ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.168 by root, Sat Dec 8 14:12:07 2007 UTC vs.
Revision 1.236 by root, Wed May 7 14:46:22 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 241
197#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
200#endif 245#endif
202#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
205#endif 250#endif
206 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
207#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 268# include <winsock.h>
209#endif 269#endif
210 270
211#if !EV_STAT_ENABLE 271#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
213#endif 276# endif
214 277int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 278# ifdef __cplusplus
216# include <sys/inotify.h> 279}
280# endif
217#endif 281#endif
218 282
219/**/ 283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 294
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 298
225#if __GNUC__ >= 3 299#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 301# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 302#else
236# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
240#endif 308#endif
241 309
242#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
244 319
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 322
248#define EMPTY /* required for microsofts broken pseudo-c compiler */ 323#define EMPTY /* required for microsofts broken pseudo-c compiler */
250 325
251typedef ev_watcher *W; 326typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
254 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
333#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif
256 338
257#ifdef _WIN32 339#ifdef _WIN32
258# include "ev_win32.c" 340# include "ev_win32.c"
259#endif 341#endif
260 342
281 perror (msg); 363 perror (msg);
282 abort (); 364 abort ();
283 } 365 }
284} 366}
285 367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
286static void *(*alloc)(void *ptr, long size); 383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 384
288void 385void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 386ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 387{
291 alloc = cb; 388 alloc = cb;
292} 389}
293 390
294inline_speed void * 391inline_speed void *
295ev_realloc (void *ptr, long size) 392ev_realloc (void *ptr, long size)
296{ 393{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 394 ptr = alloc (ptr, size);
298 395
299 if (!ptr && size) 396 if (!ptr && size)
300 { 397 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 399 abort ();
396{ 493{
397 return ev_rt_now; 494 return ev_rt_now;
398} 495}
399#endif 496#endif
400 497
498void
499ev_sleep (ev_tstamp delay)
500{
501 if (delay > 0.)
502 {
503#if EV_USE_NANOSLEEP
504 struct timespec ts;
505
506 ts.tv_sec = (time_t)delay;
507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
508
509 nanosleep (&ts, 0);
510#elif defined(_WIN32)
511 Sleep ((unsigned long)(delay * 1e3));
512#else
513 struct timeval tv;
514
515 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517
518 select (0, 0, 0, 0, &tv);
519#endif
520 }
521}
522
523/*****************************************************************************/
524
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526
401int inline_size 527int inline_size
402array_nextsize (int elem, int cur, int cnt) 528array_nextsize (int elem, int cur, int cnt)
403{ 529{
404 int ncur = cur + 1; 530 int ncur = cur + 1;
405 531
406 do 532 do
407 ncur <<= 1; 533 ncur <<= 1;
408 while (cnt > ncur); 534 while (cnt > ncur);
409 535
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 536 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
411 if (elem * ncur > 4096) 537 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
412 { 538 {
413 ncur *= elem; 539 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 540 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
415 ncur = ncur - sizeof (void *) * 4; 541 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem; 542 ncur /= elem;
417 } 543 }
418 544
419 return ncur; 545 return ncur;
420} 546}
421 547
422inline_speed void * 548static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 549array_realloc (int elem, void *base, int *cur, int cnt)
424{ 550{
425 *cur = array_nextsize (elem, *cur, cnt); 551 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 552 return ev_realloc (base, elem * *cur);
427} 553}
452 578
453void noinline 579void noinline
454ev_feed_event (EV_P_ void *w, int revents) 580ev_feed_event (EV_P_ void *w, int revents)
455{ 581{
456 W w_ = (W)w; 582 W w_ = (W)w;
583 int pri = ABSPRI (w_);
457 584
458 if (expect_false (w_->pending)) 585 if (expect_false (w_->pending))
586 pendings [pri][w_->pending - 1].events |= revents;
587 else
459 { 588 {
589 w_->pending = ++pendingcnt [pri];
590 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
591 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 592 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 593 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 594}
469 595
470void inline_size 596void inline_speed
471queue_events (EV_P_ W *events, int eventcnt, int type) 597queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 598{
473 int i; 599 int i;
474 600
475 for (i = 0; i < eventcnt; ++i) 601 for (i = 0; i < eventcnt; ++i)
522 { 648 {
523 int fd = fdchanges [i]; 649 int fd = fdchanges [i];
524 ANFD *anfd = anfds + fd; 650 ANFD *anfd = anfds + fd;
525 ev_io *w; 651 ev_io *w;
526 652
527 int events = 0; 653 unsigned char events = 0;
528 654
529 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 655 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
530 events |= w->events; 656 events |= (unsigned char)w->events;
531 657
532#if EV_SELECT_IS_WINSOCKET 658#if EV_SELECT_IS_WINSOCKET
533 if (events) 659 if (events)
534 { 660 {
535 unsigned long argp; 661 unsigned long argp;
662 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else
536 anfd->handle = _get_osfhandle (fd); 665 anfd->handle = _get_osfhandle (fd);
666 #endif
537 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
538 } 668 }
539#endif 669#endif
540 670
671 {
672 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify;
674
541 anfd->reify = 0; 675 anfd->reify = 0;
542
543 backend_modify (EV_A_ fd, anfd->events, events);
544 anfd->events = events; 676 anfd->events = events;
677
678 if (o_events != events || o_reify & EV_IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events);
680 }
545 } 681 }
546 682
547 fdchangecnt = 0; 683 fdchangecnt = 0;
548} 684}
549 685
550void inline_size 686void inline_size
551fd_change (EV_P_ int fd) 687fd_change (EV_P_ int fd, int flags)
552{ 688{
553 if (expect_false (anfds [fd].reify)) 689 unsigned char reify = anfds [fd].reify;
554 return;
555
556 anfds [fd].reify = 1; 690 anfds [fd].reify |= flags;
557 691
692 if (expect_true (!reify))
693 {
558 ++fdchangecnt; 694 ++fdchangecnt;
559 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
560 fdchanges [fdchangecnt - 1] = fd; 696 fdchanges [fdchangecnt - 1] = fd;
697 }
561} 698}
562 699
563void inline_speed 700void inline_speed
564fd_kill (EV_P_ int fd) 701fd_kill (EV_P_ int fd)
565{ 702{
616 753
617 for (fd = 0; fd < anfdmax; ++fd) 754 for (fd = 0; fd < anfdmax; ++fd)
618 if (anfds [fd].events) 755 if (anfds [fd].events)
619 { 756 {
620 anfds [fd].events = 0; 757 anfds [fd].events = 0;
621 fd_change (EV_A_ fd); 758 fd_change (EV_A_ fd, EV_IOFDSET | 1);
622 } 759 }
623} 760}
624 761
625/*****************************************************************************/ 762/*****************************************************************************/
626 763
764/*
765 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers.
769 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP
772
773#define HEAP0 3 /* index of first element in heap */
774
775/* towards the root */
627void inline_speed 776void inline_speed
628upheap (WT *heap, int k) 777upheap (WT *heap, int k)
629{ 778{
630 WT w = heap [k]; 779 WT w = heap [k];
631 780
632 while (k && heap [k >> 1]->at > w->at) 781 for (;;)
633 { 782 {
783 int p = ((k - HEAP0 - 1) / 4) + HEAP0;
784
785 if (p >= HEAP0 || heap [p]->at <= w->at)
786 break;
787
634 heap [k] = heap [k >> 1]; 788 heap [k] = heap [p];
635 ((W)heap [k])->active = k + 1; 789 ev_active (heap [k]) = k;
636 k >>= 1; 790 k = p;
637 } 791 }
638 792
639 heap [k] = w; 793 heap [k] = w;
640 ((W)heap [k])->active = k + 1; 794 ev_active (heap [k]) = k;
641
642} 795}
643 796
797/* away from the root */
644void inline_speed 798void inline_speed
645downheap (WT *heap, int N, int k) 799downheap (WT *heap, int N, int k)
646{ 800{
647 WT w = heap [k]; 801 WT w = heap [k];
802 WT *E = heap + N + HEAP0;
648 803
649 while (k < (N >> 1)) 804 for (;;)
650 { 805 {
651 int j = k << 1; 806 ev_tstamp minat;
807 WT *minpos;
808 WT *pos = heap + 4 * (k - HEAP0) + HEAP0;
652 809
653 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 810 // find minimum child
811 if (expect_true (pos +3 < E))
654 ++j; 812 {
813 /* fast path */
814 (minpos = pos + 0), (minat = (*minpos)->at);
815 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
816 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
817 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
818 }
819 else
820 {
821 /* slow path */
822 if (pos >= E)
823 break;
824 (minpos = pos + 0), (minat = (*minpos)->at);
825 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
826 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
827 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
828 }
655 829
656 if (w->at <= heap [j]->at) 830 if (w->at <= minat)
657 break; 831 break;
658 832
659 heap [k] = heap [j]; 833 ev_active (*minpos) = k;
660 ((W)heap [k])->active = k + 1; 834 heap [k] = *minpos;
661 k = j; 835
836 k = minpos - heap;
662 } 837 }
663 838
664 heap [k] = w; 839 heap [k] = w;
840 ev_active (heap [k]) = k;
841}
842
843#else // 4HEAP
844
845#define HEAP0 1
846
847/* towards the root */
848void inline_speed
849upheap (WT *heap, int k)
850{
851 WT w = heap [k];
852
853 for (;;)
854 {
855 int p = k >> 1;
856
857 /* maybe we could use a dummy element at heap [0]? */
858 if (!p || heap [p]->at <= w->at)
859 break;
860
861 heap [k] = heap [p];
862 ev_active (heap [k]) = k;
863 k = p;
864 }
865
866 heap [k] = w;
867 ev_active (heap [k]) = k;
868}
869
870/* away from the root */
871void inline_speed
872downheap (WT *heap, int N, int k)
873{
874 WT w = heap [k];
875
876 for (;;)
877 {
878 int c = k << 1;
879
880 if (c > N)
881 break;
882
883 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
884 ? 1 : 0;
885
886 if (w->at <= heap [c]->at)
887 break;
888
889 heap [k] = heap [c];
665 ((W)heap [k])->active = k + 1; 890 ((W)heap [k])->active = k;
891
892 k = c;
893 }
894
895 heap [k] = w;
896 ev_active (heap [k]) = k;
666} 897}
898#endif
667 899
668void inline_size 900void inline_size
669adjustheap (WT *heap, int N, int k) 901adjustheap (WT *heap, int N, int k)
670{ 902{
671 upheap (heap, k); 903 upheap (heap, k);
675/*****************************************************************************/ 907/*****************************************************************************/
676 908
677typedef struct 909typedef struct
678{ 910{
679 WL head; 911 WL head;
680 sig_atomic_t volatile gotsig; 912 EV_ATOMIC_T gotsig;
681} ANSIG; 913} ANSIG;
682 914
683static ANSIG *signals; 915static ANSIG *signals;
684static int signalmax; 916static int signalmax;
685 917
686static int sigpipe [2]; 918static EV_ATOMIC_T gotsig;
687static sig_atomic_t volatile gotsig;
688static ev_io sigev;
689 919
690void inline_size 920void inline_size
691signals_init (ANSIG *base, int count) 921signals_init (ANSIG *base, int count)
692{ 922{
693 while (count--) 923 while (count--)
697 927
698 ++base; 928 ++base;
699 } 929 }
700} 930}
701 931
702static void 932/*****************************************************************************/
703sighandler (int signum)
704{
705#if _WIN32
706 signal (signum, sighandler);
707#endif
708 933
709 signals [signum - 1].gotsig = 1;
710
711 if (!gotsig)
712 {
713 int old_errno = errno;
714 gotsig = 1;
715 write (sigpipe [1], &signum, 1);
716 errno = old_errno;
717 }
718}
719
720void noinline
721ev_feed_signal_event (EV_P_ int signum)
722{
723 WL w;
724
725#if EV_MULTIPLICITY
726 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
727#endif
728
729 --signum;
730
731 if (signum < 0 || signum >= signalmax)
732 return;
733
734 signals [signum].gotsig = 0;
735
736 for (w = signals [signum].head; w; w = w->next)
737 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
738}
739
740static void
741sigcb (EV_P_ ev_io *iow, int revents)
742{
743 int signum;
744
745 read (sigpipe [0], &revents, 1);
746 gotsig = 0;
747
748 for (signum = signalmax; signum--; )
749 if (signals [signum].gotsig)
750 ev_feed_signal_event (EV_A_ signum + 1);
751}
752
753void inline_size 934void inline_speed
754fd_intern (int fd) 935fd_intern (int fd)
755{ 936{
756#ifdef _WIN32 937#ifdef _WIN32
757 int arg = 1; 938 int arg = 1;
758 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 939 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
761 fcntl (fd, F_SETFL, O_NONBLOCK); 942 fcntl (fd, F_SETFL, O_NONBLOCK);
762#endif 943#endif
763} 944}
764 945
765static void noinline 946static void noinline
766siginit (EV_P) 947evpipe_init (EV_P)
767{ 948{
949 if (!ev_is_active (&pipeev))
950 {
951#if EV_USE_EVENTFD
952 if ((evfd = eventfd (0, 0)) >= 0)
953 {
954 evpipe [0] = -1;
955 fd_intern (evfd);
956 ev_io_set (&pipeev, evfd, EV_READ);
957 }
958 else
959#endif
960 {
961 while (pipe (evpipe))
962 syserr ("(libev) error creating signal/async pipe");
963
768 fd_intern (sigpipe [0]); 964 fd_intern (evpipe [0]);
769 fd_intern (sigpipe [1]); 965 fd_intern (evpipe [1]);
966 ev_io_set (&pipeev, evpipe [0], EV_READ);
967 }
770 968
771 ev_io_set (&sigev, sigpipe [0], EV_READ);
772 ev_io_start (EV_A_ &sigev); 969 ev_io_start (EV_A_ &pipeev);
773 ev_unref (EV_A); /* child watcher should not keep loop alive */ 970 ev_unref (EV_A); /* watcher should not keep loop alive */
971 }
972}
973
974void inline_size
975evpipe_write (EV_P_ EV_ATOMIC_T *flag)
976{
977 if (!*flag)
978 {
979 int old_errno = errno; /* save errno because write might clobber it */
980
981 *flag = 1;
982
983#if EV_USE_EVENTFD
984 if (evfd >= 0)
985 {
986 uint64_t counter = 1;
987 write (evfd, &counter, sizeof (uint64_t));
988 }
989 else
990#endif
991 write (evpipe [1], &old_errno, 1);
992
993 errno = old_errno;
994 }
995}
996
997static void
998pipecb (EV_P_ ev_io *iow, int revents)
999{
1000#if EV_USE_EVENTFD
1001 if (evfd >= 0)
1002 {
1003 uint64_t counter;
1004 read (evfd, &counter, sizeof (uint64_t));
1005 }
1006 else
1007#endif
1008 {
1009 char dummy;
1010 read (evpipe [0], &dummy, 1);
1011 }
1012
1013 if (gotsig && ev_is_default_loop (EV_A))
1014 {
1015 int signum;
1016 gotsig = 0;
1017
1018 for (signum = signalmax; signum--; )
1019 if (signals [signum].gotsig)
1020 ev_feed_signal_event (EV_A_ signum + 1);
1021 }
1022
1023#if EV_ASYNC_ENABLE
1024 if (gotasync)
1025 {
1026 int i;
1027 gotasync = 0;
1028
1029 for (i = asynccnt; i--; )
1030 if (asyncs [i]->sent)
1031 {
1032 asyncs [i]->sent = 0;
1033 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1034 }
1035 }
1036#endif
774} 1037}
775 1038
776/*****************************************************************************/ 1039/*****************************************************************************/
777 1040
1041static void
1042ev_sighandler (int signum)
1043{
1044#if EV_MULTIPLICITY
1045 struct ev_loop *loop = &default_loop_struct;
1046#endif
1047
1048#if _WIN32
1049 signal (signum, ev_sighandler);
1050#endif
1051
1052 signals [signum - 1].gotsig = 1;
1053 evpipe_write (EV_A_ &gotsig);
1054}
1055
1056void noinline
1057ev_feed_signal_event (EV_P_ int signum)
1058{
1059 WL w;
1060
1061#if EV_MULTIPLICITY
1062 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1063#endif
1064
1065 --signum;
1066
1067 if (signum < 0 || signum >= signalmax)
1068 return;
1069
1070 signals [signum].gotsig = 0;
1071
1072 for (w = signals [signum].head; w; w = w->next)
1073 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1074}
1075
1076/*****************************************************************************/
1077
778static ev_child *childs [EV_PID_HASHSIZE]; 1078static WL childs [EV_PID_HASHSIZE];
779 1079
780#ifndef _WIN32 1080#ifndef _WIN32
781 1081
782static ev_signal childev; 1082static ev_signal childev;
783 1083
1084#ifndef WIFCONTINUED
1085# define WIFCONTINUED(status) 0
1086#endif
1087
784void inline_speed 1088void inline_speed
785child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1089child_reap (EV_P_ int chain, int pid, int status)
786{ 1090{
787 ev_child *w; 1091 ev_child *w;
1092 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
788 1093
789 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1094 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1095 {
790 if (w->pid == pid || !w->pid) 1096 if ((w->pid == pid || !w->pid)
1097 && (!traced || (w->flags & 1)))
791 { 1098 {
792 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1099 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
793 w->rpid = pid; 1100 w->rpid = pid;
794 w->rstatus = status; 1101 w->rstatus = status;
795 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1102 ev_feed_event (EV_A_ (W)w, EV_CHILD);
796 } 1103 }
1104 }
797} 1105}
798 1106
799#ifndef WCONTINUED 1107#ifndef WCONTINUED
800# define WCONTINUED 0 1108# define WCONTINUED 0
801#endif 1109#endif
810 if (!WCONTINUED 1118 if (!WCONTINUED
811 || errno != EINVAL 1119 || errno != EINVAL
812 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1120 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
813 return; 1121 return;
814 1122
815 /* make sure we are called again until all childs have been reaped */ 1123 /* make sure we are called again until all children have been reaped */
816 /* we need to do it this way so that the callback gets called before we continue */ 1124 /* we need to do it this way so that the callback gets called before we continue */
817 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1125 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
818 1126
819 child_reap (EV_A_ sw, pid, pid, status); 1127 child_reap (EV_A_ pid, pid, status);
820 if (EV_PID_HASHSIZE > 1) 1128 if (EV_PID_HASHSIZE > 1)
821 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1129 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
822} 1130}
823 1131
824#endif 1132#endif
825 1133
826/*****************************************************************************/ 1134/*****************************************************************************/
898} 1206}
899 1207
900unsigned int 1208unsigned int
901ev_embeddable_backends (void) 1209ev_embeddable_backends (void)
902{ 1210{
903 return EVBACKEND_EPOLL 1211 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
904 | EVBACKEND_KQUEUE 1212
905 | EVBACKEND_PORT; 1213 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1214 /* please fix it and tell me how to detect the fix */
1215 flags &= ~EVBACKEND_EPOLL;
1216
1217 return flags;
906} 1218}
907 1219
908unsigned int 1220unsigned int
909ev_backend (EV_P) 1221ev_backend (EV_P)
910{ 1222{
913 1225
914unsigned int 1226unsigned int
915ev_loop_count (EV_P) 1227ev_loop_count (EV_P)
916{ 1228{
917 return loop_count; 1229 return loop_count;
1230}
1231
1232void
1233ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1234{
1235 io_blocktime = interval;
1236}
1237
1238void
1239ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1240{
1241 timeout_blocktime = interval;
918} 1242}
919 1243
920static void noinline 1244static void noinline
921loop_init (EV_P_ unsigned int flags) 1245loop_init (EV_P_ unsigned int flags)
922{ 1246{
928 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1252 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
929 have_monotonic = 1; 1253 have_monotonic = 1;
930 } 1254 }
931#endif 1255#endif
932 1256
933 ev_rt_now = ev_time (); 1257 ev_rt_now = ev_time ();
934 mn_now = get_clock (); 1258 mn_now = get_clock ();
935 now_floor = mn_now; 1259 now_floor = mn_now;
936 rtmn_diff = ev_rt_now - mn_now; 1260 rtmn_diff = ev_rt_now - mn_now;
1261
1262 io_blocktime = 0.;
1263 timeout_blocktime = 0.;
1264 backend = 0;
1265 backend_fd = -1;
1266 gotasync = 0;
1267#if EV_USE_INOTIFY
1268 fs_fd = -2;
1269#endif
937 1270
938 /* pid check not overridable via env */ 1271 /* pid check not overridable via env */
939#ifndef _WIN32 1272#ifndef _WIN32
940 if (flags & EVFLAG_FORKCHECK) 1273 if (flags & EVFLAG_FORKCHECK)
941 curpid = getpid (); 1274 curpid = getpid ();
944 if (!(flags & EVFLAG_NOENV) 1277 if (!(flags & EVFLAG_NOENV)
945 && !enable_secure () 1278 && !enable_secure ()
946 && getenv ("LIBEV_FLAGS")) 1279 && getenv ("LIBEV_FLAGS"))
947 flags = atoi (getenv ("LIBEV_FLAGS")); 1280 flags = atoi (getenv ("LIBEV_FLAGS"));
948 1281
949 if (!(flags & 0x0000ffffUL)) 1282 if (!(flags & 0x0000ffffU))
950 flags |= ev_recommended_backends (); 1283 flags |= ev_recommended_backends ();
951
952 backend = 0;
953 backend_fd = -1;
954#if EV_USE_INOTIFY
955 fs_fd = -2;
956#endif
957 1284
958#if EV_USE_PORT 1285#if EV_USE_PORT
959 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1286 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
960#endif 1287#endif
961#if EV_USE_KQUEUE 1288#if EV_USE_KQUEUE
969#endif 1296#endif
970#if EV_USE_SELECT 1297#if EV_USE_SELECT
971 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1298 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
972#endif 1299#endif
973 1300
974 ev_init (&sigev, sigcb); 1301 ev_init (&pipeev, pipecb);
975 ev_set_priority (&sigev, EV_MAXPRI); 1302 ev_set_priority (&pipeev, EV_MAXPRI);
976 } 1303 }
977} 1304}
978 1305
979static void noinline 1306static void noinline
980loop_destroy (EV_P) 1307loop_destroy (EV_P)
981{ 1308{
982 int i; 1309 int i;
1310
1311 if (ev_is_active (&pipeev))
1312 {
1313 ev_ref (EV_A); /* signal watcher */
1314 ev_io_stop (EV_A_ &pipeev);
1315
1316#if EV_USE_EVENTFD
1317 if (evfd >= 0)
1318 close (evfd);
1319#endif
1320
1321 if (evpipe [0] >= 0)
1322 {
1323 close (evpipe [0]);
1324 close (evpipe [1]);
1325 }
1326 }
983 1327
984#if EV_USE_INOTIFY 1328#if EV_USE_INOTIFY
985 if (fs_fd >= 0) 1329 if (fs_fd >= 0)
986 close (fs_fd); 1330 close (fs_fd);
987#endif 1331#endif
1010 array_free (pending, [i]); 1354 array_free (pending, [i]);
1011#if EV_IDLE_ENABLE 1355#if EV_IDLE_ENABLE
1012 array_free (idle, [i]); 1356 array_free (idle, [i]);
1013#endif 1357#endif
1014 } 1358 }
1359
1360 ev_free (anfds); anfdmax = 0;
1015 1361
1016 /* have to use the microsoft-never-gets-it-right macro */ 1362 /* have to use the microsoft-never-gets-it-right macro */
1017 array_free (fdchange, EMPTY); 1363 array_free (fdchange, EMPTY);
1018 array_free (timer, EMPTY); 1364 array_free (timer, EMPTY);
1019#if EV_PERIODIC_ENABLE 1365#if EV_PERIODIC_ENABLE
1020 array_free (periodic, EMPTY); 1366 array_free (periodic, EMPTY);
1021#endif 1367#endif
1368#if EV_FORK_ENABLE
1369 array_free (fork, EMPTY);
1370#endif
1022 array_free (prepare, EMPTY); 1371 array_free (prepare, EMPTY);
1023 array_free (check, EMPTY); 1372 array_free (check, EMPTY);
1373#if EV_ASYNC_ENABLE
1374 array_free (async, EMPTY);
1375#endif
1024 1376
1025 backend = 0; 1377 backend = 0;
1026} 1378}
1027 1379
1380#if EV_USE_INOTIFY
1028void inline_size infy_fork (EV_P); 1381void inline_size infy_fork (EV_P);
1382#endif
1029 1383
1030void inline_size 1384void inline_size
1031loop_fork (EV_P) 1385loop_fork (EV_P)
1032{ 1386{
1033#if EV_USE_PORT 1387#if EV_USE_PORT
1041#endif 1395#endif
1042#if EV_USE_INOTIFY 1396#if EV_USE_INOTIFY
1043 infy_fork (EV_A); 1397 infy_fork (EV_A);
1044#endif 1398#endif
1045 1399
1046 if (ev_is_active (&sigev)) 1400 if (ev_is_active (&pipeev))
1047 { 1401 {
1048 /* default loop */ 1402 /* this "locks" the handlers against writing to the pipe */
1403 /* while we modify the fd vars */
1404 gotsig = 1;
1405#if EV_ASYNC_ENABLE
1406 gotasync = 1;
1407#endif
1049 1408
1050 ev_ref (EV_A); 1409 ev_ref (EV_A);
1051 ev_io_stop (EV_A_ &sigev); 1410 ev_io_stop (EV_A_ &pipeev);
1411
1412#if EV_USE_EVENTFD
1413 if (evfd >= 0)
1414 close (evfd);
1415#endif
1416
1417 if (evpipe [0] >= 0)
1418 {
1052 close (sigpipe [0]); 1419 close (evpipe [0]);
1053 close (sigpipe [1]); 1420 close (evpipe [1]);
1421 }
1054 1422
1055 while (pipe (sigpipe))
1056 syserr ("(libev) error creating pipe");
1057
1058 siginit (EV_A); 1423 evpipe_init (EV_A);
1424 /* now iterate over everything, in case we missed something */
1425 pipecb (EV_A_ &pipeev, EV_READ);
1059 } 1426 }
1060 1427
1061 postfork = 0; 1428 postfork = 0;
1062} 1429}
1063 1430
1085} 1452}
1086 1453
1087void 1454void
1088ev_loop_fork (EV_P) 1455ev_loop_fork (EV_P)
1089{ 1456{
1090 postfork = 1; 1457 postfork = 1; /* must be in line with ev_default_fork */
1091} 1458}
1092
1093#endif 1459#endif
1094 1460
1095#if EV_MULTIPLICITY 1461#if EV_MULTIPLICITY
1096struct ev_loop * 1462struct ev_loop *
1097ev_default_loop_init (unsigned int flags) 1463ev_default_loop_init (unsigned int flags)
1098#else 1464#else
1099int 1465int
1100ev_default_loop (unsigned int flags) 1466ev_default_loop (unsigned int flags)
1101#endif 1467#endif
1102{ 1468{
1103 if (sigpipe [0] == sigpipe [1])
1104 if (pipe (sigpipe))
1105 return 0;
1106
1107 if (!ev_default_loop_ptr) 1469 if (!ev_default_loop_ptr)
1108 { 1470 {
1109#if EV_MULTIPLICITY 1471#if EV_MULTIPLICITY
1110 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1472 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1111#else 1473#else
1114 1476
1115 loop_init (EV_A_ flags); 1477 loop_init (EV_A_ flags);
1116 1478
1117 if (ev_backend (EV_A)) 1479 if (ev_backend (EV_A))
1118 { 1480 {
1119 siginit (EV_A);
1120
1121#ifndef _WIN32 1481#ifndef _WIN32
1122 ev_signal_init (&childev, childcb, SIGCHLD); 1482 ev_signal_init (&childev, childcb, SIGCHLD);
1123 ev_set_priority (&childev, EV_MAXPRI); 1483 ev_set_priority (&childev, EV_MAXPRI);
1124 ev_signal_start (EV_A_ &childev); 1484 ev_signal_start (EV_A_ &childev);
1125 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1485 ev_unref (EV_A); /* child watcher should not keep loop alive */
1142#ifndef _WIN32 1502#ifndef _WIN32
1143 ev_ref (EV_A); /* child watcher */ 1503 ev_ref (EV_A); /* child watcher */
1144 ev_signal_stop (EV_A_ &childev); 1504 ev_signal_stop (EV_A_ &childev);
1145#endif 1505#endif
1146 1506
1147 ev_ref (EV_A); /* signal watcher */
1148 ev_io_stop (EV_A_ &sigev);
1149
1150 close (sigpipe [0]); sigpipe [0] = 0;
1151 close (sigpipe [1]); sigpipe [1] = 0;
1152
1153 loop_destroy (EV_A); 1507 loop_destroy (EV_A);
1154} 1508}
1155 1509
1156void 1510void
1157ev_default_fork (void) 1511ev_default_fork (void)
1159#if EV_MULTIPLICITY 1513#if EV_MULTIPLICITY
1160 struct ev_loop *loop = ev_default_loop_ptr; 1514 struct ev_loop *loop = ev_default_loop_ptr;
1161#endif 1515#endif
1162 1516
1163 if (backend) 1517 if (backend)
1164 postfork = 1; 1518 postfork = 1; /* must be in line with ev_loop_fork */
1165} 1519}
1166 1520
1167/*****************************************************************************/ 1521/*****************************************************************************/
1168 1522
1169void 1523void
1189 p->w->pending = 0; 1543 p->w->pending = 0;
1190 EV_CB_INVOKE (p->w, p->events); 1544 EV_CB_INVOKE (p->w, p->events);
1191 } 1545 }
1192 } 1546 }
1193} 1547}
1194
1195void inline_size
1196timers_reify (EV_P)
1197{
1198 while (timercnt && ((WT)timers [0])->at <= mn_now)
1199 {
1200 ev_timer *w = timers [0];
1201
1202 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1203
1204 /* first reschedule or stop timer */
1205 if (w->repeat)
1206 {
1207 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1208
1209 ((WT)w)->at += w->repeat;
1210 if (((WT)w)->at < mn_now)
1211 ((WT)w)->at = mn_now;
1212
1213 downheap ((WT *)timers, timercnt, 0);
1214 }
1215 else
1216 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1217
1218 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1219 }
1220}
1221
1222#if EV_PERIODIC_ENABLE
1223void inline_size
1224periodics_reify (EV_P)
1225{
1226 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1227 {
1228 ev_periodic *w = periodics [0];
1229
1230 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1231
1232 /* first reschedule or stop timer */
1233 if (w->reschedule_cb)
1234 {
1235 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1236 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1237 downheap ((WT *)periodics, periodiccnt, 0);
1238 }
1239 else if (w->interval)
1240 {
1241 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1242 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1243 downheap ((WT *)periodics, periodiccnt, 0);
1244 }
1245 else
1246 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1247
1248 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1249 }
1250}
1251
1252static void noinline
1253periodics_reschedule (EV_P)
1254{
1255 int i;
1256
1257 /* adjust periodics after time jump */
1258 for (i = 0; i < periodiccnt; ++i)
1259 {
1260 ev_periodic *w = periodics [i];
1261
1262 if (w->reschedule_cb)
1263 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1264 else if (w->interval)
1265 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1266 }
1267
1268 /* now rebuild the heap */
1269 for (i = periodiccnt >> 1; i--; )
1270 downheap ((WT *)periodics, periodiccnt, i);
1271}
1272#endif
1273 1548
1274#if EV_IDLE_ENABLE 1549#if EV_IDLE_ENABLE
1275void inline_size 1550void inline_size
1276idle_reify (EV_P) 1551idle_reify (EV_P)
1277{ 1552{
1292 } 1567 }
1293 } 1568 }
1294} 1569}
1295#endif 1570#endif
1296 1571
1297int inline_size 1572void inline_size
1298time_update_monotonic (EV_P) 1573timers_reify (EV_P)
1299{ 1574{
1575 while (timercnt && ev_at (timers [HEAP0]) <= mn_now)
1576 {
1577 ev_timer *w = (ev_timer *)timers [HEAP0];
1578
1579 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1580
1581 /* first reschedule or stop timer */
1582 if (w->repeat)
1583 {
1584 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1585
1586 ev_at (w) += w->repeat;
1587 if (ev_at (w) < mn_now)
1588 ev_at (w) = mn_now;
1589
1590 downheap (timers, timercnt, HEAP0);
1591 }
1592 else
1593 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1594
1595 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1596 }
1597}
1598
1599#if EV_PERIODIC_ENABLE
1600void inline_size
1601periodics_reify (EV_P)
1602{
1603 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now)
1604 {
1605 ev_periodic *w = (ev_periodic *)periodics [HEAP0];
1606
1607 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1608
1609 /* first reschedule or stop timer */
1610 if (w->reschedule_cb)
1611 {
1612 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1613 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1614 downheap (periodics, periodiccnt, 1);
1615 }
1616 else if (w->interval)
1617 {
1618 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1619 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1620 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1621 downheap (periodics, periodiccnt, HEAP0);
1622 }
1623 else
1624 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1625
1626 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1627 }
1628}
1629
1630static void noinline
1631periodics_reschedule (EV_P)
1632{
1633 int i;
1634
1635 /* adjust periodics after time jump */
1636 for (i = 1; i <= periodiccnt; ++i)
1637 {
1638 ev_periodic *w = (ev_periodic *)periodics [i];
1639
1640 if (w->reschedule_cb)
1641 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1642 else if (w->interval)
1643 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1644 }
1645
1646 /* now rebuild the heap */
1647 for (i = periodiccnt >> 1; --i; )
1648 downheap (periodics, periodiccnt, i + HEAP0);
1649}
1650#endif
1651
1652void inline_speed
1653time_update (EV_P_ ev_tstamp max_block)
1654{
1655 int i;
1656
1657#if EV_USE_MONOTONIC
1658 if (expect_true (have_monotonic))
1659 {
1660 ev_tstamp odiff = rtmn_diff;
1661
1300 mn_now = get_clock (); 1662 mn_now = get_clock ();
1301 1663
1664 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1665 /* interpolate in the meantime */
1302 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1666 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1303 { 1667 {
1304 ev_rt_now = rtmn_diff + mn_now; 1668 ev_rt_now = rtmn_diff + mn_now;
1305 return 0; 1669 return;
1306 } 1670 }
1307 else 1671
1308 {
1309 now_floor = mn_now; 1672 now_floor = mn_now;
1310 ev_rt_now = ev_time (); 1673 ev_rt_now = ev_time ();
1311 return 1;
1312 }
1313}
1314 1674
1315void inline_size 1675 /* loop a few times, before making important decisions.
1316time_update (EV_P) 1676 * on the choice of "4": one iteration isn't enough,
1317{ 1677 * in case we get preempted during the calls to
1318 int i; 1678 * ev_time and get_clock. a second call is almost guaranteed
1319 1679 * to succeed in that case, though. and looping a few more times
1320#if EV_USE_MONOTONIC 1680 * doesn't hurt either as we only do this on time-jumps or
1321 if (expect_true (have_monotonic)) 1681 * in the unlikely event of having been preempted here.
1322 { 1682 */
1323 if (time_update_monotonic (EV_A)) 1683 for (i = 4; --i; )
1324 { 1684 {
1325 ev_tstamp odiff = rtmn_diff;
1326
1327 /* loop a few times, before making important decisions.
1328 * on the choice of "4": one iteration isn't enough,
1329 * in case we get preempted during the calls to
1330 * ev_time and get_clock. a second call is almost guaranteed
1331 * to succeed in that case, though. and looping a few more times
1332 * doesn't hurt either as we only do this on time-jumps or
1333 * in the unlikely event of having been preempted here.
1334 */
1335 for (i = 4; --i; )
1336 {
1337 rtmn_diff = ev_rt_now - mn_now; 1685 rtmn_diff = ev_rt_now - mn_now;
1338 1686
1339 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1687 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1340 return; /* all is well */ 1688 return; /* all is well */
1341 1689
1342 ev_rt_now = ev_time (); 1690 ev_rt_now = ev_time ();
1343 mn_now = get_clock (); 1691 mn_now = get_clock ();
1344 now_floor = mn_now; 1692 now_floor = mn_now;
1345 } 1693 }
1346 1694
1347# if EV_PERIODIC_ENABLE 1695# if EV_PERIODIC_ENABLE
1348 periodics_reschedule (EV_A); 1696 periodics_reschedule (EV_A);
1349# endif 1697# endif
1350 /* no timer adjustment, as the monotonic clock doesn't jump */ 1698 /* no timer adjustment, as the monotonic clock doesn't jump */
1351 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1699 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1352 }
1353 } 1700 }
1354 else 1701 else
1355#endif 1702#endif
1356 { 1703 {
1357 ev_rt_now = ev_time (); 1704 ev_rt_now = ev_time ();
1358 1705
1359 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1706 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1360 { 1707 {
1361#if EV_PERIODIC_ENABLE 1708#if EV_PERIODIC_ENABLE
1362 periodics_reschedule (EV_A); 1709 periodics_reschedule (EV_A);
1363#endif 1710#endif
1364
1365 /* adjust timers. this is easy, as the offset is the same for all of them */ 1711 /* adjust timers. this is easy, as the offset is the same for all of them */
1366 for (i = 0; i < timercnt; ++i) 1712 for (i = 1; i <= timercnt; ++i)
1367 ((WT)timers [i])->at += ev_rt_now - mn_now; 1713 ev_at (timers [i]) += ev_rt_now - mn_now;
1368 } 1714 }
1369 1715
1370 mn_now = ev_rt_now; 1716 mn_now = ev_rt_now;
1371 } 1717 }
1372} 1718}
1386static int loop_done; 1732static int loop_done;
1387 1733
1388void 1734void
1389ev_loop (EV_P_ int flags) 1735ev_loop (EV_P_ int flags)
1390{ 1736{
1391 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1737 loop_done = EVUNLOOP_CANCEL;
1392 ? EVUNLOOP_ONE
1393 : EVUNLOOP_CANCEL;
1394 1738
1395 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1739 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1396 1740
1397 do 1741 do
1398 { 1742 {
1413 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1757 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1414 call_pending (EV_A); 1758 call_pending (EV_A);
1415 } 1759 }
1416#endif 1760#endif
1417 1761
1418 /* queue check watchers (and execute them) */ 1762 /* queue prepare watchers (and execute them) */
1419 if (expect_false (preparecnt)) 1763 if (expect_false (preparecnt))
1420 { 1764 {
1421 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1765 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1422 call_pending (EV_A); 1766 call_pending (EV_A);
1423 } 1767 }
1432 /* update fd-related kernel structures */ 1776 /* update fd-related kernel structures */
1433 fd_reify (EV_A); 1777 fd_reify (EV_A);
1434 1778
1435 /* calculate blocking time */ 1779 /* calculate blocking time */
1436 { 1780 {
1437 ev_tstamp block; 1781 ev_tstamp waittime = 0.;
1782 ev_tstamp sleeptime = 0.;
1438 1783
1439 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1784 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1440 block = 0.; /* do not block at all */
1441 else
1442 { 1785 {
1443 /* update time to cancel out callback processing overhead */ 1786 /* update time to cancel out callback processing overhead */
1444#if EV_USE_MONOTONIC
1445 if (expect_true (have_monotonic))
1446 time_update_monotonic (EV_A); 1787 time_update (EV_A_ 1e100);
1447 else
1448#endif
1449 {
1450 ev_rt_now = ev_time ();
1451 mn_now = ev_rt_now;
1452 }
1453 1788
1454 block = MAX_BLOCKTIME; 1789 waittime = MAX_BLOCKTIME;
1455 1790
1456 if (timercnt) 1791 if (timercnt)
1457 { 1792 {
1458 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1793 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge;
1459 if (block > to) block = to; 1794 if (waittime > to) waittime = to;
1460 } 1795 }
1461 1796
1462#if EV_PERIODIC_ENABLE 1797#if EV_PERIODIC_ENABLE
1463 if (periodiccnt) 1798 if (periodiccnt)
1464 { 1799 {
1465 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1800 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1466 if (block > to) block = to; 1801 if (waittime > to) waittime = to;
1467 } 1802 }
1468#endif 1803#endif
1469 1804
1470 if (expect_false (block < 0.)) block = 0.; 1805 if (expect_false (waittime < timeout_blocktime))
1806 waittime = timeout_blocktime;
1807
1808 sleeptime = waittime - backend_fudge;
1809
1810 if (expect_true (sleeptime > io_blocktime))
1811 sleeptime = io_blocktime;
1812
1813 if (sleeptime)
1814 {
1815 ev_sleep (sleeptime);
1816 waittime -= sleeptime;
1817 }
1471 } 1818 }
1472 1819
1473 ++loop_count; 1820 ++loop_count;
1474 backend_poll (EV_A_ block); 1821 backend_poll (EV_A_ waittime);
1822
1823 /* update ev_rt_now, do magic */
1824 time_update (EV_A_ waittime + sleeptime);
1475 } 1825 }
1476
1477 /* update ev_rt_now, do magic */
1478 time_update (EV_A);
1479 1826
1480 /* queue pending timers and reschedule them */ 1827 /* queue pending timers and reschedule them */
1481 timers_reify (EV_A); /* relative timers called last */ 1828 timers_reify (EV_A); /* relative timers called last */
1482#if EV_PERIODIC_ENABLE 1829#if EV_PERIODIC_ENABLE
1483 periodics_reify (EV_A); /* absolute timers called first */ 1830 periodics_reify (EV_A); /* absolute timers called first */
1491 /* queue check watchers, to be executed first */ 1838 /* queue check watchers, to be executed first */
1492 if (expect_false (checkcnt)) 1839 if (expect_false (checkcnt))
1493 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1840 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1494 1841
1495 call_pending (EV_A); 1842 call_pending (EV_A);
1496
1497 } 1843 }
1498 while (expect_true (activecnt && !loop_done)); 1844 while (expect_true (
1845 activecnt
1846 && !loop_done
1847 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1848 ));
1499 1849
1500 if (loop_done == EVUNLOOP_ONE) 1850 if (loop_done == EVUNLOOP_ONE)
1501 loop_done = EVUNLOOP_CANCEL; 1851 loop_done = EVUNLOOP_CANCEL;
1502} 1852}
1503 1853
1545ev_clear_pending (EV_P_ void *w) 1895ev_clear_pending (EV_P_ void *w)
1546{ 1896{
1547 W w_ = (W)w; 1897 W w_ = (W)w;
1548 int pending = w_->pending; 1898 int pending = w_->pending;
1549 1899
1550 if (!pending) 1900 if (expect_true (pending))
1901 {
1902 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1903 w_->pending = 0;
1904 p->w = 0;
1905 return p->events;
1906 }
1907 else
1551 return 0; 1908 return 0;
1552
1553 w_->pending = 0;
1554 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1555 p->w = 0;
1556
1557 return p->events;
1558} 1909}
1559 1910
1560void inline_size 1911void inline_size
1561pri_adjust (EV_P_ W w) 1912pri_adjust (EV_P_ W w)
1562{ 1913{
1581 w->active = 0; 1932 w->active = 0;
1582} 1933}
1583 1934
1584/*****************************************************************************/ 1935/*****************************************************************************/
1585 1936
1586void 1937void noinline
1587ev_io_start (EV_P_ ev_io *w) 1938ev_io_start (EV_P_ ev_io *w)
1588{ 1939{
1589 int fd = w->fd; 1940 int fd = w->fd;
1590 1941
1591 if (expect_false (ev_is_active (w))) 1942 if (expect_false (ev_is_active (w)))
1593 1944
1594 assert (("ev_io_start called with negative fd", fd >= 0)); 1945 assert (("ev_io_start called with negative fd", fd >= 0));
1595 1946
1596 ev_start (EV_A_ (W)w, 1); 1947 ev_start (EV_A_ (W)w, 1);
1597 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1948 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1598 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1949 wlist_add (&anfds[fd].head, (WL)w);
1599 1950
1600 fd_change (EV_A_ fd); 1951 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1952 w->events &= ~EV_IOFDSET;
1601} 1953}
1602 1954
1603void 1955void noinline
1604ev_io_stop (EV_P_ ev_io *w) 1956ev_io_stop (EV_P_ ev_io *w)
1605{ 1957{
1606 clear_pending (EV_A_ (W)w); 1958 clear_pending (EV_A_ (W)w);
1607 if (expect_false (!ev_is_active (w))) 1959 if (expect_false (!ev_is_active (w)))
1608 return; 1960 return;
1609 1961
1610 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1962 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1611 1963
1612 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1964 wlist_del (&anfds[w->fd].head, (WL)w);
1613 ev_stop (EV_A_ (W)w); 1965 ev_stop (EV_A_ (W)w);
1614 1966
1615 fd_change (EV_A_ w->fd); 1967 fd_change (EV_A_ w->fd, 1);
1616} 1968}
1617 1969
1618void 1970void noinline
1619ev_timer_start (EV_P_ ev_timer *w) 1971ev_timer_start (EV_P_ ev_timer *w)
1620{ 1972{
1621 if (expect_false (ev_is_active (w))) 1973 if (expect_false (ev_is_active (w)))
1622 return; 1974 return;
1623 1975
1624 ((WT)w)->at += mn_now; 1976 ev_at (w) += mn_now;
1625 1977
1626 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1978 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1627 1979
1628 ev_start (EV_A_ (W)w, ++timercnt); 1980 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1629 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1981 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2);
1630 timers [timercnt - 1] = w; 1982 timers [ev_active (w)] = (WT)w;
1631 upheap ((WT *)timers, timercnt - 1); 1983 upheap (timers, ev_active (w));
1632 1984
1633 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1985 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/
1634} 1986}
1635 1987
1636void 1988void noinline
1637ev_timer_stop (EV_P_ ev_timer *w) 1989ev_timer_stop (EV_P_ ev_timer *w)
1638{ 1990{
1639 clear_pending (EV_A_ (W)w); 1991 clear_pending (EV_A_ (W)w);
1640 if (expect_false (!ev_is_active (w))) 1992 if (expect_false (!ev_is_active (w)))
1641 return; 1993 return;
1642 1994
1643 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1644
1645 { 1995 {
1646 int active = ((W)w)->active; 1996 int active = ev_active (w);
1647 1997
1998 assert (("internal timer heap corruption", timers [active] == (WT)w));
1999
1648 if (expect_true (--active < --timercnt)) 2000 if (expect_true (active < timercnt + HEAP0 - 1))
1649 { 2001 {
1650 timers [active] = timers [timercnt]; 2002 timers [active] = timers [timercnt + HEAP0 - 1];
1651 adjustheap ((WT *)timers, timercnt, active); 2003 adjustheap (timers, timercnt, active);
1652 } 2004 }
2005
2006 --timercnt;
1653 } 2007 }
1654 2008
1655 ((WT)w)->at -= mn_now; 2009 ev_at (w) -= mn_now;
1656 2010
1657 ev_stop (EV_A_ (W)w); 2011 ev_stop (EV_A_ (W)w);
1658} 2012}
1659 2013
1660void 2014void noinline
1661ev_timer_again (EV_P_ ev_timer *w) 2015ev_timer_again (EV_P_ ev_timer *w)
1662{ 2016{
1663 if (ev_is_active (w)) 2017 if (ev_is_active (w))
1664 { 2018 {
1665 if (w->repeat) 2019 if (w->repeat)
1666 { 2020 {
1667 ((WT)w)->at = mn_now + w->repeat; 2021 ev_at (w) = mn_now + w->repeat;
1668 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2022 adjustheap (timers, timercnt, ev_active (w));
1669 } 2023 }
1670 else 2024 else
1671 ev_timer_stop (EV_A_ w); 2025 ev_timer_stop (EV_A_ w);
1672 } 2026 }
1673 else if (w->repeat) 2027 else if (w->repeat)
1674 { 2028 {
1675 w->at = w->repeat; 2029 ev_at (w) = w->repeat;
1676 ev_timer_start (EV_A_ w); 2030 ev_timer_start (EV_A_ w);
1677 } 2031 }
1678} 2032}
1679 2033
1680#if EV_PERIODIC_ENABLE 2034#if EV_PERIODIC_ENABLE
1681void 2035void noinline
1682ev_periodic_start (EV_P_ ev_periodic *w) 2036ev_periodic_start (EV_P_ ev_periodic *w)
1683{ 2037{
1684 if (expect_false (ev_is_active (w))) 2038 if (expect_false (ev_is_active (w)))
1685 return; 2039 return;
1686 2040
1687 if (w->reschedule_cb) 2041 if (w->reschedule_cb)
1688 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2042 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1689 else if (w->interval) 2043 else if (w->interval)
1690 { 2044 {
1691 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2045 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1692 /* this formula differs from the one in periodic_reify because we do not always round up */ 2046 /* this formula differs from the one in periodic_reify because we do not always round up */
1693 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2047 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1694 } 2048 }
2049 else
2050 ev_at (w) = w->offset;
1695 2051
1696 ev_start (EV_A_ (W)w, ++periodiccnt); 2052 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1697 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2053 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2);
1698 periodics [periodiccnt - 1] = w; 2054 periodics [ev_active (w)] = (WT)w;
1699 upheap ((WT *)periodics, periodiccnt - 1); 2055 upheap (periodics, ev_active (w));
1700 2056
1701 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2057 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/
1702} 2058}
1703 2059
1704void 2060void noinline
1705ev_periodic_stop (EV_P_ ev_periodic *w) 2061ev_periodic_stop (EV_P_ ev_periodic *w)
1706{ 2062{
1707 clear_pending (EV_A_ (W)w); 2063 clear_pending (EV_A_ (W)w);
1708 if (expect_false (!ev_is_active (w))) 2064 if (expect_false (!ev_is_active (w)))
1709 return; 2065 return;
1710 2066
1711 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1712
1713 { 2067 {
1714 int active = ((W)w)->active; 2068 int active = ev_active (w);
1715 2069
2070 assert (("internal periodic heap corruption", periodics [active] == (WT)w));
2071
1716 if (expect_true (--active < --periodiccnt)) 2072 if (expect_true (active < periodiccnt + HEAP0 - 1))
1717 { 2073 {
1718 periodics [active] = periodics [periodiccnt]; 2074 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1719 adjustheap ((WT *)periodics, periodiccnt, active); 2075 adjustheap (periodics, periodiccnt, active);
1720 } 2076 }
2077
2078 --periodiccnt;
1721 } 2079 }
1722 2080
1723 ev_stop (EV_A_ (W)w); 2081 ev_stop (EV_A_ (W)w);
1724} 2082}
1725 2083
1726void 2084void noinline
1727ev_periodic_again (EV_P_ ev_periodic *w) 2085ev_periodic_again (EV_P_ ev_periodic *w)
1728{ 2086{
1729 /* TODO: use adjustheap and recalculation */ 2087 /* TODO: use adjustheap and recalculation */
1730 ev_periodic_stop (EV_A_ w); 2088 ev_periodic_stop (EV_A_ w);
1731 ev_periodic_start (EV_A_ w); 2089 ev_periodic_start (EV_A_ w);
1734 2092
1735#ifndef SA_RESTART 2093#ifndef SA_RESTART
1736# define SA_RESTART 0 2094# define SA_RESTART 0
1737#endif 2095#endif
1738 2096
1739void 2097void noinline
1740ev_signal_start (EV_P_ ev_signal *w) 2098ev_signal_start (EV_P_ ev_signal *w)
1741{ 2099{
1742#if EV_MULTIPLICITY 2100#if EV_MULTIPLICITY
1743 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2101 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1744#endif 2102#endif
1745 if (expect_false (ev_is_active (w))) 2103 if (expect_false (ev_is_active (w)))
1746 return; 2104 return;
1747 2105
1748 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2106 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1749 2107
2108 evpipe_init (EV_A);
2109
2110 {
2111#ifndef _WIN32
2112 sigset_t full, prev;
2113 sigfillset (&full);
2114 sigprocmask (SIG_SETMASK, &full, &prev);
2115#endif
2116
2117 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2118
2119#ifndef _WIN32
2120 sigprocmask (SIG_SETMASK, &prev, 0);
2121#endif
2122 }
2123
1750 ev_start (EV_A_ (W)w, 1); 2124 ev_start (EV_A_ (W)w, 1);
1751 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1752 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2125 wlist_add (&signals [w->signum - 1].head, (WL)w);
1753 2126
1754 if (!((WL)w)->next) 2127 if (!((WL)w)->next)
1755 { 2128 {
1756#if _WIN32 2129#if _WIN32
1757 signal (w->signum, sighandler); 2130 signal (w->signum, ev_sighandler);
1758#else 2131#else
1759 struct sigaction sa; 2132 struct sigaction sa;
1760 sa.sa_handler = sighandler; 2133 sa.sa_handler = ev_sighandler;
1761 sigfillset (&sa.sa_mask); 2134 sigfillset (&sa.sa_mask);
1762 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2135 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1763 sigaction (w->signum, &sa, 0); 2136 sigaction (w->signum, &sa, 0);
1764#endif 2137#endif
1765 } 2138 }
1766} 2139}
1767 2140
1768void 2141void noinline
1769ev_signal_stop (EV_P_ ev_signal *w) 2142ev_signal_stop (EV_P_ ev_signal *w)
1770{ 2143{
1771 clear_pending (EV_A_ (W)w); 2144 clear_pending (EV_A_ (W)w);
1772 if (expect_false (!ev_is_active (w))) 2145 if (expect_false (!ev_is_active (w)))
1773 return; 2146 return;
1774 2147
1775 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2148 wlist_del (&signals [w->signum - 1].head, (WL)w);
1776 ev_stop (EV_A_ (W)w); 2149 ev_stop (EV_A_ (W)w);
1777 2150
1778 if (!signals [w->signum - 1].head) 2151 if (!signals [w->signum - 1].head)
1779 signal (w->signum, SIG_DFL); 2152 signal (w->signum, SIG_DFL);
1780} 2153}
1787#endif 2160#endif
1788 if (expect_false (ev_is_active (w))) 2161 if (expect_false (ev_is_active (w)))
1789 return; 2162 return;
1790 2163
1791 ev_start (EV_A_ (W)w, 1); 2164 ev_start (EV_A_ (W)w, 1);
1792 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2165 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1793} 2166}
1794 2167
1795void 2168void
1796ev_child_stop (EV_P_ ev_child *w) 2169ev_child_stop (EV_P_ ev_child *w)
1797{ 2170{
1798 clear_pending (EV_A_ (W)w); 2171 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 2172 if (expect_false (!ev_is_active (w)))
1800 return; 2173 return;
1801 2174
1802 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2175 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1803 ev_stop (EV_A_ (W)w); 2176 ev_stop (EV_A_ (W)w);
1804} 2177}
1805 2178
1806#if EV_STAT_ENABLE 2179#if EV_STAT_ENABLE
1807 2180
1826 if (w->wd < 0) 2199 if (w->wd < 0)
1827 { 2200 {
1828 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2201 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1829 2202
1830 /* monitor some parent directory for speedup hints */ 2203 /* monitor some parent directory for speedup hints */
2204 /* note that exceeding the hardcoded limit is not a correctness issue, */
2205 /* but an efficiency issue only */
1831 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2206 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1832 { 2207 {
1833 char path [4096]; 2208 char path [4096];
1834 strcpy (path, w->path); 2209 strcpy (path, w->path);
1835 2210
2080 clear_pending (EV_A_ (W)w); 2455 clear_pending (EV_A_ (W)w);
2081 if (expect_false (!ev_is_active (w))) 2456 if (expect_false (!ev_is_active (w)))
2082 return; 2457 return;
2083 2458
2084 { 2459 {
2085 int active = ((W)w)->active; 2460 int active = ev_active (w);
2086 2461
2087 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2462 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2088 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2463 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2089 2464
2090 ev_stop (EV_A_ (W)w); 2465 ev_stop (EV_A_ (W)w);
2091 --idleall; 2466 --idleall;
2092 } 2467 }
2093} 2468}
2110 clear_pending (EV_A_ (W)w); 2485 clear_pending (EV_A_ (W)w);
2111 if (expect_false (!ev_is_active (w))) 2486 if (expect_false (!ev_is_active (w)))
2112 return; 2487 return;
2113 2488
2114 { 2489 {
2115 int active = ((W)w)->active; 2490 int active = ev_active (w);
2491
2116 prepares [active - 1] = prepares [--preparecnt]; 2492 prepares [active - 1] = prepares [--preparecnt];
2117 ((W)prepares [active - 1])->active = active; 2493 ev_active (prepares [active - 1]) = active;
2118 } 2494 }
2119 2495
2120 ev_stop (EV_A_ (W)w); 2496 ev_stop (EV_A_ (W)w);
2121} 2497}
2122 2498
2137 clear_pending (EV_A_ (W)w); 2513 clear_pending (EV_A_ (W)w);
2138 if (expect_false (!ev_is_active (w))) 2514 if (expect_false (!ev_is_active (w)))
2139 return; 2515 return;
2140 2516
2141 { 2517 {
2142 int active = ((W)w)->active; 2518 int active = ev_active (w);
2519
2143 checks [active - 1] = checks [--checkcnt]; 2520 checks [active - 1] = checks [--checkcnt];
2144 ((W)checks [active - 1])->active = active; 2521 ev_active (checks [active - 1]) = active;
2145 } 2522 }
2146 2523
2147 ev_stop (EV_A_ (W)w); 2524 ev_stop (EV_A_ (W)w);
2148} 2525}
2149 2526
2150#if EV_EMBED_ENABLE 2527#if EV_EMBED_ENABLE
2151void noinline 2528void noinline
2152ev_embed_sweep (EV_P_ ev_embed *w) 2529ev_embed_sweep (EV_P_ ev_embed *w)
2153{ 2530{
2154 ev_loop (w->loop, EVLOOP_NONBLOCK); 2531 ev_loop (w->other, EVLOOP_NONBLOCK);
2155} 2532}
2156 2533
2157static void 2534static void
2158embed_cb (EV_P_ ev_io *io, int revents) 2535embed_io_cb (EV_P_ ev_io *io, int revents)
2159{ 2536{
2160 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2537 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2161 2538
2162 if (ev_cb (w)) 2539 if (ev_cb (w))
2163 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2540 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2164 else 2541 else
2165 ev_embed_sweep (loop, w); 2542 ev_loop (w->other, EVLOOP_NONBLOCK);
2166} 2543}
2544
2545static void
2546embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2547{
2548 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2549
2550 {
2551 struct ev_loop *loop = w->other;
2552
2553 while (fdchangecnt)
2554 {
2555 fd_reify (EV_A);
2556 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2557 }
2558 }
2559}
2560
2561#if 0
2562static void
2563embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2564{
2565 ev_idle_stop (EV_A_ idle);
2566}
2567#endif
2167 2568
2168void 2569void
2169ev_embed_start (EV_P_ ev_embed *w) 2570ev_embed_start (EV_P_ ev_embed *w)
2170{ 2571{
2171 if (expect_false (ev_is_active (w))) 2572 if (expect_false (ev_is_active (w)))
2172 return; 2573 return;
2173 2574
2174 { 2575 {
2175 struct ev_loop *loop = w->loop; 2576 struct ev_loop *loop = w->other;
2176 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2577 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2177 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2578 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2178 } 2579 }
2179 2580
2180 ev_set_priority (&w->io, ev_priority (w)); 2581 ev_set_priority (&w->io, ev_priority (w));
2181 ev_io_start (EV_A_ &w->io); 2582 ev_io_start (EV_A_ &w->io);
2583
2584 ev_prepare_init (&w->prepare, embed_prepare_cb);
2585 ev_set_priority (&w->prepare, EV_MINPRI);
2586 ev_prepare_start (EV_A_ &w->prepare);
2587
2588 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2182 2589
2183 ev_start (EV_A_ (W)w, 1); 2590 ev_start (EV_A_ (W)w, 1);
2184} 2591}
2185 2592
2186void 2593void
2189 clear_pending (EV_A_ (W)w); 2596 clear_pending (EV_A_ (W)w);
2190 if (expect_false (!ev_is_active (w))) 2597 if (expect_false (!ev_is_active (w)))
2191 return; 2598 return;
2192 2599
2193 ev_io_stop (EV_A_ &w->io); 2600 ev_io_stop (EV_A_ &w->io);
2601 ev_prepare_stop (EV_A_ &w->prepare);
2194 2602
2195 ev_stop (EV_A_ (W)w); 2603 ev_stop (EV_A_ (W)w);
2196} 2604}
2197#endif 2605#endif
2198 2606
2214 clear_pending (EV_A_ (W)w); 2622 clear_pending (EV_A_ (W)w);
2215 if (expect_false (!ev_is_active (w))) 2623 if (expect_false (!ev_is_active (w)))
2216 return; 2624 return;
2217 2625
2218 { 2626 {
2219 int active = ((W)w)->active; 2627 int active = ev_active (w);
2628
2220 forks [active - 1] = forks [--forkcnt]; 2629 forks [active - 1] = forks [--forkcnt];
2221 ((W)forks [active - 1])->active = active; 2630 ev_active (forks [active - 1]) = active;
2222 } 2631 }
2223 2632
2224 ev_stop (EV_A_ (W)w); 2633 ev_stop (EV_A_ (W)w);
2634}
2635#endif
2636
2637#if EV_ASYNC_ENABLE
2638void
2639ev_async_start (EV_P_ ev_async *w)
2640{
2641 if (expect_false (ev_is_active (w)))
2642 return;
2643
2644 evpipe_init (EV_A);
2645
2646 ev_start (EV_A_ (W)w, ++asynccnt);
2647 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2648 asyncs [asynccnt - 1] = w;
2649}
2650
2651void
2652ev_async_stop (EV_P_ ev_async *w)
2653{
2654 clear_pending (EV_A_ (W)w);
2655 if (expect_false (!ev_is_active (w)))
2656 return;
2657
2658 {
2659 int active = ev_active (w);
2660
2661 asyncs [active - 1] = asyncs [--asynccnt];
2662 ev_active (asyncs [active - 1]) = active;
2663 }
2664
2665 ev_stop (EV_A_ (W)w);
2666}
2667
2668void
2669ev_async_send (EV_P_ ev_async *w)
2670{
2671 w->sent = 1;
2672 evpipe_write (EV_A_ &gotasync);
2225} 2673}
2226#endif 2674#endif
2227 2675
2228/*****************************************************************************/ 2676/*****************************************************************************/
2229 2677
2287 ev_timer_set (&once->to, timeout, 0.); 2735 ev_timer_set (&once->to, timeout, 0.);
2288 ev_timer_start (EV_A_ &once->to); 2736 ev_timer_start (EV_A_ &once->to);
2289 } 2737 }
2290} 2738}
2291 2739
2740#if EV_MULTIPLICITY
2741 #include "ev_wrap.h"
2742#endif
2743
2292#ifdef __cplusplus 2744#ifdef __cplusplus
2293} 2745}
2294#endif 2746#endif
2295 2747

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines