ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.167 by root, Sat Dec 8 04:02:31 2007 UTC vs.
Revision 1.262 by root, Wed Oct 1 04:25:25 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
129#ifndef _WIN32 154#ifndef _WIN32
130# include <sys/time.h> 155# include <sys/time.h>
131# include <sys/wait.h> 156# include <sys/wait.h>
132# include <unistd.h> 157# include <unistd.h>
133#else 158#else
159# include <io.h>
134# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 161# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
138# endif 164# endif
139#endif 165#endif
140 166
141/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
142 168
143#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
144# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
145#endif 175#endif
146 176
147#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
149#endif 187#endif
150 188
151#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
153#endif 191#endif
159# define EV_USE_POLL 1 197# define EV_USE_POLL 1
160# endif 198# endif
161#endif 199#endif
162 200
163#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
164# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
165#endif 207#endif
166 208
167#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
169#endif 211#endif
171#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 214# define EV_USE_PORT 0
173#endif 215#endif
174 216
175#ifndef EV_USE_INOTIFY 217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
176# define EV_USE_INOTIFY 0 221# define EV_USE_INOTIFY 0
222# endif
177#endif 223#endif
178 224
179#ifndef EV_PID_HASHSIZE 225#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 226# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 227# define EV_PID_HASHSIZE 1
190# else 236# else
191# define EV_INOTIFY_HASHSIZE 16 237# define EV_INOTIFY_HASHSIZE 16
192# endif 238# endif
193#endif 239#endif
194 240
195/**/ 241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 268
197#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
200#endif 272#endif
202#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
205#endif 277#endif
206 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/inotify.h>
292#endif
293
207#if EV_SELECT_IS_WINSOCKET 294#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 295# include <winsock.h>
209#endif 296#endif
210 297
211#if !EV_STAT_ENABLE 298#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 299/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
300# include <stdint.h>
301# ifdef __cplusplus
302extern "C" {
213#endif 303# endif
214 304int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 305# ifdef __cplusplus
216# include <sys/inotify.h> 306}
307# endif
217#endif 308#endif
218 309
219/**/ 310/**/
311
312#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
314#else
315# define EV_FREQUENT_CHECK do { } while (0)
316#endif
317
318/*
319 * This is used to avoid floating point rounding problems.
320 * It is added to ev_rt_now when scheduling periodics
321 * to ensure progress, time-wise, even when rounding
322 * errors are against us.
323 * This value is good at least till the year 4000.
324 * Better solutions welcome.
325 */
326#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 327
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 328#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 329#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 330/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 331
225#if __GNUC__ >= 3 332#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 333# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 334# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 335#else
236# define expect(expr,value) (expr) 336# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 337# define noinline
338# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
339# define inline
340# endif
240#endif 341#endif
241 342
242#define expect_false(expr) expect ((expr) != 0, 0) 343#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 344#define expect_true(expr) expect ((expr) != 0, 1)
345#define inline_size static inline
346
347#if EV_MINIMAL
348# define inline_speed static noinline
349#else
350# define inline_speed static inline
351#endif
244 352
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 353#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 354#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 355
248#define EMPTY /* required for microsofts broken pseudo-c compiler */ 356#define EMPTY /* required for microsofts broken pseudo-c compiler */
250 358
251typedef ev_watcher *W; 359typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 360typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 361typedef ev_watcher_time *WT;
254 362
363#define ev_active(w) ((W)(w))->active
364#define ev_at(w) ((WT)(w))->at
365
366#if EV_USE_MONOTONIC
367/* sig_atomic_t is used to avoid per-thread variables or locking but still */
368/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 369static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
370#endif
256 371
257#ifdef _WIN32 372#ifdef _WIN32
258# include "ev_win32.c" 373# include "ev_win32.c"
259#endif 374#endif
260 375
281 perror (msg); 396 perror (msg);
282 abort (); 397 abort ();
283 } 398 }
284} 399}
285 400
401static void *
402ev_realloc_emul (void *ptr, long size)
403{
404 /* some systems, notably openbsd and darwin, fail to properly
405 * implement realloc (x, 0) (as required by both ansi c-98 and
406 * the single unix specification, so work around them here.
407 */
408
409 if (size)
410 return realloc (ptr, size);
411
412 free (ptr);
413 return 0;
414}
415
286static void *(*alloc)(void *ptr, long size); 416static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 417
288void 418void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 419ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 420{
291 alloc = cb; 421 alloc = cb;
292} 422}
293 423
294inline_speed void * 424inline_speed void *
295ev_realloc (void *ptr, long size) 425ev_realloc (void *ptr, long size)
296{ 426{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 427 ptr = alloc (ptr, size);
298 428
299 if (!ptr && size) 429 if (!ptr && size)
300 { 430 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 431 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 432 abort ();
325 W w; 455 W w;
326 int events; 456 int events;
327} ANPENDING; 457} ANPENDING;
328 458
329#if EV_USE_INOTIFY 459#if EV_USE_INOTIFY
460/* hash table entry per inotify-id */
330typedef struct 461typedef struct
331{ 462{
332 WL head; 463 WL head;
333} ANFS; 464} ANFS;
465#endif
466
467/* Heap Entry */
468#if EV_HEAP_CACHE_AT
469 typedef struct {
470 ev_tstamp at;
471 WT w;
472 } ANHE;
473
474 #define ANHE_w(he) (he).w /* access watcher, read-write */
475 #define ANHE_at(he) (he).at /* access cached at, read-only */
476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
477#else
478 typedef WT ANHE;
479
480 #define ANHE_w(he) (he)
481 #define ANHE_at(he) (he)->at
482 #define ANHE_at_cache(he)
334#endif 483#endif
335 484
336#if EV_MULTIPLICITY 485#if EV_MULTIPLICITY
337 486
338 struct ev_loop 487 struct ev_loop
396{ 545{
397 return ev_rt_now; 546 return ev_rt_now;
398} 547}
399#endif 548#endif
400 549
550void
551ev_sleep (ev_tstamp delay)
552{
553 if (delay > 0.)
554 {
555#if EV_USE_NANOSLEEP
556 struct timespec ts;
557
558 ts.tv_sec = (time_t)delay;
559 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
560
561 nanosleep (&ts, 0);
562#elif defined(_WIN32)
563 Sleep ((unsigned long)(delay * 1e3));
564#else
565 struct timeval tv;
566
567 tv.tv_sec = (time_t)delay;
568 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
569
570 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
571 /* somehting nto guaranteed by newer posix versions, but guaranteed */
572 /* by older ones */
573 select (0, 0, 0, 0, &tv);
574#endif
575 }
576}
577
578/*****************************************************************************/
579
580#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
581
401int inline_size 582int inline_size
402array_nextsize (int elem, int cur, int cnt) 583array_nextsize (int elem, int cur, int cnt)
403{ 584{
404 int ncur = cur + 1; 585 int ncur = cur + 1;
405 586
406 do 587 do
407 ncur <<= 1; 588 ncur <<= 1;
408 while (cnt > ncur); 589 while (cnt > ncur);
409 590
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 591 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
411 if (elem * ncur > 4096) 592 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
412 { 593 {
413 ncur *= elem; 594 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 595 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
415 ncur = ncur - sizeof (void *) * 4; 596 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem; 597 ncur /= elem;
417 } 598 }
418 599
419 return ncur; 600 return ncur;
420} 601}
421 602
422inline_speed void * 603static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 604array_realloc (int elem, void *base, int *cur, int cnt)
424{ 605{
425 *cur = array_nextsize (elem, *cur, cnt); 606 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 607 return ev_realloc (base, elem * *cur);
427} 608}
452 633
453void noinline 634void noinline
454ev_feed_event (EV_P_ void *w, int revents) 635ev_feed_event (EV_P_ void *w, int revents)
455{ 636{
456 W w_ = (W)w; 637 W w_ = (W)w;
638 int pri = ABSPRI (w_);
457 639
458 if (expect_false (w_->pending)) 640 if (expect_false (w_->pending))
641 pendings [pri][w_->pending - 1].events |= revents;
642 else
459 { 643 {
644 w_->pending = ++pendingcnt [pri];
645 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
646 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 647 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 648 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 649}
469 650
470void inline_size 651void inline_speed
471queue_events (EV_P_ W *events, int eventcnt, int type) 652queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 653{
473 int i; 654 int i;
474 655
475 for (i = 0; i < eventcnt; ++i) 656 for (i = 0; i < eventcnt; ++i)
507} 688}
508 689
509void 690void
510ev_feed_fd_event (EV_P_ int fd, int revents) 691ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 692{
693 if (fd >= 0 && fd < anfdmax)
512 fd_event (EV_A_ fd, revents); 694 fd_event (EV_A_ fd, revents);
513} 695}
514 696
515void inline_size 697void inline_size
516fd_reify (EV_P) 698fd_reify (EV_P)
517{ 699{
521 { 703 {
522 int fd = fdchanges [i]; 704 int fd = fdchanges [i];
523 ANFD *anfd = anfds + fd; 705 ANFD *anfd = anfds + fd;
524 ev_io *w; 706 ev_io *w;
525 707
526 int events = 0; 708 unsigned char events = 0;
527 709
528 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 710 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
529 events |= w->events; 711 events |= (unsigned char)w->events;
530 712
531#if EV_SELECT_IS_WINSOCKET 713#if EV_SELECT_IS_WINSOCKET
532 if (events) 714 if (events)
533 { 715 {
534 unsigned long argp; 716 unsigned long arg;
717 #ifdef EV_FD_TO_WIN32_HANDLE
718 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
719 #else
535 anfd->handle = _get_osfhandle (fd); 720 anfd->handle = _get_osfhandle (fd);
721 #endif
536 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 722 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
537 } 723 }
538#endif 724#endif
539 725
726 {
727 unsigned char o_events = anfd->events;
728 unsigned char o_reify = anfd->reify;
729
540 anfd->reify = 0; 730 anfd->reify = 0;
541
542 backend_modify (EV_A_ fd, anfd->events, events);
543 anfd->events = events; 731 anfd->events = events;
732
733 if (o_events != events || o_reify & EV_IOFDSET)
734 backend_modify (EV_A_ fd, o_events, events);
735 }
544 } 736 }
545 737
546 fdchangecnt = 0; 738 fdchangecnt = 0;
547} 739}
548 740
549void inline_size 741void inline_size
550fd_change (EV_P_ int fd) 742fd_change (EV_P_ int fd, int flags)
551{ 743{
552 if (expect_false (anfds [fd].reify)) 744 unsigned char reify = anfds [fd].reify;
553 return;
554
555 anfds [fd].reify = 1; 745 anfds [fd].reify |= flags;
556 746
747 if (expect_true (!reify))
748 {
557 ++fdchangecnt; 749 ++fdchangecnt;
558 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 750 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
559 fdchanges [fdchangecnt - 1] = fd; 751 fdchanges [fdchangecnt - 1] = fd;
752 }
560} 753}
561 754
562void inline_speed 755void inline_speed
563fd_kill (EV_P_ int fd) 756fd_kill (EV_P_ int fd)
564{ 757{
587{ 780{
588 int fd; 781 int fd;
589 782
590 for (fd = 0; fd < anfdmax; ++fd) 783 for (fd = 0; fd < anfdmax; ++fd)
591 if (anfds [fd].events) 784 if (anfds [fd].events)
592 if (!fd_valid (fd) == -1 && errno == EBADF) 785 if (!fd_valid (fd) && errno == EBADF)
593 fd_kill (EV_A_ fd); 786 fd_kill (EV_A_ fd);
594} 787}
595 788
596/* called on ENOMEM in select/poll to kill some fds and retry */ 789/* called on ENOMEM in select/poll to kill some fds and retry */
597static void noinline 790static void noinline
615 808
616 for (fd = 0; fd < anfdmax; ++fd) 809 for (fd = 0; fd < anfdmax; ++fd)
617 if (anfds [fd].events) 810 if (anfds [fd].events)
618 { 811 {
619 anfds [fd].events = 0; 812 anfds [fd].events = 0;
620 fd_change (EV_A_ fd); 813 fd_change (EV_A_ fd, EV_IOFDSET | 1);
621 } 814 }
622} 815}
623 816
624/*****************************************************************************/ 817/*****************************************************************************/
625 818
819/*
820 * the heap functions want a real array index. array index 0 uis guaranteed to not
821 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
822 * the branching factor of the d-tree.
823 */
824
825/*
826 * at the moment we allow libev the luxury of two heaps,
827 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
828 * which is more cache-efficient.
829 * the difference is about 5% with 50000+ watchers.
830 */
831#if EV_USE_4HEAP
832
833#define DHEAP 4
834#define HEAP0 (DHEAP - 1) /* index of first element in heap */
835#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
836#define UPHEAP_DONE(p,k) ((p) == (k))
837
838/* away from the root */
626void inline_speed 839void inline_speed
627upheap (WT *heap, int k) 840downheap (ANHE *heap, int N, int k)
628{ 841{
629 WT w = heap [k]; 842 ANHE he = heap [k];
843 ANHE *E = heap + N + HEAP0;
630 844
631 while (k && heap [k >> 1]->at > w->at) 845 for (;;)
632 {
633 heap [k] = heap [k >> 1];
634 ((W)heap [k])->active = k + 1;
635 k >>= 1;
636 } 846 {
847 ev_tstamp minat;
848 ANHE *minpos;
849 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
637 850
851 /* find minimum child */
852 if (expect_true (pos + DHEAP - 1 < E))
853 {
854 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
855 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
856 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
857 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
858 }
859 else if (pos < E)
860 {
861 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
862 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
863 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
864 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
865 }
866 else
867 break;
868
869 if (ANHE_at (he) <= minat)
870 break;
871
872 heap [k] = *minpos;
873 ev_active (ANHE_w (*minpos)) = k;
874
875 k = minpos - heap;
876 }
877
638 heap [k] = w; 878 heap [k] = he;
639 ((W)heap [k])->active = k + 1; 879 ev_active (ANHE_w (he)) = k;
640
641} 880}
642 881
882#else /* 4HEAP */
883
884#define HEAP0 1
885#define HPARENT(k) ((k) >> 1)
886#define UPHEAP_DONE(p,k) (!(p))
887
888/* away from the root */
643void inline_speed 889void inline_speed
644downheap (WT *heap, int N, int k) 890downheap (ANHE *heap, int N, int k)
645{ 891{
646 WT w = heap [k]; 892 ANHE he = heap [k];
647 893
648 while (k < (N >> 1)) 894 for (;;)
649 { 895 {
650 int j = k << 1; 896 int c = k << 1;
651 897
652 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 898 if (c > N + HEAP0 - 1)
653 ++j;
654
655 if (w->at <= heap [j]->at)
656 break; 899 break;
657 900
901 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
902 ? 1 : 0;
903
904 if (ANHE_at (he) <= ANHE_at (heap [c]))
905 break;
906
658 heap [k] = heap [j]; 907 heap [k] = heap [c];
659 ((W)heap [k])->active = k + 1; 908 ev_active (ANHE_w (heap [k])) = k;
909
660 k = j; 910 k = c;
661 } 911 }
662 912
663 heap [k] = w; 913 heap [k] = he;
664 ((W)heap [k])->active = k + 1; 914 ev_active (ANHE_w (he)) = k;
915}
916#endif
917
918/* towards the root */
919void inline_speed
920upheap (ANHE *heap, int k)
921{
922 ANHE he = heap [k];
923
924 for (;;)
925 {
926 int p = HPARENT (k);
927
928 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
929 break;
930
931 heap [k] = heap [p];
932 ev_active (ANHE_w (heap [k])) = k;
933 k = p;
934 }
935
936 heap [k] = he;
937 ev_active (ANHE_w (he)) = k;
665} 938}
666 939
667void inline_size 940void inline_size
668adjustheap (WT *heap, int N, int k) 941adjustheap (ANHE *heap, int N, int k)
669{ 942{
943 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
670 upheap (heap, k); 944 upheap (heap, k);
945 else
671 downheap (heap, N, k); 946 downheap (heap, N, k);
947}
948
949/* rebuild the heap: this function is used only once and executed rarely */
950void inline_size
951reheap (ANHE *heap, int N)
952{
953 int i;
954
955 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
956 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
957 for (i = 0; i < N; ++i)
958 upheap (heap, i + HEAP0);
672} 959}
673 960
674/*****************************************************************************/ 961/*****************************************************************************/
675 962
676typedef struct 963typedef struct
677{ 964{
678 WL head; 965 WL head;
679 sig_atomic_t volatile gotsig; 966 EV_ATOMIC_T gotsig;
680} ANSIG; 967} ANSIG;
681 968
682static ANSIG *signals; 969static ANSIG *signals;
683static int signalmax; 970static int signalmax;
684 971
685static int sigpipe [2]; 972static EV_ATOMIC_T gotsig;
686static sig_atomic_t volatile gotsig;
687static ev_io sigev;
688 973
689void inline_size 974void inline_size
690signals_init (ANSIG *base, int count) 975signals_init (ANSIG *base, int count)
691{ 976{
692 while (count--) 977 while (count--)
696 981
697 ++base; 982 ++base;
698 } 983 }
699} 984}
700 985
701static void 986/*****************************************************************************/
702sighandler (int signum)
703{
704#if _WIN32
705 signal (signum, sighandler);
706#endif
707 987
708 signals [signum - 1].gotsig = 1;
709
710 if (!gotsig)
711 {
712 int old_errno = errno;
713 gotsig = 1;
714 write (sigpipe [1], &signum, 1);
715 errno = old_errno;
716 }
717}
718
719void noinline
720ev_feed_signal_event (EV_P_ int signum)
721{
722 WL w;
723
724#if EV_MULTIPLICITY
725 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
726#endif
727
728 --signum;
729
730 if (signum < 0 || signum >= signalmax)
731 return;
732
733 signals [signum].gotsig = 0;
734
735 for (w = signals [signum].head; w; w = w->next)
736 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
737}
738
739static void
740sigcb (EV_P_ ev_io *iow, int revents)
741{
742 int signum;
743
744 read (sigpipe [0], &revents, 1);
745 gotsig = 0;
746
747 for (signum = signalmax; signum--; )
748 if (signals [signum].gotsig)
749 ev_feed_signal_event (EV_A_ signum + 1);
750}
751
752void inline_size 988void inline_speed
753fd_intern (int fd) 989fd_intern (int fd)
754{ 990{
755#ifdef _WIN32 991#ifdef _WIN32
756 int arg = 1; 992 unsigned long arg = 1;
757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 993 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
758#else 994#else
759 fcntl (fd, F_SETFD, FD_CLOEXEC); 995 fcntl (fd, F_SETFD, FD_CLOEXEC);
760 fcntl (fd, F_SETFL, O_NONBLOCK); 996 fcntl (fd, F_SETFL, O_NONBLOCK);
761#endif 997#endif
762} 998}
763 999
764static void noinline 1000static void noinline
765siginit (EV_P) 1001evpipe_init (EV_P)
766{ 1002{
1003 if (!ev_is_active (&pipeev))
1004 {
1005#if EV_USE_EVENTFD
1006 if ((evfd = eventfd (0, 0)) >= 0)
1007 {
1008 evpipe [0] = -1;
1009 fd_intern (evfd);
1010 ev_io_set (&pipeev, evfd, EV_READ);
1011 }
1012 else
1013#endif
1014 {
1015 while (pipe (evpipe))
1016 syserr ("(libev) error creating signal/async pipe");
1017
767 fd_intern (sigpipe [0]); 1018 fd_intern (evpipe [0]);
768 fd_intern (sigpipe [1]); 1019 fd_intern (evpipe [1]);
1020 ev_io_set (&pipeev, evpipe [0], EV_READ);
1021 }
769 1022
770 ev_io_set (&sigev, sigpipe [0], EV_READ);
771 ev_io_start (EV_A_ &sigev); 1023 ev_io_start (EV_A_ &pipeev);
772 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1024 ev_unref (EV_A); /* watcher should not keep loop alive */
1025 }
1026}
1027
1028void inline_size
1029evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1030{
1031 if (!*flag)
1032 {
1033 int old_errno = errno; /* save errno because write might clobber it */
1034
1035 *flag = 1;
1036
1037#if EV_USE_EVENTFD
1038 if (evfd >= 0)
1039 {
1040 uint64_t counter = 1;
1041 write (evfd, &counter, sizeof (uint64_t));
1042 }
1043 else
1044#endif
1045 write (evpipe [1], &old_errno, 1);
1046
1047 errno = old_errno;
1048 }
1049}
1050
1051static void
1052pipecb (EV_P_ ev_io *iow, int revents)
1053{
1054#if EV_USE_EVENTFD
1055 if (evfd >= 0)
1056 {
1057 uint64_t counter;
1058 read (evfd, &counter, sizeof (uint64_t));
1059 }
1060 else
1061#endif
1062 {
1063 char dummy;
1064 read (evpipe [0], &dummy, 1);
1065 }
1066
1067 if (gotsig && ev_is_default_loop (EV_A))
1068 {
1069 int signum;
1070 gotsig = 0;
1071
1072 for (signum = signalmax; signum--; )
1073 if (signals [signum].gotsig)
1074 ev_feed_signal_event (EV_A_ signum + 1);
1075 }
1076
1077#if EV_ASYNC_ENABLE
1078 if (gotasync)
1079 {
1080 int i;
1081 gotasync = 0;
1082
1083 for (i = asynccnt; i--; )
1084 if (asyncs [i]->sent)
1085 {
1086 asyncs [i]->sent = 0;
1087 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1088 }
1089 }
1090#endif
773} 1091}
774 1092
775/*****************************************************************************/ 1093/*****************************************************************************/
776 1094
1095static void
1096ev_sighandler (int signum)
1097{
1098#if EV_MULTIPLICITY
1099 struct ev_loop *loop = &default_loop_struct;
1100#endif
1101
1102#if _WIN32
1103 signal (signum, ev_sighandler);
1104#endif
1105
1106 signals [signum - 1].gotsig = 1;
1107 evpipe_write (EV_A_ &gotsig);
1108}
1109
1110void noinline
1111ev_feed_signal_event (EV_P_ int signum)
1112{
1113 WL w;
1114
1115#if EV_MULTIPLICITY
1116 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1117#endif
1118
1119 --signum;
1120
1121 if (signum < 0 || signum >= signalmax)
1122 return;
1123
1124 signals [signum].gotsig = 0;
1125
1126 for (w = signals [signum].head; w; w = w->next)
1127 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1128}
1129
1130/*****************************************************************************/
1131
777static ev_child *childs [EV_PID_HASHSIZE]; 1132static WL childs [EV_PID_HASHSIZE];
778 1133
779#ifndef _WIN32 1134#ifndef _WIN32
780 1135
781static ev_signal childev; 1136static ev_signal childev;
782 1137
1138#ifndef WIFCONTINUED
1139# define WIFCONTINUED(status) 0
1140#endif
1141
783void inline_speed 1142void inline_speed
784child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1143child_reap (EV_P_ int chain, int pid, int status)
785{ 1144{
786 ev_child *w; 1145 ev_child *w;
1146 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
787 1147
788 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1148 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1149 {
789 if (w->pid == pid || !w->pid) 1150 if ((w->pid == pid || !w->pid)
1151 && (!traced || (w->flags & 1)))
790 { 1152 {
791 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1153 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
792 w->rpid = pid; 1154 w->rpid = pid;
793 w->rstatus = status; 1155 w->rstatus = status;
794 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1156 ev_feed_event (EV_A_ (W)w, EV_CHILD);
795 } 1157 }
1158 }
796} 1159}
797 1160
798#ifndef WCONTINUED 1161#ifndef WCONTINUED
799# define WCONTINUED 0 1162# define WCONTINUED 0
800#endif 1163#endif
809 if (!WCONTINUED 1172 if (!WCONTINUED
810 || errno != EINVAL 1173 || errno != EINVAL
811 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1174 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
812 return; 1175 return;
813 1176
814 /* make sure we are called again until all childs have been reaped */ 1177 /* make sure we are called again until all children have been reaped */
815 /* we need to do it this way so that the callback gets called before we continue */ 1178 /* we need to do it this way so that the callback gets called before we continue */
816 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1179 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
817 1180
818 child_reap (EV_A_ sw, pid, pid, status); 1181 child_reap (EV_A_ pid, pid, status);
819 if (EV_PID_HASHSIZE > 1) 1182 if (EV_PID_HASHSIZE > 1)
820 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1183 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
821} 1184}
822 1185
823#endif 1186#endif
824 1187
825/*****************************************************************************/ 1188/*****************************************************************************/
897} 1260}
898 1261
899unsigned int 1262unsigned int
900ev_embeddable_backends (void) 1263ev_embeddable_backends (void)
901{ 1264{
902 return EVBACKEND_EPOLL 1265 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
903 | EVBACKEND_KQUEUE 1266
904 | EVBACKEND_PORT; 1267 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1268 /* please fix it and tell me how to detect the fix */
1269 flags &= ~EVBACKEND_EPOLL;
1270
1271 return flags;
905} 1272}
906 1273
907unsigned int 1274unsigned int
908ev_backend (EV_P) 1275ev_backend (EV_P)
909{ 1276{
912 1279
913unsigned int 1280unsigned int
914ev_loop_count (EV_P) 1281ev_loop_count (EV_P)
915{ 1282{
916 return loop_count; 1283 return loop_count;
1284}
1285
1286void
1287ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1288{
1289 io_blocktime = interval;
1290}
1291
1292void
1293ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1294{
1295 timeout_blocktime = interval;
917} 1296}
918 1297
919static void noinline 1298static void noinline
920loop_init (EV_P_ unsigned int flags) 1299loop_init (EV_P_ unsigned int flags)
921{ 1300{
927 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1306 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
928 have_monotonic = 1; 1307 have_monotonic = 1;
929 } 1308 }
930#endif 1309#endif
931 1310
932 ev_rt_now = ev_time (); 1311 ev_rt_now = ev_time ();
933 mn_now = get_clock (); 1312 mn_now = get_clock ();
934 now_floor = mn_now; 1313 now_floor = mn_now;
935 rtmn_diff = ev_rt_now - mn_now; 1314 rtmn_diff = ev_rt_now - mn_now;
1315
1316 io_blocktime = 0.;
1317 timeout_blocktime = 0.;
1318 backend = 0;
1319 backend_fd = -1;
1320 gotasync = 0;
1321#if EV_USE_INOTIFY
1322 fs_fd = -2;
1323#endif
936 1324
937 /* pid check not overridable via env */ 1325 /* pid check not overridable via env */
938#ifndef _WIN32 1326#ifndef _WIN32
939 if (flags & EVFLAG_FORKCHECK) 1327 if (flags & EVFLAG_FORKCHECK)
940 curpid = getpid (); 1328 curpid = getpid ();
943 if (!(flags & EVFLAG_NOENV) 1331 if (!(flags & EVFLAG_NOENV)
944 && !enable_secure () 1332 && !enable_secure ()
945 && getenv ("LIBEV_FLAGS")) 1333 && getenv ("LIBEV_FLAGS"))
946 flags = atoi (getenv ("LIBEV_FLAGS")); 1334 flags = atoi (getenv ("LIBEV_FLAGS"));
947 1335
948 if (!(flags & 0x0000ffffUL)) 1336 if (!(flags & 0x0000ffffU))
949 flags |= ev_recommended_backends (); 1337 flags |= ev_recommended_backends ();
950
951 backend = 0;
952 backend_fd = -1;
953#if EV_USE_INOTIFY
954 fs_fd = -2;
955#endif
956 1338
957#if EV_USE_PORT 1339#if EV_USE_PORT
958 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1340 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
959#endif 1341#endif
960#if EV_USE_KQUEUE 1342#if EV_USE_KQUEUE
968#endif 1350#endif
969#if EV_USE_SELECT 1351#if EV_USE_SELECT
970 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1352 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
971#endif 1353#endif
972 1354
973 ev_init (&sigev, sigcb); 1355 ev_init (&pipeev, pipecb);
974 ev_set_priority (&sigev, EV_MAXPRI); 1356 ev_set_priority (&pipeev, EV_MAXPRI);
975 } 1357 }
976} 1358}
977 1359
978static void noinline 1360static void noinline
979loop_destroy (EV_P) 1361loop_destroy (EV_P)
980{ 1362{
981 int i; 1363 int i;
1364
1365 if (ev_is_active (&pipeev))
1366 {
1367 ev_ref (EV_A); /* signal watcher */
1368 ev_io_stop (EV_A_ &pipeev);
1369
1370#if EV_USE_EVENTFD
1371 if (evfd >= 0)
1372 close (evfd);
1373#endif
1374
1375 if (evpipe [0] >= 0)
1376 {
1377 close (evpipe [0]);
1378 close (evpipe [1]);
1379 }
1380 }
982 1381
983#if EV_USE_INOTIFY 1382#if EV_USE_INOTIFY
984 if (fs_fd >= 0) 1383 if (fs_fd >= 0)
985 close (fs_fd); 1384 close (fs_fd);
986#endif 1385#endif
1009 array_free (pending, [i]); 1408 array_free (pending, [i]);
1010#if EV_IDLE_ENABLE 1409#if EV_IDLE_ENABLE
1011 array_free (idle, [i]); 1410 array_free (idle, [i]);
1012#endif 1411#endif
1013 } 1412 }
1413
1414 ev_free (anfds); anfdmax = 0;
1014 1415
1015 /* have to use the microsoft-never-gets-it-right macro */ 1416 /* have to use the microsoft-never-gets-it-right macro */
1016 array_free (fdchange, EMPTY); 1417 array_free (fdchange, EMPTY);
1017 array_free (timer, EMPTY); 1418 array_free (timer, EMPTY);
1018#if EV_PERIODIC_ENABLE 1419#if EV_PERIODIC_ENABLE
1019 array_free (periodic, EMPTY); 1420 array_free (periodic, EMPTY);
1020#endif 1421#endif
1422#if EV_FORK_ENABLE
1423 array_free (fork, EMPTY);
1424#endif
1021 array_free (prepare, EMPTY); 1425 array_free (prepare, EMPTY);
1022 array_free (check, EMPTY); 1426 array_free (check, EMPTY);
1427#if EV_ASYNC_ENABLE
1428 array_free (async, EMPTY);
1429#endif
1023 1430
1024 backend = 0; 1431 backend = 0;
1025} 1432}
1026 1433
1434#if EV_USE_INOTIFY
1027void inline_size infy_fork (EV_P); 1435void inline_size infy_fork (EV_P);
1436#endif
1028 1437
1029void inline_size 1438void inline_size
1030loop_fork (EV_P) 1439loop_fork (EV_P)
1031{ 1440{
1032#if EV_USE_PORT 1441#if EV_USE_PORT
1040#endif 1449#endif
1041#if EV_USE_INOTIFY 1450#if EV_USE_INOTIFY
1042 infy_fork (EV_A); 1451 infy_fork (EV_A);
1043#endif 1452#endif
1044 1453
1045 if (ev_is_active (&sigev)) 1454 if (ev_is_active (&pipeev))
1046 { 1455 {
1047 /* default loop */ 1456 /* this "locks" the handlers against writing to the pipe */
1457 /* while we modify the fd vars */
1458 gotsig = 1;
1459#if EV_ASYNC_ENABLE
1460 gotasync = 1;
1461#endif
1048 1462
1049 ev_ref (EV_A); 1463 ev_ref (EV_A);
1050 ev_io_stop (EV_A_ &sigev); 1464 ev_io_stop (EV_A_ &pipeev);
1465
1466#if EV_USE_EVENTFD
1467 if (evfd >= 0)
1468 close (evfd);
1469#endif
1470
1471 if (evpipe [0] >= 0)
1472 {
1051 close (sigpipe [0]); 1473 close (evpipe [0]);
1052 close (sigpipe [1]); 1474 close (evpipe [1]);
1475 }
1053 1476
1054 while (pipe (sigpipe))
1055 syserr ("(libev) error creating pipe");
1056
1057 siginit (EV_A); 1477 evpipe_init (EV_A);
1478 /* now iterate over everything, in case we missed something */
1479 pipecb (EV_A_ &pipeev, EV_READ);
1058 } 1480 }
1059 1481
1060 postfork = 0; 1482 postfork = 0;
1061} 1483}
1062 1484
1063#if EV_MULTIPLICITY 1485#if EV_MULTIPLICITY
1486
1064struct ev_loop * 1487struct ev_loop *
1065ev_loop_new (unsigned int flags) 1488ev_loop_new (unsigned int flags)
1066{ 1489{
1067 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1490 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1068 1491
1084} 1507}
1085 1508
1086void 1509void
1087ev_loop_fork (EV_P) 1510ev_loop_fork (EV_P)
1088{ 1511{
1089 postfork = 1; 1512 postfork = 1; /* must be in line with ev_default_fork */
1090} 1513}
1091 1514
1515#if EV_VERIFY
1516static void noinline
1517verify_watcher (EV_P_ W w)
1518{
1519 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1520
1521 if (w->pending)
1522 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1523}
1524
1525static void noinline
1526verify_heap (EV_P_ ANHE *heap, int N)
1527{
1528 int i;
1529
1530 for (i = HEAP0; i < N + HEAP0; ++i)
1531 {
1532 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1533 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1534 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1535
1536 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1537 }
1538}
1539
1540static void noinline
1541array_verify (EV_P_ W *ws, int cnt)
1542{
1543 while (cnt--)
1544 {
1545 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1546 verify_watcher (EV_A_ ws [cnt]);
1547 }
1548}
1549#endif
1550
1551void
1552ev_loop_verify (EV_P)
1553{
1554#if EV_VERIFY
1555 int i;
1556 WL w;
1557
1558 assert (activecnt >= -1);
1559
1560 assert (fdchangemax >= fdchangecnt);
1561 for (i = 0; i < fdchangecnt; ++i)
1562 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1563
1564 assert (anfdmax >= 0);
1565 for (i = 0; i < anfdmax; ++i)
1566 for (w = anfds [i].head; w; w = w->next)
1567 {
1568 verify_watcher (EV_A_ (W)w);
1569 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1570 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1571 }
1572
1573 assert (timermax >= timercnt);
1574 verify_heap (EV_A_ timers, timercnt);
1575
1576#if EV_PERIODIC_ENABLE
1577 assert (periodicmax >= periodiccnt);
1578 verify_heap (EV_A_ periodics, periodiccnt);
1579#endif
1580
1581 for (i = NUMPRI; i--; )
1582 {
1583 assert (pendingmax [i] >= pendingcnt [i]);
1584#if EV_IDLE_ENABLE
1585 assert (idleall >= 0);
1586 assert (idlemax [i] >= idlecnt [i]);
1587 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1588#endif
1589 }
1590
1591#if EV_FORK_ENABLE
1592 assert (forkmax >= forkcnt);
1593 array_verify (EV_A_ (W *)forks, forkcnt);
1594#endif
1595
1596#if EV_ASYNC_ENABLE
1597 assert (asyncmax >= asynccnt);
1598 array_verify (EV_A_ (W *)asyncs, asynccnt);
1599#endif
1600
1601 assert (preparemax >= preparecnt);
1602 array_verify (EV_A_ (W *)prepares, preparecnt);
1603
1604 assert (checkmax >= checkcnt);
1605 array_verify (EV_A_ (W *)checks, checkcnt);
1606
1607# if 0
1608 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1609 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1092#endif 1610# endif
1611#endif
1612}
1613
1614#endif /* multiplicity */
1093 1615
1094#if EV_MULTIPLICITY 1616#if EV_MULTIPLICITY
1095struct ev_loop * 1617struct ev_loop *
1096ev_default_loop_init (unsigned int flags) 1618ev_default_loop_init (unsigned int flags)
1097#else 1619#else
1098int 1620int
1099ev_default_loop (unsigned int flags) 1621ev_default_loop (unsigned int flags)
1100#endif 1622#endif
1101{ 1623{
1102 if (sigpipe [0] == sigpipe [1])
1103 if (pipe (sigpipe))
1104 return 0;
1105
1106 if (!ev_default_loop_ptr) 1624 if (!ev_default_loop_ptr)
1107 { 1625 {
1108#if EV_MULTIPLICITY 1626#if EV_MULTIPLICITY
1109 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1627 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1110#else 1628#else
1113 1631
1114 loop_init (EV_A_ flags); 1632 loop_init (EV_A_ flags);
1115 1633
1116 if (ev_backend (EV_A)) 1634 if (ev_backend (EV_A))
1117 { 1635 {
1118 siginit (EV_A);
1119
1120#ifndef _WIN32 1636#ifndef _WIN32
1121 ev_signal_init (&childev, childcb, SIGCHLD); 1637 ev_signal_init (&childev, childcb, SIGCHLD);
1122 ev_set_priority (&childev, EV_MAXPRI); 1638 ev_set_priority (&childev, EV_MAXPRI);
1123 ev_signal_start (EV_A_ &childev); 1639 ev_signal_start (EV_A_ &childev);
1124 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1640 ev_unref (EV_A); /* child watcher should not keep loop alive */
1141#ifndef _WIN32 1657#ifndef _WIN32
1142 ev_ref (EV_A); /* child watcher */ 1658 ev_ref (EV_A); /* child watcher */
1143 ev_signal_stop (EV_A_ &childev); 1659 ev_signal_stop (EV_A_ &childev);
1144#endif 1660#endif
1145 1661
1146 ev_ref (EV_A); /* signal watcher */
1147 ev_io_stop (EV_A_ &sigev);
1148
1149 close (sigpipe [0]); sigpipe [0] = 0;
1150 close (sigpipe [1]); sigpipe [1] = 0;
1151
1152 loop_destroy (EV_A); 1662 loop_destroy (EV_A);
1153} 1663}
1154 1664
1155void 1665void
1156ev_default_fork (void) 1666ev_default_fork (void)
1158#if EV_MULTIPLICITY 1668#if EV_MULTIPLICITY
1159 struct ev_loop *loop = ev_default_loop_ptr; 1669 struct ev_loop *loop = ev_default_loop_ptr;
1160#endif 1670#endif
1161 1671
1162 if (backend) 1672 if (backend)
1163 postfork = 1; 1673 postfork = 1; /* must be in line with ev_loop_fork */
1164} 1674}
1165 1675
1166/*****************************************************************************/ 1676/*****************************************************************************/
1677
1678void
1679ev_invoke (EV_P_ void *w, int revents)
1680{
1681 EV_CB_INVOKE ((W)w, revents);
1682}
1167 1683
1168void inline_speed 1684void inline_speed
1169call_pending (EV_P) 1685call_pending (EV_P)
1170{ 1686{
1171 int pri; 1687 int pri;
1179 { 1695 {
1180 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1696 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1181 1697
1182 p->w->pending = 0; 1698 p->w->pending = 0;
1183 EV_CB_INVOKE (p->w, p->events); 1699 EV_CB_INVOKE (p->w, p->events);
1700 EV_FREQUENT_CHECK;
1184 } 1701 }
1185 } 1702 }
1186} 1703}
1187
1188void inline_size
1189timers_reify (EV_P)
1190{
1191 while (timercnt && ((WT)timers [0])->at <= mn_now)
1192 {
1193 ev_timer *w = timers [0];
1194
1195 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1196
1197 /* first reschedule or stop timer */
1198 if (w->repeat)
1199 {
1200 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1201
1202 ((WT)w)->at += w->repeat;
1203 if (((WT)w)->at < mn_now)
1204 ((WT)w)->at = mn_now;
1205
1206 downheap ((WT *)timers, timercnt, 0);
1207 }
1208 else
1209 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1210
1211 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1212 }
1213}
1214
1215#if EV_PERIODIC_ENABLE
1216void inline_size
1217periodics_reify (EV_P)
1218{
1219 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1220 {
1221 ev_periodic *w = periodics [0];
1222
1223 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1224
1225 /* first reschedule or stop timer */
1226 if (w->reschedule_cb)
1227 {
1228 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1229 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1230 downheap ((WT *)periodics, periodiccnt, 0);
1231 }
1232 else if (w->interval)
1233 {
1234 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1235 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1236 downheap ((WT *)periodics, periodiccnt, 0);
1237 }
1238 else
1239 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1240
1241 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1242 }
1243}
1244
1245static void noinline
1246periodics_reschedule (EV_P)
1247{
1248 int i;
1249
1250 /* adjust periodics after time jump */
1251 for (i = 0; i < periodiccnt; ++i)
1252 {
1253 ev_periodic *w = periodics [i];
1254
1255 if (w->reschedule_cb)
1256 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1257 else if (w->interval)
1258 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1259 }
1260
1261 /* now rebuild the heap */
1262 for (i = periodiccnt >> 1; i--; )
1263 downheap ((WT *)periodics, periodiccnt, i);
1264}
1265#endif
1266 1704
1267#if EV_IDLE_ENABLE 1705#if EV_IDLE_ENABLE
1268void inline_size 1706void inline_size
1269idle_reify (EV_P) 1707idle_reify (EV_P)
1270{ 1708{
1285 } 1723 }
1286 } 1724 }
1287} 1725}
1288#endif 1726#endif
1289 1727
1290int inline_size 1728void inline_size
1291time_update_monotonic (EV_P) 1729timers_reify (EV_P)
1292{ 1730{
1731 EV_FREQUENT_CHECK;
1732
1733 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1734 {
1735 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1736
1737 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1738
1739 /* first reschedule or stop timer */
1740 if (w->repeat)
1741 {
1742 ev_at (w) += w->repeat;
1743 if (ev_at (w) < mn_now)
1744 ev_at (w) = mn_now;
1745
1746 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1747
1748 ANHE_at_cache (timers [HEAP0]);
1749 downheap (timers, timercnt, HEAP0);
1750 }
1751 else
1752 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1753
1754 EV_FREQUENT_CHECK;
1755 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1756 }
1757}
1758
1759#if EV_PERIODIC_ENABLE
1760void inline_size
1761periodics_reify (EV_P)
1762{
1763 EV_FREQUENT_CHECK;
1764
1765 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1766 {
1767 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1768
1769 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1770
1771 /* first reschedule or stop timer */
1772 if (w->reschedule_cb)
1773 {
1774 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1775
1776 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1777
1778 ANHE_at_cache (periodics [HEAP0]);
1779 downheap (periodics, periodiccnt, HEAP0);
1780 }
1781 else if (w->interval)
1782 {
1783 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1784 /* if next trigger time is not sufficiently in the future, put it there */
1785 /* this might happen because of floating point inexactness */
1786 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1787 {
1788 ev_at (w) += w->interval;
1789
1790 /* if interval is unreasonably low we might still have a time in the past */
1791 /* so correct this. this will make the periodic very inexact, but the user */
1792 /* has effectively asked to get triggered more often than possible */
1793 if (ev_at (w) < ev_rt_now)
1794 ev_at (w) = ev_rt_now;
1795 }
1796
1797 ANHE_at_cache (periodics [HEAP0]);
1798 downheap (periodics, periodiccnt, HEAP0);
1799 }
1800 else
1801 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1802
1803 EV_FREQUENT_CHECK;
1804 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1805 }
1806}
1807
1808static void noinline
1809periodics_reschedule (EV_P)
1810{
1811 int i;
1812
1813 /* adjust periodics after time jump */
1814 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1815 {
1816 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1817
1818 if (w->reschedule_cb)
1819 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1820 else if (w->interval)
1821 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1822
1823 ANHE_at_cache (periodics [i]);
1824 }
1825
1826 reheap (periodics, periodiccnt);
1827}
1828#endif
1829
1830void inline_speed
1831time_update (EV_P_ ev_tstamp max_block)
1832{
1833 int i;
1834
1835#if EV_USE_MONOTONIC
1836 if (expect_true (have_monotonic))
1837 {
1838 ev_tstamp odiff = rtmn_diff;
1839
1293 mn_now = get_clock (); 1840 mn_now = get_clock ();
1294 1841
1842 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1843 /* interpolate in the meantime */
1295 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1844 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1296 { 1845 {
1297 ev_rt_now = rtmn_diff + mn_now; 1846 ev_rt_now = rtmn_diff + mn_now;
1298 return 0; 1847 return;
1299 } 1848 }
1300 else 1849
1301 {
1302 now_floor = mn_now; 1850 now_floor = mn_now;
1303 ev_rt_now = ev_time (); 1851 ev_rt_now = ev_time ();
1304 return 1;
1305 }
1306}
1307 1852
1308void inline_size 1853 /* loop a few times, before making important decisions.
1309time_update (EV_P) 1854 * on the choice of "4": one iteration isn't enough,
1310{ 1855 * in case we get preempted during the calls to
1311 int i; 1856 * ev_time and get_clock. a second call is almost guaranteed
1312 1857 * to succeed in that case, though. and looping a few more times
1313#if EV_USE_MONOTONIC 1858 * doesn't hurt either as we only do this on time-jumps or
1314 if (expect_true (have_monotonic)) 1859 * in the unlikely event of having been preempted here.
1315 { 1860 */
1316 if (time_update_monotonic (EV_A)) 1861 for (i = 4; --i; )
1317 { 1862 {
1318 ev_tstamp odiff = rtmn_diff;
1319
1320 /* loop a few times, before making important decisions.
1321 * on the choice of "4": one iteration isn't enough,
1322 * in case we get preempted during the calls to
1323 * ev_time and get_clock. a second call is almost guaranteed
1324 * to succeed in that case, though. and looping a few more times
1325 * doesn't hurt either as we only do this on time-jumps or
1326 * in the unlikely event of having been preempted here.
1327 */
1328 for (i = 4; --i; )
1329 {
1330 rtmn_diff = ev_rt_now - mn_now; 1863 rtmn_diff = ev_rt_now - mn_now;
1331 1864
1332 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1865 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1333 return; /* all is well */ 1866 return; /* all is well */
1334 1867
1335 ev_rt_now = ev_time (); 1868 ev_rt_now = ev_time ();
1336 mn_now = get_clock (); 1869 mn_now = get_clock ();
1337 now_floor = mn_now; 1870 now_floor = mn_now;
1338 } 1871 }
1339 1872
1340# if EV_PERIODIC_ENABLE 1873# if EV_PERIODIC_ENABLE
1341 periodics_reschedule (EV_A); 1874 periodics_reschedule (EV_A);
1342# endif 1875# endif
1343 /* no timer adjustment, as the monotonic clock doesn't jump */ 1876 /* no timer adjustment, as the monotonic clock doesn't jump */
1344 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1877 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1345 }
1346 } 1878 }
1347 else 1879 else
1348#endif 1880#endif
1349 { 1881 {
1350 ev_rt_now = ev_time (); 1882 ev_rt_now = ev_time ();
1351 1883
1352 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1884 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1353 { 1885 {
1354#if EV_PERIODIC_ENABLE 1886#if EV_PERIODIC_ENABLE
1355 periodics_reschedule (EV_A); 1887 periodics_reschedule (EV_A);
1356#endif 1888#endif
1357
1358 /* adjust timers. this is easy, as the offset is the same for all of them */ 1889 /* adjust timers. this is easy, as the offset is the same for all of them */
1359 for (i = 0; i < timercnt; ++i) 1890 for (i = 0; i < timercnt; ++i)
1891 {
1892 ANHE *he = timers + i + HEAP0;
1360 ((WT)timers [i])->at += ev_rt_now - mn_now; 1893 ANHE_w (*he)->at += ev_rt_now - mn_now;
1894 ANHE_at_cache (*he);
1895 }
1361 } 1896 }
1362 1897
1363 mn_now = ev_rt_now; 1898 mn_now = ev_rt_now;
1364 } 1899 }
1365} 1900}
1374ev_unref (EV_P) 1909ev_unref (EV_P)
1375{ 1910{
1376 --activecnt; 1911 --activecnt;
1377} 1912}
1378 1913
1914void
1915ev_now_update (EV_P)
1916{
1917 time_update (EV_A_ 1e100);
1918}
1919
1379static int loop_done; 1920static int loop_done;
1380 1921
1381void 1922void
1382ev_loop (EV_P_ int flags) 1923ev_loop (EV_P_ int flags)
1383{ 1924{
1384 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1925 loop_done = EVUNLOOP_CANCEL;
1385 ? EVUNLOOP_ONE
1386 : EVUNLOOP_CANCEL;
1387 1926
1388 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1927 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1389 1928
1390 do 1929 do
1391 { 1930 {
1931#if EV_VERIFY >= 2
1932 ev_loop_verify (EV_A);
1933#endif
1934
1392#ifndef _WIN32 1935#ifndef _WIN32
1393 if (expect_false (curpid)) /* penalise the forking check even more */ 1936 if (expect_false (curpid)) /* penalise the forking check even more */
1394 if (expect_false (getpid () != curpid)) 1937 if (expect_false (getpid () != curpid))
1395 { 1938 {
1396 curpid = getpid (); 1939 curpid = getpid ();
1406 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1949 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1407 call_pending (EV_A); 1950 call_pending (EV_A);
1408 } 1951 }
1409#endif 1952#endif
1410 1953
1411 /* queue check watchers (and execute them) */ 1954 /* queue prepare watchers (and execute them) */
1412 if (expect_false (preparecnt)) 1955 if (expect_false (preparecnt))
1413 { 1956 {
1414 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1957 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1415 call_pending (EV_A); 1958 call_pending (EV_A);
1416 } 1959 }
1425 /* update fd-related kernel structures */ 1968 /* update fd-related kernel structures */
1426 fd_reify (EV_A); 1969 fd_reify (EV_A);
1427 1970
1428 /* calculate blocking time */ 1971 /* calculate blocking time */
1429 { 1972 {
1430 ev_tstamp block; 1973 ev_tstamp waittime = 0.;
1974 ev_tstamp sleeptime = 0.;
1431 1975
1432 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1976 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1433 block = 0.; /* do not block at all */
1434 else
1435 { 1977 {
1436 /* update time to cancel out callback processing overhead */ 1978 /* update time to cancel out callback processing overhead */
1437#if EV_USE_MONOTONIC
1438 if (expect_true (have_monotonic))
1439 time_update_monotonic (EV_A); 1979 time_update (EV_A_ 1e100);
1440 else
1441#endif
1442 {
1443 ev_rt_now = ev_time ();
1444 mn_now = ev_rt_now;
1445 }
1446 1980
1447 block = MAX_BLOCKTIME; 1981 waittime = MAX_BLOCKTIME;
1448 1982
1449 if (timercnt) 1983 if (timercnt)
1450 { 1984 {
1451 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1985 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1452 if (block > to) block = to; 1986 if (waittime > to) waittime = to;
1453 } 1987 }
1454 1988
1455#if EV_PERIODIC_ENABLE 1989#if EV_PERIODIC_ENABLE
1456 if (periodiccnt) 1990 if (periodiccnt)
1457 { 1991 {
1458 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1992 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1459 if (block > to) block = to; 1993 if (waittime > to) waittime = to;
1460 } 1994 }
1461#endif 1995#endif
1462 1996
1463 if (expect_false (block < 0.)) block = 0.; 1997 if (expect_false (waittime < timeout_blocktime))
1998 waittime = timeout_blocktime;
1999
2000 sleeptime = waittime - backend_fudge;
2001
2002 if (expect_true (sleeptime > io_blocktime))
2003 sleeptime = io_blocktime;
2004
2005 if (sleeptime)
2006 {
2007 ev_sleep (sleeptime);
2008 waittime -= sleeptime;
2009 }
1464 } 2010 }
1465 2011
1466 ++loop_count; 2012 ++loop_count;
1467 backend_poll (EV_A_ block); 2013 backend_poll (EV_A_ waittime);
2014
2015 /* update ev_rt_now, do magic */
2016 time_update (EV_A_ waittime + sleeptime);
1468 } 2017 }
1469
1470 /* update ev_rt_now, do magic */
1471 time_update (EV_A);
1472 2018
1473 /* queue pending timers and reschedule them */ 2019 /* queue pending timers and reschedule them */
1474 timers_reify (EV_A); /* relative timers called last */ 2020 timers_reify (EV_A); /* relative timers called last */
1475#if EV_PERIODIC_ENABLE 2021#if EV_PERIODIC_ENABLE
1476 periodics_reify (EV_A); /* absolute timers called first */ 2022 periodics_reify (EV_A); /* absolute timers called first */
1484 /* queue check watchers, to be executed first */ 2030 /* queue check watchers, to be executed first */
1485 if (expect_false (checkcnt)) 2031 if (expect_false (checkcnt))
1486 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2032 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1487 2033
1488 call_pending (EV_A); 2034 call_pending (EV_A);
1489
1490 } 2035 }
1491 while (expect_true (activecnt && !loop_done)); 2036 while (expect_true (
2037 activecnt
2038 && !loop_done
2039 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2040 ));
1492 2041
1493 if (loop_done == EVUNLOOP_ONE) 2042 if (loop_done == EVUNLOOP_ONE)
1494 loop_done = EVUNLOOP_CANCEL; 2043 loop_done = EVUNLOOP_CANCEL;
1495} 2044}
1496 2045
1538ev_clear_pending (EV_P_ void *w) 2087ev_clear_pending (EV_P_ void *w)
1539{ 2088{
1540 W w_ = (W)w; 2089 W w_ = (W)w;
1541 int pending = w_->pending; 2090 int pending = w_->pending;
1542 2091
1543 if (!pending) 2092 if (expect_true (pending))
2093 {
2094 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2095 w_->pending = 0;
2096 p->w = 0;
2097 return p->events;
2098 }
2099 else
1544 return 0; 2100 return 0;
1545
1546 w_->pending = 0;
1547 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1548 p->w = 0;
1549
1550 return p->events;
1551} 2101}
1552 2102
1553void inline_size 2103void inline_size
1554pri_adjust (EV_P_ W w) 2104pri_adjust (EV_P_ W w)
1555{ 2105{
1574 w->active = 0; 2124 w->active = 0;
1575} 2125}
1576 2126
1577/*****************************************************************************/ 2127/*****************************************************************************/
1578 2128
1579void 2129void noinline
1580ev_io_start (EV_P_ ev_io *w) 2130ev_io_start (EV_P_ ev_io *w)
1581{ 2131{
1582 int fd = w->fd; 2132 int fd = w->fd;
1583 2133
1584 if (expect_false (ev_is_active (w))) 2134 if (expect_false (ev_is_active (w)))
1585 return; 2135 return;
1586 2136
1587 assert (("ev_io_start called with negative fd", fd >= 0)); 2137 assert (("ev_io_start called with negative fd", fd >= 0));
1588 2138
2139 EV_FREQUENT_CHECK;
2140
1589 ev_start (EV_A_ (W)w, 1); 2141 ev_start (EV_A_ (W)w, 1);
1590 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2142 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1591 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2143 wlist_add (&anfds[fd].head, (WL)w);
1592 2144
1593 fd_change (EV_A_ fd); 2145 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1594} 2146 w->events &= ~EV_IOFDSET;
1595 2147
1596void 2148 EV_FREQUENT_CHECK;
2149}
2150
2151void noinline
1597ev_io_stop (EV_P_ ev_io *w) 2152ev_io_stop (EV_P_ ev_io *w)
1598{ 2153{
1599 clear_pending (EV_A_ (W)w); 2154 clear_pending (EV_A_ (W)w);
1600 if (expect_false (!ev_is_active (w))) 2155 if (expect_false (!ev_is_active (w)))
1601 return; 2156 return;
1602 2157
1603 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2158 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1604 2159
2160 EV_FREQUENT_CHECK;
2161
1605 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2162 wlist_del (&anfds[w->fd].head, (WL)w);
1606 ev_stop (EV_A_ (W)w); 2163 ev_stop (EV_A_ (W)w);
1607 2164
1608 fd_change (EV_A_ w->fd); 2165 fd_change (EV_A_ w->fd, 1);
1609}
1610 2166
1611void 2167 EV_FREQUENT_CHECK;
2168}
2169
2170void noinline
1612ev_timer_start (EV_P_ ev_timer *w) 2171ev_timer_start (EV_P_ ev_timer *w)
1613{ 2172{
1614 if (expect_false (ev_is_active (w))) 2173 if (expect_false (ev_is_active (w)))
1615 return; 2174 return;
1616 2175
1617 ((WT)w)->at += mn_now; 2176 ev_at (w) += mn_now;
1618 2177
1619 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2178 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1620 2179
2180 EV_FREQUENT_CHECK;
2181
2182 ++timercnt;
1621 ev_start (EV_A_ (W)w, ++timercnt); 2183 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1622 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2184 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1623 timers [timercnt - 1] = w; 2185 ANHE_w (timers [ev_active (w)]) = (WT)w;
1624 upheap ((WT *)timers, timercnt - 1); 2186 ANHE_at_cache (timers [ev_active (w)]);
2187 upheap (timers, ev_active (w));
1625 2188
2189 EV_FREQUENT_CHECK;
2190
1626 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2191 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1627} 2192}
1628 2193
1629void 2194void noinline
1630ev_timer_stop (EV_P_ ev_timer *w) 2195ev_timer_stop (EV_P_ ev_timer *w)
1631{ 2196{
1632 clear_pending (EV_A_ (W)w); 2197 clear_pending (EV_A_ (W)w);
1633 if (expect_false (!ev_is_active (w))) 2198 if (expect_false (!ev_is_active (w)))
1634 return; 2199 return;
1635 2200
1636 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2201 EV_FREQUENT_CHECK;
1637 2202
1638 { 2203 {
1639 int active = ((W)w)->active; 2204 int active = ev_active (w);
1640 2205
2206 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2207
2208 --timercnt;
2209
1641 if (expect_true (--active < --timercnt)) 2210 if (expect_true (active < timercnt + HEAP0))
1642 { 2211 {
1643 timers [active] = timers [timercnt]; 2212 timers [active] = timers [timercnt + HEAP0];
1644 adjustheap ((WT *)timers, timercnt, active); 2213 adjustheap (timers, timercnt, active);
1645 } 2214 }
1646 } 2215 }
1647 2216
1648 ((WT)w)->at -= mn_now; 2217 EV_FREQUENT_CHECK;
2218
2219 ev_at (w) -= mn_now;
1649 2220
1650 ev_stop (EV_A_ (W)w); 2221 ev_stop (EV_A_ (W)w);
1651} 2222}
1652 2223
1653void 2224void noinline
1654ev_timer_again (EV_P_ ev_timer *w) 2225ev_timer_again (EV_P_ ev_timer *w)
1655{ 2226{
2227 EV_FREQUENT_CHECK;
2228
1656 if (ev_is_active (w)) 2229 if (ev_is_active (w))
1657 { 2230 {
1658 if (w->repeat) 2231 if (w->repeat)
1659 { 2232 {
1660 ((WT)w)->at = mn_now + w->repeat; 2233 ev_at (w) = mn_now + w->repeat;
2234 ANHE_at_cache (timers [ev_active (w)]);
1661 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2235 adjustheap (timers, timercnt, ev_active (w));
1662 } 2236 }
1663 else 2237 else
1664 ev_timer_stop (EV_A_ w); 2238 ev_timer_stop (EV_A_ w);
1665 } 2239 }
1666 else if (w->repeat) 2240 else if (w->repeat)
1667 { 2241 {
1668 w->at = w->repeat; 2242 ev_at (w) = w->repeat;
1669 ev_timer_start (EV_A_ w); 2243 ev_timer_start (EV_A_ w);
1670 } 2244 }
2245
2246 EV_FREQUENT_CHECK;
1671} 2247}
1672 2248
1673#if EV_PERIODIC_ENABLE 2249#if EV_PERIODIC_ENABLE
1674void 2250void noinline
1675ev_periodic_start (EV_P_ ev_periodic *w) 2251ev_periodic_start (EV_P_ ev_periodic *w)
1676{ 2252{
1677 if (expect_false (ev_is_active (w))) 2253 if (expect_false (ev_is_active (w)))
1678 return; 2254 return;
1679 2255
1680 if (w->reschedule_cb) 2256 if (w->reschedule_cb)
1681 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2257 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1682 else if (w->interval) 2258 else if (w->interval)
1683 { 2259 {
1684 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2260 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1685 /* this formula differs from the one in periodic_reify because we do not always round up */ 2261 /* this formula differs from the one in periodic_reify because we do not always round up */
1686 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2262 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1687 } 2263 }
2264 else
2265 ev_at (w) = w->offset;
1688 2266
2267 EV_FREQUENT_CHECK;
2268
2269 ++periodiccnt;
1689 ev_start (EV_A_ (W)w, ++periodiccnt); 2270 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1690 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2271 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1691 periodics [periodiccnt - 1] = w; 2272 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1692 upheap ((WT *)periodics, periodiccnt - 1); 2273 ANHE_at_cache (periodics [ev_active (w)]);
2274 upheap (periodics, ev_active (w));
1693 2275
2276 EV_FREQUENT_CHECK;
2277
1694 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2278 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1695} 2279}
1696 2280
1697void 2281void noinline
1698ev_periodic_stop (EV_P_ ev_periodic *w) 2282ev_periodic_stop (EV_P_ ev_periodic *w)
1699{ 2283{
1700 clear_pending (EV_A_ (W)w); 2284 clear_pending (EV_A_ (W)w);
1701 if (expect_false (!ev_is_active (w))) 2285 if (expect_false (!ev_is_active (w)))
1702 return; 2286 return;
1703 2287
1704 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2288 EV_FREQUENT_CHECK;
1705 2289
1706 { 2290 {
1707 int active = ((W)w)->active; 2291 int active = ev_active (w);
1708 2292
2293 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2294
2295 --periodiccnt;
2296
1709 if (expect_true (--active < --periodiccnt)) 2297 if (expect_true (active < periodiccnt + HEAP0))
1710 { 2298 {
1711 periodics [active] = periodics [periodiccnt]; 2299 periodics [active] = periodics [periodiccnt + HEAP0];
1712 adjustheap ((WT *)periodics, periodiccnt, active); 2300 adjustheap (periodics, periodiccnt, active);
1713 } 2301 }
1714 } 2302 }
1715 2303
2304 EV_FREQUENT_CHECK;
2305
1716 ev_stop (EV_A_ (W)w); 2306 ev_stop (EV_A_ (W)w);
1717} 2307}
1718 2308
1719void 2309void noinline
1720ev_periodic_again (EV_P_ ev_periodic *w) 2310ev_periodic_again (EV_P_ ev_periodic *w)
1721{ 2311{
1722 /* TODO: use adjustheap and recalculation */ 2312 /* TODO: use adjustheap and recalculation */
1723 ev_periodic_stop (EV_A_ w); 2313 ev_periodic_stop (EV_A_ w);
1724 ev_periodic_start (EV_A_ w); 2314 ev_periodic_start (EV_A_ w);
1727 2317
1728#ifndef SA_RESTART 2318#ifndef SA_RESTART
1729# define SA_RESTART 0 2319# define SA_RESTART 0
1730#endif 2320#endif
1731 2321
1732void 2322void noinline
1733ev_signal_start (EV_P_ ev_signal *w) 2323ev_signal_start (EV_P_ ev_signal *w)
1734{ 2324{
1735#if EV_MULTIPLICITY 2325#if EV_MULTIPLICITY
1736 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2326 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1737#endif 2327#endif
1738 if (expect_false (ev_is_active (w))) 2328 if (expect_false (ev_is_active (w)))
1739 return; 2329 return;
1740 2330
1741 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2331 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1742 2332
2333 evpipe_init (EV_A);
2334
2335 EV_FREQUENT_CHECK;
2336
2337 {
2338#ifndef _WIN32
2339 sigset_t full, prev;
2340 sigfillset (&full);
2341 sigprocmask (SIG_SETMASK, &full, &prev);
2342#endif
2343
2344 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2345
2346#ifndef _WIN32
2347 sigprocmask (SIG_SETMASK, &prev, 0);
2348#endif
2349 }
2350
1743 ev_start (EV_A_ (W)w, 1); 2351 ev_start (EV_A_ (W)w, 1);
1744 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1745 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2352 wlist_add (&signals [w->signum - 1].head, (WL)w);
1746 2353
1747 if (!((WL)w)->next) 2354 if (!((WL)w)->next)
1748 { 2355 {
1749#if _WIN32 2356#if _WIN32
1750 signal (w->signum, sighandler); 2357 signal (w->signum, ev_sighandler);
1751#else 2358#else
1752 struct sigaction sa; 2359 struct sigaction sa;
1753 sa.sa_handler = sighandler; 2360 sa.sa_handler = ev_sighandler;
1754 sigfillset (&sa.sa_mask); 2361 sigfillset (&sa.sa_mask);
1755 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2362 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1756 sigaction (w->signum, &sa, 0); 2363 sigaction (w->signum, &sa, 0);
1757#endif 2364#endif
1758 } 2365 }
1759}
1760 2366
1761void 2367 EV_FREQUENT_CHECK;
2368}
2369
2370void noinline
1762ev_signal_stop (EV_P_ ev_signal *w) 2371ev_signal_stop (EV_P_ ev_signal *w)
1763{ 2372{
1764 clear_pending (EV_A_ (W)w); 2373 clear_pending (EV_A_ (W)w);
1765 if (expect_false (!ev_is_active (w))) 2374 if (expect_false (!ev_is_active (w)))
1766 return; 2375 return;
1767 2376
2377 EV_FREQUENT_CHECK;
2378
1768 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2379 wlist_del (&signals [w->signum - 1].head, (WL)w);
1769 ev_stop (EV_A_ (W)w); 2380 ev_stop (EV_A_ (W)w);
1770 2381
1771 if (!signals [w->signum - 1].head) 2382 if (!signals [w->signum - 1].head)
1772 signal (w->signum, SIG_DFL); 2383 signal (w->signum, SIG_DFL);
2384
2385 EV_FREQUENT_CHECK;
1773} 2386}
1774 2387
1775void 2388void
1776ev_child_start (EV_P_ ev_child *w) 2389ev_child_start (EV_P_ ev_child *w)
1777{ 2390{
1779 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2392 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1780#endif 2393#endif
1781 if (expect_false (ev_is_active (w))) 2394 if (expect_false (ev_is_active (w)))
1782 return; 2395 return;
1783 2396
2397 EV_FREQUENT_CHECK;
2398
1784 ev_start (EV_A_ (W)w, 1); 2399 ev_start (EV_A_ (W)w, 1);
1785 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2400 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2401
2402 EV_FREQUENT_CHECK;
1786} 2403}
1787 2404
1788void 2405void
1789ev_child_stop (EV_P_ ev_child *w) 2406ev_child_stop (EV_P_ ev_child *w)
1790{ 2407{
1791 clear_pending (EV_A_ (W)w); 2408 clear_pending (EV_A_ (W)w);
1792 if (expect_false (!ev_is_active (w))) 2409 if (expect_false (!ev_is_active (w)))
1793 return; 2410 return;
1794 2411
2412 EV_FREQUENT_CHECK;
2413
1795 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2414 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1796 ev_stop (EV_A_ (W)w); 2415 ev_stop (EV_A_ (W)w);
2416
2417 EV_FREQUENT_CHECK;
1797} 2418}
1798 2419
1799#if EV_STAT_ENABLE 2420#if EV_STAT_ENABLE
1800 2421
1801# ifdef _WIN32 2422# ifdef _WIN32
1819 if (w->wd < 0) 2440 if (w->wd < 0)
1820 { 2441 {
1821 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2442 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1822 2443
1823 /* monitor some parent directory for speedup hints */ 2444 /* monitor some parent directory for speedup hints */
2445 /* note that exceeding the hardcoded limit is not a correctness issue, */
2446 /* but an efficiency issue only */
1824 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2447 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1825 { 2448 {
1826 char path [4096]; 2449 char path [4096];
1827 strcpy (path, w->path); 2450 strcpy (path, w->path);
1828 2451
1954 } 2577 }
1955 2578
1956 } 2579 }
1957} 2580}
1958 2581
2582#endif
2583
2584#ifdef _WIN32
2585# define EV_LSTAT(p,b) _stati64 (p, b)
2586#else
2587# define EV_LSTAT(p,b) lstat (p, b)
1959#endif 2588#endif
1960 2589
1961void 2590void
1962ev_stat_stat (EV_P_ ev_stat *w) 2591ev_stat_stat (EV_P_ ev_stat *w)
1963{ 2592{
2027 else 2656 else
2028#endif 2657#endif
2029 ev_timer_start (EV_A_ &w->timer); 2658 ev_timer_start (EV_A_ &w->timer);
2030 2659
2031 ev_start (EV_A_ (W)w, 1); 2660 ev_start (EV_A_ (W)w, 1);
2661
2662 EV_FREQUENT_CHECK;
2032} 2663}
2033 2664
2034void 2665void
2035ev_stat_stop (EV_P_ ev_stat *w) 2666ev_stat_stop (EV_P_ ev_stat *w)
2036{ 2667{
2037 clear_pending (EV_A_ (W)w); 2668 clear_pending (EV_A_ (W)w);
2038 if (expect_false (!ev_is_active (w))) 2669 if (expect_false (!ev_is_active (w)))
2039 return; 2670 return;
2040 2671
2672 EV_FREQUENT_CHECK;
2673
2041#if EV_USE_INOTIFY 2674#if EV_USE_INOTIFY
2042 infy_del (EV_A_ w); 2675 infy_del (EV_A_ w);
2043#endif 2676#endif
2044 ev_timer_stop (EV_A_ &w->timer); 2677 ev_timer_stop (EV_A_ &w->timer);
2045 2678
2046 ev_stop (EV_A_ (W)w); 2679 ev_stop (EV_A_ (W)w);
2680
2681 EV_FREQUENT_CHECK;
2047} 2682}
2048#endif 2683#endif
2049 2684
2050#if EV_IDLE_ENABLE 2685#if EV_IDLE_ENABLE
2051void 2686void
2053{ 2688{
2054 if (expect_false (ev_is_active (w))) 2689 if (expect_false (ev_is_active (w)))
2055 return; 2690 return;
2056 2691
2057 pri_adjust (EV_A_ (W)w); 2692 pri_adjust (EV_A_ (W)w);
2693
2694 EV_FREQUENT_CHECK;
2058 2695
2059 { 2696 {
2060 int active = ++idlecnt [ABSPRI (w)]; 2697 int active = ++idlecnt [ABSPRI (w)];
2061 2698
2062 ++idleall; 2699 ++idleall;
2063 ev_start (EV_A_ (W)w, active); 2700 ev_start (EV_A_ (W)w, active);
2064 2701
2065 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2702 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2066 idles [ABSPRI (w)][active - 1] = w; 2703 idles [ABSPRI (w)][active - 1] = w;
2067 } 2704 }
2705
2706 EV_FREQUENT_CHECK;
2068} 2707}
2069 2708
2070void 2709void
2071ev_idle_stop (EV_P_ ev_idle *w) 2710ev_idle_stop (EV_P_ ev_idle *w)
2072{ 2711{
2073 clear_pending (EV_A_ (W)w); 2712 clear_pending (EV_A_ (W)w);
2074 if (expect_false (!ev_is_active (w))) 2713 if (expect_false (!ev_is_active (w)))
2075 return; 2714 return;
2076 2715
2716 EV_FREQUENT_CHECK;
2717
2077 { 2718 {
2078 int active = ((W)w)->active; 2719 int active = ev_active (w);
2079 2720
2080 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2721 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2081 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2722 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2082 2723
2083 ev_stop (EV_A_ (W)w); 2724 ev_stop (EV_A_ (W)w);
2084 --idleall; 2725 --idleall;
2085 } 2726 }
2727
2728 EV_FREQUENT_CHECK;
2086} 2729}
2087#endif 2730#endif
2088 2731
2089void 2732void
2090ev_prepare_start (EV_P_ ev_prepare *w) 2733ev_prepare_start (EV_P_ ev_prepare *w)
2091{ 2734{
2092 if (expect_false (ev_is_active (w))) 2735 if (expect_false (ev_is_active (w)))
2093 return; 2736 return;
2737
2738 EV_FREQUENT_CHECK;
2094 2739
2095 ev_start (EV_A_ (W)w, ++preparecnt); 2740 ev_start (EV_A_ (W)w, ++preparecnt);
2096 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2741 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2097 prepares [preparecnt - 1] = w; 2742 prepares [preparecnt - 1] = w;
2743
2744 EV_FREQUENT_CHECK;
2098} 2745}
2099 2746
2100void 2747void
2101ev_prepare_stop (EV_P_ ev_prepare *w) 2748ev_prepare_stop (EV_P_ ev_prepare *w)
2102{ 2749{
2103 clear_pending (EV_A_ (W)w); 2750 clear_pending (EV_A_ (W)w);
2104 if (expect_false (!ev_is_active (w))) 2751 if (expect_false (!ev_is_active (w)))
2105 return; 2752 return;
2106 2753
2754 EV_FREQUENT_CHECK;
2755
2107 { 2756 {
2108 int active = ((W)w)->active; 2757 int active = ev_active (w);
2758
2109 prepares [active - 1] = prepares [--preparecnt]; 2759 prepares [active - 1] = prepares [--preparecnt];
2110 ((W)prepares [active - 1])->active = active; 2760 ev_active (prepares [active - 1]) = active;
2111 } 2761 }
2112 2762
2113 ev_stop (EV_A_ (W)w); 2763 ev_stop (EV_A_ (W)w);
2764
2765 EV_FREQUENT_CHECK;
2114} 2766}
2115 2767
2116void 2768void
2117ev_check_start (EV_P_ ev_check *w) 2769ev_check_start (EV_P_ ev_check *w)
2118{ 2770{
2119 if (expect_false (ev_is_active (w))) 2771 if (expect_false (ev_is_active (w)))
2120 return; 2772 return;
2773
2774 EV_FREQUENT_CHECK;
2121 2775
2122 ev_start (EV_A_ (W)w, ++checkcnt); 2776 ev_start (EV_A_ (W)w, ++checkcnt);
2123 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2777 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2124 checks [checkcnt - 1] = w; 2778 checks [checkcnt - 1] = w;
2779
2780 EV_FREQUENT_CHECK;
2125} 2781}
2126 2782
2127void 2783void
2128ev_check_stop (EV_P_ ev_check *w) 2784ev_check_stop (EV_P_ ev_check *w)
2129{ 2785{
2130 clear_pending (EV_A_ (W)w); 2786 clear_pending (EV_A_ (W)w);
2131 if (expect_false (!ev_is_active (w))) 2787 if (expect_false (!ev_is_active (w)))
2132 return; 2788 return;
2133 2789
2790 EV_FREQUENT_CHECK;
2791
2134 { 2792 {
2135 int active = ((W)w)->active; 2793 int active = ev_active (w);
2794
2136 checks [active - 1] = checks [--checkcnt]; 2795 checks [active - 1] = checks [--checkcnt];
2137 ((W)checks [active - 1])->active = active; 2796 ev_active (checks [active - 1]) = active;
2138 } 2797 }
2139 2798
2140 ev_stop (EV_A_ (W)w); 2799 ev_stop (EV_A_ (W)w);
2800
2801 EV_FREQUENT_CHECK;
2141} 2802}
2142 2803
2143#if EV_EMBED_ENABLE 2804#if EV_EMBED_ENABLE
2144void noinline 2805void noinline
2145ev_embed_sweep (EV_P_ ev_embed *w) 2806ev_embed_sweep (EV_P_ ev_embed *w)
2146{ 2807{
2147 ev_loop (w->loop, EVLOOP_NONBLOCK); 2808 ev_loop (w->other, EVLOOP_NONBLOCK);
2148} 2809}
2149 2810
2150static void 2811static void
2151embed_cb (EV_P_ ev_io *io, int revents) 2812embed_io_cb (EV_P_ ev_io *io, int revents)
2152{ 2813{
2153 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2814 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2154 2815
2155 if (ev_cb (w)) 2816 if (ev_cb (w))
2156 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2817 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2157 else 2818 else
2158 ev_embed_sweep (loop, w); 2819 ev_loop (w->other, EVLOOP_NONBLOCK);
2159} 2820}
2821
2822static void
2823embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2824{
2825 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2826
2827 {
2828 struct ev_loop *loop = w->other;
2829
2830 while (fdchangecnt)
2831 {
2832 fd_reify (EV_A);
2833 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2834 }
2835 }
2836}
2837
2838static void
2839embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2840{
2841 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2842
2843 {
2844 struct ev_loop *loop = w->other;
2845
2846 ev_loop_fork (EV_A);
2847 }
2848}
2849
2850#if 0
2851static void
2852embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2853{
2854 ev_idle_stop (EV_A_ idle);
2855}
2856#endif
2160 2857
2161void 2858void
2162ev_embed_start (EV_P_ ev_embed *w) 2859ev_embed_start (EV_P_ ev_embed *w)
2163{ 2860{
2164 if (expect_false (ev_is_active (w))) 2861 if (expect_false (ev_is_active (w)))
2165 return; 2862 return;
2166 2863
2167 { 2864 {
2168 struct ev_loop *loop = w->loop; 2865 struct ev_loop *loop = w->other;
2169 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2866 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2170 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2867 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2171 } 2868 }
2869
2870 EV_FREQUENT_CHECK;
2172 2871
2173 ev_set_priority (&w->io, ev_priority (w)); 2872 ev_set_priority (&w->io, ev_priority (w));
2174 ev_io_start (EV_A_ &w->io); 2873 ev_io_start (EV_A_ &w->io);
2175 2874
2875 ev_prepare_init (&w->prepare, embed_prepare_cb);
2876 ev_set_priority (&w->prepare, EV_MINPRI);
2877 ev_prepare_start (EV_A_ &w->prepare);
2878
2879 ev_fork_init (&w->fork, embed_fork_cb);
2880 ev_fork_start (EV_A_ &w->fork);
2881
2882 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2883
2176 ev_start (EV_A_ (W)w, 1); 2884 ev_start (EV_A_ (W)w, 1);
2885
2886 EV_FREQUENT_CHECK;
2177} 2887}
2178 2888
2179void 2889void
2180ev_embed_stop (EV_P_ ev_embed *w) 2890ev_embed_stop (EV_P_ ev_embed *w)
2181{ 2891{
2182 clear_pending (EV_A_ (W)w); 2892 clear_pending (EV_A_ (W)w);
2183 if (expect_false (!ev_is_active (w))) 2893 if (expect_false (!ev_is_active (w)))
2184 return; 2894 return;
2185 2895
2896 EV_FREQUENT_CHECK;
2897
2186 ev_io_stop (EV_A_ &w->io); 2898 ev_io_stop (EV_A_ &w->io);
2899 ev_prepare_stop (EV_A_ &w->prepare);
2900 ev_fork_stop (EV_A_ &w->fork);
2187 2901
2188 ev_stop (EV_A_ (W)w); 2902 EV_FREQUENT_CHECK;
2189} 2903}
2190#endif 2904#endif
2191 2905
2192#if EV_FORK_ENABLE 2906#if EV_FORK_ENABLE
2193void 2907void
2194ev_fork_start (EV_P_ ev_fork *w) 2908ev_fork_start (EV_P_ ev_fork *w)
2195{ 2909{
2196 if (expect_false (ev_is_active (w))) 2910 if (expect_false (ev_is_active (w)))
2197 return; 2911 return;
2912
2913 EV_FREQUENT_CHECK;
2198 2914
2199 ev_start (EV_A_ (W)w, ++forkcnt); 2915 ev_start (EV_A_ (W)w, ++forkcnt);
2200 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2916 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2201 forks [forkcnt - 1] = w; 2917 forks [forkcnt - 1] = w;
2918
2919 EV_FREQUENT_CHECK;
2202} 2920}
2203 2921
2204void 2922void
2205ev_fork_stop (EV_P_ ev_fork *w) 2923ev_fork_stop (EV_P_ ev_fork *w)
2206{ 2924{
2207 clear_pending (EV_A_ (W)w); 2925 clear_pending (EV_A_ (W)w);
2208 if (expect_false (!ev_is_active (w))) 2926 if (expect_false (!ev_is_active (w)))
2209 return; 2927 return;
2210 2928
2929 EV_FREQUENT_CHECK;
2930
2211 { 2931 {
2212 int active = ((W)w)->active; 2932 int active = ev_active (w);
2933
2213 forks [active - 1] = forks [--forkcnt]; 2934 forks [active - 1] = forks [--forkcnt];
2214 ((W)forks [active - 1])->active = active; 2935 ev_active (forks [active - 1]) = active;
2215 } 2936 }
2216 2937
2217 ev_stop (EV_A_ (W)w); 2938 ev_stop (EV_A_ (W)w);
2939
2940 EV_FREQUENT_CHECK;
2941}
2942#endif
2943
2944#if EV_ASYNC_ENABLE
2945void
2946ev_async_start (EV_P_ ev_async *w)
2947{
2948 if (expect_false (ev_is_active (w)))
2949 return;
2950
2951 evpipe_init (EV_A);
2952
2953 EV_FREQUENT_CHECK;
2954
2955 ev_start (EV_A_ (W)w, ++asynccnt);
2956 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2957 asyncs [asynccnt - 1] = w;
2958
2959 EV_FREQUENT_CHECK;
2960}
2961
2962void
2963ev_async_stop (EV_P_ ev_async *w)
2964{
2965 clear_pending (EV_A_ (W)w);
2966 if (expect_false (!ev_is_active (w)))
2967 return;
2968
2969 EV_FREQUENT_CHECK;
2970
2971 {
2972 int active = ev_active (w);
2973
2974 asyncs [active - 1] = asyncs [--asynccnt];
2975 ev_active (asyncs [active - 1]) = active;
2976 }
2977
2978 ev_stop (EV_A_ (W)w);
2979
2980 EV_FREQUENT_CHECK;
2981}
2982
2983void
2984ev_async_send (EV_P_ ev_async *w)
2985{
2986 w->sent = 1;
2987 evpipe_write (EV_A_ &gotasync);
2218} 2988}
2219#endif 2989#endif
2220 2990
2221/*****************************************************************************/ 2991/*****************************************************************************/
2222 2992
2232once_cb (EV_P_ struct ev_once *once, int revents) 3002once_cb (EV_P_ struct ev_once *once, int revents)
2233{ 3003{
2234 void (*cb)(int revents, void *arg) = once->cb; 3004 void (*cb)(int revents, void *arg) = once->cb;
2235 void *arg = once->arg; 3005 void *arg = once->arg;
2236 3006
2237 ev_io_stop (EV_A_ &once->io); 3007 ev_io_stop (EV_A_ &once->io);
2238 ev_timer_stop (EV_A_ &once->to); 3008 ev_timer_stop (EV_A_ &once->to);
2239 ev_free (once); 3009 ev_free (once);
2240 3010
2241 cb (revents, arg); 3011 cb (revents, arg);
2242} 3012}
2243 3013
2244static void 3014static void
2245once_cb_io (EV_P_ ev_io *w, int revents) 3015once_cb_io (EV_P_ ev_io *w, int revents)
2246{ 3016{
2247 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3017 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3018
3019 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2248} 3020}
2249 3021
2250static void 3022static void
2251once_cb_to (EV_P_ ev_timer *w, int revents) 3023once_cb_to (EV_P_ ev_timer *w, int revents)
2252{ 3024{
2253 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3025 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3026
3027 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2254} 3028}
2255 3029
2256void 3030void
2257ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3031ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2258{ 3032{
2280 ev_timer_set (&once->to, timeout, 0.); 3054 ev_timer_set (&once->to, timeout, 0.);
2281 ev_timer_start (EV_A_ &once->to); 3055 ev_timer_start (EV_A_ &once->to);
2282 } 3056 }
2283} 3057}
2284 3058
3059#if EV_MULTIPLICITY
3060 #include "ev_wrap.h"
3061#endif
3062
2285#ifdef __cplusplus 3063#ifdef __cplusplus
2286} 3064}
2287#endif 3065#endif
2288 3066

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines