ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.167 by root, Sat Dec 8 04:02:31 2007 UTC vs.
Revision 1.184 by root, Wed Dec 12 05:30:52 2007 UTC

216# include <sys/inotify.h> 216# include <sys/inotify.h>
217#endif 217#endif
218 218
219/**/ 219/**/
220 220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000.
227 * Better solutions welcome.
228 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
230
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 234
225#if __GNUC__ >= 3 235#if __GNUC__ >= 3
226# define expect(expr,value) __builtin_expect ((expr),(value)) 236# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 237# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 238#else
236# define expect(expr,value) (expr) 239# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 240# define noinline
241# if __STDC_VERSION__ < 199901L
242# define inline
243# endif
240#endif 244#endif
241 245
242#define expect_false(expr) expect ((expr) != 0, 0) 246#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 247#define expect_true(expr) expect ((expr) != 0, 1)
248#define inline_size static inline
249
250#if EV_MINIMAL
251# define inline_speed static noinline
252#else
253# define inline_speed static inline
254#endif
244 255
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 258
248#define EMPTY /* required for microsofts broken pseudo-c compiler */ 259#define EMPTY /* required for microsofts broken pseudo-c compiler */
417 } 428 }
418 429
419 return ncur; 430 return ncur;
420} 431}
421 432
422inline_speed void * 433static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 434array_realloc (int elem, void *base, int *cur, int cnt)
424{ 435{
425 *cur = array_nextsize (elem, *cur, cnt); 436 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 437 return ev_realloc (base, elem * *cur);
427} 438}
452 463
453void noinline 464void noinline
454ev_feed_event (EV_P_ void *w, int revents) 465ev_feed_event (EV_P_ void *w, int revents)
455{ 466{
456 W w_ = (W)w; 467 W w_ = (W)w;
468 int pri = ABSPRI (w_);
457 469
458 if (expect_false (w_->pending)) 470 if (expect_false (w_->pending))
471 pendings [pri][w_->pending - 1].events |= revents;
472 else
459 { 473 {
474 w_->pending = ++pendingcnt [pri];
475 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
476 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 477 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 478 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 479}
469 480
470void inline_size 481void inline_speed
471queue_events (EV_P_ W *events, int eventcnt, int type) 482queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 483{
473 int i; 484 int i;
474 485
475 for (i = 0; i < eventcnt; ++i) 486 for (i = 0; i < eventcnt; ++i)
507} 518}
508 519
509void 520void
510ev_feed_fd_event (EV_P_ int fd, int revents) 521ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 522{
523 if (fd >= 0 && fd < anfdmax)
512 fd_event (EV_A_ fd, revents); 524 fd_event (EV_A_ fd, revents);
513} 525}
514 526
515void inline_size 527void inline_size
516fd_reify (EV_P) 528fd_reify (EV_P)
517{ 529{
521 { 533 {
522 int fd = fdchanges [i]; 534 int fd = fdchanges [i];
523 ANFD *anfd = anfds + fd; 535 ANFD *anfd = anfds + fd;
524 ev_io *w; 536 ev_io *w;
525 537
526 int events = 0; 538 unsigned char events = 0;
527 539
528 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
529 events |= w->events; 541 events |= (unsigned char)w->events;
530 542
531#if EV_SELECT_IS_WINSOCKET 543#if EV_SELECT_IS_WINSOCKET
532 if (events) 544 if (events)
533 { 545 {
534 unsigned long argp; 546 unsigned long argp;
535 anfd->handle = _get_osfhandle (fd); 547 anfd->handle = _get_osfhandle (fd);
536 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 548 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
537 } 549 }
538#endif 550#endif
539 551
552 {
553 unsigned char o_events = anfd->events;
554 unsigned char o_reify = anfd->reify;
555
540 anfd->reify = 0; 556 anfd->reify = 0;
541
542 backend_modify (EV_A_ fd, anfd->events, events);
543 anfd->events = events; 557 anfd->events = events;
558
559 if (o_events != events || o_reify & EV_IOFDSET)
560 backend_modify (EV_A_ fd, o_events, events);
561 }
544 } 562 }
545 563
546 fdchangecnt = 0; 564 fdchangecnt = 0;
547} 565}
548 566
549void inline_size 567void inline_size
550fd_change (EV_P_ int fd) 568fd_change (EV_P_ int fd, int flags)
551{ 569{
552 if (expect_false (anfds [fd].reify)) 570 unsigned char reify = anfds [fd].reify;
553 return;
554
555 anfds [fd].reify = 1; 571 anfds [fd].reify |= flags;
556 572
573 if (expect_true (!reify))
574 {
557 ++fdchangecnt; 575 ++fdchangecnt;
558 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 576 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
559 fdchanges [fdchangecnt - 1] = fd; 577 fdchanges [fdchangecnt - 1] = fd;
578 }
560} 579}
561 580
562void inline_speed 581void inline_speed
563fd_kill (EV_P_ int fd) 582fd_kill (EV_P_ int fd)
564{ 583{
615 634
616 for (fd = 0; fd < anfdmax; ++fd) 635 for (fd = 0; fd < anfdmax; ++fd)
617 if (anfds [fd].events) 636 if (anfds [fd].events)
618 { 637 {
619 anfds [fd].events = 0; 638 anfds [fd].events = 0;
620 fd_change (EV_A_ fd); 639 fd_change (EV_A_ fd, EV_IOFDSET | 1);
621 } 640 }
622} 641}
623 642
624/*****************************************************************************/ 643/*****************************************************************************/
625 644
626void inline_speed 645void inline_speed
627upheap (WT *heap, int k) 646upheap (WT *heap, int k)
628{ 647{
629 WT w = heap [k]; 648 WT w = heap [k];
630 649
631 while (k && heap [k >> 1]->at > w->at) 650 while (k)
632 { 651 {
652 int p = (k - 1) >> 1;
653
654 if (heap [p]->at <= w->at)
655 break;
656
633 heap [k] = heap [k >> 1]; 657 heap [k] = heap [p];
634 ((W)heap [k])->active = k + 1; 658 ((W)heap [k])->active = k + 1;
635 k >>= 1; 659 k = p;
636 } 660 }
637 661
638 heap [k] = w; 662 heap [k] = w;
639 ((W)heap [k])->active = k + 1; 663 ((W)heap [k])->active = k + 1;
640
641} 664}
642 665
643void inline_speed 666void inline_speed
644downheap (WT *heap, int N, int k) 667downheap (WT *heap, int N, int k)
645{ 668{
646 WT w = heap [k]; 669 WT w = heap [k];
647 670
648 while (k < (N >> 1)) 671 for (;;)
649 { 672 {
650 int j = k << 1; 673 int c = (k << 1) + 1;
651 674
652 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 675 if (c >= N)
653 ++j;
654
655 if (w->at <= heap [j]->at)
656 break; 676 break;
657 677
678 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
679 ? 1 : 0;
680
681 if (w->at <= heap [c]->at)
682 break;
683
658 heap [k] = heap [j]; 684 heap [k] = heap [c];
659 ((W)heap [k])->active = k + 1; 685 ((W)heap [k])->active = k + 1;
686
660 k = j; 687 k = c;
661 } 688 }
662 689
663 heap [k] = w; 690 heap [k] = w;
664 ((W)heap [k])->active = k + 1; 691 ((W)heap [k])->active = k + 1;
665} 692}
747 for (signum = signalmax; signum--; ) 774 for (signum = signalmax; signum--; )
748 if (signals [signum].gotsig) 775 if (signals [signum].gotsig)
749 ev_feed_signal_event (EV_A_ signum + 1); 776 ev_feed_signal_event (EV_A_ signum + 1);
750} 777}
751 778
752void inline_size 779void inline_speed
753fd_intern (int fd) 780fd_intern (int fd)
754{ 781{
755#ifdef _WIN32 782#ifdef _WIN32
756 int arg = 1; 783 int arg = 1;
757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 784 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
772 ev_unref (EV_A); /* child watcher should not keep loop alive */ 799 ev_unref (EV_A); /* child watcher should not keep loop alive */
773} 800}
774 801
775/*****************************************************************************/ 802/*****************************************************************************/
776 803
777static ev_child *childs [EV_PID_HASHSIZE]; 804static WL childs [EV_PID_HASHSIZE];
778 805
779#ifndef _WIN32 806#ifndef _WIN32
780 807
781static ev_signal childev; 808static ev_signal childev;
782 809
1163 postfork = 1; 1190 postfork = 1;
1164} 1191}
1165 1192
1166/*****************************************************************************/ 1193/*****************************************************************************/
1167 1194
1195void
1196ev_invoke (EV_P_ void *w, int revents)
1197{
1198 EV_CB_INVOKE ((W)w, revents);
1199}
1200
1168void inline_speed 1201void inline_speed
1169call_pending (EV_P) 1202call_pending (EV_P)
1170{ 1203{
1171 int pri; 1204 int pri;
1172 1205
1188void inline_size 1221void inline_size
1189timers_reify (EV_P) 1222timers_reify (EV_P)
1190{ 1223{
1191 while (timercnt && ((WT)timers [0])->at <= mn_now) 1224 while (timercnt && ((WT)timers [0])->at <= mn_now)
1192 { 1225 {
1193 ev_timer *w = timers [0]; 1226 ev_timer *w = (ev_timer *)timers [0];
1194 1227
1195 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1228 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1196 1229
1197 /* first reschedule or stop timer */ 1230 /* first reschedule or stop timer */
1198 if (w->repeat) 1231 if (w->repeat)
1201 1234
1202 ((WT)w)->at += w->repeat; 1235 ((WT)w)->at += w->repeat;
1203 if (((WT)w)->at < mn_now) 1236 if (((WT)w)->at < mn_now)
1204 ((WT)w)->at = mn_now; 1237 ((WT)w)->at = mn_now;
1205 1238
1206 downheap ((WT *)timers, timercnt, 0); 1239 downheap (timers, timercnt, 0);
1207 } 1240 }
1208 else 1241 else
1209 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1242 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1210 1243
1211 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1244 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1216void inline_size 1249void inline_size
1217periodics_reify (EV_P) 1250periodics_reify (EV_P)
1218{ 1251{
1219 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1252 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1220 { 1253 {
1221 ev_periodic *w = periodics [0]; 1254 ev_periodic *w = (ev_periodic *)periodics [0];
1222 1255
1223 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1256 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1224 1257
1225 /* first reschedule or stop timer */ 1258 /* first reschedule or stop timer */
1226 if (w->reschedule_cb) 1259 if (w->reschedule_cb)
1227 { 1260 {
1228 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1261 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1229 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1262 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1230 downheap ((WT *)periodics, periodiccnt, 0); 1263 downheap (periodics, periodiccnt, 0);
1231 } 1264 }
1232 else if (w->interval) 1265 else if (w->interval)
1233 { 1266 {
1234 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1267 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1268 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1235 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1269 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1236 downheap ((WT *)periodics, periodiccnt, 0); 1270 downheap (periodics, periodiccnt, 0);
1237 } 1271 }
1238 else 1272 else
1239 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1273 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1240 1274
1241 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1275 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1248 int i; 1282 int i;
1249 1283
1250 /* adjust periodics after time jump */ 1284 /* adjust periodics after time jump */
1251 for (i = 0; i < periodiccnt; ++i) 1285 for (i = 0; i < periodiccnt; ++i)
1252 { 1286 {
1253 ev_periodic *w = periodics [i]; 1287 ev_periodic *w = (ev_periodic *)periodics [i];
1254 1288
1255 if (w->reschedule_cb) 1289 if (w->reschedule_cb)
1256 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1290 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1257 else if (w->interval) 1291 else if (w->interval)
1258 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1292 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1259 } 1293 }
1260 1294
1261 /* now rebuild the heap */ 1295 /* now rebuild the heap */
1262 for (i = periodiccnt >> 1; i--; ) 1296 for (i = periodiccnt >> 1; i--; )
1263 downheap ((WT *)periodics, periodiccnt, i); 1297 downheap (periodics, periodiccnt, i);
1264} 1298}
1265#endif 1299#endif
1266 1300
1267#if EV_IDLE_ENABLE 1301#if EV_IDLE_ENABLE
1268void inline_size 1302void inline_size
1285 } 1319 }
1286 } 1320 }
1287} 1321}
1288#endif 1322#endif
1289 1323
1290int inline_size 1324void inline_speed
1291time_update_monotonic (EV_P) 1325time_update (EV_P_ ev_tstamp max_block)
1292{ 1326{
1327 int i;
1328
1329#if EV_USE_MONOTONIC
1330 if (expect_true (have_monotonic))
1331 {
1332 ev_tstamp odiff = rtmn_diff;
1333
1293 mn_now = get_clock (); 1334 mn_now = get_clock ();
1294 1335
1336 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1337 /* interpolate in the meantime */
1295 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1338 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1296 { 1339 {
1297 ev_rt_now = rtmn_diff + mn_now; 1340 ev_rt_now = rtmn_diff + mn_now;
1298 return 0; 1341 return;
1299 } 1342 }
1300 else 1343
1301 {
1302 now_floor = mn_now; 1344 now_floor = mn_now;
1303 ev_rt_now = ev_time (); 1345 ev_rt_now = ev_time ();
1304 return 1;
1305 }
1306}
1307 1346
1308void inline_size 1347 /* loop a few times, before making important decisions.
1309time_update (EV_P) 1348 * on the choice of "4": one iteration isn't enough,
1310{ 1349 * in case we get preempted during the calls to
1311 int i; 1350 * ev_time and get_clock. a second call is almost guaranteed
1312 1351 * to succeed in that case, though. and looping a few more times
1313#if EV_USE_MONOTONIC 1352 * doesn't hurt either as we only do this on time-jumps or
1314 if (expect_true (have_monotonic)) 1353 * in the unlikely event of having been preempted here.
1315 { 1354 */
1316 if (time_update_monotonic (EV_A)) 1355 for (i = 4; --i; )
1317 { 1356 {
1318 ev_tstamp odiff = rtmn_diff;
1319
1320 /* loop a few times, before making important decisions.
1321 * on the choice of "4": one iteration isn't enough,
1322 * in case we get preempted during the calls to
1323 * ev_time and get_clock. a second call is almost guaranteed
1324 * to succeed in that case, though. and looping a few more times
1325 * doesn't hurt either as we only do this on time-jumps or
1326 * in the unlikely event of having been preempted here.
1327 */
1328 for (i = 4; --i; )
1329 {
1330 rtmn_diff = ev_rt_now - mn_now; 1357 rtmn_diff = ev_rt_now - mn_now;
1331 1358
1332 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1359 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1333 return; /* all is well */ 1360 return; /* all is well */
1334 1361
1335 ev_rt_now = ev_time (); 1362 ev_rt_now = ev_time ();
1336 mn_now = get_clock (); 1363 mn_now = get_clock ();
1337 now_floor = mn_now; 1364 now_floor = mn_now;
1338 } 1365 }
1339 1366
1340# if EV_PERIODIC_ENABLE 1367# if EV_PERIODIC_ENABLE
1341 periodics_reschedule (EV_A); 1368 periodics_reschedule (EV_A);
1342# endif 1369# endif
1343 /* no timer adjustment, as the monotonic clock doesn't jump */ 1370 /* no timer adjustment, as the monotonic clock doesn't jump */
1344 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1371 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1345 }
1346 } 1372 }
1347 else 1373 else
1348#endif 1374#endif
1349 { 1375 {
1350 ev_rt_now = ev_time (); 1376 ev_rt_now = ev_time ();
1351 1377
1352 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1378 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1353 { 1379 {
1354#if EV_PERIODIC_ENABLE 1380#if EV_PERIODIC_ENABLE
1355 periodics_reschedule (EV_A); 1381 periodics_reschedule (EV_A);
1356#endif 1382#endif
1357
1358 /* adjust timers. this is easy, as the offset is the same for all of them */ 1383 /* adjust timers. this is easy, as the offset is the same for all of them */
1359 for (i = 0; i < timercnt; ++i) 1384 for (i = 0; i < timercnt; ++i)
1360 ((WT)timers [i])->at += ev_rt_now - mn_now; 1385 ((WT)timers [i])->at += ev_rt_now - mn_now;
1361 } 1386 }
1362 1387
1406 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1431 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1407 call_pending (EV_A); 1432 call_pending (EV_A);
1408 } 1433 }
1409#endif 1434#endif
1410 1435
1411 /* queue check watchers (and execute them) */ 1436 /* queue prepare watchers (and execute them) */
1412 if (expect_false (preparecnt)) 1437 if (expect_false (preparecnt))
1413 { 1438 {
1414 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1439 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1415 call_pending (EV_A); 1440 call_pending (EV_A);
1416 } 1441 }
1432 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1457 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1433 block = 0.; /* do not block at all */ 1458 block = 0.; /* do not block at all */
1434 else 1459 else
1435 { 1460 {
1436 /* update time to cancel out callback processing overhead */ 1461 /* update time to cancel out callback processing overhead */
1437#if EV_USE_MONOTONIC
1438 if (expect_true (have_monotonic))
1439 time_update_monotonic (EV_A); 1462 time_update (EV_A_ 1e100);
1440 else
1441#endif
1442 {
1443 ev_rt_now = ev_time ();
1444 mn_now = ev_rt_now;
1445 }
1446 1463
1447 block = MAX_BLOCKTIME; 1464 block = MAX_BLOCKTIME;
1448 1465
1449 if (timercnt) 1466 if (timercnt)
1450 { 1467 {
1463 if (expect_false (block < 0.)) block = 0.; 1480 if (expect_false (block < 0.)) block = 0.;
1464 } 1481 }
1465 1482
1466 ++loop_count; 1483 ++loop_count;
1467 backend_poll (EV_A_ block); 1484 backend_poll (EV_A_ block);
1485
1486 /* update ev_rt_now, do magic */
1487 time_update (EV_A_ block);
1468 } 1488 }
1469
1470 /* update ev_rt_now, do magic */
1471 time_update (EV_A);
1472 1489
1473 /* queue pending timers and reschedule them */ 1490 /* queue pending timers and reschedule them */
1474 timers_reify (EV_A); /* relative timers called last */ 1491 timers_reify (EV_A); /* relative timers called last */
1475#if EV_PERIODIC_ENABLE 1492#if EV_PERIODIC_ENABLE
1476 periodics_reify (EV_A); /* absolute timers called first */ 1493 periodics_reify (EV_A); /* absolute timers called first */
1538ev_clear_pending (EV_P_ void *w) 1555ev_clear_pending (EV_P_ void *w)
1539{ 1556{
1540 W w_ = (W)w; 1557 W w_ = (W)w;
1541 int pending = w_->pending; 1558 int pending = w_->pending;
1542 1559
1543 if (!pending) 1560 if (expect_true (pending))
1561 {
1562 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1563 w_->pending = 0;
1564 p->w = 0;
1565 return p->events;
1566 }
1567 else
1544 return 0; 1568 return 0;
1545
1546 w_->pending = 0;
1547 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1548 p->w = 0;
1549
1550 return p->events;
1551} 1569}
1552 1570
1553void inline_size 1571void inline_size
1554pri_adjust (EV_P_ W w) 1572pri_adjust (EV_P_ W w)
1555{ 1573{
1574 w->active = 0; 1592 w->active = 0;
1575} 1593}
1576 1594
1577/*****************************************************************************/ 1595/*****************************************************************************/
1578 1596
1579void 1597void noinline
1580ev_io_start (EV_P_ ev_io *w) 1598ev_io_start (EV_P_ ev_io *w)
1581{ 1599{
1582 int fd = w->fd; 1600 int fd = w->fd;
1583 1601
1584 if (expect_false (ev_is_active (w))) 1602 if (expect_false (ev_is_active (w)))
1586 1604
1587 assert (("ev_io_start called with negative fd", fd >= 0)); 1605 assert (("ev_io_start called with negative fd", fd >= 0));
1588 1606
1589 ev_start (EV_A_ (W)w, 1); 1607 ev_start (EV_A_ (W)w, 1);
1590 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1608 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1591 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1609 wlist_add (&anfds[fd].head, (WL)w);
1592 1610
1593 fd_change (EV_A_ fd); 1611 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1612 w->events &= ~EV_IOFDSET;
1594} 1613}
1595 1614
1596void 1615void noinline
1597ev_io_stop (EV_P_ ev_io *w) 1616ev_io_stop (EV_P_ ev_io *w)
1598{ 1617{
1599 clear_pending (EV_A_ (W)w); 1618 clear_pending (EV_A_ (W)w);
1600 if (expect_false (!ev_is_active (w))) 1619 if (expect_false (!ev_is_active (w)))
1601 return; 1620 return;
1602 1621
1603 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1622 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1604 1623
1605 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1624 wlist_del (&anfds[w->fd].head, (WL)w);
1606 ev_stop (EV_A_ (W)w); 1625 ev_stop (EV_A_ (W)w);
1607 1626
1608 fd_change (EV_A_ w->fd); 1627 fd_change (EV_A_ w->fd, 1);
1609} 1628}
1610 1629
1611void 1630void noinline
1612ev_timer_start (EV_P_ ev_timer *w) 1631ev_timer_start (EV_P_ ev_timer *w)
1613{ 1632{
1614 if (expect_false (ev_is_active (w))) 1633 if (expect_false (ev_is_active (w)))
1615 return; 1634 return;
1616 1635
1617 ((WT)w)->at += mn_now; 1636 ((WT)w)->at += mn_now;
1618 1637
1619 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1638 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1620 1639
1621 ev_start (EV_A_ (W)w, ++timercnt); 1640 ev_start (EV_A_ (W)w, ++timercnt);
1622 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1641 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1623 timers [timercnt - 1] = w; 1642 timers [timercnt - 1] = (WT)w;
1624 upheap ((WT *)timers, timercnt - 1); 1643 upheap (timers, timercnt - 1);
1625 1644
1626 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1645 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1627} 1646}
1628 1647
1629void 1648void noinline
1630ev_timer_stop (EV_P_ ev_timer *w) 1649ev_timer_stop (EV_P_ ev_timer *w)
1631{ 1650{
1632 clear_pending (EV_A_ (W)w); 1651 clear_pending (EV_A_ (W)w);
1633 if (expect_false (!ev_is_active (w))) 1652 if (expect_false (!ev_is_active (w)))
1634 return; 1653 return;
1635 1654
1636 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1655 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1637 1656
1638 { 1657 {
1639 int active = ((W)w)->active; 1658 int active = ((W)w)->active;
1640 1659
1641 if (expect_true (--active < --timercnt)) 1660 if (expect_true (--active < --timercnt))
1642 { 1661 {
1643 timers [active] = timers [timercnt]; 1662 timers [active] = timers [timercnt];
1644 adjustheap ((WT *)timers, timercnt, active); 1663 adjustheap (timers, timercnt, active);
1645 } 1664 }
1646 } 1665 }
1647 1666
1648 ((WT)w)->at -= mn_now; 1667 ((WT)w)->at -= mn_now;
1649 1668
1650 ev_stop (EV_A_ (W)w); 1669 ev_stop (EV_A_ (W)w);
1651} 1670}
1652 1671
1653void 1672void noinline
1654ev_timer_again (EV_P_ ev_timer *w) 1673ev_timer_again (EV_P_ ev_timer *w)
1655{ 1674{
1656 if (ev_is_active (w)) 1675 if (ev_is_active (w))
1657 { 1676 {
1658 if (w->repeat) 1677 if (w->repeat)
1659 { 1678 {
1660 ((WT)w)->at = mn_now + w->repeat; 1679 ((WT)w)->at = mn_now + w->repeat;
1661 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1680 adjustheap (timers, timercnt, ((W)w)->active - 1);
1662 } 1681 }
1663 else 1682 else
1664 ev_timer_stop (EV_A_ w); 1683 ev_timer_stop (EV_A_ w);
1665 } 1684 }
1666 else if (w->repeat) 1685 else if (w->repeat)
1669 ev_timer_start (EV_A_ w); 1688 ev_timer_start (EV_A_ w);
1670 } 1689 }
1671} 1690}
1672 1691
1673#if EV_PERIODIC_ENABLE 1692#if EV_PERIODIC_ENABLE
1674void 1693void noinline
1675ev_periodic_start (EV_P_ ev_periodic *w) 1694ev_periodic_start (EV_P_ ev_periodic *w)
1676{ 1695{
1677 if (expect_false (ev_is_active (w))) 1696 if (expect_false (ev_is_active (w)))
1678 return; 1697 return;
1679 1698
1681 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1700 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1682 else if (w->interval) 1701 else if (w->interval)
1683 { 1702 {
1684 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1703 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1685 /* this formula differs from the one in periodic_reify because we do not always round up */ 1704 /* this formula differs from the one in periodic_reify because we do not always round up */
1686 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1705 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1687 } 1706 }
1707 else
1708 ((WT)w)->at = w->offset;
1688 1709
1689 ev_start (EV_A_ (W)w, ++periodiccnt); 1710 ev_start (EV_A_ (W)w, ++periodiccnt);
1690 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1711 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1691 periodics [periodiccnt - 1] = w; 1712 periodics [periodiccnt - 1] = (WT)w;
1692 upheap ((WT *)periodics, periodiccnt - 1); 1713 upheap (periodics, periodiccnt - 1);
1693 1714
1694 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1715 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1695} 1716}
1696 1717
1697void 1718void noinline
1698ev_periodic_stop (EV_P_ ev_periodic *w) 1719ev_periodic_stop (EV_P_ ev_periodic *w)
1699{ 1720{
1700 clear_pending (EV_A_ (W)w); 1721 clear_pending (EV_A_ (W)w);
1701 if (expect_false (!ev_is_active (w))) 1722 if (expect_false (!ev_is_active (w)))
1702 return; 1723 return;
1703 1724
1704 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1725 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1705 1726
1706 { 1727 {
1707 int active = ((W)w)->active; 1728 int active = ((W)w)->active;
1708 1729
1709 if (expect_true (--active < --periodiccnt)) 1730 if (expect_true (--active < --periodiccnt))
1710 { 1731 {
1711 periodics [active] = periodics [periodiccnt]; 1732 periodics [active] = periodics [periodiccnt];
1712 adjustheap ((WT *)periodics, periodiccnt, active); 1733 adjustheap (periodics, periodiccnt, active);
1713 } 1734 }
1714 } 1735 }
1715 1736
1716 ev_stop (EV_A_ (W)w); 1737 ev_stop (EV_A_ (W)w);
1717} 1738}
1718 1739
1719void 1740void noinline
1720ev_periodic_again (EV_P_ ev_periodic *w) 1741ev_periodic_again (EV_P_ ev_periodic *w)
1721{ 1742{
1722 /* TODO: use adjustheap and recalculation */ 1743 /* TODO: use adjustheap and recalculation */
1723 ev_periodic_stop (EV_A_ w); 1744 ev_periodic_stop (EV_A_ w);
1724 ev_periodic_start (EV_A_ w); 1745 ev_periodic_start (EV_A_ w);
1727 1748
1728#ifndef SA_RESTART 1749#ifndef SA_RESTART
1729# define SA_RESTART 0 1750# define SA_RESTART 0
1730#endif 1751#endif
1731 1752
1732void 1753void noinline
1733ev_signal_start (EV_P_ ev_signal *w) 1754ev_signal_start (EV_P_ ev_signal *w)
1734{ 1755{
1735#if EV_MULTIPLICITY 1756#if EV_MULTIPLICITY
1736 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1757 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1737#endif 1758#endif
1738 if (expect_false (ev_is_active (w))) 1759 if (expect_false (ev_is_active (w)))
1739 return; 1760 return;
1740 1761
1741 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1762 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1742 1763
1764 {
1765#ifndef _WIN32
1766 sigset_t full, prev;
1767 sigfillset (&full);
1768 sigprocmask (SIG_SETMASK, &full, &prev);
1769#endif
1770
1771 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1772
1773#ifndef _WIN32
1774 sigprocmask (SIG_SETMASK, &prev, 0);
1775#endif
1776 }
1777
1743 ev_start (EV_A_ (W)w, 1); 1778 ev_start (EV_A_ (W)w, 1);
1744 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1745 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1779 wlist_add (&signals [w->signum - 1].head, (WL)w);
1746 1780
1747 if (!((WL)w)->next) 1781 if (!((WL)w)->next)
1748 { 1782 {
1749#if _WIN32 1783#if _WIN32
1750 signal (w->signum, sighandler); 1784 signal (w->signum, sighandler);
1756 sigaction (w->signum, &sa, 0); 1790 sigaction (w->signum, &sa, 0);
1757#endif 1791#endif
1758 } 1792 }
1759} 1793}
1760 1794
1761void 1795void noinline
1762ev_signal_stop (EV_P_ ev_signal *w) 1796ev_signal_stop (EV_P_ ev_signal *w)
1763{ 1797{
1764 clear_pending (EV_A_ (W)w); 1798 clear_pending (EV_A_ (W)w);
1765 if (expect_false (!ev_is_active (w))) 1799 if (expect_false (!ev_is_active (w)))
1766 return; 1800 return;
1767 1801
1768 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1802 wlist_del (&signals [w->signum - 1].head, (WL)w);
1769 ev_stop (EV_A_ (W)w); 1803 ev_stop (EV_A_ (W)w);
1770 1804
1771 if (!signals [w->signum - 1].head) 1805 if (!signals [w->signum - 1].head)
1772 signal (w->signum, SIG_DFL); 1806 signal (w->signum, SIG_DFL);
1773} 1807}
1780#endif 1814#endif
1781 if (expect_false (ev_is_active (w))) 1815 if (expect_false (ev_is_active (w)))
1782 return; 1816 return;
1783 1817
1784 ev_start (EV_A_ (W)w, 1); 1818 ev_start (EV_A_ (W)w, 1);
1785 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1819 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1786} 1820}
1787 1821
1788void 1822void
1789ev_child_stop (EV_P_ ev_child *w) 1823ev_child_stop (EV_P_ ev_child *w)
1790{ 1824{
1791 clear_pending (EV_A_ (W)w); 1825 clear_pending (EV_A_ (W)w);
1792 if (expect_false (!ev_is_active (w))) 1826 if (expect_false (!ev_is_active (w)))
1793 return; 1827 return;
1794 1828
1795 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1829 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1796 ev_stop (EV_A_ (W)w); 1830 ev_stop (EV_A_ (W)w);
1797} 1831}
1798 1832
1799#if EV_STAT_ENABLE 1833#if EV_STAT_ENABLE
1800 1834

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines