
760 * the ECB_MEMORY_FENCE operations for your cpu/compiler
761 * OR provide pthread.h and link against the posix thread library
762 * of your system.
763 */
764 #include <pthread.h>
765 #define ECB_NEEDS_PTHREADS 1
766 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
767
768 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
769 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
770 #endif
771#endif
772
773#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
774 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
775#endif
776
777#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
778 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
779#endif
780
781/*****************************************************************************/
782
783#if ECB_CPP
784 #define ecb_inline static inline
785#elif ECB_GCC_VERSION(2,5)
786 #define ecb_inline static __inline__
787#elif ECB_C99
788 #define ecb_inline static inline
789#else
790 #define ecb_inline static
791#endif
792
793#if ECB_GCC_VERSION(3,3)
794 #define ecb_restrict __restrict__
795#elif ECB_C99
796 #define ecb_restrict restrict
797#else
798 #define ecb_restrict
799#endif
800
801typedef int ecb_bool;
802
803#define ECB_CONCAT_(a, b) a ## b
804#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
805#define ECB_STRINGIFY_(a) # a
806#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
807#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
808
809#define ecb_function_ ecb_inline
810
811#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
812 #define ecb_attribute(attrlist) __attribute__ (attrlist)
813#else
814 #define ecb_attribute(attrlist)
815#endif
816
817#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
818 #define ecb_is_constant(expr) __builtin_constant_p (expr)
819#else
820 /* possible C11 impl for integral types
821 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
822 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
823
824 #define ecb_is_constant(expr) 0
825#endif
826
827#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
828 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
829#else
236# define expect(expr,value) (expr) 830 #define ecb_expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline
240#endif 831#endif
241 832
833#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
834 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
835#else
836 #define ecb_prefetch(addr,rw,locality)
837#endif
838
839/* no emulation for ecb_decltype */
840#if ECB_CPP11
841 // older implementations might have problems with decltype(x)::type, work around it
842 template<class T> struct ecb_decltype_t { typedef T type; };
843 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
844#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
845 #define ecb_decltype(x) __typeof__ (x)
846#endif
847
848#if _MSC_VER >= 1300
849 #define ecb_deprecated __declspec (deprecated)
850#else
851 #define ecb_deprecated ecb_attribute ((__deprecated__))
852#endif
853
854#if _MSC_VER >= 1500
855 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
856#elif ECB_GCC_VERSION(4,5)
857 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
858#else
859 #define ecb_deprecated_message(msg) ecb_deprecated
860#endif
861
862#if _MSC_VER >= 1400
863 #define ecb_noinline __declspec (noinline)
864#else
865 #define ecb_noinline ecb_attribute ((__noinline__))
866#endif
867
868#define ecb_unused ecb_attribute ((__unused__))
869#define ecb_const ecb_attribute ((__const__))
870#define ecb_pure ecb_attribute ((__pure__))
871
872#if ECB_C11 || __IBMC_NORETURN
873 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
874 #define ecb_noreturn _Noreturn
875#elif ECB_CPP11
876 #define ecb_noreturn [[noreturn]]
877#elif _MSC_VER >= 1200
878 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
879 #define ecb_noreturn __declspec (noreturn)
880#else
881 #define ecb_noreturn ecb_attribute ((__noreturn__))
882#endif
883
884#if ECB_GCC_VERSION(4,3)
885 #define ecb_artificial ecb_attribute ((__artificial__))
886 #define ecb_hot ecb_attribute ((__hot__))
887 #define ecb_cold ecb_attribute ((__cold__))
888#else
889 #define ecb_artificial
890 #define ecb_hot
891 #define ecb_cold
892#endif
893
894/* put around conditional expressions if you are very sure that the */
895/* expression is mostly true or mostly false. note that these return */
896/* booleans, not the expression. */
242#define expect_false(expr) expect ((expr) != 0, 0) 897#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 898#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
899/* for compatibility to the rest of the world */
900#define ecb_likely(expr) ecb_expect_true (expr)
901#define ecb_unlikely(expr) ecb_expect_false (expr)
244 902
903/* count trailing zero bits and count # of one bits */
904#if ECB_GCC_VERSION(3,4) \
905 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
906 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
907 && ECB_CLANG_BUILTIN(__builtin_popcount))
908 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
909 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
910 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
911 #define ecb_ctz32(x) __builtin_ctz (x)
912 #define ecb_ctz64(x) __builtin_ctzll (x)
913 #define ecb_popcount32(x) __builtin_popcount (x)
914 /* no popcountll */
915#else
916 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
917 ecb_function_ ecb_const int
918 ecb_ctz32 (uint32_t x)
919 {
920 int r = 0;
921
922 x &= ~x + 1; /* this isolates the lowest bit */
923
924#if ECB_branchless_on_i386
925 r += !!(x & 0xaaaaaaaa) << 0;
926 r += !!(x & 0xcccccccc) << 1;
927 r += !!(x & 0xf0f0f0f0) << 2;
928 r += !!(x & 0xff00ff00) << 3;
929 r += !!(x & 0xffff0000) << 4;
930#else
931 if (x & 0xaaaaaaaa) r += 1;
932 if (x & 0xcccccccc) r += 2;
933 if (x & 0xf0f0f0f0) r += 4;
934 if (x & 0xff00ff00) r += 8;
935 if (x & 0xffff0000) r += 16;
936#endif
937
938 return r;
939 }
940
941 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
942 ecb_function_ ecb_const int
943 ecb_ctz64 (uint64_t x)
944 {
945 int shift = x & 0xffffffffU ? 0 : 32;
946 return ecb_ctz32 (x >> shift) + shift;
947 }
948
949 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
950 ecb_function_ ecb_const int
951 ecb_popcount32 (uint32_t x)
952 {
953 x -= (x >> 1) & 0x55555555;
954 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
955 x = ((x >> 4) + x) & 0x0f0f0f0f;
956 x *= 0x01010101;
957
958 return x >> 24;
959 }
960
961 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
962 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
963 {
964 int r = 0;
965
966 if (x >> 16) { x >>= 16; r += 16; }
967 if (x >> 8) { x >>= 8; r += 8; }
968 if (x >> 4) { x >>= 4; r += 4; }
969 if (x >> 2) { x >>= 2; r += 2; }
970 if (x >> 1) { r += 1; }
971
972 return r;
973 }
974
975 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
976 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
977 {
978 int r = 0;
979
980 if (x >> 32) { x >>= 32; r += 32; }
981
982 return r + ecb_ld32 (x);
983 }
984#endif
985
986ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
987ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
988ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
989ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
990
991ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
992ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
993{
994 return ( (x * 0x0802U & 0x22110U)
995 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
996}
997
998ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
999ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1000{
1001 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1002 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1003 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1004 x = ( x >> 8 ) | ( x << 8);
1005
1006 return x;
1007}
1008
1009ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1010ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1011{
1012 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1013 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1014 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1015 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1016 x = ( x >> 16 ) | ( x << 16);
1017
1018 return x;
1019}
1020
1021/* popcount64 is only available on 64 bit cpus as gcc builtin */
1022/* so for this version we are lazy */
1023ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1024ecb_function_ ecb_const int
1025ecb_popcount64 (uint64_t x)
1026{
1027 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1028}
1029
1030ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1031ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1032ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1033ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1034ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1035ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1036ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1037ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1038
1039ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1040ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1041ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1042ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1043ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1044ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1045ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1046ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1047
1048#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1049 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1050 #define ecb_bswap16(x) __builtin_bswap16 (x)
1051 #else
1052 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1053 #endif
1054 #define ecb_bswap32(x) __builtin_bswap32 (x)
1055 #define ecb_bswap64(x) __builtin_bswap64 (x)
1056#elif _MSC_VER
1057 #include <stdlib.h>
1058 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1059 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1060 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1061#else
1062 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1063 ecb_function_ ecb_const uint16_t
1064 ecb_bswap16 (uint16_t x)
1065 {
1066 return ecb_rotl16 (x, 8);
1067 }
1068
1069 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1070 ecb_function_ ecb_const uint32_t
1071 ecb_bswap32 (uint32_t x)
1072 {
1073 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1074 }
1075
1076 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1077 ecb_function_ ecb_const uint64_t
1078 ecb_bswap64 (uint64_t x)
1079 {
1080 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1081 }
1082#endif
1083
1084#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1085 #define ecb_unreachable() __builtin_unreachable ()
1086#else
1087 /* this seems to work fine, but gcc always emits a warning for it :/ */
1088 ecb_inline ecb_noreturn void ecb_unreachable (void);
1089 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1090#endif
1091
1092/* try to tell the compiler that some condition is definitely true */
1093#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1094
1095ecb_inline ecb_const unsigned char ecb_byteorder_helper (void);
1096ecb_inline ecb_const unsigned char
1097ecb_byteorder_helper (void)
1098{
1099 /* the union code still generates code under pressure in gcc, */
1100 /* but less than using pointers, and always seems to */
1101 /* successfully return a constant. */
1102 /* the reason why we have this horrible preprocessor mess */
1103 /* is to avoid it in all cases, at least on common architectures */
1104 /* or when using a recent enough gcc version (>= 4.6) */
1105#if ((__i386 || __i386__) && !__VOS__) || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64
1106 return 0x44;
1107#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1108 return 0x44;
1109#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1110 return 0x11;
1111#else
1112 union
1113 {
1114 uint32_t i;
1115 uint8_t c;
1116 } u = { 0x11223344 };
1117 return u.c;
1118#endif
1119}
1120
1121ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1122ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1123ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1124ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1125
1126#if ECB_GCC_VERSION(3,0) || ECB_C99
1127 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1128#else
1129 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1130#endif
1131
1132#if ECB_CPP
1133 template<typename T>
1134 static inline T ecb_div_rd (T val, T div)
1135 {
1136 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1137 }
1138 template<typename T>
1139 static inline T ecb_div_ru (T val, T div)
1140 {
1141 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1142 }
1143#else
1144 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1145 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1146#endif
1147
1148#if ecb_cplusplus_does_not_suck
1149 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1150 template<typename T, int N>
1151 static inline int ecb_array_length (const T (&arr)[N])
1152 {
1153 return N;
1154 }
1155#else
1156 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1157#endif
1158
1159/*******************************************************************************/
1160/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1161
1162/* basically, everything uses "ieee pure-endian" floating point numbers */
1163/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1164#if 0 \
1165 || __i386 || __i386__ \
1166 || ECB_GCC_AMD64 \
1167 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1168 || defined __s390__ || defined __s390x__ \
1169 || defined __mips__ \
1170 || defined __alpha__ \
1171 || defined __hppa__ \
1172 || defined __ia64__ \
1173 || defined __m68k__ \
1174 || defined __m88k__ \
1175 || defined __sh__ \
1176 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1177 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1178 || defined __aarch64__
1179 #define ECB_STDFP 1
1180 #include <string.h> /* for memcpy */
1181#else
1182 #define ECB_STDFP 0
1183#endif
1184
1185#ifndef ECB_NO_LIBM
1186
1187 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1188
1189 /* only the oldest of old doesn't have this one. solaris. */
1190 #ifdef INFINITY
1191 #define ECB_INFINITY INFINITY
1192 #else
1193 #define ECB_INFINITY HUGE_VAL
1194 #endif
1195
1196 #ifdef NAN
1197 #define ECB_NAN NAN
1198 #else
1199 #define ECB_NAN ECB_INFINITY
1200 #endif
1201
1202 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1203 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1204 #define ecb_frexpf(x,e) frexpf ((x), (e))
1205 #else
1206 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1207 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1208 #endif
1209
1210 /* converts an ieee half/binary16 to a float */
1211 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1212 ecb_function_ ecb_const float
1213 ecb_binary16_to_float (uint16_t x)
1214 {
1215 int e = (x >> 10) & 0x1f;
1216 int m = x & 0x3ff;
1217 float r;
1218
1219 if (!e ) r = ecb_ldexpf (m , -24);
1220 else if (e != 31) r = ecb_ldexpf (m + 0x400, e - 25);
1221 else if (m ) r = ECB_NAN;
1222 else r = ECB_INFINITY;
1223
1224 return x & 0x8000 ? -r : r;
1225 }
1226
1227 /* convert a float to ieee single/binary32 */
1228 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1229 ecb_function_ ecb_const uint32_t
1230 ecb_float_to_binary32 (float x)
1231 {
1232 uint32_t r;
1233
1234 #if ECB_STDFP
1235 memcpy (&r, &x, 4);
1236 #else
1237 /* slow emulation, works for anything but -0 */
1238 uint32_t m;
1239 int e;
1240
1241 if (x == 0e0f ) return 0x00000000U;
1242 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1243 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1244 if (x != x ) return 0x7fbfffffU;
1245
1246 m = ecb_frexpf (x, &e) * 0x1000000U;
1247
1248 r = m & 0x80000000U;
1249
1250 if (r)
1251 m = -m;
1252
1253 if (e <= -126)
1254 {
1255 m &= 0xffffffU;
1256 m >>= (-125 - e);
1257 e = -126;
1258 }
1259
1260 r |= (e + 126) << 23;
1261 r |= m & 0x7fffffU;
1262 #endif
1263
1264 return r;
1265 }
1266
1267 /* converts an ieee single/binary32 to a float */
1268 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1269 ecb_function_ ecb_const float
1270 ecb_binary32_to_float (uint32_t x)
1271 {
1272 float r;
1273
1274 #if ECB_STDFP
1275 memcpy (&r, &x, 4);
1276 #else
1277 /* emulation, only works for normals and subnormals and +0 */
1278 int neg = x >> 31;
1279 int e = (x >> 23) & 0xffU;
1280
1281 x &= 0x7fffffU;
1282
1283 if (e)
1284 x |= 0x800000U;
1285 else
1286 e = 1;
1287
1288 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1289 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1290
1291 r = neg ? -r : r;
1292 #endif
1293
1294 return r;
1295 }
1296
1297 /* convert a double to ieee double/binary64 */
1298 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1299 ecb_function_ ecb_const uint64_t
1300 ecb_double_to_binary64 (double x)
1301 {
1302 uint64_t r;
1303
1304 #if ECB_STDFP
1305 memcpy (&r, &x, 8);
1306 #else
1307 /* slow emulation, works for anything but -0 */
1308 uint64_t m;
1309 int e;
1310
1311 if (x == 0e0 ) return 0x0000000000000000U;
1312 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1313 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1314 if (x != x ) return 0X7ff7ffffffffffffU;
1315
1316 m = frexp (x, &e) * 0x20000000000000U;
1317
1318 r = m & 0x8000000000000000;;
1319
1320 if (r)
1321 m = -m;
1322
1323 if (e <= -1022)
1324 {
1325 m &= 0x1fffffffffffffU;
1326 m >>= (-1021 - e);
1327 e = -1022;
1328 }
1329
1330 r |= ((uint64_t)(e + 1022)) << 52;
1331 r |= m & 0xfffffffffffffU;
1332 #endif
1333
1334 return r;
1335 }
1336
1337 /* converts an ieee double/binary64 to a double */
1338 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1339 ecb_function_ ecb_const double
1340 ecb_binary64_to_double (uint64_t x)
1341 {
1342 double r;
1343
1344 #if ECB_STDFP
1345 memcpy (&r, &x, 8);
1346 #else
1347 /* emulation, only works for normals and subnormals and +0 */
1348 int neg = x >> 63;
1349 int e = (x >> 52) & 0x7ffU;
1350
1351 x &= 0xfffffffffffffU;
1352
1353 if (e)
1354 x |= 0x10000000000000U;
1355 else
1356 e = 1;
1357
1358 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1359 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1360
1361 r = neg ? -r : r;
1362 #endif
1363
1364 return r;
1365 }
1366
1367#endif
1368
1369#endif
1370
1371/* ECB.H END */
1372
1373#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1374/* if your architecture doesn't need memory fences, e.g. because it is
1375 * single-cpu/core, or if you use libev in a project that doesn't use libev
1376 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1377 * libev, in which cases the memory fences become nops.
1378 * alternatively, you can remove this #error and link against libpthread,
1379 * which will then provide the memory fences.
1380 */
1381# error "memory fences not defined for your architecture, please report"
1382#endif
1383
1384#ifndef ECB_MEMORY_FENCE
1385# define ECB_MEMORY_FENCE do { } while (0)
1386# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1387# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1388#endif
1389
1390#define expect_false(cond) ecb_expect_false (cond)
1391#define expect_true(cond) ecb_expect_true (cond)
1392#define noinline ecb_noinline
1393
1394#define inline_size ecb_inline
1395
1396#if EV_FEATURE_CODE
1397# define inline_speed ecb_inline
1398#else
1399# define inline_speed static noinline
1400#endif
1401
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1402#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1403
1404#if EV_MINPRI == EV_MAXPRI
1405# define ABSPRI(w) (((W)w), 0)
1406#else
246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1407# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1408#endif
247 1409
248#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1410#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 1411#define EMPTY2(a,b) /* used to suppress some warnings */
250 1412
251typedef ev_watcher *W; 1413typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 1414typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 1415typedef ev_watcher_time *WT;
254 1416
1417#define ev_active(w) ((W)(w))->active
1418#define ev_at(w) ((WT)(w))->at
1419
1420#if EV_USE_REALTIME
1421/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1422/* giving it a reasonably high chance of working on typical architectures */
1423static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1424#endif
1425
1426#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1427static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1428#endif
1429
1430#ifndef EV_FD_TO_WIN32_HANDLE
1431# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1432#endif
1433#ifndef EV_WIN32_HANDLE_TO_FD
1434# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1435#endif
1436#ifndef EV_WIN32_CLOSE_FD
1437# define EV_WIN32_CLOSE_FD(fd) close (fd)
1438#endif
256 1439
257#ifdef _WIN32 1440#ifdef _WIN32
258# include "ev_win32.c" 1441# include "ev_win32.c"
259#endif 1442#endif
260 1443
261/*****************************************************************************/ 1444/*****************************************************************************/
262 1445
1446/* define a suitable floor function (only used by periodics atm) */
1447
1448#if EV_USE_FLOOR
1449# include <math.h>
1450# define ev_floor(v) floor (v)
1451#else
1452
1453#include <float.h>
1454
1455/* a floor() replacement function, should be independent of ev_tstamp type */
1456static ev_tstamp noinline
1457ev_floor (ev_tstamp v)
1458{
1459 /* the choice of shift factor is not terribly important */
1460#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1461 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1462#else
1463 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1464#endif
1465
1466 /* argument too large for an unsigned long? */
1467 if (expect_false (v >= shift))
1468 {
1469 ev_tstamp f;
1470
1471 if (v == v - 1.)
1472 return v; /* very large number */
1473
1474 f = shift * ev_floor (v * (1. / shift));
1475 return f + ev_floor (v - f);
1476 }
1477
1478 /* special treatment for negative args? */
1479 if (expect_false (v < 0.))
1480 {
1481 ev_tstamp f = -ev_floor (-v);
1482
1483 return f - (f == v ? 0 : 1);
1484 }
1485
1486 /* fits into an unsigned long */
1487 return (unsigned long)v;
1488}
1489
1490#endif
1491
1492/*****************************************************************************/
1493
1494#ifdef __linux
1495# include <sys/utsname.h>
1496#endif
1497
1498static unsigned int noinline ecb_cold
1499ev_linux_version (void)
1500{
1501#ifdef __linux
1502 unsigned int v = 0;
1503 struct utsname buf;
1504 int i;
1505 char *p = buf.release;
1506
1507 if (uname (&buf))
1508 return 0;
1509
1510 for (i = 3+1; --i; )
1511 {
1512 unsigned int c = 0;
1513
1514 for (;;)
1515 {
1516 if (*p >= '0' && *p <= '9')
1517 c = c * 10 + *p++ - '0';
1518 else
1519 {
1520 p += *p == '.';
1521 break;
1522 }
1523 }
1524
1525 v = (v << 8) | c;
1526 }
1527
1528 return v;
1529#else
1530 return 0;
1531#endif
1532}
1533
1534/*****************************************************************************/
1535
1536#if EV_AVOID_STDIO
1537static void noinline ecb_cold
1538ev_printerr (const char *msg)
1539{
1540 write (STDERR_FILENO, msg, strlen (msg));
1541}
1542#endif
1543
263static void (*syserr_cb)(const char *msg); 1544static void (*syserr_cb)(const char *msg) EV_THROW;
264 1545
265void 1546void ecb_cold
266ev_set_syserr_cb (void (*cb)(const char *msg)) 1547ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
267{ 1548{
268 syserr_cb = cb; 1549 syserr_cb = cb;
269} 1550}
270 1551
271static void noinline 1552static void noinline ecb_cold
272syserr (const char *msg) 1553ev_syserr (const char *msg)
273{ 1554{
274 if (!msg) 1555 if (!msg)
275 msg = "(libev) system error"; 1556 msg = "(libev) system error";
276 1557
277 if (syserr_cb) 1558 if (syserr_cb)
278 syserr_cb (msg); 1559 syserr_cb (msg);
279 else 1560 else
280 { 1561 {
1562#if EV_AVOID_STDIO
1563 ev_printerr (msg);
1564 ev_printerr (": ");
1565 ev_printerr (strerror (errno));
1566 ev_printerr ("\n");
1567#else
281 perror (msg); 1568 perror (msg);
1569#endif
282 abort (); 1570 abort ();
283 } 1571 }
284} 1572}
285 1573
1574static void *
1575ev_realloc_emul (void *ptr, long size) EV_THROW
1576{
1577 /* some systems, notably openbsd and darwin, fail to properly
1578 * implement realloc (x, 0) (as required by both ansi c-89 and
1579 * the single unix specification, so work around them here.
1580 * recently, also (at least) fedora and debian started breaking it,
1581 * despite documenting it otherwise.
1582 */
1583
1584 if (size)
1585 return realloc (ptr, size);
1586
1587 free (ptr);
1588 return 0;
1589}
1590
286static void *(*alloc)(void *ptr, long size); 1591static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
287 1592
288void 1593void ecb_cold
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 1594ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
290{ 1595{
291 alloc = cb; 1596 alloc = cb;
292} 1597}
293 1598
294inline_speed void * 1599inline_speed void *
295ev_realloc (void *ptr, long size) 1600ev_realloc (void *ptr, long size)
296{ 1601{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1602 ptr = alloc (ptr, size);
298 1603
299 if (!ptr && size) 1604 if (!ptr && size)
300 { 1605 {
1606#if EV_AVOID_STDIO
1607 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1608#else
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1609 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1610#endif
302 abort (); 1611 abort ();
303 } 1612 }
304 1613
305 return ptr; 1614 return ptr;
306} 1615}
308#define ev_malloc(size) ev_realloc (0, (size)) 1617#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 1618#define ev_free(ptr) ev_realloc ((ptr), 0)
310 1619
311/*****************************************************************************/ 1620/*****************************************************************************/
312 1621
1622/* set in reify when reification needed */
1623#define EV_ANFD_REIFY 1
1624
1625/* file descriptor info structure */
313typedef struct 1626typedef struct
314{ 1627{
315 WL head; 1628 WL head;
316 unsigned char events; 1629 unsigned char events; /* the events watched for */
1630 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1631 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 1632 unsigned char unused;
1633#if EV_USE_EPOLL
1634 unsigned int egen; /* generation counter to counter epoll bugs */
1635#endif
318#if EV_SELECT_IS_WINSOCKET 1636#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
319 SOCKET handle; 1637 SOCKET handle;
320#endif 1638#endif
1639#if EV_USE_IOCP
1640 OVERLAPPED or, ow;
1641#endif
321} ANFD; 1642} ANFD;
322 1643
1644/* stores the pending event set for a given watcher */
323typedef struct 1645typedef struct
324{ 1646{
325 W w; 1647 W w;
326 int events; 1648 int events; /* the pending event set for the given watcher */
327} ANPENDING; 1649} ANPENDING;
328 1650
329#if EV_USE_INOTIFY 1651#if EV_USE_INOTIFY
1652/* hash table entry per inotify-id */
330typedef struct 1653typedef struct
331{ 1654{
332 WL head; 1655 WL head;
333} ANFS; 1656} ANFS;
1657#endif
1658
1659/* Heap Entry */
1660#if EV_HEAP_CACHE_AT
1661 /* a heap element */
1662 typedef struct {
1663 ev_tstamp at;
1664 WT w;
1665 } ANHE;
1666
1667 #define ANHE_w(he) (he).w /* access watcher, read-write */
1668 #define ANHE_at(he) (he).at /* access cached at, read-only */
1669 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1670#else
1671 /* a heap element */
1672 typedef WT ANHE;
1673
1674 #define ANHE_w(he) (he)
1675 #define ANHE_at(he) (he)->at
1676 #define ANHE_at_cache(he)
334#endif 1677#endif
335 1678
336#if EV_MULTIPLICITY 1679#if EV_MULTIPLICITY
337 1680
338 struct ev_loop 1681 struct ev_loop
344 #undef VAR 1687 #undef VAR
345 }; 1688 };
346 #include "ev_wrap.h" 1689 #include "ev_wrap.h"
347 1690
348 static struct ev_loop default_loop_struct; 1691 static struct ev_loop default_loop_struct;
349 struct ev_loop *ev_default_loop_ptr; 1692 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
350 1693
351#else 1694#else
352 1695
353 ev_tstamp ev_rt_now; 1696 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
354 #define VAR(name,decl) static decl; 1697 #define VAR(name,decl) static decl;
355 #include "ev_vars.h" 1698 #include "ev_vars.h"
356 #undef VAR 1699 #undef VAR
357 1700
358 static int ev_default_loop_ptr; 1701 static int ev_default_loop_ptr;
359 1702
360#endif 1703#endif
361 1704
1705#if EV_FEATURE_API
1706# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1707# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1708# define EV_INVOKE_PENDING invoke_cb (EV_A)
1709#else
1710# define EV_RELEASE_CB (void)0
1711# define EV_ACQUIRE_CB (void)0
1712# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1713#endif
1714
1715#define EVBREAK_RECURSE 0x80
1716
362/*****************************************************************************/ 1717/*****************************************************************************/
363 1718
1719#ifndef EV_HAVE_EV_TIME
364ev_tstamp 1720ev_tstamp
365ev_time (void) 1721ev_time (void) EV_THROW
366{ 1722{
367#if EV_USE_REALTIME 1723#if EV_USE_REALTIME
1724 if (expect_true (have_realtime))
1725 {
368 struct timespec ts; 1726 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 1727 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 1728 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 1729 }
1730#endif
1731
372 struct timeval tv; 1732 struct timeval tv;
373 gettimeofday (&tv, 0); 1733 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 1734 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 1735}
1736#endif
377 1737
378ev_tstamp inline_size 1738inline_size ev_tstamp
379get_clock (void) 1739get_clock (void)
380{ 1740{
381#if EV_USE_MONOTONIC 1741#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 1742 if (expect_true (have_monotonic))
383 { 1743 {
390 return ev_time (); 1750 return ev_time ();
391} 1751}
392 1752
393#if EV_MULTIPLICITY 1753#if EV_MULTIPLICITY
394ev_tstamp 1754ev_tstamp
395ev_now (EV_P) 1755ev_now (EV_P) EV_THROW
396{ 1756{
397 return ev_rt_now; 1757 return ev_rt_now;
398} 1758}
399#endif 1759#endif
400 1760
401int inline_size 1761void
1762ev_sleep (ev_tstamp delay) EV_THROW
1763{
1764 if (delay > 0.)
1765 {
1766#if EV_USE_NANOSLEEP
1767 struct timespec ts;
1768
1769 EV_TS_SET (ts, delay);
1770 nanosleep (&ts, 0);
1771#elif defined _WIN32
1772 Sleep ((unsigned long)(delay * 1e3));
1773#else
1774 struct timeval tv;
1775
1776 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1777 /* something not guaranteed by newer posix versions, but guaranteed */
1778 /* by older ones */
1779 EV_TV_SET (tv, delay);
1780 select (0, 0, 0, 0, &tv);
1781#endif
1782 }
1783}
1784
1785/*****************************************************************************/
1786
1787#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1788
1789/* find a suitable new size for the given array, */
1790/* hopefully by rounding to a nice-to-malloc size */
1791inline_size int
402array_nextsize (int elem, int cur, int cnt) 1792array_nextsize (int elem, int cur, int cnt)
403{ 1793{
404 int ncur = cur + 1; 1794 int ncur = cur + 1;
405 1795
406 do 1796 do
407 ncur <<= 1; 1797 ncur <<= 1;
408 while (cnt > ncur); 1798 while (cnt > ncur);
409 1799
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1800 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
411 if (elem * ncur > 4096) 1801 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
412 { 1802 {
413 ncur *= elem; 1803 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1804 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
415 ncur = ncur - sizeof (void *) * 4; 1805 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem; 1806 ncur /= elem;
417 } 1807 }
418 1808
419 return ncur; 1809 return ncur;
420} 1810}
421 1811
422inline_speed void * 1812static void * noinline ecb_cold
423array_realloc (int elem, void *base, int *cur, int cnt) 1813array_realloc (int elem, void *base, int *cur, int cnt)
424{ 1814{
425 *cur = array_nextsize (elem, *cur, cnt); 1815 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 1816 return ev_realloc (base, elem * *cur);
427} 1817}
1818
1819#define array_init_zero(base,count) \
1820 memset ((void *)(base), 0, sizeof (*(base)) * (count))
428 1821
429#define array_needsize(type,base,cur,cnt,init) \ 1822#define array_needsize(type,base,cur,cnt,init) \
430 if (expect_false ((cnt) > (cur))) \ 1823 if (expect_false ((cnt) > (cur))) \
431 { \ 1824 { \
432 int ocur_ = (cur); \ 1825 int ecb_unused ocur_ = (cur); \
433 (base) = (type *)array_realloc \ 1826 (base) = (type *)array_realloc \
434 (sizeof (type), (base), &(cur), (cnt)); \ 1827 (sizeof (type), (base), &(cur), (cnt)); \
435 init ((base) + (ocur_), (cur) - ocur_); \ 1828 init ((base) + (ocur_), (cur) - ocur_); \
436 } 1829 }
437 1830
444 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1837 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
445 } 1838 }
446#endif 1839#endif
447 1840
448#define array_free(stem, idx) \ 1841#define array_free(stem, idx) \
449 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1842 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
450 1843
451/*****************************************************************************/ 1844/*****************************************************************************/
452 1845
1846/* dummy callback for pending events */
1847static void noinline
1848pendingcb (EV_P_ ev_prepare *w, int revents)
1849{
1850}
1851
453void noinline 1852void noinline
454ev_feed_event (EV_P_ void *w, int revents) 1853ev_feed_event (EV_P_ void *w, int revents) EV_THROW
455{ 1854{
456 W w_ = (W)w; 1855 W w_ = (W)w;
1856 int pri = ABSPRI (w_);
457 1857
458 if (expect_false (w_->pending)) 1858 if (expect_false (w_->pending))
1859 pendings [pri][w_->pending - 1].events |= revents;
1860 else
459 { 1861 {
1862 w_->pending = ++pendingcnt [pri];
1863 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1864 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1865 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 1866 }
463 1867
464 w_->pending = ++pendingcnt [ABSPRI (w_)]; 1868 pendingpri = NUMPRI - 1;
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 1869}
469 1870
470void inline_size 1871inline_speed void
1872feed_reverse (EV_P_ W w)
1873{
1874 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1875 rfeeds [rfeedcnt++] = w;
1876}
1877
1878inline_size void
1879feed_reverse_done (EV_P_ int revents)
1880{
1881 do
1882 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1883 while (rfeedcnt);
1884}
1885
1886inline_speed void
471queue_events (EV_P_ W *events, int eventcnt, int type) 1887queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 1888{
473 int i; 1889 int i;
474 1890
475 for (i = 0; i < eventcnt; ++i) 1891 for (i = 0; i < eventcnt; ++i)
476 ev_feed_event (EV_A_ events [i], type); 1892 ev_feed_event (EV_A_ events [i], type);
477} 1893}
478 1894
479/*****************************************************************************/ 1895/*****************************************************************************/
480 1896
481void inline_size 1897inline_speed void
482anfds_init (ANFD *base, int count)
483{
484 while (count--)
485 {
486 base->head = 0;
487 base->events = EV_NONE;
488 base->reify = 0;
489
490 ++base;
491 }
492}
493
494void inline_speed
495fd_event (EV_P_ int fd, int revents) 1898fd_event_nocheck (EV_P_ int fd, int revents)
496{ 1899{
497 ANFD *anfd = anfds + fd; 1900 ANFD *anfd = anfds + fd;
498 ev_io *w; 1901 ev_io *w;
499 1902
500 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1903 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
504 if (ev) 1907 if (ev)
505 ev_feed_event (EV_A_ (W)w, ev); 1908 ev_feed_event (EV_A_ (W)w, ev);
506 } 1909 }
507} 1910}
508 1911
1912/* do not submit kernel events for fds that have reify set */
1913/* because that means they changed while we were polling for new events */
1914inline_speed void
1915fd_event (EV_P_ int fd, int revents)
1916{
1917 ANFD *anfd = anfds + fd;
1918
1919 if (expect_true (!anfd->reify))
1920 fd_event_nocheck (EV_A_ fd, revents);
1921}
1922
509void 1923void
510ev_feed_fd_event (EV_P_ int fd, int revents) 1924ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
511{ 1925{
1926 if (fd >= 0 && fd < anfdmax)
512 fd_event (EV_A_ fd, revents); 1927 fd_event_nocheck (EV_A_ fd, revents);
513} 1928}
514 1929
515void inline_size 1930/* make sure the external fd watch events are in-sync */
1931/* with the kernel/libev internal state */
1932inline_size void
516fd_reify (EV_P) 1933fd_reify (EV_P)
517{ 1934{
518 int i; 1935 int i;
1936
1937#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1938 for (i = 0; i < fdchangecnt; ++i)
1939 {
1940 int fd = fdchanges [i];
1941 ANFD *anfd = anfds + fd;
1942
1943 if (anfd->reify & EV__IOFDSET && anfd->head)
1944 {
1945 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1946
1947 if (handle != anfd->handle)
1948 {
1949 unsigned long arg;
1950
1951 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1952
1953 /* handle changed, but fd didn't - we need to do it in two steps */
1954 backend_modify (EV_A_ fd, anfd->events, 0);
1955 anfd->events = 0;
1956 anfd->handle = handle;
1957 }
1958 }
1959 }
1960#endif
519 1961
520 for (i = 0; i < fdchangecnt; ++i) 1962 for (i = 0; i < fdchangecnt; ++i)
521 { 1963 {
522 int fd = fdchanges [i]; 1964 int fd = fdchanges [i];
523 ANFD *anfd = anfds + fd; 1965 ANFD *anfd = anfds + fd;
524 ev_io *w; 1966 ev_io *w;
525 1967
526 int events = 0; 1968 unsigned char o_events = anfd->events;
1969 unsigned char o_reify = anfd->reify;
527 1970
528 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1971 anfd->reify = 0;
529 events |= w->events;
530 1972
531#if EV_SELECT_IS_WINSOCKET 1973 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
532 if (events)
533 { 1974 {
534 unsigned long argp; 1975 anfd->events = 0;
535 anfd->handle = _get_osfhandle (fd); 1976
536 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1977 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1978 anfd->events |= (unsigned char)w->events;
1979
1980 if (o_events != anfd->events)
1981 o_reify = EV__IOFDSET; /* actually |= */
537 } 1982 }
538#endif
539 1983
540 anfd->reify = 0; 1984 if (o_reify & EV__IOFDSET)
541
542 backend_modify (EV_A_ fd, anfd->events, events); 1985 backend_modify (EV_A_ fd, o_events, anfd->events);
543 anfd->events = events;
544 } 1986 }
545 1987
546 fdchangecnt = 0; 1988 fdchangecnt = 0;
547} 1989}
548 1990
549void inline_size 1991/* something about the given fd changed */
1992inline_size void
550fd_change (EV_P_ int fd) 1993fd_change (EV_P_ int fd, int flags)
551{ 1994{
552 if (expect_false (anfds [fd].reify)) 1995 unsigned char reify = anfds [fd].reify;
553 return;
554
555 anfds [fd].reify = 1; 1996 anfds [fd].reify |= flags;
556 1997
1998 if (expect_true (!reify))
1999 {
557 ++fdchangecnt; 2000 ++fdchangecnt;
558 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2001 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
559 fdchanges [fdchangecnt - 1] = fd; 2002 fdchanges [fdchangecnt - 1] = fd;
2003 }
560} 2004}
561 2005
562void inline_speed 2006/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2007inline_speed void ecb_cold
563fd_kill (EV_P_ int fd) 2008fd_kill (EV_P_ int fd)
564{ 2009{
565 ev_io *w; 2010 ev_io *w;
566 2011
567 while ((w = (ev_io *)anfds [fd].head)) 2012 while ((w = (ev_io *)anfds [fd].head))
569 ev_io_stop (EV_A_ w); 2014 ev_io_stop (EV_A_ w);
570 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2015 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
571 } 2016 }
572} 2017}
573 2018
574int inline_size 2019/* check whether the given fd is actually valid, for error recovery */
2020inline_size int ecb_cold
575fd_valid (int fd) 2021fd_valid (int fd)
576{ 2022{
577#ifdef _WIN32 2023#ifdef _WIN32
578 return _get_osfhandle (fd) != -1; 2024 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
579#else 2025#else
580 return fcntl (fd, F_GETFD) != -1; 2026 return fcntl (fd, F_GETFD) != -1;
581#endif 2027#endif
582} 2028}
583 2029
584/* called on EBADF to verify fds */ 2030/* called on EBADF to verify fds */
585static void noinline 2031static void noinline ecb_cold
586fd_ebadf (EV_P) 2032fd_ebadf (EV_P)
587{ 2033{
588 int fd; 2034 int fd;
589 2035
590 for (fd = 0; fd < anfdmax; ++fd) 2036 for (fd = 0; fd < anfdmax; ++fd)
591 if (anfds [fd].events) 2037 if (anfds [fd].events)
592 if (!fd_valid (fd) == -1 && errno == EBADF) 2038 if (!fd_valid (fd) && errno == EBADF)
593 fd_kill (EV_A_ fd); 2039 fd_kill (EV_A_ fd);
594} 2040}
595 2041
596/* called on ENOMEM in select/poll to kill some fds and retry */ 2042/* called on ENOMEM in select/poll to kill some fds and retry */
597static void noinline 2043static void noinline ecb_cold
598fd_enomem (EV_P) 2044fd_enomem (EV_P)
599{ 2045{
600 int fd; 2046 int fd;
601 2047
602 for (fd = anfdmax; fd--; ) 2048 for (fd = anfdmax; fd--; )
603 if (anfds [fd].events) 2049 if (anfds [fd].events)
604 { 2050 {
605 fd_kill (EV_A_ fd); 2051 fd_kill (EV_A_ fd);
606 return; 2052 break;
607 } 2053 }
608} 2054}
609 2055
610/* usually called after fork if backend needs to re-arm all fds from scratch */ 2056/* usually called after fork if backend needs to re-arm all fds from scratch */
611static void noinline 2057static void noinline
615 2061
616 for (fd = 0; fd < anfdmax; ++fd) 2062 for (fd = 0; fd < anfdmax; ++fd)
617 if (anfds [fd].events) 2063 if (anfds [fd].events)
618 { 2064 {
619 anfds [fd].events = 0; 2065 anfds [fd].events = 0;
620 fd_change (EV_A_ fd); 2066 anfds [fd].emask = 0;
2067 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
621 } 2068 }
622} 2069}
623 2070
624/*****************************************************************************/ 2071/* used to prepare libev internal fd's */
625 2072/* this is not fork-safe */
626void inline_speed 2073inline_speed void
627upheap (WT *heap, int k)
628{
629 WT w = heap [k];
630
631 while (k && heap [k >> 1]->at > w->at)
632 {
633 heap [k] = heap [k >> 1];
634 ((W)heap [k])->active = k + 1;
635 k >>= 1;
636 }
637
638 heap [k] = w;
639 ((W)heap [k])->active = k + 1;
640
641}
642
643void inline_speed
644downheap (WT *heap, int N, int k)
645{
646 WT w = heap [k];
647
648 while (k < (N >> 1))
649 {
650 int j = k << 1;
651
652 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
653 ++j;
654
655 if (w->at <= heap [j]->at)
656 break;
657
658 heap [k] = heap [j];
659 ((W)heap [k])->active = k + 1;
660 k = j;
661 }
662
663 heap [k] = w;
664 ((W)heap [k])->active = k + 1;
665}
666
667void inline_size
668adjustheap (WT *heap, int N, int k)
669{
670 upheap (heap, k);
671 downheap (heap, N, k);
672}
673
674/*****************************************************************************/
675
676typedef struct
677{
678 WL head;
679 sig_atomic_t volatile gotsig;
680} ANSIG;
681
682static ANSIG *signals;
683static int signalmax;
684
685static int sigpipe [2];
686static sig_atomic_t volatile gotsig;
687static ev_io sigev;
688
689void inline_size
690signals_init (ANSIG *base, int count)
691{
692 while (count--)
693 {
694 base->head = 0;
695 base->gotsig = 0;
696
697 ++base;
698 }
699}
700
701static void
702sighandler (int signum)
703{
704#if _WIN32
705 signal (signum, sighandler);
706#endif
707
708 signals [signum - 1].gotsig = 1;
709
710 if (!gotsig)
711 {
712 int old_errno = errno;
713 gotsig = 1;
714 write (sigpipe [1], &signum, 1);
715 errno = old_errno;
716 }
717}
718
719void noinline
720ev_feed_signal_event (EV_P_ int signum)
721{
722 WL w;
723
724#if EV_MULTIPLICITY
725 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
726#endif
727
728 --signum;
729
730 if (signum < 0 || signum >= signalmax)
731 return;
732
733 signals [signum].gotsig = 0;
734
735 for (w = signals [signum].head; w; w = w->next)
736 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
737}
738
739static void
740sigcb (EV_P_ ev_io *iow, int revents)
741{
742 int signum;
743
744 read (sigpipe [0], &revents, 1);
745 gotsig = 0;
746
747 for (signum = signalmax; signum--; )
748 if (signals [signum].gotsig)
749 ev_feed_signal_event (EV_A_ signum + 1);
750}
751
752void inline_size
753fd_intern (int fd) 2074fd_intern (int fd)
754{ 2075{
755#ifdef _WIN32 2076#ifdef _WIN32
756 int arg = 1; 2077 unsigned long arg = 1;
757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 2078 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
758#else 2079#else
759 fcntl (fd, F_SETFD, FD_CLOEXEC); 2080 fcntl (fd, F_SETFD, FD_CLOEXEC);
760 fcntl (fd, F_SETFL, O_NONBLOCK); 2081 fcntl (fd, F_SETFL, O_NONBLOCK);
761#endif 2082#endif
762} 2083}
763 2084
764static void noinline
765siginit (EV_P)
766{
767 fd_intern (sigpipe [0]);
768 fd_intern (sigpipe [1]);
769
770 ev_io_set (&sigev, sigpipe [0], EV_READ);
771 ev_io_start (EV_A_ &sigev);
772 ev_unref (EV_A); /* child watcher should not keep loop alive */
773}
774
775/*****************************************************************************/ 2085/*****************************************************************************/
776 2086
777static ev_child *childs [EV_PID_HASHSIZE]; 2087/*
2088 * the heap functions want a real array index. array index 0 is guaranteed to not
2089 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2090 * the branching factor of the d-tree.
2091 */
778 2092
2093/*
2094 * at the moment we allow libev the luxury of two heaps,
2095 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2096 * which is more cache-efficient.
2097 * the difference is about 5% with 50000+ watchers.
2098 */
2099#if EV_USE_4HEAP
2100
2101#define DHEAP 4
2102#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2103#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2104#define UPHEAP_DONE(p,k) ((p) == (k))
2105
2106/* away from the root */
2107inline_speed void
2108downheap (ANHE *heap, int N, int k)
2109{
2110 ANHE he = heap [k];
2111 ANHE *E = heap + N + HEAP0;
2112
2113 for (;;)
2114 {
2115 ev_tstamp minat;
2116 ANHE *minpos;
2117 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2118
2119 /* find minimum child */
2120 if (expect_true (pos + DHEAP - 1 < E))
2121 {
2122 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2123 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2124 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2125 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2126 }
2127 else if (pos < E)
2128 {
2129 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2130 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2131 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2132 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2133 }
2134 else
2135 break;
2136
2137 if (ANHE_at (he) <= minat)
2138 break;
2139
2140 heap [k] = *minpos;
2141 ev_active (ANHE_w (*minpos)) = k;
2142
2143 k = minpos - heap;
2144 }
2145
2146 heap [k] = he;
2147 ev_active (ANHE_w (he)) = k;
2148}
2149
2150#else /* 4HEAP */
2151
2152#define HEAP0 1
2153#define HPARENT(k) ((k) >> 1)
2154#define UPHEAP_DONE(p,k) (!(p))
2155
2156/* away from the root */
2157inline_speed void
2158downheap (ANHE *heap, int N, int k)
2159{
2160 ANHE he = heap [k];
2161
2162 for (;;)
2163 {
2164 int c = k << 1;
2165
2166 if (c >= N + HEAP0)
2167 break;
2168
2169 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2170 ? 1 : 0;
2171
2172 if (ANHE_at (he) <= ANHE_at (heap [c]))
2173 break;
2174
2175 heap [k] = heap [c];
2176 ev_active (ANHE_w (heap [k])) = k;
2177
2178 k = c;
2179 }
2180
2181 heap [k] = he;
2182 ev_active (ANHE_w (he)) = k;
2183}
2184#endif
2185
2186/* towards the root */
2187inline_speed void
2188upheap (ANHE *heap, int k)
2189{
2190 ANHE he = heap [k];
2191
2192 for (;;)
2193 {
2194 int p = HPARENT (k);
2195
2196 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2197 break;
2198
2199 heap [k] = heap [p];
2200 ev_active (ANHE_w (heap [k])) = k;
2201 k = p;
2202 }
2203
2204 heap [k] = he;
2205 ev_active (ANHE_w (he)) = k;
2206}
2207
2208/* move an element suitably so it is in a correct place */
2209inline_size void
2210adjustheap (ANHE *heap, int N, int k)
2211{
2212 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2213 upheap (heap, k);
2214 else
2215 downheap (heap, N, k);
2216}
2217
2218/* rebuild the heap: this function is used only once and executed rarely */
2219inline_size void
2220reheap (ANHE *heap, int N)
2221{
2222 int i;
2223
2224 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2225 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2226 for (i = 0; i < N; ++i)
2227 upheap (heap, i + HEAP0);
2228}
2229
2230/*****************************************************************************/
2231
2232/* associate signal watchers to a signal signal */
2233typedef struct
2234{
2235 EV_ATOMIC_T pending;
2236#if EV_MULTIPLICITY
2237 EV_P;
2238#endif
2239 WL head;
2240} ANSIG;
2241
2242static ANSIG signals [EV_NSIG - 1];
2243
2244/*****************************************************************************/
2245
2246#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2247
2248static void noinline ecb_cold
2249evpipe_init (EV_P)
2250{
2251 if (!ev_is_active (&pipe_w))
2252 {
2253 int fds [2];
2254
2255# if EV_USE_EVENTFD
2256 fds [0] = -1;
2257 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2258 if (fds [1] < 0 && errno == EINVAL)
2259 fds [1] = eventfd (0, 0);
2260
2261 if (fds [1] < 0)
2262# endif
2263 {
2264 while (pipe (fds))
2265 ev_syserr ("(libev) error creating signal/async pipe");
2266
2267 fd_intern (fds [0]);
2268 }
2269
2270 evpipe [0] = fds [0];
2271
2272 if (evpipe [1] < 0)
2273 evpipe [1] = fds [1]; /* first call, set write fd */
2274 else
2275 {
2276 /* on subsequent calls, do not change evpipe [1] */
2277 /* so that evpipe_write can always rely on its value. */
2278 /* this branch does not do anything sensible on windows, */
2279 /* so must not be executed on windows */
2280
2281 dup2 (fds [1], evpipe [1]);
2282 close (fds [1]);
2283 }
2284
2285 fd_intern (evpipe [1]);
2286
2287 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2288 ev_io_start (EV_A_ &pipe_w);
2289 ev_unref (EV_A); /* watcher should not keep loop alive */
2290 }
2291}
2292
2293inline_speed void
2294evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2295{
2296 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2297
2298 if (expect_true (*flag))
2299 return;
2300
2301 *flag = 1;
2302 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2303
2304 pipe_write_skipped = 1;
2305
2306 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2307
2308 if (pipe_write_wanted)
2309 {
2310 int old_errno;
2311
2312 pipe_write_skipped = 0;
2313 ECB_MEMORY_FENCE_RELEASE;
2314
2315 old_errno = errno; /* save errno because write will clobber it */
2316
2317#if EV_USE_EVENTFD
2318 if (evpipe [0] < 0)
2319 {
2320 uint64_t counter = 1;
2321 write (evpipe [1], &counter, sizeof (uint64_t));
2322 }
2323 else
2324#endif
2325 {
779#ifndef _WIN32 2326#ifdef _WIN32
2327 WSABUF buf;
2328 DWORD sent;
2329 buf.buf = &buf;
2330 buf.len = 1;
2331 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2332#else
2333 write (evpipe [1], &(evpipe [1]), 1);
2334#endif
2335 }
2336
2337 errno = old_errno;
2338 }
2339}
2340
2341/* called whenever the libev signal pipe */
2342/* got some events (signal, async) */
2343static void
2344pipecb (EV_P_ ev_io *iow, int revents)
2345{
2346 int i;
2347
2348 if (revents & EV_READ)
2349 {
2350#if EV_USE_EVENTFD
2351 if (evpipe [0] < 0)
2352 {
2353 uint64_t counter;
2354 read (evpipe [1], &counter, sizeof (uint64_t));
2355 }
2356 else
2357#endif
2358 {
2359 char dummy[4];
2360#ifdef _WIN32
2361 WSABUF buf;
2362 DWORD recvd;
2363 DWORD flags = 0;
2364 buf.buf = dummy;
2365 buf.len = sizeof (dummy);
2366 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2367#else
2368 read (evpipe [0], &dummy, sizeof (dummy));
2369#endif
2370 }
2371 }
2372
2373 pipe_write_skipped = 0;
2374
2375 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2376
2377#if EV_SIGNAL_ENABLE
2378 if (sig_pending)
2379 {
2380 sig_pending = 0;
2381
2382 ECB_MEMORY_FENCE;
2383
2384 for (i = EV_NSIG - 1; i--; )
2385 if (expect_false (signals [i].pending))
2386 ev_feed_signal_event (EV_A_ i + 1);
2387 }
2388#endif
2389
2390#if EV_ASYNC_ENABLE
2391 if (async_pending)
2392 {
2393 async_pending = 0;
2394
2395 ECB_MEMORY_FENCE;
2396
2397 for (i = asynccnt; i--; )
2398 if (asyncs [i]->sent)
2399 {
2400 asyncs [i]->sent = 0;
2401 ECB_MEMORY_FENCE_RELEASE;
2402 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2403 }
2404 }
2405#endif
2406}
2407
2408/*****************************************************************************/
2409
2410void
2411ev_feed_signal (int signum) EV_THROW
2412{
2413#if EV_MULTIPLICITY
2414 EV_P;
2415 ECB_MEMORY_FENCE_ACQUIRE;
2416 EV_A = signals [signum - 1].loop;
2417
2418 if (!EV_A)
2419 return;
2420#endif
2421
2422 signals [signum - 1].pending = 1;
2423 evpipe_write (EV_A_ &sig_pending);
2424}
2425
2426static void
2427ev_sighandler (int signum)
2428{
2429#ifdef _WIN32
2430 signal (signum, ev_sighandler);
2431#endif
2432
2433 ev_feed_signal (signum);
2434}
2435
2436void noinline
2437ev_feed_signal_event (EV_P_ int signum) EV_THROW
2438{
2439 WL w;
2440
2441 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2442 return;
2443
2444 --signum;
2445
2446#if EV_MULTIPLICITY
2447 /* it is permissible to try to feed a signal to the wrong loop */
2448 /* or, likely more useful, feeding a signal nobody is waiting for */
2449
2450 if (expect_false (signals [signum].loop != EV_A))
2451 return;
2452#endif
2453
2454 signals [signum].pending = 0;
2455 ECB_MEMORY_FENCE_RELEASE;
2456
2457 for (w = signals [signum].head; w; w = w->next)
2458 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2459}
2460
2461#if EV_USE_SIGNALFD
2462static void
2463sigfdcb (EV_P_ ev_io *iow, int revents)
2464{
2465 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2466
2467 for (;;)
2468 {
2469 ssize_t res = read (sigfd, si, sizeof (si));
2470
2471 /* not ISO-C, as res might be -1, but works with SuS */
2472 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2473 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2474
2475 if (res < (ssize_t)sizeof (si))
2476 break;
2477 }
2478}
2479#endif
2480
2481#endif
2482
2483/*****************************************************************************/
2484
2485#if EV_CHILD_ENABLE
2486static WL childs [EV_PID_HASHSIZE];
780 2487
781static ev_signal childev; 2488static ev_signal childev;
782 2489
783void inline_speed 2490#ifndef WIFCONTINUED
2491# define WIFCONTINUED(status) 0
2492#endif
2493
2494/* handle a single child status event */
2495inline_speed void
784child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2496child_reap (EV_P_ int chain, int pid, int status)
785{ 2497{
786 ev_child *w; 2498 ev_child *w;
2499 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
787 2500
788 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2501 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2502 {
789 if (w->pid == pid || !w->pid) 2503 if ((w->pid == pid || !w->pid)
2504 && (!traced || (w->flags & 1)))
790 { 2505 {
791 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 2506 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
792 w->rpid = pid; 2507 w->rpid = pid;
793 w->rstatus = status; 2508 w->rstatus = status;
794 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2509 ev_feed_event (EV_A_ (W)w, EV_CHILD);
795 } 2510 }
2511 }
796} 2512}
797 2513
798#ifndef WCONTINUED 2514#ifndef WCONTINUED
799# define WCONTINUED 0 2515# define WCONTINUED 0
800#endif 2516#endif
801 2517
2518/* called on sigchld etc., calls waitpid */
802static void 2519static void
803childcb (EV_P_ ev_signal *sw, int revents) 2520childcb (EV_P_ ev_signal *sw, int revents)
804{ 2521{
805 int pid, status; 2522 int pid, status;
806 2523
809 if (!WCONTINUED 2526 if (!WCONTINUED
810 || errno != EINVAL 2527 || errno != EINVAL
811 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2528 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
812 return; 2529 return;
813 2530
814 /* make sure we are called again until all childs have been reaped */ 2531 /* make sure we are called again until all children have been reaped */
815 /* we need to do it this way so that the callback gets called before we continue */ 2532 /* we need to do it this way so that the callback gets called before we continue */
816 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2533 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
817 2534
818 child_reap (EV_A_ sw, pid, pid, status); 2535 child_reap (EV_A_ pid, pid, status);
819 if (EV_PID_HASHSIZE > 1) 2536 if ((EV_PID_HASHSIZE) > 1)
820 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2537 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
821} 2538}
822 2539
823#endif 2540#endif
824 2541
825/*****************************************************************************/ 2542/*****************************************************************************/
826 2543
2544#if EV_USE_IOCP
2545# include "ev_iocp.c"
2546#endif
827#if EV_USE_PORT 2547#if EV_USE_PORT
828# include "ev_port.c" 2548# include "ev_port.c"
829#endif 2549#endif
830#if EV_USE_KQUEUE 2550#if EV_USE_KQUEUE
831# include "ev_kqueue.c" 2551# include "ev_kqueue.c"
838#endif 2558#endif
839#if EV_USE_SELECT 2559#if EV_USE_SELECT
840# include "ev_select.c" 2560# include "ev_select.c"
841#endif 2561#endif
842 2562
843int 2563int ecb_cold
844ev_version_major (void) 2564ev_version_major (void) EV_THROW
845{ 2565{
846 return EV_VERSION_MAJOR; 2566 return EV_VERSION_MAJOR;
847} 2567}
848 2568
849int 2569int ecb_cold
850ev_version_minor (void) 2570ev_version_minor (void) EV_THROW
851{ 2571{
852 return EV_VERSION_MINOR; 2572 return EV_VERSION_MINOR;
853} 2573}
854 2574
855/* return true if we are running with elevated privileges and should ignore env variables */ 2575/* return true if we are running with elevated privileges and should ignore env variables */
856int inline_size 2576int inline_size ecb_cold
857enable_secure (void) 2577enable_secure (void)
858{ 2578{
859#ifdef _WIN32 2579#ifdef _WIN32
860 return 0; 2580 return 0;
861#else 2581#else
862 return getuid () != geteuid () 2582 return getuid () != geteuid ()
863 || getgid () != getegid (); 2583 || getgid () != getegid ();
864#endif 2584#endif
865} 2585}
866 2586
867unsigned int 2587unsigned int ecb_cold
868ev_supported_backends (void) 2588ev_supported_backends (void) EV_THROW
869{ 2589{
870 unsigned int flags = 0; 2590 unsigned int flags = 0;
871 2591
872 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2592 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
873 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2593 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
876 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2596 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
877 2597
878 return flags; 2598 return flags;
879} 2599}
880 2600
881unsigned int 2601unsigned int ecb_cold
882ev_recommended_backends (void) 2602ev_recommended_backends (void) EV_THROW
883{ 2603{
884 unsigned int flags = ev_supported_backends (); 2604 unsigned int flags = ev_supported_backends ();
885 2605
886#ifndef __NetBSD__ 2606#ifndef __NetBSD__
887 /* kqueue is borked on everything but netbsd apparently */ 2607 /* kqueue is borked on everything but netbsd apparently */
888 /* it usually doesn't work correctly on anything but sockets and pipes */ 2608 /* it usually doesn't work correctly on anything but sockets and pipes */
889 flags &= ~EVBACKEND_KQUEUE; 2609 flags &= ~EVBACKEND_KQUEUE;
890#endif 2610#endif
891#ifdef __APPLE__ 2611#ifdef __APPLE__
892 // flags &= ~EVBACKEND_KQUEUE; for documentation 2612 /* only select works correctly on that "unix-certified" platform */
893 flags &= ~EVBACKEND_POLL; 2613 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2614 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2615#endif
2616#ifdef __FreeBSD__
2617 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
894#endif 2618#endif
895 2619
896 return flags; 2620 return flags;
897} 2621}
898 2622
2623unsigned int ecb_cold
2624ev_embeddable_backends (void) EV_THROW
2625{
2626 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2627
2628 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2629 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2630 flags &= ~EVBACKEND_EPOLL;
2631
2632 return flags;
2633}
2634
899unsigned int 2635unsigned int
900ev_embeddable_backends (void) 2636ev_backend (EV_P) EV_THROW
901{ 2637{
902 return EVBACKEND_EPOLL 2638 return backend;
903 | EVBACKEND_KQUEUE
904 | EVBACKEND_PORT;
905} 2639}
906 2640
2641#if EV_FEATURE_API
907unsigned int 2642unsigned int
908ev_backend (EV_P) 2643ev_iteration (EV_P) EV_THROW
909{ 2644{
910 return backend; 2645 return loop_count;
911} 2646}
912 2647
913unsigned int 2648unsigned int
914ev_loop_count (EV_P) 2649ev_depth (EV_P) EV_THROW
915{ 2650{
916 return loop_count; 2651 return loop_depth;
917} 2652}
918 2653
2654void
2655ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2656{
2657 io_blocktime = interval;
2658}
2659
2660void
2661ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2662{
2663 timeout_blocktime = interval;
2664}
2665
2666void
2667ev_set_userdata (EV_P_ void *data) EV_THROW
2668{
2669 userdata = data;
2670}
2671
2672void *
2673ev_userdata (EV_P) EV_THROW
2674{
2675 return userdata;
2676}
2677
2678void
2679ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2680{
2681 invoke_cb = invoke_pending_cb;
2682}
2683
2684void
2685ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2686{
2687 release_cb = release;
2688 acquire_cb = acquire;
2689}
2690#endif
2691
2692/* initialise a loop structure, must be zero-initialised */
919static void noinline 2693static void noinline ecb_cold
920loop_init (EV_P_ unsigned int flags) 2694loop_init (EV_P_ unsigned int flags) EV_THROW
921{ 2695{
922 if (!backend) 2696 if (!backend)
923 { 2697 {
2698 origflags = flags;
2699
2700#if EV_USE_REALTIME
2701 if (!have_realtime)
2702 {
2703 struct timespec ts;
2704
2705 if (!clock_gettime (CLOCK_REALTIME, &ts))
2706 have_realtime = 1;
2707 }
2708#endif
2709
924#if EV_USE_MONOTONIC 2710#if EV_USE_MONOTONIC
2711 if (!have_monotonic)
925 { 2712 {
926 struct timespec ts; 2713 struct timespec ts;
2714
927 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2715 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
928 have_monotonic = 1; 2716 have_monotonic = 1;
929 } 2717 }
930#endif 2718#endif
931
932 ev_rt_now = ev_time ();
933 mn_now = get_clock ();
934 now_floor = mn_now;
935 rtmn_diff = ev_rt_now - mn_now;
936 2719
937 /* pid check not overridable via env */ 2720 /* pid check not overridable via env */
938#ifndef _WIN32 2721#ifndef _WIN32
939 if (flags & EVFLAG_FORKCHECK) 2722 if (flags & EVFLAG_FORKCHECK)
940 curpid = getpid (); 2723 curpid = getpid ();
943 if (!(flags & EVFLAG_NOENV) 2726 if (!(flags & EVFLAG_NOENV)
944 && !enable_secure () 2727 && !enable_secure ()
945 && getenv ("LIBEV_FLAGS")) 2728 && getenv ("LIBEV_FLAGS"))
946 flags = atoi (getenv ("LIBEV_FLAGS")); 2729 flags = atoi (getenv ("LIBEV_FLAGS"));
947 2730
948 if (!(flags & 0x0000ffffUL)) 2731 ev_rt_now = ev_time ();
2732 mn_now = get_clock ();
2733 now_floor = mn_now;
2734 rtmn_diff = ev_rt_now - mn_now;
2735#if EV_FEATURE_API
2736 invoke_cb = ev_invoke_pending;
2737#endif
2738
2739 io_blocktime = 0.;
2740 timeout_blocktime = 0.;
2741 backend = 0;
2742 backend_fd = -1;
2743 sig_pending = 0;
2744#if EV_ASYNC_ENABLE
2745 async_pending = 0;
2746#endif
2747 pipe_write_skipped = 0;
2748 pipe_write_wanted = 0;
2749 evpipe [0] = -1;
2750 evpipe [1] = -1;
2751#if EV_USE_INOTIFY
2752 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2753#endif
2754#if EV_USE_SIGNALFD
2755 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2756#endif
2757
2758 if (!(flags & EVBACKEND_MASK))
949 flags |= ev_recommended_backends (); 2759 flags |= ev_recommended_backends ();
950 2760
951 backend = 0;
952 backend_fd = -1;
953#if EV_USE_INOTIFY 2761#if EV_USE_IOCP
954 fs_fd = -2; 2762 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
955#endif 2763#endif
956
957#if EV_USE_PORT 2764#if EV_USE_PORT
958 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2765 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
959#endif 2766#endif
960#if EV_USE_KQUEUE 2767#if EV_USE_KQUEUE
961 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2768 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
968#endif 2775#endif
969#if EV_USE_SELECT 2776#if EV_USE_SELECT
970 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2777 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
971#endif 2778#endif
972 2779
2780 ev_prepare_init (&pending_w, pendingcb);
2781
2782#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
973 ev_init (&sigev, sigcb); 2783 ev_init (&pipe_w, pipecb);
974 ev_set_priority (&sigev, EV_MAXPRI); 2784 ev_set_priority (&pipe_w, EV_MAXPRI);
2785#endif
975 } 2786 }
976} 2787}
977 2788
978static void noinline 2789/* free up a loop structure */
2790void ecb_cold
979loop_destroy (EV_P) 2791ev_loop_destroy (EV_P)
980{ 2792{
981 int i; 2793 int i;
2794
2795#if EV_MULTIPLICITY
2796 /* mimic free (0) */
2797 if (!EV_A)
2798 return;
2799#endif
2800
2801#if EV_CLEANUP_ENABLE
2802 /* queue cleanup watchers (and execute them) */
2803 if (expect_false (cleanupcnt))
2804 {
2805 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2806 EV_INVOKE_PENDING;
2807 }
2808#endif
2809
2810#if EV_CHILD_ENABLE
2811 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2812 {
2813 ev_ref (EV_A); /* child watcher */
2814 ev_signal_stop (EV_A_ &childev);
2815 }
2816#endif
2817
2818 if (ev_is_active (&pipe_w))
2819 {
2820 /*ev_ref (EV_A);*/
2821 /*ev_io_stop (EV_A_ &pipe_w);*/
2822
2823 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2824 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2825 }
2826
2827#if EV_USE_SIGNALFD
2828 if (ev_is_active (&sigfd_w))
2829 close (sigfd);
2830#endif
982 2831
983#if EV_USE_INOTIFY 2832#if EV_USE_INOTIFY
984 if (fs_fd >= 0) 2833 if (fs_fd >= 0)
985 close (fs_fd); 2834 close (fs_fd);
986#endif 2835#endif
987 2836
988 if (backend_fd >= 0) 2837 if (backend_fd >= 0)
989 close (backend_fd); 2838 close (backend_fd);
990 2839
2840#if EV_USE_IOCP
2841 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2842#endif
991#if EV_USE_PORT 2843#if EV_USE_PORT
992 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2844 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
993#endif 2845#endif
994#if EV_USE_KQUEUE 2846#if EV_USE_KQUEUE
995 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2847 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1010#if EV_IDLE_ENABLE 2862#if EV_IDLE_ENABLE
1011 array_free (idle, [i]); 2863 array_free (idle, [i]);
1012#endif 2864#endif
1013 } 2865 }
1014 2866
2867 ev_free (anfds); anfds = 0; anfdmax = 0;
2868
1015 /* have to use the microsoft-never-gets-it-right macro */ 2869 /* have to use the microsoft-never-gets-it-right macro */
2870 array_free (rfeed, EMPTY);
1016 array_free (fdchange, EMPTY); 2871 array_free (fdchange, EMPTY);
1017 array_free (timer, EMPTY); 2872 array_free (timer, EMPTY);
1018#if EV_PERIODIC_ENABLE 2873#if EV_PERIODIC_ENABLE
1019 array_free (periodic, EMPTY); 2874 array_free (periodic, EMPTY);
1020#endif 2875#endif
2876#if EV_FORK_ENABLE
2877 array_free (fork, EMPTY);
2878#endif
2879#if EV_CLEANUP_ENABLE
2880 array_free (cleanup, EMPTY);
2881#endif
1021 array_free (prepare, EMPTY); 2882 array_free (prepare, EMPTY);
1022 array_free (check, EMPTY); 2883 array_free (check, EMPTY);
2884#if EV_ASYNC_ENABLE
2885 array_free (async, EMPTY);
2886#endif
1023 2887
1024 backend = 0; 2888 backend = 0;
1025}
1026 2889
2890#if EV_MULTIPLICITY
2891 if (ev_is_default_loop (EV_A))
2892#endif
2893 ev_default_loop_ptr = 0;
2894#if EV_MULTIPLICITY
2895 else
2896 ev_free (EV_A);
2897#endif
2898}
2899
2900#if EV_USE_INOTIFY
1027void inline_size infy_fork (EV_P); 2901inline_size void infy_fork (EV_P);
2902#endif
1028 2903
1029void inline_size 2904inline_size void
1030loop_fork (EV_P) 2905loop_fork (EV_P)
1031{ 2906{
1032#if EV_USE_PORT 2907#if EV_USE_PORT
1033 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2908 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1034#endif 2909#endif
1040#endif 2915#endif
1041#if EV_USE_INOTIFY 2916#if EV_USE_INOTIFY
1042 infy_fork (EV_A); 2917 infy_fork (EV_A);
1043#endif 2918#endif
1044 2919
1045 if (ev_is_active (&sigev)) 2920#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2921 if (ev_is_active (&pipe_w) && postfork != 2)
1046 { 2922 {
1047 /* default loop */ 2923 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1048 2924
1049 ev_ref (EV_A); 2925 ev_ref (EV_A);
1050 ev_io_stop (EV_A_ &sigev); 2926 ev_io_stop (EV_A_ &pipe_w);
1051 close (sigpipe [0]);
1052 close (sigpipe [1]);
1053 2927
1054 while (pipe (sigpipe)) 2928 if (evpipe [0] >= 0)
1055 syserr ("(libev) error creating pipe"); 2929 EV_WIN32_CLOSE_FD (evpipe [0]);
1056 2930
1057 siginit (EV_A); 2931 evpipe_init (EV_A);
2932 /* iterate over everything, in case we missed something before */
2933 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1058 } 2934 }
2935#endif
1059 2936
1060 postfork = 0; 2937 postfork = 0;
1061} 2938}
1062 2939
1063#if EV_MULTIPLICITY 2940#if EV_MULTIPLICITY
2941
1064struct ev_loop * 2942struct ev_loop * ecb_cold
1065ev_loop_new (unsigned int flags) 2943ev_loop_new (unsigned int flags) EV_THROW
1066{ 2944{
1067 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2945 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1068 2946
1069 memset (loop, 0, sizeof (struct ev_loop)); 2947 memset (EV_A, 0, sizeof (struct ev_loop));
1070
1071 loop_init (EV_A_ flags); 2948 loop_init (EV_A_ flags);
1072 2949
1073 if (ev_backend (EV_A)) 2950 if (ev_backend (EV_A))
1074 return loop; 2951 return EV_A;
1075 2952
2953 ev_free (EV_A);
1076 return 0; 2954 return 0;
1077} 2955}
1078 2956
1079void 2957#endif /* multiplicity */
1080ev_loop_destroy (EV_P)
1081{
1082 loop_destroy (EV_A);
1083 ev_free (loop);
1084}
1085 2958
1086void 2959#if EV_VERIFY
1087ev_loop_fork (EV_P) 2960static void noinline ecb_cold
2961verify_watcher (EV_P_ W w)
1088{ 2962{
1089 postfork = 1; 2963 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1090}
1091 2964
2965 if (w->pending)
2966 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2967}
2968
2969static void noinline ecb_cold
2970verify_heap (EV_P_ ANHE *heap, int N)
2971{
2972 int i;
2973
2974 for (i = HEAP0; i < N + HEAP0; ++i)
2975 {
2976 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2977 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2978 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2979
2980 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2981 }
2982}
2983
2984static void noinline ecb_cold
2985array_verify (EV_P_ W *ws, int cnt)
2986{
2987 while (cnt--)
2988 {
2989 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2990 verify_watcher (EV_A_ ws [cnt]);
2991 }
2992}
2993#endif
2994
2995#if EV_FEATURE_API
2996void ecb_cold
2997ev_verify (EV_P) EV_THROW
2998{
2999#if EV_VERIFY
3000 int i;
3001 WL w, w2;
3002
3003 assert (activecnt >= -1);
3004
3005 assert (fdchangemax >= fdchangecnt);
3006 for (i = 0; i < fdchangecnt; ++i)
3007 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3008
3009 assert (anfdmax >= 0);
3010 for (i = 0; i < anfdmax; ++i)
3011 {
3012 int j = 0;
3013
3014 for (w = w2 = anfds [i].head; w; w = w->next)
3015 {
3016 verify_watcher (EV_A_ (W)w);
3017
3018 if (j++ & 1)
3019 {
3020 assert (("libev: io watcher list contains a loop", w != w2));
3021 w2 = w2->next;
3022 }
3023
3024 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3025 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3026 }
3027 }
3028
3029 assert (timermax >= timercnt);
3030 verify_heap (EV_A_ timers, timercnt);
3031
3032#if EV_PERIODIC_ENABLE
3033 assert (periodicmax >= periodiccnt);
3034 verify_heap (EV_A_ periodics, periodiccnt);
3035#endif
3036
3037 for (i = NUMPRI; i--; )
3038 {
3039 assert (pendingmax [i] >= pendingcnt [i]);
3040#if EV_IDLE_ENABLE
3041 assert (idleall >= 0);
3042 assert (idlemax [i] >= idlecnt [i]);
3043 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3044#endif
3045 }
3046
3047#if EV_FORK_ENABLE
3048 assert (forkmax >= forkcnt);
3049 array_verify (EV_A_ (W *)forks, forkcnt);
3050#endif
3051
3052#if EV_CLEANUP_ENABLE
3053 assert (cleanupmax >= cleanupcnt);
3054 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3055#endif
3056
3057#if EV_ASYNC_ENABLE
3058 assert (asyncmax >= asynccnt);
3059 array_verify (EV_A_ (W *)asyncs, asynccnt);
3060#endif
3061
3062#if EV_PREPARE_ENABLE
3063 assert (preparemax >= preparecnt);
3064 array_verify (EV_A_ (W *)prepares, preparecnt);
3065#endif
3066
3067#if EV_CHECK_ENABLE
3068 assert (checkmax >= checkcnt);
3069 array_verify (EV_A_ (W *)checks, checkcnt);
3070#endif
3071
3072# if 0
3073#if EV_CHILD_ENABLE
3074 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3075 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3076#endif
3077# endif
3078#endif
3079}
1092#endif 3080#endif
1093 3081
1094#if EV_MULTIPLICITY 3082#if EV_MULTIPLICITY
1095struct ev_loop * 3083struct ev_loop * ecb_cold
1096ev_default_loop_init (unsigned int flags)
1097#else 3084#else
1098int 3085int
3086#endif
1099ev_default_loop (unsigned int flags) 3087ev_default_loop (unsigned int flags) EV_THROW
1100#endif
1101{ 3088{
1102 if (sigpipe [0] == sigpipe [1])
1103 if (pipe (sigpipe))
1104 return 0;
1105
1106 if (!ev_default_loop_ptr) 3089 if (!ev_default_loop_ptr)
1107 { 3090 {
1108#if EV_MULTIPLICITY 3091#if EV_MULTIPLICITY
1109 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3092 EV_P = ev_default_loop_ptr = &default_loop_struct;
1110#else 3093#else
1111 ev_default_loop_ptr = 1; 3094 ev_default_loop_ptr = 1;
1112#endif 3095#endif
1113 3096
1114 loop_init (EV_A_ flags); 3097 loop_init (EV_A_ flags);
1115 3098
1116 if (ev_backend (EV_A)) 3099 if (ev_backend (EV_A))
1117 { 3100 {
1118 siginit (EV_A); 3101#if EV_CHILD_ENABLE
1119
1120#ifndef _WIN32
1121 ev_signal_init (&childev, childcb, SIGCHLD); 3102 ev_signal_init (&childev, childcb, SIGCHLD);
1122 ev_set_priority (&childev, EV_MAXPRI); 3103 ev_set_priority (&childev, EV_MAXPRI);
1123 ev_signal_start (EV_A_ &childev); 3104 ev_signal_start (EV_A_ &childev);
1124 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3105 ev_unref (EV_A); /* child watcher should not keep loop alive */
1125#endif 3106#endif
1130 3111
1131 return ev_default_loop_ptr; 3112 return ev_default_loop_ptr;
1132} 3113}
1133 3114
1134void 3115void
1135ev_default_destroy (void) 3116ev_loop_fork (EV_P) EV_THROW
1136{ 3117{
1137#if EV_MULTIPLICITY 3118 postfork = 1;
1138 struct ev_loop *loop = ev_default_loop_ptr;
1139#endif
1140
1141#ifndef _WIN32
1142 ev_ref (EV_A); /* child watcher */
1143 ev_signal_stop (EV_A_ &childev);
1144#endif
1145
1146 ev_ref (EV_A); /* signal watcher */
1147 ev_io_stop (EV_A_ &sigev);
1148
1149 close (sigpipe [0]); sigpipe [0] = 0;
1150 close (sigpipe [1]); sigpipe [1] = 0;
1151
1152 loop_destroy (EV_A);
1153} 3119}
3120
3121/*****************************************************************************/
1154 3122
1155void 3123void
1156ev_default_fork (void) 3124ev_invoke (EV_P_ void *w, int revents)
1157{ 3125{
1158#if EV_MULTIPLICITY 3126 EV_CB_INVOKE ((W)w, revents);
1159 struct ev_loop *loop = ev_default_loop_ptr;
1160#endif
1161
1162 if (backend)
1163 postfork = 1;
1164} 3127}
1165 3128
1166/*****************************************************************************/ 3129unsigned int
1167 3130ev_pending_count (EV_P) EV_THROW
1168void inline_speed
1169call_pending (EV_P)
1170{ 3131{
1171 int pri; 3132 int pri;
3133 unsigned int count = 0;
1172 3134
1173 for (pri = NUMPRI; pri--; ) 3135 for (pri = NUMPRI; pri--; )
3136 count += pendingcnt [pri];
3137
3138 return count;
3139}
3140
3141void noinline
3142ev_invoke_pending (EV_P)
3143{
3144 pendingpri = NUMPRI;
3145
3146 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3147 {
3148 --pendingpri;
3149
1174 while (pendingcnt [pri]) 3150 while (pendingcnt [pendingpri])
1175 {
1176 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1177
1178 if (expect_true (p->w))
1179 {
1180 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1181
1182 p->w->pending = 0;
1183 EV_CB_INVOKE (p->w, p->events);
1184 }
1185 }
1186}
1187
1188void inline_size
1189timers_reify (EV_P)
1190{
1191 while (timercnt && ((WT)timers [0])->at <= mn_now)
1192 {
1193 ev_timer *w = timers [0];
1194
1195 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1196
1197 /* first reschedule or stop timer */
1198 if (w->repeat)
1199 { 3151 {
1200 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3152 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1201 3153
1202 ((WT)w)->at += w->repeat; 3154 p->w->pending = 0;
1203 if (((WT)w)->at < mn_now) 3155 EV_CB_INVOKE (p->w, p->events);
1204 ((WT)w)->at = mn_now; 3156 EV_FREQUENT_CHECK;
1205
1206 downheap ((WT *)timers, timercnt, 0);
1207 } 3157 }
1208 else
1209 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1210
1211 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1212 }
1213}
1214
1215#if EV_PERIODIC_ENABLE
1216void inline_size
1217periodics_reify (EV_P)
1218{
1219 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1220 { 3158 }
1221 ev_periodic *w = periodics [0];
1222
1223 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1224
1225 /* first reschedule or stop timer */
1226 if (w->reschedule_cb)
1227 {
1228 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1229 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1230 downheap ((WT *)periodics, periodiccnt, 0);
1231 }
1232 else if (w->interval)
1233 {
1234 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1235 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1236 downheap ((WT *)periodics, periodiccnt, 0);
1237 }
1238 else
1239 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1240
1241 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1242 }
1243} 3159}
1244
1245static void noinline
1246periodics_reschedule (EV_P)
1247{
1248 int i;
1249
1250 /* adjust periodics after time jump */
1251 for (i = 0; i < periodiccnt; ++i)
1252 {
1253 ev_periodic *w = periodics [i];
1254
1255 if (w->reschedule_cb)
1256 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1257 else if (w->interval)
1258 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1259 }
1260
1261 /* now rebuild the heap */
1262 for (i = periodiccnt >> 1; i--; )
1263 downheap ((WT *)periodics, periodiccnt, i);
1264}
1265#endif
1266 3160
1267#if EV_IDLE_ENABLE 3161#if EV_IDLE_ENABLE
1268void inline_size 3162/* make idle watchers pending. this handles the "call-idle */
3163/* only when higher priorities are idle" logic */
3164inline_size void
1269idle_reify (EV_P) 3165idle_reify (EV_P)
1270{ 3166{
1271 if (expect_false (idleall)) 3167 if (expect_false (idleall))
1272 { 3168 {
1273 int pri; 3169 int pri;
1285 } 3181 }
1286 } 3182 }
1287} 3183}
1288#endif 3184#endif
1289 3185
1290int inline_size 3186/* make timers pending */
1291time_update_monotonic (EV_P) 3187inline_size void
3188timers_reify (EV_P)
1292{ 3189{
3190 EV_FREQUENT_CHECK;
3191
3192 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3193 {
3194 do
3195 {
3196 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3197
3198 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3199
3200 /* first reschedule or stop timer */
3201 if (w->repeat)
3202 {
3203 ev_at (w) += w->repeat;
3204 if (ev_at (w) < mn_now)
3205 ev_at (w) = mn_now;
3206
3207 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3208
3209 ANHE_at_cache (timers [HEAP0]);
3210 downheap (timers, timercnt, HEAP0);
3211 }
3212 else
3213 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3214
3215 EV_FREQUENT_CHECK;
3216 feed_reverse (EV_A_ (W)w);
3217 }
3218 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3219
3220 feed_reverse_done (EV_A_ EV_TIMER);
3221 }
3222}
3223
3224#if EV_PERIODIC_ENABLE
3225
3226static void noinline
3227periodic_recalc (EV_P_ ev_periodic *w)
3228{
3229 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3230 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3231
3232 /* the above almost always errs on the low side */
3233 while (at <= ev_rt_now)
3234 {
3235 ev_tstamp nat = at + w->interval;
3236
3237 /* when resolution fails us, we use ev_rt_now */
3238 if (expect_false (nat == at))
3239 {
3240 at = ev_rt_now;
3241 break;
3242 }
3243
3244 at = nat;
3245 }
3246
3247 ev_at (w) = at;
3248}
3249
3250/* make periodics pending */
3251inline_size void
3252periodics_reify (EV_P)
3253{
3254 EV_FREQUENT_CHECK;
3255
3256 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3257 {
3258 do
3259 {
3260 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3261
3262 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3263
3264 /* first reschedule or stop timer */
3265 if (w->reschedule_cb)
3266 {
3267 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3268
3269 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3270
3271 ANHE_at_cache (periodics [HEAP0]);
3272 downheap (periodics, periodiccnt, HEAP0);
3273 }
3274 else if (w->interval)
3275 {
3276 periodic_recalc (EV_A_ w);
3277 ANHE_at_cache (periodics [HEAP0]);
3278 downheap (periodics, periodiccnt, HEAP0);
3279 }
3280 else
3281 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3282
3283 EV_FREQUENT_CHECK;
3284 feed_reverse (EV_A_ (W)w);
3285 }
3286 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3287
3288 feed_reverse_done (EV_A_ EV_PERIODIC);
3289 }
3290}
3291
3292/* simply recalculate all periodics */
3293/* TODO: maybe ensure that at least one event happens when jumping forward? */
3294static void noinline ecb_cold
3295periodics_reschedule (EV_P)
3296{
3297 int i;
3298
3299 /* adjust periodics after time jump */
3300 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3301 {
3302 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3303
3304 if (w->reschedule_cb)
3305 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3306 else if (w->interval)
3307 periodic_recalc (EV_A_ w);
3308
3309 ANHE_at_cache (periodics [i]);
3310 }
3311
3312 reheap (periodics, periodiccnt);
3313}
3314#endif
3315
3316/* adjust all timers by a given offset */
3317static void noinline ecb_cold
3318timers_reschedule (EV_P_ ev_tstamp adjust)
3319{
3320 int i;
3321
3322 for (i = 0; i < timercnt; ++i)
3323 {
3324 ANHE *he = timers + i + HEAP0;
3325 ANHE_w (*he)->at += adjust;
3326 ANHE_at_cache (*he);
3327 }
3328}
3329
3330/* fetch new monotonic and realtime times from the kernel */
3331/* also detect if there was a timejump, and act accordingly */
3332inline_speed void
3333time_update (EV_P_ ev_tstamp max_block)
3334{
3335#if EV_USE_MONOTONIC
3336 if (expect_true (have_monotonic))
3337 {
3338 int i;
3339 ev_tstamp odiff = rtmn_diff;
3340
1293 mn_now = get_clock (); 3341 mn_now = get_clock ();
1294 3342
3343 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3344 /* interpolate in the meantime */
1295 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 3345 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1296 { 3346 {
1297 ev_rt_now = rtmn_diff + mn_now; 3347 ev_rt_now = rtmn_diff + mn_now;
1298 return 0; 3348 return;
1299 } 3349 }
1300 else 3350
1301 {
1302 now_floor = mn_now; 3351 now_floor = mn_now;
1303 ev_rt_now = ev_time (); 3352 ev_rt_now = ev_time ();
1304 return 1;
1305 }
1306}
1307 3353
1308void inline_size 3354 /* loop a few times, before making important decisions.
1309time_update (EV_P) 3355 * on the choice of "4": one iteration isn't enough,
1310{ 3356 * in case we get preempted during the calls to
1311 int i; 3357 * ev_time and get_clock. a second call is almost guaranteed
1312 3358 * to succeed in that case, though. and looping a few more times
1313#if EV_USE_MONOTONIC 3359 * doesn't hurt either as we only do this on time-jumps or
1314 if (expect_true (have_monotonic)) 3360 * in the unlikely event of having been preempted here.
1315 { 3361 */
1316 if (time_update_monotonic (EV_A)) 3362 for (i = 4; --i; )
1317 { 3363 {
1318 ev_tstamp odiff = rtmn_diff; 3364 ev_tstamp diff;
1319
1320 /* loop a few times, before making important decisions.
1321 * on the choice of "4": one iteration isn't enough,
1322 * in case we get preempted during the calls to
1323 * ev_time and get_clock. a second call is almost guaranteed
1324 * to succeed in that case, though. and looping a few more times
1325 * doesn't hurt either as we only do this on time-jumps or
1326 * in the unlikely event of having been preempted here.
1327 */
1328 for (i = 4; --i; )
1329 {
1330 rtmn_diff = ev_rt_now - mn_now; 3365 rtmn_diff = ev_rt_now - mn_now;
1331 3366
1332 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3367 diff = odiff - rtmn_diff;
3368
3369 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1333 return; /* all is well */ 3370 return; /* all is well */
1334 3371
1335 ev_rt_now = ev_time (); 3372 ev_rt_now = ev_time ();
1336 mn_now = get_clock (); 3373 mn_now = get_clock ();
1337 now_floor = mn_now; 3374 now_floor = mn_now;
1338 } 3375 }
1339 3376
3377 /* no timer adjustment, as the monotonic clock doesn't jump */
3378 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1340# if EV_PERIODIC_ENABLE 3379# if EV_PERIODIC_ENABLE
1341 periodics_reschedule (EV_A); 3380 periodics_reschedule (EV_A);
1342# endif 3381# endif
1343 /* no timer adjustment, as the monotonic clock doesn't jump */
1344 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1345 }
1346 } 3382 }
1347 else 3383 else
1348#endif 3384#endif
1349 { 3385 {
1350 ev_rt_now = ev_time (); 3386 ev_rt_now = ev_time ();
1351 3387
1352 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 3388 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1353 { 3389 {
3390 /* adjust timers. this is easy, as the offset is the same for all of them */
3391 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1354#if EV_PERIODIC_ENABLE 3392#if EV_PERIODIC_ENABLE
1355 periodics_reschedule (EV_A); 3393 periodics_reschedule (EV_A);
1356#endif 3394#endif
1357
1358 /* adjust timers. this is easy, as the offset is the same for all of them */
1359 for (i = 0; i < timercnt; ++i)
1360 ((WT)timers [i])->at += ev_rt_now - mn_now;
1361 } 3395 }
1362 3396
1363 mn_now = ev_rt_now; 3397 mn_now = ev_rt_now;
1364 } 3398 }
1365} 3399}
1366 3400
1367void 3401int
1368ev_ref (EV_P)
1369{
1370 ++activecnt;
1371}
1372
1373void
1374ev_unref (EV_P)
1375{
1376 --activecnt;
1377}
1378
1379static int loop_done;
1380
1381void
1382ev_loop (EV_P_ int flags) 3402ev_run (EV_P_ int flags)
1383{ 3403{
1384 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 3404#if EV_FEATURE_API
1385 ? EVUNLOOP_ONE 3405 ++loop_depth;
1386 : EVUNLOOP_CANCEL; 3406#endif
1387 3407
3408 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3409
3410 loop_done = EVBREAK_CANCEL;
3411
1388 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3412 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1389 3413
1390 do 3414 do
1391 { 3415 {
3416#if EV_VERIFY >= 2
3417 ev_verify (EV_A);
3418#endif
3419
1392#ifndef _WIN32 3420#ifndef _WIN32
1393 if (expect_false (curpid)) /* penalise the forking check even more */ 3421 if (expect_false (curpid)) /* penalise the forking check even more */
1394 if (expect_false (getpid () != curpid)) 3422 if (expect_false (getpid () != curpid))
1395 { 3423 {
1396 curpid = getpid (); 3424 curpid = getpid ();
1402 /* we might have forked, so queue fork handlers */ 3430 /* we might have forked, so queue fork handlers */
1403 if (expect_false (postfork)) 3431 if (expect_false (postfork))
1404 if (forkcnt) 3432 if (forkcnt)
1405 { 3433 {
1406 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3434 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1407 call_pending (EV_A); 3435 EV_INVOKE_PENDING;
1408 } 3436 }
1409#endif 3437#endif
1410 3438
3439#if EV_PREPARE_ENABLE
1411 /* queue check watchers (and execute them) */ 3440 /* queue prepare watchers (and execute them) */
1412 if (expect_false (preparecnt)) 3441 if (expect_false (preparecnt))
1413 { 3442 {
1414 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3443 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1415 call_pending (EV_A); 3444 EV_INVOKE_PENDING;
1416 } 3445 }
3446#endif
1417 3447
1418 if (expect_false (!activecnt)) 3448 if (expect_false (loop_done))
1419 break; 3449 break;
1420 3450
1421 /* we might have forked, so reify kernel state if necessary */ 3451 /* we might have forked, so reify kernel state if necessary */
1422 if (expect_false (postfork)) 3452 if (expect_false (postfork))
1423 loop_fork (EV_A); 3453 loop_fork (EV_A);
1425 /* update fd-related kernel structures */ 3455 /* update fd-related kernel structures */
1426 fd_reify (EV_A); 3456 fd_reify (EV_A);
1427 3457
1428 /* calculate blocking time */ 3458 /* calculate blocking time */
1429 { 3459 {
1430 ev_tstamp block; 3460 ev_tstamp waittime = 0.;
3461 ev_tstamp sleeptime = 0.;
1431 3462
1432 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 3463 /* remember old timestamp for io_blocktime calculation */
1433 block = 0.; /* do not block at all */ 3464 ev_tstamp prev_mn_now = mn_now;
1434 else 3465
3466 /* update time to cancel out callback processing overhead */
3467 time_update (EV_A_ 1e100);
3468
3469 /* from now on, we want a pipe-wake-up */
3470 pipe_write_wanted = 1;
3471
3472 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3473
3474 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1435 { 3475 {
1436 /* update time to cancel out callback processing overhead */
1437#if EV_USE_MONOTONIC
1438 if (expect_true (have_monotonic))
1439 time_update_monotonic (EV_A);
1440 else
1441#endif
1442 {
1443 ev_rt_now = ev_time ();
1444 mn_now = ev_rt_now;
1445 }
1446
1447 block = MAX_BLOCKTIME; 3476 waittime = MAX_BLOCKTIME;
1448 3477
1449 if (timercnt) 3478 if (timercnt)
1450 { 3479 {
1451 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3480 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1452 if (block > to) block = to; 3481 if (waittime > to) waittime = to;
1453 } 3482 }
1454 3483
1455#if EV_PERIODIC_ENABLE 3484#if EV_PERIODIC_ENABLE
1456 if (periodiccnt) 3485 if (periodiccnt)
1457 { 3486 {
1458 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3487 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1459 if (block > to) block = to; 3488 if (waittime > to) waittime = to;
1460 } 3489 }
1461#endif 3490#endif
1462 3491
3492 /* don't let timeouts decrease the waittime below timeout_blocktime */
3493 if (expect_false (waittime < timeout_blocktime))
3494 waittime = timeout_blocktime;
3495
3496 /* at this point, we NEED to wait, so we have to ensure */
3497 /* to pass a minimum nonzero value to the backend */
3498 if (expect_false (waittime < backend_mintime))
3499 waittime = backend_mintime;
3500
3501 /* extra check because io_blocktime is commonly 0 */
1463 if (expect_false (block < 0.)) block = 0.; 3502 if (expect_false (io_blocktime))
3503 {
3504 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3505
3506 if (sleeptime > waittime - backend_mintime)
3507 sleeptime = waittime - backend_mintime;
3508
3509 if (expect_true (sleeptime > 0.))
3510 {
3511 ev_sleep (sleeptime);
3512 waittime -= sleeptime;
3513 }
3514 }
1464 } 3515 }
1465 3516
3517#if EV_FEATURE_API
1466 ++loop_count; 3518 ++loop_count;
3519#endif
3520 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1467 backend_poll (EV_A_ block); 3521 backend_poll (EV_A_ waittime);
3522 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3523
3524 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3525
3526 ECB_MEMORY_FENCE_ACQUIRE;
3527 if (pipe_write_skipped)
3528 {
3529 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3530 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3531 }
3532
3533
3534 /* update ev_rt_now, do magic */
3535 time_update (EV_A_ waittime + sleeptime);
1468 } 3536 }
1469
1470 /* update ev_rt_now, do magic */
1471 time_update (EV_A);
1472 3537
1473 /* queue pending timers and reschedule them */ 3538 /* queue pending timers and reschedule them */
1474 timers_reify (EV_A); /* relative timers called last */ 3539 timers_reify (EV_A); /* relative timers called last */
1475#if EV_PERIODIC_ENABLE 3540#if EV_PERIODIC_ENABLE
1476 periodics_reify (EV_A); /* absolute timers called first */ 3541 periodics_reify (EV_A); /* absolute timers called first */
1479#if EV_IDLE_ENABLE 3544#if EV_IDLE_ENABLE
1480 /* queue idle watchers unless other events are pending */ 3545 /* queue idle watchers unless other events are pending */
1481 idle_reify (EV_A); 3546 idle_reify (EV_A);
1482#endif 3547#endif
1483 3548
3549#if EV_CHECK_ENABLE
1484 /* queue check watchers, to be executed first */ 3550 /* queue check watchers, to be executed first */
1485 if (expect_false (checkcnt)) 3551 if (expect_false (checkcnt))
1486 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3552 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3553#endif
1487 3554
1488 call_pending (EV_A); 3555 EV_INVOKE_PENDING;
1489
1490 } 3556 }
1491 while (expect_true (activecnt && !loop_done)); 3557 while (expect_true (
3558 activecnt
3559 && !loop_done
3560 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3561 ));
1492 3562
1493 if (loop_done == EVUNLOOP_ONE) 3563 if (loop_done == EVBREAK_ONE)
1494 loop_done = EVUNLOOP_CANCEL; 3564 loop_done = EVBREAK_CANCEL;
3565
3566#if EV_FEATURE_API
3567 --loop_depth;
3568#endif
3569
3570 return activecnt;
1495} 3571}
1496 3572
1497void 3573void
1498ev_unloop (EV_P_ int how) 3574ev_break (EV_P_ int how) EV_THROW
1499{ 3575{
1500 loop_done = how; 3576 loop_done = how;
1501} 3577}
1502 3578
3579void
3580ev_ref (EV_P) EV_THROW
3581{
3582 ++activecnt;
3583}
3584
3585void
3586ev_unref (EV_P) EV_THROW
3587{
3588 --activecnt;
3589}
3590
3591void
3592ev_now_update (EV_P) EV_THROW
3593{
3594 time_update (EV_A_ 1e100);
3595}
3596
3597void
3598ev_suspend (EV_P) EV_THROW
3599{
3600 ev_now_update (EV_A);
3601}
3602
3603void
3604ev_resume (EV_P) EV_THROW
3605{
3606 ev_tstamp mn_prev = mn_now;
3607
3608 ev_now_update (EV_A);
3609 timers_reschedule (EV_A_ mn_now - mn_prev);
3610#if EV_PERIODIC_ENABLE
3611 /* TODO: really do this? */
3612 periodics_reschedule (EV_A);
3613#endif
3614}
3615
1503/*****************************************************************************/ 3616/*****************************************************************************/
3617/* singly-linked list management, used when the expected list length is short */
1504 3618
1505void inline_size 3619inline_size void
1506wlist_add (WL *head, WL elem) 3620wlist_add (WL *head, WL elem)
1507{ 3621{
1508 elem->next = *head; 3622 elem->next = *head;
1509 *head = elem; 3623 *head = elem;
1510} 3624}
1511 3625
1512void inline_size 3626inline_size void
1513wlist_del (WL *head, WL elem) 3627wlist_del (WL *head, WL elem)
1514{ 3628{
1515 while (*head) 3629 while (*head)
1516 { 3630 {
1517 if (*head == elem) 3631 if (expect_true (*head == elem))
1518 { 3632 {
1519 *head = elem->next; 3633 *head = elem->next;
1520 return; 3634 break;
1521 } 3635 }
1522 3636
1523 head = &(*head)->next; 3637 head = &(*head)->next;
1524 } 3638 }
1525} 3639}
1526 3640
1527void inline_speed 3641/* internal, faster, version of ev_clear_pending */
3642inline_speed void
1528clear_pending (EV_P_ W w) 3643clear_pending (EV_P_ W w)
1529{ 3644{
1530 if (w->pending) 3645 if (w->pending)
1531 { 3646 {
1532 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3647 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1533 w->pending = 0; 3648 w->pending = 0;
1534 } 3649 }
1535} 3650}
1536 3651
1537void 3652int
1538ev_clear_pending (EV_P_ void *w, int invoke) 3653ev_clear_pending (EV_P_ void *w) EV_THROW
1539{ 3654{
1540 W w_ = (W)w; 3655 W w_ = (W)w;
1541 int pending = w_->pending; 3656 int pending = w_->pending;
1542 3657
1543 if (pending) 3658 if (expect_true (pending))
1544 { 3659 {
1545 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3660 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1546 3661 p->w = (W)&pending_w;
1547 w_->pending = 0; 3662 w_->pending = 0;
1548 p->w = 0; 3663 return p->events;
1549
1550 if (invoke)
1551 EV_CB_INVOKE (w_, p->events);
1552 } 3664 }
3665 else
3666 return 0;
1553} 3667}
1554 3668
1555void inline_size 3669inline_size void
1556pri_adjust (EV_P_ W w) 3670pri_adjust (EV_P_ W w)
1557{ 3671{
1558 int pri = w->priority; 3672 int pri = ev_priority (w);
1559 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3673 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1560 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3674 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1561 w->priority = pri; 3675 ev_set_priority (w, pri);
1562} 3676}
1563 3677
1564void inline_speed 3678inline_speed void
1565ev_start (EV_P_ W w, int active) 3679ev_start (EV_P_ W w, int active)
1566{ 3680{
1567 pri_adjust (EV_A_ w); 3681 pri_adjust (EV_A_ w);
1568 w->active = active; 3682 w->active = active;
1569 ev_ref (EV_A); 3683 ev_ref (EV_A);
1570} 3684}
1571 3685
1572void inline_size 3686inline_size void
1573ev_stop (EV_P_ W w) 3687ev_stop (EV_P_ W w)
1574{ 3688{
1575 ev_unref (EV_A); 3689 ev_unref (EV_A);
1576 w->active = 0; 3690 w->active = 0;
1577} 3691}
1578 3692
1579/*****************************************************************************/ 3693/*****************************************************************************/
1580 3694
1581void 3695void noinline
1582ev_io_start (EV_P_ ev_io *w) 3696ev_io_start (EV_P_ ev_io *w) EV_THROW
1583{ 3697{
1584 int fd = w->fd; 3698 int fd = w->fd;
1585 3699
1586 if (expect_false (ev_is_active (w))) 3700 if (expect_false (ev_is_active (w)))
1587 return; 3701 return;
1588 3702
1589 assert (("ev_io_start called with negative fd", fd >= 0)); 3703 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3704 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3705
3706 EV_FREQUENT_CHECK;
1590 3707
1591 ev_start (EV_A_ (W)w, 1); 3708 ev_start (EV_A_ (W)w, 1);
1592 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3709 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1593 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3710 wlist_add (&anfds[fd].head, (WL)w);
1594 3711
1595 fd_change (EV_A_ fd); 3712 /* common bug, apparently */
1596} 3713 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1597 3714
1598void 3715 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3716 w->events &= ~EV__IOFDSET;
3717
3718 EV_FREQUENT_CHECK;
3719}
3720
3721void noinline
1599ev_io_stop (EV_P_ ev_io *w) 3722ev_io_stop (EV_P_ ev_io *w) EV_THROW
1600{ 3723{
1601 clear_pending (EV_A_ (W)w); 3724 clear_pending (EV_A_ (W)w);
1602 if (expect_false (!ev_is_active (w))) 3725 if (expect_false (!ev_is_active (w)))
1603 return; 3726 return;
1604 3727
1605 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3728 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1606 3729
3730 EV_FREQUENT_CHECK;
3731
1607 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3732 wlist_del (&anfds[w->fd].head, (WL)w);
1608 ev_stop (EV_A_ (W)w); 3733 ev_stop (EV_A_ (W)w);
1609 3734
1610 fd_change (EV_A_ w->fd); 3735 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1611}
1612 3736
1613void 3737 EV_FREQUENT_CHECK;
3738}
3739
3740void noinline
1614ev_timer_start (EV_P_ ev_timer *w) 3741ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1615{ 3742{
1616 if (expect_false (ev_is_active (w))) 3743 if (expect_false (ev_is_active (w)))
1617 return; 3744 return;
1618 3745
1619 ((WT)w)->at += mn_now; 3746 ev_at (w) += mn_now;
1620 3747
1621 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3748 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1622 3749
3750 EV_FREQUENT_CHECK;
3751
3752 ++timercnt;
1623 ev_start (EV_A_ (W)w, ++timercnt); 3753 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1624 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 3754 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1625 timers [timercnt - 1] = w; 3755 ANHE_w (timers [ev_active (w)]) = (WT)w;
1626 upheap ((WT *)timers, timercnt - 1); 3756 ANHE_at_cache (timers [ev_active (w)]);
3757 upheap (timers, ev_active (w));
1627 3758
3759 EV_FREQUENT_CHECK;
3760
1628 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3761 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1629} 3762}
1630 3763
1631void 3764void noinline
1632ev_timer_stop (EV_P_ ev_timer *w) 3765ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1633{ 3766{
1634 clear_pending (EV_A_ (W)w); 3767 clear_pending (EV_A_ (W)w);
1635 if (expect_false (!ev_is_active (w))) 3768 if (expect_false (!ev_is_active (w)))
1636 return; 3769 return;
1637 3770
1638 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3771 EV_FREQUENT_CHECK;
1639 3772
1640 { 3773 {
1641 int active = ((W)w)->active; 3774 int active = ev_active (w);
1642 3775
3776 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3777
3778 --timercnt;
3779
1643 if (expect_true (--active < --timercnt)) 3780 if (expect_true (active < timercnt + HEAP0))
1644 { 3781 {
1645 timers [active] = timers [timercnt]; 3782 timers [active] = timers [timercnt + HEAP0];
1646 adjustheap ((WT *)timers, timercnt, active); 3783 adjustheap (timers, timercnt, active);
1647 } 3784 }
1648 } 3785 }
1649 3786
1650 ((WT)w)->at -= mn_now; 3787 ev_at (w) -= mn_now;
1651 3788
1652 ev_stop (EV_A_ (W)w); 3789 ev_stop (EV_A_ (W)w);
1653}
1654 3790
1655void 3791 EV_FREQUENT_CHECK;
3792}
3793
3794void noinline
1656ev_timer_again (EV_P_ ev_timer *w) 3795ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1657{ 3796{
3797 EV_FREQUENT_CHECK;
3798
3799 clear_pending (EV_A_ (W)w);
3800
1658 if (ev_is_active (w)) 3801 if (ev_is_active (w))
1659 { 3802 {
1660 if (w->repeat) 3803 if (w->repeat)
1661 { 3804 {
1662 ((WT)w)->at = mn_now + w->repeat; 3805 ev_at (w) = mn_now + w->repeat;
3806 ANHE_at_cache (timers [ev_active (w)]);
1663 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3807 adjustheap (timers, timercnt, ev_active (w));
1664 } 3808 }
1665 else 3809 else
1666 ev_timer_stop (EV_A_ w); 3810 ev_timer_stop (EV_A_ w);
1667 } 3811 }
1668 else if (w->repeat) 3812 else if (w->repeat)
1669 { 3813 {
1670 w->at = w->repeat; 3814 ev_at (w) = w->repeat;
1671 ev_timer_start (EV_A_ w); 3815 ev_timer_start (EV_A_ w);
1672 } 3816 }
3817
3818 EV_FREQUENT_CHECK;
3819}
3820
3821ev_tstamp
3822ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3823{
3824 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1673} 3825}
1674 3826
1675#if EV_PERIODIC_ENABLE 3827#if EV_PERIODIC_ENABLE
1676void 3828void noinline
1677ev_periodic_start (EV_P_ ev_periodic *w) 3829ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1678{ 3830{
1679 if (expect_false (ev_is_active (w))) 3831 if (expect_false (ev_is_active (w)))
1680 return; 3832 return;
1681 3833
1682 if (w->reschedule_cb) 3834 if (w->reschedule_cb)
1683 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3835 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1684 else if (w->interval) 3836 else if (w->interval)
1685 { 3837 {
1686 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3838 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1687 /* this formula differs from the one in periodic_reify because we do not always round up */ 3839 periodic_recalc (EV_A_ w);
1688 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1689 } 3840 }
3841 else
3842 ev_at (w) = w->offset;
1690 3843
3844 EV_FREQUENT_CHECK;
3845
3846 ++periodiccnt;
1691 ev_start (EV_A_ (W)w, ++periodiccnt); 3847 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1692 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 3848 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1693 periodics [periodiccnt - 1] = w; 3849 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1694 upheap ((WT *)periodics, periodiccnt - 1); 3850 ANHE_at_cache (periodics [ev_active (w)]);
3851 upheap (periodics, ev_active (w));
1695 3852
3853 EV_FREQUENT_CHECK;
3854
1696 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3855 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1697} 3856}
1698 3857
1699void 3858void noinline
1700ev_periodic_stop (EV_P_ ev_periodic *w) 3859ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1701{ 3860{
1702 clear_pending (EV_A_ (W)w); 3861 clear_pending (EV_A_ (W)w);
1703 if (expect_false (!ev_is_active (w))) 3862 if (expect_false (!ev_is_active (w)))
1704 return; 3863 return;
1705 3864
1706 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3865 EV_FREQUENT_CHECK;
1707 3866
1708 { 3867 {
1709 int active = ((W)w)->active; 3868 int active = ev_active (w);
1710 3869
3870 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3871
3872 --periodiccnt;
3873
1711 if (expect_true (--active < --periodiccnt)) 3874 if (expect_true (active < periodiccnt + HEAP0))
1712 { 3875 {
1713 periodics [active] = periodics [periodiccnt]; 3876 periodics [active] = periodics [periodiccnt + HEAP0];
1714 adjustheap ((WT *)periodics, periodiccnt, active); 3877 adjustheap (periodics, periodiccnt, active);
1715 } 3878 }
1716 } 3879 }
1717 3880
1718 ev_stop (EV_A_ (W)w); 3881 ev_stop (EV_A_ (W)w);
1719}
1720 3882
1721void 3883 EV_FREQUENT_CHECK;
3884}
3885
3886void noinline
1722ev_periodic_again (EV_P_ ev_periodic *w) 3887ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1723{ 3888{
1724 /* TODO: use adjustheap and recalculation */ 3889 /* TODO: use adjustheap and recalculation */
1725 ev_periodic_stop (EV_A_ w); 3890 ev_periodic_stop (EV_A_ w);
1726 ev_periodic_start (EV_A_ w); 3891 ev_periodic_start (EV_A_ w);
1727} 3892}
1729 3894
1730#ifndef SA_RESTART 3895#ifndef SA_RESTART
1731# define SA_RESTART 0 3896# define SA_RESTART 0
1732#endif 3897#endif
1733 3898
1734void 3899#if EV_SIGNAL_ENABLE
3900
3901void noinline
1735ev_signal_start (EV_P_ ev_signal *w) 3902ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1736{ 3903{
1737#if EV_MULTIPLICITY
1738 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1739#endif
1740 if (expect_false (ev_is_active (w))) 3904 if (expect_false (ev_is_active (w)))
1741 return; 3905 return;
1742 3906
1743 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3907 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3908
3909#if EV_MULTIPLICITY
3910 assert (("libev: a signal must not be attached to two different loops",
3911 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3912
3913 signals [w->signum - 1].loop = EV_A;
3914 ECB_MEMORY_FENCE_RELEASE;
3915#endif
3916
3917 EV_FREQUENT_CHECK;
3918
3919#if EV_USE_SIGNALFD
3920 if (sigfd == -2)
3921 {
3922 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3923 if (sigfd < 0 && errno == EINVAL)
3924 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3925
3926 if (sigfd >= 0)
3927 {
3928 fd_intern (sigfd); /* doing it twice will not hurt */
3929
3930 sigemptyset (&sigfd_set);
3931
3932 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3933 ev_set_priority (&sigfd_w, EV_MAXPRI);
3934 ev_io_start (EV_A_ &sigfd_w);
3935 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3936 }
3937 }
3938
3939 if (sigfd >= 0)
3940 {
3941 /* TODO: check .head */
3942 sigaddset (&sigfd_set, w->signum);
3943 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3944
3945 signalfd (sigfd, &sigfd_set, 0);
3946 }
3947#endif
1744 3948
1745 ev_start (EV_A_ (W)w, 1); 3949 ev_start (EV_A_ (W)w, 1);
1746 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1747 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 3950 wlist_add (&signals [w->signum - 1].head, (WL)w);
1748 3951
1749 if (!((WL)w)->next) 3952 if (!((WL)w)->next)
3953# if EV_USE_SIGNALFD
3954 if (sigfd < 0) /*TODO*/
3955# endif
1750 { 3956 {
1751#if _WIN32 3957# ifdef _WIN32
3958 evpipe_init (EV_A);
3959
1752 signal (w->signum, sighandler); 3960 signal (w->signum, ev_sighandler);
1753#else 3961# else
1754 struct sigaction sa; 3962 struct sigaction sa;
3963
3964 evpipe_init (EV_A);
3965
1755 sa.sa_handler = sighandler; 3966 sa.sa_handler = ev_sighandler;
1756 sigfillset (&sa.sa_mask); 3967 sigfillset (&sa.sa_mask);
1757 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3968 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1758 sigaction (w->signum, &sa, 0); 3969 sigaction (w->signum, &sa, 0);
3970
3971 if (origflags & EVFLAG_NOSIGMASK)
3972 {
3973 sigemptyset (&sa.sa_mask);
3974 sigaddset (&sa.sa_mask, w->signum);
3975 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3976 }
1759#endif 3977#endif
1760 } 3978 }
1761}
1762 3979
1763void 3980 EV_FREQUENT_CHECK;
3981}
3982
3983void noinline
1764ev_signal_stop (EV_P_ ev_signal *w) 3984ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
1765{ 3985{
1766 clear_pending (EV_A_ (W)w); 3986 clear_pending (EV_A_ (W)w);
1767 if (expect_false (!ev_is_active (w))) 3987 if (expect_false (!ev_is_active (w)))
1768 return; 3988 return;
1769 3989
3990 EV_FREQUENT_CHECK;
3991
1770 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3992 wlist_del (&signals [w->signum - 1].head, (WL)w);
1771 ev_stop (EV_A_ (W)w); 3993 ev_stop (EV_A_ (W)w);
1772 3994
1773 if (!signals [w->signum - 1].head) 3995 if (!signals [w->signum - 1].head)
3996 {
3997#if EV_MULTIPLICITY
3998 signals [w->signum - 1].loop = 0; /* unattach from signal */
3999#endif
4000#if EV_USE_SIGNALFD
4001 if (sigfd >= 0)
4002 {
4003 sigset_t ss;
4004
4005 sigemptyset (&ss);
4006 sigaddset (&ss, w->signum);
4007 sigdelset (&sigfd_set, w->signum);
4008
4009 signalfd (sigfd, &sigfd_set, 0);
4010 sigprocmask (SIG_UNBLOCK, &ss, 0);
4011 }
4012 else
4013#endif
1774 signal (w->signum, SIG_DFL); 4014 signal (w->signum, SIG_DFL);
4015 }
4016
4017 EV_FREQUENT_CHECK;
1775} 4018}
4019
4020#endif
4021
4022#if EV_CHILD_ENABLE
1776 4023
1777void 4024void
1778ev_child_start (EV_P_ ev_child *w) 4025ev_child_start (EV_P_ ev_child *w) EV_THROW
1779{ 4026{
1780#if EV_MULTIPLICITY 4027#if EV_MULTIPLICITY
1781 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4028 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1782#endif 4029#endif
1783 if (expect_false (ev_is_active (w))) 4030 if (expect_false (ev_is_active (w)))
1784 return; 4031 return;
1785 4032
4033 EV_FREQUENT_CHECK;
4034
1786 ev_start (EV_A_ (W)w, 1); 4035 ev_start (EV_A_ (W)w, 1);
1787 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4036 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4037
4038 EV_FREQUENT_CHECK;
1788} 4039}
1789 4040
1790void 4041void
1791ev_child_stop (EV_P_ ev_child *w) 4042ev_child_stop (EV_P_ ev_child *w) EV_THROW
1792{ 4043{
1793 clear_pending (EV_A_ (W)w); 4044 clear_pending (EV_A_ (W)w);
1794 if (expect_false (!ev_is_active (w))) 4045 if (expect_false (!ev_is_active (w)))
1795 return; 4046 return;
1796 4047
4048 EV_FREQUENT_CHECK;
4049
1797 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4050 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1798 ev_stop (EV_A_ (W)w); 4051 ev_stop (EV_A_ (W)w);
4052
4053 EV_FREQUENT_CHECK;
1799} 4054}
4055
4056#endif
1800 4057
1801#if EV_STAT_ENABLE 4058#if EV_STAT_ENABLE
1802 4059
1803# ifdef _WIN32 4060# ifdef _WIN32
1804# undef lstat 4061# undef lstat
1805# define lstat(a,b) _stati64 (a,b) 4062# define lstat(a,b) _stati64 (a,b)
1806# endif 4063# endif
1807 4064
1808#define DEF_STAT_INTERVAL 5.0074891 4065#define DEF_STAT_INTERVAL 5.0074891
4066#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1809#define MIN_STAT_INTERVAL 0.1074891 4067#define MIN_STAT_INTERVAL 0.1074891
1810 4068
1811static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4069static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1812 4070
1813#if EV_USE_INOTIFY 4071#if EV_USE_INOTIFY
1814# define EV_INOTIFY_BUFSIZE 8192 4072
4073/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4074# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1815 4075
1816static void noinline 4076static void noinline
1817infy_add (EV_P_ ev_stat *w) 4077infy_add (EV_P_ ev_stat *w)
1818{ 4078{
1819 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4079 w->wd = inotify_add_watch (fs_fd, w->path,
4080 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4081 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4082 | IN_DONT_FOLLOW | IN_MASK_ADD);
1820 4083
1821 if (w->wd < 0) 4084 if (w->wd >= 0)
4085 {
4086 struct statfs sfs;
4087
4088 /* now local changes will be tracked by inotify, but remote changes won't */
4089 /* unless the filesystem is known to be local, we therefore still poll */
4090 /* also do poll on <2.6.25, but with normal frequency */
4091
4092 if (!fs_2625)
4093 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4094 else if (!statfs (w->path, &sfs)
4095 && (sfs.f_type == 0x1373 /* devfs */
4096 || sfs.f_type == 0x4006 /* fat */
4097 || sfs.f_type == 0x4d44 /* msdos */
4098 || sfs.f_type == 0xEF53 /* ext2/3 */
4099 || sfs.f_type == 0x72b6 /* jffs2 */
4100 || sfs.f_type == 0x858458f6 /* ramfs */
4101 || sfs.f_type == 0x5346544e /* ntfs */
4102 || sfs.f_type == 0x3153464a /* jfs */
4103 || sfs.f_type == 0x9123683e /* btrfs */
4104 || sfs.f_type == 0x52654973 /* reiser3 */
4105 || sfs.f_type == 0x01021994 /* tmpfs */
4106 || sfs.f_type == 0x58465342 /* xfs */))
4107 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4108 else
4109 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1822 { 4110 }
1823 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4111 else
4112 {
4113 /* can't use inotify, continue to stat */
4114 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1824 4115
1825 /* monitor some parent directory for speedup hints */ 4116 /* if path is not there, monitor some parent directory for speedup hints */
4117 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4118 /* but an efficiency issue only */
1826 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4119 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1827 { 4120 {
1828 char path [4096]; 4121 char path [4096];
1829 strcpy (path, w->path); 4122 strcpy (path, w->path);
1830 4123
1833 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4126 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1834 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4127 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1835 4128
1836 char *pend = strrchr (path, '/'); 4129 char *pend = strrchr (path, '/');
1837 4130
1838 if (!pend) 4131 if (!pend || pend == path)
1839 break; /* whoops, no '/', complain to your admin */ 4132 break;
1840 4133
1841 *pend = 0; 4134 *pend = 0;
1842 w->wd = inotify_add_watch (fs_fd, path, mask); 4135 w->wd = inotify_add_watch (fs_fd, path, mask);
1843 } 4136 }
1844 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4137 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1845 } 4138 }
1846 } 4139 }
1847 else
1848 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1849 4140
1850 if (w->wd >= 0) 4141 if (w->wd >= 0)
1851 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4142 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4143
4144 /* now re-arm timer, if required */
4145 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4146 ev_timer_again (EV_A_ &w->timer);
4147 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1852} 4148}
1853 4149
1854static void noinline 4150static void noinline
1855infy_del (EV_P_ ev_stat *w) 4151infy_del (EV_P_ ev_stat *w)
1856{ 4152{
1859 4155
1860 if (wd < 0) 4156 if (wd < 0)
1861 return; 4157 return;
1862 4158
1863 w->wd = -2; 4159 w->wd = -2;
1864 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4160 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1865 wlist_del (&fs_hash [slot].head, (WL)w); 4161 wlist_del (&fs_hash [slot].head, (WL)w);
1866 4162
1867 /* remove this watcher, if others are watching it, they will rearm */ 4163 /* remove this watcher, if others are watching it, they will rearm */
1868 inotify_rm_watch (fs_fd, wd); 4164 inotify_rm_watch (fs_fd, wd);
1869} 4165}
1870 4166
1871static void noinline 4167static void noinline
1872infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4168infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1873{ 4169{
1874 if (slot < 0) 4170 if (slot < 0)
1875 /* overflow, need to check for all hahs slots */ 4171 /* overflow, need to check for all hash slots */
1876 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4172 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1877 infy_wd (EV_A_ slot, wd, ev); 4173 infy_wd (EV_A_ slot, wd, ev);
1878 else 4174 else
1879 { 4175 {
1880 WL w_; 4176 WL w_;
1881 4177
1882 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4178 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1883 { 4179 {
1884 ev_stat *w = (ev_stat *)w_; 4180 ev_stat *w = (ev_stat *)w_;
1885 w_ = w_->next; /* lets us remove this watcher and all before it */ 4181 w_ = w_->next; /* lets us remove this watcher and all before it */
1886 4182
1887 if (w->wd == wd || wd == -1) 4183 if (w->wd == wd || wd == -1)
1888 { 4184 {
1889 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4185 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1890 { 4186 {
4187 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1891 w->wd = -1; 4188 w->wd = -1;
1892 infy_add (EV_A_ w); /* re-add, no matter what */ 4189 infy_add (EV_A_ w); /* re-add, no matter what */
1893 } 4190 }
1894 4191
1895 stat_timer_cb (EV_A_ &w->timer, 0); 4192 stat_timer_cb (EV_A_ &w->timer, 0);
1900 4197
1901static void 4198static void
1902infy_cb (EV_P_ ev_io *w, int revents) 4199infy_cb (EV_P_ ev_io *w, int revents)
1903{ 4200{
1904 char buf [EV_INOTIFY_BUFSIZE]; 4201 char buf [EV_INOTIFY_BUFSIZE];
1905 struct inotify_event *ev = (struct inotify_event *)buf;
1906 int ofs; 4202 int ofs;
1907 int len = read (fs_fd, buf, sizeof (buf)); 4203 int len = read (fs_fd, buf, sizeof (buf));
1908 4204
1909 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4205 for (ofs = 0; ofs < len; )
4206 {
4207 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1910 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4208 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4209 ofs += sizeof (struct inotify_event) + ev->len;
4210 }
1911} 4211}
1912 4212
1913void inline_size 4213inline_size void ecb_cold
4214ev_check_2625 (EV_P)
4215{
4216 /* kernels < 2.6.25 are borked
4217 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4218 */
4219 if (ev_linux_version () < 0x020619)
4220 return;
4221
4222 fs_2625 = 1;
4223}
4224
4225inline_size int
4226infy_newfd (void)
4227{
4228#if defined IN_CLOEXEC && defined IN_NONBLOCK
4229 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4230 if (fd >= 0)
4231 return fd;
4232#endif
4233 return inotify_init ();
4234}
4235
4236inline_size void
1914infy_init (EV_P) 4237infy_init (EV_P)
1915{ 4238{
1916 if (fs_fd != -2) 4239 if (fs_fd != -2)
1917 return; 4240 return;
1918 4241
4242 fs_fd = -1;
4243
4244 ev_check_2625 (EV_A);
4245
1919 fs_fd = inotify_init (); 4246 fs_fd = infy_newfd ();
1920 4247
1921 if (fs_fd >= 0) 4248 if (fs_fd >= 0)
1922 { 4249 {
4250 fd_intern (fs_fd);
1923 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4251 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1924 ev_set_priority (&fs_w, EV_MAXPRI); 4252 ev_set_priority (&fs_w, EV_MAXPRI);
1925 ev_io_start (EV_A_ &fs_w); 4253 ev_io_start (EV_A_ &fs_w);
4254 ev_unref (EV_A);
1926 } 4255 }
1927} 4256}
1928 4257
1929void inline_size 4258inline_size void
1930infy_fork (EV_P) 4259infy_fork (EV_P)
1931{ 4260{
1932 int slot; 4261 int slot;
1933 4262
1934 if (fs_fd < 0) 4263 if (fs_fd < 0)
1935 return; 4264 return;
1936 4265
4266 ev_ref (EV_A);
4267 ev_io_stop (EV_A_ &fs_w);
1937 close (fs_fd); 4268 close (fs_fd);
1938 fs_fd = inotify_init (); 4269 fs_fd = infy_newfd ();
1939 4270
4271 if (fs_fd >= 0)
4272 {
4273 fd_intern (fs_fd);
4274 ev_io_set (&fs_w, fs_fd, EV_READ);
4275 ev_io_start (EV_A_ &fs_w);
4276 ev_unref (EV_A);
4277 }
4278
1940 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4279 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1941 { 4280 {
1942 WL w_ = fs_hash [slot].head; 4281 WL w_ = fs_hash [slot].head;
1943 fs_hash [slot].head = 0; 4282 fs_hash [slot].head = 0;
1944 4283
1945 while (w_) 4284 while (w_)
1950 w->wd = -1; 4289 w->wd = -1;
1951 4290
1952 if (fs_fd >= 0) 4291 if (fs_fd >= 0)
1953 infy_add (EV_A_ w); /* re-add, no matter what */ 4292 infy_add (EV_A_ w); /* re-add, no matter what */
1954 else 4293 else
4294 {
4295 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4296 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1955 ev_timer_start (EV_A_ &w->timer); 4297 ev_timer_again (EV_A_ &w->timer);
4298 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4299 }
1956 } 4300 }
1957
1958 } 4301 }
1959} 4302}
1960 4303
4304#endif
4305
4306#ifdef _WIN32
4307# define EV_LSTAT(p,b) _stati64 (p, b)
4308#else
4309# define EV_LSTAT(p,b) lstat (p, b)
1961#endif 4310#endif
1962 4311
1963void 4312void
1964ev_stat_stat (EV_P_ ev_stat *w) 4313ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
1965{ 4314{
1966 if (lstat (w->path, &w->attr) < 0) 4315 if (lstat (w->path, &w->attr) < 0)
1967 w->attr.st_nlink = 0; 4316 w->attr.st_nlink = 0;
1968 else if (!w->attr.st_nlink) 4317 else if (!w->attr.st_nlink)
1969 w->attr.st_nlink = 1; 4318 w->attr.st_nlink = 1;
1972static void noinline 4321static void noinline
1973stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4322stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1974{ 4323{
1975 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4324 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1976 4325
1977 /* we copy this here each the time so that */ 4326 ev_statdata prev = w->attr;
1978 /* prev has the old value when the callback gets invoked */
1979 w->prev = w->attr;
1980 ev_stat_stat (EV_A_ w); 4327 ev_stat_stat (EV_A_ w);
1981 4328
1982 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4329 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1983 if ( 4330 if (
1984 w->prev.st_dev != w->attr.st_dev 4331 prev.st_dev != w->attr.st_dev
1985 || w->prev.st_ino != w->attr.st_ino 4332 || prev.st_ino != w->attr.st_ino
1986 || w->prev.st_mode != w->attr.st_mode 4333 || prev.st_mode != w->attr.st_mode
1987 || w->prev.st_nlink != w->attr.st_nlink 4334 || prev.st_nlink != w->attr.st_nlink
1988 || w->prev.st_uid != w->attr.st_uid 4335 || prev.st_uid != w->attr.st_uid
1989 || w->prev.st_gid != w->attr.st_gid 4336 || prev.st_gid != w->attr.st_gid
1990 || w->prev.st_rdev != w->attr.st_rdev 4337 || prev.st_rdev != w->attr.st_rdev
1991 || w->prev.st_size != w->attr.st_size 4338 || prev.st_size != w->attr.st_size
1992 || w->prev.st_atime != w->attr.st_atime 4339 || prev.st_atime != w->attr.st_atime
1993 || w->prev.st_mtime != w->attr.st_mtime 4340 || prev.st_mtime != w->attr.st_mtime
1994 || w->prev.st_ctime != w->attr.st_ctime 4341 || prev.st_ctime != w->attr.st_ctime
1995 ) { 4342 ) {
4343 /* we only update w->prev on actual differences */
4344 /* in case we test more often than invoke the callback, */
4345 /* to ensure that prev is always different to attr */
4346 w->prev = prev;
4347
1996 #if EV_USE_INOTIFY 4348 #if EV_USE_INOTIFY
4349 if (fs_fd >= 0)
4350 {
1997 infy_del (EV_A_ w); 4351 infy_del (EV_A_ w);
1998 infy_add (EV_A_ w); 4352 infy_add (EV_A_ w);
1999 ev_stat_stat (EV_A_ w); /* avoid race... */ 4353 ev_stat_stat (EV_A_ w); /* avoid race... */
4354 }
2000 #endif 4355 #endif
2001 4356
2002 ev_feed_event (EV_A_ w, EV_STAT); 4357 ev_feed_event (EV_A_ w, EV_STAT);
2003 } 4358 }
2004} 4359}
2005 4360
2006void 4361void
2007ev_stat_start (EV_P_ ev_stat *w) 4362ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2008{ 4363{
2009 if (expect_false (ev_is_active (w))) 4364 if (expect_false (ev_is_active (w)))
2010 return; 4365 return;
2011 4366
2012 /* since we use memcmp, we need to clear any padding data etc. */
2013 memset (&w->prev, 0, sizeof (ev_statdata));
2014 memset (&w->attr, 0, sizeof (ev_statdata));
2015
2016 ev_stat_stat (EV_A_ w); 4367 ev_stat_stat (EV_A_ w);
2017 4368
4369 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2018 if (w->interval < MIN_STAT_INTERVAL) 4370 w->interval = MIN_STAT_INTERVAL;
2019 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2020 4371
2021 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4372 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2022 ev_set_priority (&w->timer, ev_priority (w)); 4373 ev_set_priority (&w->timer, ev_priority (w));
2023 4374
2024#if EV_USE_INOTIFY 4375#if EV_USE_INOTIFY
2025 infy_init (EV_A); 4376 infy_init (EV_A);
2026 4377
2027 if (fs_fd >= 0) 4378 if (fs_fd >= 0)
2028 infy_add (EV_A_ w); 4379 infy_add (EV_A_ w);
2029 else 4380 else
2030#endif 4381#endif
4382 {
2031 ev_timer_start (EV_A_ &w->timer); 4383 ev_timer_again (EV_A_ &w->timer);
4384 ev_unref (EV_A);
4385 }
2032 4386
2033 ev_start (EV_A_ (W)w, 1); 4387 ev_start (EV_A_ (W)w, 1);
4388
4389 EV_FREQUENT_CHECK;
2034} 4390}
2035 4391
2036void 4392void
2037ev_stat_stop (EV_P_ ev_stat *w) 4393ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2038{ 4394{
2039 clear_pending (EV_A_ (W)w); 4395 clear_pending (EV_A_ (W)w);
2040 if (expect_false (!ev_is_active (w))) 4396 if (expect_false (!ev_is_active (w)))
2041 return; 4397 return;
2042 4398
4399 EV_FREQUENT_CHECK;
4400
2043#if EV_USE_INOTIFY 4401#if EV_USE_INOTIFY
2044 infy_del (EV_A_ w); 4402 infy_del (EV_A_ w);
2045#endif 4403#endif
4404
4405 if (ev_is_active (&w->timer))
4406 {
4407 ev_ref (EV_A);
2046 ev_timer_stop (EV_A_ &w->timer); 4408 ev_timer_stop (EV_A_ &w->timer);
4409 }
2047 4410
2048 ev_stop (EV_A_ (W)w); 4411 ev_stop (EV_A_ (W)w);
4412
4413 EV_FREQUENT_CHECK;
2049} 4414}
2050#endif 4415#endif
2051 4416
2052#if EV_IDLE_ENABLE 4417#if EV_IDLE_ENABLE
2053void 4418void
2054ev_idle_start (EV_P_ ev_idle *w) 4419ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2055{ 4420{
2056 if (expect_false (ev_is_active (w))) 4421 if (expect_false (ev_is_active (w)))
2057 return; 4422 return;
2058 4423
2059 pri_adjust (EV_A_ (W)w); 4424 pri_adjust (EV_A_ (W)w);
4425
4426 EV_FREQUENT_CHECK;
2060 4427
2061 { 4428 {
2062 int active = ++idlecnt [ABSPRI (w)]; 4429 int active = ++idlecnt [ABSPRI (w)];
2063 4430
2064 ++idleall; 4431 ++idleall;
2065 ev_start (EV_A_ (W)w, active); 4432 ev_start (EV_A_ (W)w, active);
2066 4433
2067 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4434 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2068 idles [ABSPRI (w)][active - 1] = w; 4435 idles [ABSPRI (w)][active - 1] = w;
2069 } 4436 }
4437
4438 EV_FREQUENT_CHECK;
2070} 4439}
2071 4440
2072void 4441void
2073ev_idle_stop (EV_P_ ev_idle *w) 4442ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2074{ 4443{
2075 clear_pending (EV_A_ (W)w); 4444 clear_pending (EV_A_ (W)w);
2076 if (expect_false (!ev_is_active (w))) 4445 if (expect_false (!ev_is_active (w)))
2077 return; 4446 return;
2078 4447
4448 EV_FREQUENT_CHECK;
4449
2079 { 4450 {
2080 int active = ((W)w)->active; 4451 int active = ev_active (w);
2081 4452
2082 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4453 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2083 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4454 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2084 4455
2085 ev_stop (EV_A_ (W)w); 4456 ev_stop (EV_A_ (W)w);
2086 --idleall; 4457 --idleall;
2087 } 4458 }
2088}
2089#endif
2090 4459
4460 EV_FREQUENT_CHECK;
4461}
4462#endif
4463
4464#if EV_PREPARE_ENABLE
2091void 4465void
2092ev_prepare_start (EV_P_ ev_prepare *w) 4466ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2093{ 4467{
2094 if (expect_false (ev_is_active (w))) 4468 if (expect_false (ev_is_active (w)))
2095 return; 4469 return;
4470
4471 EV_FREQUENT_CHECK;
2096 4472
2097 ev_start (EV_A_ (W)w, ++preparecnt); 4473 ev_start (EV_A_ (W)w, ++preparecnt);
2098 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4474 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2099 prepares [preparecnt - 1] = w; 4475 prepares [preparecnt - 1] = w;
4476
4477 EV_FREQUENT_CHECK;
2100} 4478}
2101 4479
2102void 4480void
2103ev_prepare_stop (EV_P_ ev_prepare *w) 4481ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2104{ 4482{
2105 clear_pending (EV_A_ (W)w); 4483 clear_pending (EV_A_ (W)w);
2106 if (expect_false (!ev_is_active (w))) 4484 if (expect_false (!ev_is_active (w)))
2107 return; 4485 return;
2108 4486
4487 EV_FREQUENT_CHECK;
4488
2109 { 4489 {
2110 int active = ((W)w)->active; 4490 int active = ev_active (w);
4491
2111 prepares [active - 1] = prepares [--preparecnt]; 4492 prepares [active - 1] = prepares [--preparecnt];
2112 ((W)prepares [active - 1])->active = active; 4493 ev_active (prepares [active - 1]) = active;
2113 } 4494 }
2114 4495
2115 ev_stop (EV_A_ (W)w); 4496 ev_stop (EV_A_ (W)w);
2116}
2117 4497
4498 EV_FREQUENT_CHECK;
4499}
4500#endif
4501
4502#if EV_CHECK_ENABLE
2118void 4503void
2119ev_check_start (EV_P_ ev_check *w) 4504ev_check_start (EV_P_ ev_check *w) EV_THROW
2120{ 4505{
2121 if (expect_false (ev_is_active (w))) 4506 if (expect_false (ev_is_active (w)))
2122 return; 4507 return;
4508
4509 EV_FREQUENT_CHECK;
2123 4510
2124 ev_start (EV_A_ (W)w, ++checkcnt); 4511 ev_start (EV_A_ (W)w, ++checkcnt);
2125 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4512 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2126 checks [checkcnt - 1] = w; 4513 checks [checkcnt - 1] = w;
4514
4515 EV_FREQUENT_CHECK;
2127} 4516}
2128 4517
2129void 4518void
2130ev_check_stop (EV_P_ ev_check *w) 4519ev_check_stop (EV_P_ ev_check *w) EV_THROW
2131{ 4520{
2132 clear_pending (EV_A_ (W)w); 4521 clear_pending (EV_A_ (W)w);
2133 if (expect_false (!ev_is_active (w))) 4522 if (expect_false (!ev_is_active (w)))
2134 return; 4523 return;
2135 4524
4525 EV_FREQUENT_CHECK;
4526
2136 { 4527 {
2137 int active = ((W)w)->active; 4528 int active = ev_active (w);
4529
2138 checks [active - 1] = checks [--checkcnt]; 4530 checks [active - 1] = checks [--checkcnt];
2139 ((W)checks [active - 1])->active = active; 4531 ev_active (checks [active - 1]) = active;
2140 } 4532 }
2141 4533
2142 ev_stop (EV_A_ (W)w); 4534 ev_stop (EV_A_ (W)w);
4535
4536 EV_FREQUENT_CHECK;
2143} 4537}
4538#endif
2144 4539
2145#if EV_EMBED_ENABLE 4540#if EV_EMBED_ENABLE
2146void noinline 4541void noinline
2147ev_embed_sweep (EV_P_ ev_embed *w) 4542ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2148{ 4543{
2149 ev_loop (w->loop, EVLOOP_NONBLOCK); 4544 ev_run (w->other, EVRUN_NOWAIT);
2150} 4545}
2151 4546
2152static void 4547static void
2153embed_cb (EV_P_ ev_io *io, int revents) 4548embed_io_cb (EV_P_ ev_io *io, int revents)
2154{ 4549{
2155 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4550 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2156 4551
2157 if (ev_cb (w)) 4552 if (ev_cb (w))
2158 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4553 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2159 else 4554 else
2160 ev_embed_sweep (loop, w); 4555 ev_run (w->other, EVRUN_NOWAIT);
2161} 4556}
4557
4558static void
4559embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4560{
4561 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4562
4563 {
4564 EV_P = w->other;
4565
4566 while (fdchangecnt)
4567 {
4568 fd_reify (EV_A);
4569 ev_run (EV_A_ EVRUN_NOWAIT);
4570 }
4571 }
4572}
4573
4574static void
4575embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4576{
4577 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4578
4579 ev_embed_stop (EV_A_ w);
4580
4581 {
4582 EV_P = w->other;
4583
4584 ev_loop_fork (EV_A);
4585 ev_run (EV_A_ EVRUN_NOWAIT);
4586 }
4587
4588 ev_embed_start (EV_A_ w);
4589}
4590
4591#if 0
4592static void
4593embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4594{
4595 ev_idle_stop (EV_A_ idle);
4596}
4597#endif
2162 4598
2163void 4599void
2164ev_embed_start (EV_P_ ev_embed *w) 4600ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2165{ 4601{
2166 if (expect_false (ev_is_active (w))) 4602 if (expect_false (ev_is_active (w)))
2167 return; 4603 return;
2168 4604
2169 { 4605 {
2170 struct ev_loop *loop = w->loop; 4606 EV_P = w->other;
2171 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4607 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2172 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 4608 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2173 } 4609 }
4610
4611 EV_FREQUENT_CHECK;
2174 4612
2175 ev_set_priority (&w->io, ev_priority (w)); 4613 ev_set_priority (&w->io, ev_priority (w));
2176 ev_io_start (EV_A_ &w->io); 4614 ev_io_start (EV_A_ &w->io);
2177 4615
4616 ev_prepare_init (&w->prepare, embed_prepare_cb);
4617 ev_set_priority (&w->prepare, EV_MINPRI);
4618 ev_prepare_start (EV_A_ &w->prepare);
4619
4620 ev_fork_init (&w->fork, embed_fork_cb);
4621 ev_fork_start (EV_A_ &w->fork);
4622
4623 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4624
2178 ev_start (EV_A_ (W)w, 1); 4625 ev_start (EV_A_ (W)w, 1);
4626
4627 EV_FREQUENT_CHECK;
2179} 4628}
2180 4629
2181void 4630void
2182ev_embed_stop (EV_P_ ev_embed *w) 4631ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2183{ 4632{
2184 clear_pending (EV_A_ (W)w); 4633 clear_pending (EV_A_ (W)w);
2185 if (expect_false (!ev_is_active (w))) 4634 if (expect_false (!ev_is_active (w)))
2186 return; 4635 return;
2187 4636
4637 EV_FREQUENT_CHECK;
4638
2188 ev_io_stop (EV_A_ &w->io); 4639 ev_io_stop (EV_A_ &w->io);
4640 ev_prepare_stop (EV_A_ &w->prepare);
4641 ev_fork_stop (EV_A_ &w->fork);
2189 4642
2190 ev_stop (EV_A_ (W)w); 4643 ev_stop (EV_A_ (W)w);
4644
4645 EV_FREQUENT_CHECK;
2191} 4646}
2192#endif 4647#endif
2193 4648
2194#if EV_FORK_ENABLE 4649#if EV_FORK_ENABLE
2195void 4650void
2196ev_fork_start (EV_P_ ev_fork *w) 4651ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2197{ 4652{
2198 if (expect_false (ev_is_active (w))) 4653 if (expect_false (ev_is_active (w)))
2199 return; 4654 return;
4655
4656 EV_FREQUENT_CHECK;
2200 4657
2201 ev_start (EV_A_ (W)w, ++forkcnt); 4658 ev_start (EV_A_ (W)w, ++forkcnt);
2202 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4659 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2203 forks [forkcnt - 1] = w; 4660 forks [forkcnt - 1] = w;
4661
4662 EV_FREQUENT_CHECK;
2204} 4663}
2205 4664
2206void 4665void
2207ev_fork_stop (EV_P_ ev_fork *w) 4666ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2208{ 4667{
2209 clear_pending (EV_A_ (W)w); 4668 clear_pending (EV_A_ (W)w);
2210 if (expect_false (!ev_is_active (w))) 4669 if (expect_false (!ev_is_active (w)))
2211 return; 4670 return;
2212 4671
4672 EV_FREQUENT_CHECK;
4673
2213 { 4674 {
2214 int active = ((W)w)->active; 4675 int active = ev_active (w);
4676
2215 forks [active - 1] = forks [--forkcnt]; 4677 forks [active - 1] = forks [--forkcnt];
2216 ((W)forks [active - 1])->active = active; 4678 ev_active (forks [active - 1]) = active;
2217 } 4679 }
2218 4680
2219 ev_stop (EV_A_ (W)w); 4681 ev_stop (EV_A_ (W)w);
4682
4683 EV_FREQUENT_CHECK;
4684}
4685#endif
4686
4687#if EV_CLEANUP_ENABLE
4688void
4689ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4690{
4691 if (expect_false (ev_is_active (w)))
4692 return;
4693
4694 EV_FREQUENT_CHECK;
4695
4696 ev_start (EV_A_ (W)w, ++cleanupcnt);
4697 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4698 cleanups [cleanupcnt - 1] = w;
4699
4700 /* cleanup watchers should never keep a refcount on the loop */
4701 ev_unref (EV_A);
4702 EV_FREQUENT_CHECK;
4703}
4704
4705void
4706ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4707{
4708 clear_pending (EV_A_ (W)w);
4709 if (expect_false (!ev_is_active (w)))
4710 return;
4711
4712 EV_FREQUENT_CHECK;
4713 ev_ref (EV_A);
4714
4715 {
4716 int active = ev_active (w);
4717
4718 cleanups [active - 1] = cleanups [--cleanupcnt];
4719 ev_active (cleanups [active - 1]) = active;
4720 }
4721
4722 ev_stop (EV_A_ (W)w);
4723
4724 EV_FREQUENT_CHECK;
4725}
4726#endif
4727
4728#if EV_ASYNC_ENABLE
4729void
4730ev_async_start (EV_P_ ev_async *w) EV_THROW
4731{
4732 if (expect_false (ev_is_active (w)))
4733 return;
4734
4735 w->sent = 0;
4736
4737 evpipe_init (EV_A);
4738
4739 EV_FREQUENT_CHECK;
4740
4741 ev_start (EV_A_ (W)w, ++asynccnt);
4742 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4743 asyncs [asynccnt - 1] = w;
4744
4745 EV_FREQUENT_CHECK;
4746}
4747
4748void
4749ev_async_stop (EV_P_ ev_async *w) EV_THROW
4750{
4751 clear_pending (EV_A_ (W)w);
4752 if (expect_false (!ev_is_active (w)))
4753 return;
4754
4755 EV_FREQUENT_CHECK;
4756
4757 {
4758 int active = ev_active (w);
4759
4760 asyncs [active - 1] = asyncs [--asynccnt];
4761 ev_active (asyncs [active - 1]) = active;
4762 }
4763
4764 ev_stop (EV_A_ (W)w);
4765
4766 EV_FREQUENT_CHECK;
4767}
4768
4769void
4770ev_async_send (EV_P_ ev_async *w) EV_THROW
4771{
4772 w->sent = 1;
4773 evpipe_write (EV_A_ &async_pending);
2220} 4774}
2221#endif 4775#endif
2222 4776
2223/*****************************************************************************/ 4777/*****************************************************************************/
2224 4778
2234once_cb (EV_P_ struct ev_once *once, int revents) 4788once_cb (EV_P_ struct ev_once *once, int revents)
2235{ 4789{
2236 void (*cb)(int revents, void *arg) = once->cb; 4790 void (*cb)(int revents, void *arg) = once->cb;
2237 void *arg = once->arg; 4791 void *arg = once->arg;
2238 4792
2239 ev_io_stop (EV_A_ &once->io); 4793 ev_io_stop (EV_A_ &once->io);
2240 ev_timer_stop (EV_A_ &once->to); 4794 ev_timer_stop (EV_A_ &once->to);
2241 ev_free (once); 4795 ev_free (once);
2242 4796
2243 cb (revents, arg); 4797 cb (revents, arg);
2244} 4798}
2245 4799
2246static void 4800static void
2247once_cb_io (EV_P_ ev_io *w, int revents) 4801once_cb_io (EV_P_ ev_io *w, int revents)
2248{ 4802{
2249 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4803 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4804
4805 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2250} 4806}
2251 4807
2252static void 4808static void
2253once_cb_to (EV_P_ ev_timer *w, int revents) 4809once_cb_to (EV_P_ ev_timer *w, int revents)
2254{ 4810{
2255 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4811 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4812
4813 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2256} 4814}
2257 4815
2258void 4816void
2259ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4817ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2260{ 4818{
2261 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4819 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2262 4820
2263 if (expect_false (!once)) 4821 if (expect_false (!once))
2264 { 4822 {
2265 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4823 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2266 return; 4824 return;
2267 } 4825 }
2268 4826
2269 once->cb = cb; 4827 once->cb = cb;
2270 once->arg = arg; 4828 once->arg = arg;
2282 ev_timer_set (&once->to, timeout, 0.); 4840 ev_timer_set (&once->to, timeout, 0.);
2283 ev_timer_start (EV_A_ &once->to); 4841 ev_timer_start (EV_A_ &once->to);
2284 } 4842 }
2285} 4843}
2286 4844
2287#ifdef __cplusplus 4845/*****************************************************************************/
2288} 4846
4847#if EV_WALK_ENABLE
4848void ecb_cold
4849ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4850{
4851 int i, j;
4852 ev_watcher_list *wl, *wn;
4853
4854 if (types & (EV_IO | EV_EMBED))
4855 for (i = 0; i < anfdmax; ++i)
4856 for (wl = anfds [i].head; wl; )
4857 {
4858 wn = wl->next;
4859
4860#if EV_EMBED_ENABLE
4861 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4862 {
4863 if (types & EV_EMBED)
4864 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4865 }
4866 else
4867#endif
4868#if EV_USE_INOTIFY
4869 if (ev_cb ((ev_io *)wl) == infy_cb)
4870 ;
4871 else
4872#endif
4873 if ((ev_io *)wl != &pipe_w)
4874 if (types & EV_IO)
4875 cb (EV_A_ EV_IO, wl);
4876
4877 wl = wn;
4878 }
4879
4880 if (types & (EV_TIMER | EV_STAT))
4881 for (i = timercnt + HEAP0; i-- > HEAP0; )
4882#if EV_STAT_ENABLE
4883 /*TODO: timer is not always active*/
4884 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4885 {
4886 if (types & EV_STAT)
4887 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4888 }
4889 else
4890#endif
4891 if (types & EV_TIMER)
4892 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4893
4894#if EV_PERIODIC_ENABLE
4895 if (types & EV_PERIODIC)
4896 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4897 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4898#endif
4899
4900#if EV_IDLE_ENABLE
4901 if (types & EV_IDLE)
4902 for (j = NUMPRI; j--; )
4903 for (i = idlecnt [j]; i--; )
4904 cb (EV_A_ EV_IDLE, idles [j][i]);
4905#endif
4906
4907#if EV_FORK_ENABLE
4908 if (types & EV_FORK)
4909 for (i = forkcnt; i--; )
4910 if (ev_cb (forks [i]) != embed_fork_cb)
4911 cb (EV_A_ EV_FORK, forks [i]);
4912#endif
4913
4914#if EV_ASYNC_ENABLE
4915 if (types & EV_ASYNC)
4916 for (i = asynccnt; i--; )
4917 cb (EV_A_ EV_ASYNC, asyncs [i]);
4918#endif
4919
4920#if EV_PREPARE_ENABLE
4921 if (types & EV_PREPARE)
4922 for (i = preparecnt; i--; )
4923# if EV_EMBED_ENABLE
4924 if (ev_cb (prepares [i]) != embed_prepare_cb)
2289#endif 4925# endif
4926 cb (EV_A_ EV_PREPARE, prepares [i]);
4927#endif
2290 4928
4929#if EV_CHECK_ENABLE
4930 if (types & EV_CHECK)
4931 for (i = checkcnt; i--; )
4932 cb (EV_A_ EV_CHECK, checks [i]);
4933#endif
4934
4935#if EV_SIGNAL_ENABLE
4936 if (types & EV_SIGNAL)
4937 for (i = 0; i < EV_NSIG - 1; ++i)
4938 for (wl = signals [i].head; wl; )
4939 {
4940 wn = wl->next;
4941 cb (EV_A_ EV_SIGNAL, wl);
4942 wl = wn;
4943 }
4944#endif
4945
4946#if EV_CHILD_ENABLE
4947 if (types & EV_CHILD)
4948 for (i = (EV_PID_HASHSIZE); i--; )
4949 for (wl = childs [i]; wl; )
4950 {
4951 wn = wl->next;
4952 cb (EV_A_ EV_CHILD, wl);
4953 wl = wn;
4954 }
4955#endif
4956/* EV_STAT 0x00001000 /* stat data changed */
4957/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4958}
4959#endif
4960
4961#if EV_MULTIPLICITY
4962 #include "ev_wrap.h"
4963#endif
4964

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines