ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.167 by root, Sat Dec 8 04:02:31 2007 UTC vs.
Revision 1.221 by root, Sun Apr 6 12:44:49 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 241
197#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
200#endif 245#endif
202#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
205#endif 250#endif
206 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
207#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 268# include <winsock.h>
209#endif 269#endif
210 270
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY 271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
216# include <sys/inotify.h> 273# include <stdint.h>
274int eventfd (unsigned int initval, int flags);
217#endif 275#endif
218 276
219/**/ 277/**/
278
279/*
280 * This is used to avoid floating point rounding problems.
281 * It is added to ev_rt_now when scheduling periodics
282 * to ensure progress, time-wise, even when rounding
283 * errors are against us.
284 * This value is good at least till the year 4000.
285 * Better solutions welcome.
286 */
287#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 288
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 289#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 290#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 291/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 292
225#if __GNUC__ >= 3 293#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 294# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 295# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 296#else
236# define expect(expr,value) (expr) 297# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 298# define noinline
299# if __STDC_VERSION__ < 199901L
300# define inline
301# endif
240#endif 302#endif
241 303
242#define expect_false(expr) expect ((expr) != 0, 0) 304#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 305#define expect_true(expr) expect ((expr) != 0, 1)
306#define inline_size static inline
307
308#if EV_MINIMAL
309# define inline_speed static noinline
310#else
311# define inline_speed static inline
312#endif
244 313
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 314#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 315#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 316
248#define EMPTY /* required for microsofts broken pseudo-c compiler */ 317#define EMPTY /* required for microsofts broken pseudo-c compiler */
250 319
251typedef ev_watcher *W; 320typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 321typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 322typedef ev_watcher_time *WT;
254 323
324#if EV_USE_MONOTONIC
325/* sig_atomic_t is used to avoid per-thread variables or locking but still */
326/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 327static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
328#endif
256 329
257#ifdef _WIN32 330#ifdef _WIN32
258# include "ev_win32.c" 331# include "ev_win32.c"
259#endif 332#endif
260 333
396{ 469{
397 return ev_rt_now; 470 return ev_rt_now;
398} 471}
399#endif 472#endif
400 473
474void
475ev_sleep (ev_tstamp delay)
476{
477 if (delay > 0.)
478 {
479#if EV_USE_NANOSLEEP
480 struct timespec ts;
481
482 ts.tv_sec = (time_t)delay;
483 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
484
485 nanosleep (&ts, 0);
486#elif defined(_WIN32)
487 Sleep ((unsigned long)(delay * 1e3));
488#else
489 struct timeval tv;
490
491 tv.tv_sec = (time_t)delay;
492 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
493
494 select (0, 0, 0, 0, &tv);
495#endif
496 }
497}
498
499/*****************************************************************************/
500
401int inline_size 501int inline_size
402array_nextsize (int elem, int cur, int cnt) 502array_nextsize (int elem, int cur, int cnt)
403{ 503{
404 int ncur = cur + 1; 504 int ncur = cur + 1;
405 505
417 } 517 }
418 518
419 return ncur; 519 return ncur;
420} 520}
421 521
422inline_speed void * 522static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 523array_realloc (int elem, void *base, int *cur, int cnt)
424{ 524{
425 *cur = array_nextsize (elem, *cur, cnt); 525 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 526 return ev_realloc (base, elem * *cur);
427} 527}
452 552
453void noinline 553void noinline
454ev_feed_event (EV_P_ void *w, int revents) 554ev_feed_event (EV_P_ void *w, int revents)
455{ 555{
456 W w_ = (W)w; 556 W w_ = (W)w;
557 int pri = ABSPRI (w_);
457 558
458 if (expect_false (w_->pending)) 559 if (expect_false (w_->pending))
560 pendings [pri][w_->pending - 1].events |= revents;
561 else
459 { 562 {
563 w_->pending = ++pendingcnt [pri];
564 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
565 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 566 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 567 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 568}
469 569
470void inline_size 570void inline_speed
471queue_events (EV_P_ W *events, int eventcnt, int type) 571queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 572{
473 int i; 573 int i;
474 574
475 for (i = 0; i < eventcnt; ++i) 575 for (i = 0; i < eventcnt; ++i)
507} 607}
508 608
509void 609void
510ev_feed_fd_event (EV_P_ int fd, int revents) 610ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 611{
612 if (fd >= 0 && fd < anfdmax)
512 fd_event (EV_A_ fd, revents); 613 fd_event (EV_A_ fd, revents);
513} 614}
514 615
515void inline_size 616void inline_size
516fd_reify (EV_P) 617fd_reify (EV_P)
517{ 618{
521 { 622 {
522 int fd = fdchanges [i]; 623 int fd = fdchanges [i];
523 ANFD *anfd = anfds + fd; 624 ANFD *anfd = anfds + fd;
524 ev_io *w; 625 ev_io *w;
525 626
526 int events = 0; 627 unsigned char events = 0;
527 628
528 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 629 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
529 events |= w->events; 630 events |= (unsigned char)w->events;
530 631
531#if EV_SELECT_IS_WINSOCKET 632#if EV_SELECT_IS_WINSOCKET
532 if (events) 633 if (events)
533 { 634 {
534 unsigned long argp; 635 unsigned long argp;
636 #ifdef EV_FD_TO_WIN32_HANDLE
637 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
638 #else
535 anfd->handle = _get_osfhandle (fd); 639 anfd->handle = _get_osfhandle (fd);
640 #endif
536 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 641 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
537 } 642 }
538#endif 643#endif
539 644
645 {
646 unsigned char o_events = anfd->events;
647 unsigned char o_reify = anfd->reify;
648
540 anfd->reify = 0; 649 anfd->reify = 0;
541
542 backend_modify (EV_A_ fd, anfd->events, events);
543 anfd->events = events; 650 anfd->events = events;
651
652 if (o_events != events || o_reify & EV_IOFDSET)
653 backend_modify (EV_A_ fd, o_events, events);
654 }
544 } 655 }
545 656
546 fdchangecnt = 0; 657 fdchangecnt = 0;
547} 658}
548 659
549void inline_size 660void inline_size
550fd_change (EV_P_ int fd) 661fd_change (EV_P_ int fd, int flags)
551{ 662{
552 if (expect_false (anfds [fd].reify)) 663 unsigned char reify = anfds [fd].reify;
553 return;
554
555 anfds [fd].reify = 1; 664 anfds [fd].reify |= flags;
556 665
666 if (expect_true (!reify))
667 {
557 ++fdchangecnt; 668 ++fdchangecnt;
558 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 669 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
559 fdchanges [fdchangecnt - 1] = fd; 670 fdchanges [fdchangecnt - 1] = fd;
671 }
560} 672}
561 673
562void inline_speed 674void inline_speed
563fd_kill (EV_P_ int fd) 675fd_kill (EV_P_ int fd)
564{ 676{
615 727
616 for (fd = 0; fd < anfdmax; ++fd) 728 for (fd = 0; fd < anfdmax; ++fd)
617 if (anfds [fd].events) 729 if (anfds [fd].events)
618 { 730 {
619 anfds [fd].events = 0; 731 anfds [fd].events = 0;
620 fd_change (EV_A_ fd); 732 fd_change (EV_A_ fd, EV_IOFDSET | 1);
621 } 733 }
622} 734}
623 735
624/*****************************************************************************/ 736/*****************************************************************************/
625 737
626void inline_speed 738void inline_speed
627upheap (WT *heap, int k) 739upheap (WT *heap, int k)
628{ 740{
629 WT w = heap [k]; 741 WT w = heap [k];
630 742
631 while (k && heap [k >> 1]->at > w->at) 743 while (k)
632 { 744 {
745 int p = (k - 1) >> 1;
746
747 if (heap [p]->at <= w->at)
748 break;
749
633 heap [k] = heap [k >> 1]; 750 heap [k] = heap [p];
634 ((W)heap [k])->active = k + 1; 751 ((W)heap [k])->active = k + 1;
635 k >>= 1; 752 k = p;
636 } 753 }
637 754
638 heap [k] = w; 755 heap [k] = w;
639 ((W)heap [k])->active = k + 1; 756 ((W)heap [k])->active = k + 1;
640
641} 757}
642 758
643void inline_speed 759void inline_speed
644downheap (WT *heap, int N, int k) 760downheap (WT *heap, int N, int k)
645{ 761{
646 WT w = heap [k]; 762 WT w = heap [k];
647 763
648 while (k < (N >> 1)) 764 for (;;)
649 { 765 {
650 int j = k << 1; 766 int c = (k << 1) + 1;
651 767
652 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 768 if (c >= N)
653 ++j;
654
655 if (w->at <= heap [j]->at)
656 break; 769 break;
657 770
771 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
772 ? 1 : 0;
773
774 if (w->at <= heap [c]->at)
775 break;
776
658 heap [k] = heap [j]; 777 heap [k] = heap [c];
659 ((W)heap [k])->active = k + 1; 778 ((W)heap [k])->active = k + 1;
779
660 k = j; 780 k = c;
661 } 781 }
662 782
663 heap [k] = w; 783 heap [k] = w;
664 ((W)heap [k])->active = k + 1; 784 ((W)heap [k])->active = k + 1;
665} 785}
674/*****************************************************************************/ 794/*****************************************************************************/
675 795
676typedef struct 796typedef struct
677{ 797{
678 WL head; 798 WL head;
679 sig_atomic_t volatile gotsig; 799 EV_ATOMIC_T gotsig;
680} ANSIG; 800} ANSIG;
681 801
682static ANSIG *signals; 802static ANSIG *signals;
683static int signalmax; 803static int signalmax;
684 804
685static int sigpipe [2]; 805static EV_ATOMIC_T gotsig;
686static sig_atomic_t volatile gotsig;
687static ev_io sigev;
688 806
689void inline_size 807void inline_size
690signals_init (ANSIG *base, int count) 808signals_init (ANSIG *base, int count)
691{ 809{
692 while (count--) 810 while (count--)
696 814
697 ++base; 815 ++base;
698 } 816 }
699} 817}
700 818
701static void 819/*****************************************************************************/
702sighandler (int signum)
703{
704#if _WIN32
705 signal (signum, sighandler);
706#endif
707 820
708 signals [signum - 1].gotsig = 1;
709
710 if (!gotsig)
711 {
712 int old_errno = errno;
713 gotsig = 1;
714 write (sigpipe [1], &signum, 1);
715 errno = old_errno;
716 }
717}
718
719void noinline
720ev_feed_signal_event (EV_P_ int signum)
721{
722 WL w;
723
724#if EV_MULTIPLICITY
725 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
726#endif
727
728 --signum;
729
730 if (signum < 0 || signum >= signalmax)
731 return;
732
733 signals [signum].gotsig = 0;
734
735 for (w = signals [signum].head; w; w = w->next)
736 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
737}
738
739static void
740sigcb (EV_P_ ev_io *iow, int revents)
741{
742 int signum;
743
744 read (sigpipe [0], &revents, 1);
745 gotsig = 0;
746
747 for (signum = signalmax; signum--; )
748 if (signals [signum].gotsig)
749 ev_feed_signal_event (EV_A_ signum + 1);
750}
751
752void inline_size 821void inline_speed
753fd_intern (int fd) 822fd_intern (int fd)
754{ 823{
755#ifdef _WIN32 824#ifdef _WIN32
756 int arg = 1; 825 int arg = 1;
757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 826 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
760 fcntl (fd, F_SETFL, O_NONBLOCK); 829 fcntl (fd, F_SETFL, O_NONBLOCK);
761#endif 830#endif
762} 831}
763 832
764static void noinline 833static void noinline
765siginit (EV_P) 834evpipe_init (EV_P)
766{ 835{
836 if (!ev_is_active (&pipeev))
837 {
838#if EV_USE_EVENTFD
839 if ((evfd = eventfd (0, 0)) >= 0)
840 {
841 evpipe [0] = -1;
842 fd_intern (evfd);
843 ev_io_set (&pipeev, evfd, EV_READ);
844 }
845 else
846#endif
847 {
848 while (pipe (evpipe))
849 syserr ("(libev) error creating signal/async pipe");
850
767 fd_intern (sigpipe [0]); 851 fd_intern (evpipe [0]);
768 fd_intern (sigpipe [1]); 852 fd_intern (evpipe [1]);
853 ev_io_set (&pipeev, evpipe [0], EV_READ);
854 }
769 855
770 ev_io_set (&sigev, sigpipe [0], EV_READ);
771 ev_io_start (EV_A_ &sigev); 856 ev_io_start (EV_A_ &pipeev);
772 ev_unref (EV_A); /* child watcher should not keep loop alive */ 857 ev_unref (EV_A); /* watcher should not keep loop alive */
858 }
859}
860
861void inline_size
862evpipe_write (EV_P_ EV_ATOMIC_T *flag)
863{
864 if (!*flag)
865 {
866 int old_errno = errno; /* save errno because write might clobber it */
867
868 *flag = 1;
869
870#if EV_USE_EVENTFD
871 if (evfd >= 0)
872 {
873 uint64_t counter = 1;
874 write (evfd, &counter, sizeof (uint64_t));
875 }
876 else
877#endif
878 write (evpipe [1], &old_errno, 1);
879
880 errno = old_errno;
881 }
882}
883
884static void
885pipecb (EV_P_ ev_io *iow, int revents)
886{
887#if EV_USE_EVENTFD
888 if (evfd >= 0)
889 {
890 uint64_t counter = 1;
891 read (evfd, &counter, sizeof (uint64_t));
892 }
893 else
894#endif
895 {
896 char dummy;
897 read (evpipe [0], &dummy, 1);
898 }
899
900 if (gotsig && ev_is_default_loop (EV_A))
901 {
902 int signum;
903 gotsig = 0;
904
905 for (signum = signalmax; signum--; )
906 if (signals [signum].gotsig)
907 ev_feed_signal_event (EV_A_ signum + 1);
908 }
909
910#if EV_ASYNC_ENABLE
911 if (gotasync)
912 {
913 int i;
914 gotasync = 0;
915
916 for (i = asynccnt; i--; )
917 if (asyncs [i]->sent)
918 {
919 asyncs [i]->sent = 0;
920 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
921 }
922 }
923#endif
773} 924}
774 925
775/*****************************************************************************/ 926/*****************************************************************************/
776 927
928static void
929ev_sighandler (int signum)
930{
931#if EV_MULTIPLICITY
932 struct ev_loop *loop = &default_loop_struct;
933#endif
934
935#if _WIN32
936 signal (signum, ev_sighandler);
937#endif
938
939 signals [signum - 1].gotsig = 1;
940 evpipe_write (EV_A_ &gotsig);
941}
942
943void noinline
944ev_feed_signal_event (EV_P_ int signum)
945{
946 WL w;
947
948#if EV_MULTIPLICITY
949 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
950#endif
951
952 --signum;
953
954 if (signum < 0 || signum >= signalmax)
955 return;
956
957 signals [signum].gotsig = 0;
958
959 for (w = signals [signum].head; w; w = w->next)
960 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
961}
962
963/*****************************************************************************/
964
777static ev_child *childs [EV_PID_HASHSIZE]; 965static WL childs [EV_PID_HASHSIZE];
778 966
779#ifndef _WIN32 967#ifndef _WIN32
780 968
781static ev_signal childev; 969static ev_signal childev;
782 970
971#ifndef WIFCONTINUED
972# define WIFCONTINUED(status) 0
973#endif
974
783void inline_speed 975void inline_speed
784child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 976child_reap (EV_P_ int chain, int pid, int status)
785{ 977{
786 ev_child *w; 978 ev_child *w;
979 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
787 980
788 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 981 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
982 {
789 if (w->pid == pid || !w->pid) 983 if ((w->pid == pid || !w->pid)
984 && (!traced || (w->flags & 1)))
790 { 985 {
791 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 986 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
792 w->rpid = pid; 987 w->rpid = pid;
793 w->rstatus = status; 988 w->rstatus = status;
794 ev_feed_event (EV_A_ (W)w, EV_CHILD); 989 ev_feed_event (EV_A_ (W)w, EV_CHILD);
795 } 990 }
991 }
796} 992}
797 993
798#ifndef WCONTINUED 994#ifndef WCONTINUED
799# define WCONTINUED 0 995# define WCONTINUED 0
800#endif 996#endif
809 if (!WCONTINUED 1005 if (!WCONTINUED
810 || errno != EINVAL 1006 || errno != EINVAL
811 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1007 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
812 return; 1008 return;
813 1009
814 /* make sure we are called again until all childs have been reaped */ 1010 /* make sure we are called again until all children have been reaped */
815 /* we need to do it this way so that the callback gets called before we continue */ 1011 /* we need to do it this way so that the callback gets called before we continue */
816 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1012 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
817 1013
818 child_reap (EV_A_ sw, pid, pid, status); 1014 child_reap (EV_A_ pid, pid, status);
819 if (EV_PID_HASHSIZE > 1) 1015 if (EV_PID_HASHSIZE > 1)
820 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1016 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
821} 1017}
822 1018
823#endif 1019#endif
824 1020
825/*****************************************************************************/ 1021/*****************************************************************************/
897} 1093}
898 1094
899unsigned int 1095unsigned int
900ev_embeddable_backends (void) 1096ev_embeddable_backends (void)
901{ 1097{
902 return EVBACKEND_EPOLL 1098 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
903 | EVBACKEND_KQUEUE 1099
904 | EVBACKEND_PORT; 1100 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1101 /* please fix it and tell me how to detect the fix */
1102 flags &= ~EVBACKEND_EPOLL;
1103
1104 return flags;
905} 1105}
906 1106
907unsigned int 1107unsigned int
908ev_backend (EV_P) 1108ev_backend (EV_P)
909{ 1109{
912 1112
913unsigned int 1113unsigned int
914ev_loop_count (EV_P) 1114ev_loop_count (EV_P)
915{ 1115{
916 return loop_count; 1116 return loop_count;
1117}
1118
1119void
1120ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1121{
1122 io_blocktime = interval;
1123}
1124
1125void
1126ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1127{
1128 timeout_blocktime = interval;
917} 1129}
918 1130
919static void noinline 1131static void noinline
920loop_init (EV_P_ unsigned int flags) 1132loop_init (EV_P_ unsigned int flags)
921{ 1133{
927 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1139 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
928 have_monotonic = 1; 1140 have_monotonic = 1;
929 } 1141 }
930#endif 1142#endif
931 1143
932 ev_rt_now = ev_time (); 1144 ev_rt_now = ev_time ();
933 mn_now = get_clock (); 1145 mn_now = get_clock ();
934 now_floor = mn_now; 1146 now_floor = mn_now;
935 rtmn_diff = ev_rt_now - mn_now; 1147 rtmn_diff = ev_rt_now - mn_now;
1148
1149 io_blocktime = 0.;
1150 timeout_blocktime = 0.;
1151 backend = 0;
1152 backend_fd = -1;
1153 gotasync = 0;
1154#if EV_USE_INOTIFY
1155 fs_fd = -2;
1156#endif
936 1157
937 /* pid check not overridable via env */ 1158 /* pid check not overridable via env */
938#ifndef _WIN32 1159#ifndef _WIN32
939 if (flags & EVFLAG_FORKCHECK) 1160 if (flags & EVFLAG_FORKCHECK)
940 curpid = getpid (); 1161 curpid = getpid ();
946 flags = atoi (getenv ("LIBEV_FLAGS")); 1167 flags = atoi (getenv ("LIBEV_FLAGS"));
947 1168
948 if (!(flags & 0x0000ffffUL)) 1169 if (!(flags & 0x0000ffffUL))
949 flags |= ev_recommended_backends (); 1170 flags |= ev_recommended_backends ();
950 1171
951 backend = 0;
952 backend_fd = -1;
953#if EV_USE_INOTIFY
954 fs_fd = -2;
955#endif
956
957#if EV_USE_PORT 1172#if EV_USE_PORT
958 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1173 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
959#endif 1174#endif
960#if EV_USE_KQUEUE 1175#if EV_USE_KQUEUE
961 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1176 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
968#endif 1183#endif
969#if EV_USE_SELECT 1184#if EV_USE_SELECT
970 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1185 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
971#endif 1186#endif
972 1187
973 ev_init (&sigev, sigcb); 1188 ev_init (&pipeev, pipecb);
974 ev_set_priority (&sigev, EV_MAXPRI); 1189 ev_set_priority (&pipeev, EV_MAXPRI);
975 } 1190 }
976} 1191}
977 1192
978static void noinline 1193static void noinline
979loop_destroy (EV_P) 1194loop_destroy (EV_P)
980{ 1195{
981 int i; 1196 int i;
1197
1198 if (ev_is_active (&pipeev))
1199 {
1200 ev_ref (EV_A); /* signal watcher */
1201 ev_io_stop (EV_A_ &pipeev);
1202
1203#if EV_USE_EVENTFD
1204 if (evfd >= 0)
1205 close (evfd);
1206#endif
1207
1208 if (evpipe [0] >= 0)
1209 {
1210 close (evpipe [0]);
1211 close (evpipe [1]);
1212 }
1213 }
982 1214
983#if EV_USE_INOTIFY 1215#if EV_USE_INOTIFY
984 if (fs_fd >= 0) 1216 if (fs_fd >= 0)
985 close (fs_fd); 1217 close (fs_fd);
986#endif 1218#endif
1009 array_free (pending, [i]); 1241 array_free (pending, [i]);
1010#if EV_IDLE_ENABLE 1242#if EV_IDLE_ENABLE
1011 array_free (idle, [i]); 1243 array_free (idle, [i]);
1012#endif 1244#endif
1013 } 1245 }
1246
1247 ev_free (anfds); anfdmax = 0;
1014 1248
1015 /* have to use the microsoft-never-gets-it-right macro */ 1249 /* have to use the microsoft-never-gets-it-right macro */
1016 array_free (fdchange, EMPTY); 1250 array_free (fdchange, EMPTY);
1017 array_free (timer, EMPTY); 1251 array_free (timer, EMPTY);
1018#if EV_PERIODIC_ENABLE 1252#if EV_PERIODIC_ENABLE
1019 array_free (periodic, EMPTY); 1253 array_free (periodic, EMPTY);
1020#endif 1254#endif
1255#if EV_FORK_ENABLE
1256 array_free (fork, EMPTY);
1257#endif
1021 array_free (prepare, EMPTY); 1258 array_free (prepare, EMPTY);
1022 array_free (check, EMPTY); 1259 array_free (check, EMPTY);
1260#if EV_ASYNC_ENABLE
1261 array_free (async, EMPTY);
1262#endif
1023 1263
1024 backend = 0; 1264 backend = 0;
1025} 1265}
1026 1266
1027void inline_size infy_fork (EV_P); 1267void inline_size infy_fork (EV_P);
1040#endif 1280#endif
1041#if EV_USE_INOTIFY 1281#if EV_USE_INOTIFY
1042 infy_fork (EV_A); 1282 infy_fork (EV_A);
1043#endif 1283#endif
1044 1284
1045 if (ev_is_active (&sigev)) 1285 if (ev_is_active (&pipeev))
1046 { 1286 {
1047 /* default loop */ 1287 /* this "locks" the handlers against writing to the pipe */
1288 /* while we modify the fd vars */
1289 gotsig = 1;
1290#if EV_ASYNC_ENABLE
1291 gotasync = 1;
1292#endif
1048 1293
1049 ev_ref (EV_A); 1294 ev_ref (EV_A);
1050 ev_io_stop (EV_A_ &sigev); 1295 ev_io_stop (EV_A_ &pipeev);
1296
1297#if EV_USE_EVENTFD
1298 if (evfd >= 0)
1299 close (evfd);
1300#endif
1301
1302 if (evpipe [0] >= 0)
1303 {
1051 close (sigpipe [0]); 1304 close (evpipe [0]);
1052 close (sigpipe [1]); 1305 close (evpipe [1]);
1306 }
1053 1307
1054 while (pipe (sigpipe))
1055 syserr ("(libev) error creating pipe");
1056
1057 siginit (EV_A); 1308 evpipe_init (EV_A);
1309 /* now iterate over everything, in case we missed something */
1310 pipecb (EV_A_ &pipeev, EV_READ);
1058 } 1311 }
1059 1312
1060 postfork = 0; 1313 postfork = 0;
1061} 1314}
1062 1315
1084} 1337}
1085 1338
1086void 1339void
1087ev_loop_fork (EV_P) 1340ev_loop_fork (EV_P)
1088{ 1341{
1089 postfork = 1; 1342 postfork = 1; /* must be in line with ev_default_fork */
1090} 1343}
1091 1344
1092#endif 1345#endif
1093 1346
1094#if EV_MULTIPLICITY 1347#if EV_MULTIPLICITY
1097#else 1350#else
1098int 1351int
1099ev_default_loop (unsigned int flags) 1352ev_default_loop (unsigned int flags)
1100#endif 1353#endif
1101{ 1354{
1102 if (sigpipe [0] == sigpipe [1])
1103 if (pipe (sigpipe))
1104 return 0;
1105
1106 if (!ev_default_loop_ptr) 1355 if (!ev_default_loop_ptr)
1107 { 1356 {
1108#if EV_MULTIPLICITY 1357#if EV_MULTIPLICITY
1109 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1358 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1110#else 1359#else
1113 1362
1114 loop_init (EV_A_ flags); 1363 loop_init (EV_A_ flags);
1115 1364
1116 if (ev_backend (EV_A)) 1365 if (ev_backend (EV_A))
1117 { 1366 {
1118 siginit (EV_A);
1119
1120#ifndef _WIN32 1367#ifndef _WIN32
1121 ev_signal_init (&childev, childcb, SIGCHLD); 1368 ev_signal_init (&childev, childcb, SIGCHLD);
1122 ev_set_priority (&childev, EV_MAXPRI); 1369 ev_set_priority (&childev, EV_MAXPRI);
1123 ev_signal_start (EV_A_ &childev); 1370 ev_signal_start (EV_A_ &childev);
1124 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1371 ev_unref (EV_A); /* child watcher should not keep loop alive */
1141#ifndef _WIN32 1388#ifndef _WIN32
1142 ev_ref (EV_A); /* child watcher */ 1389 ev_ref (EV_A); /* child watcher */
1143 ev_signal_stop (EV_A_ &childev); 1390 ev_signal_stop (EV_A_ &childev);
1144#endif 1391#endif
1145 1392
1146 ev_ref (EV_A); /* signal watcher */
1147 ev_io_stop (EV_A_ &sigev);
1148
1149 close (sigpipe [0]); sigpipe [0] = 0;
1150 close (sigpipe [1]); sigpipe [1] = 0;
1151
1152 loop_destroy (EV_A); 1393 loop_destroy (EV_A);
1153} 1394}
1154 1395
1155void 1396void
1156ev_default_fork (void) 1397ev_default_fork (void)
1158#if EV_MULTIPLICITY 1399#if EV_MULTIPLICITY
1159 struct ev_loop *loop = ev_default_loop_ptr; 1400 struct ev_loop *loop = ev_default_loop_ptr;
1160#endif 1401#endif
1161 1402
1162 if (backend) 1403 if (backend)
1163 postfork = 1; 1404 postfork = 1; /* must be in line with ev_loop_fork */
1164} 1405}
1165 1406
1166/*****************************************************************************/ 1407/*****************************************************************************/
1408
1409void
1410ev_invoke (EV_P_ void *w, int revents)
1411{
1412 EV_CB_INVOKE ((W)w, revents);
1413}
1167 1414
1168void inline_speed 1415void inline_speed
1169call_pending (EV_P) 1416call_pending (EV_P)
1170{ 1417{
1171 int pri; 1418 int pri;
1188void inline_size 1435void inline_size
1189timers_reify (EV_P) 1436timers_reify (EV_P)
1190{ 1437{
1191 while (timercnt && ((WT)timers [0])->at <= mn_now) 1438 while (timercnt && ((WT)timers [0])->at <= mn_now)
1192 { 1439 {
1193 ev_timer *w = timers [0]; 1440 ev_timer *w = (ev_timer *)timers [0];
1194 1441
1195 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1442 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1196 1443
1197 /* first reschedule or stop timer */ 1444 /* first reschedule or stop timer */
1198 if (w->repeat) 1445 if (w->repeat)
1201 1448
1202 ((WT)w)->at += w->repeat; 1449 ((WT)w)->at += w->repeat;
1203 if (((WT)w)->at < mn_now) 1450 if (((WT)w)->at < mn_now)
1204 ((WT)w)->at = mn_now; 1451 ((WT)w)->at = mn_now;
1205 1452
1206 downheap ((WT *)timers, timercnt, 0); 1453 downheap (timers, timercnt, 0);
1207 } 1454 }
1208 else 1455 else
1209 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1456 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1210 1457
1211 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1458 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1216void inline_size 1463void inline_size
1217periodics_reify (EV_P) 1464periodics_reify (EV_P)
1218{ 1465{
1219 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1466 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1220 { 1467 {
1221 ev_periodic *w = periodics [0]; 1468 ev_periodic *w = (ev_periodic *)periodics [0];
1222 1469
1223 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1470 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1224 1471
1225 /* first reschedule or stop timer */ 1472 /* first reschedule or stop timer */
1226 if (w->reschedule_cb) 1473 if (w->reschedule_cb)
1227 { 1474 {
1228 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1475 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1229 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1476 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1230 downheap ((WT *)periodics, periodiccnt, 0); 1477 downheap (periodics, periodiccnt, 0);
1231 } 1478 }
1232 else if (w->interval) 1479 else if (w->interval)
1233 { 1480 {
1234 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1481 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1482 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1235 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1483 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1236 downheap ((WT *)periodics, periodiccnt, 0); 1484 downheap (periodics, periodiccnt, 0);
1237 } 1485 }
1238 else 1486 else
1239 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1487 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1240 1488
1241 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1489 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1248 int i; 1496 int i;
1249 1497
1250 /* adjust periodics after time jump */ 1498 /* adjust periodics after time jump */
1251 for (i = 0; i < periodiccnt; ++i) 1499 for (i = 0; i < periodiccnt; ++i)
1252 { 1500 {
1253 ev_periodic *w = periodics [i]; 1501 ev_periodic *w = (ev_periodic *)periodics [i];
1254 1502
1255 if (w->reschedule_cb) 1503 if (w->reschedule_cb)
1256 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1504 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1257 else if (w->interval) 1505 else if (w->interval)
1258 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1506 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1259 } 1507 }
1260 1508
1261 /* now rebuild the heap */ 1509 /* now rebuild the heap */
1262 for (i = periodiccnt >> 1; i--; ) 1510 for (i = periodiccnt >> 1; i--; )
1263 downheap ((WT *)periodics, periodiccnt, i); 1511 downheap (periodics, periodiccnt, i);
1264} 1512}
1265#endif 1513#endif
1266 1514
1267#if EV_IDLE_ENABLE 1515#if EV_IDLE_ENABLE
1268void inline_size 1516void inline_size
1285 } 1533 }
1286 } 1534 }
1287} 1535}
1288#endif 1536#endif
1289 1537
1290int inline_size 1538void inline_speed
1291time_update_monotonic (EV_P) 1539time_update (EV_P_ ev_tstamp max_block)
1292{ 1540{
1541 int i;
1542
1543#if EV_USE_MONOTONIC
1544 if (expect_true (have_monotonic))
1545 {
1546 ev_tstamp odiff = rtmn_diff;
1547
1293 mn_now = get_clock (); 1548 mn_now = get_clock ();
1294 1549
1550 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1551 /* interpolate in the meantime */
1295 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1552 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1296 { 1553 {
1297 ev_rt_now = rtmn_diff + mn_now; 1554 ev_rt_now = rtmn_diff + mn_now;
1298 return 0; 1555 return;
1299 } 1556 }
1300 else 1557
1301 {
1302 now_floor = mn_now; 1558 now_floor = mn_now;
1303 ev_rt_now = ev_time (); 1559 ev_rt_now = ev_time ();
1304 return 1;
1305 }
1306}
1307 1560
1308void inline_size 1561 /* loop a few times, before making important decisions.
1309time_update (EV_P) 1562 * on the choice of "4": one iteration isn't enough,
1310{ 1563 * in case we get preempted during the calls to
1311 int i; 1564 * ev_time and get_clock. a second call is almost guaranteed
1312 1565 * to succeed in that case, though. and looping a few more times
1313#if EV_USE_MONOTONIC 1566 * doesn't hurt either as we only do this on time-jumps or
1314 if (expect_true (have_monotonic)) 1567 * in the unlikely event of having been preempted here.
1315 { 1568 */
1316 if (time_update_monotonic (EV_A)) 1569 for (i = 4; --i; )
1317 { 1570 {
1318 ev_tstamp odiff = rtmn_diff;
1319
1320 /* loop a few times, before making important decisions.
1321 * on the choice of "4": one iteration isn't enough,
1322 * in case we get preempted during the calls to
1323 * ev_time and get_clock. a second call is almost guaranteed
1324 * to succeed in that case, though. and looping a few more times
1325 * doesn't hurt either as we only do this on time-jumps or
1326 * in the unlikely event of having been preempted here.
1327 */
1328 for (i = 4; --i; )
1329 {
1330 rtmn_diff = ev_rt_now - mn_now; 1571 rtmn_diff = ev_rt_now - mn_now;
1331 1572
1332 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1573 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1333 return; /* all is well */ 1574 return; /* all is well */
1334 1575
1335 ev_rt_now = ev_time (); 1576 ev_rt_now = ev_time ();
1336 mn_now = get_clock (); 1577 mn_now = get_clock ();
1337 now_floor = mn_now; 1578 now_floor = mn_now;
1338 } 1579 }
1339 1580
1340# if EV_PERIODIC_ENABLE 1581# if EV_PERIODIC_ENABLE
1341 periodics_reschedule (EV_A); 1582 periodics_reschedule (EV_A);
1342# endif 1583# endif
1343 /* no timer adjustment, as the monotonic clock doesn't jump */ 1584 /* no timer adjustment, as the monotonic clock doesn't jump */
1344 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1585 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1345 }
1346 } 1586 }
1347 else 1587 else
1348#endif 1588#endif
1349 { 1589 {
1350 ev_rt_now = ev_time (); 1590 ev_rt_now = ev_time ();
1351 1591
1352 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1592 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1353 { 1593 {
1354#if EV_PERIODIC_ENABLE 1594#if EV_PERIODIC_ENABLE
1355 periodics_reschedule (EV_A); 1595 periodics_reschedule (EV_A);
1356#endif 1596#endif
1357
1358 /* adjust timers. this is easy, as the offset is the same for all of them */ 1597 /* adjust timers. this is easy, as the offset is the same for all of them */
1359 for (i = 0; i < timercnt; ++i) 1598 for (i = 0; i < timercnt; ++i)
1360 ((WT)timers [i])->at += ev_rt_now - mn_now; 1599 ((WT)timers [i])->at += ev_rt_now - mn_now;
1361 } 1600 }
1362 1601
1379static int loop_done; 1618static int loop_done;
1380 1619
1381void 1620void
1382ev_loop (EV_P_ int flags) 1621ev_loop (EV_P_ int flags)
1383{ 1622{
1384 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1623 loop_done = EVUNLOOP_CANCEL;
1385 ? EVUNLOOP_ONE
1386 : EVUNLOOP_CANCEL;
1387 1624
1388 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1625 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1389 1626
1390 do 1627 do
1391 { 1628 {
1406 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1643 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1407 call_pending (EV_A); 1644 call_pending (EV_A);
1408 } 1645 }
1409#endif 1646#endif
1410 1647
1411 /* queue check watchers (and execute them) */ 1648 /* queue prepare watchers (and execute them) */
1412 if (expect_false (preparecnt)) 1649 if (expect_false (preparecnt))
1413 { 1650 {
1414 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1651 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1415 call_pending (EV_A); 1652 call_pending (EV_A);
1416 } 1653 }
1425 /* update fd-related kernel structures */ 1662 /* update fd-related kernel structures */
1426 fd_reify (EV_A); 1663 fd_reify (EV_A);
1427 1664
1428 /* calculate blocking time */ 1665 /* calculate blocking time */
1429 { 1666 {
1430 ev_tstamp block; 1667 ev_tstamp waittime = 0.;
1668 ev_tstamp sleeptime = 0.;
1431 1669
1432 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1670 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1433 block = 0.; /* do not block at all */
1434 else
1435 { 1671 {
1436 /* update time to cancel out callback processing overhead */ 1672 /* update time to cancel out callback processing overhead */
1437#if EV_USE_MONOTONIC
1438 if (expect_true (have_monotonic))
1439 time_update_monotonic (EV_A); 1673 time_update (EV_A_ 1e100);
1440 else
1441#endif
1442 {
1443 ev_rt_now = ev_time ();
1444 mn_now = ev_rt_now;
1445 }
1446 1674
1447 block = MAX_BLOCKTIME; 1675 waittime = MAX_BLOCKTIME;
1448 1676
1449 if (timercnt) 1677 if (timercnt)
1450 { 1678 {
1451 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1679 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1452 if (block > to) block = to; 1680 if (waittime > to) waittime = to;
1453 } 1681 }
1454 1682
1455#if EV_PERIODIC_ENABLE 1683#if EV_PERIODIC_ENABLE
1456 if (periodiccnt) 1684 if (periodiccnt)
1457 { 1685 {
1458 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1686 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1459 if (block > to) block = to; 1687 if (waittime > to) waittime = to;
1460 } 1688 }
1461#endif 1689#endif
1462 1690
1463 if (expect_false (block < 0.)) block = 0.; 1691 if (expect_false (waittime < timeout_blocktime))
1692 waittime = timeout_blocktime;
1693
1694 sleeptime = waittime - backend_fudge;
1695
1696 if (expect_true (sleeptime > io_blocktime))
1697 sleeptime = io_blocktime;
1698
1699 if (sleeptime)
1700 {
1701 ev_sleep (sleeptime);
1702 waittime -= sleeptime;
1703 }
1464 } 1704 }
1465 1705
1466 ++loop_count; 1706 ++loop_count;
1467 backend_poll (EV_A_ block); 1707 backend_poll (EV_A_ waittime);
1708
1709 /* update ev_rt_now, do magic */
1710 time_update (EV_A_ waittime + sleeptime);
1468 } 1711 }
1469
1470 /* update ev_rt_now, do magic */
1471 time_update (EV_A);
1472 1712
1473 /* queue pending timers and reschedule them */ 1713 /* queue pending timers and reschedule them */
1474 timers_reify (EV_A); /* relative timers called last */ 1714 timers_reify (EV_A); /* relative timers called last */
1475#if EV_PERIODIC_ENABLE 1715#if EV_PERIODIC_ENABLE
1476 periodics_reify (EV_A); /* absolute timers called first */ 1716 periodics_reify (EV_A); /* absolute timers called first */
1484 /* queue check watchers, to be executed first */ 1724 /* queue check watchers, to be executed first */
1485 if (expect_false (checkcnt)) 1725 if (expect_false (checkcnt))
1486 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1726 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1487 1727
1488 call_pending (EV_A); 1728 call_pending (EV_A);
1489
1490 } 1729 }
1491 while (expect_true (activecnt && !loop_done)); 1730 while (expect_true (
1731 activecnt
1732 && !loop_done
1733 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1734 ));
1492 1735
1493 if (loop_done == EVUNLOOP_ONE) 1736 if (loop_done == EVUNLOOP_ONE)
1494 loop_done = EVUNLOOP_CANCEL; 1737 loop_done = EVUNLOOP_CANCEL;
1495} 1738}
1496 1739
1538ev_clear_pending (EV_P_ void *w) 1781ev_clear_pending (EV_P_ void *w)
1539{ 1782{
1540 W w_ = (W)w; 1783 W w_ = (W)w;
1541 int pending = w_->pending; 1784 int pending = w_->pending;
1542 1785
1543 if (!pending) 1786 if (expect_true (pending))
1787 {
1788 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1789 w_->pending = 0;
1790 p->w = 0;
1791 return p->events;
1792 }
1793 else
1544 return 0; 1794 return 0;
1545
1546 w_->pending = 0;
1547 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1548 p->w = 0;
1549
1550 return p->events;
1551} 1795}
1552 1796
1553void inline_size 1797void inline_size
1554pri_adjust (EV_P_ W w) 1798pri_adjust (EV_P_ W w)
1555{ 1799{
1574 w->active = 0; 1818 w->active = 0;
1575} 1819}
1576 1820
1577/*****************************************************************************/ 1821/*****************************************************************************/
1578 1822
1579void 1823void noinline
1580ev_io_start (EV_P_ ev_io *w) 1824ev_io_start (EV_P_ ev_io *w)
1581{ 1825{
1582 int fd = w->fd; 1826 int fd = w->fd;
1583 1827
1584 if (expect_false (ev_is_active (w))) 1828 if (expect_false (ev_is_active (w)))
1586 1830
1587 assert (("ev_io_start called with negative fd", fd >= 0)); 1831 assert (("ev_io_start called with negative fd", fd >= 0));
1588 1832
1589 ev_start (EV_A_ (W)w, 1); 1833 ev_start (EV_A_ (W)w, 1);
1590 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1834 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1591 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1835 wlist_add (&anfds[fd].head, (WL)w);
1592 1836
1593 fd_change (EV_A_ fd); 1837 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1838 w->events &= ~EV_IOFDSET;
1594} 1839}
1595 1840
1596void 1841void noinline
1597ev_io_stop (EV_P_ ev_io *w) 1842ev_io_stop (EV_P_ ev_io *w)
1598{ 1843{
1599 clear_pending (EV_A_ (W)w); 1844 clear_pending (EV_A_ (W)w);
1600 if (expect_false (!ev_is_active (w))) 1845 if (expect_false (!ev_is_active (w)))
1601 return; 1846 return;
1602 1847
1603 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1848 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1604 1849
1605 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1850 wlist_del (&anfds[w->fd].head, (WL)w);
1606 ev_stop (EV_A_ (W)w); 1851 ev_stop (EV_A_ (W)w);
1607 1852
1608 fd_change (EV_A_ w->fd); 1853 fd_change (EV_A_ w->fd, 1);
1609} 1854}
1610 1855
1611void 1856void noinline
1612ev_timer_start (EV_P_ ev_timer *w) 1857ev_timer_start (EV_P_ ev_timer *w)
1613{ 1858{
1614 if (expect_false (ev_is_active (w))) 1859 if (expect_false (ev_is_active (w)))
1615 return; 1860 return;
1616 1861
1617 ((WT)w)->at += mn_now; 1862 ((WT)w)->at += mn_now;
1618 1863
1619 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1864 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1620 1865
1621 ev_start (EV_A_ (W)w, ++timercnt); 1866 ev_start (EV_A_ (W)w, ++timercnt);
1622 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1867 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1623 timers [timercnt - 1] = w; 1868 timers [timercnt - 1] = (WT)w;
1624 upheap ((WT *)timers, timercnt - 1); 1869 upheap (timers, timercnt - 1);
1625 1870
1626 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1871 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1627} 1872}
1628 1873
1629void 1874void noinline
1630ev_timer_stop (EV_P_ ev_timer *w) 1875ev_timer_stop (EV_P_ ev_timer *w)
1631{ 1876{
1632 clear_pending (EV_A_ (W)w); 1877 clear_pending (EV_A_ (W)w);
1633 if (expect_false (!ev_is_active (w))) 1878 if (expect_false (!ev_is_active (w)))
1634 return; 1879 return;
1635 1880
1636 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1881 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1637 1882
1638 { 1883 {
1639 int active = ((W)w)->active; 1884 int active = ((W)w)->active;
1640 1885
1641 if (expect_true (--active < --timercnt)) 1886 if (expect_true (--active < --timercnt))
1642 { 1887 {
1643 timers [active] = timers [timercnt]; 1888 timers [active] = timers [timercnt];
1644 adjustheap ((WT *)timers, timercnt, active); 1889 adjustheap (timers, timercnt, active);
1645 } 1890 }
1646 } 1891 }
1647 1892
1648 ((WT)w)->at -= mn_now; 1893 ((WT)w)->at -= mn_now;
1649 1894
1650 ev_stop (EV_A_ (W)w); 1895 ev_stop (EV_A_ (W)w);
1651} 1896}
1652 1897
1653void 1898void noinline
1654ev_timer_again (EV_P_ ev_timer *w) 1899ev_timer_again (EV_P_ ev_timer *w)
1655{ 1900{
1656 if (ev_is_active (w)) 1901 if (ev_is_active (w))
1657 { 1902 {
1658 if (w->repeat) 1903 if (w->repeat)
1659 { 1904 {
1660 ((WT)w)->at = mn_now + w->repeat; 1905 ((WT)w)->at = mn_now + w->repeat;
1661 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1906 adjustheap (timers, timercnt, ((W)w)->active - 1);
1662 } 1907 }
1663 else 1908 else
1664 ev_timer_stop (EV_A_ w); 1909 ev_timer_stop (EV_A_ w);
1665 } 1910 }
1666 else if (w->repeat) 1911 else if (w->repeat)
1669 ev_timer_start (EV_A_ w); 1914 ev_timer_start (EV_A_ w);
1670 } 1915 }
1671} 1916}
1672 1917
1673#if EV_PERIODIC_ENABLE 1918#if EV_PERIODIC_ENABLE
1674void 1919void noinline
1675ev_periodic_start (EV_P_ ev_periodic *w) 1920ev_periodic_start (EV_P_ ev_periodic *w)
1676{ 1921{
1677 if (expect_false (ev_is_active (w))) 1922 if (expect_false (ev_is_active (w)))
1678 return; 1923 return;
1679 1924
1681 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1926 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1682 else if (w->interval) 1927 else if (w->interval)
1683 { 1928 {
1684 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1929 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1685 /* this formula differs from the one in periodic_reify because we do not always round up */ 1930 /* this formula differs from the one in periodic_reify because we do not always round up */
1686 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1931 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1687 } 1932 }
1933 else
1934 ((WT)w)->at = w->offset;
1688 1935
1689 ev_start (EV_A_ (W)w, ++periodiccnt); 1936 ev_start (EV_A_ (W)w, ++periodiccnt);
1690 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1937 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1691 periodics [periodiccnt - 1] = w; 1938 periodics [periodiccnt - 1] = (WT)w;
1692 upheap ((WT *)periodics, periodiccnt - 1); 1939 upheap (periodics, periodiccnt - 1);
1693 1940
1694 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1941 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1695} 1942}
1696 1943
1697void 1944void noinline
1698ev_periodic_stop (EV_P_ ev_periodic *w) 1945ev_periodic_stop (EV_P_ ev_periodic *w)
1699{ 1946{
1700 clear_pending (EV_A_ (W)w); 1947 clear_pending (EV_A_ (W)w);
1701 if (expect_false (!ev_is_active (w))) 1948 if (expect_false (!ev_is_active (w)))
1702 return; 1949 return;
1703 1950
1704 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1951 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1705 1952
1706 { 1953 {
1707 int active = ((W)w)->active; 1954 int active = ((W)w)->active;
1708 1955
1709 if (expect_true (--active < --periodiccnt)) 1956 if (expect_true (--active < --periodiccnt))
1710 { 1957 {
1711 periodics [active] = periodics [periodiccnt]; 1958 periodics [active] = periodics [periodiccnt];
1712 adjustheap ((WT *)periodics, periodiccnt, active); 1959 adjustheap (periodics, periodiccnt, active);
1713 } 1960 }
1714 } 1961 }
1715 1962
1716 ev_stop (EV_A_ (W)w); 1963 ev_stop (EV_A_ (W)w);
1717} 1964}
1718 1965
1719void 1966void noinline
1720ev_periodic_again (EV_P_ ev_periodic *w) 1967ev_periodic_again (EV_P_ ev_periodic *w)
1721{ 1968{
1722 /* TODO: use adjustheap and recalculation */ 1969 /* TODO: use adjustheap and recalculation */
1723 ev_periodic_stop (EV_A_ w); 1970 ev_periodic_stop (EV_A_ w);
1724 ev_periodic_start (EV_A_ w); 1971 ev_periodic_start (EV_A_ w);
1727 1974
1728#ifndef SA_RESTART 1975#ifndef SA_RESTART
1729# define SA_RESTART 0 1976# define SA_RESTART 0
1730#endif 1977#endif
1731 1978
1732void 1979void noinline
1733ev_signal_start (EV_P_ ev_signal *w) 1980ev_signal_start (EV_P_ ev_signal *w)
1734{ 1981{
1735#if EV_MULTIPLICITY 1982#if EV_MULTIPLICITY
1736 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1983 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1737#endif 1984#endif
1738 if (expect_false (ev_is_active (w))) 1985 if (expect_false (ev_is_active (w)))
1739 return; 1986 return;
1740 1987
1741 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1988 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1742 1989
1990 evpipe_init (EV_A);
1991
1992 {
1993#ifndef _WIN32
1994 sigset_t full, prev;
1995 sigfillset (&full);
1996 sigprocmask (SIG_SETMASK, &full, &prev);
1997#endif
1998
1999 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2000
2001#ifndef _WIN32
2002 sigprocmask (SIG_SETMASK, &prev, 0);
2003#endif
2004 }
2005
1743 ev_start (EV_A_ (W)w, 1); 2006 ev_start (EV_A_ (W)w, 1);
1744 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1745 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2007 wlist_add (&signals [w->signum - 1].head, (WL)w);
1746 2008
1747 if (!((WL)w)->next) 2009 if (!((WL)w)->next)
1748 { 2010 {
1749#if _WIN32 2011#if _WIN32
1750 signal (w->signum, sighandler); 2012 signal (w->signum, ev_sighandler);
1751#else 2013#else
1752 struct sigaction sa; 2014 struct sigaction sa;
1753 sa.sa_handler = sighandler; 2015 sa.sa_handler = ev_sighandler;
1754 sigfillset (&sa.sa_mask); 2016 sigfillset (&sa.sa_mask);
1755 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2017 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1756 sigaction (w->signum, &sa, 0); 2018 sigaction (w->signum, &sa, 0);
1757#endif 2019#endif
1758 } 2020 }
1759} 2021}
1760 2022
1761void 2023void noinline
1762ev_signal_stop (EV_P_ ev_signal *w) 2024ev_signal_stop (EV_P_ ev_signal *w)
1763{ 2025{
1764 clear_pending (EV_A_ (W)w); 2026 clear_pending (EV_A_ (W)w);
1765 if (expect_false (!ev_is_active (w))) 2027 if (expect_false (!ev_is_active (w)))
1766 return; 2028 return;
1767 2029
1768 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2030 wlist_del (&signals [w->signum - 1].head, (WL)w);
1769 ev_stop (EV_A_ (W)w); 2031 ev_stop (EV_A_ (W)w);
1770 2032
1771 if (!signals [w->signum - 1].head) 2033 if (!signals [w->signum - 1].head)
1772 signal (w->signum, SIG_DFL); 2034 signal (w->signum, SIG_DFL);
1773} 2035}
1780#endif 2042#endif
1781 if (expect_false (ev_is_active (w))) 2043 if (expect_false (ev_is_active (w)))
1782 return; 2044 return;
1783 2045
1784 ev_start (EV_A_ (W)w, 1); 2046 ev_start (EV_A_ (W)w, 1);
1785 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2047 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1786} 2048}
1787 2049
1788void 2050void
1789ev_child_stop (EV_P_ ev_child *w) 2051ev_child_stop (EV_P_ ev_child *w)
1790{ 2052{
1791 clear_pending (EV_A_ (W)w); 2053 clear_pending (EV_A_ (W)w);
1792 if (expect_false (!ev_is_active (w))) 2054 if (expect_false (!ev_is_active (w)))
1793 return; 2055 return;
1794 2056
1795 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2057 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1796 ev_stop (EV_A_ (W)w); 2058 ev_stop (EV_A_ (W)w);
1797} 2059}
1798 2060
1799#if EV_STAT_ENABLE 2061#if EV_STAT_ENABLE
1800 2062
2142 2404
2143#if EV_EMBED_ENABLE 2405#if EV_EMBED_ENABLE
2144void noinline 2406void noinline
2145ev_embed_sweep (EV_P_ ev_embed *w) 2407ev_embed_sweep (EV_P_ ev_embed *w)
2146{ 2408{
2147 ev_loop (w->loop, EVLOOP_NONBLOCK); 2409 ev_loop (w->other, EVLOOP_NONBLOCK);
2148} 2410}
2149 2411
2150static void 2412static void
2151embed_cb (EV_P_ ev_io *io, int revents) 2413embed_io_cb (EV_P_ ev_io *io, int revents)
2152{ 2414{
2153 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2415 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2154 2416
2155 if (ev_cb (w)) 2417 if (ev_cb (w))
2156 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2418 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2157 else 2419 else
2158 ev_embed_sweep (loop, w); 2420 ev_loop (w->other, EVLOOP_NONBLOCK);
2159} 2421}
2422
2423static void
2424embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2425{
2426 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2427
2428 {
2429 struct ev_loop *loop = w->other;
2430
2431 while (fdchangecnt)
2432 {
2433 fd_reify (EV_A);
2434 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2435 }
2436 }
2437}
2438
2439#if 0
2440static void
2441embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2442{
2443 ev_idle_stop (EV_A_ idle);
2444}
2445#endif
2160 2446
2161void 2447void
2162ev_embed_start (EV_P_ ev_embed *w) 2448ev_embed_start (EV_P_ ev_embed *w)
2163{ 2449{
2164 if (expect_false (ev_is_active (w))) 2450 if (expect_false (ev_is_active (w)))
2165 return; 2451 return;
2166 2452
2167 { 2453 {
2168 struct ev_loop *loop = w->loop; 2454 struct ev_loop *loop = w->other;
2169 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2455 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2170 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2456 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2171 } 2457 }
2172 2458
2173 ev_set_priority (&w->io, ev_priority (w)); 2459 ev_set_priority (&w->io, ev_priority (w));
2174 ev_io_start (EV_A_ &w->io); 2460 ev_io_start (EV_A_ &w->io);
2175 2461
2462 ev_prepare_init (&w->prepare, embed_prepare_cb);
2463 ev_set_priority (&w->prepare, EV_MINPRI);
2464 ev_prepare_start (EV_A_ &w->prepare);
2465
2466 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2467
2176 ev_start (EV_A_ (W)w, 1); 2468 ev_start (EV_A_ (W)w, 1);
2177} 2469}
2178 2470
2179void 2471void
2180ev_embed_stop (EV_P_ ev_embed *w) 2472ev_embed_stop (EV_P_ ev_embed *w)
2182 clear_pending (EV_A_ (W)w); 2474 clear_pending (EV_A_ (W)w);
2183 if (expect_false (!ev_is_active (w))) 2475 if (expect_false (!ev_is_active (w)))
2184 return; 2476 return;
2185 2477
2186 ev_io_stop (EV_A_ &w->io); 2478 ev_io_stop (EV_A_ &w->io);
2479 ev_prepare_stop (EV_A_ &w->prepare);
2187 2480
2188 ev_stop (EV_A_ (W)w); 2481 ev_stop (EV_A_ (W)w);
2189} 2482}
2190#endif 2483#endif
2191 2484
2216 2509
2217 ev_stop (EV_A_ (W)w); 2510 ev_stop (EV_A_ (W)w);
2218} 2511}
2219#endif 2512#endif
2220 2513
2514#if EV_ASYNC_ENABLE
2515void
2516ev_async_start (EV_P_ ev_async *w)
2517{
2518 if (expect_false (ev_is_active (w)))
2519 return;
2520
2521 evpipe_init (EV_A);
2522
2523 ev_start (EV_A_ (W)w, ++asynccnt);
2524 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2525 asyncs [asynccnt - 1] = w;
2526}
2527
2528void
2529ev_async_stop (EV_P_ ev_async *w)
2530{
2531 clear_pending (EV_A_ (W)w);
2532 if (expect_false (!ev_is_active (w)))
2533 return;
2534
2535 {
2536 int active = ((W)w)->active;
2537 asyncs [active - 1] = asyncs [--asynccnt];
2538 ((W)asyncs [active - 1])->active = active;
2539 }
2540
2541 ev_stop (EV_A_ (W)w);
2542}
2543
2544void
2545ev_async_send (EV_P_ ev_async *w)
2546{
2547 w->sent = 1;
2548 evpipe_write (EV_A_ &gotasync);
2549}
2550#endif
2551
2221/*****************************************************************************/ 2552/*****************************************************************************/
2222 2553
2223struct ev_once 2554struct ev_once
2224{ 2555{
2225 ev_io io; 2556 ev_io io;
2280 ev_timer_set (&once->to, timeout, 0.); 2611 ev_timer_set (&once->to, timeout, 0.);
2281 ev_timer_start (EV_A_ &once->to); 2612 ev_timer_start (EV_A_ &once->to);
2282 } 2613 }
2283} 2614}
2284 2615
2616#if EV_MULTIPLICITY
2617 #include "ev_wrap.h"
2618#endif
2619
2285#ifdef __cplusplus 2620#ifdef __cplusplus
2286} 2621}
2287#endif 2622#endif
2288 2623

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines