ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.168 by root, Sat Dec 8 14:12:07 2007 UTC vs.
Revision 1.181 by root, Wed Dec 12 00:17:08 2007 UTC

216# include <sys/inotify.h> 216# include <sys/inotify.h>
217#endif 217#endif
218 218
219/**/ 219/**/
220 220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000.
227 * Better solutions welcome.
228 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
230
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 234
225#if __GNUC__ >= 3 235#if __GNUC__ >= 3
226# define expect(expr,value) __builtin_expect ((expr),(value)) 236# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 237# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 238#else
236# define expect(expr,value) (expr) 239# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 240# define noinline
241# if __STDC_VERSION__ < 199901L
242# define inline
243# endif
240#endif 244#endif
241 245
242#define expect_false(expr) expect ((expr) != 0, 0) 246#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 247#define expect_true(expr) expect ((expr) != 0, 1)
248#define inline_size static inline
249
250#if EV_MINIMAL
251# define inline_speed static noinline
252#else
253# define inline_speed static inline
254#endif
244 255
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 258
248#define EMPTY /* required for microsofts broken pseudo-c compiler */ 259#define EMPTY /* required for microsofts broken pseudo-c compiler */
417 } 428 }
418 429
419 return ncur; 430 return ncur;
420} 431}
421 432
422inline_speed void * 433static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 434array_realloc (int elem, void *base, int *cur, int cnt)
424{ 435{
425 *cur = array_nextsize (elem, *cur, cnt); 436 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 437 return ev_realloc (base, elem * *cur);
427} 438}
452 463
453void noinline 464void noinline
454ev_feed_event (EV_P_ void *w, int revents) 465ev_feed_event (EV_P_ void *w, int revents)
455{ 466{
456 W w_ = (W)w; 467 W w_ = (W)w;
468 int pri = ABSPRI (w_);
457 469
458 if (expect_false (w_->pending)) 470 if (expect_false (w_->pending))
471 pendings [pri][w_->pending - 1].events |= revents;
472 else
459 { 473 {
474 w_->pending = ++pendingcnt [pri];
475 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
476 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 477 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 478 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 479}
469 480
470void inline_size 481void inline_speed
471queue_events (EV_P_ W *events, int eventcnt, int type) 482queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 483{
473 int i; 484 int i;
474 485
475 for (i = 0; i < eventcnt; ++i) 486 for (i = 0; i < eventcnt; ++i)
627void inline_speed 638void inline_speed
628upheap (WT *heap, int k) 639upheap (WT *heap, int k)
629{ 640{
630 WT w = heap [k]; 641 WT w = heap [k];
631 642
632 while (k && heap [k >> 1]->at > w->at) 643 while (k)
633 { 644 {
645 int p = (k - 1) >> 1;
646
647 if (heap [p]->at <= w->at)
648 break;
649
634 heap [k] = heap [k >> 1]; 650 heap [k] = heap [p];
635 ((W)heap [k])->active = k + 1; 651 ((W)heap [k])->active = k + 1;
636 k >>= 1; 652 k = p;
637 } 653 }
638 654
639 heap [k] = w; 655 heap [k] = w;
640 ((W)heap [k])->active = k + 1; 656 ((W)heap [k])->active = k + 1;
641
642} 657}
643 658
644void inline_speed 659void inline_speed
645downheap (WT *heap, int N, int k) 660downheap (WT *heap, int N, int k)
646{ 661{
647 WT w = heap [k]; 662 WT w = heap [k];
648 663
649 while (k < (N >> 1)) 664 for (;;)
650 { 665 {
651 int j = k << 1; 666 int c = (k << 1) + 1;
652 667
653 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 668 if (c >= N)
654 ++j;
655
656 if (w->at <= heap [j]->at)
657 break; 669 break;
658 670
671 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
672 ? 1 : 0;
673
674 if (w->at <= heap [c]->at)
675 break;
676
659 heap [k] = heap [j]; 677 heap [k] = heap [c];
660 ((W)heap [k])->active = k + 1; 678 ((W)heap [k])->active = k + 1;
679
661 k = j; 680 k = c;
662 } 681 }
663 682
664 heap [k] = w; 683 heap [k] = w;
665 ((W)heap [k])->active = k + 1; 684 ((W)heap [k])->active = k + 1;
666} 685}
748 for (signum = signalmax; signum--; ) 767 for (signum = signalmax; signum--; )
749 if (signals [signum].gotsig) 768 if (signals [signum].gotsig)
750 ev_feed_signal_event (EV_A_ signum + 1); 769 ev_feed_signal_event (EV_A_ signum + 1);
751} 770}
752 771
753void inline_size 772void inline_speed
754fd_intern (int fd) 773fd_intern (int fd)
755{ 774{
756#ifdef _WIN32 775#ifdef _WIN32
757 int arg = 1; 776 int arg = 1;
758 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 777 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1195void inline_size 1214void inline_size
1196timers_reify (EV_P) 1215timers_reify (EV_P)
1197{ 1216{
1198 while (timercnt && ((WT)timers [0])->at <= mn_now) 1217 while (timercnt && ((WT)timers [0])->at <= mn_now)
1199 { 1218 {
1200 ev_timer *w = timers [0]; 1219 ev_timer *w = (ev_timer *)timers [0];
1201 1220
1202 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1221 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1203 1222
1204 /* first reschedule or stop timer */ 1223 /* first reschedule or stop timer */
1205 if (w->repeat) 1224 if (w->repeat)
1208 1227
1209 ((WT)w)->at += w->repeat; 1228 ((WT)w)->at += w->repeat;
1210 if (((WT)w)->at < mn_now) 1229 if (((WT)w)->at < mn_now)
1211 ((WT)w)->at = mn_now; 1230 ((WT)w)->at = mn_now;
1212 1231
1213 downheap ((WT *)timers, timercnt, 0); 1232 downheap (timers, timercnt, 0);
1214 } 1233 }
1215 else 1234 else
1216 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1235 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1217 1236
1218 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1237 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1223void inline_size 1242void inline_size
1224periodics_reify (EV_P) 1243periodics_reify (EV_P)
1225{ 1244{
1226 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1245 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1227 { 1246 {
1228 ev_periodic *w = periodics [0]; 1247 ev_periodic *w = (ev_periodic *)periodics [0];
1229 1248
1230 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1249 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1231 1250
1232 /* first reschedule or stop timer */ 1251 /* first reschedule or stop timer */
1233 if (w->reschedule_cb) 1252 if (w->reschedule_cb)
1234 { 1253 {
1235 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1254 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1236 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1255 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1237 downheap ((WT *)periodics, periodiccnt, 0); 1256 downheap (periodics, periodiccnt, 0);
1238 } 1257 }
1239 else if (w->interval) 1258 else if (w->interval)
1240 { 1259 {
1241 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1260 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1261 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1242 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1262 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1243 downheap ((WT *)periodics, periodiccnt, 0); 1263 downheap (periodics, periodiccnt, 0);
1244 } 1264 }
1245 else 1265 else
1246 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1266 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1247 1267
1248 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1268 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1255 int i; 1275 int i;
1256 1276
1257 /* adjust periodics after time jump */ 1277 /* adjust periodics after time jump */
1258 for (i = 0; i < periodiccnt; ++i) 1278 for (i = 0; i < periodiccnt; ++i)
1259 { 1279 {
1260 ev_periodic *w = periodics [i]; 1280 ev_periodic *w = (ev_periodic *)periodics [i];
1261 1281
1262 if (w->reschedule_cb) 1282 if (w->reschedule_cb)
1263 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1283 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1264 else if (w->interval) 1284 else if (w->interval)
1265 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1285 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1266 } 1286 }
1267 1287
1268 /* now rebuild the heap */ 1288 /* now rebuild the heap */
1269 for (i = periodiccnt >> 1; i--; ) 1289 for (i = periodiccnt >> 1; i--; )
1270 downheap ((WT *)periodics, periodiccnt, i); 1290 downheap (periodics, periodiccnt, i);
1271} 1291}
1272#endif 1292#endif
1273 1293
1274#if EV_IDLE_ENABLE 1294#if EV_IDLE_ENABLE
1275void inline_size 1295void inline_size
1292 } 1312 }
1293 } 1313 }
1294} 1314}
1295#endif 1315#endif
1296 1316
1297int inline_size 1317void inline_speed
1298time_update_monotonic (EV_P) 1318time_update (EV_P_ ev_tstamp max_block)
1299{ 1319{
1320 int i;
1321
1322#if EV_USE_MONOTONIC
1323 if (expect_true (have_monotonic))
1324 {
1325 ev_tstamp odiff = rtmn_diff;
1326
1300 mn_now = get_clock (); 1327 mn_now = get_clock ();
1301 1328
1329 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1330 /* interpolate in the meantime */
1302 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1331 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1303 { 1332 {
1304 ev_rt_now = rtmn_diff + mn_now; 1333 ev_rt_now = rtmn_diff + mn_now;
1305 return 0; 1334 return;
1306 } 1335 }
1307 else 1336
1308 {
1309 now_floor = mn_now; 1337 now_floor = mn_now;
1310 ev_rt_now = ev_time (); 1338 ev_rt_now = ev_time ();
1311 return 1;
1312 }
1313}
1314 1339
1315void inline_size 1340 /* loop a few times, before making important decisions.
1316time_update (EV_P) 1341 * on the choice of "4": one iteration isn't enough,
1317{ 1342 * in case we get preempted during the calls to
1318 int i; 1343 * ev_time and get_clock. a second call is almost guaranteed
1319 1344 * to succeed in that case, though. and looping a few more times
1320#if EV_USE_MONOTONIC 1345 * doesn't hurt either as we only do this on time-jumps or
1321 if (expect_true (have_monotonic)) 1346 * in the unlikely event of having been preempted here.
1322 { 1347 */
1323 if (time_update_monotonic (EV_A)) 1348 for (i = 4; --i; )
1324 { 1349 {
1325 ev_tstamp odiff = rtmn_diff;
1326
1327 /* loop a few times, before making important decisions.
1328 * on the choice of "4": one iteration isn't enough,
1329 * in case we get preempted during the calls to
1330 * ev_time and get_clock. a second call is almost guaranteed
1331 * to succeed in that case, though. and looping a few more times
1332 * doesn't hurt either as we only do this on time-jumps or
1333 * in the unlikely event of having been preempted here.
1334 */
1335 for (i = 4; --i; )
1336 {
1337 rtmn_diff = ev_rt_now - mn_now; 1350 rtmn_diff = ev_rt_now - mn_now;
1338 1351
1339 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1352 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1340 return; /* all is well */ 1353 return; /* all is well */
1341 1354
1342 ev_rt_now = ev_time (); 1355 ev_rt_now = ev_time ();
1343 mn_now = get_clock (); 1356 mn_now = get_clock ();
1344 now_floor = mn_now; 1357 now_floor = mn_now;
1345 } 1358 }
1346 1359
1347# if EV_PERIODIC_ENABLE 1360# if EV_PERIODIC_ENABLE
1348 periodics_reschedule (EV_A); 1361 periodics_reschedule (EV_A);
1349# endif 1362# endif
1350 /* no timer adjustment, as the monotonic clock doesn't jump */ 1363 /* no timer adjustment, as the monotonic clock doesn't jump */
1351 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1364 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1352 }
1353 } 1365 }
1354 else 1366 else
1355#endif 1367#endif
1356 { 1368 {
1357 ev_rt_now = ev_time (); 1369 ev_rt_now = ev_time ();
1358 1370
1359 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1371 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1360 { 1372 {
1361#if EV_PERIODIC_ENABLE 1373#if EV_PERIODIC_ENABLE
1362 periodics_reschedule (EV_A); 1374 periodics_reschedule (EV_A);
1363#endif 1375#endif
1364
1365 /* adjust timers. this is easy, as the offset is the same for all of them */ 1376 /* adjust timers. this is easy, as the offset is the same for all of them */
1366 for (i = 0; i < timercnt; ++i) 1377 for (i = 0; i < timercnt; ++i)
1367 ((WT)timers [i])->at += ev_rt_now - mn_now; 1378 ((WT)timers [i])->at += ev_rt_now - mn_now;
1368 } 1379 }
1369 1380
1413 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1424 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1414 call_pending (EV_A); 1425 call_pending (EV_A);
1415 } 1426 }
1416#endif 1427#endif
1417 1428
1418 /* queue check watchers (and execute them) */ 1429 /* queue prepare watchers (and execute them) */
1419 if (expect_false (preparecnt)) 1430 if (expect_false (preparecnt))
1420 { 1431 {
1421 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1432 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1422 call_pending (EV_A); 1433 call_pending (EV_A);
1423 } 1434 }
1439 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1450 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1440 block = 0.; /* do not block at all */ 1451 block = 0.; /* do not block at all */
1441 else 1452 else
1442 { 1453 {
1443 /* update time to cancel out callback processing overhead */ 1454 /* update time to cancel out callback processing overhead */
1444#if EV_USE_MONOTONIC
1445 if (expect_true (have_monotonic))
1446 time_update_monotonic (EV_A); 1455 time_update (EV_A_ 1e100);
1447 else
1448#endif
1449 {
1450 ev_rt_now = ev_time ();
1451 mn_now = ev_rt_now;
1452 }
1453 1456
1454 block = MAX_BLOCKTIME; 1457 block = MAX_BLOCKTIME;
1455 1458
1456 if (timercnt) 1459 if (timercnt)
1457 { 1460 {
1470 if (expect_false (block < 0.)) block = 0.; 1473 if (expect_false (block < 0.)) block = 0.;
1471 } 1474 }
1472 1475
1473 ++loop_count; 1476 ++loop_count;
1474 backend_poll (EV_A_ block); 1477 backend_poll (EV_A_ block);
1478
1479 /* update ev_rt_now, do magic */
1480 time_update (EV_A_ block);
1475 } 1481 }
1476
1477 /* update ev_rt_now, do magic */
1478 time_update (EV_A);
1479 1482
1480 /* queue pending timers and reschedule them */ 1483 /* queue pending timers and reschedule them */
1481 timers_reify (EV_A); /* relative timers called last */ 1484 timers_reify (EV_A); /* relative timers called last */
1482#if EV_PERIODIC_ENABLE 1485#if EV_PERIODIC_ENABLE
1483 periodics_reify (EV_A); /* absolute timers called first */ 1486 periodics_reify (EV_A); /* absolute timers called first */
1545ev_clear_pending (EV_P_ void *w) 1548ev_clear_pending (EV_P_ void *w)
1546{ 1549{
1547 W w_ = (W)w; 1550 W w_ = (W)w;
1548 int pending = w_->pending; 1551 int pending = w_->pending;
1549 1552
1550 if (!pending) 1553 if (expect_true (pending))
1554 {
1555 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1556 w_->pending = 0;
1557 p->w = 0;
1558 return p->events;
1559 }
1560 else
1551 return 0; 1561 return 0;
1552
1553 w_->pending = 0;
1554 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1555 p->w = 0;
1556
1557 return p->events;
1558} 1562}
1559 1563
1560void inline_size 1564void inline_size
1561pri_adjust (EV_P_ W w) 1565pri_adjust (EV_P_ W w)
1562{ 1566{
1581 w->active = 0; 1585 w->active = 0;
1582} 1586}
1583 1587
1584/*****************************************************************************/ 1588/*****************************************************************************/
1585 1589
1586void 1590void noinline
1587ev_io_start (EV_P_ ev_io *w) 1591ev_io_start (EV_P_ ev_io *w)
1588{ 1592{
1589 int fd = w->fd; 1593 int fd = w->fd;
1590 1594
1591 if (expect_false (ev_is_active (w))) 1595 if (expect_false (ev_is_active (w)))
1598 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1602 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1599 1603
1600 fd_change (EV_A_ fd); 1604 fd_change (EV_A_ fd);
1601} 1605}
1602 1606
1603void 1607void noinline
1604ev_io_stop (EV_P_ ev_io *w) 1608ev_io_stop (EV_P_ ev_io *w)
1605{ 1609{
1606 clear_pending (EV_A_ (W)w); 1610 clear_pending (EV_A_ (W)w);
1607 if (expect_false (!ev_is_active (w))) 1611 if (expect_false (!ev_is_active (w)))
1608 return; 1612 return;
1613 ev_stop (EV_A_ (W)w); 1617 ev_stop (EV_A_ (W)w);
1614 1618
1615 fd_change (EV_A_ w->fd); 1619 fd_change (EV_A_ w->fd);
1616} 1620}
1617 1621
1618void 1622void noinline
1619ev_timer_start (EV_P_ ev_timer *w) 1623ev_timer_start (EV_P_ ev_timer *w)
1620{ 1624{
1621 if (expect_false (ev_is_active (w))) 1625 if (expect_false (ev_is_active (w)))
1622 return; 1626 return;
1623 1627
1624 ((WT)w)->at += mn_now; 1628 ((WT)w)->at += mn_now;
1625 1629
1626 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1630 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1627 1631
1628 ev_start (EV_A_ (W)w, ++timercnt); 1632 ev_start (EV_A_ (W)w, ++timercnt);
1629 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1633 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1630 timers [timercnt - 1] = w; 1634 timers [timercnt - 1] = (WT)w;
1631 upheap ((WT *)timers, timercnt - 1); 1635 upheap (timers, timercnt - 1);
1632 1636
1633 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1637 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1634} 1638}
1635 1639
1636void 1640void noinline
1637ev_timer_stop (EV_P_ ev_timer *w) 1641ev_timer_stop (EV_P_ ev_timer *w)
1638{ 1642{
1639 clear_pending (EV_A_ (W)w); 1643 clear_pending (EV_A_ (W)w);
1640 if (expect_false (!ev_is_active (w))) 1644 if (expect_false (!ev_is_active (w)))
1641 return; 1645 return;
1642 1646
1643 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1647 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1644 1648
1645 { 1649 {
1646 int active = ((W)w)->active; 1650 int active = ((W)w)->active;
1647 1651
1648 if (expect_true (--active < --timercnt)) 1652 if (expect_true (--active < --timercnt))
1649 { 1653 {
1650 timers [active] = timers [timercnt]; 1654 timers [active] = timers [timercnt];
1651 adjustheap ((WT *)timers, timercnt, active); 1655 adjustheap (timers, timercnt, active);
1652 } 1656 }
1653 } 1657 }
1654 1658
1655 ((WT)w)->at -= mn_now; 1659 ((WT)w)->at -= mn_now;
1656 1660
1657 ev_stop (EV_A_ (W)w); 1661 ev_stop (EV_A_ (W)w);
1658} 1662}
1659 1663
1660void 1664void noinline
1661ev_timer_again (EV_P_ ev_timer *w) 1665ev_timer_again (EV_P_ ev_timer *w)
1662{ 1666{
1663 if (ev_is_active (w)) 1667 if (ev_is_active (w))
1664 { 1668 {
1665 if (w->repeat) 1669 if (w->repeat)
1666 { 1670 {
1667 ((WT)w)->at = mn_now + w->repeat; 1671 ((WT)w)->at = mn_now + w->repeat;
1668 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1672 adjustheap (timers, timercnt, ((W)w)->active - 1);
1669 } 1673 }
1670 else 1674 else
1671 ev_timer_stop (EV_A_ w); 1675 ev_timer_stop (EV_A_ w);
1672 } 1676 }
1673 else if (w->repeat) 1677 else if (w->repeat)
1676 ev_timer_start (EV_A_ w); 1680 ev_timer_start (EV_A_ w);
1677 } 1681 }
1678} 1682}
1679 1683
1680#if EV_PERIODIC_ENABLE 1684#if EV_PERIODIC_ENABLE
1681void 1685void noinline
1682ev_periodic_start (EV_P_ ev_periodic *w) 1686ev_periodic_start (EV_P_ ev_periodic *w)
1683{ 1687{
1684 if (expect_false (ev_is_active (w))) 1688 if (expect_false (ev_is_active (w)))
1685 return; 1689 return;
1686 1690
1688 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1692 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1689 else if (w->interval) 1693 else if (w->interval)
1690 { 1694 {
1691 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1695 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1692 /* this formula differs from the one in periodic_reify because we do not always round up */ 1696 /* this formula differs from the one in periodic_reify because we do not always round up */
1693 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1697 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1694 } 1698 }
1699 else
1700 ((WT)w)->at = w->offset;
1695 1701
1696 ev_start (EV_A_ (W)w, ++periodiccnt); 1702 ev_start (EV_A_ (W)w, ++periodiccnt);
1697 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1703 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1698 periodics [periodiccnt - 1] = w; 1704 periodics [periodiccnt - 1] = (WT)w;
1699 upheap ((WT *)periodics, periodiccnt - 1); 1705 upheap (periodics, periodiccnt - 1);
1700 1706
1701 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1707 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1702} 1708}
1703 1709
1704void 1710void noinline
1705ev_periodic_stop (EV_P_ ev_periodic *w) 1711ev_periodic_stop (EV_P_ ev_periodic *w)
1706{ 1712{
1707 clear_pending (EV_A_ (W)w); 1713 clear_pending (EV_A_ (W)w);
1708 if (expect_false (!ev_is_active (w))) 1714 if (expect_false (!ev_is_active (w)))
1709 return; 1715 return;
1710 1716
1711 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1717 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1712 1718
1713 { 1719 {
1714 int active = ((W)w)->active; 1720 int active = ((W)w)->active;
1715 1721
1716 if (expect_true (--active < --periodiccnt)) 1722 if (expect_true (--active < --periodiccnt))
1717 { 1723 {
1718 periodics [active] = periodics [periodiccnt]; 1724 periodics [active] = periodics [periodiccnt];
1719 adjustheap ((WT *)periodics, periodiccnt, active); 1725 adjustheap (periodics, periodiccnt, active);
1720 } 1726 }
1721 } 1727 }
1722 1728
1723 ev_stop (EV_A_ (W)w); 1729 ev_stop (EV_A_ (W)w);
1724} 1730}
1725 1731
1726void 1732void noinline
1727ev_periodic_again (EV_P_ ev_periodic *w) 1733ev_periodic_again (EV_P_ ev_periodic *w)
1728{ 1734{
1729 /* TODO: use adjustheap and recalculation */ 1735 /* TODO: use adjustheap and recalculation */
1730 ev_periodic_stop (EV_A_ w); 1736 ev_periodic_stop (EV_A_ w);
1731 ev_periodic_start (EV_A_ w); 1737 ev_periodic_start (EV_A_ w);
1734 1740
1735#ifndef SA_RESTART 1741#ifndef SA_RESTART
1736# define SA_RESTART 0 1742# define SA_RESTART 0
1737#endif 1743#endif
1738 1744
1739void 1745void noinline
1740ev_signal_start (EV_P_ ev_signal *w) 1746ev_signal_start (EV_P_ ev_signal *w)
1741{ 1747{
1742#if EV_MULTIPLICITY 1748#if EV_MULTIPLICITY
1743 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1749 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1744#endif 1750#endif
1745 if (expect_false (ev_is_active (w))) 1751 if (expect_false (ev_is_active (w)))
1746 return; 1752 return;
1747 1753
1748 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1754 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1749 1755
1756 {
1757#ifndef _WIN32
1758 sigset_t full, prev;
1759 sigfillset (&full);
1760 sigprocmask (SIG_SETMASK, &full, &prev);
1761#endif
1762
1763 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1764
1765#ifndef _WIN32
1766 sigprocmask (SIG_SETMASK, &prev, 0);
1767#endif
1768 }
1769
1750 ev_start (EV_A_ (W)w, 1); 1770 ev_start (EV_A_ (W)w, 1);
1751 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1752 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1771 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1753 1772
1754 if (!((WL)w)->next) 1773 if (!((WL)w)->next)
1755 { 1774 {
1756#if _WIN32 1775#if _WIN32
1763 sigaction (w->signum, &sa, 0); 1782 sigaction (w->signum, &sa, 0);
1764#endif 1783#endif
1765 } 1784 }
1766} 1785}
1767 1786
1768void 1787void noinline
1769ev_signal_stop (EV_P_ ev_signal *w) 1788ev_signal_stop (EV_P_ ev_signal *w)
1770{ 1789{
1771 clear_pending (EV_A_ (W)w); 1790 clear_pending (EV_A_ (W)w);
1772 if (expect_false (!ev_is_active (w))) 1791 if (expect_false (!ev_is_active (w)))
1773 return; 1792 return;

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines