ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.168 by root, Sat Dec 8 14:12:07 2007 UTC vs.
Revision 1.219 by root, Wed Apr 2 10:55:39 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
51# ifndef EV_USE_MONOTONIC 59# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 60# define EV_USE_MONOTONIC 0
53# endif 61# endif
54# ifndef EV_USE_REALTIME 62# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 63# define EV_USE_REALTIME 0
64# endif
65# endif
66
67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
56# endif 72# endif
57# endif 73# endif
58 74
59# ifndef EV_USE_SELECT 75# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 76# if HAVE_SELECT && HAVE_SYS_SELECT_H
146 162
147#ifndef EV_USE_REALTIME 163#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 164# define EV_USE_REALTIME 0
149#endif 165#endif
150 166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
169#endif
170
151#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
153#endif 173#endif
154 174
155#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
202#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
205#endif 225#endif
206 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
207#if EV_SELECT_IS_WINSOCKET 242#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 243# include <winsock.h>
209#endif 244#endif
210 245
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
219/**/ 246/**/
247
248/*
249 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 257
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 261
225#if __GNUC__ >= 3 262#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 264# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 265#else
236# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif
240#endif 271#endif
241 272
242#define expect_false(expr) expect ((expr) != 0, 0) 273#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 274#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline
276
277#if EV_MINIMAL
278# define inline_speed static noinline
279#else
280# define inline_speed static inline
281#endif
244 282
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 285
248#define EMPTY /* required for microsofts broken pseudo-c compiler */ 286#define EMPTY /* required for microsofts broken pseudo-c compiler */
250 288
251typedef ev_watcher *W; 289typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
254 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
256 298
257#ifdef _WIN32 299#ifdef _WIN32
258# include "ev_win32.c" 300# include "ev_win32.c"
259#endif 301#endif
260 302
396{ 438{
397 return ev_rt_now; 439 return ev_rt_now;
398} 440}
399#endif 441#endif
400 442
443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep ((unsigned long)(delay * 1e3));
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
401int inline_size 470int inline_size
402array_nextsize (int elem, int cur, int cnt) 471array_nextsize (int elem, int cur, int cnt)
403{ 472{
404 int ncur = cur + 1; 473 int ncur = cur + 1;
405 474
417 } 486 }
418 487
419 return ncur; 488 return ncur;
420} 489}
421 490
422inline_speed void * 491static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 492array_realloc (int elem, void *base, int *cur, int cnt)
424{ 493{
425 *cur = array_nextsize (elem, *cur, cnt); 494 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 495 return ev_realloc (base, elem * *cur);
427} 496}
452 521
453void noinline 522void noinline
454ev_feed_event (EV_P_ void *w, int revents) 523ev_feed_event (EV_P_ void *w, int revents)
455{ 524{
456 W w_ = (W)w; 525 W w_ = (W)w;
526 int pri = ABSPRI (w_);
457 527
458 if (expect_false (w_->pending)) 528 if (expect_false (w_->pending))
529 pendings [pri][w_->pending - 1].events |= revents;
530 else
459 { 531 {
532 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 535 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 536 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 537}
469 538
470void inline_size 539void inline_speed
471queue_events (EV_P_ W *events, int eventcnt, int type) 540queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 541{
473 int i; 542 int i;
474 543
475 for (i = 0; i < eventcnt; ++i) 544 for (i = 0; i < eventcnt; ++i)
522 { 591 {
523 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
524 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
525 ev_io *w; 594 ev_io *w;
526 595
527 int events = 0; 596 unsigned char events = 0;
528 597
529 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
530 events |= w->events; 599 events |= (unsigned char)w->events;
531 600
532#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
533 if (events) 602 if (events)
534 { 603 {
535 unsigned long argp; 604 unsigned long argp;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
536 anfd->handle = _get_osfhandle (fd); 608 anfd->handle = _get_osfhandle (fd);
609 #endif
537 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
538 } 611 }
539#endif 612#endif
540 613
614 {
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
541 anfd->reify = 0; 618 anfd->reify = 0;
542
543 backend_modify (EV_A_ fd, anfd->events, events);
544 anfd->events = events; 619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events);
623 }
545 } 624 }
546 625
547 fdchangecnt = 0; 626 fdchangecnt = 0;
548} 627}
549 628
550void inline_size 629void inline_size
551fd_change (EV_P_ int fd) 630fd_change (EV_P_ int fd, int flags)
552{ 631{
553 if (expect_false (anfds [fd].reify)) 632 unsigned char reify = anfds [fd].reify;
554 return;
555
556 anfds [fd].reify = 1; 633 anfds [fd].reify |= flags;
557 634
635 if (expect_true (!reify))
636 {
558 ++fdchangecnt; 637 ++fdchangecnt;
559 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
560 fdchanges [fdchangecnt - 1] = fd; 639 fdchanges [fdchangecnt - 1] = fd;
640 }
561} 641}
562 642
563void inline_speed 643void inline_speed
564fd_kill (EV_P_ int fd) 644fd_kill (EV_P_ int fd)
565{ 645{
616 696
617 for (fd = 0; fd < anfdmax; ++fd) 697 for (fd = 0; fd < anfdmax; ++fd)
618 if (anfds [fd].events) 698 if (anfds [fd].events)
619 { 699 {
620 anfds [fd].events = 0; 700 anfds [fd].events = 0;
621 fd_change (EV_A_ fd); 701 fd_change (EV_A_ fd, EV_IOFDSET | 1);
622 } 702 }
623} 703}
624 704
625/*****************************************************************************/ 705/*****************************************************************************/
626 706
627void inline_speed 707void inline_speed
628upheap (WT *heap, int k) 708upheap (WT *heap, int k)
629{ 709{
630 WT w = heap [k]; 710 WT w = heap [k];
631 711
632 while (k && heap [k >> 1]->at > w->at) 712 while (k)
633 { 713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
634 heap [k] = heap [k >> 1]; 719 heap [k] = heap [p];
635 ((W)heap [k])->active = k + 1; 720 ((W)heap [k])->active = k + 1;
636 k >>= 1; 721 k = p;
637 } 722 }
638 723
639 heap [k] = w; 724 heap [k] = w;
640 ((W)heap [k])->active = k + 1; 725 ((W)heap [k])->active = k + 1;
641
642} 726}
643 727
644void inline_speed 728void inline_speed
645downheap (WT *heap, int N, int k) 729downheap (WT *heap, int N, int k)
646{ 730{
647 WT w = heap [k]; 731 WT w = heap [k];
648 732
649 while (k < (N >> 1)) 733 for (;;)
650 { 734 {
651 int j = k << 1; 735 int c = (k << 1) + 1;
652 736
653 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 737 if (c >= N)
654 ++j;
655
656 if (w->at <= heap [j]->at)
657 break; 738 break;
658 739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
659 heap [k] = heap [j]; 746 heap [k] = heap [c];
660 ((W)heap [k])->active = k + 1; 747 ((W)heap [k])->active = k + 1;
748
661 k = j; 749 k = c;
662 } 750 }
663 751
664 heap [k] = w; 752 heap [k] = w;
665 ((W)heap [k])->active = k + 1; 753 ((W)heap [k])->active = k + 1;
666} 754}
675/*****************************************************************************/ 763/*****************************************************************************/
676 764
677typedef struct 765typedef struct
678{ 766{
679 WL head; 767 WL head;
680 sig_atomic_t volatile gotsig; 768 EV_ATOMIC_T gotsig;
681} ANSIG; 769} ANSIG;
682 770
683static ANSIG *signals; 771static ANSIG *signals;
684static int signalmax; 772static int signalmax;
685 773
686static int sigpipe [2]; 774static EV_ATOMIC_T gotsig;
687static sig_atomic_t volatile gotsig;
688static ev_io sigev;
689 775
690void inline_size 776void inline_size
691signals_init (ANSIG *base, int count) 777signals_init (ANSIG *base, int count)
692{ 778{
693 while (count--) 779 while (count--)
697 783
698 ++base; 784 ++base;
699 } 785 }
700} 786}
701 787
702static void 788/*****************************************************************************/
703sighandler (int signum)
704{
705#if _WIN32
706 signal (signum, sighandler);
707#endif
708 789
709 signals [signum - 1].gotsig = 1;
710
711 if (!gotsig)
712 {
713 int old_errno = errno;
714 gotsig = 1;
715 write (sigpipe [1], &signum, 1);
716 errno = old_errno;
717 }
718}
719
720void noinline
721ev_feed_signal_event (EV_P_ int signum)
722{
723 WL w;
724
725#if EV_MULTIPLICITY
726 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
727#endif
728
729 --signum;
730
731 if (signum < 0 || signum >= signalmax)
732 return;
733
734 signals [signum].gotsig = 0;
735
736 for (w = signals [signum].head; w; w = w->next)
737 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
738}
739
740static void
741sigcb (EV_P_ ev_io *iow, int revents)
742{
743 int signum;
744
745 read (sigpipe [0], &revents, 1);
746 gotsig = 0;
747
748 for (signum = signalmax; signum--; )
749 if (signals [signum].gotsig)
750 ev_feed_signal_event (EV_A_ signum + 1);
751}
752
753void inline_size 790void inline_speed
754fd_intern (int fd) 791fd_intern (int fd)
755{ 792{
756#ifdef _WIN32 793#ifdef _WIN32
757 int arg = 1; 794 int arg = 1;
758 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
761 fcntl (fd, F_SETFL, O_NONBLOCK); 798 fcntl (fd, F_SETFL, O_NONBLOCK);
762#endif 799#endif
763} 800}
764 801
765static void noinline 802static void noinline
766siginit (EV_P) 803evpipe_init (EV_P)
767{ 804{
805 if (!ev_is_active (&pipeev))
806 {
807 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe");
809
768 fd_intern (sigpipe [0]); 810 fd_intern (evpipe [0]);
769 fd_intern (sigpipe [1]); 811 fd_intern (evpipe [1]);
770 812
771 ev_io_set (&sigev, sigpipe [0], EV_READ); 813 ev_io_set (&pipeev, evpipe [0], EV_READ);
772 ev_io_start (EV_A_ &sigev); 814 ev_io_start (EV_A_ &pipeev);
773 ev_unref (EV_A); /* child watcher should not keep loop alive */ 815 ev_unref (EV_A); /* watcher should not keep loop alive */
816 }
817}
818
819void inline_size
820evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{
822 if (!*flag)
823 {
824 int old_errno = errno; /* save errno because write might clobber it */
825
826 *flag = 1;
827 write (evpipe [1], &old_errno, 1);
828
829 errno = old_errno;
830 }
831}
832
833static void
834pipecb (EV_P_ ev_io *iow, int revents)
835{
836 {
837 int dummy;
838 read (evpipe [0], &dummy, 1);
839 }
840
841 if (gotsig && ev_is_default_loop (EV_A))
842 {
843 int signum;
844 gotsig = 0;
845
846 for (signum = signalmax; signum--; )
847 if (signals [signum].gotsig)
848 ev_feed_signal_event (EV_A_ signum + 1);
849 }
850
851#if EV_ASYNC_ENABLE
852 if (gotasync)
853 {
854 int i;
855 gotasync = 0;
856
857 for (i = asynccnt; i--; )
858 if (asyncs [i]->sent)
859 {
860 asyncs [i]->sent = 0;
861 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
862 }
863 }
864#endif
774} 865}
775 866
776/*****************************************************************************/ 867/*****************************************************************************/
777 868
869static void
870ev_sighandler (int signum)
871{
872#if EV_MULTIPLICITY
873 struct ev_loop *loop = &default_loop_struct;
874#endif
875
876#if _WIN32
877 signal (signum, ev_sighandler);
878#endif
879
880 signals [signum - 1].gotsig = 1;
881 evpipe_write (EV_A_ &gotsig);
882}
883
884void noinline
885ev_feed_signal_event (EV_P_ int signum)
886{
887 WL w;
888
889#if EV_MULTIPLICITY
890 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
891#endif
892
893 --signum;
894
895 if (signum < 0 || signum >= signalmax)
896 return;
897
898 signals [signum].gotsig = 0;
899
900 for (w = signals [signum].head; w; w = w->next)
901 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
902}
903
904/*****************************************************************************/
905
778static ev_child *childs [EV_PID_HASHSIZE]; 906static WL childs [EV_PID_HASHSIZE];
779 907
780#ifndef _WIN32 908#ifndef _WIN32
781 909
782static ev_signal childev; 910static ev_signal childev;
783 911
912#ifndef WIFCONTINUED
913# define WIFCONTINUED(status) 0
914#endif
915
784void inline_speed 916void inline_speed
785child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 917child_reap (EV_P_ int chain, int pid, int status)
786{ 918{
787 ev_child *w; 919 ev_child *w;
920 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
788 921
789 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 922 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
923 {
790 if (w->pid == pid || !w->pid) 924 if ((w->pid == pid || !w->pid)
925 && (!traced || (w->flags & 1)))
791 { 926 {
792 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 927 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
793 w->rpid = pid; 928 w->rpid = pid;
794 w->rstatus = status; 929 w->rstatus = status;
795 ev_feed_event (EV_A_ (W)w, EV_CHILD); 930 ev_feed_event (EV_A_ (W)w, EV_CHILD);
796 } 931 }
932 }
797} 933}
798 934
799#ifndef WCONTINUED 935#ifndef WCONTINUED
800# define WCONTINUED 0 936# define WCONTINUED 0
801#endif 937#endif
810 if (!WCONTINUED 946 if (!WCONTINUED
811 || errno != EINVAL 947 || errno != EINVAL
812 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 948 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
813 return; 949 return;
814 950
815 /* make sure we are called again until all childs have been reaped */ 951 /* make sure we are called again until all children have been reaped */
816 /* we need to do it this way so that the callback gets called before we continue */ 952 /* we need to do it this way so that the callback gets called before we continue */
817 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 953 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
818 954
819 child_reap (EV_A_ sw, pid, pid, status); 955 child_reap (EV_A_ pid, pid, status);
820 if (EV_PID_HASHSIZE > 1) 956 if (EV_PID_HASHSIZE > 1)
821 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 957 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
822} 958}
823 959
824#endif 960#endif
825 961
826/*****************************************************************************/ 962/*****************************************************************************/
898} 1034}
899 1035
900unsigned int 1036unsigned int
901ev_embeddable_backends (void) 1037ev_embeddable_backends (void)
902{ 1038{
903 return EVBACKEND_EPOLL 1039 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
904 | EVBACKEND_KQUEUE 1040
905 | EVBACKEND_PORT; 1041 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1042 /* please fix it and tell me how to detect the fix */
1043 flags &= ~EVBACKEND_EPOLL;
1044
1045 return flags;
906} 1046}
907 1047
908unsigned int 1048unsigned int
909ev_backend (EV_P) 1049ev_backend (EV_P)
910{ 1050{
913 1053
914unsigned int 1054unsigned int
915ev_loop_count (EV_P) 1055ev_loop_count (EV_P)
916{ 1056{
917 return loop_count; 1057 return loop_count;
1058}
1059
1060void
1061ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1062{
1063 io_blocktime = interval;
1064}
1065
1066void
1067ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1068{
1069 timeout_blocktime = interval;
918} 1070}
919 1071
920static void noinline 1072static void noinline
921loop_init (EV_P_ unsigned int flags) 1073loop_init (EV_P_ unsigned int flags)
922{ 1074{
928 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1080 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
929 have_monotonic = 1; 1081 have_monotonic = 1;
930 } 1082 }
931#endif 1083#endif
932 1084
933 ev_rt_now = ev_time (); 1085 ev_rt_now = ev_time ();
934 mn_now = get_clock (); 1086 mn_now = get_clock ();
935 now_floor = mn_now; 1087 now_floor = mn_now;
936 rtmn_diff = ev_rt_now - mn_now; 1088 rtmn_diff = ev_rt_now - mn_now;
1089
1090 io_blocktime = 0.;
1091 timeout_blocktime = 0.;
1092 backend = 0;
1093 backend_fd = -1;
1094 gotasync = 0;
1095#if EV_USE_INOTIFY
1096 fs_fd = -2;
1097#endif
937 1098
938 /* pid check not overridable via env */ 1099 /* pid check not overridable via env */
939#ifndef _WIN32 1100#ifndef _WIN32
940 if (flags & EVFLAG_FORKCHECK) 1101 if (flags & EVFLAG_FORKCHECK)
941 curpid = getpid (); 1102 curpid = getpid ();
947 flags = atoi (getenv ("LIBEV_FLAGS")); 1108 flags = atoi (getenv ("LIBEV_FLAGS"));
948 1109
949 if (!(flags & 0x0000ffffUL)) 1110 if (!(flags & 0x0000ffffUL))
950 flags |= ev_recommended_backends (); 1111 flags |= ev_recommended_backends ();
951 1112
952 backend = 0;
953 backend_fd = -1;
954#if EV_USE_INOTIFY
955 fs_fd = -2;
956#endif
957
958#if EV_USE_PORT 1113#if EV_USE_PORT
959 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1114 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
960#endif 1115#endif
961#if EV_USE_KQUEUE 1116#if EV_USE_KQUEUE
962 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1117 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
969#endif 1124#endif
970#if EV_USE_SELECT 1125#if EV_USE_SELECT
971 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1126 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
972#endif 1127#endif
973 1128
974 ev_init (&sigev, sigcb); 1129 ev_init (&pipeev, pipecb);
975 ev_set_priority (&sigev, EV_MAXPRI); 1130 ev_set_priority (&pipeev, EV_MAXPRI);
976 } 1131 }
977} 1132}
978 1133
979static void noinline 1134static void noinline
980loop_destroy (EV_P) 1135loop_destroy (EV_P)
981{ 1136{
982 int i; 1137 int i;
1138
1139 if (ev_is_active (&pipeev))
1140 {
1141 ev_ref (EV_A); /* signal watcher */
1142 ev_io_stop (EV_A_ &pipeev);
1143
1144 close (evpipe [0]); evpipe [0] = 0;
1145 close (evpipe [1]); evpipe [1] = 0;
1146 }
983 1147
984#if EV_USE_INOTIFY 1148#if EV_USE_INOTIFY
985 if (fs_fd >= 0) 1149 if (fs_fd >= 0)
986 close (fs_fd); 1150 close (fs_fd);
987#endif 1151#endif
1010 array_free (pending, [i]); 1174 array_free (pending, [i]);
1011#if EV_IDLE_ENABLE 1175#if EV_IDLE_ENABLE
1012 array_free (idle, [i]); 1176 array_free (idle, [i]);
1013#endif 1177#endif
1014 } 1178 }
1179
1180 ev_free (anfds); anfdmax = 0;
1015 1181
1016 /* have to use the microsoft-never-gets-it-right macro */ 1182 /* have to use the microsoft-never-gets-it-right macro */
1017 array_free (fdchange, EMPTY); 1183 array_free (fdchange, EMPTY);
1018 array_free (timer, EMPTY); 1184 array_free (timer, EMPTY);
1019#if EV_PERIODIC_ENABLE 1185#if EV_PERIODIC_ENABLE
1020 array_free (periodic, EMPTY); 1186 array_free (periodic, EMPTY);
1021#endif 1187#endif
1188#if EV_FORK_ENABLE
1189 array_free (fork, EMPTY);
1190#endif
1022 array_free (prepare, EMPTY); 1191 array_free (prepare, EMPTY);
1023 array_free (check, EMPTY); 1192 array_free (check, EMPTY);
1193#if EV_ASYNC_ENABLE
1194 array_free (async, EMPTY);
1195#endif
1024 1196
1025 backend = 0; 1197 backend = 0;
1026} 1198}
1027 1199
1028void inline_size infy_fork (EV_P); 1200void inline_size infy_fork (EV_P);
1041#endif 1213#endif
1042#if EV_USE_INOTIFY 1214#if EV_USE_INOTIFY
1043 infy_fork (EV_A); 1215 infy_fork (EV_A);
1044#endif 1216#endif
1045 1217
1046 if (ev_is_active (&sigev)) 1218 if (ev_is_active (&pipeev))
1047 { 1219 {
1048 /* default loop */ 1220 /* this "locks" the handlers against writing to the pipe */
1221 /* while we modify the fd vars */
1222 gotsig = 1;
1223#if EV_ASYNC_ENABLE
1224 gotasync = 1;
1225#endif
1049 1226
1050 ev_ref (EV_A); 1227 ev_ref (EV_A);
1051 ev_io_stop (EV_A_ &sigev); 1228 ev_io_stop (EV_A_ &pipeev);
1052 close (sigpipe [0]); 1229 close (evpipe [0]);
1053 close (sigpipe [1]); 1230 close (evpipe [1]);
1054 1231
1055 while (pipe (sigpipe))
1056 syserr ("(libev) error creating pipe");
1057
1058 siginit (EV_A); 1232 evpipe_init (EV_A);
1233 /* now iterate over everything, in case we missed something */
1234 pipecb (EV_A_ &pipeev, EV_READ);
1059 } 1235 }
1060 1236
1061 postfork = 0; 1237 postfork = 0;
1062} 1238}
1063 1239
1085} 1261}
1086 1262
1087void 1263void
1088ev_loop_fork (EV_P) 1264ev_loop_fork (EV_P)
1089{ 1265{
1090 postfork = 1; 1266 postfork = 1; /* must be in line with ev_default_fork */
1091} 1267}
1092 1268
1093#endif 1269#endif
1094 1270
1095#if EV_MULTIPLICITY 1271#if EV_MULTIPLICITY
1098#else 1274#else
1099int 1275int
1100ev_default_loop (unsigned int flags) 1276ev_default_loop (unsigned int flags)
1101#endif 1277#endif
1102{ 1278{
1103 if (sigpipe [0] == sigpipe [1])
1104 if (pipe (sigpipe))
1105 return 0;
1106
1107 if (!ev_default_loop_ptr) 1279 if (!ev_default_loop_ptr)
1108 { 1280 {
1109#if EV_MULTIPLICITY 1281#if EV_MULTIPLICITY
1110 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1282 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1111#else 1283#else
1114 1286
1115 loop_init (EV_A_ flags); 1287 loop_init (EV_A_ flags);
1116 1288
1117 if (ev_backend (EV_A)) 1289 if (ev_backend (EV_A))
1118 { 1290 {
1119 siginit (EV_A);
1120
1121#ifndef _WIN32 1291#ifndef _WIN32
1122 ev_signal_init (&childev, childcb, SIGCHLD); 1292 ev_signal_init (&childev, childcb, SIGCHLD);
1123 ev_set_priority (&childev, EV_MAXPRI); 1293 ev_set_priority (&childev, EV_MAXPRI);
1124 ev_signal_start (EV_A_ &childev); 1294 ev_signal_start (EV_A_ &childev);
1125 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1295 ev_unref (EV_A); /* child watcher should not keep loop alive */
1142#ifndef _WIN32 1312#ifndef _WIN32
1143 ev_ref (EV_A); /* child watcher */ 1313 ev_ref (EV_A); /* child watcher */
1144 ev_signal_stop (EV_A_ &childev); 1314 ev_signal_stop (EV_A_ &childev);
1145#endif 1315#endif
1146 1316
1147 ev_ref (EV_A); /* signal watcher */
1148 ev_io_stop (EV_A_ &sigev);
1149
1150 close (sigpipe [0]); sigpipe [0] = 0;
1151 close (sigpipe [1]); sigpipe [1] = 0;
1152
1153 loop_destroy (EV_A); 1317 loop_destroy (EV_A);
1154} 1318}
1155 1319
1156void 1320void
1157ev_default_fork (void) 1321ev_default_fork (void)
1159#if EV_MULTIPLICITY 1323#if EV_MULTIPLICITY
1160 struct ev_loop *loop = ev_default_loop_ptr; 1324 struct ev_loop *loop = ev_default_loop_ptr;
1161#endif 1325#endif
1162 1326
1163 if (backend) 1327 if (backend)
1164 postfork = 1; 1328 postfork = 1; /* must be in line with ev_loop_fork */
1165} 1329}
1166 1330
1167/*****************************************************************************/ 1331/*****************************************************************************/
1168 1332
1169void 1333void
1195void inline_size 1359void inline_size
1196timers_reify (EV_P) 1360timers_reify (EV_P)
1197{ 1361{
1198 while (timercnt && ((WT)timers [0])->at <= mn_now) 1362 while (timercnt && ((WT)timers [0])->at <= mn_now)
1199 { 1363 {
1200 ev_timer *w = timers [0]; 1364 ev_timer *w = (ev_timer *)timers [0];
1201 1365
1202 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1366 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1203 1367
1204 /* first reschedule or stop timer */ 1368 /* first reschedule or stop timer */
1205 if (w->repeat) 1369 if (w->repeat)
1208 1372
1209 ((WT)w)->at += w->repeat; 1373 ((WT)w)->at += w->repeat;
1210 if (((WT)w)->at < mn_now) 1374 if (((WT)w)->at < mn_now)
1211 ((WT)w)->at = mn_now; 1375 ((WT)w)->at = mn_now;
1212 1376
1213 downheap ((WT *)timers, timercnt, 0); 1377 downheap (timers, timercnt, 0);
1214 } 1378 }
1215 else 1379 else
1216 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1380 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1217 1381
1218 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1382 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1223void inline_size 1387void inline_size
1224periodics_reify (EV_P) 1388periodics_reify (EV_P)
1225{ 1389{
1226 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1390 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1227 { 1391 {
1228 ev_periodic *w = periodics [0]; 1392 ev_periodic *w = (ev_periodic *)periodics [0];
1229 1393
1230 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1394 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1231 1395
1232 /* first reschedule or stop timer */ 1396 /* first reschedule or stop timer */
1233 if (w->reschedule_cb) 1397 if (w->reschedule_cb)
1234 { 1398 {
1235 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1399 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1236 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1400 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1237 downheap ((WT *)periodics, periodiccnt, 0); 1401 downheap (periodics, periodiccnt, 0);
1238 } 1402 }
1239 else if (w->interval) 1403 else if (w->interval)
1240 { 1404 {
1241 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1405 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1406 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1242 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1407 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1243 downheap ((WT *)periodics, periodiccnt, 0); 1408 downheap (periodics, periodiccnt, 0);
1244 } 1409 }
1245 else 1410 else
1246 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1411 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1247 1412
1248 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1413 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1255 int i; 1420 int i;
1256 1421
1257 /* adjust periodics after time jump */ 1422 /* adjust periodics after time jump */
1258 for (i = 0; i < periodiccnt; ++i) 1423 for (i = 0; i < periodiccnt; ++i)
1259 { 1424 {
1260 ev_periodic *w = periodics [i]; 1425 ev_periodic *w = (ev_periodic *)periodics [i];
1261 1426
1262 if (w->reschedule_cb) 1427 if (w->reschedule_cb)
1263 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1428 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1264 else if (w->interval) 1429 else if (w->interval)
1265 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1430 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1266 } 1431 }
1267 1432
1268 /* now rebuild the heap */ 1433 /* now rebuild the heap */
1269 for (i = periodiccnt >> 1; i--; ) 1434 for (i = periodiccnt >> 1; i--; )
1270 downheap ((WT *)periodics, periodiccnt, i); 1435 downheap (periodics, periodiccnt, i);
1271} 1436}
1272#endif 1437#endif
1273 1438
1274#if EV_IDLE_ENABLE 1439#if EV_IDLE_ENABLE
1275void inline_size 1440void inline_size
1292 } 1457 }
1293 } 1458 }
1294} 1459}
1295#endif 1460#endif
1296 1461
1297int inline_size 1462void inline_speed
1298time_update_monotonic (EV_P) 1463time_update (EV_P_ ev_tstamp max_block)
1299{ 1464{
1465 int i;
1466
1467#if EV_USE_MONOTONIC
1468 if (expect_true (have_monotonic))
1469 {
1470 ev_tstamp odiff = rtmn_diff;
1471
1300 mn_now = get_clock (); 1472 mn_now = get_clock ();
1301 1473
1474 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1475 /* interpolate in the meantime */
1302 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1476 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1303 { 1477 {
1304 ev_rt_now = rtmn_diff + mn_now; 1478 ev_rt_now = rtmn_diff + mn_now;
1305 return 0; 1479 return;
1306 } 1480 }
1307 else 1481
1308 {
1309 now_floor = mn_now; 1482 now_floor = mn_now;
1310 ev_rt_now = ev_time (); 1483 ev_rt_now = ev_time ();
1311 return 1;
1312 }
1313}
1314 1484
1315void inline_size 1485 /* loop a few times, before making important decisions.
1316time_update (EV_P) 1486 * on the choice of "4": one iteration isn't enough,
1317{ 1487 * in case we get preempted during the calls to
1318 int i; 1488 * ev_time and get_clock. a second call is almost guaranteed
1319 1489 * to succeed in that case, though. and looping a few more times
1320#if EV_USE_MONOTONIC 1490 * doesn't hurt either as we only do this on time-jumps or
1321 if (expect_true (have_monotonic)) 1491 * in the unlikely event of having been preempted here.
1322 { 1492 */
1323 if (time_update_monotonic (EV_A)) 1493 for (i = 4; --i; )
1324 { 1494 {
1325 ev_tstamp odiff = rtmn_diff;
1326
1327 /* loop a few times, before making important decisions.
1328 * on the choice of "4": one iteration isn't enough,
1329 * in case we get preempted during the calls to
1330 * ev_time and get_clock. a second call is almost guaranteed
1331 * to succeed in that case, though. and looping a few more times
1332 * doesn't hurt either as we only do this on time-jumps or
1333 * in the unlikely event of having been preempted here.
1334 */
1335 for (i = 4; --i; )
1336 {
1337 rtmn_diff = ev_rt_now - mn_now; 1495 rtmn_diff = ev_rt_now - mn_now;
1338 1496
1339 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1497 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1340 return; /* all is well */ 1498 return; /* all is well */
1341 1499
1342 ev_rt_now = ev_time (); 1500 ev_rt_now = ev_time ();
1343 mn_now = get_clock (); 1501 mn_now = get_clock ();
1344 now_floor = mn_now; 1502 now_floor = mn_now;
1345 } 1503 }
1346 1504
1347# if EV_PERIODIC_ENABLE 1505# if EV_PERIODIC_ENABLE
1348 periodics_reschedule (EV_A); 1506 periodics_reschedule (EV_A);
1349# endif 1507# endif
1350 /* no timer adjustment, as the monotonic clock doesn't jump */ 1508 /* no timer adjustment, as the monotonic clock doesn't jump */
1351 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1509 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1352 }
1353 } 1510 }
1354 else 1511 else
1355#endif 1512#endif
1356 { 1513 {
1357 ev_rt_now = ev_time (); 1514 ev_rt_now = ev_time ();
1358 1515
1359 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1516 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1360 { 1517 {
1361#if EV_PERIODIC_ENABLE 1518#if EV_PERIODIC_ENABLE
1362 periodics_reschedule (EV_A); 1519 periodics_reschedule (EV_A);
1363#endif 1520#endif
1364
1365 /* adjust timers. this is easy, as the offset is the same for all of them */ 1521 /* adjust timers. this is easy, as the offset is the same for all of them */
1366 for (i = 0; i < timercnt; ++i) 1522 for (i = 0; i < timercnt; ++i)
1367 ((WT)timers [i])->at += ev_rt_now - mn_now; 1523 ((WT)timers [i])->at += ev_rt_now - mn_now;
1368 } 1524 }
1369 1525
1386static int loop_done; 1542static int loop_done;
1387 1543
1388void 1544void
1389ev_loop (EV_P_ int flags) 1545ev_loop (EV_P_ int flags)
1390{ 1546{
1391 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1547 loop_done = EVUNLOOP_CANCEL;
1392 ? EVUNLOOP_ONE
1393 : EVUNLOOP_CANCEL;
1394 1548
1395 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1549 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1396 1550
1397 do 1551 do
1398 { 1552 {
1413 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1567 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1414 call_pending (EV_A); 1568 call_pending (EV_A);
1415 } 1569 }
1416#endif 1570#endif
1417 1571
1418 /* queue check watchers (and execute them) */ 1572 /* queue prepare watchers (and execute them) */
1419 if (expect_false (preparecnt)) 1573 if (expect_false (preparecnt))
1420 { 1574 {
1421 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1575 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1422 call_pending (EV_A); 1576 call_pending (EV_A);
1423 } 1577 }
1432 /* update fd-related kernel structures */ 1586 /* update fd-related kernel structures */
1433 fd_reify (EV_A); 1587 fd_reify (EV_A);
1434 1588
1435 /* calculate blocking time */ 1589 /* calculate blocking time */
1436 { 1590 {
1437 ev_tstamp block; 1591 ev_tstamp waittime = 0.;
1592 ev_tstamp sleeptime = 0.;
1438 1593
1439 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1594 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1440 block = 0.; /* do not block at all */
1441 else
1442 { 1595 {
1443 /* update time to cancel out callback processing overhead */ 1596 /* update time to cancel out callback processing overhead */
1444#if EV_USE_MONOTONIC
1445 if (expect_true (have_monotonic))
1446 time_update_monotonic (EV_A); 1597 time_update (EV_A_ 1e100);
1447 else
1448#endif
1449 {
1450 ev_rt_now = ev_time ();
1451 mn_now = ev_rt_now;
1452 }
1453 1598
1454 block = MAX_BLOCKTIME; 1599 waittime = MAX_BLOCKTIME;
1455 1600
1456 if (timercnt) 1601 if (timercnt)
1457 { 1602 {
1458 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1603 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1459 if (block > to) block = to; 1604 if (waittime > to) waittime = to;
1460 } 1605 }
1461 1606
1462#if EV_PERIODIC_ENABLE 1607#if EV_PERIODIC_ENABLE
1463 if (periodiccnt) 1608 if (periodiccnt)
1464 { 1609 {
1465 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1610 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1466 if (block > to) block = to; 1611 if (waittime > to) waittime = to;
1467 } 1612 }
1468#endif 1613#endif
1469 1614
1470 if (expect_false (block < 0.)) block = 0.; 1615 if (expect_false (waittime < timeout_blocktime))
1616 waittime = timeout_blocktime;
1617
1618 sleeptime = waittime - backend_fudge;
1619
1620 if (expect_true (sleeptime > io_blocktime))
1621 sleeptime = io_blocktime;
1622
1623 if (sleeptime)
1624 {
1625 ev_sleep (sleeptime);
1626 waittime -= sleeptime;
1627 }
1471 } 1628 }
1472 1629
1473 ++loop_count; 1630 ++loop_count;
1474 backend_poll (EV_A_ block); 1631 backend_poll (EV_A_ waittime);
1632
1633 /* update ev_rt_now, do magic */
1634 time_update (EV_A_ waittime + sleeptime);
1475 } 1635 }
1476
1477 /* update ev_rt_now, do magic */
1478 time_update (EV_A);
1479 1636
1480 /* queue pending timers and reschedule them */ 1637 /* queue pending timers and reschedule them */
1481 timers_reify (EV_A); /* relative timers called last */ 1638 timers_reify (EV_A); /* relative timers called last */
1482#if EV_PERIODIC_ENABLE 1639#if EV_PERIODIC_ENABLE
1483 periodics_reify (EV_A); /* absolute timers called first */ 1640 periodics_reify (EV_A); /* absolute timers called first */
1491 /* queue check watchers, to be executed first */ 1648 /* queue check watchers, to be executed first */
1492 if (expect_false (checkcnt)) 1649 if (expect_false (checkcnt))
1493 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1650 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1494 1651
1495 call_pending (EV_A); 1652 call_pending (EV_A);
1496
1497 } 1653 }
1498 while (expect_true (activecnt && !loop_done)); 1654 while (expect_true (
1655 activecnt
1656 && !loop_done
1657 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1658 ));
1499 1659
1500 if (loop_done == EVUNLOOP_ONE) 1660 if (loop_done == EVUNLOOP_ONE)
1501 loop_done = EVUNLOOP_CANCEL; 1661 loop_done = EVUNLOOP_CANCEL;
1502} 1662}
1503 1663
1545ev_clear_pending (EV_P_ void *w) 1705ev_clear_pending (EV_P_ void *w)
1546{ 1706{
1547 W w_ = (W)w; 1707 W w_ = (W)w;
1548 int pending = w_->pending; 1708 int pending = w_->pending;
1549 1709
1550 if (!pending) 1710 if (expect_true (pending))
1711 {
1712 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1713 w_->pending = 0;
1714 p->w = 0;
1715 return p->events;
1716 }
1717 else
1551 return 0; 1718 return 0;
1552
1553 w_->pending = 0;
1554 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1555 p->w = 0;
1556
1557 return p->events;
1558} 1719}
1559 1720
1560void inline_size 1721void inline_size
1561pri_adjust (EV_P_ W w) 1722pri_adjust (EV_P_ W w)
1562{ 1723{
1581 w->active = 0; 1742 w->active = 0;
1582} 1743}
1583 1744
1584/*****************************************************************************/ 1745/*****************************************************************************/
1585 1746
1586void 1747void noinline
1587ev_io_start (EV_P_ ev_io *w) 1748ev_io_start (EV_P_ ev_io *w)
1588{ 1749{
1589 int fd = w->fd; 1750 int fd = w->fd;
1590 1751
1591 if (expect_false (ev_is_active (w))) 1752 if (expect_false (ev_is_active (w)))
1593 1754
1594 assert (("ev_io_start called with negative fd", fd >= 0)); 1755 assert (("ev_io_start called with negative fd", fd >= 0));
1595 1756
1596 ev_start (EV_A_ (W)w, 1); 1757 ev_start (EV_A_ (W)w, 1);
1597 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1758 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1598 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1759 wlist_add (&anfds[fd].head, (WL)w);
1599 1760
1600 fd_change (EV_A_ fd); 1761 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1762 w->events &= ~EV_IOFDSET;
1601} 1763}
1602 1764
1603void 1765void noinline
1604ev_io_stop (EV_P_ ev_io *w) 1766ev_io_stop (EV_P_ ev_io *w)
1605{ 1767{
1606 clear_pending (EV_A_ (W)w); 1768 clear_pending (EV_A_ (W)w);
1607 if (expect_false (!ev_is_active (w))) 1769 if (expect_false (!ev_is_active (w)))
1608 return; 1770 return;
1609 1771
1610 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1772 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1611 1773
1612 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1774 wlist_del (&anfds[w->fd].head, (WL)w);
1613 ev_stop (EV_A_ (W)w); 1775 ev_stop (EV_A_ (W)w);
1614 1776
1615 fd_change (EV_A_ w->fd); 1777 fd_change (EV_A_ w->fd, 1);
1616} 1778}
1617 1779
1618void 1780void noinline
1619ev_timer_start (EV_P_ ev_timer *w) 1781ev_timer_start (EV_P_ ev_timer *w)
1620{ 1782{
1621 if (expect_false (ev_is_active (w))) 1783 if (expect_false (ev_is_active (w)))
1622 return; 1784 return;
1623 1785
1624 ((WT)w)->at += mn_now; 1786 ((WT)w)->at += mn_now;
1625 1787
1626 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1788 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1627 1789
1628 ev_start (EV_A_ (W)w, ++timercnt); 1790 ev_start (EV_A_ (W)w, ++timercnt);
1629 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1791 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1630 timers [timercnt - 1] = w; 1792 timers [timercnt - 1] = (WT)w;
1631 upheap ((WT *)timers, timercnt - 1); 1793 upheap (timers, timercnt - 1);
1632 1794
1633 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1795 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1634} 1796}
1635 1797
1636void 1798void noinline
1637ev_timer_stop (EV_P_ ev_timer *w) 1799ev_timer_stop (EV_P_ ev_timer *w)
1638{ 1800{
1639 clear_pending (EV_A_ (W)w); 1801 clear_pending (EV_A_ (W)w);
1640 if (expect_false (!ev_is_active (w))) 1802 if (expect_false (!ev_is_active (w)))
1641 return; 1803 return;
1642 1804
1643 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1805 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1644 1806
1645 { 1807 {
1646 int active = ((W)w)->active; 1808 int active = ((W)w)->active;
1647 1809
1648 if (expect_true (--active < --timercnt)) 1810 if (expect_true (--active < --timercnt))
1649 { 1811 {
1650 timers [active] = timers [timercnt]; 1812 timers [active] = timers [timercnt];
1651 adjustheap ((WT *)timers, timercnt, active); 1813 adjustheap (timers, timercnt, active);
1652 } 1814 }
1653 } 1815 }
1654 1816
1655 ((WT)w)->at -= mn_now; 1817 ((WT)w)->at -= mn_now;
1656 1818
1657 ev_stop (EV_A_ (W)w); 1819 ev_stop (EV_A_ (W)w);
1658} 1820}
1659 1821
1660void 1822void noinline
1661ev_timer_again (EV_P_ ev_timer *w) 1823ev_timer_again (EV_P_ ev_timer *w)
1662{ 1824{
1663 if (ev_is_active (w)) 1825 if (ev_is_active (w))
1664 { 1826 {
1665 if (w->repeat) 1827 if (w->repeat)
1666 { 1828 {
1667 ((WT)w)->at = mn_now + w->repeat; 1829 ((WT)w)->at = mn_now + w->repeat;
1668 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1830 adjustheap (timers, timercnt, ((W)w)->active - 1);
1669 } 1831 }
1670 else 1832 else
1671 ev_timer_stop (EV_A_ w); 1833 ev_timer_stop (EV_A_ w);
1672 } 1834 }
1673 else if (w->repeat) 1835 else if (w->repeat)
1676 ev_timer_start (EV_A_ w); 1838 ev_timer_start (EV_A_ w);
1677 } 1839 }
1678} 1840}
1679 1841
1680#if EV_PERIODIC_ENABLE 1842#if EV_PERIODIC_ENABLE
1681void 1843void noinline
1682ev_periodic_start (EV_P_ ev_periodic *w) 1844ev_periodic_start (EV_P_ ev_periodic *w)
1683{ 1845{
1684 if (expect_false (ev_is_active (w))) 1846 if (expect_false (ev_is_active (w)))
1685 return; 1847 return;
1686 1848
1688 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1850 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1689 else if (w->interval) 1851 else if (w->interval)
1690 { 1852 {
1691 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1853 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1692 /* this formula differs from the one in periodic_reify because we do not always round up */ 1854 /* this formula differs from the one in periodic_reify because we do not always round up */
1693 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1855 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1694 } 1856 }
1857 else
1858 ((WT)w)->at = w->offset;
1695 1859
1696 ev_start (EV_A_ (W)w, ++periodiccnt); 1860 ev_start (EV_A_ (W)w, ++periodiccnt);
1697 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1861 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1698 periodics [periodiccnt - 1] = w; 1862 periodics [periodiccnt - 1] = (WT)w;
1699 upheap ((WT *)periodics, periodiccnt - 1); 1863 upheap (periodics, periodiccnt - 1);
1700 1864
1701 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1865 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1702} 1866}
1703 1867
1704void 1868void noinline
1705ev_periodic_stop (EV_P_ ev_periodic *w) 1869ev_periodic_stop (EV_P_ ev_periodic *w)
1706{ 1870{
1707 clear_pending (EV_A_ (W)w); 1871 clear_pending (EV_A_ (W)w);
1708 if (expect_false (!ev_is_active (w))) 1872 if (expect_false (!ev_is_active (w)))
1709 return; 1873 return;
1710 1874
1711 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1875 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1712 1876
1713 { 1877 {
1714 int active = ((W)w)->active; 1878 int active = ((W)w)->active;
1715 1879
1716 if (expect_true (--active < --periodiccnt)) 1880 if (expect_true (--active < --periodiccnt))
1717 { 1881 {
1718 periodics [active] = periodics [periodiccnt]; 1882 periodics [active] = periodics [periodiccnt];
1719 adjustheap ((WT *)periodics, periodiccnt, active); 1883 adjustheap (periodics, periodiccnt, active);
1720 } 1884 }
1721 } 1885 }
1722 1886
1723 ev_stop (EV_A_ (W)w); 1887 ev_stop (EV_A_ (W)w);
1724} 1888}
1725 1889
1726void 1890void noinline
1727ev_periodic_again (EV_P_ ev_periodic *w) 1891ev_periodic_again (EV_P_ ev_periodic *w)
1728{ 1892{
1729 /* TODO: use adjustheap and recalculation */ 1893 /* TODO: use adjustheap and recalculation */
1730 ev_periodic_stop (EV_A_ w); 1894 ev_periodic_stop (EV_A_ w);
1731 ev_periodic_start (EV_A_ w); 1895 ev_periodic_start (EV_A_ w);
1734 1898
1735#ifndef SA_RESTART 1899#ifndef SA_RESTART
1736# define SA_RESTART 0 1900# define SA_RESTART 0
1737#endif 1901#endif
1738 1902
1739void 1903void noinline
1740ev_signal_start (EV_P_ ev_signal *w) 1904ev_signal_start (EV_P_ ev_signal *w)
1741{ 1905{
1742#if EV_MULTIPLICITY 1906#if EV_MULTIPLICITY
1743 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1907 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1744#endif 1908#endif
1745 if (expect_false (ev_is_active (w))) 1909 if (expect_false (ev_is_active (w)))
1746 return; 1910 return;
1747 1911
1748 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1912 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1749 1913
1914 evpipe_init (EV_A);
1915
1916 {
1917#ifndef _WIN32
1918 sigset_t full, prev;
1919 sigfillset (&full);
1920 sigprocmask (SIG_SETMASK, &full, &prev);
1921#endif
1922
1923 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1924
1925#ifndef _WIN32
1926 sigprocmask (SIG_SETMASK, &prev, 0);
1927#endif
1928 }
1929
1750 ev_start (EV_A_ (W)w, 1); 1930 ev_start (EV_A_ (W)w, 1);
1751 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1752 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1931 wlist_add (&signals [w->signum - 1].head, (WL)w);
1753 1932
1754 if (!((WL)w)->next) 1933 if (!((WL)w)->next)
1755 { 1934 {
1756#if _WIN32 1935#if _WIN32
1757 signal (w->signum, sighandler); 1936 signal (w->signum, ev_sighandler);
1758#else 1937#else
1759 struct sigaction sa; 1938 struct sigaction sa;
1760 sa.sa_handler = sighandler; 1939 sa.sa_handler = ev_sighandler;
1761 sigfillset (&sa.sa_mask); 1940 sigfillset (&sa.sa_mask);
1762 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1941 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1763 sigaction (w->signum, &sa, 0); 1942 sigaction (w->signum, &sa, 0);
1764#endif 1943#endif
1765 } 1944 }
1766} 1945}
1767 1946
1768void 1947void noinline
1769ev_signal_stop (EV_P_ ev_signal *w) 1948ev_signal_stop (EV_P_ ev_signal *w)
1770{ 1949{
1771 clear_pending (EV_A_ (W)w); 1950 clear_pending (EV_A_ (W)w);
1772 if (expect_false (!ev_is_active (w))) 1951 if (expect_false (!ev_is_active (w)))
1773 return; 1952 return;
1774 1953
1775 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1954 wlist_del (&signals [w->signum - 1].head, (WL)w);
1776 ev_stop (EV_A_ (W)w); 1955 ev_stop (EV_A_ (W)w);
1777 1956
1778 if (!signals [w->signum - 1].head) 1957 if (!signals [w->signum - 1].head)
1779 signal (w->signum, SIG_DFL); 1958 signal (w->signum, SIG_DFL);
1780} 1959}
1787#endif 1966#endif
1788 if (expect_false (ev_is_active (w))) 1967 if (expect_false (ev_is_active (w)))
1789 return; 1968 return;
1790 1969
1791 ev_start (EV_A_ (W)w, 1); 1970 ev_start (EV_A_ (W)w, 1);
1792 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1971 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1793} 1972}
1794 1973
1795void 1974void
1796ev_child_stop (EV_P_ ev_child *w) 1975ev_child_stop (EV_P_ ev_child *w)
1797{ 1976{
1798 clear_pending (EV_A_ (W)w); 1977 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 1978 if (expect_false (!ev_is_active (w)))
1800 return; 1979 return;
1801 1980
1802 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1981 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1803 ev_stop (EV_A_ (W)w); 1982 ev_stop (EV_A_ (W)w);
1804} 1983}
1805 1984
1806#if EV_STAT_ENABLE 1985#if EV_STAT_ENABLE
1807 1986
2149 2328
2150#if EV_EMBED_ENABLE 2329#if EV_EMBED_ENABLE
2151void noinline 2330void noinline
2152ev_embed_sweep (EV_P_ ev_embed *w) 2331ev_embed_sweep (EV_P_ ev_embed *w)
2153{ 2332{
2154 ev_loop (w->loop, EVLOOP_NONBLOCK); 2333 ev_loop (w->other, EVLOOP_NONBLOCK);
2155} 2334}
2156 2335
2157static void 2336static void
2158embed_cb (EV_P_ ev_io *io, int revents) 2337embed_io_cb (EV_P_ ev_io *io, int revents)
2159{ 2338{
2160 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2339 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2161 2340
2162 if (ev_cb (w)) 2341 if (ev_cb (w))
2163 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2342 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2164 else 2343 else
2165 ev_embed_sweep (loop, w); 2344 ev_loop (w->other, EVLOOP_NONBLOCK);
2166} 2345}
2346
2347static void
2348embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2349{
2350 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2351
2352 {
2353 struct ev_loop *loop = w->other;
2354
2355 while (fdchangecnt)
2356 {
2357 fd_reify (EV_A);
2358 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2359 }
2360 }
2361}
2362
2363#if 0
2364static void
2365embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2366{
2367 ev_idle_stop (EV_A_ idle);
2368}
2369#endif
2167 2370
2168void 2371void
2169ev_embed_start (EV_P_ ev_embed *w) 2372ev_embed_start (EV_P_ ev_embed *w)
2170{ 2373{
2171 if (expect_false (ev_is_active (w))) 2374 if (expect_false (ev_is_active (w)))
2172 return; 2375 return;
2173 2376
2174 { 2377 {
2175 struct ev_loop *loop = w->loop; 2378 struct ev_loop *loop = w->other;
2176 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2379 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2177 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2380 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2178 } 2381 }
2179 2382
2180 ev_set_priority (&w->io, ev_priority (w)); 2383 ev_set_priority (&w->io, ev_priority (w));
2181 ev_io_start (EV_A_ &w->io); 2384 ev_io_start (EV_A_ &w->io);
2182 2385
2386 ev_prepare_init (&w->prepare, embed_prepare_cb);
2387 ev_set_priority (&w->prepare, EV_MINPRI);
2388 ev_prepare_start (EV_A_ &w->prepare);
2389
2390 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2391
2183 ev_start (EV_A_ (W)w, 1); 2392 ev_start (EV_A_ (W)w, 1);
2184} 2393}
2185 2394
2186void 2395void
2187ev_embed_stop (EV_P_ ev_embed *w) 2396ev_embed_stop (EV_P_ ev_embed *w)
2189 clear_pending (EV_A_ (W)w); 2398 clear_pending (EV_A_ (W)w);
2190 if (expect_false (!ev_is_active (w))) 2399 if (expect_false (!ev_is_active (w)))
2191 return; 2400 return;
2192 2401
2193 ev_io_stop (EV_A_ &w->io); 2402 ev_io_stop (EV_A_ &w->io);
2403 ev_prepare_stop (EV_A_ &w->prepare);
2194 2404
2195 ev_stop (EV_A_ (W)w); 2405 ev_stop (EV_A_ (W)w);
2196} 2406}
2197#endif 2407#endif
2198 2408
2223 2433
2224 ev_stop (EV_A_ (W)w); 2434 ev_stop (EV_A_ (W)w);
2225} 2435}
2226#endif 2436#endif
2227 2437
2438#if EV_ASYNC_ENABLE
2439void
2440ev_async_start (EV_P_ ev_async *w)
2441{
2442 if (expect_false (ev_is_active (w)))
2443 return;
2444
2445 evpipe_init (EV_A);
2446
2447 ev_start (EV_A_ (W)w, ++asynccnt);
2448 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2449 asyncs [asynccnt - 1] = w;
2450}
2451
2452void
2453ev_async_stop (EV_P_ ev_async *w)
2454{
2455 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w)))
2457 return;
2458
2459 {
2460 int active = ((W)w)->active;
2461 asyncs [active - 1] = asyncs [--asynccnt];
2462 ((W)asyncs [active - 1])->active = active;
2463 }
2464
2465 ev_stop (EV_A_ (W)w);
2466}
2467
2468void
2469ev_async_send (EV_P_ ev_async *w)
2470{
2471 w->sent = 1;
2472 evpipe_write (EV_A_ &gotasync);
2473}
2474#endif
2475
2228/*****************************************************************************/ 2476/*****************************************************************************/
2229 2477
2230struct ev_once 2478struct ev_once
2231{ 2479{
2232 ev_io io; 2480 ev_io io;
2287 ev_timer_set (&once->to, timeout, 0.); 2535 ev_timer_set (&once->to, timeout, 0.);
2288 ev_timer_start (EV_A_ &once->to); 2536 ev_timer_start (EV_A_ &once->to);
2289 } 2537 }
2290} 2538}
2291 2539
2540#if EV_MULTIPLICITY
2541 #include "ev_wrap.h"
2542#endif
2543
2292#ifdef __cplusplus 2544#ifdef __cplusplus
2293} 2545}
2294#endif 2546#endif
2295 2547

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines