ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.168 by root, Sat Dec 8 14:12:07 2007 UTC vs.
Revision 1.296 by root, Thu Jul 9 09:11:20 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
56# endif 87# endif
57# endif 88# endif
58 89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
107#endif 146#endif
108 147
109#include <math.h> 148#include <math.h>
110#include <stdlib.h> 149#include <stdlib.h>
111#include <fcntl.h> 150#include <fcntl.h>
129#ifndef _WIN32 168#ifndef _WIN32
130# include <sys/time.h> 169# include <sys/time.h>
131# include <sys/wait.h> 170# include <sys/wait.h>
132# include <unistd.h> 171# include <unistd.h>
133#else 172#else
173# include <io.h>
134# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 175# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
138# endif 178# endif
139#endif 179#endif
140 180
141/**/ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
142 190
143#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
144# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
145#endif 197#endif
146 198
147#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
201#endif
202
203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
207# define EV_USE_NANOSLEEP 0
208# endif
149#endif 209#endif
150 210
151#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
153#endif 213#endif
159# define EV_USE_POLL 1 219# define EV_USE_POLL 1
160# endif 220# endif
161#endif 221#endif
162 222
163#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
164# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
228# endif
165#endif 229#endif
166 230
167#ifndef EV_USE_KQUEUE 231#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 232# define EV_USE_KQUEUE 0
169#endif 233#endif
171#ifndef EV_USE_PORT 235#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 236# define EV_USE_PORT 0
173#endif 237#endif
174 238
175#ifndef EV_USE_INOTIFY 239#ifndef EV_USE_INOTIFY
240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
241# define EV_USE_INOTIFY 1
242# else
176# define EV_USE_INOTIFY 0 243# define EV_USE_INOTIFY 0
244# endif
177#endif 245#endif
178 246
179#ifndef EV_PID_HASHSIZE 247#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 248# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 249# define EV_PID_HASHSIZE 1
190# else 258# else
191# define EV_INOTIFY_HASHSIZE 16 259# define EV_INOTIFY_HASHSIZE 16
192# endif 260# endif
193#endif 261#endif
194 262
195/**/ 263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 304
197#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
200#endif 308#endif
202#ifndef CLOCK_REALTIME 310#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 311# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 312# define EV_USE_REALTIME 0
205#endif 313#endif
206 314
315#if !EV_STAT_ENABLE
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318#endif
319
320#if !EV_USE_NANOSLEEP
321# ifndef _WIN32
322# include <sys/select.h>
323# endif
324#endif
325
326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
335#endif
336
207#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 338# include <winsock.h>
209#endif 339#endif
210 340
211#if !EV_STAT_ENABLE 341#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
213#endif 346# endif
214 347int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 348# ifdef __cplusplus
216# include <sys/inotify.h> 349}
350# endif
217#endif 351#endif
218 352
219/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
360
361/*
362 * This is used to avoid floating point rounding problems.
363 * It is added to ev_rt_now when scheduling periodics
364 * to ensure progress, time-wise, even when rounding
365 * errors are against us.
366 * This value is good at least till the year 4000.
367 * Better solutions welcome.
368 */
369#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 370
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 371#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 372#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 373/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 374
225#if __GNUC__ >= 3 375#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 376# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 377# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 378#else
236# define expect(expr,value) (expr) 379# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 380# define noinline
381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
382# define inline
383# endif
240#endif 384#endif
241 385
242#define expect_false(expr) expect ((expr) != 0, 0) 386#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 387#define expect_true(expr) expect ((expr) != 0, 1)
388#define inline_size static inline
244 389
390#if EV_MINIMAL
391# define inline_speed static noinline
392#else
393# define inline_speed static inline
394#endif
395
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
247 403
248#define EMPTY /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
250 406
251typedef ev_watcher *W; 407typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 408typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
254 410
411#define ev_active(w) ((W)(w))->active
412#define ev_at(w) ((WT)(w))->at
413
414#if EV_USE_REALTIME
415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
422#endif
256 423
257#ifdef _WIN32 424#ifdef _WIN32
258# include "ev_win32.c" 425# include "ev_win32.c"
259#endif 426#endif
260 427
267{ 434{
268 syserr_cb = cb; 435 syserr_cb = cb;
269} 436}
270 437
271static void noinline 438static void noinline
272syserr (const char *msg) 439ev_syserr (const char *msg)
273{ 440{
274 if (!msg) 441 if (!msg)
275 msg = "(libev) system error"; 442 msg = "(libev) system error";
276 443
277 if (syserr_cb) 444 if (syserr_cb)
281 perror (msg); 448 perror (msg);
282 abort (); 449 abort ();
283 } 450 }
284} 451}
285 452
453static void *
454ev_realloc_emul (void *ptr, long size)
455{
456 /* some systems, notably openbsd and darwin, fail to properly
457 * implement realloc (x, 0) (as required by both ansi c-98 and
458 * the single unix specification, so work around them here.
459 */
460
461 if (size)
462 return realloc (ptr, size);
463
464 free (ptr);
465 return 0;
466}
467
286static void *(*alloc)(void *ptr, long size); 468static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 469
288void 470void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 471ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 472{
291 alloc = cb; 473 alloc = cb;
292} 474}
293 475
294inline_speed void * 476inline_speed void *
295ev_realloc (void *ptr, long size) 477ev_realloc (void *ptr, long size)
296{ 478{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 479 ptr = alloc (ptr, size);
298 480
299 if (!ptr && size) 481 if (!ptr && size)
300 { 482 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 483 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 484 abort ();
308#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
310 492
311/*****************************************************************************/ 493/*****************************************************************************/
312 494
495/* file descriptor info structure */
313typedef struct 496typedef struct
314{ 497{
315 WL head; 498 WL head;
316 unsigned char events; 499 unsigned char events; /* the events watched for */
500 unsigned char reify; /* flag set when this ANFD needs reification */
501 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 502 unsigned char unused;
503#if EV_USE_EPOLL
504 unsigned int egen; /* generation counter to counter epoll bugs */
505#endif
318#if EV_SELECT_IS_WINSOCKET 506#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 507 SOCKET handle;
320#endif 508#endif
321} ANFD; 509} ANFD;
322 510
511/* stores the pending event set for a given watcher */
323typedef struct 512typedef struct
324{ 513{
325 W w; 514 W w;
326 int events; 515 int events; /* the pending event set for the given watcher */
327} ANPENDING; 516} ANPENDING;
328 517
329#if EV_USE_INOTIFY 518#if EV_USE_INOTIFY
519/* hash table entry per inotify-id */
330typedef struct 520typedef struct
331{ 521{
332 WL head; 522 WL head;
333} ANFS; 523} ANFS;
524#endif
525
526/* Heap Entry */
527#if EV_HEAP_CACHE_AT
528 /* a heap element */
529 typedef struct {
530 ev_tstamp at;
531 WT w;
532 } ANHE;
533
534 #define ANHE_w(he) (he).w /* access watcher, read-write */
535 #define ANHE_at(he) (he).at /* access cached at, read-only */
536 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
537#else
538 /* a heap element */
539 typedef WT ANHE;
540
541 #define ANHE_w(he) (he)
542 #define ANHE_at(he) (he)->at
543 #define ANHE_at_cache(he)
334#endif 544#endif
335 545
336#if EV_MULTIPLICITY 546#if EV_MULTIPLICITY
337 547
338 struct ev_loop 548 struct ev_loop
359 569
360#endif 570#endif
361 571
362/*****************************************************************************/ 572/*****************************************************************************/
363 573
574#ifndef EV_HAVE_EV_TIME
364ev_tstamp 575ev_tstamp
365ev_time (void) 576ev_time (void)
366{ 577{
367#if EV_USE_REALTIME 578#if EV_USE_REALTIME
579 if (expect_true (have_realtime))
580 {
368 struct timespec ts; 581 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 582 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 583 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 584 }
585#endif
586
372 struct timeval tv; 587 struct timeval tv;
373 gettimeofday (&tv, 0); 588 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 589 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 590}
591#endif
377 592
378ev_tstamp inline_size 593inline_size ev_tstamp
379get_clock (void) 594get_clock (void)
380{ 595{
381#if EV_USE_MONOTONIC 596#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 597 if (expect_true (have_monotonic))
383 { 598 {
396{ 611{
397 return ev_rt_now; 612 return ev_rt_now;
398} 613}
399#endif 614#endif
400 615
401int inline_size 616void
617ev_sleep (ev_tstamp delay)
618{
619 if (delay > 0.)
620 {
621#if EV_USE_NANOSLEEP
622 struct timespec ts;
623
624 ts.tv_sec = (time_t)delay;
625 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
626
627 nanosleep (&ts, 0);
628#elif defined(_WIN32)
629 Sleep ((unsigned long)(delay * 1e3));
630#else
631 struct timeval tv;
632
633 tv.tv_sec = (time_t)delay;
634 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
635
636 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
637 /* somehting not guaranteed by newer posix versions, but guaranteed */
638 /* by older ones */
639 select (0, 0, 0, 0, &tv);
640#endif
641 }
642}
643
644/*****************************************************************************/
645
646#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
647
648/* find a suitable new size for the given array, */
649/* hopefully by rounding to a ncie-to-malloc size */
650inline_size int
402array_nextsize (int elem, int cur, int cnt) 651array_nextsize (int elem, int cur, int cnt)
403{ 652{
404 int ncur = cur + 1; 653 int ncur = cur + 1;
405 654
406 do 655 do
407 ncur <<= 1; 656 ncur <<= 1;
408 while (cnt > ncur); 657 while (cnt > ncur);
409 658
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 659 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
411 if (elem * ncur > 4096) 660 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
412 { 661 {
413 ncur *= elem; 662 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 663 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
415 ncur = ncur - sizeof (void *) * 4; 664 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem; 665 ncur /= elem;
417 } 666 }
418 667
419 return ncur; 668 return ncur;
420} 669}
421 670
422inline_speed void * 671static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 672array_realloc (int elem, void *base, int *cur, int cnt)
424{ 673{
425 *cur = array_nextsize (elem, *cur, cnt); 674 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 675 return ev_realloc (base, elem * *cur);
427} 676}
677
678#define array_init_zero(base,count) \
679 memset ((void *)(base), 0, sizeof (*(base)) * (count))
428 680
429#define array_needsize(type,base,cur,cnt,init) \ 681#define array_needsize(type,base,cur,cnt,init) \
430 if (expect_false ((cnt) > (cur))) \ 682 if (expect_false ((cnt) > (cur))) \
431 { \ 683 { \
432 int ocur_ = (cur); \ 684 int ocur_ = (cur); \
444 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 696 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
445 } 697 }
446#endif 698#endif
447 699
448#define array_free(stem, idx) \ 700#define array_free(stem, idx) \
449 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 701 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
450 702
451/*****************************************************************************/ 703/*****************************************************************************/
704
705/* dummy callback for pending events */
706static void noinline
707pendingcb (EV_P_ ev_prepare *w, int revents)
708{
709}
452 710
453void noinline 711void noinline
454ev_feed_event (EV_P_ void *w, int revents) 712ev_feed_event (EV_P_ void *w, int revents)
455{ 713{
456 W w_ = (W)w; 714 W w_ = (W)w;
715 int pri = ABSPRI (w_);
457 716
458 if (expect_false (w_->pending)) 717 if (expect_false (w_->pending))
718 pendings [pri][w_->pending - 1].events |= revents;
719 else
459 { 720 {
721 w_->pending = ++pendingcnt [pri];
722 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
723 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 724 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 725 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 726}
469 727
470void inline_size 728inline_speed void
729feed_reverse (EV_P_ W w)
730{
731 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
732 rfeeds [rfeedcnt++] = w;
733}
734
735inline_size void
736feed_reverse_done (EV_P_ int revents)
737{
738 do
739 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
740 while (rfeedcnt);
741}
742
743inline_speed void
471queue_events (EV_P_ W *events, int eventcnt, int type) 744queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 745{
473 int i; 746 int i;
474 747
475 for (i = 0; i < eventcnt; ++i) 748 for (i = 0; i < eventcnt; ++i)
476 ev_feed_event (EV_A_ events [i], type); 749 ev_feed_event (EV_A_ events [i], type);
477} 750}
478 751
479/*****************************************************************************/ 752/*****************************************************************************/
480 753
481void inline_size 754inline_speed void
482anfds_init (ANFD *base, int count)
483{
484 while (count--)
485 {
486 base->head = 0;
487 base->events = EV_NONE;
488 base->reify = 0;
489
490 ++base;
491 }
492}
493
494void inline_speed
495fd_event (EV_P_ int fd, int revents) 755fd_event (EV_P_ int fd, int revents)
496{ 756{
497 ANFD *anfd = anfds + fd; 757 ANFD *anfd = anfds + fd;
498 ev_io *w; 758 ev_io *w;
499 759
511{ 771{
512 if (fd >= 0 && fd < anfdmax) 772 if (fd >= 0 && fd < anfdmax)
513 fd_event (EV_A_ fd, revents); 773 fd_event (EV_A_ fd, revents);
514} 774}
515 775
516void inline_size 776/* make sure the external fd watch events are in-sync */
777/* with the kernel/libev internal state */
778inline_size void
517fd_reify (EV_P) 779fd_reify (EV_P)
518{ 780{
519 int i; 781 int i;
520 782
521 for (i = 0; i < fdchangecnt; ++i) 783 for (i = 0; i < fdchangecnt; ++i)
522 { 784 {
523 int fd = fdchanges [i]; 785 int fd = fdchanges [i];
524 ANFD *anfd = anfds + fd; 786 ANFD *anfd = anfds + fd;
525 ev_io *w; 787 ev_io *w;
526 788
527 int events = 0; 789 unsigned char events = 0;
528 790
529 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 791 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
530 events |= w->events; 792 events |= (unsigned char)w->events;
531 793
532#if EV_SELECT_IS_WINSOCKET 794#if EV_SELECT_IS_WINSOCKET
533 if (events) 795 if (events)
534 { 796 {
535 unsigned long argp; 797 unsigned long arg;
798 #ifdef EV_FD_TO_WIN32_HANDLE
799 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
800 #else
536 anfd->handle = _get_osfhandle (fd); 801 anfd->handle = _get_osfhandle (fd);
802 #endif
537 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 803 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
538 } 804 }
539#endif 805#endif
540 806
807 {
808 unsigned char o_events = anfd->events;
809 unsigned char o_reify = anfd->reify;
810
541 anfd->reify = 0; 811 anfd->reify = 0;
542
543 backend_modify (EV_A_ fd, anfd->events, events);
544 anfd->events = events; 812 anfd->events = events;
813
814 if (o_events != events || o_reify & EV__IOFDSET)
815 backend_modify (EV_A_ fd, o_events, events);
816 }
545 } 817 }
546 818
547 fdchangecnt = 0; 819 fdchangecnt = 0;
548} 820}
549 821
550void inline_size 822/* something about the given fd changed */
823inline_size void
551fd_change (EV_P_ int fd) 824fd_change (EV_P_ int fd, int flags)
552{ 825{
553 if (expect_false (anfds [fd].reify)) 826 unsigned char reify = anfds [fd].reify;
554 return;
555
556 anfds [fd].reify = 1; 827 anfds [fd].reify |= flags;
557 828
829 if (expect_true (!reify))
830 {
558 ++fdchangecnt; 831 ++fdchangecnt;
559 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 832 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
560 fdchanges [fdchangecnt - 1] = fd; 833 fdchanges [fdchangecnt - 1] = fd;
834 }
561} 835}
562 836
563void inline_speed 837/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
838inline_speed void
564fd_kill (EV_P_ int fd) 839fd_kill (EV_P_ int fd)
565{ 840{
566 ev_io *w; 841 ev_io *w;
567 842
568 while ((w = (ev_io *)anfds [fd].head)) 843 while ((w = (ev_io *)anfds [fd].head))
570 ev_io_stop (EV_A_ w); 845 ev_io_stop (EV_A_ w);
571 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 846 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
572 } 847 }
573} 848}
574 849
575int inline_size 850/* check whether the given fd is atcually valid, for error recovery */
851inline_size int
576fd_valid (int fd) 852fd_valid (int fd)
577{ 853{
578#ifdef _WIN32 854#ifdef _WIN32
579 return _get_osfhandle (fd) != -1; 855 return _get_osfhandle (fd) != -1;
580#else 856#else
588{ 864{
589 int fd; 865 int fd;
590 866
591 for (fd = 0; fd < anfdmax; ++fd) 867 for (fd = 0; fd < anfdmax; ++fd)
592 if (anfds [fd].events) 868 if (anfds [fd].events)
593 if (!fd_valid (fd) == -1 && errno == EBADF) 869 if (!fd_valid (fd) && errno == EBADF)
594 fd_kill (EV_A_ fd); 870 fd_kill (EV_A_ fd);
595} 871}
596 872
597/* called on ENOMEM in select/poll to kill some fds and retry */ 873/* called on ENOMEM in select/poll to kill some fds and retry */
598static void noinline 874static void noinline
616 892
617 for (fd = 0; fd < anfdmax; ++fd) 893 for (fd = 0; fd < anfdmax; ++fd)
618 if (anfds [fd].events) 894 if (anfds [fd].events)
619 { 895 {
620 anfds [fd].events = 0; 896 anfds [fd].events = 0;
897 anfds [fd].emask = 0;
621 fd_change (EV_A_ fd); 898 fd_change (EV_A_ fd, EV__IOFDSET | 1);
622 } 899 }
623} 900}
624 901
625/*****************************************************************************/ 902/*****************************************************************************/
626 903
627void inline_speed 904/*
628upheap (WT *heap, int k) 905 * the heap functions want a real array index. array index 0 uis guaranteed to not
629{ 906 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
630 WT w = heap [k]; 907 * the branching factor of the d-tree.
908 */
631 909
632 while (k && heap [k >> 1]->at > w->at) 910/*
633 { 911 * at the moment we allow libev the luxury of two heaps,
634 heap [k] = heap [k >> 1]; 912 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
635 ((W)heap [k])->active = k + 1; 913 * which is more cache-efficient.
636 k >>= 1; 914 * the difference is about 5% with 50000+ watchers.
637 } 915 */
916#if EV_USE_4HEAP
638 917
639 heap [k] = w; 918#define DHEAP 4
640 ((W)heap [k])->active = k + 1; 919#define HEAP0 (DHEAP - 1) /* index of first element in heap */
920#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
921#define UPHEAP_DONE(p,k) ((p) == (k))
641 922
642} 923/* away from the root */
643 924inline_speed void
644void inline_speed
645downheap (WT *heap, int N, int k) 925downheap (ANHE *heap, int N, int k)
646{ 926{
647 WT w = heap [k]; 927 ANHE he = heap [k];
928 ANHE *E = heap + N + HEAP0;
648 929
649 while (k < (N >> 1)) 930 for (;;)
650 { 931 {
651 int j = k << 1; 932 ev_tstamp minat;
933 ANHE *minpos;
934 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
652 935
653 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 936 /* find minimum child */
937 if (expect_true (pos + DHEAP - 1 < E))
654 ++j; 938 {
655 939 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
656 if (w->at <= heap [j]->at) 940 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
941 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
942 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
943 }
944 else if (pos < E)
945 {
946 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
947 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
948 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
949 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
950 }
951 else
657 break; 952 break;
658 953
954 if (ANHE_at (he) <= minat)
955 break;
956
957 heap [k] = *minpos;
958 ev_active (ANHE_w (*minpos)) = k;
959
960 k = minpos - heap;
961 }
962
963 heap [k] = he;
964 ev_active (ANHE_w (he)) = k;
965}
966
967#else /* 4HEAP */
968
969#define HEAP0 1
970#define HPARENT(k) ((k) >> 1)
971#define UPHEAP_DONE(p,k) (!(p))
972
973/* away from the root */
974inline_speed void
975downheap (ANHE *heap, int N, int k)
976{
977 ANHE he = heap [k];
978
979 for (;;)
980 {
981 int c = k << 1;
982
983 if (c > N + HEAP0 - 1)
984 break;
985
986 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
987 ? 1 : 0;
988
989 if (ANHE_at (he) <= ANHE_at (heap [c]))
990 break;
991
659 heap [k] = heap [j]; 992 heap [k] = heap [c];
660 ((W)heap [k])->active = k + 1; 993 ev_active (ANHE_w (heap [k])) = k;
994
661 k = j; 995 k = c;
662 } 996 }
663 997
664 heap [k] = w; 998 heap [k] = he;
665 ((W)heap [k])->active = k + 1; 999 ev_active (ANHE_w (he)) = k;
666} 1000}
1001#endif
667 1002
668void inline_size 1003/* towards the root */
1004inline_speed void
1005upheap (ANHE *heap, int k)
1006{
1007 ANHE he = heap [k];
1008
1009 for (;;)
1010 {
1011 int p = HPARENT (k);
1012
1013 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1014 break;
1015
1016 heap [k] = heap [p];
1017 ev_active (ANHE_w (heap [k])) = k;
1018 k = p;
1019 }
1020
1021 heap [k] = he;
1022 ev_active (ANHE_w (he)) = k;
1023}
1024
1025/* move an element suitably so it is in a correct place */
1026inline_size void
669adjustheap (WT *heap, int N, int k) 1027adjustheap (ANHE *heap, int N, int k)
670{ 1028{
1029 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
671 upheap (heap, k); 1030 upheap (heap, k);
1031 else
672 downheap (heap, N, k); 1032 downheap (heap, N, k);
1033}
1034
1035/* rebuild the heap: this function is used only once and executed rarely */
1036inline_size void
1037reheap (ANHE *heap, int N)
1038{
1039 int i;
1040
1041 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1042 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1043 for (i = 0; i < N; ++i)
1044 upheap (heap, i + HEAP0);
673} 1045}
674 1046
675/*****************************************************************************/ 1047/*****************************************************************************/
676 1048
1049/* associate signal watchers to a signal signal */
677typedef struct 1050typedef struct
678{ 1051{
679 WL head; 1052 WL head;
680 sig_atomic_t volatile gotsig; 1053 EV_ATOMIC_T gotsig;
681} ANSIG; 1054} ANSIG;
682 1055
683static ANSIG *signals; 1056static ANSIG *signals;
684static int signalmax; 1057static int signalmax;
685 1058
686static int sigpipe [2]; 1059static EV_ATOMIC_T gotsig;
687static sig_atomic_t volatile gotsig;
688static ev_io sigev;
689 1060
690void inline_size 1061/*****************************************************************************/
691signals_init (ANSIG *base, int count)
692{
693 while (count--)
694 {
695 base->head = 0;
696 base->gotsig = 0;
697 1062
698 ++base; 1063/* used to prepare libev internal fd's */
699 } 1064/* this is not fork-safe */
700} 1065inline_speed void
701
702static void
703sighandler (int signum)
704{
705#if _WIN32
706 signal (signum, sighandler);
707#endif
708
709 signals [signum - 1].gotsig = 1;
710
711 if (!gotsig)
712 {
713 int old_errno = errno;
714 gotsig = 1;
715 write (sigpipe [1], &signum, 1);
716 errno = old_errno;
717 }
718}
719
720void noinline
721ev_feed_signal_event (EV_P_ int signum)
722{
723 WL w;
724
725#if EV_MULTIPLICITY
726 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
727#endif
728
729 --signum;
730
731 if (signum < 0 || signum >= signalmax)
732 return;
733
734 signals [signum].gotsig = 0;
735
736 for (w = signals [signum].head; w; w = w->next)
737 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
738}
739
740static void
741sigcb (EV_P_ ev_io *iow, int revents)
742{
743 int signum;
744
745 read (sigpipe [0], &revents, 1);
746 gotsig = 0;
747
748 for (signum = signalmax; signum--; )
749 if (signals [signum].gotsig)
750 ev_feed_signal_event (EV_A_ signum + 1);
751}
752
753void inline_size
754fd_intern (int fd) 1066fd_intern (int fd)
755{ 1067{
756#ifdef _WIN32 1068#ifdef _WIN32
757 int arg = 1; 1069 unsigned long arg = 1;
758 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1070 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
759#else 1071#else
760 fcntl (fd, F_SETFD, FD_CLOEXEC); 1072 fcntl (fd, F_SETFD, FD_CLOEXEC);
761 fcntl (fd, F_SETFL, O_NONBLOCK); 1073 fcntl (fd, F_SETFL, O_NONBLOCK);
762#endif 1074#endif
763} 1075}
764 1076
765static void noinline 1077static void noinline
766siginit (EV_P) 1078evpipe_init (EV_P)
767{ 1079{
1080 if (!ev_is_active (&pipe_w))
1081 {
1082#if EV_USE_EVENTFD
1083 if ((evfd = eventfd (0, 0)) >= 0)
1084 {
1085 evpipe [0] = -1;
1086 fd_intern (evfd);
1087 ev_io_set (&pipe_w, evfd, EV_READ);
1088 }
1089 else
1090#endif
1091 {
1092 while (pipe (evpipe))
1093 ev_syserr ("(libev) error creating signal/async pipe");
1094
768 fd_intern (sigpipe [0]); 1095 fd_intern (evpipe [0]);
769 fd_intern (sigpipe [1]); 1096 fd_intern (evpipe [1]);
1097 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1098 }
770 1099
771 ev_io_set (&sigev, sigpipe [0], EV_READ);
772 ev_io_start (EV_A_ &sigev); 1100 ev_io_start (EV_A_ &pipe_w);
773 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1101 ev_unref (EV_A); /* watcher should not keep loop alive */
1102 }
1103}
1104
1105inline_size void
1106evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1107{
1108 if (!*flag)
1109 {
1110 int old_errno = errno; /* save errno because write might clobber it */
1111
1112 *flag = 1;
1113
1114#if EV_USE_EVENTFD
1115 if (evfd >= 0)
1116 {
1117 uint64_t counter = 1;
1118 write (evfd, &counter, sizeof (uint64_t));
1119 }
1120 else
1121#endif
1122 write (evpipe [1], &old_errno, 1);
1123
1124 errno = old_errno;
1125 }
1126}
1127
1128/* called whenever the libev signal pipe */
1129/* got some events (signal, async) */
1130static void
1131pipecb (EV_P_ ev_io *iow, int revents)
1132{
1133#if EV_USE_EVENTFD
1134 if (evfd >= 0)
1135 {
1136 uint64_t counter;
1137 read (evfd, &counter, sizeof (uint64_t));
1138 }
1139 else
1140#endif
1141 {
1142 char dummy;
1143 read (evpipe [0], &dummy, 1);
1144 }
1145
1146 if (gotsig && ev_is_default_loop (EV_A))
1147 {
1148 int signum;
1149 gotsig = 0;
1150
1151 for (signum = signalmax; signum--; )
1152 if (signals [signum].gotsig)
1153 ev_feed_signal_event (EV_A_ signum + 1);
1154 }
1155
1156#if EV_ASYNC_ENABLE
1157 if (gotasync)
1158 {
1159 int i;
1160 gotasync = 0;
1161
1162 for (i = asynccnt; i--; )
1163 if (asyncs [i]->sent)
1164 {
1165 asyncs [i]->sent = 0;
1166 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1167 }
1168 }
1169#endif
774} 1170}
775 1171
776/*****************************************************************************/ 1172/*****************************************************************************/
777 1173
1174static void
1175ev_sighandler (int signum)
1176{
1177#if EV_MULTIPLICITY
1178 struct ev_loop *loop = &default_loop_struct;
1179#endif
1180
1181#if _WIN32
1182 signal (signum, ev_sighandler);
1183#endif
1184
1185 signals [signum - 1].gotsig = 1;
1186 evpipe_write (EV_A_ &gotsig);
1187}
1188
1189void noinline
1190ev_feed_signal_event (EV_P_ int signum)
1191{
1192 WL w;
1193
1194#if EV_MULTIPLICITY
1195 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1196#endif
1197
1198 --signum;
1199
1200 if (signum < 0 || signum >= signalmax)
1201 return;
1202
1203 signals [signum].gotsig = 0;
1204
1205 for (w = signals [signum].head; w; w = w->next)
1206 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1207}
1208
1209/*****************************************************************************/
1210
778static ev_child *childs [EV_PID_HASHSIZE]; 1211static WL childs [EV_PID_HASHSIZE];
779 1212
780#ifndef _WIN32 1213#ifndef _WIN32
781 1214
782static ev_signal childev; 1215static ev_signal childev;
783 1216
784void inline_speed 1217#ifndef WIFCONTINUED
1218# define WIFCONTINUED(status) 0
1219#endif
1220
1221/* handle a single child status event */
1222inline_speed void
785child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1223child_reap (EV_P_ int chain, int pid, int status)
786{ 1224{
787 ev_child *w; 1225 ev_child *w;
1226 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
788 1227
789 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1228 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1229 {
790 if (w->pid == pid || !w->pid) 1230 if ((w->pid == pid || !w->pid)
1231 && (!traced || (w->flags & 1)))
791 { 1232 {
792 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1233 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
793 w->rpid = pid; 1234 w->rpid = pid;
794 w->rstatus = status; 1235 w->rstatus = status;
795 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1236 ev_feed_event (EV_A_ (W)w, EV_CHILD);
796 } 1237 }
1238 }
797} 1239}
798 1240
799#ifndef WCONTINUED 1241#ifndef WCONTINUED
800# define WCONTINUED 0 1242# define WCONTINUED 0
801#endif 1243#endif
802 1244
1245/* called on sigchld etc., calls waitpid */
803static void 1246static void
804childcb (EV_P_ ev_signal *sw, int revents) 1247childcb (EV_P_ ev_signal *sw, int revents)
805{ 1248{
806 int pid, status; 1249 int pid, status;
807 1250
810 if (!WCONTINUED 1253 if (!WCONTINUED
811 || errno != EINVAL 1254 || errno != EINVAL
812 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1255 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
813 return; 1256 return;
814 1257
815 /* make sure we are called again until all childs have been reaped */ 1258 /* make sure we are called again until all children have been reaped */
816 /* we need to do it this way so that the callback gets called before we continue */ 1259 /* we need to do it this way so that the callback gets called before we continue */
817 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1260 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
818 1261
819 child_reap (EV_A_ sw, pid, pid, status); 1262 child_reap (EV_A_ pid, pid, status);
820 if (EV_PID_HASHSIZE > 1) 1263 if (EV_PID_HASHSIZE > 1)
821 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1264 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
822} 1265}
823 1266
824#endif 1267#endif
825 1268
826/*****************************************************************************/ 1269/*****************************************************************************/
888 /* kqueue is borked on everything but netbsd apparently */ 1331 /* kqueue is borked on everything but netbsd apparently */
889 /* it usually doesn't work correctly on anything but sockets and pipes */ 1332 /* it usually doesn't work correctly on anything but sockets and pipes */
890 flags &= ~EVBACKEND_KQUEUE; 1333 flags &= ~EVBACKEND_KQUEUE;
891#endif 1334#endif
892#ifdef __APPLE__ 1335#ifdef __APPLE__
893 // flags &= ~EVBACKEND_KQUEUE; for documentation 1336 /* only select works correctly on that "unix-certified" platform */
894 flags &= ~EVBACKEND_POLL; 1337 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1338 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
895#endif 1339#endif
896 1340
897 return flags; 1341 return flags;
898} 1342}
899 1343
900unsigned int 1344unsigned int
901ev_embeddable_backends (void) 1345ev_embeddable_backends (void)
902{ 1346{
903 return EVBACKEND_EPOLL 1347 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
904 | EVBACKEND_KQUEUE 1348
905 | EVBACKEND_PORT; 1349 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1350 /* please fix it and tell me how to detect the fix */
1351 flags &= ~EVBACKEND_EPOLL;
1352
1353 return flags;
906} 1354}
907 1355
908unsigned int 1356unsigned int
909ev_backend (EV_P) 1357ev_backend (EV_P)
910{ 1358{
915ev_loop_count (EV_P) 1363ev_loop_count (EV_P)
916{ 1364{
917 return loop_count; 1365 return loop_count;
918} 1366}
919 1367
1368unsigned int
1369ev_loop_depth (EV_P)
1370{
1371 return loop_depth;
1372}
1373
1374void
1375ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1376{
1377 io_blocktime = interval;
1378}
1379
1380void
1381ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1382{
1383 timeout_blocktime = interval;
1384}
1385
1386/* initialise a loop structure, must be zero-initialised */
920static void noinline 1387static void noinline
921loop_init (EV_P_ unsigned int flags) 1388loop_init (EV_P_ unsigned int flags)
922{ 1389{
923 if (!backend) 1390 if (!backend)
924 { 1391 {
1392#if EV_USE_REALTIME
1393 if (!have_realtime)
1394 {
1395 struct timespec ts;
1396
1397 if (!clock_gettime (CLOCK_REALTIME, &ts))
1398 have_realtime = 1;
1399 }
1400#endif
1401
925#if EV_USE_MONOTONIC 1402#if EV_USE_MONOTONIC
1403 if (!have_monotonic)
926 { 1404 {
927 struct timespec ts; 1405 struct timespec ts;
1406
928 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1407 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
929 have_monotonic = 1; 1408 have_monotonic = 1;
930 } 1409 }
931#endif 1410#endif
932 1411
933 ev_rt_now = ev_time (); 1412 ev_rt_now = ev_time ();
934 mn_now = get_clock (); 1413 mn_now = get_clock ();
935 now_floor = mn_now; 1414 now_floor = mn_now;
936 rtmn_diff = ev_rt_now - mn_now; 1415 rtmn_diff = ev_rt_now - mn_now;
1416 invoke_cb = ev_invoke_pending;
1417
1418 io_blocktime = 0.;
1419 timeout_blocktime = 0.;
1420 backend = 0;
1421 backend_fd = -1;
1422 gotasync = 0;
1423#if EV_USE_INOTIFY
1424 fs_fd = -2;
1425#endif
937 1426
938 /* pid check not overridable via env */ 1427 /* pid check not overridable via env */
939#ifndef _WIN32 1428#ifndef _WIN32
940 if (flags & EVFLAG_FORKCHECK) 1429 if (flags & EVFLAG_FORKCHECK)
941 curpid = getpid (); 1430 curpid = getpid ();
944 if (!(flags & EVFLAG_NOENV) 1433 if (!(flags & EVFLAG_NOENV)
945 && !enable_secure () 1434 && !enable_secure ()
946 && getenv ("LIBEV_FLAGS")) 1435 && getenv ("LIBEV_FLAGS"))
947 flags = atoi (getenv ("LIBEV_FLAGS")); 1436 flags = atoi (getenv ("LIBEV_FLAGS"));
948 1437
949 if (!(flags & 0x0000ffffUL)) 1438 if (!(flags & 0x0000ffffU))
950 flags |= ev_recommended_backends (); 1439 flags |= ev_recommended_backends ();
951
952 backend = 0;
953 backend_fd = -1;
954#if EV_USE_INOTIFY
955 fs_fd = -2;
956#endif
957 1440
958#if EV_USE_PORT 1441#if EV_USE_PORT
959 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1442 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
960#endif 1443#endif
961#if EV_USE_KQUEUE 1444#if EV_USE_KQUEUE
969#endif 1452#endif
970#if EV_USE_SELECT 1453#if EV_USE_SELECT
971 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1454 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
972#endif 1455#endif
973 1456
1457 ev_prepare_init (&pending_w, pendingcb);
1458
974 ev_init (&sigev, sigcb); 1459 ev_init (&pipe_w, pipecb);
975 ev_set_priority (&sigev, EV_MAXPRI); 1460 ev_set_priority (&pipe_w, EV_MAXPRI);
976 } 1461 }
977} 1462}
978 1463
1464/* free up a loop structure */
979static void noinline 1465static void noinline
980loop_destroy (EV_P) 1466loop_destroy (EV_P)
981{ 1467{
982 int i; 1468 int i;
1469
1470 if (ev_is_active (&pipe_w))
1471 {
1472 ev_ref (EV_A); /* signal watcher */
1473 ev_io_stop (EV_A_ &pipe_w);
1474
1475#if EV_USE_EVENTFD
1476 if (evfd >= 0)
1477 close (evfd);
1478#endif
1479
1480 if (evpipe [0] >= 0)
1481 {
1482 close (evpipe [0]);
1483 close (evpipe [1]);
1484 }
1485 }
983 1486
984#if EV_USE_INOTIFY 1487#if EV_USE_INOTIFY
985 if (fs_fd >= 0) 1488 if (fs_fd >= 0)
986 close (fs_fd); 1489 close (fs_fd);
987#endif 1490#endif
1011#if EV_IDLE_ENABLE 1514#if EV_IDLE_ENABLE
1012 array_free (idle, [i]); 1515 array_free (idle, [i]);
1013#endif 1516#endif
1014 } 1517 }
1015 1518
1519 ev_free (anfds); anfdmax = 0;
1520
1016 /* have to use the microsoft-never-gets-it-right macro */ 1521 /* have to use the microsoft-never-gets-it-right macro */
1522 array_free (rfeed, EMPTY);
1017 array_free (fdchange, EMPTY); 1523 array_free (fdchange, EMPTY);
1018 array_free (timer, EMPTY); 1524 array_free (timer, EMPTY);
1019#if EV_PERIODIC_ENABLE 1525#if EV_PERIODIC_ENABLE
1020 array_free (periodic, EMPTY); 1526 array_free (periodic, EMPTY);
1021#endif 1527#endif
1528#if EV_FORK_ENABLE
1529 array_free (fork, EMPTY);
1530#endif
1022 array_free (prepare, EMPTY); 1531 array_free (prepare, EMPTY);
1023 array_free (check, EMPTY); 1532 array_free (check, EMPTY);
1533#if EV_ASYNC_ENABLE
1534 array_free (async, EMPTY);
1535#endif
1024 1536
1025 backend = 0; 1537 backend = 0;
1026} 1538}
1027 1539
1540#if EV_USE_INOTIFY
1028void inline_size infy_fork (EV_P); 1541inline_size void infy_fork (EV_P);
1542#endif
1029 1543
1030void inline_size 1544inline_size void
1031loop_fork (EV_P) 1545loop_fork (EV_P)
1032{ 1546{
1033#if EV_USE_PORT 1547#if EV_USE_PORT
1034 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1548 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1035#endif 1549#endif
1041#endif 1555#endif
1042#if EV_USE_INOTIFY 1556#if EV_USE_INOTIFY
1043 infy_fork (EV_A); 1557 infy_fork (EV_A);
1044#endif 1558#endif
1045 1559
1046 if (ev_is_active (&sigev)) 1560 if (ev_is_active (&pipe_w))
1047 { 1561 {
1048 /* default loop */ 1562 /* this "locks" the handlers against writing to the pipe */
1563 /* while we modify the fd vars */
1564 gotsig = 1;
1565#if EV_ASYNC_ENABLE
1566 gotasync = 1;
1567#endif
1049 1568
1050 ev_ref (EV_A); 1569 ev_ref (EV_A);
1051 ev_io_stop (EV_A_ &sigev); 1570 ev_io_stop (EV_A_ &pipe_w);
1571
1572#if EV_USE_EVENTFD
1573 if (evfd >= 0)
1574 close (evfd);
1575#endif
1576
1577 if (evpipe [0] >= 0)
1578 {
1052 close (sigpipe [0]); 1579 close (evpipe [0]);
1053 close (sigpipe [1]); 1580 close (evpipe [1]);
1581 }
1054 1582
1055 while (pipe (sigpipe))
1056 syserr ("(libev) error creating pipe");
1057
1058 siginit (EV_A); 1583 evpipe_init (EV_A);
1584 /* now iterate over everything, in case we missed something */
1585 pipecb (EV_A_ &pipe_w, EV_READ);
1059 } 1586 }
1060 1587
1061 postfork = 0; 1588 postfork = 0;
1062} 1589}
1063 1590
1064#if EV_MULTIPLICITY 1591#if EV_MULTIPLICITY
1592
1065struct ev_loop * 1593struct ev_loop *
1066ev_loop_new (unsigned int flags) 1594ev_loop_new (unsigned int flags)
1067{ 1595{
1068 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1596 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1069 1597
1085} 1613}
1086 1614
1087void 1615void
1088ev_loop_fork (EV_P) 1616ev_loop_fork (EV_P)
1089{ 1617{
1090 postfork = 1; 1618 postfork = 1; /* must be in line with ev_default_fork */
1091} 1619}
1092 1620
1621#if EV_VERIFY
1622static void noinline
1623verify_watcher (EV_P_ W w)
1624{
1625 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1626
1627 if (w->pending)
1628 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1629}
1630
1631static void noinline
1632verify_heap (EV_P_ ANHE *heap, int N)
1633{
1634 int i;
1635
1636 for (i = HEAP0; i < N + HEAP0; ++i)
1637 {
1638 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1639 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1640 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1641
1642 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1643 }
1644}
1645
1646static void noinline
1647array_verify (EV_P_ W *ws, int cnt)
1648{
1649 while (cnt--)
1650 {
1651 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1652 verify_watcher (EV_A_ ws [cnt]);
1653 }
1654}
1655#endif
1656
1657void
1658ev_loop_verify (EV_P)
1659{
1660#if EV_VERIFY
1661 int i;
1662 WL w;
1663
1664 assert (activecnt >= -1);
1665
1666 assert (fdchangemax >= fdchangecnt);
1667 for (i = 0; i < fdchangecnt; ++i)
1668 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1669
1670 assert (anfdmax >= 0);
1671 for (i = 0; i < anfdmax; ++i)
1672 for (w = anfds [i].head; w; w = w->next)
1673 {
1674 verify_watcher (EV_A_ (W)w);
1675 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1676 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1677 }
1678
1679 assert (timermax >= timercnt);
1680 verify_heap (EV_A_ timers, timercnt);
1681
1682#if EV_PERIODIC_ENABLE
1683 assert (periodicmax >= periodiccnt);
1684 verify_heap (EV_A_ periodics, periodiccnt);
1685#endif
1686
1687 for (i = NUMPRI; i--; )
1688 {
1689 assert (pendingmax [i] >= pendingcnt [i]);
1690#if EV_IDLE_ENABLE
1691 assert (idleall >= 0);
1692 assert (idlemax [i] >= idlecnt [i]);
1693 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1694#endif
1695 }
1696
1697#if EV_FORK_ENABLE
1698 assert (forkmax >= forkcnt);
1699 array_verify (EV_A_ (W *)forks, forkcnt);
1700#endif
1701
1702#if EV_ASYNC_ENABLE
1703 assert (asyncmax >= asynccnt);
1704 array_verify (EV_A_ (W *)asyncs, asynccnt);
1705#endif
1706
1707 assert (preparemax >= preparecnt);
1708 array_verify (EV_A_ (W *)prepares, preparecnt);
1709
1710 assert (checkmax >= checkcnt);
1711 array_verify (EV_A_ (W *)checks, checkcnt);
1712
1713# if 0
1714 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1715 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1093#endif 1716# endif
1717#endif
1718}
1719
1720#endif /* multiplicity */
1094 1721
1095#if EV_MULTIPLICITY 1722#if EV_MULTIPLICITY
1096struct ev_loop * 1723struct ev_loop *
1097ev_default_loop_init (unsigned int flags) 1724ev_default_loop_init (unsigned int flags)
1098#else 1725#else
1099int 1726int
1100ev_default_loop (unsigned int flags) 1727ev_default_loop (unsigned int flags)
1101#endif 1728#endif
1102{ 1729{
1103 if (sigpipe [0] == sigpipe [1])
1104 if (pipe (sigpipe))
1105 return 0;
1106
1107 if (!ev_default_loop_ptr) 1730 if (!ev_default_loop_ptr)
1108 { 1731 {
1109#if EV_MULTIPLICITY 1732#if EV_MULTIPLICITY
1110 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1733 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1111#else 1734#else
1114 1737
1115 loop_init (EV_A_ flags); 1738 loop_init (EV_A_ flags);
1116 1739
1117 if (ev_backend (EV_A)) 1740 if (ev_backend (EV_A))
1118 { 1741 {
1119 siginit (EV_A);
1120
1121#ifndef _WIN32 1742#ifndef _WIN32
1122 ev_signal_init (&childev, childcb, SIGCHLD); 1743 ev_signal_init (&childev, childcb, SIGCHLD);
1123 ev_set_priority (&childev, EV_MAXPRI); 1744 ev_set_priority (&childev, EV_MAXPRI);
1124 ev_signal_start (EV_A_ &childev); 1745 ev_signal_start (EV_A_ &childev);
1125 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1746 ev_unref (EV_A); /* child watcher should not keep loop alive */
1137{ 1758{
1138#if EV_MULTIPLICITY 1759#if EV_MULTIPLICITY
1139 struct ev_loop *loop = ev_default_loop_ptr; 1760 struct ev_loop *loop = ev_default_loop_ptr;
1140#endif 1761#endif
1141 1762
1763 ev_default_loop_ptr = 0;
1764
1142#ifndef _WIN32 1765#ifndef _WIN32
1143 ev_ref (EV_A); /* child watcher */ 1766 ev_ref (EV_A); /* child watcher */
1144 ev_signal_stop (EV_A_ &childev); 1767 ev_signal_stop (EV_A_ &childev);
1145#endif 1768#endif
1146 1769
1147 ev_ref (EV_A); /* signal watcher */
1148 ev_io_stop (EV_A_ &sigev);
1149
1150 close (sigpipe [0]); sigpipe [0] = 0;
1151 close (sigpipe [1]); sigpipe [1] = 0;
1152
1153 loop_destroy (EV_A); 1770 loop_destroy (EV_A);
1154} 1771}
1155 1772
1156void 1773void
1157ev_default_fork (void) 1774ev_default_fork (void)
1158{ 1775{
1159#if EV_MULTIPLICITY 1776#if EV_MULTIPLICITY
1160 struct ev_loop *loop = ev_default_loop_ptr; 1777 struct ev_loop *loop = ev_default_loop_ptr;
1161#endif 1778#endif
1162 1779
1163 if (backend) 1780 postfork = 1; /* must be in line with ev_loop_fork */
1164 postfork = 1;
1165} 1781}
1166 1782
1167/*****************************************************************************/ 1783/*****************************************************************************/
1168 1784
1169void 1785void
1170ev_invoke (EV_P_ void *w, int revents) 1786ev_invoke (EV_P_ void *w, int revents)
1171{ 1787{
1172 EV_CB_INVOKE ((W)w, revents); 1788 EV_CB_INVOKE ((W)w, revents);
1173} 1789}
1174 1790
1175void inline_speed 1791void
1176call_pending (EV_P) 1792ev_invoke_pending (EV_P)
1177{ 1793{
1178 int pri; 1794 int pri;
1179 1795
1180 for (pri = NUMPRI; pri--; ) 1796 for (pri = NUMPRI; pri--; )
1181 while (pendingcnt [pri]) 1797 while (pendingcnt [pri])
1182 { 1798 {
1183 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1799 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1184 1800
1185 if (expect_true (p->w))
1186 {
1187 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1801 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1802 /* ^ this is no longer true, as pending_w could be here */
1188 1803
1189 p->w->pending = 0; 1804 p->w->pending = 0;
1190 EV_CB_INVOKE (p->w, p->events); 1805 EV_CB_INVOKE (p->w, p->events);
1191 } 1806 EV_FREQUENT_CHECK;
1192 } 1807 }
1193} 1808}
1194 1809
1195void inline_size
1196timers_reify (EV_P)
1197{
1198 while (timercnt && ((WT)timers [0])->at <= mn_now)
1199 {
1200 ev_timer *w = timers [0];
1201
1202 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1203
1204 /* first reschedule or stop timer */
1205 if (w->repeat)
1206 {
1207 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1208
1209 ((WT)w)->at += w->repeat;
1210 if (((WT)w)->at < mn_now)
1211 ((WT)w)->at = mn_now;
1212
1213 downheap ((WT *)timers, timercnt, 0);
1214 }
1215 else
1216 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1217
1218 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1219 }
1220}
1221
1222#if EV_PERIODIC_ENABLE
1223void inline_size
1224periodics_reify (EV_P)
1225{
1226 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1227 {
1228 ev_periodic *w = periodics [0];
1229
1230 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1231
1232 /* first reschedule or stop timer */
1233 if (w->reschedule_cb)
1234 {
1235 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1236 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1237 downheap ((WT *)periodics, periodiccnt, 0);
1238 }
1239 else if (w->interval)
1240 {
1241 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1242 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1243 downheap ((WT *)periodics, periodiccnt, 0);
1244 }
1245 else
1246 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1247
1248 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1249 }
1250}
1251
1252static void noinline
1253periodics_reschedule (EV_P)
1254{
1255 int i;
1256
1257 /* adjust periodics after time jump */
1258 for (i = 0; i < periodiccnt; ++i)
1259 {
1260 ev_periodic *w = periodics [i];
1261
1262 if (w->reschedule_cb)
1263 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1264 else if (w->interval)
1265 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1266 }
1267
1268 /* now rebuild the heap */
1269 for (i = periodiccnt >> 1; i--; )
1270 downheap ((WT *)periodics, periodiccnt, i);
1271}
1272#endif
1273
1274#if EV_IDLE_ENABLE 1810#if EV_IDLE_ENABLE
1275void inline_size 1811/* make idle watchers pending. this handles the "call-idle */
1812/* only when higher priorities are idle" logic */
1813inline_size void
1276idle_reify (EV_P) 1814idle_reify (EV_P)
1277{ 1815{
1278 if (expect_false (idleall)) 1816 if (expect_false (idleall))
1279 { 1817 {
1280 int pri; 1818 int pri;
1292 } 1830 }
1293 } 1831 }
1294} 1832}
1295#endif 1833#endif
1296 1834
1297int inline_size 1835/* make timers pending */
1298time_update_monotonic (EV_P) 1836inline_size void
1837timers_reify (EV_P)
1299{ 1838{
1839 EV_FREQUENT_CHECK;
1840
1841 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1842 {
1843 do
1844 {
1845 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1846
1847 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1848
1849 /* first reschedule or stop timer */
1850 if (w->repeat)
1851 {
1852 ev_at (w) += w->repeat;
1853 if (ev_at (w) < mn_now)
1854 ev_at (w) = mn_now;
1855
1856 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1857
1858 ANHE_at_cache (timers [HEAP0]);
1859 downheap (timers, timercnt, HEAP0);
1860 }
1861 else
1862 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1863
1864 EV_FREQUENT_CHECK;
1865 feed_reverse (EV_A_ (W)w);
1866 }
1867 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1868
1869 feed_reverse_done (EV_A_ EV_TIMEOUT);
1870 }
1871}
1872
1873#if EV_PERIODIC_ENABLE
1874/* make periodics pending */
1875inline_size void
1876periodics_reify (EV_P)
1877{
1878 EV_FREQUENT_CHECK;
1879
1880 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1881 {
1882 int feed_count = 0;
1883
1884 do
1885 {
1886 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1887
1888 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1889
1890 /* first reschedule or stop timer */
1891 if (w->reschedule_cb)
1892 {
1893 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1894
1895 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1896
1897 ANHE_at_cache (periodics [HEAP0]);
1898 downheap (periodics, periodiccnt, HEAP0);
1899 }
1900 else if (w->interval)
1901 {
1902 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1903 /* if next trigger time is not sufficiently in the future, put it there */
1904 /* this might happen because of floating point inexactness */
1905 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1906 {
1907 ev_at (w) += w->interval;
1908
1909 /* if interval is unreasonably low we might still have a time in the past */
1910 /* so correct this. this will make the periodic very inexact, but the user */
1911 /* has effectively asked to get triggered more often than possible */
1912 if (ev_at (w) < ev_rt_now)
1913 ev_at (w) = ev_rt_now;
1914 }
1915
1916 ANHE_at_cache (periodics [HEAP0]);
1917 downheap (periodics, periodiccnt, HEAP0);
1918 }
1919 else
1920 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1921
1922 EV_FREQUENT_CHECK;
1923 feed_reverse (EV_A_ (W)w);
1924 }
1925 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1926
1927 feed_reverse_done (EV_A_ EV_PERIODIC);
1928 }
1929}
1930
1931/* simply recalculate all periodics */
1932/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1933static void noinline
1934periodics_reschedule (EV_P)
1935{
1936 int i;
1937
1938 /* adjust periodics after time jump */
1939 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1940 {
1941 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1942
1943 if (w->reschedule_cb)
1944 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1945 else if (w->interval)
1946 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1947
1948 ANHE_at_cache (periodics [i]);
1949 }
1950
1951 reheap (periodics, periodiccnt);
1952}
1953#endif
1954
1955/* adjust all timers by a given offset */
1956static void noinline
1957timers_reschedule (EV_P_ ev_tstamp adjust)
1958{
1959 int i;
1960
1961 for (i = 0; i < timercnt; ++i)
1962 {
1963 ANHE *he = timers + i + HEAP0;
1964 ANHE_w (*he)->at += adjust;
1965 ANHE_at_cache (*he);
1966 }
1967}
1968
1969/* fetch new monotonic and realtime times from the kernel */
1970/* also detetc if there was a timejump, and act accordingly */
1971inline_speed void
1972time_update (EV_P_ ev_tstamp max_block)
1973{
1974#if EV_USE_MONOTONIC
1975 if (expect_true (have_monotonic))
1976 {
1977 int i;
1978 ev_tstamp odiff = rtmn_diff;
1979
1300 mn_now = get_clock (); 1980 mn_now = get_clock ();
1301 1981
1982 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1983 /* interpolate in the meantime */
1302 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1984 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1303 { 1985 {
1304 ev_rt_now = rtmn_diff + mn_now; 1986 ev_rt_now = rtmn_diff + mn_now;
1305 return 0; 1987 return;
1306 } 1988 }
1307 else 1989
1308 {
1309 now_floor = mn_now; 1990 now_floor = mn_now;
1310 ev_rt_now = ev_time (); 1991 ev_rt_now = ev_time ();
1311 return 1;
1312 }
1313}
1314 1992
1315void inline_size 1993 /* loop a few times, before making important decisions.
1316time_update (EV_P) 1994 * on the choice of "4": one iteration isn't enough,
1317{ 1995 * in case we get preempted during the calls to
1318 int i; 1996 * ev_time and get_clock. a second call is almost guaranteed
1319 1997 * to succeed in that case, though. and looping a few more times
1320#if EV_USE_MONOTONIC 1998 * doesn't hurt either as we only do this on time-jumps or
1321 if (expect_true (have_monotonic)) 1999 * in the unlikely event of having been preempted here.
1322 { 2000 */
1323 if (time_update_monotonic (EV_A)) 2001 for (i = 4; --i; )
1324 { 2002 {
1325 ev_tstamp odiff = rtmn_diff;
1326
1327 /* loop a few times, before making important decisions.
1328 * on the choice of "4": one iteration isn't enough,
1329 * in case we get preempted during the calls to
1330 * ev_time and get_clock. a second call is almost guaranteed
1331 * to succeed in that case, though. and looping a few more times
1332 * doesn't hurt either as we only do this on time-jumps or
1333 * in the unlikely event of having been preempted here.
1334 */
1335 for (i = 4; --i; )
1336 {
1337 rtmn_diff = ev_rt_now - mn_now; 2003 rtmn_diff = ev_rt_now - mn_now;
1338 2004
1339 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2005 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1340 return; /* all is well */ 2006 return; /* all is well */
1341 2007
1342 ev_rt_now = ev_time (); 2008 ev_rt_now = ev_time ();
1343 mn_now = get_clock (); 2009 mn_now = get_clock ();
1344 now_floor = mn_now; 2010 now_floor = mn_now;
1345 } 2011 }
1346 2012
2013 /* no timer adjustment, as the monotonic clock doesn't jump */
2014 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1347# if EV_PERIODIC_ENABLE 2015# if EV_PERIODIC_ENABLE
1348 periodics_reschedule (EV_A); 2016 periodics_reschedule (EV_A);
1349# endif 2017# endif
1350 /* no timer adjustment, as the monotonic clock doesn't jump */
1351 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1352 }
1353 } 2018 }
1354 else 2019 else
1355#endif 2020#endif
1356 { 2021 {
1357 ev_rt_now = ev_time (); 2022 ev_rt_now = ev_time ();
1358 2023
1359 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2024 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1360 { 2025 {
2026 /* adjust timers. this is easy, as the offset is the same for all of them */
2027 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1361#if EV_PERIODIC_ENABLE 2028#if EV_PERIODIC_ENABLE
1362 periodics_reschedule (EV_A); 2029 periodics_reschedule (EV_A);
1363#endif 2030#endif
1364
1365 /* adjust timers. this is easy, as the offset is the same for all of them */
1366 for (i = 0; i < timercnt; ++i)
1367 ((WT)timers [i])->at += ev_rt_now - mn_now;
1368 } 2031 }
1369 2032
1370 mn_now = ev_rt_now; 2033 mn_now = ev_rt_now;
1371 } 2034 }
1372} 2035}
1373 2036
1374void 2037void
1375ev_ref (EV_P)
1376{
1377 ++activecnt;
1378}
1379
1380void
1381ev_unref (EV_P)
1382{
1383 --activecnt;
1384}
1385
1386static int loop_done;
1387
1388void
1389ev_loop (EV_P_ int flags) 2038ev_loop (EV_P_ int flags)
1390{ 2039{
1391 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2040 ++loop_depth;
1392 ? EVUNLOOP_ONE
1393 : EVUNLOOP_CANCEL;
1394 2041
2042 loop_done = EVUNLOOP_CANCEL;
2043
1395 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2044 invoke_cb (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1396 2045
1397 do 2046 do
1398 { 2047 {
2048#if EV_VERIFY >= 2
2049 ev_loop_verify (EV_A);
2050#endif
2051
1399#ifndef _WIN32 2052#ifndef _WIN32
1400 if (expect_false (curpid)) /* penalise the forking check even more */ 2053 if (expect_false (curpid)) /* penalise the forking check even more */
1401 if (expect_false (getpid () != curpid)) 2054 if (expect_false (getpid () != curpid))
1402 { 2055 {
1403 curpid = getpid (); 2056 curpid = getpid ();
1409 /* we might have forked, so queue fork handlers */ 2062 /* we might have forked, so queue fork handlers */
1410 if (expect_false (postfork)) 2063 if (expect_false (postfork))
1411 if (forkcnt) 2064 if (forkcnt)
1412 { 2065 {
1413 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2066 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1414 call_pending (EV_A); 2067 invoke_cb (EV_A);
1415 } 2068 }
1416#endif 2069#endif
1417 2070
1418 /* queue check watchers (and execute them) */ 2071 /* queue prepare watchers (and execute them) */
1419 if (expect_false (preparecnt)) 2072 if (expect_false (preparecnt))
1420 { 2073 {
1421 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2074 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1422 call_pending (EV_A); 2075 invoke_cb (EV_A);
1423 } 2076 }
1424
1425 if (expect_false (!activecnt))
1426 break;
1427 2077
1428 /* we might have forked, so reify kernel state if necessary */ 2078 /* we might have forked, so reify kernel state if necessary */
1429 if (expect_false (postfork)) 2079 if (expect_false (postfork))
1430 loop_fork (EV_A); 2080 loop_fork (EV_A);
1431 2081
1432 /* update fd-related kernel structures */ 2082 /* update fd-related kernel structures */
1433 fd_reify (EV_A); 2083 fd_reify (EV_A);
1434 2084
1435 /* calculate blocking time */ 2085 /* calculate blocking time */
1436 { 2086 {
1437 ev_tstamp block; 2087 ev_tstamp waittime = 0.;
2088 ev_tstamp sleeptime = 0.;
1438 2089
1439 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2090 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1440 block = 0.; /* do not block at all */
1441 else
1442 { 2091 {
2092 /* remember old timestamp for io_blocktime calculation */
2093 ev_tstamp prev_mn_now = mn_now;
2094
1443 /* update time to cancel out callback processing overhead */ 2095 /* update time to cancel out callback processing overhead */
1444#if EV_USE_MONOTONIC
1445 if (expect_true (have_monotonic))
1446 time_update_monotonic (EV_A); 2096 time_update (EV_A_ 1e100);
1447 else
1448#endif
1449 {
1450 ev_rt_now = ev_time ();
1451 mn_now = ev_rt_now;
1452 }
1453 2097
1454 block = MAX_BLOCKTIME; 2098 waittime = MAX_BLOCKTIME;
1455 2099
1456 if (timercnt) 2100 if (timercnt)
1457 { 2101 {
1458 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2102 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1459 if (block > to) block = to; 2103 if (waittime > to) waittime = to;
1460 } 2104 }
1461 2105
1462#if EV_PERIODIC_ENABLE 2106#if EV_PERIODIC_ENABLE
1463 if (periodiccnt) 2107 if (periodiccnt)
1464 { 2108 {
1465 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2109 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1466 if (block > to) block = to; 2110 if (waittime > to) waittime = to;
1467 } 2111 }
1468#endif 2112#endif
1469 2113
2114 /* don't let timeouts decrease the waittime below timeout_blocktime */
2115 if (expect_false (waittime < timeout_blocktime))
2116 waittime = timeout_blocktime;
2117
2118 /* extra check because io_blocktime is commonly 0 */
1470 if (expect_false (block < 0.)) block = 0.; 2119 if (expect_false (io_blocktime))
2120 {
2121 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2122
2123 if (sleeptime > waittime - backend_fudge)
2124 sleeptime = waittime - backend_fudge;
2125
2126 if (expect_true (sleeptime > 0.))
2127 {
2128 ev_sleep (sleeptime);
2129 waittime -= sleeptime;
2130 }
2131 }
1471 } 2132 }
1472 2133
1473 ++loop_count; 2134 ++loop_count;
1474 backend_poll (EV_A_ block); 2135 backend_poll (EV_A_ waittime);
2136
2137 /* update ev_rt_now, do magic */
2138 time_update (EV_A_ waittime + sleeptime);
1475 } 2139 }
1476
1477 /* update ev_rt_now, do magic */
1478 time_update (EV_A);
1479 2140
1480 /* queue pending timers and reschedule them */ 2141 /* queue pending timers and reschedule them */
1481 timers_reify (EV_A); /* relative timers called last */ 2142 timers_reify (EV_A); /* relative timers called last */
1482#if EV_PERIODIC_ENABLE 2143#if EV_PERIODIC_ENABLE
1483 periodics_reify (EV_A); /* absolute timers called first */ 2144 periodics_reify (EV_A); /* absolute timers called first */
1490 2151
1491 /* queue check watchers, to be executed first */ 2152 /* queue check watchers, to be executed first */
1492 if (expect_false (checkcnt)) 2153 if (expect_false (checkcnt))
1493 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2154 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1494 2155
1495 call_pending (EV_A); 2156 invoke_cb (EV_A);
1496
1497 } 2157 }
1498 while (expect_true (activecnt && !loop_done)); 2158 while (expect_true (
2159 activecnt
2160 && !loop_done
2161 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2162 ));
1499 2163
1500 if (loop_done == EVUNLOOP_ONE) 2164 if (loop_done == EVUNLOOP_ONE)
1501 loop_done = EVUNLOOP_CANCEL; 2165 loop_done = EVUNLOOP_CANCEL;
2166
2167 --loop_depth;
1502} 2168}
1503 2169
1504void 2170void
1505ev_unloop (EV_P_ int how) 2171ev_unloop (EV_P_ int how)
1506{ 2172{
1507 loop_done = how; 2173 loop_done = how;
1508} 2174}
1509 2175
2176void
2177ev_ref (EV_P)
2178{
2179 ++activecnt;
2180}
2181
2182void
2183ev_unref (EV_P)
2184{
2185 --activecnt;
2186}
2187
2188void
2189ev_now_update (EV_P)
2190{
2191 time_update (EV_A_ 1e100);
2192}
2193
2194void
2195ev_suspend (EV_P)
2196{
2197 ev_now_update (EV_A);
2198}
2199
2200void
2201ev_resume (EV_P)
2202{
2203 ev_tstamp mn_prev = mn_now;
2204
2205 ev_now_update (EV_A);
2206 timers_reschedule (EV_A_ mn_now - mn_prev);
2207#if EV_PERIODIC_ENABLE
2208 /* TODO: really do this? */
2209 periodics_reschedule (EV_A);
2210#endif
2211}
2212
1510/*****************************************************************************/ 2213/*****************************************************************************/
2214/* singly-linked list management, used when the expected list length is short */
1511 2215
1512void inline_size 2216inline_size void
1513wlist_add (WL *head, WL elem) 2217wlist_add (WL *head, WL elem)
1514{ 2218{
1515 elem->next = *head; 2219 elem->next = *head;
1516 *head = elem; 2220 *head = elem;
1517} 2221}
1518 2222
1519void inline_size 2223inline_size void
1520wlist_del (WL *head, WL elem) 2224wlist_del (WL *head, WL elem)
1521{ 2225{
1522 while (*head) 2226 while (*head)
1523 { 2227 {
1524 if (*head == elem) 2228 if (*head == elem)
1529 2233
1530 head = &(*head)->next; 2234 head = &(*head)->next;
1531 } 2235 }
1532} 2236}
1533 2237
1534void inline_speed 2238/* internal, faster, version of ev_clear_pending */
2239inline_speed void
1535clear_pending (EV_P_ W w) 2240clear_pending (EV_P_ W w)
1536{ 2241{
1537 if (w->pending) 2242 if (w->pending)
1538 { 2243 {
1539 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2244 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1540 w->pending = 0; 2245 w->pending = 0;
1541 } 2246 }
1542} 2247}
1543 2248
1544int 2249int
1545ev_clear_pending (EV_P_ void *w) 2250ev_clear_pending (EV_P_ void *w)
1546{ 2251{
1547 W w_ = (W)w; 2252 W w_ = (W)w;
1548 int pending = w_->pending; 2253 int pending = w_->pending;
1549 2254
1550 if (!pending) 2255 if (expect_true (pending))
2256 {
2257 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2258 p->w = (W)&pending_w;
2259 w_->pending = 0;
2260 return p->events;
2261 }
2262 else
1551 return 0; 2263 return 0;
1552
1553 w_->pending = 0;
1554 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1555 p->w = 0;
1556
1557 return p->events;
1558} 2264}
1559 2265
1560void inline_size 2266inline_size void
1561pri_adjust (EV_P_ W w) 2267pri_adjust (EV_P_ W w)
1562{ 2268{
1563 int pri = w->priority; 2269 int pri = ev_priority (w);
1564 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2270 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1565 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2271 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1566 w->priority = pri; 2272 ev_set_priority (w, pri);
1567} 2273}
1568 2274
1569void inline_speed 2275inline_speed void
1570ev_start (EV_P_ W w, int active) 2276ev_start (EV_P_ W w, int active)
1571{ 2277{
1572 pri_adjust (EV_A_ w); 2278 pri_adjust (EV_A_ w);
1573 w->active = active; 2279 w->active = active;
1574 ev_ref (EV_A); 2280 ev_ref (EV_A);
1575} 2281}
1576 2282
1577void inline_size 2283inline_size void
1578ev_stop (EV_P_ W w) 2284ev_stop (EV_P_ W w)
1579{ 2285{
1580 ev_unref (EV_A); 2286 ev_unref (EV_A);
1581 w->active = 0; 2287 w->active = 0;
1582} 2288}
1583 2289
1584/*****************************************************************************/ 2290/*****************************************************************************/
1585 2291
1586void 2292void noinline
1587ev_io_start (EV_P_ ev_io *w) 2293ev_io_start (EV_P_ ev_io *w)
1588{ 2294{
1589 int fd = w->fd; 2295 int fd = w->fd;
1590 2296
1591 if (expect_false (ev_is_active (w))) 2297 if (expect_false (ev_is_active (w)))
1592 return; 2298 return;
1593 2299
1594 assert (("ev_io_start called with negative fd", fd >= 0)); 2300 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2301 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2302
2303 EV_FREQUENT_CHECK;
1595 2304
1596 ev_start (EV_A_ (W)w, 1); 2305 ev_start (EV_A_ (W)w, 1);
1597 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2306 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1598 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2307 wlist_add (&anfds[fd].head, (WL)w);
1599 2308
1600 fd_change (EV_A_ fd); 2309 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1601} 2310 w->events &= ~EV__IOFDSET;
1602 2311
1603void 2312 EV_FREQUENT_CHECK;
2313}
2314
2315void noinline
1604ev_io_stop (EV_P_ ev_io *w) 2316ev_io_stop (EV_P_ ev_io *w)
1605{ 2317{
1606 clear_pending (EV_A_ (W)w); 2318 clear_pending (EV_A_ (W)w);
1607 if (expect_false (!ev_is_active (w))) 2319 if (expect_false (!ev_is_active (w)))
1608 return; 2320 return;
1609 2321
1610 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2322 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1611 2323
2324 EV_FREQUENT_CHECK;
2325
1612 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2326 wlist_del (&anfds[w->fd].head, (WL)w);
1613 ev_stop (EV_A_ (W)w); 2327 ev_stop (EV_A_ (W)w);
1614 2328
1615 fd_change (EV_A_ w->fd); 2329 fd_change (EV_A_ w->fd, 1);
1616}
1617 2330
1618void 2331 EV_FREQUENT_CHECK;
2332}
2333
2334void noinline
1619ev_timer_start (EV_P_ ev_timer *w) 2335ev_timer_start (EV_P_ ev_timer *w)
1620{ 2336{
1621 if (expect_false (ev_is_active (w))) 2337 if (expect_false (ev_is_active (w)))
1622 return; 2338 return;
1623 2339
1624 ((WT)w)->at += mn_now; 2340 ev_at (w) += mn_now;
1625 2341
1626 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2342 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1627 2343
2344 EV_FREQUENT_CHECK;
2345
2346 ++timercnt;
1628 ev_start (EV_A_ (W)w, ++timercnt); 2347 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1629 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2348 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1630 timers [timercnt - 1] = w; 2349 ANHE_w (timers [ev_active (w)]) = (WT)w;
1631 upheap ((WT *)timers, timercnt - 1); 2350 ANHE_at_cache (timers [ev_active (w)]);
2351 upheap (timers, ev_active (w));
1632 2352
2353 EV_FREQUENT_CHECK;
2354
1633 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2355 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1634} 2356}
1635 2357
1636void 2358void noinline
1637ev_timer_stop (EV_P_ ev_timer *w) 2359ev_timer_stop (EV_P_ ev_timer *w)
1638{ 2360{
1639 clear_pending (EV_A_ (W)w); 2361 clear_pending (EV_A_ (W)w);
1640 if (expect_false (!ev_is_active (w))) 2362 if (expect_false (!ev_is_active (w)))
1641 return; 2363 return;
1642 2364
1643 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2365 EV_FREQUENT_CHECK;
1644 2366
1645 { 2367 {
1646 int active = ((W)w)->active; 2368 int active = ev_active (w);
1647 2369
2370 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2371
2372 --timercnt;
2373
1648 if (expect_true (--active < --timercnt)) 2374 if (expect_true (active < timercnt + HEAP0))
1649 { 2375 {
1650 timers [active] = timers [timercnt]; 2376 timers [active] = timers [timercnt + HEAP0];
1651 adjustheap ((WT *)timers, timercnt, active); 2377 adjustheap (timers, timercnt, active);
1652 } 2378 }
1653 } 2379 }
1654 2380
1655 ((WT)w)->at -= mn_now; 2381 EV_FREQUENT_CHECK;
2382
2383 ev_at (w) -= mn_now;
1656 2384
1657 ev_stop (EV_A_ (W)w); 2385 ev_stop (EV_A_ (W)w);
1658} 2386}
1659 2387
1660void 2388void noinline
1661ev_timer_again (EV_P_ ev_timer *w) 2389ev_timer_again (EV_P_ ev_timer *w)
1662{ 2390{
2391 EV_FREQUENT_CHECK;
2392
1663 if (ev_is_active (w)) 2393 if (ev_is_active (w))
1664 { 2394 {
1665 if (w->repeat) 2395 if (w->repeat)
1666 { 2396 {
1667 ((WT)w)->at = mn_now + w->repeat; 2397 ev_at (w) = mn_now + w->repeat;
2398 ANHE_at_cache (timers [ev_active (w)]);
1668 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2399 adjustheap (timers, timercnt, ev_active (w));
1669 } 2400 }
1670 else 2401 else
1671 ev_timer_stop (EV_A_ w); 2402 ev_timer_stop (EV_A_ w);
1672 } 2403 }
1673 else if (w->repeat) 2404 else if (w->repeat)
1674 { 2405 {
1675 w->at = w->repeat; 2406 ev_at (w) = w->repeat;
1676 ev_timer_start (EV_A_ w); 2407 ev_timer_start (EV_A_ w);
1677 } 2408 }
2409
2410 EV_FREQUENT_CHECK;
1678} 2411}
1679 2412
1680#if EV_PERIODIC_ENABLE 2413#if EV_PERIODIC_ENABLE
1681void 2414void noinline
1682ev_periodic_start (EV_P_ ev_periodic *w) 2415ev_periodic_start (EV_P_ ev_periodic *w)
1683{ 2416{
1684 if (expect_false (ev_is_active (w))) 2417 if (expect_false (ev_is_active (w)))
1685 return; 2418 return;
1686 2419
1687 if (w->reschedule_cb) 2420 if (w->reschedule_cb)
1688 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2421 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1689 else if (w->interval) 2422 else if (w->interval)
1690 { 2423 {
1691 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2424 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1692 /* this formula differs from the one in periodic_reify because we do not always round up */ 2425 /* this formula differs from the one in periodic_reify because we do not always round up */
1693 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2426 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1694 } 2427 }
2428 else
2429 ev_at (w) = w->offset;
1695 2430
2431 EV_FREQUENT_CHECK;
2432
2433 ++periodiccnt;
1696 ev_start (EV_A_ (W)w, ++periodiccnt); 2434 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1697 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2435 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1698 periodics [periodiccnt - 1] = w; 2436 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1699 upheap ((WT *)periodics, periodiccnt - 1); 2437 ANHE_at_cache (periodics [ev_active (w)]);
2438 upheap (periodics, ev_active (w));
1700 2439
2440 EV_FREQUENT_CHECK;
2441
1701 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2442 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1702} 2443}
1703 2444
1704void 2445void noinline
1705ev_periodic_stop (EV_P_ ev_periodic *w) 2446ev_periodic_stop (EV_P_ ev_periodic *w)
1706{ 2447{
1707 clear_pending (EV_A_ (W)w); 2448 clear_pending (EV_A_ (W)w);
1708 if (expect_false (!ev_is_active (w))) 2449 if (expect_false (!ev_is_active (w)))
1709 return; 2450 return;
1710 2451
1711 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2452 EV_FREQUENT_CHECK;
1712 2453
1713 { 2454 {
1714 int active = ((W)w)->active; 2455 int active = ev_active (w);
1715 2456
2457 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2458
2459 --periodiccnt;
2460
1716 if (expect_true (--active < --periodiccnt)) 2461 if (expect_true (active < periodiccnt + HEAP0))
1717 { 2462 {
1718 periodics [active] = periodics [periodiccnt]; 2463 periodics [active] = periodics [periodiccnt + HEAP0];
1719 adjustheap ((WT *)periodics, periodiccnt, active); 2464 adjustheap (periodics, periodiccnt, active);
1720 } 2465 }
1721 } 2466 }
1722 2467
2468 EV_FREQUENT_CHECK;
2469
1723 ev_stop (EV_A_ (W)w); 2470 ev_stop (EV_A_ (W)w);
1724} 2471}
1725 2472
1726void 2473void noinline
1727ev_periodic_again (EV_P_ ev_periodic *w) 2474ev_periodic_again (EV_P_ ev_periodic *w)
1728{ 2475{
1729 /* TODO: use adjustheap and recalculation */ 2476 /* TODO: use adjustheap and recalculation */
1730 ev_periodic_stop (EV_A_ w); 2477 ev_periodic_stop (EV_A_ w);
1731 ev_periodic_start (EV_A_ w); 2478 ev_periodic_start (EV_A_ w);
1734 2481
1735#ifndef SA_RESTART 2482#ifndef SA_RESTART
1736# define SA_RESTART 0 2483# define SA_RESTART 0
1737#endif 2484#endif
1738 2485
1739void 2486void noinline
1740ev_signal_start (EV_P_ ev_signal *w) 2487ev_signal_start (EV_P_ ev_signal *w)
1741{ 2488{
1742#if EV_MULTIPLICITY 2489#if EV_MULTIPLICITY
1743 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2490 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1744#endif 2491#endif
1745 if (expect_false (ev_is_active (w))) 2492 if (expect_false (ev_is_active (w)))
1746 return; 2493 return;
1747 2494
1748 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2495 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2496
2497 evpipe_init (EV_A);
2498
2499 EV_FREQUENT_CHECK;
2500
2501 {
2502#ifndef _WIN32
2503 sigset_t full, prev;
2504 sigfillset (&full);
2505 sigprocmask (SIG_SETMASK, &full, &prev);
2506#endif
2507
2508 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2509
2510#ifndef _WIN32
2511 sigprocmask (SIG_SETMASK, &prev, 0);
2512#endif
2513 }
1749 2514
1750 ev_start (EV_A_ (W)w, 1); 2515 ev_start (EV_A_ (W)w, 1);
1751 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1752 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2516 wlist_add (&signals [w->signum - 1].head, (WL)w);
1753 2517
1754 if (!((WL)w)->next) 2518 if (!((WL)w)->next)
1755 { 2519 {
1756#if _WIN32 2520#if _WIN32
1757 signal (w->signum, sighandler); 2521 signal (w->signum, ev_sighandler);
1758#else 2522#else
1759 struct sigaction sa; 2523 struct sigaction sa;
1760 sa.sa_handler = sighandler; 2524 sa.sa_handler = ev_sighandler;
1761 sigfillset (&sa.sa_mask); 2525 sigfillset (&sa.sa_mask);
1762 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2526 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1763 sigaction (w->signum, &sa, 0); 2527 sigaction (w->signum, &sa, 0);
1764#endif 2528#endif
1765 } 2529 }
1766}
1767 2530
1768void 2531 EV_FREQUENT_CHECK;
2532}
2533
2534void noinline
1769ev_signal_stop (EV_P_ ev_signal *w) 2535ev_signal_stop (EV_P_ ev_signal *w)
1770{ 2536{
1771 clear_pending (EV_A_ (W)w); 2537 clear_pending (EV_A_ (W)w);
1772 if (expect_false (!ev_is_active (w))) 2538 if (expect_false (!ev_is_active (w)))
1773 return; 2539 return;
1774 2540
2541 EV_FREQUENT_CHECK;
2542
1775 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2543 wlist_del (&signals [w->signum - 1].head, (WL)w);
1776 ev_stop (EV_A_ (W)w); 2544 ev_stop (EV_A_ (W)w);
1777 2545
1778 if (!signals [w->signum - 1].head) 2546 if (!signals [w->signum - 1].head)
1779 signal (w->signum, SIG_DFL); 2547 signal (w->signum, SIG_DFL);
2548
2549 EV_FREQUENT_CHECK;
1780} 2550}
1781 2551
1782void 2552void
1783ev_child_start (EV_P_ ev_child *w) 2553ev_child_start (EV_P_ ev_child *w)
1784{ 2554{
1785#if EV_MULTIPLICITY 2555#if EV_MULTIPLICITY
1786 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2556 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1787#endif 2557#endif
1788 if (expect_false (ev_is_active (w))) 2558 if (expect_false (ev_is_active (w)))
1789 return; 2559 return;
1790 2560
2561 EV_FREQUENT_CHECK;
2562
1791 ev_start (EV_A_ (W)w, 1); 2563 ev_start (EV_A_ (W)w, 1);
1792 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2564 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2565
2566 EV_FREQUENT_CHECK;
1793} 2567}
1794 2568
1795void 2569void
1796ev_child_stop (EV_P_ ev_child *w) 2570ev_child_stop (EV_P_ ev_child *w)
1797{ 2571{
1798 clear_pending (EV_A_ (W)w); 2572 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 2573 if (expect_false (!ev_is_active (w)))
1800 return; 2574 return;
1801 2575
2576 EV_FREQUENT_CHECK;
2577
1802 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2578 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1803 ev_stop (EV_A_ (W)w); 2579 ev_stop (EV_A_ (W)w);
2580
2581 EV_FREQUENT_CHECK;
1804} 2582}
1805 2583
1806#if EV_STAT_ENABLE 2584#if EV_STAT_ENABLE
1807 2585
1808# ifdef _WIN32 2586# ifdef _WIN32
1809# undef lstat 2587# undef lstat
1810# define lstat(a,b) _stati64 (a,b) 2588# define lstat(a,b) _stati64 (a,b)
1811# endif 2589# endif
1812 2590
1813#define DEF_STAT_INTERVAL 5.0074891 2591#define DEF_STAT_INTERVAL 5.0074891
2592#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1814#define MIN_STAT_INTERVAL 0.1074891 2593#define MIN_STAT_INTERVAL 0.1074891
1815 2594
1816static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2595static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1817 2596
1818#if EV_USE_INOTIFY 2597#if EV_USE_INOTIFY
1819# define EV_INOTIFY_BUFSIZE 8192 2598# define EV_INOTIFY_BUFSIZE 8192
1823{ 2602{
1824 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2603 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1825 2604
1826 if (w->wd < 0) 2605 if (w->wd < 0)
1827 { 2606 {
2607 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1828 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2608 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1829 2609
1830 /* monitor some parent directory for speedup hints */ 2610 /* monitor some parent directory for speedup hints */
2611 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2612 /* but an efficiency issue only */
1831 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2613 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1832 { 2614 {
1833 char path [4096]; 2615 char path [4096];
1834 strcpy (path, w->path); 2616 strcpy (path, w->path);
1835 2617
1838 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2620 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1839 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2621 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1840 2622
1841 char *pend = strrchr (path, '/'); 2623 char *pend = strrchr (path, '/');
1842 2624
1843 if (!pend) 2625 if (!pend || pend == path)
1844 break; /* whoops, no '/', complain to your admin */ 2626 break;
1845 2627
1846 *pend = 0; 2628 *pend = 0;
1847 w->wd = inotify_add_watch (fs_fd, path, mask); 2629 w->wd = inotify_add_watch (fs_fd, path, mask);
1848 } 2630 }
1849 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2631 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1850 } 2632 }
1851 } 2633 }
1852 else
1853 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1854 2634
1855 if (w->wd >= 0) 2635 if (w->wd >= 0)
2636 {
1856 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2637 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2638
2639 /* now local changes will be tracked by inotify, but remote changes won't */
2640 /* unless the filesystem it known to be local, we therefore still poll */
2641 /* also do poll on <2.6.25, but with normal frequency */
2642 struct statfs sfs;
2643
2644 if (fs_2625 && !statfs (w->path, &sfs))
2645 if (sfs.f_type == 0x1373 /* devfs */
2646 || sfs.f_type == 0xEF53 /* ext2/3 */
2647 || sfs.f_type == 0x3153464a /* jfs */
2648 || sfs.f_type == 0x52654973 /* reiser3 */
2649 || sfs.f_type == 0x01021994 /* tempfs */
2650 || sfs.f_type == 0x58465342 /* xfs */)
2651 return;
2652
2653 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2654 ev_timer_again (EV_A_ &w->timer);
2655 }
1857} 2656}
1858 2657
1859static void noinline 2658static void noinline
1860infy_del (EV_P_ ev_stat *w) 2659infy_del (EV_P_ ev_stat *w)
1861{ 2660{
1875 2674
1876static void noinline 2675static void noinline
1877infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2676infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1878{ 2677{
1879 if (slot < 0) 2678 if (slot < 0)
1880 /* overflow, need to check for all hahs slots */ 2679 /* overflow, need to check for all hash slots */
1881 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2680 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1882 infy_wd (EV_A_ slot, wd, ev); 2681 infy_wd (EV_A_ slot, wd, ev);
1883 else 2682 else
1884 { 2683 {
1885 WL w_; 2684 WL w_;
1891 2690
1892 if (w->wd == wd || wd == -1) 2691 if (w->wd == wd || wd == -1)
1893 { 2692 {
1894 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2693 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1895 { 2694 {
2695 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1896 w->wd = -1; 2696 w->wd = -1;
1897 infy_add (EV_A_ w); /* re-add, no matter what */ 2697 infy_add (EV_A_ w); /* re-add, no matter what */
1898 } 2698 }
1899 2699
1900 stat_timer_cb (EV_A_ &w->timer, 0); 2700 stat_timer_cb (EV_A_ &w->timer, 0);
1913 2713
1914 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2714 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1915 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2715 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1916} 2716}
1917 2717
1918void inline_size 2718inline_size void
2719check_2625 (EV_P)
2720{
2721 /* kernels < 2.6.25 are borked
2722 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2723 */
2724 struct utsname buf;
2725 int major, minor, micro;
2726
2727 if (uname (&buf))
2728 return;
2729
2730 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2731 return;
2732
2733 if (major < 2
2734 || (major == 2 && minor < 6)
2735 || (major == 2 && minor == 6 && micro < 25))
2736 return;
2737
2738 fs_2625 = 1;
2739}
2740
2741inline_size void
1919infy_init (EV_P) 2742infy_init (EV_P)
1920{ 2743{
1921 if (fs_fd != -2) 2744 if (fs_fd != -2)
1922 return; 2745 return;
2746
2747 fs_fd = -1;
2748
2749 check_2625 (EV_A);
1923 2750
1924 fs_fd = inotify_init (); 2751 fs_fd = inotify_init ();
1925 2752
1926 if (fs_fd >= 0) 2753 if (fs_fd >= 0)
1927 { 2754 {
1929 ev_set_priority (&fs_w, EV_MAXPRI); 2756 ev_set_priority (&fs_w, EV_MAXPRI);
1930 ev_io_start (EV_A_ &fs_w); 2757 ev_io_start (EV_A_ &fs_w);
1931 } 2758 }
1932} 2759}
1933 2760
1934void inline_size 2761inline_size void
1935infy_fork (EV_P) 2762infy_fork (EV_P)
1936{ 2763{
1937 int slot; 2764 int slot;
1938 2765
1939 if (fs_fd < 0) 2766 if (fs_fd < 0)
1955 w->wd = -1; 2782 w->wd = -1;
1956 2783
1957 if (fs_fd >= 0) 2784 if (fs_fd >= 0)
1958 infy_add (EV_A_ w); /* re-add, no matter what */ 2785 infy_add (EV_A_ w); /* re-add, no matter what */
1959 else 2786 else
1960 ev_timer_start (EV_A_ &w->timer); 2787 ev_timer_again (EV_A_ &w->timer);
1961 } 2788 }
1962
1963 } 2789 }
1964} 2790}
1965 2791
2792#endif
2793
2794#ifdef _WIN32
2795# define EV_LSTAT(p,b) _stati64 (p, b)
2796#else
2797# define EV_LSTAT(p,b) lstat (p, b)
1966#endif 2798#endif
1967 2799
1968void 2800void
1969ev_stat_stat (EV_P_ ev_stat *w) 2801ev_stat_stat (EV_P_ ev_stat *w)
1970{ 2802{
1997 || w->prev.st_atime != w->attr.st_atime 2829 || w->prev.st_atime != w->attr.st_atime
1998 || w->prev.st_mtime != w->attr.st_mtime 2830 || w->prev.st_mtime != w->attr.st_mtime
1999 || w->prev.st_ctime != w->attr.st_ctime 2831 || w->prev.st_ctime != w->attr.st_ctime
2000 ) { 2832 ) {
2001 #if EV_USE_INOTIFY 2833 #if EV_USE_INOTIFY
2834 if (fs_fd >= 0)
2835 {
2002 infy_del (EV_A_ w); 2836 infy_del (EV_A_ w);
2003 infy_add (EV_A_ w); 2837 infy_add (EV_A_ w);
2004 ev_stat_stat (EV_A_ w); /* avoid race... */ 2838 ev_stat_stat (EV_A_ w); /* avoid race... */
2839 }
2005 #endif 2840 #endif
2006 2841
2007 ev_feed_event (EV_A_ w, EV_STAT); 2842 ev_feed_event (EV_A_ w, EV_STAT);
2008 } 2843 }
2009} 2844}
2012ev_stat_start (EV_P_ ev_stat *w) 2847ev_stat_start (EV_P_ ev_stat *w)
2013{ 2848{
2014 if (expect_false (ev_is_active (w))) 2849 if (expect_false (ev_is_active (w)))
2015 return; 2850 return;
2016 2851
2017 /* since we use memcmp, we need to clear any padding data etc. */
2018 memset (&w->prev, 0, sizeof (ev_statdata));
2019 memset (&w->attr, 0, sizeof (ev_statdata));
2020
2021 ev_stat_stat (EV_A_ w); 2852 ev_stat_stat (EV_A_ w);
2022 2853
2854 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2023 if (w->interval < MIN_STAT_INTERVAL) 2855 w->interval = MIN_STAT_INTERVAL;
2024 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2025 2856
2026 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2857 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2027 ev_set_priority (&w->timer, ev_priority (w)); 2858 ev_set_priority (&w->timer, ev_priority (w));
2028 2859
2029#if EV_USE_INOTIFY 2860#if EV_USE_INOTIFY
2030 infy_init (EV_A); 2861 infy_init (EV_A);
2031 2862
2032 if (fs_fd >= 0) 2863 if (fs_fd >= 0)
2033 infy_add (EV_A_ w); 2864 infy_add (EV_A_ w);
2034 else 2865 else
2035#endif 2866#endif
2036 ev_timer_start (EV_A_ &w->timer); 2867 ev_timer_again (EV_A_ &w->timer);
2037 2868
2038 ev_start (EV_A_ (W)w, 1); 2869 ev_start (EV_A_ (W)w, 1);
2870
2871 EV_FREQUENT_CHECK;
2039} 2872}
2040 2873
2041void 2874void
2042ev_stat_stop (EV_P_ ev_stat *w) 2875ev_stat_stop (EV_P_ ev_stat *w)
2043{ 2876{
2044 clear_pending (EV_A_ (W)w); 2877 clear_pending (EV_A_ (W)w);
2045 if (expect_false (!ev_is_active (w))) 2878 if (expect_false (!ev_is_active (w)))
2046 return; 2879 return;
2047 2880
2881 EV_FREQUENT_CHECK;
2882
2048#if EV_USE_INOTIFY 2883#if EV_USE_INOTIFY
2049 infy_del (EV_A_ w); 2884 infy_del (EV_A_ w);
2050#endif 2885#endif
2051 ev_timer_stop (EV_A_ &w->timer); 2886 ev_timer_stop (EV_A_ &w->timer);
2052 2887
2053 ev_stop (EV_A_ (W)w); 2888 ev_stop (EV_A_ (W)w);
2889
2890 EV_FREQUENT_CHECK;
2054} 2891}
2055#endif 2892#endif
2056 2893
2057#if EV_IDLE_ENABLE 2894#if EV_IDLE_ENABLE
2058void 2895void
2060{ 2897{
2061 if (expect_false (ev_is_active (w))) 2898 if (expect_false (ev_is_active (w)))
2062 return; 2899 return;
2063 2900
2064 pri_adjust (EV_A_ (W)w); 2901 pri_adjust (EV_A_ (W)w);
2902
2903 EV_FREQUENT_CHECK;
2065 2904
2066 { 2905 {
2067 int active = ++idlecnt [ABSPRI (w)]; 2906 int active = ++idlecnt [ABSPRI (w)];
2068 2907
2069 ++idleall; 2908 ++idleall;
2070 ev_start (EV_A_ (W)w, active); 2909 ev_start (EV_A_ (W)w, active);
2071 2910
2072 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2911 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2073 idles [ABSPRI (w)][active - 1] = w; 2912 idles [ABSPRI (w)][active - 1] = w;
2074 } 2913 }
2914
2915 EV_FREQUENT_CHECK;
2075} 2916}
2076 2917
2077void 2918void
2078ev_idle_stop (EV_P_ ev_idle *w) 2919ev_idle_stop (EV_P_ ev_idle *w)
2079{ 2920{
2080 clear_pending (EV_A_ (W)w); 2921 clear_pending (EV_A_ (W)w);
2081 if (expect_false (!ev_is_active (w))) 2922 if (expect_false (!ev_is_active (w)))
2082 return; 2923 return;
2083 2924
2925 EV_FREQUENT_CHECK;
2926
2084 { 2927 {
2085 int active = ((W)w)->active; 2928 int active = ev_active (w);
2086 2929
2087 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2930 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2088 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2931 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2089 2932
2090 ev_stop (EV_A_ (W)w); 2933 ev_stop (EV_A_ (W)w);
2091 --idleall; 2934 --idleall;
2092 } 2935 }
2936
2937 EV_FREQUENT_CHECK;
2093} 2938}
2094#endif 2939#endif
2095 2940
2096void 2941void
2097ev_prepare_start (EV_P_ ev_prepare *w) 2942ev_prepare_start (EV_P_ ev_prepare *w)
2098{ 2943{
2099 if (expect_false (ev_is_active (w))) 2944 if (expect_false (ev_is_active (w)))
2100 return; 2945 return;
2946
2947 EV_FREQUENT_CHECK;
2101 2948
2102 ev_start (EV_A_ (W)w, ++preparecnt); 2949 ev_start (EV_A_ (W)w, ++preparecnt);
2103 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2950 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2104 prepares [preparecnt - 1] = w; 2951 prepares [preparecnt - 1] = w;
2952
2953 EV_FREQUENT_CHECK;
2105} 2954}
2106 2955
2107void 2956void
2108ev_prepare_stop (EV_P_ ev_prepare *w) 2957ev_prepare_stop (EV_P_ ev_prepare *w)
2109{ 2958{
2110 clear_pending (EV_A_ (W)w); 2959 clear_pending (EV_A_ (W)w);
2111 if (expect_false (!ev_is_active (w))) 2960 if (expect_false (!ev_is_active (w)))
2112 return; 2961 return;
2113 2962
2963 EV_FREQUENT_CHECK;
2964
2114 { 2965 {
2115 int active = ((W)w)->active; 2966 int active = ev_active (w);
2967
2116 prepares [active - 1] = prepares [--preparecnt]; 2968 prepares [active - 1] = prepares [--preparecnt];
2117 ((W)prepares [active - 1])->active = active; 2969 ev_active (prepares [active - 1]) = active;
2118 } 2970 }
2119 2971
2120 ev_stop (EV_A_ (W)w); 2972 ev_stop (EV_A_ (W)w);
2973
2974 EV_FREQUENT_CHECK;
2121} 2975}
2122 2976
2123void 2977void
2124ev_check_start (EV_P_ ev_check *w) 2978ev_check_start (EV_P_ ev_check *w)
2125{ 2979{
2126 if (expect_false (ev_is_active (w))) 2980 if (expect_false (ev_is_active (w)))
2127 return; 2981 return;
2982
2983 EV_FREQUENT_CHECK;
2128 2984
2129 ev_start (EV_A_ (W)w, ++checkcnt); 2985 ev_start (EV_A_ (W)w, ++checkcnt);
2130 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2986 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2131 checks [checkcnt - 1] = w; 2987 checks [checkcnt - 1] = w;
2988
2989 EV_FREQUENT_CHECK;
2132} 2990}
2133 2991
2134void 2992void
2135ev_check_stop (EV_P_ ev_check *w) 2993ev_check_stop (EV_P_ ev_check *w)
2136{ 2994{
2137 clear_pending (EV_A_ (W)w); 2995 clear_pending (EV_A_ (W)w);
2138 if (expect_false (!ev_is_active (w))) 2996 if (expect_false (!ev_is_active (w)))
2139 return; 2997 return;
2140 2998
2999 EV_FREQUENT_CHECK;
3000
2141 { 3001 {
2142 int active = ((W)w)->active; 3002 int active = ev_active (w);
3003
2143 checks [active - 1] = checks [--checkcnt]; 3004 checks [active - 1] = checks [--checkcnt];
2144 ((W)checks [active - 1])->active = active; 3005 ev_active (checks [active - 1]) = active;
2145 } 3006 }
2146 3007
2147 ev_stop (EV_A_ (W)w); 3008 ev_stop (EV_A_ (W)w);
3009
3010 EV_FREQUENT_CHECK;
2148} 3011}
2149 3012
2150#if EV_EMBED_ENABLE 3013#if EV_EMBED_ENABLE
2151void noinline 3014void noinline
2152ev_embed_sweep (EV_P_ ev_embed *w) 3015ev_embed_sweep (EV_P_ ev_embed *w)
2153{ 3016{
2154 ev_loop (w->loop, EVLOOP_NONBLOCK); 3017 ev_loop (w->other, EVLOOP_NONBLOCK);
2155} 3018}
2156 3019
2157static void 3020static void
2158embed_cb (EV_P_ ev_io *io, int revents) 3021embed_io_cb (EV_P_ ev_io *io, int revents)
2159{ 3022{
2160 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3023 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2161 3024
2162 if (ev_cb (w)) 3025 if (ev_cb (w))
2163 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3026 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2164 else 3027 else
2165 ev_embed_sweep (loop, w); 3028 ev_loop (w->other, EVLOOP_NONBLOCK);
2166} 3029}
3030
3031static void
3032embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3033{
3034 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3035
3036 {
3037 struct ev_loop *loop = w->other;
3038
3039 while (fdchangecnt)
3040 {
3041 fd_reify (EV_A);
3042 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3043 }
3044 }
3045}
3046
3047static void
3048embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3049{
3050 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3051
3052 ev_embed_stop (EV_A_ w);
3053
3054 {
3055 struct ev_loop *loop = w->other;
3056
3057 ev_loop_fork (EV_A);
3058 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3059 }
3060
3061 ev_embed_start (EV_A_ w);
3062}
3063
3064#if 0
3065static void
3066embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3067{
3068 ev_idle_stop (EV_A_ idle);
3069}
3070#endif
2167 3071
2168void 3072void
2169ev_embed_start (EV_P_ ev_embed *w) 3073ev_embed_start (EV_P_ ev_embed *w)
2170{ 3074{
2171 if (expect_false (ev_is_active (w))) 3075 if (expect_false (ev_is_active (w)))
2172 return; 3076 return;
2173 3077
2174 { 3078 {
2175 struct ev_loop *loop = w->loop; 3079 struct ev_loop *loop = w->other;
2176 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3080 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2177 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3081 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2178 } 3082 }
3083
3084 EV_FREQUENT_CHECK;
2179 3085
2180 ev_set_priority (&w->io, ev_priority (w)); 3086 ev_set_priority (&w->io, ev_priority (w));
2181 ev_io_start (EV_A_ &w->io); 3087 ev_io_start (EV_A_ &w->io);
2182 3088
3089 ev_prepare_init (&w->prepare, embed_prepare_cb);
3090 ev_set_priority (&w->prepare, EV_MINPRI);
3091 ev_prepare_start (EV_A_ &w->prepare);
3092
3093 ev_fork_init (&w->fork, embed_fork_cb);
3094 ev_fork_start (EV_A_ &w->fork);
3095
3096 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3097
2183 ev_start (EV_A_ (W)w, 1); 3098 ev_start (EV_A_ (W)w, 1);
3099
3100 EV_FREQUENT_CHECK;
2184} 3101}
2185 3102
2186void 3103void
2187ev_embed_stop (EV_P_ ev_embed *w) 3104ev_embed_stop (EV_P_ ev_embed *w)
2188{ 3105{
2189 clear_pending (EV_A_ (W)w); 3106 clear_pending (EV_A_ (W)w);
2190 if (expect_false (!ev_is_active (w))) 3107 if (expect_false (!ev_is_active (w)))
2191 return; 3108 return;
2192 3109
3110 EV_FREQUENT_CHECK;
3111
2193 ev_io_stop (EV_A_ &w->io); 3112 ev_io_stop (EV_A_ &w->io);
3113 ev_prepare_stop (EV_A_ &w->prepare);
3114 ev_fork_stop (EV_A_ &w->fork);
2194 3115
2195 ev_stop (EV_A_ (W)w); 3116 EV_FREQUENT_CHECK;
2196} 3117}
2197#endif 3118#endif
2198 3119
2199#if EV_FORK_ENABLE 3120#if EV_FORK_ENABLE
2200void 3121void
2201ev_fork_start (EV_P_ ev_fork *w) 3122ev_fork_start (EV_P_ ev_fork *w)
2202{ 3123{
2203 if (expect_false (ev_is_active (w))) 3124 if (expect_false (ev_is_active (w)))
2204 return; 3125 return;
3126
3127 EV_FREQUENT_CHECK;
2205 3128
2206 ev_start (EV_A_ (W)w, ++forkcnt); 3129 ev_start (EV_A_ (W)w, ++forkcnt);
2207 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3130 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2208 forks [forkcnt - 1] = w; 3131 forks [forkcnt - 1] = w;
3132
3133 EV_FREQUENT_CHECK;
2209} 3134}
2210 3135
2211void 3136void
2212ev_fork_stop (EV_P_ ev_fork *w) 3137ev_fork_stop (EV_P_ ev_fork *w)
2213{ 3138{
2214 clear_pending (EV_A_ (W)w); 3139 clear_pending (EV_A_ (W)w);
2215 if (expect_false (!ev_is_active (w))) 3140 if (expect_false (!ev_is_active (w)))
2216 return; 3141 return;
2217 3142
3143 EV_FREQUENT_CHECK;
3144
2218 { 3145 {
2219 int active = ((W)w)->active; 3146 int active = ev_active (w);
3147
2220 forks [active - 1] = forks [--forkcnt]; 3148 forks [active - 1] = forks [--forkcnt];
2221 ((W)forks [active - 1])->active = active; 3149 ev_active (forks [active - 1]) = active;
2222 } 3150 }
2223 3151
2224 ev_stop (EV_A_ (W)w); 3152 ev_stop (EV_A_ (W)w);
3153
3154 EV_FREQUENT_CHECK;
3155}
3156#endif
3157
3158#if EV_ASYNC_ENABLE
3159void
3160ev_async_start (EV_P_ ev_async *w)
3161{
3162 if (expect_false (ev_is_active (w)))
3163 return;
3164
3165 evpipe_init (EV_A);
3166
3167 EV_FREQUENT_CHECK;
3168
3169 ev_start (EV_A_ (W)w, ++asynccnt);
3170 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3171 asyncs [asynccnt - 1] = w;
3172
3173 EV_FREQUENT_CHECK;
3174}
3175
3176void
3177ev_async_stop (EV_P_ ev_async *w)
3178{
3179 clear_pending (EV_A_ (W)w);
3180 if (expect_false (!ev_is_active (w)))
3181 return;
3182
3183 EV_FREQUENT_CHECK;
3184
3185 {
3186 int active = ev_active (w);
3187
3188 asyncs [active - 1] = asyncs [--asynccnt];
3189 ev_active (asyncs [active - 1]) = active;
3190 }
3191
3192 ev_stop (EV_A_ (W)w);
3193
3194 EV_FREQUENT_CHECK;
3195}
3196
3197void
3198ev_async_send (EV_P_ ev_async *w)
3199{
3200 w->sent = 1;
3201 evpipe_write (EV_A_ &gotasync);
2225} 3202}
2226#endif 3203#endif
2227 3204
2228/*****************************************************************************/ 3205/*****************************************************************************/
2229 3206
2239once_cb (EV_P_ struct ev_once *once, int revents) 3216once_cb (EV_P_ struct ev_once *once, int revents)
2240{ 3217{
2241 void (*cb)(int revents, void *arg) = once->cb; 3218 void (*cb)(int revents, void *arg) = once->cb;
2242 void *arg = once->arg; 3219 void *arg = once->arg;
2243 3220
2244 ev_io_stop (EV_A_ &once->io); 3221 ev_io_stop (EV_A_ &once->io);
2245 ev_timer_stop (EV_A_ &once->to); 3222 ev_timer_stop (EV_A_ &once->to);
2246 ev_free (once); 3223 ev_free (once);
2247 3224
2248 cb (revents, arg); 3225 cb (revents, arg);
2249} 3226}
2250 3227
2251static void 3228static void
2252once_cb_io (EV_P_ ev_io *w, int revents) 3229once_cb_io (EV_P_ ev_io *w, int revents)
2253{ 3230{
2254 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3231 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3232
3233 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2255} 3234}
2256 3235
2257static void 3236static void
2258once_cb_to (EV_P_ ev_timer *w, int revents) 3237once_cb_to (EV_P_ ev_timer *w, int revents)
2259{ 3238{
2260 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3239 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3240
3241 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2261} 3242}
2262 3243
2263void 3244void
2264ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3245ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2265{ 3246{
2287 ev_timer_set (&once->to, timeout, 0.); 3268 ev_timer_set (&once->to, timeout, 0.);
2288 ev_timer_start (EV_A_ &once->to); 3269 ev_timer_start (EV_A_ &once->to);
2289 } 3270 }
2290} 3271}
2291 3272
3273/*****************************************************************************/
3274
3275#if EV_WALK_ENABLE
3276void
3277ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3278{
3279 int i, j;
3280 ev_watcher_list *wl, *wn;
3281
3282 if (types & (EV_IO | EV_EMBED))
3283 for (i = 0; i < anfdmax; ++i)
3284 for (wl = anfds [i].head; wl; )
3285 {
3286 wn = wl->next;
3287
3288#if EV_EMBED_ENABLE
3289 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3290 {
3291 if (types & EV_EMBED)
3292 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3293 }
3294 else
3295#endif
3296#if EV_USE_INOTIFY
3297 if (ev_cb ((ev_io *)wl) == infy_cb)
3298 ;
3299 else
3300#endif
3301 if ((ev_io *)wl != &pipe_w)
3302 if (types & EV_IO)
3303 cb (EV_A_ EV_IO, wl);
3304
3305 wl = wn;
3306 }
3307
3308 if (types & (EV_TIMER | EV_STAT))
3309 for (i = timercnt + HEAP0; i-- > HEAP0; )
3310#if EV_STAT_ENABLE
3311 /*TODO: timer is not always active*/
3312 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3313 {
3314 if (types & EV_STAT)
3315 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3316 }
3317 else
3318#endif
3319 if (types & EV_TIMER)
3320 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3321
3322#if EV_PERIODIC_ENABLE
3323 if (types & EV_PERIODIC)
3324 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3325 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3326#endif
3327
3328#if EV_IDLE_ENABLE
3329 if (types & EV_IDLE)
3330 for (j = NUMPRI; i--; )
3331 for (i = idlecnt [j]; i--; )
3332 cb (EV_A_ EV_IDLE, idles [j][i]);
3333#endif
3334
3335#if EV_FORK_ENABLE
3336 if (types & EV_FORK)
3337 for (i = forkcnt; i--; )
3338 if (ev_cb (forks [i]) != embed_fork_cb)
3339 cb (EV_A_ EV_FORK, forks [i]);
3340#endif
3341
3342#if EV_ASYNC_ENABLE
3343 if (types & EV_ASYNC)
3344 for (i = asynccnt; i--; )
3345 cb (EV_A_ EV_ASYNC, asyncs [i]);
3346#endif
3347
3348 if (types & EV_PREPARE)
3349 for (i = preparecnt; i--; )
3350#if EV_EMBED_ENABLE
3351 if (ev_cb (prepares [i]) != embed_prepare_cb)
3352#endif
3353 cb (EV_A_ EV_PREPARE, prepares [i]);
3354
3355 if (types & EV_CHECK)
3356 for (i = checkcnt; i--; )
3357 cb (EV_A_ EV_CHECK, checks [i]);
3358
3359 if (types & EV_SIGNAL)
3360 for (i = 0; i < signalmax; ++i)
3361 for (wl = signals [i].head; wl; )
3362 {
3363 wn = wl->next;
3364 cb (EV_A_ EV_SIGNAL, wl);
3365 wl = wn;
3366 }
3367
3368 if (types & EV_CHILD)
3369 for (i = EV_PID_HASHSIZE; i--; )
3370 for (wl = childs [i]; wl; )
3371 {
3372 wn = wl->next;
3373 cb (EV_A_ EV_CHILD, wl);
3374 wl = wn;
3375 }
3376/* EV_STAT 0x00001000 /* stat data changed */
3377/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3378}
3379#endif
3380
3381#if EV_MULTIPLICITY
3382 #include "ev_wrap.h"
3383#endif
3384
2292#ifdef __cplusplus 3385#ifdef __cplusplus
2293} 3386}
2294#endif 3387#endif
2295 3388

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines