ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.168 by root, Sat Dec 8 14:12:07 2007 UTC vs.
Revision 1.255 by root, Mon Jun 9 14:11:30 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
169# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
170# define EV_USE_MONOTONIC 1
171# else
144# define EV_USE_MONOTONIC 0 172# define EV_USE_MONOTONIC 0
173# endif
145#endif 174#endif
146 175
147#ifndef EV_USE_REALTIME 176#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 177# define EV_USE_REALTIME 0
178#endif
179
180#ifndef EV_USE_NANOSLEEP
181# if _POSIX_C_SOURCE >= 199309L
182# define EV_USE_NANOSLEEP 1
183# else
184# define EV_USE_NANOSLEEP 0
185# endif
149#endif 186#endif
150 187
151#ifndef EV_USE_SELECT 188#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 189# define EV_USE_SELECT 1
153#endif 190#endif
159# define EV_USE_POLL 1 196# define EV_USE_POLL 1
160# endif 197# endif
161#endif 198#endif
162 199
163#ifndef EV_USE_EPOLL 200#ifndef EV_USE_EPOLL
201# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
202# define EV_USE_EPOLL 1
203# else
164# define EV_USE_EPOLL 0 204# define EV_USE_EPOLL 0
205# endif
165#endif 206#endif
166 207
167#ifndef EV_USE_KQUEUE 208#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 209# define EV_USE_KQUEUE 0
169#endif 210#endif
171#ifndef EV_USE_PORT 212#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 213# define EV_USE_PORT 0
173#endif 214#endif
174 215
175#ifndef EV_USE_INOTIFY 216#ifndef EV_USE_INOTIFY
217# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
218# define EV_USE_INOTIFY 1
219# else
176# define EV_USE_INOTIFY 0 220# define EV_USE_INOTIFY 0
221# endif
177#endif 222#endif
178 223
179#ifndef EV_PID_HASHSIZE 224#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 225# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 226# define EV_PID_HASHSIZE 1
190# else 235# else
191# define EV_INOTIFY_HASHSIZE 16 236# define EV_INOTIFY_HASHSIZE 16
192# endif 237# endif
193#endif 238#endif
194 239
195/**/ 240#ifndef EV_USE_EVENTFD
241# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
242# define EV_USE_EVENTFD 1
243# else
244# define EV_USE_EVENTFD 0
245# endif
246#endif
247
248#if 0 /* debugging */
249# define EV_VERIFY 3
250# define EV_USE_4HEAP 1
251# define EV_HEAP_CACHE_AT 1
252#endif
253
254#ifndef EV_VERIFY
255# define EV_VERIFY !EV_MINIMAL
256#endif
257
258#ifndef EV_USE_4HEAP
259# define EV_USE_4HEAP !EV_MINIMAL
260#endif
261
262#ifndef EV_HEAP_CACHE_AT
263# define EV_HEAP_CACHE_AT !EV_MINIMAL
264#endif
265
266/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 267
197#ifndef CLOCK_MONOTONIC 268#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 269# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 270# define EV_USE_MONOTONIC 0
200#endif 271#endif
202#ifndef CLOCK_REALTIME 273#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 274# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 275# define EV_USE_REALTIME 0
205#endif 276#endif
206 277
278#if !EV_STAT_ENABLE
279# undef EV_USE_INOTIFY
280# define EV_USE_INOTIFY 0
281#endif
282
283#if !EV_USE_NANOSLEEP
284# ifndef _WIN32
285# include <sys/select.h>
286# endif
287#endif
288
289#if EV_USE_INOTIFY
290# include <sys/inotify.h>
291#endif
292
207#if EV_SELECT_IS_WINSOCKET 293#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 294# include <winsock.h>
209#endif 295#endif
210 296
211#if !EV_STAT_ENABLE 297#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 298/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
299# include <stdint.h>
300# ifdef __cplusplus
301extern "C" {
213#endif 302# endif
214 303int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 304# ifdef __cplusplus
216# include <sys/inotify.h> 305}
306# endif
217#endif 307#endif
218 308
219/**/ 309/**/
310
311#if EV_VERIFY >= 3
312# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
313#else
314# define EV_FREQUENT_CHECK do { } while (0)
315#endif
316
317/*
318 * This is used to avoid floating point rounding problems.
319 * It is added to ev_rt_now when scheduling periodics
320 * to ensure progress, time-wise, even when rounding
321 * errors are against us.
322 * This value is good at least till the year 4000.
323 * Better solutions welcome.
324 */
325#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 326
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 327#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 328#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 329/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 330
225#if __GNUC__ >= 3 331#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 332# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 333# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 334#else
236# define expect(expr,value) (expr) 335# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 336# define noinline
337# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
338# define inline
339# endif
240#endif 340#endif
241 341
242#define expect_false(expr) expect ((expr) != 0, 0) 342#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 343#define expect_true(expr) expect ((expr) != 0, 1)
344#define inline_size static inline
345
346#if EV_MINIMAL
347# define inline_speed static noinline
348#else
349# define inline_speed static inline
350#endif
244 351
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 352#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 353#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 354
248#define EMPTY /* required for microsofts broken pseudo-c compiler */ 355#define EMPTY /* required for microsofts broken pseudo-c compiler */
250 357
251typedef ev_watcher *W; 358typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 359typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 360typedef ev_watcher_time *WT;
254 361
362#define ev_active(w) ((W)(w))->active
363#define ev_at(w) ((WT)(w))->at
364
365#if EV_USE_MONOTONIC
366/* sig_atomic_t is used to avoid per-thread variables or locking but still */
367/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 368static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
369#endif
256 370
257#ifdef _WIN32 371#ifdef _WIN32
258# include "ev_win32.c" 372# include "ev_win32.c"
259#endif 373#endif
260 374
281 perror (msg); 395 perror (msg);
282 abort (); 396 abort ();
283 } 397 }
284} 398}
285 399
400static void *
401ev_realloc_emul (void *ptr, long size)
402{
403 /* some systems, notably openbsd and darwin, fail to properly
404 * implement realloc (x, 0) (as required by both ansi c-98 and
405 * the single unix specification, so work around them here.
406 */
407
408 if (size)
409 return realloc (ptr, size);
410
411 free (ptr);
412 return 0;
413}
414
286static void *(*alloc)(void *ptr, long size); 415static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 416
288void 417void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 418ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 419{
291 alloc = cb; 420 alloc = cb;
292} 421}
293 422
294inline_speed void * 423inline_speed void *
295ev_realloc (void *ptr, long size) 424ev_realloc (void *ptr, long size)
296{ 425{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 426 ptr = alloc (ptr, size);
298 427
299 if (!ptr && size) 428 if (!ptr && size)
300 { 429 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 430 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 431 abort ();
325 W w; 454 W w;
326 int events; 455 int events;
327} ANPENDING; 456} ANPENDING;
328 457
329#if EV_USE_INOTIFY 458#if EV_USE_INOTIFY
459/* hash table entry per inotify-id */
330typedef struct 460typedef struct
331{ 461{
332 WL head; 462 WL head;
333} ANFS; 463} ANFS;
464#endif
465
466/* Heap Entry */
467#if EV_HEAP_CACHE_AT
468 typedef struct {
469 ev_tstamp at;
470 WT w;
471 } ANHE;
472
473 #define ANHE_w(he) (he).w /* access watcher, read-write */
474 #define ANHE_at(he) (he).at /* access cached at, read-only */
475 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
476#else
477 typedef WT ANHE;
478
479 #define ANHE_w(he) (he)
480 #define ANHE_at(he) (he)->at
481 #define ANHE_at_cache(he)
334#endif 482#endif
335 483
336#if EV_MULTIPLICITY 484#if EV_MULTIPLICITY
337 485
338 struct ev_loop 486 struct ev_loop
396{ 544{
397 return ev_rt_now; 545 return ev_rt_now;
398} 546}
399#endif 547#endif
400 548
549void
550ev_sleep (ev_tstamp delay)
551{
552 if (delay > 0.)
553 {
554#if EV_USE_NANOSLEEP
555 struct timespec ts;
556
557 ts.tv_sec = (time_t)delay;
558 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
559
560 nanosleep (&ts, 0);
561#elif defined(_WIN32)
562 Sleep ((unsigned long)(delay * 1e3));
563#else
564 struct timeval tv;
565
566 tv.tv_sec = (time_t)delay;
567 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
568
569 select (0, 0, 0, 0, &tv);
570#endif
571 }
572}
573
574/*****************************************************************************/
575
576#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
577
401int inline_size 578int inline_size
402array_nextsize (int elem, int cur, int cnt) 579array_nextsize (int elem, int cur, int cnt)
403{ 580{
404 int ncur = cur + 1; 581 int ncur = cur + 1;
405 582
406 do 583 do
407 ncur <<= 1; 584 ncur <<= 1;
408 while (cnt > ncur); 585 while (cnt > ncur);
409 586
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 587 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
411 if (elem * ncur > 4096) 588 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
412 { 589 {
413 ncur *= elem; 590 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 591 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
415 ncur = ncur - sizeof (void *) * 4; 592 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem; 593 ncur /= elem;
417 } 594 }
418 595
419 return ncur; 596 return ncur;
420} 597}
421 598
422inline_speed void * 599static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 600array_realloc (int elem, void *base, int *cur, int cnt)
424{ 601{
425 *cur = array_nextsize (elem, *cur, cnt); 602 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 603 return ev_realloc (base, elem * *cur);
427} 604}
452 629
453void noinline 630void noinline
454ev_feed_event (EV_P_ void *w, int revents) 631ev_feed_event (EV_P_ void *w, int revents)
455{ 632{
456 W w_ = (W)w; 633 W w_ = (W)w;
634 int pri = ABSPRI (w_);
457 635
458 if (expect_false (w_->pending)) 636 if (expect_false (w_->pending))
637 pendings [pri][w_->pending - 1].events |= revents;
638 else
459 { 639 {
640 w_->pending = ++pendingcnt [pri];
641 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
642 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 643 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 644 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 645}
469 646
470void inline_size 647void inline_speed
471queue_events (EV_P_ W *events, int eventcnt, int type) 648queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 649{
473 int i; 650 int i;
474 651
475 for (i = 0; i < eventcnt; ++i) 652 for (i = 0; i < eventcnt; ++i)
522 { 699 {
523 int fd = fdchanges [i]; 700 int fd = fdchanges [i];
524 ANFD *anfd = anfds + fd; 701 ANFD *anfd = anfds + fd;
525 ev_io *w; 702 ev_io *w;
526 703
527 int events = 0; 704 unsigned char events = 0;
528 705
529 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 706 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
530 events |= w->events; 707 events |= (unsigned char)w->events;
531 708
532#if EV_SELECT_IS_WINSOCKET 709#if EV_SELECT_IS_WINSOCKET
533 if (events) 710 if (events)
534 { 711 {
535 unsigned long argp; 712 unsigned long arg;
713 #ifdef EV_FD_TO_WIN32_HANDLE
714 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
715 #else
536 anfd->handle = _get_osfhandle (fd); 716 anfd->handle = _get_osfhandle (fd);
717 #endif
537 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 718 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
538 } 719 }
539#endif 720#endif
540 721
722 {
723 unsigned char o_events = anfd->events;
724 unsigned char o_reify = anfd->reify;
725
541 anfd->reify = 0; 726 anfd->reify = 0;
542
543 backend_modify (EV_A_ fd, anfd->events, events);
544 anfd->events = events; 727 anfd->events = events;
728
729 if (o_events != events || o_reify & EV_IOFDSET)
730 backend_modify (EV_A_ fd, o_events, events);
731 }
545 } 732 }
546 733
547 fdchangecnt = 0; 734 fdchangecnt = 0;
548} 735}
549 736
550void inline_size 737void inline_size
551fd_change (EV_P_ int fd) 738fd_change (EV_P_ int fd, int flags)
552{ 739{
553 if (expect_false (anfds [fd].reify)) 740 unsigned char reify = anfds [fd].reify;
554 return;
555
556 anfds [fd].reify = 1; 741 anfds [fd].reify |= flags;
557 742
743 if (expect_true (!reify))
744 {
558 ++fdchangecnt; 745 ++fdchangecnt;
559 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 746 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
560 fdchanges [fdchangecnt - 1] = fd; 747 fdchanges [fdchangecnt - 1] = fd;
748 }
561} 749}
562 750
563void inline_speed 751void inline_speed
564fd_kill (EV_P_ int fd) 752fd_kill (EV_P_ int fd)
565{ 753{
588{ 776{
589 int fd; 777 int fd;
590 778
591 for (fd = 0; fd < anfdmax; ++fd) 779 for (fd = 0; fd < anfdmax; ++fd)
592 if (anfds [fd].events) 780 if (anfds [fd].events)
593 if (!fd_valid (fd) == -1 && errno == EBADF) 781 if (!fd_valid (fd) && errno == EBADF)
594 fd_kill (EV_A_ fd); 782 fd_kill (EV_A_ fd);
595} 783}
596 784
597/* called on ENOMEM in select/poll to kill some fds and retry */ 785/* called on ENOMEM in select/poll to kill some fds and retry */
598static void noinline 786static void noinline
616 804
617 for (fd = 0; fd < anfdmax; ++fd) 805 for (fd = 0; fd < anfdmax; ++fd)
618 if (anfds [fd].events) 806 if (anfds [fd].events)
619 { 807 {
620 anfds [fd].events = 0; 808 anfds [fd].events = 0;
621 fd_change (EV_A_ fd); 809 fd_change (EV_A_ fd, EV_IOFDSET | 1);
622 } 810 }
623} 811}
624 812
625/*****************************************************************************/ 813/*****************************************************************************/
626 814
815/*
816 * the heap functions want a real array index. array index 0 uis guaranteed to not
817 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
818 * the branching factor of the d-tree.
819 */
820
821/*
822 * at the moment we allow libev the luxury of two heaps,
823 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
824 * which is more cache-efficient.
825 * the difference is about 5% with 50000+ watchers.
826 */
827#if EV_USE_4HEAP
828
829#define DHEAP 4
830#define HEAP0 (DHEAP - 1) /* index of first element in heap */
831#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
832#define UPHEAP_DONE(p,k) ((p) == (k))
833
834/* away from the root */
627void inline_speed 835void inline_speed
628upheap (WT *heap, int k) 836downheap (ANHE *heap, int N, int k)
629{ 837{
630 WT w = heap [k]; 838 ANHE he = heap [k];
839 ANHE *E = heap + N + HEAP0;
631 840
632 while (k && heap [k >> 1]->at > w->at) 841 for (;;)
633 {
634 heap [k] = heap [k >> 1];
635 ((W)heap [k])->active = k + 1;
636 k >>= 1;
637 } 842 {
843 ev_tstamp minat;
844 ANHE *minpos;
845 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
638 846
847 /* find minimum child */
848 if (expect_true (pos + DHEAP - 1 < E))
849 {
850 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
851 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
852 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
853 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
854 }
855 else if (pos < E)
856 {
857 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
858 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
859 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
860 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
861 }
862 else
863 break;
864
865 if (ANHE_at (he) <= minat)
866 break;
867
868 heap [k] = *minpos;
869 ev_active (ANHE_w (*minpos)) = k;
870
871 k = minpos - heap;
872 }
873
639 heap [k] = w; 874 heap [k] = he;
640 ((W)heap [k])->active = k + 1; 875 ev_active (ANHE_w (he)) = k;
641
642} 876}
643 877
878#else /* 4HEAP */
879
880#define HEAP0 1
881#define HPARENT(k) ((k) >> 1)
882#define UPHEAP_DONE(p,k) (!(p))
883
884/* away from the root */
644void inline_speed 885void inline_speed
645downheap (WT *heap, int N, int k) 886downheap (ANHE *heap, int N, int k)
646{ 887{
647 WT w = heap [k]; 888 ANHE he = heap [k];
648 889
649 while (k < (N >> 1)) 890 for (;;)
650 { 891 {
651 int j = k << 1; 892 int c = k << 1;
652 893
653 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 894 if (c > N + HEAP0 - 1)
654 ++j;
655
656 if (w->at <= heap [j]->at)
657 break; 895 break;
658 896
897 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
898 ? 1 : 0;
899
900 if (ANHE_at (he) <= ANHE_at (heap [c]))
901 break;
902
659 heap [k] = heap [j]; 903 heap [k] = heap [c];
660 ((W)heap [k])->active = k + 1; 904 ev_active (ANHE_w (heap [k])) = k;
905
661 k = j; 906 k = c;
662 } 907 }
663 908
664 heap [k] = w; 909 heap [k] = he;
665 ((W)heap [k])->active = k + 1; 910 ev_active (ANHE_w (he)) = k;
911}
912#endif
913
914/* towards the root */
915void inline_speed
916upheap (ANHE *heap, int k)
917{
918 ANHE he = heap [k];
919
920 for (;;)
921 {
922 int p = HPARENT (k);
923
924 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
925 break;
926
927 heap [k] = heap [p];
928 ev_active (ANHE_w (heap [k])) = k;
929 k = p;
930 }
931
932 heap [k] = he;
933 ev_active (ANHE_w (he)) = k;
666} 934}
667 935
668void inline_size 936void inline_size
669adjustheap (WT *heap, int N, int k) 937adjustheap (ANHE *heap, int N, int k)
670{ 938{
939 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
671 upheap (heap, k); 940 upheap (heap, k);
941 else
672 downheap (heap, N, k); 942 downheap (heap, N, k);
943}
944
945/* rebuild the heap: this function is used only once and executed rarely */
946void inline_size
947reheap (ANHE *heap, int N)
948{
949 int i;
950
951 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
952 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
953 for (i = 0; i < N; ++i)
954 upheap (heap, i + HEAP0);
673} 955}
674 956
675/*****************************************************************************/ 957/*****************************************************************************/
676 958
677typedef struct 959typedef struct
678{ 960{
679 WL head; 961 WL head;
680 sig_atomic_t volatile gotsig; 962 EV_ATOMIC_T gotsig;
681} ANSIG; 963} ANSIG;
682 964
683static ANSIG *signals; 965static ANSIG *signals;
684static int signalmax; 966static int signalmax;
685 967
686static int sigpipe [2]; 968static EV_ATOMIC_T gotsig;
687static sig_atomic_t volatile gotsig;
688static ev_io sigev;
689 969
690void inline_size 970void inline_size
691signals_init (ANSIG *base, int count) 971signals_init (ANSIG *base, int count)
692{ 972{
693 while (count--) 973 while (count--)
697 977
698 ++base; 978 ++base;
699 } 979 }
700} 980}
701 981
702static void 982/*****************************************************************************/
703sighandler (int signum)
704{
705#if _WIN32
706 signal (signum, sighandler);
707#endif
708 983
709 signals [signum - 1].gotsig = 1;
710
711 if (!gotsig)
712 {
713 int old_errno = errno;
714 gotsig = 1;
715 write (sigpipe [1], &signum, 1);
716 errno = old_errno;
717 }
718}
719
720void noinline
721ev_feed_signal_event (EV_P_ int signum)
722{
723 WL w;
724
725#if EV_MULTIPLICITY
726 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
727#endif
728
729 --signum;
730
731 if (signum < 0 || signum >= signalmax)
732 return;
733
734 signals [signum].gotsig = 0;
735
736 for (w = signals [signum].head; w; w = w->next)
737 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
738}
739
740static void
741sigcb (EV_P_ ev_io *iow, int revents)
742{
743 int signum;
744
745 read (sigpipe [0], &revents, 1);
746 gotsig = 0;
747
748 for (signum = signalmax; signum--; )
749 if (signals [signum].gotsig)
750 ev_feed_signal_event (EV_A_ signum + 1);
751}
752
753void inline_size 984void inline_speed
754fd_intern (int fd) 985fd_intern (int fd)
755{ 986{
756#ifdef _WIN32 987#ifdef _WIN32
757 int arg = 1; 988 unsigned long arg = 1;
758 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 989 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
759#else 990#else
760 fcntl (fd, F_SETFD, FD_CLOEXEC); 991 fcntl (fd, F_SETFD, FD_CLOEXEC);
761 fcntl (fd, F_SETFL, O_NONBLOCK); 992 fcntl (fd, F_SETFL, O_NONBLOCK);
762#endif 993#endif
763} 994}
764 995
765static void noinline 996static void noinline
766siginit (EV_P) 997evpipe_init (EV_P)
767{ 998{
999 if (!ev_is_active (&pipeev))
1000 {
1001#if EV_USE_EVENTFD
1002 if ((evfd = eventfd (0, 0)) >= 0)
1003 {
1004 evpipe [0] = -1;
1005 fd_intern (evfd);
1006 ev_io_set (&pipeev, evfd, EV_READ);
1007 }
1008 else
1009#endif
1010 {
1011 while (pipe (evpipe))
1012 syserr ("(libev) error creating signal/async pipe");
1013
768 fd_intern (sigpipe [0]); 1014 fd_intern (evpipe [0]);
769 fd_intern (sigpipe [1]); 1015 fd_intern (evpipe [1]);
1016 ev_io_set (&pipeev, evpipe [0], EV_READ);
1017 }
770 1018
771 ev_io_set (&sigev, sigpipe [0], EV_READ);
772 ev_io_start (EV_A_ &sigev); 1019 ev_io_start (EV_A_ &pipeev);
773 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1020 ev_unref (EV_A); /* watcher should not keep loop alive */
1021 }
1022}
1023
1024void inline_size
1025evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1026{
1027 if (!*flag)
1028 {
1029 int old_errno = errno; /* save errno because write might clobber it */
1030
1031 *flag = 1;
1032
1033#if EV_USE_EVENTFD
1034 if (evfd >= 0)
1035 {
1036 uint64_t counter = 1;
1037 write (evfd, &counter, sizeof (uint64_t));
1038 }
1039 else
1040#endif
1041 write (evpipe [1], &old_errno, 1);
1042
1043 errno = old_errno;
1044 }
1045}
1046
1047static void
1048pipecb (EV_P_ ev_io *iow, int revents)
1049{
1050#if EV_USE_EVENTFD
1051 if (evfd >= 0)
1052 {
1053 uint64_t counter;
1054 read (evfd, &counter, sizeof (uint64_t));
1055 }
1056 else
1057#endif
1058 {
1059 char dummy;
1060 read (evpipe [0], &dummy, 1);
1061 }
1062
1063 if (gotsig && ev_is_default_loop (EV_A))
1064 {
1065 int signum;
1066 gotsig = 0;
1067
1068 for (signum = signalmax; signum--; )
1069 if (signals [signum].gotsig)
1070 ev_feed_signal_event (EV_A_ signum + 1);
1071 }
1072
1073#if EV_ASYNC_ENABLE
1074 if (gotasync)
1075 {
1076 int i;
1077 gotasync = 0;
1078
1079 for (i = asynccnt; i--; )
1080 if (asyncs [i]->sent)
1081 {
1082 asyncs [i]->sent = 0;
1083 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1084 }
1085 }
1086#endif
774} 1087}
775 1088
776/*****************************************************************************/ 1089/*****************************************************************************/
777 1090
1091static void
1092ev_sighandler (int signum)
1093{
1094#if EV_MULTIPLICITY
1095 struct ev_loop *loop = &default_loop_struct;
1096#endif
1097
1098#if _WIN32
1099 signal (signum, ev_sighandler);
1100#endif
1101
1102 signals [signum - 1].gotsig = 1;
1103 evpipe_write (EV_A_ &gotsig);
1104}
1105
1106void noinline
1107ev_feed_signal_event (EV_P_ int signum)
1108{
1109 WL w;
1110
1111#if EV_MULTIPLICITY
1112 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1113#endif
1114
1115 --signum;
1116
1117 if (signum < 0 || signum >= signalmax)
1118 return;
1119
1120 signals [signum].gotsig = 0;
1121
1122 for (w = signals [signum].head; w; w = w->next)
1123 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1124}
1125
1126/*****************************************************************************/
1127
778static ev_child *childs [EV_PID_HASHSIZE]; 1128static WL childs [EV_PID_HASHSIZE];
779 1129
780#ifndef _WIN32 1130#ifndef _WIN32
781 1131
782static ev_signal childev; 1132static ev_signal childev;
783 1133
1134#ifndef WIFCONTINUED
1135# define WIFCONTINUED(status) 0
1136#endif
1137
784void inline_speed 1138void inline_speed
785child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1139child_reap (EV_P_ int chain, int pid, int status)
786{ 1140{
787 ev_child *w; 1141 ev_child *w;
1142 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
788 1143
789 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1144 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1145 {
790 if (w->pid == pid || !w->pid) 1146 if ((w->pid == pid || !w->pid)
1147 && (!traced || (w->flags & 1)))
791 { 1148 {
792 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1149 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
793 w->rpid = pid; 1150 w->rpid = pid;
794 w->rstatus = status; 1151 w->rstatus = status;
795 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1152 ev_feed_event (EV_A_ (W)w, EV_CHILD);
796 } 1153 }
1154 }
797} 1155}
798 1156
799#ifndef WCONTINUED 1157#ifndef WCONTINUED
800# define WCONTINUED 0 1158# define WCONTINUED 0
801#endif 1159#endif
810 if (!WCONTINUED 1168 if (!WCONTINUED
811 || errno != EINVAL 1169 || errno != EINVAL
812 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1170 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
813 return; 1171 return;
814 1172
815 /* make sure we are called again until all childs have been reaped */ 1173 /* make sure we are called again until all children have been reaped */
816 /* we need to do it this way so that the callback gets called before we continue */ 1174 /* we need to do it this way so that the callback gets called before we continue */
817 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1175 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
818 1176
819 child_reap (EV_A_ sw, pid, pid, status); 1177 child_reap (EV_A_ pid, pid, status);
820 if (EV_PID_HASHSIZE > 1) 1178 if (EV_PID_HASHSIZE > 1)
821 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1179 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
822} 1180}
823 1181
824#endif 1182#endif
825 1183
826/*****************************************************************************/ 1184/*****************************************************************************/
898} 1256}
899 1257
900unsigned int 1258unsigned int
901ev_embeddable_backends (void) 1259ev_embeddable_backends (void)
902{ 1260{
903 return EVBACKEND_EPOLL 1261 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
904 | EVBACKEND_KQUEUE 1262
905 | EVBACKEND_PORT; 1263 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1264 /* please fix it and tell me how to detect the fix */
1265 flags &= ~EVBACKEND_EPOLL;
1266
1267 return flags;
906} 1268}
907 1269
908unsigned int 1270unsigned int
909ev_backend (EV_P) 1271ev_backend (EV_P)
910{ 1272{
913 1275
914unsigned int 1276unsigned int
915ev_loop_count (EV_P) 1277ev_loop_count (EV_P)
916{ 1278{
917 return loop_count; 1279 return loop_count;
1280}
1281
1282void
1283ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1284{
1285 io_blocktime = interval;
1286}
1287
1288void
1289ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1290{
1291 timeout_blocktime = interval;
918} 1292}
919 1293
920static void noinline 1294static void noinline
921loop_init (EV_P_ unsigned int flags) 1295loop_init (EV_P_ unsigned int flags)
922{ 1296{
928 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1302 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
929 have_monotonic = 1; 1303 have_monotonic = 1;
930 } 1304 }
931#endif 1305#endif
932 1306
933 ev_rt_now = ev_time (); 1307 ev_rt_now = ev_time ();
934 mn_now = get_clock (); 1308 mn_now = get_clock ();
935 now_floor = mn_now; 1309 now_floor = mn_now;
936 rtmn_diff = ev_rt_now - mn_now; 1310 rtmn_diff = ev_rt_now - mn_now;
1311
1312 io_blocktime = 0.;
1313 timeout_blocktime = 0.;
1314 backend = 0;
1315 backend_fd = -1;
1316 gotasync = 0;
1317#if EV_USE_INOTIFY
1318 fs_fd = -2;
1319#endif
937 1320
938 /* pid check not overridable via env */ 1321 /* pid check not overridable via env */
939#ifndef _WIN32 1322#ifndef _WIN32
940 if (flags & EVFLAG_FORKCHECK) 1323 if (flags & EVFLAG_FORKCHECK)
941 curpid = getpid (); 1324 curpid = getpid ();
944 if (!(flags & EVFLAG_NOENV) 1327 if (!(flags & EVFLAG_NOENV)
945 && !enable_secure () 1328 && !enable_secure ()
946 && getenv ("LIBEV_FLAGS")) 1329 && getenv ("LIBEV_FLAGS"))
947 flags = atoi (getenv ("LIBEV_FLAGS")); 1330 flags = atoi (getenv ("LIBEV_FLAGS"));
948 1331
949 if (!(flags & 0x0000ffffUL)) 1332 if (!(flags & 0x0000ffffU))
950 flags |= ev_recommended_backends (); 1333 flags |= ev_recommended_backends ();
951
952 backend = 0;
953 backend_fd = -1;
954#if EV_USE_INOTIFY
955 fs_fd = -2;
956#endif
957 1334
958#if EV_USE_PORT 1335#if EV_USE_PORT
959 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1336 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
960#endif 1337#endif
961#if EV_USE_KQUEUE 1338#if EV_USE_KQUEUE
969#endif 1346#endif
970#if EV_USE_SELECT 1347#if EV_USE_SELECT
971 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1348 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
972#endif 1349#endif
973 1350
974 ev_init (&sigev, sigcb); 1351 ev_init (&pipeev, pipecb);
975 ev_set_priority (&sigev, EV_MAXPRI); 1352 ev_set_priority (&pipeev, EV_MAXPRI);
976 } 1353 }
977} 1354}
978 1355
979static void noinline 1356static void noinline
980loop_destroy (EV_P) 1357loop_destroy (EV_P)
981{ 1358{
982 int i; 1359 int i;
1360
1361 if (ev_is_active (&pipeev))
1362 {
1363 ev_ref (EV_A); /* signal watcher */
1364 ev_io_stop (EV_A_ &pipeev);
1365
1366#if EV_USE_EVENTFD
1367 if (evfd >= 0)
1368 close (evfd);
1369#endif
1370
1371 if (evpipe [0] >= 0)
1372 {
1373 close (evpipe [0]);
1374 close (evpipe [1]);
1375 }
1376 }
983 1377
984#if EV_USE_INOTIFY 1378#if EV_USE_INOTIFY
985 if (fs_fd >= 0) 1379 if (fs_fd >= 0)
986 close (fs_fd); 1380 close (fs_fd);
987#endif 1381#endif
1010 array_free (pending, [i]); 1404 array_free (pending, [i]);
1011#if EV_IDLE_ENABLE 1405#if EV_IDLE_ENABLE
1012 array_free (idle, [i]); 1406 array_free (idle, [i]);
1013#endif 1407#endif
1014 } 1408 }
1409
1410 ev_free (anfds); anfdmax = 0;
1015 1411
1016 /* have to use the microsoft-never-gets-it-right macro */ 1412 /* have to use the microsoft-never-gets-it-right macro */
1017 array_free (fdchange, EMPTY); 1413 array_free (fdchange, EMPTY);
1018 array_free (timer, EMPTY); 1414 array_free (timer, EMPTY);
1019#if EV_PERIODIC_ENABLE 1415#if EV_PERIODIC_ENABLE
1020 array_free (periodic, EMPTY); 1416 array_free (periodic, EMPTY);
1021#endif 1417#endif
1418#if EV_FORK_ENABLE
1419 array_free (fork, EMPTY);
1420#endif
1022 array_free (prepare, EMPTY); 1421 array_free (prepare, EMPTY);
1023 array_free (check, EMPTY); 1422 array_free (check, EMPTY);
1423#if EV_ASYNC_ENABLE
1424 array_free (async, EMPTY);
1425#endif
1024 1426
1025 backend = 0; 1427 backend = 0;
1026} 1428}
1027 1429
1430#if EV_USE_INOTIFY
1028void inline_size infy_fork (EV_P); 1431void inline_size infy_fork (EV_P);
1432#endif
1029 1433
1030void inline_size 1434void inline_size
1031loop_fork (EV_P) 1435loop_fork (EV_P)
1032{ 1436{
1033#if EV_USE_PORT 1437#if EV_USE_PORT
1041#endif 1445#endif
1042#if EV_USE_INOTIFY 1446#if EV_USE_INOTIFY
1043 infy_fork (EV_A); 1447 infy_fork (EV_A);
1044#endif 1448#endif
1045 1449
1046 if (ev_is_active (&sigev)) 1450 if (ev_is_active (&pipeev))
1047 { 1451 {
1048 /* default loop */ 1452 /* this "locks" the handlers against writing to the pipe */
1453 /* while we modify the fd vars */
1454 gotsig = 1;
1455#if EV_ASYNC_ENABLE
1456 gotasync = 1;
1457#endif
1049 1458
1050 ev_ref (EV_A); 1459 ev_ref (EV_A);
1051 ev_io_stop (EV_A_ &sigev); 1460 ev_io_stop (EV_A_ &pipeev);
1461
1462#if EV_USE_EVENTFD
1463 if (evfd >= 0)
1464 close (evfd);
1465#endif
1466
1467 if (evpipe [0] >= 0)
1468 {
1052 close (sigpipe [0]); 1469 close (evpipe [0]);
1053 close (sigpipe [1]); 1470 close (evpipe [1]);
1471 }
1054 1472
1055 while (pipe (sigpipe))
1056 syserr ("(libev) error creating pipe");
1057
1058 siginit (EV_A); 1473 evpipe_init (EV_A);
1474 /* now iterate over everything, in case we missed something */
1475 pipecb (EV_A_ &pipeev, EV_READ);
1059 } 1476 }
1060 1477
1061 postfork = 0; 1478 postfork = 0;
1062} 1479}
1063 1480
1064#if EV_MULTIPLICITY 1481#if EV_MULTIPLICITY
1482
1065struct ev_loop * 1483struct ev_loop *
1066ev_loop_new (unsigned int flags) 1484ev_loop_new (unsigned int flags)
1067{ 1485{
1068 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1486 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1069 1487
1085} 1503}
1086 1504
1087void 1505void
1088ev_loop_fork (EV_P) 1506ev_loop_fork (EV_P)
1089{ 1507{
1090 postfork = 1; 1508 postfork = 1; /* must be in line with ev_default_fork */
1091} 1509}
1092 1510
1511#if EV_VERIFY
1512void noinline
1513verify_watcher (EV_P_ W w)
1514{
1515 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1516
1517 if (w->pending)
1518 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1519}
1520
1521static void noinline
1522verify_heap (EV_P_ ANHE *heap, int N)
1523{
1524 int i;
1525
1526 for (i = HEAP0; i < N + HEAP0; ++i)
1527 {
1528 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1529 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1530 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1531
1532 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1533 }
1534}
1535
1536static void noinline
1537array_verify (EV_P_ W *ws, int cnt)
1538{
1539 while (cnt--)
1540 {
1541 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1542 verify_watcher (EV_A_ ws [cnt]);
1543 }
1544}
1545#endif
1546
1547void
1548ev_loop_verify (EV_P)
1549{
1550#if EV_VERIFY
1551 int i;
1552 WL w;
1553
1554 assert (activecnt >= -1);
1555
1556 assert (fdchangemax >= fdchangecnt);
1557 for (i = 0; i < fdchangecnt; ++i)
1558 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1559
1560 assert (anfdmax >= 0);
1561 for (i = 0; i < anfdmax; ++i)
1562 for (w = anfds [i].head; w; w = w->next)
1563 {
1564 verify_watcher (EV_A_ (W)w);
1565 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1566 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1567 }
1568
1569 assert (timermax >= timercnt);
1570 verify_heap (EV_A_ timers, timercnt);
1571
1572#if EV_PERIODIC_ENABLE
1573 assert (periodicmax >= periodiccnt);
1574 verify_heap (EV_A_ periodics, periodiccnt);
1575#endif
1576
1577 for (i = NUMPRI; i--; )
1578 {
1579 assert (pendingmax [i] >= pendingcnt [i]);
1580#if EV_IDLE_ENABLE
1581 assert (idleall >= 0);
1582 assert (idlemax [i] >= idlecnt [i]);
1583 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1584#endif
1585 }
1586
1587#if EV_FORK_ENABLE
1588 assert (forkmax >= forkcnt);
1589 array_verify (EV_A_ (W *)forks, forkcnt);
1590#endif
1591
1592#if EV_ASYNC_ENABLE
1593 assert (asyncmax >= asynccnt);
1594 array_verify (EV_A_ (W *)asyncs, asynccnt);
1595#endif
1596
1597 assert (preparemax >= preparecnt);
1598 array_verify (EV_A_ (W *)prepares, preparecnt);
1599
1600 assert (checkmax >= checkcnt);
1601 array_verify (EV_A_ (W *)checks, checkcnt);
1602
1603# if 0
1604 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1605 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1093#endif 1606# endif
1607#endif
1608}
1609
1610#endif /* multiplicity */
1094 1611
1095#if EV_MULTIPLICITY 1612#if EV_MULTIPLICITY
1096struct ev_loop * 1613struct ev_loop *
1097ev_default_loop_init (unsigned int flags) 1614ev_default_loop_init (unsigned int flags)
1098#else 1615#else
1099int 1616int
1100ev_default_loop (unsigned int flags) 1617ev_default_loop (unsigned int flags)
1101#endif 1618#endif
1102{ 1619{
1103 if (sigpipe [0] == sigpipe [1])
1104 if (pipe (sigpipe))
1105 return 0;
1106
1107 if (!ev_default_loop_ptr) 1620 if (!ev_default_loop_ptr)
1108 { 1621 {
1109#if EV_MULTIPLICITY 1622#if EV_MULTIPLICITY
1110 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1623 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1111#else 1624#else
1114 1627
1115 loop_init (EV_A_ flags); 1628 loop_init (EV_A_ flags);
1116 1629
1117 if (ev_backend (EV_A)) 1630 if (ev_backend (EV_A))
1118 { 1631 {
1119 siginit (EV_A);
1120
1121#ifndef _WIN32 1632#ifndef _WIN32
1122 ev_signal_init (&childev, childcb, SIGCHLD); 1633 ev_signal_init (&childev, childcb, SIGCHLD);
1123 ev_set_priority (&childev, EV_MAXPRI); 1634 ev_set_priority (&childev, EV_MAXPRI);
1124 ev_signal_start (EV_A_ &childev); 1635 ev_signal_start (EV_A_ &childev);
1125 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1636 ev_unref (EV_A); /* child watcher should not keep loop alive */
1142#ifndef _WIN32 1653#ifndef _WIN32
1143 ev_ref (EV_A); /* child watcher */ 1654 ev_ref (EV_A); /* child watcher */
1144 ev_signal_stop (EV_A_ &childev); 1655 ev_signal_stop (EV_A_ &childev);
1145#endif 1656#endif
1146 1657
1147 ev_ref (EV_A); /* signal watcher */
1148 ev_io_stop (EV_A_ &sigev);
1149
1150 close (sigpipe [0]); sigpipe [0] = 0;
1151 close (sigpipe [1]); sigpipe [1] = 0;
1152
1153 loop_destroy (EV_A); 1658 loop_destroy (EV_A);
1154} 1659}
1155 1660
1156void 1661void
1157ev_default_fork (void) 1662ev_default_fork (void)
1159#if EV_MULTIPLICITY 1664#if EV_MULTIPLICITY
1160 struct ev_loop *loop = ev_default_loop_ptr; 1665 struct ev_loop *loop = ev_default_loop_ptr;
1161#endif 1666#endif
1162 1667
1163 if (backend) 1668 if (backend)
1164 postfork = 1; 1669 postfork = 1; /* must be in line with ev_loop_fork */
1165} 1670}
1166 1671
1167/*****************************************************************************/ 1672/*****************************************************************************/
1168 1673
1169void 1674void
1186 { 1691 {
1187 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1692 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1188 1693
1189 p->w->pending = 0; 1694 p->w->pending = 0;
1190 EV_CB_INVOKE (p->w, p->events); 1695 EV_CB_INVOKE (p->w, p->events);
1696 EV_FREQUENT_CHECK;
1191 } 1697 }
1192 } 1698 }
1193} 1699}
1194
1195void inline_size
1196timers_reify (EV_P)
1197{
1198 while (timercnt && ((WT)timers [0])->at <= mn_now)
1199 {
1200 ev_timer *w = timers [0];
1201
1202 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1203
1204 /* first reschedule or stop timer */
1205 if (w->repeat)
1206 {
1207 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1208
1209 ((WT)w)->at += w->repeat;
1210 if (((WT)w)->at < mn_now)
1211 ((WT)w)->at = mn_now;
1212
1213 downheap ((WT *)timers, timercnt, 0);
1214 }
1215 else
1216 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1217
1218 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1219 }
1220}
1221
1222#if EV_PERIODIC_ENABLE
1223void inline_size
1224periodics_reify (EV_P)
1225{
1226 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1227 {
1228 ev_periodic *w = periodics [0];
1229
1230 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1231
1232 /* first reschedule or stop timer */
1233 if (w->reschedule_cb)
1234 {
1235 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1236 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1237 downheap ((WT *)periodics, periodiccnt, 0);
1238 }
1239 else if (w->interval)
1240 {
1241 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1242 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1243 downheap ((WT *)periodics, periodiccnt, 0);
1244 }
1245 else
1246 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1247
1248 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1249 }
1250}
1251
1252static void noinline
1253periodics_reschedule (EV_P)
1254{
1255 int i;
1256
1257 /* adjust periodics after time jump */
1258 for (i = 0; i < periodiccnt; ++i)
1259 {
1260 ev_periodic *w = periodics [i];
1261
1262 if (w->reschedule_cb)
1263 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1264 else if (w->interval)
1265 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1266 }
1267
1268 /* now rebuild the heap */
1269 for (i = periodiccnt >> 1; i--; )
1270 downheap ((WT *)periodics, periodiccnt, i);
1271}
1272#endif
1273 1700
1274#if EV_IDLE_ENABLE 1701#if EV_IDLE_ENABLE
1275void inline_size 1702void inline_size
1276idle_reify (EV_P) 1703idle_reify (EV_P)
1277{ 1704{
1292 } 1719 }
1293 } 1720 }
1294} 1721}
1295#endif 1722#endif
1296 1723
1297int inline_size 1724void inline_size
1298time_update_monotonic (EV_P) 1725timers_reify (EV_P)
1299{ 1726{
1727 EV_FREQUENT_CHECK;
1728
1729 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1730 {
1731 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1732
1733 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1734
1735 /* first reschedule or stop timer */
1736 if (w->repeat)
1737 {
1738 ev_at (w) += w->repeat;
1739 if (ev_at (w) < mn_now)
1740 ev_at (w) = mn_now;
1741
1742 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1743
1744 ANHE_at_cache (timers [HEAP0]);
1745 downheap (timers, timercnt, HEAP0);
1746 }
1747 else
1748 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1749
1750 EV_FREQUENT_CHECK;
1751 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1752 }
1753}
1754
1755#if EV_PERIODIC_ENABLE
1756void inline_size
1757periodics_reify (EV_P)
1758{
1759 EV_FREQUENT_CHECK;
1760
1761 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1762 {
1763 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1764
1765 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1766
1767 /* first reschedule or stop timer */
1768 if (w->reschedule_cb)
1769 {
1770 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1771
1772 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1773
1774 ANHE_at_cache (periodics [HEAP0]);
1775 downheap (periodics, periodiccnt, HEAP0);
1776 }
1777 else if (w->interval)
1778 {
1779 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1780 /* if next trigger time is not sufficiently in the future, put it there */
1781 /* this might happen because of floating point inexactness */
1782 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1783 {
1784 ev_at (w) += w->interval;
1785
1786 /* if interval is unreasonably low we might still have a time in the past */
1787 /* so correct this. this will make the periodic very inexact, but the user */
1788 /* has effectively asked to get triggered more often than possible */
1789 if (ev_at (w) < ev_rt_now)
1790 ev_at (w) = ev_rt_now;
1791 }
1792
1793 ANHE_at_cache (periodics [HEAP0]);
1794 downheap (periodics, periodiccnt, HEAP0);
1795 }
1796 else
1797 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1798
1799 EV_FREQUENT_CHECK;
1800 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1801 }
1802}
1803
1804static void noinline
1805periodics_reschedule (EV_P)
1806{
1807 int i;
1808
1809 /* adjust periodics after time jump */
1810 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1811 {
1812 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1813
1814 if (w->reschedule_cb)
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816 else if (w->interval)
1817 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1818
1819 ANHE_at_cache (periodics [i]);
1820 }
1821
1822 reheap (periodics, periodiccnt);
1823}
1824#endif
1825
1826void inline_speed
1827time_update (EV_P_ ev_tstamp max_block)
1828{
1829 int i;
1830
1831#if EV_USE_MONOTONIC
1832 if (expect_true (have_monotonic))
1833 {
1834 ev_tstamp odiff = rtmn_diff;
1835
1300 mn_now = get_clock (); 1836 mn_now = get_clock ();
1301 1837
1838 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1839 /* interpolate in the meantime */
1302 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1840 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1303 { 1841 {
1304 ev_rt_now = rtmn_diff + mn_now; 1842 ev_rt_now = rtmn_diff + mn_now;
1305 return 0; 1843 return;
1306 } 1844 }
1307 else 1845
1308 {
1309 now_floor = mn_now; 1846 now_floor = mn_now;
1310 ev_rt_now = ev_time (); 1847 ev_rt_now = ev_time ();
1311 return 1;
1312 }
1313}
1314 1848
1315void inline_size 1849 /* loop a few times, before making important decisions.
1316time_update (EV_P) 1850 * on the choice of "4": one iteration isn't enough,
1317{ 1851 * in case we get preempted during the calls to
1318 int i; 1852 * ev_time and get_clock. a second call is almost guaranteed
1319 1853 * to succeed in that case, though. and looping a few more times
1320#if EV_USE_MONOTONIC 1854 * doesn't hurt either as we only do this on time-jumps or
1321 if (expect_true (have_monotonic)) 1855 * in the unlikely event of having been preempted here.
1322 { 1856 */
1323 if (time_update_monotonic (EV_A)) 1857 for (i = 4; --i; )
1324 { 1858 {
1325 ev_tstamp odiff = rtmn_diff;
1326
1327 /* loop a few times, before making important decisions.
1328 * on the choice of "4": one iteration isn't enough,
1329 * in case we get preempted during the calls to
1330 * ev_time and get_clock. a second call is almost guaranteed
1331 * to succeed in that case, though. and looping a few more times
1332 * doesn't hurt either as we only do this on time-jumps or
1333 * in the unlikely event of having been preempted here.
1334 */
1335 for (i = 4; --i; )
1336 {
1337 rtmn_diff = ev_rt_now - mn_now; 1859 rtmn_diff = ev_rt_now - mn_now;
1338 1860
1339 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1861 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1340 return; /* all is well */ 1862 return; /* all is well */
1341 1863
1342 ev_rt_now = ev_time (); 1864 ev_rt_now = ev_time ();
1343 mn_now = get_clock (); 1865 mn_now = get_clock ();
1344 now_floor = mn_now; 1866 now_floor = mn_now;
1345 } 1867 }
1346 1868
1347# if EV_PERIODIC_ENABLE 1869# if EV_PERIODIC_ENABLE
1348 periodics_reschedule (EV_A); 1870 periodics_reschedule (EV_A);
1349# endif 1871# endif
1350 /* no timer adjustment, as the monotonic clock doesn't jump */ 1872 /* no timer adjustment, as the monotonic clock doesn't jump */
1351 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1873 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1352 }
1353 } 1874 }
1354 else 1875 else
1355#endif 1876#endif
1356 { 1877 {
1357 ev_rt_now = ev_time (); 1878 ev_rt_now = ev_time ();
1358 1879
1359 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1880 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1360 { 1881 {
1361#if EV_PERIODIC_ENABLE 1882#if EV_PERIODIC_ENABLE
1362 periodics_reschedule (EV_A); 1883 periodics_reschedule (EV_A);
1363#endif 1884#endif
1364
1365 /* adjust timers. this is easy, as the offset is the same for all of them */ 1885 /* adjust timers. this is easy, as the offset is the same for all of them */
1366 for (i = 0; i < timercnt; ++i) 1886 for (i = 0; i < timercnt; ++i)
1887 {
1888 ANHE *he = timers + i + HEAP0;
1367 ((WT)timers [i])->at += ev_rt_now - mn_now; 1889 ANHE_w (*he)->at += ev_rt_now - mn_now;
1890 ANHE_at_cache (*he);
1891 }
1368 } 1892 }
1369 1893
1370 mn_now = ev_rt_now; 1894 mn_now = ev_rt_now;
1371 } 1895 }
1372} 1896}
1386static int loop_done; 1910static int loop_done;
1387 1911
1388void 1912void
1389ev_loop (EV_P_ int flags) 1913ev_loop (EV_P_ int flags)
1390{ 1914{
1391 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1915 loop_done = EVUNLOOP_CANCEL;
1392 ? EVUNLOOP_ONE
1393 : EVUNLOOP_CANCEL;
1394 1916
1395 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1917 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1396 1918
1397 do 1919 do
1398 { 1920 {
1921#if EV_VERIFY >= 2
1922 ev_loop_verify (EV_A);
1923#endif
1924
1399#ifndef _WIN32 1925#ifndef _WIN32
1400 if (expect_false (curpid)) /* penalise the forking check even more */ 1926 if (expect_false (curpid)) /* penalise the forking check even more */
1401 if (expect_false (getpid () != curpid)) 1927 if (expect_false (getpid () != curpid))
1402 { 1928 {
1403 curpid = getpid (); 1929 curpid = getpid ();
1413 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1939 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1414 call_pending (EV_A); 1940 call_pending (EV_A);
1415 } 1941 }
1416#endif 1942#endif
1417 1943
1418 /* queue check watchers (and execute them) */ 1944 /* queue prepare watchers (and execute them) */
1419 if (expect_false (preparecnt)) 1945 if (expect_false (preparecnt))
1420 { 1946 {
1421 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1947 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1422 call_pending (EV_A); 1948 call_pending (EV_A);
1423 } 1949 }
1432 /* update fd-related kernel structures */ 1958 /* update fd-related kernel structures */
1433 fd_reify (EV_A); 1959 fd_reify (EV_A);
1434 1960
1435 /* calculate blocking time */ 1961 /* calculate blocking time */
1436 { 1962 {
1437 ev_tstamp block; 1963 ev_tstamp waittime = 0.;
1964 ev_tstamp sleeptime = 0.;
1438 1965
1439 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1966 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1440 block = 0.; /* do not block at all */
1441 else
1442 { 1967 {
1443 /* update time to cancel out callback processing overhead */ 1968 /* update time to cancel out callback processing overhead */
1444#if EV_USE_MONOTONIC
1445 if (expect_true (have_monotonic))
1446 time_update_monotonic (EV_A); 1969 time_update (EV_A_ 1e100);
1447 else
1448#endif
1449 {
1450 ev_rt_now = ev_time ();
1451 mn_now = ev_rt_now;
1452 }
1453 1970
1454 block = MAX_BLOCKTIME; 1971 waittime = MAX_BLOCKTIME;
1455 1972
1456 if (timercnt) 1973 if (timercnt)
1457 { 1974 {
1458 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1975 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1459 if (block > to) block = to; 1976 if (waittime > to) waittime = to;
1460 } 1977 }
1461 1978
1462#if EV_PERIODIC_ENABLE 1979#if EV_PERIODIC_ENABLE
1463 if (periodiccnt) 1980 if (periodiccnt)
1464 { 1981 {
1465 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1982 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1466 if (block > to) block = to; 1983 if (waittime > to) waittime = to;
1467 } 1984 }
1468#endif 1985#endif
1469 1986
1470 if (expect_false (block < 0.)) block = 0.; 1987 if (expect_false (waittime < timeout_blocktime))
1988 waittime = timeout_blocktime;
1989
1990 sleeptime = waittime - backend_fudge;
1991
1992 if (expect_true (sleeptime > io_blocktime))
1993 sleeptime = io_blocktime;
1994
1995 if (sleeptime)
1996 {
1997 ev_sleep (sleeptime);
1998 waittime -= sleeptime;
1999 }
1471 } 2000 }
1472 2001
1473 ++loop_count; 2002 ++loop_count;
1474 backend_poll (EV_A_ block); 2003 backend_poll (EV_A_ waittime);
2004
2005 /* update ev_rt_now, do magic */
2006 time_update (EV_A_ waittime + sleeptime);
1475 } 2007 }
1476
1477 /* update ev_rt_now, do magic */
1478 time_update (EV_A);
1479 2008
1480 /* queue pending timers and reschedule them */ 2009 /* queue pending timers and reschedule them */
1481 timers_reify (EV_A); /* relative timers called last */ 2010 timers_reify (EV_A); /* relative timers called last */
1482#if EV_PERIODIC_ENABLE 2011#if EV_PERIODIC_ENABLE
1483 periodics_reify (EV_A); /* absolute timers called first */ 2012 periodics_reify (EV_A); /* absolute timers called first */
1491 /* queue check watchers, to be executed first */ 2020 /* queue check watchers, to be executed first */
1492 if (expect_false (checkcnt)) 2021 if (expect_false (checkcnt))
1493 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2022 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1494 2023
1495 call_pending (EV_A); 2024 call_pending (EV_A);
1496
1497 } 2025 }
1498 while (expect_true (activecnt && !loop_done)); 2026 while (expect_true (
2027 activecnt
2028 && !loop_done
2029 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2030 ));
1499 2031
1500 if (loop_done == EVUNLOOP_ONE) 2032 if (loop_done == EVUNLOOP_ONE)
1501 loop_done = EVUNLOOP_CANCEL; 2033 loop_done = EVUNLOOP_CANCEL;
1502} 2034}
1503 2035
1545ev_clear_pending (EV_P_ void *w) 2077ev_clear_pending (EV_P_ void *w)
1546{ 2078{
1547 W w_ = (W)w; 2079 W w_ = (W)w;
1548 int pending = w_->pending; 2080 int pending = w_->pending;
1549 2081
1550 if (!pending) 2082 if (expect_true (pending))
2083 {
2084 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2085 w_->pending = 0;
2086 p->w = 0;
2087 return p->events;
2088 }
2089 else
1551 return 0; 2090 return 0;
1552
1553 w_->pending = 0;
1554 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1555 p->w = 0;
1556
1557 return p->events;
1558} 2091}
1559 2092
1560void inline_size 2093void inline_size
1561pri_adjust (EV_P_ W w) 2094pri_adjust (EV_P_ W w)
1562{ 2095{
1581 w->active = 0; 2114 w->active = 0;
1582} 2115}
1583 2116
1584/*****************************************************************************/ 2117/*****************************************************************************/
1585 2118
1586void 2119void noinline
1587ev_io_start (EV_P_ ev_io *w) 2120ev_io_start (EV_P_ ev_io *w)
1588{ 2121{
1589 int fd = w->fd; 2122 int fd = w->fd;
1590 2123
1591 if (expect_false (ev_is_active (w))) 2124 if (expect_false (ev_is_active (w)))
1592 return; 2125 return;
1593 2126
1594 assert (("ev_io_start called with negative fd", fd >= 0)); 2127 assert (("ev_io_start called with negative fd", fd >= 0));
1595 2128
2129 EV_FREQUENT_CHECK;
2130
1596 ev_start (EV_A_ (W)w, 1); 2131 ev_start (EV_A_ (W)w, 1);
1597 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2132 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1598 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2133 wlist_add (&anfds[fd].head, (WL)w);
1599 2134
1600 fd_change (EV_A_ fd); 2135 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1601} 2136 w->events &= ~EV_IOFDSET;
1602 2137
1603void 2138 EV_FREQUENT_CHECK;
2139}
2140
2141void noinline
1604ev_io_stop (EV_P_ ev_io *w) 2142ev_io_stop (EV_P_ ev_io *w)
1605{ 2143{
1606 clear_pending (EV_A_ (W)w); 2144 clear_pending (EV_A_ (W)w);
1607 if (expect_false (!ev_is_active (w))) 2145 if (expect_false (!ev_is_active (w)))
1608 return; 2146 return;
1609 2147
1610 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2148 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1611 2149
2150 EV_FREQUENT_CHECK;
2151
1612 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2152 wlist_del (&anfds[w->fd].head, (WL)w);
1613 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
1614 2154
1615 fd_change (EV_A_ w->fd); 2155 fd_change (EV_A_ w->fd, 1);
1616}
1617 2156
1618void 2157 EV_FREQUENT_CHECK;
2158}
2159
2160void noinline
1619ev_timer_start (EV_P_ ev_timer *w) 2161ev_timer_start (EV_P_ ev_timer *w)
1620{ 2162{
1621 if (expect_false (ev_is_active (w))) 2163 if (expect_false (ev_is_active (w)))
1622 return; 2164 return;
1623 2165
1624 ((WT)w)->at += mn_now; 2166 ev_at (w) += mn_now;
1625 2167
1626 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2168 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1627 2169
2170 EV_FREQUENT_CHECK;
2171
2172 ++timercnt;
1628 ev_start (EV_A_ (W)w, ++timercnt); 2173 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1629 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2174 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1630 timers [timercnt - 1] = w; 2175 ANHE_w (timers [ev_active (w)]) = (WT)w;
1631 upheap ((WT *)timers, timercnt - 1); 2176 ANHE_at_cache (timers [ev_active (w)]);
2177 upheap (timers, ev_active (w));
1632 2178
2179 EV_FREQUENT_CHECK;
2180
1633 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2181 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1634} 2182}
1635 2183
1636void 2184void noinline
1637ev_timer_stop (EV_P_ ev_timer *w) 2185ev_timer_stop (EV_P_ ev_timer *w)
1638{ 2186{
1639 clear_pending (EV_A_ (W)w); 2187 clear_pending (EV_A_ (W)w);
1640 if (expect_false (!ev_is_active (w))) 2188 if (expect_false (!ev_is_active (w)))
1641 return; 2189 return;
1642 2190
1643 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2191 EV_FREQUENT_CHECK;
1644 2192
1645 { 2193 {
1646 int active = ((W)w)->active; 2194 int active = ev_active (w);
1647 2195
2196 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2197
2198 --timercnt;
2199
1648 if (expect_true (--active < --timercnt)) 2200 if (expect_true (active < timercnt + HEAP0))
1649 { 2201 {
1650 timers [active] = timers [timercnt]; 2202 timers [active] = timers [timercnt + HEAP0];
1651 adjustheap ((WT *)timers, timercnt, active); 2203 adjustheap (timers, timercnt, active);
1652 } 2204 }
1653 } 2205 }
1654 2206
1655 ((WT)w)->at -= mn_now; 2207 EV_FREQUENT_CHECK;
2208
2209 ev_at (w) -= mn_now;
1656 2210
1657 ev_stop (EV_A_ (W)w); 2211 ev_stop (EV_A_ (W)w);
1658} 2212}
1659 2213
1660void 2214void noinline
1661ev_timer_again (EV_P_ ev_timer *w) 2215ev_timer_again (EV_P_ ev_timer *w)
1662{ 2216{
2217 EV_FREQUENT_CHECK;
2218
1663 if (ev_is_active (w)) 2219 if (ev_is_active (w))
1664 { 2220 {
1665 if (w->repeat) 2221 if (w->repeat)
1666 { 2222 {
1667 ((WT)w)->at = mn_now + w->repeat; 2223 ev_at (w) = mn_now + w->repeat;
2224 ANHE_at_cache (timers [ev_active (w)]);
1668 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2225 adjustheap (timers, timercnt, ev_active (w));
1669 } 2226 }
1670 else 2227 else
1671 ev_timer_stop (EV_A_ w); 2228 ev_timer_stop (EV_A_ w);
1672 } 2229 }
1673 else if (w->repeat) 2230 else if (w->repeat)
1674 { 2231 {
1675 w->at = w->repeat; 2232 ev_at (w) = w->repeat;
1676 ev_timer_start (EV_A_ w); 2233 ev_timer_start (EV_A_ w);
1677 } 2234 }
2235
2236 EV_FREQUENT_CHECK;
1678} 2237}
1679 2238
1680#if EV_PERIODIC_ENABLE 2239#if EV_PERIODIC_ENABLE
1681void 2240void noinline
1682ev_periodic_start (EV_P_ ev_periodic *w) 2241ev_periodic_start (EV_P_ ev_periodic *w)
1683{ 2242{
1684 if (expect_false (ev_is_active (w))) 2243 if (expect_false (ev_is_active (w)))
1685 return; 2244 return;
1686 2245
1687 if (w->reschedule_cb) 2246 if (w->reschedule_cb)
1688 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2247 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1689 else if (w->interval) 2248 else if (w->interval)
1690 { 2249 {
1691 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2250 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1692 /* this formula differs from the one in periodic_reify because we do not always round up */ 2251 /* this formula differs from the one in periodic_reify because we do not always round up */
1693 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1694 } 2253 }
2254 else
2255 ev_at (w) = w->offset;
1695 2256
2257 EV_FREQUENT_CHECK;
2258
2259 ++periodiccnt;
1696 ev_start (EV_A_ (W)w, ++periodiccnt); 2260 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1697 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2261 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1698 periodics [periodiccnt - 1] = w; 2262 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1699 upheap ((WT *)periodics, periodiccnt - 1); 2263 ANHE_at_cache (periodics [ev_active (w)]);
2264 upheap (periodics, ev_active (w));
1700 2265
2266 EV_FREQUENT_CHECK;
2267
1701 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2268 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1702} 2269}
1703 2270
1704void 2271void noinline
1705ev_periodic_stop (EV_P_ ev_periodic *w) 2272ev_periodic_stop (EV_P_ ev_periodic *w)
1706{ 2273{
1707 clear_pending (EV_A_ (W)w); 2274 clear_pending (EV_A_ (W)w);
1708 if (expect_false (!ev_is_active (w))) 2275 if (expect_false (!ev_is_active (w)))
1709 return; 2276 return;
1710 2277
1711 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2278 EV_FREQUENT_CHECK;
1712 2279
1713 { 2280 {
1714 int active = ((W)w)->active; 2281 int active = ev_active (w);
1715 2282
2283 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2284
2285 --periodiccnt;
2286
1716 if (expect_true (--active < --periodiccnt)) 2287 if (expect_true (active < periodiccnt + HEAP0))
1717 { 2288 {
1718 periodics [active] = periodics [periodiccnt]; 2289 periodics [active] = periodics [periodiccnt + HEAP0];
1719 adjustheap ((WT *)periodics, periodiccnt, active); 2290 adjustheap (periodics, periodiccnt, active);
1720 } 2291 }
1721 } 2292 }
1722 2293
2294 EV_FREQUENT_CHECK;
2295
1723 ev_stop (EV_A_ (W)w); 2296 ev_stop (EV_A_ (W)w);
1724} 2297}
1725 2298
1726void 2299void noinline
1727ev_periodic_again (EV_P_ ev_periodic *w) 2300ev_periodic_again (EV_P_ ev_periodic *w)
1728{ 2301{
1729 /* TODO: use adjustheap and recalculation */ 2302 /* TODO: use adjustheap and recalculation */
1730 ev_periodic_stop (EV_A_ w); 2303 ev_periodic_stop (EV_A_ w);
1731 ev_periodic_start (EV_A_ w); 2304 ev_periodic_start (EV_A_ w);
1734 2307
1735#ifndef SA_RESTART 2308#ifndef SA_RESTART
1736# define SA_RESTART 0 2309# define SA_RESTART 0
1737#endif 2310#endif
1738 2311
1739void 2312void noinline
1740ev_signal_start (EV_P_ ev_signal *w) 2313ev_signal_start (EV_P_ ev_signal *w)
1741{ 2314{
1742#if EV_MULTIPLICITY 2315#if EV_MULTIPLICITY
1743 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2316 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1744#endif 2317#endif
1745 if (expect_false (ev_is_active (w))) 2318 if (expect_false (ev_is_active (w)))
1746 return; 2319 return;
1747 2320
1748 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2321 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1749 2322
2323 evpipe_init (EV_A);
2324
2325 EV_FREQUENT_CHECK;
2326
2327 {
2328#ifndef _WIN32
2329 sigset_t full, prev;
2330 sigfillset (&full);
2331 sigprocmask (SIG_SETMASK, &full, &prev);
2332#endif
2333
2334 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2335
2336#ifndef _WIN32
2337 sigprocmask (SIG_SETMASK, &prev, 0);
2338#endif
2339 }
2340
1750 ev_start (EV_A_ (W)w, 1); 2341 ev_start (EV_A_ (W)w, 1);
1751 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1752 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2342 wlist_add (&signals [w->signum - 1].head, (WL)w);
1753 2343
1754 if (!((WL)w)->next) 2344 if (!((WL)w)->next)
1755 { 2345 {
1756#if _WIN32 2346#if _WIN32
1757 signal (w->signum, sighandler); 2347 signal (w->signum, ev_sighandler);
1758#else 2348#else
1759 struct sigaction sa; 2349 struct sigaction sa;
1760 sa.sa_handler = sighandler; 2350 sa.sa_handler = ev_sighandler;
1761 sigfillset (&sa.sa_mask); 2351 sigfillset (&sa.sa_mask);
1762 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2352 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1763 sigaction (w->signum, &sa, 0); 2353 sigaction (w->signum, &sa, 0);
1764#endif 2354#endif
1765 } 2355 }
1766}
1767 2356
1768void 2357 EV_FREQUENT_CHECK;
2358}
2359
2360void noinline
1769ev_signal_stop (EV_P_ ev_signal *w) 2361ev_signal_stop (EV_P_ ev_signal *w)
1770{ 2362{
1771 clear_pending (EV_A_ (W)w); 2363 clear_pending (EV_A_ (W)w);
1772 if (expect_false (!ev_is_active (w))) 2364 if (expect_false (!ev_is_active (w)))
1773 return; 2365 return;
1774 2366
2367 EV_FREQUENT_CHECK;
2368
1775 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2369 wlist_del (&signals [w->signum - 1].head, (WL)w);
1776 ev_stop (EV_A_ (W)w); 2370 ev_stop (EV_A_ (W)w);
1777 2371
1778 if (!signals [w->signum - 1].head) 2372 if (!signals [w->signum - 1].head)
1779 signal (w->signum, SIG_DFL); 2373 signal (w->signum, SIG_DFL);
2374
2375 EV_FREQUENT_CHECK;
1780} 2376}
1781 2377
1782void 2378void
1783ev_child_start (EV_P_ ev_child *w) 2379ev_child_start (EV_P_ ev_child *w)
1784{ 2380{
1786 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2382 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1787#endif 2383#endif
1788 if (expect_false (ev_is_active (w))) 2384 if (expect_false (ev_is_active (w)))
1789 return; 2385 return;
1790 2386
2387 EV_FREQUENT_CHECK;
2388
1791 ev_start (EV_A_ (W)w, 1); 2389 ev_start (EV_A_ (W)w, 1);
1792 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2390 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2391
2392 EV_FREQUENT_CHECK;
1793} 2393}
1794 2394
1795void 2395void
1796ev_child_stop (EV_P_ ev_child *w) 2396ev_child_stop (EV_P_ ev_child *w)
1797{ 2397{
1798 clear_pending (EV_A_ (W)w); 2398 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 2399 if (expect_false (!ev_is_active (w)))
1800 return; 2400 return;
1801 2401
2402 EV_FREQUENT_CHECK;
2403
1802 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2404 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1803 ev_stop (EV_A_ (W)w); 2405 ev_stop (EV_A_ (W)w);
2406
2407 EV_FREQUENT_CHECK;
1804} 2408}
1805 2409
1806#if EV_STAT_ENABLE 2410#if EV_STAT_ENABLE
1807 2411
1808# ifdef _WIN32 2412# ifdef _WIN32
1826 if (w->wd < 0) 2430 if (w->wd < 0)
1827 { 2431 {
1828 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2432 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1829 2433
1830 /* monitor some parent directory for speedup hints */ 2434 /* monitor some parent directory for speedup hints */
2435 /* note that exceeding the hardcoded limit is not a correctness issue, */
2436 /* but an efficiency issue only */
1831 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2437 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1832 { 2438 {
1833 char path [4096]; 2439 char path [4096];
1834 strcpy (path, w->path); 2440 strcpy (path, w->path);
1835 2441
1961 } 2567 }
1962 2568
1963 } 2569 }
1964} 2570}
1965 2571
2572#endif
2573
2574#ifdef _WIN32
2575# define EV_LSTAT(p,b) _stati64 (p, b)
2576#else
2577# define EV_LSTAT(p,b) lstat (p, b)
1966#endif 2578#endif
1967 2579
1968void 2580void
1969ev_stat_stat (EV_P_ ev_stat *w) 2581ev_stat_stat (EV_P_ ev_stat *w)
1970{ 2582{
2034 else 2646 else
2035#endif 2647#endif
2036 ev_timer_start (EV_A_ &w->timer); 2648 ev_timer_start (EV_A_ &w->timer);
2037 2649
2038 ev_start (EV_A_ (W)w, 1); 2650 ev_start (EV_A_ (W)w, 1);
2651
2652 EV_FREQUENT_CHECK;
2039} 2653}
2040 2654
2041void 2655void
2042ev_stat_stop (EV_P_ ev_stat *w) 2656ev_stat_stop (EV_P_ ev_stat *w)
2043{ 2657{
2044 clear_pending (EV_A_ (W)w); 2658 clear_pending (EV_A_ (W)w);
2045 if (expect_false (!ev_is_active (w))) 2659 if (expect_false (!ev_is_active (w)))
2046 return; 2660 return;
2047 2661
2662 EV_FREQUENT_CHECK;
2663
2048#if EV_USE_INOTIFY 2664#if EV_USE_INOTIFY
2049 infy_del (EV_A_ w); 2665 infy_del (EV_A_ w);
2050#endif 2666#endif
2051 ev_timer_stop (EV_A_ &w->timer); 2667 ev_timer_stop (EV_A_ &w->timer);
2052 2668
2053 ev_stop (EV_A_ (W)w); 2669 ev_stop (EV_A_ (W)w);
2670
2671 EV_FREQUENT_CHECK;
2054} 2672}
2055#endif 2673#endif
2056 2674
2057#if EV_IDLE_ENABLE 2675#if EV_IDLE_ENABLE
2058void 2676void
2060{ 2678{
2061 if (expect_false (ev_is_active (w))) 2679 if (expect_false (ev_is_active (w)))
2062 return; 2680 return;
2063 2681
2064 pri_adjust (EV_A_ (W)w); 2682 pri_adjust (EV_A_ (W)w);
2683
2684 EV_FREQUENT_CHECK;
2065 2685
2066 { 2686 {
2067 int active = ++idlecnt [ABSPRI (w)]; 2687 int active = ++idlecnt [ABSPRI (w)];
2068 2688
2069 ++idleall; 2689 ++idleall;
2070 ev_start (EV_A_ (W)w, active); 2690 ev_start (EV_A_ (W)w, active);
2071 2691
2072 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2692 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2073 idles [ABSPRI (w)][active - 1] = w; 2693 idles [ABSPRI (w)][active - 1] = w;
2074 } 2694 }
2695
2696 EV_FREQUENT_CHECK;
2075} 2697}
2076 2698
2077void 2699void
2078ev_idle_stop (EV_P_ ev_idle *w) 2700ev_idle_stop (EV_P_ ev_idle *w)
2079{ 2701{
2080 clear_pending (EV_A_ (W)w); 2702 clear_pending (EV_A_ (W)w);
2081 if (expect_false (!ev_is_active (w))) 2703 if (expect_false (!ev_is_active (w)))
2082 return; 2704 return;
2083 2705
2706 EV_FREQUENT_CHECK;
2707
2084 { 2708 {
2085 int active = ((W)w)->active; 2709 int active = ev_active (w);
2086 2710
2087 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2711 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2088 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2712 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2089 2713
2090 ev_stop (EV_A_ (W)w); 2714 ev_stop (EV_A_ (W)w);
2091 --idleall; 2715 --idleall;
2092 } 2716 }
2717
2718 EV_FREQUENT_CHECK;
2093} 2719}
2094#endif 2720#endif
2095 2721
2096void 2722void
2097ev_prepare_start (EV_P_ ev_prepare *w) 2723ev_prepare_start (EV_P_ ev_prepare *w)
2098{ 2724{
2099 if (expect_false (ev_is_active (w))) 2725 if (expect_false (ev_is_active (w)))
2100 return; 2726 return;
2727
2728 EV_FREQUENT_CHECK;
2101 2729
2102 ev_start (EV_A_ (W)w, ++preparecnt); 2730 ev_start (EV_A_ (W)w, ++preparecnt);
2103 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2731 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2104 prepares [preparecnt - 1] = w; 2732 prepares [preparecnt - 1] = w;
2733
2734 EV_FREQUENT_CHECK;
2105} 2735}
2106 2736
2107void 2737void
2108ev_prepare_stop (EV_P_ ev_prepare *w) 2738ev_prepare_stop (EV_P_ ev_prepare *w)
2109{ 2739{
2110 clear_pending (EV_A_ (W)w); 2740 clear_pending (EV_A_ (W)w);
2111 if (expect_false (!ev_is_active (w))) 2741 if (expect_false (!ev_is_active (w)))
2112 return; 2742 return;
2113 2743
2744 EV_FREQUENT_CHECK;
2745
2114 { 2746 {
2115 int active = ((W)w)->active; 2747 int active = ev_active (w);
2748
2116 prepares [active - 1] = prepares [--preparecnt]; 2749 prepares [active - 1] = prepares [--preparecnt];
2117 ((W)prepares [active - 1])->active = active; 2750 ev_active (prepares [active - 1]) = active;
2118 } 2751 }
2119 2752
2120 ev_stop (EV_A_ (W)w); 2753 ev_stop (EV_A_ (W)w);
2754
2755 EV_FREQUENT_CHECK;
2121} 2756}
2122 2757
2123void 2758void
2124ev_check_start (EV_P_ ev_check *w) 2759ev_check_start (EV_P_ ev_check *w)
2125{ 2760{
2126 if (expect_false (ev_is_active (w))) 2761 if (expect_false (ev_is_active (w)))
2127 return; 2762 return;
2763
2764 EV_FREQUENT_CHECK;
2128 2765
2129 ev_start (EV_A_ (W)w, ++checkcnt); 2766 ev_start (EV_A_ (W)w, ++checkcnt);
2130 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2767 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2131 checks [checkcnt - 1] = w; 2768 checks [checkcnt - 1] = w;
2769
2770 EV_FREQUENT_CHECK;
2132} 2771}
2133 2772
2134void 2773void
2135ev_check_stop (EV_P_ ev_check *w) 2774ev_check_stop (EV_P_ ev_check *w)
2136{ 2775{
2137 clear_pending (EV_A_ (W)w); 2776 clear_pending (EV_A_ (W)w);
2138 if (expect_false (!ev_is_active (w))) 2777 if (expect_false (!ev_is_active (w)))
2139 return; 2778 return;
2140 2779
2780 EV_FREQUENT_CHECK;
2781
2141 { 2782 {
2142 int active = ((W)w)->active; 2783 int active = ev_active (w);
2784
2143 checks [active - 1] = checks [--checkcnt]; 2785 checks [active - 1] = checks [--checkcnt];
2144 ((W)checks [active - 1])->active = active; 2786 ev_active (checks [active - 1]) = active;
2145 } 2787 }
2146 2788
2147 ev_stop (EV_A_ (W)w); 2789 ev_stop (EV_A_ (W)w);
2790
2791 EV_FREQUENT_CHECK;
2148} 2792}
2149 2793
2150#if EV_EMBED_ENABLE 2794#if EV_EMBED_ENABLE
2151void noinline 2795void noinline
2152ev_embed_sweep (EV_P_ ev_embed *w) 2796ev_embed_sweep (EV_P_ ev_embed *w)
2153{ 2797{
2154 ev_loop (w->loop, EVLOOP_NONBLOCK); 2798 ev_loop (w->other, EVLOOP_NONBLOCK);
2155} 2799}
2156 2800
2157static void 2801static void
2158embed_cb (EV_P_ ev_io *io, int revents) 2802embed_io_cb (EV_P_ ev_io *io, int revents)
2159{ 2803{
2160 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2804 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2161 2805
2162 if (ev_cb (w)) 2806 if (ev_cb (w))
2163 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2807 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2164 else 2808 else
2165 ev_embed_sweep (loop, w); 2809 ev_loop (w->other, EVLOOP_NONBLOCK);
2166} 2810}
2811
2812static void
2813embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2814{
2815 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2816
2817 {
2818 struct ev_loop *loop = w->other;
2819
2820 while (fdchangecnt)
2821 {
2822 fd_reify (EV_A);
2823 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2824 }
2825 }
2826}
2827
2828#if 0
2829static void
2830embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2831{
2832 ev_idle_stop (EV_A_ idle);
2833}
2834#endif
2167 2835
2168void 2836void
2169ev_embed_start (EV_P_ ev_embed *w) 2837ev_embed_start (EV_P_ ev_embed *w)
2170{ 2838{
2171 if (expect_false (ev_is_active (w))) 2839 if (expect_false (ev_is_active (w)))
2172 return; 2840 return;
2173 2841
2174 { 2842 {
2175 struct ev_loop *loop = w->loop; 2843 struct ev_loop *loop = w->other;
2176 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2844 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2177 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2845 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2178 } 2846 }
2847
2848 EV_FREQUENT_CHECK;
2179 2849
2180 ev_set_priority (&w->io, ev_priority (w)); 2850 ev_set_priority (&w->io, ev_priority (w));
2181 ev_io_start (EV_A_ &w->io); 2851 ev_io_start (EV_A_ &w->io);
2182 2852
2853 ev_prepare_init (&w->prepare, embed_prepare_cb);
2854 ev_set_priority (&w->prepare, EV_MINPRI);
2855 ev_prepare_start (EV_A_ &w->prepare);
2856
2857 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2858
2183 ev_start (EV_A_ (W)w, 1); 2859 ev_start (EV_A_ (W)w, 1);
2860
2861 EV_FREQUENT_CHECK;
2184} 2862}
2185 2863
2186void 2864void
2187ev_embed_stop (EV_P_ ev_embed *w) 2865ev_embed_stop (EV_P_ ev_embed *w)
2188{ 2866{
2189 clear_pending (EV_A_ (W)w); 2867 clear_pending (EV_A_ (W)w);
2190 if (expect_false (!ev_is_active (w))) 2868 if (expect_false (!ev_is_active (w)))
2191 return; 2869 return;
2192 2870
2871 EV_FREQUENT_CHECK;
2872
2193 ev_io_stop (EV_A_ &w->io); 2873 ev_io_stop (EV_A_ &w->io);
2874 ev_prepare_stop (EV_A_ &w->prepare);
2194 2875
2195 ev_stop (EV_A_ (W)w); 2876 ev_stop (EV_A_ (W)w);
2877
2878 EV_FREQUENT_CHECK;
2196} 2879}
2197#endif 2880#endif
2198 2881
2199#if EV_FORK_ENABLE 2882#if EV_FORK_ENABLE
2200void 2883void
2201ev_fork_start (EV_P_ ev_fork *w) 2884ev_fork_start (EV_P_ ev_fork *w)
2202{ 2885{
2203 if (expect_false (ev_is_active (w))) 2886 if (expect_false (ev_is_active (w)))
2204 return; 2887 return;
2888
2889 EV_FREQUENT_CHECK;
2205 2890
2206 ev_start (EV_A_ (W)w, ++forkcnt); 2891 ev_start (EV_A_ (W)w, ++forkcnt);
2207 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2892 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2208 forks [forkcnt - 1] = w; 2893 forks [forkcnt - 1] = w;
2894
2895 EV_FREQUENT_CHECK;
2209} 2896}
2210 2897
2211void 2898void
2212ev_fork_stop (EV_P_ ev_fork *w) 2899ev_fork_stop (EV_P_ ev_fork *w)
2213{ 2900{
2214 clear_pending (EV_A_ (W)w); 2901 clear_pending (EV_A_ (W)w);
2215 if (expect_false (!ev_is_active (w))) 2902 if (expect_false (!ev_is_active (w)))
2216 return; 2903 return;
2217 2904
2905 EV_FREQUENT_CHECK;
2906
2218 { 2907 {
2219 int active = ((W)w)->active; 2908 int active = ev_active (w);
2909
2220 forks [active - 1] = forks [--forkcnt]; 2910 forks [active - 1] = forks [--forkcnt];
2221 ((W)forks [active - 1])->active = active; 2911 ev_active (forks [active - 1]) = active;
2222 } 2912 }
2223 2913
2224 ev_stop (EV_A_ (W)w); 2914 ev_stop (EV_A_ (W)w);
2915
2916 EV_FREQUENT_CHECK;
2917}
2918#endif
2919
2920#if EV_ASYNC_ENABLE
2921void
2922ev_async_start (EV_P_ ev_async *w)
2923{
2924 if (expect_false (ev_is_active (w)))
2925 return;
2926
2927 evpipe_init (EV_A);
2928
2929 EV_FREQUENT_CHECK;
2930
2931 ev_start (EV_A_ (W)w, ++asynccnt);
2932 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2933 asyncs [asynccnt - 1] = w;
2934
2935 EV_FREQUENT_CHECK;
2936}
2937
2938void
2939ev_async_stop (EV_P_ ev_async *w)
2940{
2941 clear_pending (EV_A_ (W)w);
2942 if (expect_false (!ev_is_active (w)))
2943 return;
2944
2945 EV_FREQUENT_CHECK;
2946
2947 {
2948 int active = ev_active (w);
2949
2950 asyncs [active - 1] = asyncs [--asynccnt];
2951 ev_active (asyncs [active - 1]) = active;
2952 }
2953
2954 ev_stop (EV_A_ (W)w);
2955
2956 EV_FREQUENT_CHECK;
2957}
2958
2959void
2960ev_async_send (EV_P_ ev_async *w)
2961{
2962 w->sent = 1;
2963 evpipe_write (EV_A_ &gotasync);
2225} 2964}
2226#endif 2965#endif
2227 2966
2228/*****************************************************************************/ 2967/*****************************************************************************/
2229 2968
2287 ev_timer_set (&once->to, timeout, 0.); 3026 ev_timer_set (&once->to, timeout, 0.);
2288 ev_timer_start (EV_A_ &once->to); 3027 ev_timer_start (EV_A_ &once->to);
2289 } 3028 }
2290} 3029}
2291 3030
3031#if EV_MULTIPLICITY
3032 #include "ev_wrap.h"
3033#endif
3034
2292#ifdef __cplusplus 3035#ifdef __cplusplus
2293} 3036}
2294#endif 3037#endif
2295 3038

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines