ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.168 by root, Sat Dec 8 14:12:07 2007 UTC vs.
Revision 1.317 by root, Sat Nov 14 00:15:21 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
56# endif 79# endif
57# endif 80# endif
58 81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
61# define EV_USE_SELECT 1 92# define EV_USE_SELECT 1
62# else 93# else
63# define EV_USE_SELECT 0 94# define EV_USE_SELECT 0
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
107#endif 154#endif
108 155
109#include <math.h> 156#include <math.h>
110#include <stdlib.h> 157#include <stdlib.h>
111#include <fcntl.h> 158#include <fcntl.h>
129#ifndef _WIN32 176#ifndef _WIN32
130# include <sys/time.h> 177# include <sys/time.h>
131# include <sys/wait.h> 178# include <sys/wait.h>
132# include <unistd.h> 179# include <unistd.h>
133#else 180#else
181# include <io.h>
134# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 183# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
138# endif 186# endif
139#endif 187#endif
140 188
141/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
142 225
143#ifndef EV_USE_MONOTONIC 226#ifndef EV_USE_MONOTONIC
227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
228# define EV_USE_MONOTONIC 1
229# else
144# define EV_USE_MONOTONIC 0 230# define EV_USE_MONOTONIC 0
231# endif
145#endif 232#endif
146 233
147#ifndef EV_USE_REALTIME 234#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
236#endif
237
238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
242# define EV_USE_NANOSLEEP 0
243# endif
149#endif 244#endif
150 245
151#ifndef EV_USE_SELECT 246#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 247# define EV_USE_SELECT 1
153#endif 248#endif
159# define EV_USE_POLL 1 254# define EV_USE_POLL 1
160# endif 255# endif
161#endif 256#endif
162 257
163#ifndef EV_USE_EPOLL 258#ifndef EV_USE_EPOLL
259# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
260# define EV_USE_EPOLL 1
261# else
164# define EV_USE_EPOLL 0 262# define EV_USE_EPOLL 0
263# endif
165#endif 264#endif
166 265
167#ifndef EV_USE_KQUEUE 266#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 267# define EV_USE_KQUEUE 0
169#endif 268#endif
171#ifndef EV_USE_PORT 270#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 271# define EV_USE_PORT 0
173#endif 272#endif
174 273
175#ifndef EV_USE_INOTIFY 274#ifndef EV_USE_INOTIFY
275# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
276# define EV_USE_INOTIFY 1
277# else
176# define EV_USE_INOTIFY 0 278# define EV_USE_INOTIFY 0
279# endif
177#endif 280#endif
178 281
179#ifndef EV_PID_HASHSIZE 282#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 283# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 284# define EV_PID_HASHSIZE 1
190# else 293# else
191# define EV_INOTIFY_HASHSIZE 16 294# define EV_INOTIFY_HASHSIZE 16
192# endif 295# endif
193#endif 296#endif
194 297
195/**/ 298#ifndef EV_USE_EVENTFD
299# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
300# define EV_USE_EVENTFD 1
301# else
302# define EV_USE_EVENTFD 0
303# endif
304#endif
305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
324#ifndef EV_USE_4HEAP
325# define EV_USE_4HEAP !EV_MINIMAL
326#endif
327
328#ifndef EV_HEAP_CACHE_AT
329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
344#endif
345
346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 347
197#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 349# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 350# define EV_USE_MONOTONIC 0
200#endif 351#endif
202#ifndef CLOCK_REALTIME 353#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 354# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 355# define EV_USE_REALTIME 0
205#endif 356#endif
206 357
358#if !EV_STAT_ENABLE
359# undef EV_USE_INOTIFY
360# define EV_USE_INOTIFY 0
361#endif
362
363#if !EV_USE_NANOSLEEP
364# ifndef _WIN32
365# include <sys/select.h>
366# endif
367#endif
368
369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
378#endif
379
207#if EV_SELECT_IS_WINSOCKET 380#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 381# include <winsock.h>
209#endif 382#endif
210 383
211#if !EV_STAT_ENABLE 384#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
213#endif 389# endif
214 390# ifndef EFD_CLOEXEC
215#if EV_USE_INOTIFY 391# ifdef O_CLOEXEC
216# include <sys/inotify.h> 392# define EFD_CLOEXEC O_CLOEXEC
393# else
394# define EFD_CLOEXEC 02000000
395# endif
217#endif 396# endif
397# ifdef __cplusplus
398extern "C" {
399# endif
400int eventfd (unsigned int initval, int flags);
401# ifdef __cplusplus
402}
403# endif
404#endif
405
406#if EV_USE_SIGNALFD
407/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
408# include <stdint.h>
409# ifndef SFD_NONBLOCK
410# define SFD_NONBLOCK O_NONBLOCK
411# endif
412# ifndef SFD_CLOEXEC
413# ifdef O_CLOEXEC
414# define SFD_CLOEXEC O_CLOEXEC
415# else
416# define SFD_CLOEXEC 02000000
417# endif
418# endif
419# ifdef __cplusplus
420extern "C" {
421# endif
422int signalfd (int fd, const sigset_t *mask, int flags);
423
424struct signalfd_siginfo
425{
426 uint32_t ssi_signo;
427 char pad[128 - sizeof (uint32_t)];
428};
429# ifdef __cplusplus
430}
431# endif
432#endif
433
218 434
219/**/ 435/**/
436
437#if EV_VERIFY >= 3
438# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
439#else
440# define EV_FREQUENT_CHECK do { } while (0)
441#endif
442
443/*
444 * This is used to avoid floating point rounding problems.
445 * It is added to ev_rt_now when scheduling periodics
446 * to ensure progress, time-wise, even when rounding
447 * errors are against us.
448 * This value is good at least till the year 4000.
449 * Better solutions welcome.
450 */
451#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 452
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 453#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 454#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 455
225#if __GNUC__ >= 3 456#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 457# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 458# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 459#else
236# define expect(expr,value) (expr) 460# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 461# define noinline
462# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
463# define inline
464# endif
240#endif 465#endif
241 466
242#define expect_false(expr) expect ((expr) != 0, 0) 467#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 468#define expect_true(expr) expect ((expr) != 0, 1)
469#define inline_size static inline
244 470
471#if EV_MINIMAL
472# define inline_speed static noinline
473#else
474# define inline_speed static inline
475#endif
476
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 477#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
478
479#if EV_MINPRI == EV_MAXPRI
480# define ABSPRI(w) (((W)w), 0)
481#else
246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 482# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
483#endif
247 484
248#define EMPTY /* required for microsofts broken pseudo-c compiler */ 485#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 486#define EMPTY2(a,b) /* used to suppress some warnings */
250 487
251typedef ev_watcher *W; 488typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 489typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 490typedef ev_watcher_time *WT;
254 491
492#define ev_active(w) ((W)(w))->active
493#define ev_at(w) ((WT)(w))->at
494
495#if EV_USE_REALTIME
496/* sig_atomic_t is used to avoid per-thread variables or locking but still */
497/* giving it a reasonably high chance of working on typical architetcures */
498static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
499#endif
500
501#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 502static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
503#endif
504
505#ifndef EV_FD_TO_WIN32_HANDLE
506# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
507#endif
508#ifndef EV_WIN32_HANDLE_TO_FD
509# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
510#endif
511#ifndef EV_WIN32_CLOSE_FD
512# define EV_WIN32_CLOSE_FD(fd) close (fd)
513#endif
256 514
257#ifdef _WIN32 515#ifdef _WIN32
258# include "ev_win32.c" 516# include "ev_win32.c"
259#endif 517#endif
260 518
267{ 525{
268 syserr_cb = cb; 526 syserr_cb = cb;
269} 527}
270 528
271static void noinline 529static void noinline
272syserr (const char *msg) 530ev_syserr (const char *msg)
273{ 531{
274 if (!msg) 532 if (!msg)
275 msg = "(libev) system error"; 533 msg = "(libev) system error";
276 534
277 if (syserr_cb) 535 if (syserr_cb)
281 perror (msg); 539 perror (msg);
282 abort (); 540 abort ();
283 } 541 }
284} 542}
285 543
544static void *
545ev_realloc_emul (void *ptr, long size)
546{
547 /* some systems, notably openbsd and darwin, fail to properly
548 * implement realloc (x, 0) (as required by both ansi c-98 and
549 * the single unix specification, so work around them here.
550 */
551
552 if (size)
553 return realloc (ptr, size);
554
555 free (ptr);
556 return 0;
557}
558
286static void *(*alloc)(void *ptr, long size); 559static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 560
288void 561void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 562ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 563{
291 alloc = cb; 564 alloc = cb;
292} 565}
293 566
294inline_speed void * 567inline_speed void *
295ev_realloc (void *ptr, long size) 568ev_realloc (void *ptr, long size)
296{ 569{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 570 ptr = alloc (ptr, size);
298 571
299 if (!ptr && size) 572 if (!ptr && size)
300 { 573 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 574 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 575 abort ();
308#define ev_malloc(size) ev_realloc (0, (size)) 581#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 582#define ev_free(ptr) ev_realloc ((ptr), 0)
310 583
311/*****************************************************************************/ 584/*****************************************************************************/
312 585
586/* set in reify when reification needed */
587#define EV_ANFD_REIFY 1
588
589/* file descriptor info structure */
313typedef struct 590typedef struct
314{ 591{
315 WL head; 592 WL head;
316 unsigned char events; 593 unsigned char events; /* the events watched for */
594 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
595 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 596 unsigned char unused;
597#if EV_USE_EPOLL
598 unsigned int egen; /* generation counter to counter epoll bugs */
599#endif
318#if EV_SELECT_IS_WINSOCKET 600#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 601 SOCKET handle;
320#endif 602#endif
321} ANFD; 603} ANFD;
322 604
605/* stores the pending event set for a given watcher */
323typedef struct 606typedef struct
324{ 607{
325 W w; 608 W w;
326 int events; 609 int events; /* the pending event set for the given watcher */
327} ANPENDING; 610} ANPENDING;
328 611
329#if EV_USE_INOTIFY 612#if EV_USE_INOTIFY
613/* hash table entry per inotify-id */
330typedef struct 614typedef struct
331{ 615{
332 WL head; 616 WL head;
333} ANFS; 617} ANFS;
618#endif
619
620/* Heap Entry */
621#if EV_HEAP_CACHE_AT
622 /* a heap element */
623 typedef struct {
624 ev_tstamp at;
625 WT w;
626 } ANHE;
627
628 #define ANHE_w(he) (he).w /* access watcher, read-write */
629 #define ANHE_at(he) (he).at /* access cached at, read-only */
630 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
631#else
632 /* a heap element */
633 typedef WT ANHE;
634
635 #define ANHE_w(he) (he)
636 #define ANHE_at(he) (he)->at
637 #define ANHE_at_cache(he)
334#endif 638#endif
335 639
336#if EV_MULTIPLICITY 640#if EV_MULTIPLICITY
337 641
338 struct ev_loop 642 struct ev_loop
357 661
358 static int ev_default_loop_ptr; 662 static int ev_default_loop_ptr;
359 663
360#endif 664#endif
361 665
666#if EV_MINIMAL < 2
667# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
668# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
669# define EV_INVOKE_PENDING invoke_cb (EV_A)
670#else
671# define EV_RELEASE_CB (void)0
672# define EV_ACQUIRE_CB (void)0
673# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
674#endif
675
676#define EVUNLOOP_RECURSE 0x80
677
362/*****************************************************************************/ 678/*****************************************************************************/
363 679
680#ifndef EV_HAVE_EV_TIME
364ev_tstamp 681ev_tstamp
365ev_time (void) 682ev_time (void)
366{ 683{
367#if EV_USE_REALTIME 684#if EV_USE_REALTIME
685 if (expect_true (have_realtime))
686 {
368 struct timespec ts; 687 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 688 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 689 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 690 }
691#endif
692
372 struct timeval tv; 693 struct timeval tv;
373 gettimeofday (&tv, 0); 694 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 695 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 696}
697#endif
377 698
378ev_tstamp inline_size 699inline_size ev_tstamp
379get_clock (void) 700get_clock (void)
380{ 701{
381#if EV_USE_MONOTONIC 702#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 703 if (expect_true (have_monotonic))
383 { 704 {
396{ 717{
397 return ev_rt_now; 718 return ev_rt_now;
398} 719}
399#endif 720#endif
400 721
401int inline_size 722void
723ev_sleep (ev_tstamp delay)
724{
725 if (delay > 0.)
726 {
727#if EV_USE_NANOSLEEP
728 struct timespec ts;
729
730 ts.tv_sec = (time_t)delay;
731 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
732
733 nanosleep (&ts, 0);
734#elif defined(_WIN32)
735 Sleep ((unsigned long)(delay * 1e3));
736#else
737 struct timeval tv;
738
739 tv.tv_sec = (time_t)delay;
740 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
741
742 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
743 /* something not guaranteed by newer posix versions, but guaranteed */
744 /* by older ones */
745 select (0, 0, 0, 0, &tv);
746#endif
747 }
748}
749
750/*****************************************************************************/
751
752#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
753
754/* find a suitable new size for the given array, */
755/* hopefully by rounding to a ncie-to-malloc size */
756inline_size int
402array_nextsize (int elem, int cur, int cnt) 757array_nextsize (int elem, int cur, int cnt)
403{ 758{
404 int ncur = cur + 1; 759 int ncur = cur + 1;
405 760
406 do 761 do
407 ncur <<= 1; 762 ncur <<= 1;
408 while (cnt > ncur); 763 while (cnt > ncur);
409 764
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 765 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
411 if (elem * ncur > 4096) 766 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
412 { 767 {
413 ncur *= elem; 768 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 769 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
415 ncur = ncur - sizeof (void *) * 4; 770 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem; 771 ncur /= elem;
417 } 772 }
418 773
419 return ncur; 774 return ncur;
420} 775}
421 776
422inline_speed void * 777static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 778array_realloc (int elem, void *base, int *cur, int cnt)
424{ 779{
425 *cur = array_nextsize (elem, *cur, cnt); 780 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 781 return ev_realloc (base, elem * *cur);
427} 782}
783
784#define array_init_zero(base,count) \
785 memset ((void *)(base), 0, sizeof (*(base)) * (count))
428 786
429#define array_needsize(type,base,cur,cnt,init) \ 787#define array_needsize(type,base,cur,cnt,init) \
430 if (expect_false ((cnt) > (cur))) \ 788 if (expect_false ((cnt) > (cur))) \
431 { \ 789 { \
432 int ocur_ = (cur); \ 790 int ocur_ = (cur); \
444 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 802 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
445 } 803 }
446#endif 804#endif
447 805
448#define array_free(stem, idx) \ 806#define array_free(stem, idx) \
449 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 807 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
450 808
451/*****************************************************************************/ 809/*****************************************************************************/
810
811/* dummy callback for pending events */
812static void noinline
813pendingcb (EV_P_ ev_prepare *w, int revents)
814{
815}
452 816
453void noinline 817void noinline
454ev_feed_event (EV_P_ void *w, int revents) 818ev_feed_event (EV_P_ void *w, int revents)
455{ 819{
456 W w_ = (W)w; 820 W w_ = (W)w;
821 int pri = ABSPRI (w_);
457 822
458 if (expect_false (w_->pending)) 823 if (expect_false (w_->pending))
824 pendings [pri][w_->pending - 1].events |= revents;
825 else
459 { 826 {
827 w_->pending = ++pendingcnt [pri];
828 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
829 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 830 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 831 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 832}
469 833
470void inline_size 834inline_speed void
835feed_reverse (EV_P_ W w)
836{
837 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
838 rfeeds [rfeedcnt++] = w;
839}
840
841inline_size void
842feed_reverse_done (EV_P_ int revents)
843{
844 do
845 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
846 while (rfeedcnt);
847}
848
849inline_speed void
471queue_events (EV_P_ W *events, int eventcnt, int type) 850queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 851{
473 int i; 852 int i;
474 853
475 for (i = 0; i < eventcnt; ++i) 854 for (i = 0; i < eventcnt; ++i)
476 ev_feed_event (EV_A_ events [i], type); 855 ev_feed_event (EV_A_ events [i], type);
477} 856}
478 857
479/*****************************************************************************/ 858/*****************************************************************************/
480 859
481void inline_size 860inline_speed void
482anfds_init (ANFD *base, int count)
483{
484 while (count--)
485 {
486 base->head = 0;
487 base->events = EV_NONE;
488 base->reify = 0;
489
490 ++base;
491 }
492}
493
494void inline_speed
495fd_event (EV_P_ int fd, int revents) 861fd_event_nc (EV_P_ int fd, int revents)
496{ 862{
497 ANFD *anfd = anfds + fd; 863 ANFD *anfd = anfds + fd;
498 ev_io *w; 864 ev_io *w;
499 865
500 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 866 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
504 if (ev) 870 if (ev)
505 ev_feed_event (EV_A_ (W)w, ev); 871 ev_feed_event (EV_A_ (W)w, ev);
506 } 872 }
507} 873}
508 874
875/* do not submit kernel events for fds that have reify set */
876/* because that means they changed while we were polling for new events */
877inline_speed void
878fd_event (EV_P_ int fd, int revents)
879{
880 ANFD *anfd = anfds + fd;
881
882 if (expect_true (!anfd->reify))
883 fd_event_nc (EV_A_ fd, revents);
884}
885
509void 886void
510ev_feed_fd_event (EV_P_ int fd, int revents) 887ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 888{
512 if (fd >= 0 && fd < anfdmax) 889 if (fd >= 0 && fd < anfdmax)
513 fd_event (EV_A_ fd, revents); 890 fd_event_nc (EV_A_ fd, revents);
514} 891}
515 892
516void inline_size 893/* make sure the external fd watch events are in-sync */
894/* with the kernel/libev internal state */
895inline_size void
517fd_reify (EV_P) 896fd_reify (EV_P)
518{ 897{
519 int i; 898 int i;
520 899
521 for (i = 0; i < fdchangecnt; ++i) 900 for (i = 0; i < fdchangecnt; ++i)
522 { 901 {
523 int fd = fdchanges [i]; 902 int fd = fdchanges [i];
524 ANFD *anfd = anfds + fd; 903 ANFD *anfd = anfds + fd;
525 ev_io *w; 904 ev_io *w;
526 905
527 int events = 0; 906 unsigned char events = 0;
528 907
529 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 908 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
530 events |= w->events; 909 events |= (unsigned char)w->events;
531 910
532#if EV_SELECT_IS_WINSOCKET 911#if EV_SELECT_IS_WINSOCKET
533 if (events) 912 if (events)
534 { 913 {
535 unsigned long argp; 914 unsigned long arg;
536 anfd->handle = _get_osfhandle (fd); 915 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
537 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 916 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
538 } 917 }
539#endif 918#endif
540 919
920 {
921 unsigned char o_events = anfd->events;
922 unsigned char o_reify = anfd->reify;
923
541 anfd->reify = 0; 924 anfd->reify = 0;
542
543 backend_modify (EV_A_ fd, anfd->events, events);
544 anfd->events = events; 925 anfd->events = events;
926
927 if (o_events != events || o_reify & EV__IOFDSET)
928 backend_modify (EV_A_ fd, o_events, events);
929 }
545 } 930 }
546 931
547 fdchangecnt = 0; 932 fdchangecnt = 0;
548} 933}
549 934
550void inline_size 935/* something about the given fd changed */
936inline_size void
551fd_change (EV_P_ int fd) 937fd_change (EV_P_ int fd, int flags)
552{ 938{
553 if (expect_false (anfds [fd].reify)) 939 unsigned char reify = anfds [fd].reify;
554 return;
555
556 anfds [fd].reify = 1; 940 anfds [fd].reify |= flags;
557 941
942 if (expect_true (!reify))
943 {
558 ++fdchangecnt; 944 ++fdchangecnt;
559 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 945 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
560 fdchanges [fdchangecnt - 1] = fd; 946 fdchanges [fdchangecnt - 1] = fd;
947 }
561} 948}
562 949
563void inline_speed 950/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
951inline_speed void
564fd_kill (EV_P_ int fd) 952fd_kill (EV_P_ int fd)
565{ 953{
566 ev_io *w; 954 ev_io *w;
567 955
568 while ((w = (ev_io *)anfds [fd].head)) 956 while ((w = (ev_io *)anfds [fd].head))
570 ev_io_stop (EV_A_ w); 958 ev_io_stop (EV_A_ w);
571 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 959 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
572 } 960 }
573} 961}
574 962
575int inline_size 963/* check whether the given fd is atcually valid, for error recovery */
964inline_size int
576fd_valid (int fd) 965fd_valid (int fd)
577{ 966{
578#ifdef _WIN32 967#ifdef _WIN32
579 return _get_osfhandle (fd) != -1; 968 return _get_osfhandle (fd) != -1;
580#else 969#else
588{ 977{
589 int fd; 978 int fd;
590 979
591 for (fd = 0; fd < anfdmax; ++fd) 980 for (fd = 0; fd < anfdmax; ++fd)
592 if (anfds [fd].events) 981 if (anfds [fd].events)
593 if (!fd_valid (fd) == -1 && errno == EBADF) 982 if (!fd_valid (fd) && errno == EBADF)
594 fd_kill (EV_A_ fd); 983 fd_kill (EV_A_ fd);
595} 984}
596 985
597/* called on ENOMEM in select/poll to kill some fds and retry */ 986/* called on ENOMEM in select/poll to kill some fds and retry */
598static void noinline 987static void noinline
602 991
603 for (fd = anfdmax; fd--; ) 992 for (fd = anfdmax; fd--; )
604 if (anfds [fd].events) 993 if (anfds [fd].events)
605 { 994 {
606 fd_kill (EV_A_ fd); 995 fd_kill (EV_A_ fd);
607 return; 996 break;
608 } 997 }
609} 998}
610 999
611/* usually called after fork if backend needs to re-arm all fds from scratch */ 1000/* usually called after fork if backend needs to re-arm all fds from scratch */
612static void noinline 1001static void noinline
616 1005
617 for (fd = 0; fd < anfdmax; ++fd) 1006 for (fd = 0; fd < anfdmax; ++fd)
618 if (anfds [fd].events) 1007 if (anfds [fd].events)
619 { 1008 {
620 anfds [fd].events = 0; 1009 anfds [fd].events = 0;
621 fd_change (EV_A_ fd); 1010 anfds [fd].emask = 0;
1011 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
622 } 1012 }
623} 1013}
624 1014
625/*****************************************************************************/ 1015/*****************************************************************************/
626 1016
627void inline_speed 1017/*
628upheap (WT *heap, int k) 1018 * the heap functions want a real array index. array index 0 uis guaranteed to not
629{ 1019 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
630 WT w = heap [k]; 1020 * the branching factor of the d-tree.
1021 */
631 1022
632 while (k && heap [k >> 1]->at > w->at) 1023/*
633 { 1024 * at the moment we allow libev the luxury of two heaps,
634 heap [k] = heap [k >> 1]; 1025 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
635 ((W)heap [k])->active = k + 1; 1026 * which is more cache-efficient.
636 k >>= 1; 1027 * the difference is about 5% with 50000+ watchers.
637 } 1028 */
1029#if EV_USE_4HEAP
638 1030
639 heap [k] = w; 1031#define DHEAP 4
640 ((W)heap [k])->active = k + 1; 1032#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1033#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1034#define UPHEAP_DONE(p,k) ((p) == (k))
641 1035
642} 1036/* away from the root */
643 1037inline_speed void
644void inline_speed
645downheap (WT *heap, int N, int k) 1038downheap (ANHE *heap, int N, int k)
646{ 1039{
647 WT w = heap [k]; 1040 ANHE he = heap [k];
1041 ANHE *E = heap + N + HEAP0;
648 1042
649 while (k < (N >> 1)) 1043 for (;;)
650 { 1044 {
651 int j = k << 1; 1045 ev_tstamp minat;
1046 ANHE *minpos;
1047 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
652 1048
653 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1049 /* find minimum child */
1050 if (expect_true (pos + DHEAP - 1 < E))
654 ++j; 1051 {
655 1052 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
656 if (w->at <= heap [j]->at) 1053 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1054 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1055 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1056 }
1057 else if (pos < E)
1058 {
1059 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1060 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1061 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1062 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1063 }
1064 else
657 break; 1065 break;
658 1066
1067 if (ANHE_at (he) <= minat)
1068 break;
1069
1070 heap [k] = *minpos;
1071 ev_active (ANHE_w (*minpos)) = k;
1072
1073 k = minpos - heap;
1074 }
1075
1076 heap [k] = he;
1077 ev_active (ANHE_w (he)) = k;
1078}
1079
1080#else /* 4HEAP */
1081
1082#define HEAP0 1
1083#define HPARENT(k) ((k) >> 1)
1084#define UPHEAP_DONE(p,k) (!(p))
1085
1086/* away from the root */
1087inline_speed void
1088downheap (ANHE *heap, int N, int k)
1089{
1090 ANHE he = heap [k];
1091
1092 for (;;)
1093 {
1094 int c = k << 1;
1095
1096 if (c >= N + HEAP0)
1097 break;
1098
1099 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1100 ? 1 : 0;
1101
1102 if (ANHE_at (he) <= ANHE_at (heap [c]))
1103 break;
1104
659 heap [k] = heap [j]; 1105 heap [k] = heap [c];
660 ((W)heap [k])->active = k + 1; 1106 ev_active (ANHE_w (heap [k])) = k;
1107
661 k = j; 1108 k = c;
662 } 1109 }
663 1110
664 heap [k] = w; 1111 heap [k] = he;
665 ((W)heap [k])->active = k + 1; 1112 ev_active (ANHE_w (he)) = k;
666} 1113}
1114#endif
667 1115
668void inline_size 1116/* towards the root */
1117inline_speed void
1118upheap (ANHE *heap, int k)
1119{
1120 ANHE he = heap [k];
1121
1122 for (;;)
1123 {
1124 int p = HPARENT (k);
1125
1126 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1127 break;
1128
1129 heap [k] = heap [p];
1130 ev_active (ANHE_w (heap [k])) = k;
1131 k = p;
1132 }
1133
1134 heap [k] = he;
1135 ev_active (ANHE_w (he)) = k;
1136}
1137
1138/* move an element suitably so it is in a correct place */
1139inline_size void
669adjustheap (WT *heap, int N, int k) 1140adjustheap (ANHE *heap, int N, int k)
670{ 1141{
1142 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
671 upheap (heap, k); 1143 upheap (heap, k);
1144 else
672 downheap (heap, N, k); 1145 downheap (heap, N, k);
1146}
1147
1148/* rebuild the heap: this function is used only once and executed rarely */
1149inline_size void
1150reheap (ANHE *heap, int N)
1151{
1152 int i;
1153
1154 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1155 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1156 for (i = 0; i < N; ++i)
1157 upheap (heap, i + HEAP0);
673} 1158}
674 1159
675/*****************************************************************************/ 1160/*****************************************************************************/
676 1161
1162/* associate signal watchers to a signal signal */
677typedef struct 1163typedef struct
678{ 1164{
1165 EV_ATOMIC_T pending;
1166#if EV_MULTIPLICITY
1167 EV_P;
1168#endif
679 WL head; 1169 WL head;
680 sig_atomic_t volatile gotsig;
681} ANSIG; 1170} ANSIG;
682 1171
683static ANSIG *signals; 1172static ANSIG signals [EV_NSIG - 1];
684static int signalmax;
685 1173
686static int sigpipe [2]; 1174/*****************************************************************************/
687static sig_atomic_t volatile gotsig;
688static ev_io sigev;
689 1175
690void inline_size 1176/* used to prepare libev internal fd's */
691signals_init (ANSIG *base, int count) 1177/* this is not fork-safe */
692{ 1178inline_speed void
693 while (count--)
694 {
695 base->head = 0;
696 base->gotsig = 0;
697
698 ++base;
699 }
700}
701
702static void
703sighandler (int signum)
704{
705#if _WIN32
706 signal (signum, sighandler);
707#endif
708
709 signals [signum - 1].gotsig = 1;
710
711 if (!gotsig)
712 {
713 int old_errno = errno;
714 gotsig = 1;
715 write (sigpipe [1], &signum, 1);
716 errno = old_errno;
717 }
718}
719
720void noinline
721ev_feed_signal_event (EV_P_ int signum)
722{
723 WL w;
724
725#if EV_MULTIPLICITY
726 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
727#endif
728
729 --signum;
730
731 if (signum < 0 || signum >= signalmax)
732 return;
733
734 signals [signum].gotsig = 0;
735
736 for (w = signals [signum].head; w; w = w->next)
737 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
738}
739
740static void
741sigcb (EV_P_ ev_io *iow, int revents)
742{
743 int signum;
744
745 read (sigpipe [0], &revents, 1);
746 gotsig = 0;
747
748 for (signum = signalmax; signum--; )
749 if (signals [signum].gotsig)
750 ev_feed_signal_event (EV_A_ signum + 1);
751}
752
753void inline_size
754fd_intern (int fd) 1179fd_intern (int fd)
755{ 1180{
756#ifdef _WIN32 1181#ifdef _WIN32
757 int arg = 1; 1182 unsigned long arg = 1;
758 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1183 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
759#else 1184#else
760 fcntl (fd, F_SETFD, FD_CLOEXEC); 1185 fcntl (fd, F_SETFD, FD_CLOEXEC);
761 fcntl (fd, F_SETFL, O_NONBLOCK); 1186 fcntl (fd, F_SETFL, O_NONBLOCK);
762#endif 1187#endif
763} 1188}
764 1189
765static void noinline 1190static void noinline
766siginit (EV_P) 1191evpipe_init (EV_P)
767{ 1192{
1193 if (!ev_is_active (&pipe_w))
1194 {
1195#if EV_USE_EVENTFD
1196 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1197 if (evfd < 0 && errno == EINVAL)
1198 evfd = eventfd (0, 0);
1199
1200 if (evfd >= 0)
1201 {
1202 evpipe [0] = -1;
1203 fd_intern (evfd); /* doing it twice doesn't hurt */
1204 ev_io_set (&pipe_w, evfd, EV_READ);
1205 }
1206 else
1207#endif
1208 {
1209 while (pipe (evpipe))
1210 ev_syserr ("(libev) error creating signal/async pipe");
1211
768 fd_intern (sigpipe [0]); 1212 fd_intern (evpipe [0]);
769 fd_intern (sigpipe [1]); 1213 fd_intern (evpipe [1]);
1214 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1215 }
770 1216
771 ev_io_set (&sigev, sigpipe [0], EV_READ);
772 ev_io_start (EV_A_ &sigev); 1217 ev_io_start (EV_A_ &pipe_w);
773 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1218 ev_unref (EV_A); /* watcher should not keep loop alive */
1219 }
1220}
1221
1222inline_size void
1223evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1224{
1225 if (!*flag)
1226 {
1227 int old_errno = errno; /* save errno because write might clobber it */
1228
1229 *flag = 1;
1230
1231#if EV_USE_EVENTFD
1232 if (evfd >= 0)
1233 {
1234 uint64_t counter = 1;
1235 write (evfd, &counter, sizeof (uint64_t));
1236 }
1237 else
1238#endif
1239 write (evpipe [1], &old_errno, 1);
1240
1241 errno = old_errno;
1242 }
1243}
1244
1245/* called whenever the libev signal pipe */
1246/* got some events (signal, async) */
1247static void
1248pipecb (EV_P_ ev_io *iow, int revents)
1249{
1250 int i;
1251
1252#if EV_USE_EVENTFD
1253 if (evfd >= 0)
1254 {
1255 uint64_t counter;
1256 read (evfd, &counter, sizeof (uint64_t));
1257 }
1258 else
1259#endif
1260 {
1261 char dummy;
1262 read (evpipe [0], &dummy, 1);
1263 }
1264
1265 if (sig_pending)
1266 {
1267 sig_pending = 0;
1268
1269 for (i = EV_NSIG - 1; i--; )
1270 if (expect_false (signals [i].pending))
1271 ev_feed_signal_event (EV_A_ i + 1);
1272 }
1273
1274#if EV_ASYNC_ENABLE
1275 if (async_pending)
1276 {
1277 async_pending = 0;
1278
1279 for (i = asynccnt; i--; )
1280 if (asyncs [i]->sent)
1281 {
1282 asyncs [i]->sent = 0;
1283 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1284 }
1285 }
1286#endif
774} 1287}
775 1288
776/*****************************************************************************/ 1289/*****************************************************************************/
777 1290
1291static void
1292ev_sighandler (int signum)
1293{
1294#if EV_MULTIPLICITY
1295 EV_P = signals [signum - 1].loop;
1296#endif
1297
1298#if _WIN32
1299 signal (signum, ev_sighandler);
1300#endif
1301
1302 signals [signum - 1].pending = 1;
1303 evpipe_write (EV_A_ &sig_pending);
1304}
1305
1306void noinline
1307ev_feed_signal_event (EV_P_ int signum)
1308{
1309 WL w;
1310
1311 if (expect_false (signum <= 0 || signum > EV_NSIG))
1312 return;
1313
1314 --signum;
1315
1316#if EV_MULTIPLICITY
1317 /* it is permissible to try to feed a signal to the wrong loop */
1318 /* or, likely more useful, feeding a signal nobody is waiting for */
1319
1320 if (expect_false (signals [signum].loop != EV_A))
1321 return;
1322#endif
1323
1324 signals [signum].pending = 0;
1325
1326 for (w = signals [signum].head; w; w = w->next)
1327 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1328}
1329
1330#if EV_USE_SIGNALFD
1331static void
1332sigfdcb (EV_P_ ev_io *iow, int revents)
1333{
1334 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1335
1336 for (;;)
1337 {
1338 ssize_t res = read (sigfd, si, sizeof (si));
1339
1340 /* not ISO-C, as res might be -1, but works with SuS */
1341 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1342 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1343
1344 if (res < (ssize_t)sizeof (si))
1345 break;
1346 }
1347}
1348#endif
1349
1350/*****************************************************************************/
1351
778static ev_child *childs [EV_PID_HASHSIZE]; 1352static WL childs [EV_PID_HASHSIZE];
779 1353
780#ifndef _WIN32 1354#ifndef _WIN32
781 1355
782static ev_signal childev; 1356static ev_signal childev;
783 1357
784void inline_speed 1358#ifndef WIFCONTINUED
1359# define WIFCONTINUED(status) 0
1360#endif
1361
1362/* handle a single child status event */
1363inline_speed void
785child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1364child_reap (EV_P_ int chain, int pid, int status)
786{ 1365{
787 ev_child *w; 1366 ev_child *w;
1367 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
788 1368
789 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1369 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1370 {
790 if (w->pid == pid || !w->pid) 1371 if ((w->pid == pid || !w->pid)
1372 && (!traced || (w->flags & 1)))
791 { 1373 {
792 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1374 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
793 w->rpid = pid; 1375 w->rpid = pid;
794 w->rstatus = status; 1376 w->rstatus = status;
795 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1377 ev_feed_event (EV_A_ (W)w, EV_CHILD);
796 } 1378 }
1379 }
797} 1380}
798 1381
799#ifndef WCONTINUED 1382#ifndef WCONTINUED
800# define WCONTINUED 0 1383# define WCONTINUED 0
801#endif 1384#endif
802 1385
1386/* called on sigchld etc., calls waitpid */
803static void 1387static void
804childcb (EV_P_ ev_signal *sw, int revents) 1388childcb (EV_P_ ev_signal *sw, int revents)
805{ 1389{
806 int pid, status; 1390 int pid, status;
807 1391
810 if (!WCONTINUED 1394 if (!WCONTINUED
811 || errno != EINVAL 1395 || errno != EINVAL
812 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1396 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
813 return; 1397 return;
814 1398
815 /* make sure we are called again until all childs have been reaped */ 1399 /* make sure we are called again until all children have been reaped */
816 /* we need to do it this way so that the callback gets called before we continue */ 1400 /* we need to do it this way so that the callback gets called before we continue */
817 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1401 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
818 1402
819 child_reap (EV_A_ sw, pid, pid, status); 1403 child_reap (EV_A_ pid, pid, status);
820 if (EV_PID_HASHSIZE > 1) 1404 if (EV_PID_HASHSIZE > 1)
821 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1405 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
822} 1406}
823 1407
824#endif 1408#endif
825 1409
826/*****************************************************************************/ 1410/*****************************************************************************/
888 /* kqueue is borked on everything but netbsd apparently */ 1472 /* kqueue is borked on everything but netbsd apparently */
889 /* it usually doesn't work correctly on anything but sockets and pipes */ 1473 /* it usually doesn't work correctly on anything but sockets and pipes */
890 flags &= ~EVBACKEND_KQUEUE; 1474 flags &= ~EVBACKEND_KQUEUE;
891#endif 1475#endif
892#ifdef __APPLE__ 1476#ifdef __APPLE__
893 // flags &= ~EVBACKEND_KQUEUE; for documentation 1477 /* only select works correctly on that "unix-certified" platform */
894 flags &= ~EVBACKEND_POLL; 1478 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1479 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
895#endif 1480#endif
896 1481
897 return flags; 1482 return flags;
898} 1483}
899 1484
900unsigned int 1485unsigned int
901ev_embeddable_backends (void) 1486ev_embeddable_backends (void)
902{ 1487{
903 return EVBACKEND_EPOLL 1488 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
904 | EVBACKEND_KQUEUE 1489
905 | EVBACKEND_PORT; 1490 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1491 /* please fix it and tell me how to detect the fix */
1492 flags &= ~EVBACKEND_EPOLL;
1493
1494 return flags;
906} 1495}
907 1496
908unsigned int 1497unsigned int
909ev_backend (EV_P) 1498ev_backend (EV_P)
910{ 1499{
911 return backend; 1500 return backend;
912} 1501}
913 1502
1503#if EV_MINIMAL < 2
914unsigned int 1504unsigned int
915ev_loop_count (EV_P) 1505ev_loop_count (EV_P)
916{ 1506{
917 return loop_count; 1507 return loop_count;
918} 1508}
919 1509
1510unsigned int
1511ev_loop_depth (EV_P)
1512{
1513 return loop_depth;
1514}
1515
1516void
1517ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1518{
1519 io_blocktime = interval;
1520}
1521
1522void
1523ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1524{
1525 timeout_blocktime = interval;
1526}
1527
1528void
1529ev_set_userdata (EV_P_ void *data)
1530{
1531 userdata = data;
1532}
1533
1534void *
1535ev_userdata (EV_P)
1536{
1537 return userdata;
1538}
1539
1540void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1541{
1542 invoke_cb = invoke_pending_cb;
1543}
1544
1545void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1546{
1547 release_cb = release;
1548 acquire_cb = acquire;
1549}
1550#endif
1551
1552/* initialise a loop structure, must be zero-initialised */
920static void noinline 1553static void noinline
921loop_init (EV_P_ unsigned int flags) 1554loop_init (EV_P_ unsigned int flags)
922{ 1555{
923 if (!backend) 1556 if (!backend)
924 { 1557 {
1558#if EV_USE_REALTIME
1559 if (!have_realtime)
1560 {
1561 struct timespec ts;
1562
1563 if (!clock_gettime (CLOCK_REALTIME, &ts))
1564 have_realtime = 1;
1565 }
1566#endif
1567
925#if EV_USE_MONOTONIC 1568#if EV_USE_MONOTONIC
1569 if (!have_monotonic)
926 { 1570 {
927 struct timespec ts; 1571 struct timespec ts;
1572
928 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1573 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
929 have_monotonic = 1; 1574 have_monotonic = 1;
930 } 1575 }
931#endif 1576#endif
932
933 ev_rt_now = ev_time ();
934 mn_now = get_clock ();
935 now_floor = mn_now;
936 rtmn_diff = ev_rt_now - mn_now;
937 1577
938 /* pid check not overridable via env */ 1578 /* pid check not overridable via env */
939#ifndef _WIN32 1579#ifndef _WIN32
940 if (flags & EVFLAG_FORKCHECK) 1580 if (flags & EVFLAG_FORKCHECK)
941 curpid = getpid (); 1581 curpid = getpid ();
944 if (!(flags & EVFLAG_NOENV) 1584 if (!(flags & EVFLAG_NOENV)
945 && !enable_secure () 1585 && !enable_secure ()
946 && getenv ("LIBEV_FLAGS")) 1586 && getenv ("LIBEV_FLAGS"))
947 flags = atoi (getenv ("LIBEV_FLAGS")); 1587 flags = atoi (getenv ("LIBEV_FLAGS"));
948 1588
1589 ev_rt_now = ev_time ();
1590 mn_now = get_clock ();
1591 now_floor = mn_now;
1592 rtmn_diff = ev_rt_now - mn_now;
1593#if EV_MINIMAL < 2
1594 invoke_cb = ev_invoke_pending;
1595#endif
1596
1597 io_blocktime = 0.;
1598 timeout_blocktime = 0.;
1599 backend = 0;
1600 backend_fd = -1;
1601 sig_pending = 0;
1602#if EV_ASYNC_ENABLE
1603 async_pending = 0;
1604#endif
1605#if EV_USE_INOTIFY
1606 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1607#endif
1608#if EV_USE_SIGNALFD
1609 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1610#endif
1611
949 if (!(flags & 0x0000ffffUL)) 1612 if (!(flags & 0x0000ffffU))
950 flags |= ev_recommended_backends (); 1613 flags |= ev_recommended_backends ();
951
952 backend = 0;
953 backend_fd = -1;
954#if EV_USE_INOTIFY
955 fs_fd = -2;
956#endif
957 1614
958#if EV_USE_PORT 1615#if EV_USE_PORT
959 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1616 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
960#endif 1617#endif
961#if EV_USE_KQUEUE 1618#if EV_USE_KQUEUE
969#endif 1626#endif
970#if EV_USE_SELECT 1627#if EV_USE_SELECT
971 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1628 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
972#endif 1629#endif
973 1630
1631 ev_prepare_init (&pending_w, pendingcb);
1632
974 ev_init (&sigev, sigcb); 1633 ev_init (&pipe_w, pipecb);
975 ev_set_priority (&sigev, EV_MAXPRI); 1634 ev_set_priority (&pipe_w, EV_MAXPRI);
976 } 1635 }
977} 1636}
978 1637
1638/* free up a loop structure */
979static void noinline 1639static void noinline
980loop_destroy (EV_P) 1640loop_destroy (EV_P)
981{ 1641{
982 int i; 1642 int i;
1643
1644 if (ev_is_active (&pipe_w))
1645 {
1646 /*ev_ref (EV_A);*/
1647 /*ev_io_stop (EV_A_ &pipe_w);*/
1648
1649#if EV_USE_EVENTFD
1650 if (evfd >= 0)
1651 close (evfd);
1652#endif
1653
1654 if (evpipe [0] >= 0)
1655 {
1656 EV_WIN32_CLOSE_FD (evpipe [0]);
1657 EV_WIN32_CLOSE_FD (evpipe [1]);
1658 }
1659 }
1660
1661#if EV_USE_SIGNALFD
1662 if (ev_is_active (&sigfd_w))
1663 close (sigfd);
1664#endif
983 1665
984#if EV_USE_INOTIFY 1666#if EV_USE_INOTIFY
985 if (fs_fd >= 0) 1667 if (fs_fd >= 0)
986 close (fs_fd); 1668 close (fs_fd);
987#endif 1669#endif
1011#if EV_IDLE_ENABLE 1693#if EV_IDLE_ENABLE
1012 array_free (idle, [i]); 1694 array_free (idle, [i]);
1013#endif 1695#endif
1014 } 1696 }
1015 1697
1698 ev_free (anfds); anfds = 0; anfdmax = 0;
1699
1016 /* have to use the microsoft-never-gets-it-right macro */ 1700 /* have to use the microsoft-never-gets-it-right macro */
1701 array_free (rfeed, EMPTY);
1017 array_free (fdchange, EMPTY); 1702 array_free (fdchange, EMPTY);
1018 array_free (timer, EMPTY); 1703 array_free (timer, EMPTY);
1019#if EV_PERIODIC_ENABLE 1704#if EV_PERIODIC_ENABLE
1020 array_free (periodic, EMPTY); 1705 array_free (periodic, EMPTY);
1021#endif 1706#endif
1707#if EV_FORK_ENABLE
1708 array_free (fork, EMPTY);
1709#endif
1022 array_free (prepare, EMPTY); 1710 array_free (prepare, EMPTY);
1023 array_free (check, EMPTY); 1711 array_free (check, EMPTY);
1712#if EV_ASYNC_ENABLE
1713 array_free (async, EMPTY);
1714#endif
1024 1715
1025 backend = 0; 1716 backend = 0;
1026} 1717}
1027 1718
1719#if EV_USE_INOTIFY
1028void inline_size infy_fork (EV_P); 1720inline_size void infy_fork (EV_P);
1721#endif
1029 1722
1030void inline_size 1723inline_size void
1031loop_fork (EV_P) 1724loop_fork (EV_P)
1032{ 1725{
1033#if EV_USE_PORT 1726#if EV_USE_PORT
1034 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1727 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1035#endif 1728#endif
1041#endif 1734#endif
1042#if EV_USE_INOTIFY 1735#if EV_USE_INOTIFY
1043 infy_fork (EV_A); 1736 infy_fork (EV_A);
1044#endif 1737#endif
1045 1738
1046 if (ev_is_active (&sigev)) 1739 if (ev_is_active (&pipe_w))
1047 { 1740 {
1048 /* default loop */ 1741 /* this "locks" the handlers against writing to the pipe */
1742 /* while we modify the fd vars */
1743 sig_pending = 1;
1744#if EV_ASYNC_ENABLE
1745 async_pending = 1;
1746#endif
1049 1747
1050 ev_ref (EV_A); 1748 ev_ref (EV_A);
1051 ev_io_stop (EV_A_ &sigev); 1749 ev_io_stop (EV_A_ &pipe_w);
1052 close (sigpipe [0]);
1053 close (sigpipe [1]);
1054 1750
1055 while (pipe (sigpipe)) 1751#if EV_USE_EVENTFD
1056 syserr ("(libev) error creating pipe"); 1752 if (evfd >= 0)
1753 close (evfd);
1754#endif
1057 1755
1756 if (evpipe [0] >= 0)
1757 {
1758 EV_WIN32_CLOSE_FD (evpipe [0]);
1759 EV_WIN32_CLOSE_FD (evpipe [1]);
1760 }
1761
1058 siginit (EV_A); 1762 evpipe_init (EV_A);
1763 /* now iterate over everything, in case we missed something */
1764 pipecb (EV_A_ &pipe_w, EV_READ);
1059 } 1765 }
1060 1766
1061 postfork = 0; 1767 postfork = 0;
1062} 1768}
1063 1769
1064#if EV_MULTIPLICITY 1770#if EV_MULTIPLICITY
1771
1065struct ev_loop * 1772struct ev_loop *
1066ev_loop_new (unsigned int flags) 1773ev_loop_new (unsigned int flags)
1067{ 1774{
1068 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1775 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1069 1776
1070 memset (loop, 0, sizeof (struct ev_loop)); 1777 memset (EV_A, 0, sizeof (struct ev_loop));
1071
1072 loop_init (EV_A_ flags); 1778 loop_init (EV_A_ flags);
1073 1779
1074 if (ev_backend (EV_A)) 1780 if (ev_backend (EV_A))
1075 return loop; 1781 return EV_A;
1076 1782
1077 return 0; 1783 return 0;
1078} 1784}
1079 1785
1080void 1786void
1085} 1791}
1086 1792
1087void 1793void
1088ev_loop_fork (EV_P) 1794ev_loop_fork (EV_P)
1089{ 1795{
1090 postfork = 1; 1796 postfork = 1; /* must be in line with ev_default_fork */
1091} 1797}
1798#endif /* multiplicity */
1092 1799
1800#if EV_VERIFY
1801static void noinline
1802verify_watcher (EV_P_ W w)
1803{
1804 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1805
1806 if (w->pending)
1807 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1808}
1809
1810static void noinline
1811verify_heap (EV_P_ ANHE *heap, int N)
1812{
1813 int i;
1814
1815 for (i = HEAP0; i < N + HEAP0; ++i)
1816 {
1817 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1818 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1819 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1820
1821 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1822 }
1823}
1824
1825static void noinline
1826array_verify (EV_P_ W *ws, int cnt)
1827{
1828 while (cnt--)
1829 {
1830 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1831 verify_watcher (EV_A_ ws [cnt]);
1832 }
1833}
1834#endif
1835
1836#if EV_MINIMAL < 2
1837void
1838ev_loop_verify (EV_P)
1839{
1840#if EV_VERIFY
1841 int i;
1842 WL w;
1843
1844 assert (activecnt >= -1);
1845
1846 assert (fdchangemax >= fdchangecnt);
1847 for (i = 0; i < fdchangecnt; ++i)
1848 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1849
1850 assert (anfdmax >= 0);
1851 for (i = 0; i < anfdmax; ++i)
1852 for (w = anfds [i].head; w; w = w->next)
1853 {
1854 verify_watcher (EV_A_ (W)w);
1855 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1856 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1857 }
1858
1859 assert (timermax >= timercnt);
1860 verify_heap (EV_A_ timers, timercnt);
1861
1862#if EV_PERIODIC_ENABLE
1863 assert (periodicmax >= periodiccnt);
1864 verify_heap (EV_A_ periodics, periodiccnt);
1865#endif
1866
1867 for (i = NUMPRI; i--; )
1868 {
1869 assert (pendingmax [i] >= pendingcnt [i]);
1870#if EV_IDLE_ENABLE
1871 assert (idleall >= 0);
1872 assert (idlemax [i] >= idlecnt [i]);
1873 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1874#endif
1875 }
1876
1877#if EV_FORK_ENABLE
1878 assert (forkmax >= forkcnt);
1879 array_verify (EV_A_ (W *)forks, forkcnt);
1880#endif
1881
1882#if EV_ASYNC_ENABLE
1883 assert (asyncmax >= asynccnt);
1884 array_verify (EV_A_ (W *)asyncs, asynccnt);
1885#endif
1886
1887 assert (preparemax >= preparecnt);
1888 array_verify (EV_A_ (W *)prepares, preparecnt);
1889
1890 assert (checkmax >= checkcnt);
1891 array_verify (EV_A_ (W *)checks, checkcnt);
1892
1893# if 0
1894 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1895 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1896# endif
1897#endif
1898}
1093#endif 1899#endif
1094 1900
1095#if EV_MULTIPLICITY 1901#if EV_MULTIPLICITY
1096struct ev_loop * 1902struct ev_loop *
1097ev_default_loop_init (unsigned int flags) 1903ev_default_loop_init (unsigned int flags)
1098#else 1904#else
1099int 1905int
1100ev_default_loop (unsigned int flags) 1906ev_default_loop (unsigned int flags)
1101#endif 1907#endif
1102{ 1908{
1103 if (sigpipe [0] == sigpipe [1])
1104 if (pipe (sigpipe))
1105 return 0;
1106
1107 if (!ev_default_loop_ptr) 1909 if (!ev_default_loop_ptr)
1108 { 1910 {
1109#if EV_MULTIPLICITY 1911#if EV_MULTIPLICITY
1110 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1912 EV_P = ev_default_loop_ptr = &default_loop_struct;
1111#else 1913#else
1112 ev_default_loop_ptr = 1; 1914 ev_default_loop_ptr = 1;
1113#endif 1915#endif
1114 1916
1115 loop_init (EV_A_ flags); 1917 loop_init (EV_A_ flags);
1116 1918
1117 if (ev_backend (EV_A)) 1919 if (ev_backend (EV_A))
1118 { 1920 {
1119 siginit (EV_A);
1120
1121#ifndef _WIN32 1921#ifndef _WIN32
1122 ev_signal_init (&childev, childcb, SIGCHLD); 1922 ev_signal_init (&childev, childcb, SIGCHLD);
1123 ev_set_priority (&childev, EV_MAXPRI); 1923 ev_set_priority (&childev, EV_MAXPRI);
1124 ev_signal_start (EV_A_ &childev); 1924 ev_signal_start (EV_A_ &childev);
1125 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1925 ev_unref (EV_A); /* child watcher should not keep loop alive */
1134 1934
1135void 1935void
1136ev_default_destroy (void) 1936ev_default_destroy (void)
1137{ 1937{
1138#if EV_MULTIPLICITY 1938#if EV_MULTIPLICITY
1139 struct ev_loop *loop = ev_default_loop_ptr; 1939 EV_P = ev_default_loop_ptr;
1140#endif 1940#endif
1941
1942 ev_default_loop_ptr = 0;
1141 1943
1142#ifndef _WIN32 1944#ifndef _WIN32
1143 ev_ref (EV_A); /* child watcher */ 1945 ev_ref (EV_A); /* child watcher */
1144 ev_signal_stop (EV_A_ &childev); 1946 ev_signal_stop (EV_A_ &childev);
1145#endif 1947#endif
1146 1948
1147 ev_ref (EV_A); /* signal watcher */
1148 ev_io_stop (EV_A_ &sigev);
1149
1150 close (sigpipe [0]); sigpipe [0] = 0;
1151 close (sigpipe [1]); sigpipe [1] = 0;
1152
1153 loop_destroy (EV_A); 1949 loop_destroy (EV_A);
1154} 1950}
1155 1951
1156void 1952void
1157ev_default_fork (void) 1953ev_default_fork (void)
1158{ 1954{
1159#if EV_MULTIPLICITY 1955#if EV_MULTIPLICITY
1160 struct ev_loop *loop = ev_default_loop_ptr; 1956 EV_P = ev_default_loop_ptr;
1161#endif 1957#endif
1162 1958
1163 if (backend) 1959 postfork = 1; /* must be in line with ev_loop_fork */
1164 postfork = 1;
1165} 1960}
1166 1961
1167/*****************************************************************************/ 1962/*****************************************************************************/
1168 1963
1169void 1964void
1170ev_invoke (EV_P_ void *w, int revents) 1965ev_invoke (EV_P_ void *w, int revents)
1171{ 1966{
1172 EV_CB_INVOKE ((W)w, revents); 1967 EV_CB_INVOKE ((W)w, revents);
1173} 1968}
1174 1969
1175void inline_speed 1970unsigned int
1176call_pending (EV_P) 1971ev_pending_count (EV_P)
1972{
1973 int pri;
1974 unsigned int count = 0;
1975
1976 for (pri = NUMPRI; pri--; )
1977 count += pendingcnt [pri];
1978
1979 return count;
1980}
1981
1982void noinline
1983ev_invoke_pending (EV_P)
1177{ 1984{
1178 int pri; 1985 int pri;
1179 1986
1180 for (pri = NUMPRI; pri--; ) 1987 for (pri = NUMPRI; pri--; )
1181 while (pendingcnt [pri]) 1988 while (pendingcnt [pri])
1182 { 1989 {
1183 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1990 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1184 1991
1185 if (expect_true (p->w))
1186 {
1187 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1992 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1993 /* ^ this is no longer true, as pending_w could be here */
1188 1994
1189 p->w->pending = 0; 1995 p->w->pending = 0;
1190 EV_CB_INVOKE (p->w, p->events); 1996 EV_CB_INVOKE (p->w, p->events);
1191 } 1997 EV_FREQUENT_CHECK;
1192 } 1998 }
1193} 1999}
1194 2000
1195void inline_size
1196timers_reify (EV_P)
1197{
1198 while (timercnt && ((WT)timers [0])->at <= mn_now)
1199 {
1200 ev_timer *w = timers [0];
1201
1202 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1203
1204 /* first reschedule or stop timer */
1205 if (w->repeat)
1206 {
1207 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1208
1209 ((WT)w)->at += w->repeat;
1210 if (((WT)w)->at < mn_now)
1211 ((WT)w)->at = mn_now;
1212
1213 downheap ((WT *)timers, timercnt, 0);
1214 }
1215 else
1216 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1217
1218 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1219 }
1220}
1221
1222#if EV_PERIODIC_ENABLE
1223void inline_size
1224periodics_reify (EV_P)
1225{
1226 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1227 {
1228 ev_periodic *w = periodics [0];
1229
1230 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1231
1232 /* first reschedule or stop timer */
1233 if (w->reschedule_cb)
1234 {
1235 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1236 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1237 downheap ((WT *)periodics, periodiccnt, 0);
1238 }
1239 else if (w->interval)
1240 {
1241 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1242 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1243 downheap ((WT *)periodics, periodiccnt, 0);
1244 }
1245 else
1246 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1247
1248 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1249 }
1250}
1251
1252static void noinline
1253periodics_reschedule (EV_P)
1254{
1255 int i;
1256
1257 /* adjust periodics after time jump */
1258 for (i = 0; i < periodiccnt; ++i)
1259 {
1260 ev_periodic *w = periodics [i];
1261
1262 if (w->reschedule_cb)
1263 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1264 else if (w->interval)
1265 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1266 }
1267
1268 /* now rebuild the heap */
1269 for (i = periodiccnt >> 1; i--; )
1270 downheap ((WT *)periodics, periodiccnt, i);
1271}
1272#endif
1273
1274#if EV_IDLE_ENABLE 2001#if EV_IDLE_ENABLE
1275void inline_size 2002/* make idle watchers pending. this handles the "call-idle */
2003/* only when higher priorities are idle" logic */
2004inline_size void
1276idle_reify (EV_P) 2005idle_reify (EV_P)
1277{ 2006{
1278 if (expect_false (idleall)) 2007 if (expect_false (idleall))
1279 { 2008 {
1280 int pri; 2009 int pri;
1292 } 2021 }
1293 } 2022 }
1294} 2023}
1295#endif 2024#endif
1296 2025
1297int inline_size 2026/* make timers pending */
1298time_update_monotonic (EV_P) 2027inline_size void
2028timers_reify (EV_P)
1299{ 2029{
2030 EV_FREQUENT_CHECK;
2031
2032 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2033 {
2034 do
2035 {
2036 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2037
2038 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2039
2040 /* first reschedule or stop timer */
2041 if (w->repeat)
2042 {
2043 ev_at (w) += w->repeat;
2044 if (ev_at (w) < mn_now)
2045 ev_at (w) = mn_now;
2046
2047 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2048
2049 ANHE_at_cache (timers [HEAP0]);
2050 downheap (timers, timercnt, HEAP0);
2051 }
2052 else
2053 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2054
2055 EV_FREQUENT_CHECK;
2056 feed_reverse (EV_A_ (W)w);
2057 }
2058 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2059
2060 feed_reverse_done (EV_A_ EV_TIMEOUT);
2061 }
2062}
2063
2064#if EV_PERIODIC_ENABLE
2065/* make periodics pending */
2066inline_size void
2067periodics_reify (EV_P)
2068{
2069 EV_FREQUENT_CHECK;
2070
2071 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2072 {
2073 int feed_count = 0;
2074
2075 do
2076 {
2077 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2078
2079 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2080
2081 /* first reschedule or stop timer */
2082 if (w->reschedule_cb)
2083 {
2084 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2085
2086 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2087
2088 ANHE_at_cache (periodics [HEAP0]);
2089 downheap (periodics, periodiccnt, HEAP0);
2090 }
2091 else if (w->interval)
2092 {
2093 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2094 /* if next trigger time is not sufficiently in the future, put it there */
2095 /* this might happen because of floating point inexactness */
2096 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2097 {
2098 ev_at (w) += w->interval;
2099
2100 /* if interval is unreasonably low we might still have a time in the past */
2101 /* so correct this. this will make the periodic very inexact, but the user */
2102 /* has effectively asked to get triggered more often than possible */
2103 if (ev_at (w) < ev_rt_now)
2104 ev_at (w) = ev_rt_now;
2105 }
2106
2107 ANHE_at_cache (periodics [HEAP0]);
2108 downheap (periodics, periodiccnt, HEAP0);
2109 }
2110 else
2111 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2112
2113 EV_FREQUENT_CHECK;
2114 feed_reverse (EV_A_ (W)w);
2115 }
2116 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2117
2118 feed_reverse_done (EV_A_ EV_PERIODIC);
2119 }
2120}
2121
2122/* simply recalculate all periodics */
2123/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2124static void noinline
2125periodics_reschedule (EV_P)
2126{
2127 int i;
2128
2129 /* adjust periodics after time jump */
2130 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2131 {
2132 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2133
2134 if (w->reschedule_cb)
2135 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2136 else if (w->interval)
2137 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2138
2139 ANHE_at_cache (periodics [i]);
2140 }
2141
2142 reheap (periodics, periodiccnt);
2143}
2144#endif
2145
2146/* adjust all timers by a given offset */
2147static void noinline
2148timers_reschedule (EV_P_ ev_tstamp adjust)
2149{
2150 int i;
2151
2152 for (i = 0; i < timercnt; ++i)
2153 {
2154 ANHE *he = timers + i + HEAP0;
2155 ANHE_w (*he)->at += adjust;
2156 ANHE_at_cache (*he);
2157 }
2158}
2159
2160/* fetch new monotonic and realtime times from the kernel */
2161/* also detetc if there was a timejump, and act accordingly */
2162inline_speed void
2163time_update (EV_P_ ev_tstamp max_block)
2164{
2165#if EV_USE_MONOTONIC
2166 if (expect_true (have_monotonic))
2167 {
2168 int i;
2169 ev_tstamp odiff = rtmn_diff;
2170
1300 mn_now = get_clock (); 2171 mn_now = get_clock ();
1301 2172
2173 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2174 /* interpolate in the meantime */
1302 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2175 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1303 { 2176 {
1304 ev_rt_now = rtmn_diff + mn_now; 2177 ev_rt_now = rtmn_diff + mn_now;
1305 return 0; 2178 return;
1306 } 2179 }
1307 else 2180
1308 {
1309 now_floor = mn_now; 2181 now_floor = mn_now;
1310 ev_rt_now = ev_time (); 2182 ev_rt_now = ev_time ();
1311 return 1;
1312 }
1313}
1314 2183
1315void inline_size 2184 /* loop a few times, before making important decisions.
1316time_update (EV_P) 2185 * on the choice of "4": one iteration isn't enough,
1317{ 2186 * in case we get preempted during the calls to
1318 int i; 2187 * ev_time and get_clock. a second call is almost guaranteed
1319 2188 * to succeed in that case, though. and looping a few more times
1320#if EV_USE_MONOTONIC 2189 * doesn't hurt either as we only do this on time-jumps or
1321 if (expect_true (have_monotonic)) 2190 * in the unlikely event of having been preempted here.
1322 { 2191 */
1323 if (time_update_monotonic (EV_A)) 2192 for (i = 4; --i; )
1324 { 2193 {
1325 ev_tstamp odiff = rtmn_diff;
1326
1327 /* loop a few times, before making important decisions.
1328 * on the choice of "4": one iteration isn't enough,
1329 * in case we get preempted during the calls to
1330 * ev_time and get_clock. a second call is almost guaranteed
1331 * to succeed in that case, though. and looping a few more times
1332 * doesn't hurt either as we only do this on time-jumps or
1333 * in the unlikely event of having been preempted here.
1334 */
1335 for (i = 4; --i; )
1336 {
1337 rtmn_diff = ev_rt_now - mn_now; 2194 rtmn_diff = ev_rt_now - mn_now;
1338 2195
1339 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2196 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1340 return; /* all is well */ 2197 return; /* all is well */
1341 2198
1342 ev_rt_now = ev_time (); 2199 ev_rt_now = ev_time ();
1343 mn_now = get_clock (); 2200 mn_now = get_clock ();
1344 now_floor = mn_now; 2201 now_floor = mn_now;
1345 } 2202 }
1346 2203
2204 /* no timer adjustment, as the monotonic clock doesn't jump */
2205 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1347# if EV_PERIODIC_ENABLE 2206# if EV_PERIODIC_ENABLE
1348 periodics_reschedule (EV_A); 2207 periodics_reschedule (EV_A);
1349# endif 2208# endif
1350 /* no timer adjustment, as the monotonic clock doesn't jump */
1351 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1352 }
1353 } 2209 }
1354 else 2210 else
1355#endif 2211#endif
1356 { 2212 {
1357 ev_rt_now = ev_time (); 2213 ev_rt_now = ev_time ();
1358 2214
1359 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2215 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1360 { 2216 {
2217 /* adjust timers. this is easy, as the offset is the same for all of them */
2218 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1361#if EV_PERIODIC_ENABLE 2219#if EV_PERIODIC_ENABLE
1362 periodics_reschedule (EV_A); 2220 periodics_reschedule (EV_A);
1363#endif 2221#endif
1364
1365 /* adjust timers. this is easy, as the offset is the same for all of them */
1366 for (i = 0; i < timercnt; ++i)
1367 ((WT)timers [i])->at += ev_rt_now - mn_now;
1368 } 2222 }
1369 2223
1370 mn_now = ev_rt_now; 2224 mn_now = ev_rt_now;
1371 } 2225 }
1372} 2226}
1373 2227
1374void 2228void
1375ev_ref (EV_P)
1376{
1377 ++activecnt;
1378}
1379
1380void
1381ev_unref (EV_P)
1382{
1383 --activecnt;
1384}
1385
1386static int loop_done;
1387
1388void
1389ev_loop (EV_P_ int flags) 2229ev_loop (EV_P_ int flags)
1390{ 2230{
1391 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2231#if EV_MINIMAL < 2
1392 ? EVUNLOOP_ONE 2232 ++loop_depth;
1393 : EVUNLOOP_CANCEL; 2233#endif
1394 2234
2235 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2236
2237 loop_done = EVUNLOOP_CANCEL;
2238
1395 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2239 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1396 2240
1397 do 2241 do
1398 { 2242 {
2243#if EV_VERIFY >= 2
2244 ev_loop_verify (EV_A);
2245#endif
2246
1399#ifndef _WIN32 2247#ifndef _WIN32
1400 if (expect_false (curpid)) /* penalise the forking check even more */ 2248 if (expect_false (curpid)) /* penalise the forking check even more */
1401 if (expect_false (getpid () != curpid)) 2249 if (expect_false (getpid () != curpid))
1402 { 2250 {
1403 curpid = getpid (); 2251 curpid = getpid ();
1409 /* we might have forked, so queue fork handlers */ 2257 /* we might have forked, so queue fork handlers */
1410 if (expect_false (postfork)) 2258 if (expect_false (postfork))
1411 if (forkcnt) 2259 if (forkcnt)
1412 { 2260 {
1413 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2261 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1414 call_pending (EV_A); 2262 EV_INVOKE_PENDING;
1415 } 2263 }
1416#endif 2264#endif
1417 2265
1418 /* queue check watchers (and execute them) */ 2266 /* queue prepare watchers (and execute them) */
1419 if (expect_false (preparecnt)) 2267 if (expect_false (preparecnt))
1420 { 2268 {
1421 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2269 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1422 call_pending (EV_A); 2270 EV_INVOKE_PENDING;
1423 } 2271 }
1424 2272
1425 if (expect_false (!activecnt)) 2273 if (expect_false (loop_done))
1426 break; 2274 break;
1427 2275
1428 /* we might have forked, so reify kernel state if necessary */ 2276 /* we might have forked, so reify kernel state if necessary */
1429 if (expect_false (postfork)) 2277 if (expect_false (postfork))
1430 loop_fork (EV_A); 2278 loop_fork (EV_A);
1432 /* update fd-related kernel structures */ 2280 /* update fd-related kernel structures */
1433 fd_reify (EV_A); 2281 fd_reify (EV_A);
1434 2282
1435 /* calculate blocking time */ 2283 /* calculate blocking time */
1436 { 2284 {
1437 ev_tstamp block; 2285 ev_tstamp waittime = 0.;
2286 ev_tstamp sleeptime = 0.;
1438 2287
1439 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2288 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1440 block = 0.; /* do not block at all */
1441 else
1442 { 2289 {
2290 /* remember old timestamp for io_blocktime calculation */
2291 ev_tstamp prev_mn_now = mn_now;
2292
1443 /* update time to cancel out callback processing overhead */ 2293 /* update time to cancel out callback processing overhead */
1444#if EV_USE_MONOTONIC
1445 if (expect_true (have_monotonic))
1446 time_update_monotonic (EV_A); 2294 time_update (EV_A_ 1e100);
1447 else
1448#endif
1449 {
1450 ev_rt_now = ev_time ();
1451 mn_now = ev_rt_now;
1452 }
1453 2295
1454 block = MAX_BLOCKTIME; 2296 waittime = MAX_BLOCKTIME;
1455 2297
1456 if (timercnt) 2298 if (timercnt)
1457 { 2299 {
1458 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2300 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1459 if (block > to) block = to; 2301 if (waittime > to) waittime = to;
1460 } 2302 }
1461 2303
1462#if EV_PERIODIC_ENABLE 2304#if EV_PERIODIC_ENABLE
1463 if (periodiccnt) 2305 if (periodiccnt)
1464 { 2306 {
1465 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2307 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1466 if (block > to) block = to; 2308 if (waittime > to) waittime = to;
1467 } 2309 }
1468#endif 2310#endif
1469 2311
2312 /* don't let timeouts decrease the waittime below timeout_blocktime */
2313 if (expect_false (waittime < timeout_blocktime))
2314 waittime = timeout_blocktime;
2315
2316 /* extra check because io_blocktime is commonly 0 */
1470 if (expect_false (block < 0.)) block = 0.; 2317 if (expect_false (io_blocktime))
2318 {
2319 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2320
2321 if (sleeptime > waittime - backend_fudge)
2322 sleeptime = waittime - backend_fudge;
2323
2324 if (expect_true (sleeptime > 0.))
2325 {
2326 ev_sleep (sleeptime);
2327 waittime -= sleeptime;
2328 }
2329 }
1471 } 2330 }
1472 2331
2332#if EV_MINIMAL < 2
1473 ++loop_count; 2333 ++loop_count;
2334#endif
2335 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1474 backend_poll (EV_A_ block); 2336 backend_poll (EV_A_ waittime);
2337 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2338
2339 /* update ev_rt_now, do magic */
2340 time_update (EV_A_ waittime + sleeptime);
1475 } 2341 }
1476
1477 /* update ev_rt_now, do magic */
1478 time_update (EV_A);
1479 2342
1480 /* queue pending timers and reschedule them */ 2343 /* queue pending timers and reschedule them */
1481 timers_reify (EV_A); /* relative timers called last */ 2344 timers_reify (EV_A); /* relative timers called last */
1482#if EV_PERIODIC_ENABLE 2345#if EV_PERIODIC_ENABLE
1483 periodics_reify (EV_A); /* absolute timers called first */ 2346 periodics_reify (EV_A); /* absolute timers called first */
1490 2353
1491 /* queue check watchers, to be executed first */ 2354 /* queue check watchers, to be executed first */
1492 if (expect_false (checkcnt)) 2355 if (expect_false (checkcnt))
1493 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2356 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1494 2357
1495 call_pending (EV_A); 2358 EV_INVOKE_PENDING;
1496
1497 } 2359 }
1498 while (expect_true (activecnt && !loop_done)); 2360 while (expect_true (
2361 activecnt
2362 && !loop_done
2363 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2364 ));
1499 2365
1500 if (loop_done == EVUNLOOP_ONE) 2366 if (loop_done == EVUNLOOP_ONE)
1501 loop_done = EVUNLOOP_CANCEL; 2367 loop_done = EVUNLOOP_CANCEL;
2368
2369#if EV_MINIMAL < 2
2370 --loop_depth;
2371#endif
1502} 2372}
1503 2373
1504void 2374void
1505ev_unloop (EV_P_ int how) 2375ev_unloop (EV_P_ int how)
1506{ 2376{
1507 loop_done = how; 2377 loop_done = how;
1508} 2378}
1509 2379
2380void
2381ev_ref (EV_P)
2382{
2383 ++activecnt;
2384}
2385
2386void
2387ev_unref (EV_P)
2388{
2389 --activecnt;
2390}
2391
2392void
2393ev_now_update (EV_P)
2394{
2395 time_update (EV_A_ 1e100);
2396}
2397
2398void
2399ev_suspend (EV_P)
2400{
2401 ev_now_update (EV_A);
2402}
2403
2404void
2405ev_resume (EV_P)
2406{
2407 ev_tstamp mn_prev = mn_now;
2408
2409 ev_now_update (EV_A);
2410 timers_reschedule (EV_A_ mn_now - mn_prev);
2411#if EV_PERIODIC_ENABLE
2412 /* TODO: really do this? */
2413 periodics_reschedule (EV_A);
2414#endif
2415}
2416
1510/*****************************************************************************/ 2417/*****************************************************************************/
2418/* singly-linked list management, used when the expected list length is short */
1511 2419
1512void inline_size 2420inline_size void
1513wlist_add (WL *head, WL elem) 2421wlist_add (WL *head, WL elem)
1514{ 2422{
1515 elem->next = *head; 2423 elem->next = *head;
1516 *head = elem; 2424 *head = elem;
1517} 2425}
1518 2426
1519void inline_size 2427inline_size void
1520wlist_del (WL *head, WL elem) 2428wlist_del (WL *head, WL elem)
1521{ 2429{
1522 while (*head) 2430 while (*head)
1523 { 2431 {
1524 if (*head == elem) 2432 if (expect_true (*head == elem))
1525 { 2433 {
1526 *head = elem->next; 2434 *head = elem->next;
1527 return; 2435 break;
1528 } 2436 }
1529 2437
1530 head = &(*head)->next; 2438 head = &(*head)->next;
1531 } 2439 }
1532} 2440}
1533 2441
1534void inline_speed 2442/* internal, faster, version of ev_clear_pending */
2443inline_speed void
1535clear_pending (EV_P_ W w) 2444clear_pending (EV_P_ W w)
1536{ 2445{
1537 if (w->pending) 2446 if (w->pending)
1538 { 2447 {
1539 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2448 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1540 w->pending = 0; 2449 w->pending = 0;
1541 } 2450 }
1542} 2451}
1543 2452
1544int 2453int
1545ev_clear_pending (EV_P_ void *w) 2454ev_clear_pending (EV_P_ void *w)
1546{ 2455{
1547 W w_ = (W)w; 2456 W w_ = (W)w;
1548 int pending = w_->pending; 2457 int pending = w_->pending;
1549 2458
1550 if (!pending) 2459 if (expect_true (pending))
2460 {
2461 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2462 p->w = (W)&pending_w;
2463 w_->pending = 0;
2464 return p->events;
2465 }
2466 else
1551 return 0; 2467 return 0;
1552
1553 w_->pending = 0;
1554 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1555 p->w = 0;
1556
1557 return p->events;
1558} 2468}
1559 2469
1560void inline_size 2470inline_size void
1561pri_adjust (EV_P_ W w) 2471pri_adjust (EV_P_ W w)
1562{ 2472{
1563 int pri = w->priority; 2473 int pri = ev_priority (w);
1564 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2474 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1565 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2475 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1566 w->priority = pri; 2476 ev_set_priority (w, pri);
1567} 2477}
1568 2478
1569void inline_speed 2479inline_speed void
1570ev_start (EV_P_ W w, int active) 2480ev_start (EV_P_ W w, int active)
1571{ 2481{
1572 pri_adjust (EV_A_ w); 2482 pri_adjust (EV_A_ w);
1573 w->active = active; 2483 w->active = active;
1574 ev_ref (EV_A); 2484 ev_ref (EV_A);
1575} 2485}
1576 2486
1577void inline_size 2487inline_size void
1578ev_stop (EV_P_ W w) 2488ev_stop (EV_P_ W w)
1579{ 2489{
1580 ev_unref (EV_A); 2490 ev_unref (EV_A);
1581 w->active = 0; 2491 w->active = 0;
1582} 2492}
1583 2493
1584/*****************************************************************************/ 2494/*****************************************************************************/
1585 2495
1586void 2496void noinline
1587ev_io_start (EV_P_ ev_io *w) 2497ev_io_start (EV_P_ ev_io *w)
1588{ 2498{
1589 int fd = w->fd; 2499 int fd = w->fd;
1590 2500
1591 if (expect_false (ev_is_active (w))) 2501 if (expect_false (ev_is_active (w)))
1592 return; 2502 return;
1593 2503
1594 assert (("ev_io_start called with negative fd", fd >= 0)); 2504 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2505 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2506
2507 EV_FREQUENT_CHECK;
1595 2508
1596 ev_start (EV_A_ (W)w, 1); 2509 ev_start (EV_A_ (W)w, 1);
1597 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2510 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1598 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2511 wlist_add (&anfds[fd].head, (WL)w);
1599 2512
1600 fd_change (EV_A_ fd); 2513 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1601} 2514 w->events &= ~EV__IOFDSET;
1602 2515
1603void 2516 EV_FREQUENT_CHECK;
2517}
2518
2519void noinline
1604ev_io_stop (EV_P_ ev_io *w) 2520ev_io_stop (EV_P_ ev_io *w)
1605{ 2521{
1606 clear_pending (EV_A_ (W)w); 2522 clear_pending (EV_A_ (W)w);
1607 if (expect_false (!ev_is_active (w))) 2523 if (expect_false (!ev_is_active (w)))
1608 return; 2524 return;
1609 2525
1610 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2526 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1611 2527
2528 EV_FREQUENT_CHECK;
2529
1612 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2530 wlist_del (&anfds[w->fd].head, (WL)w);
1613 ev_stop (EV_A_ (W)w); 2531 ev_stop (EV_A_ (W)w);
1614 2532
1615 fd_change (EV_A_ w->fd); 2533 fd_change (EV_A_ w->fd, 1);
1616}
1617 2534
1618void 2535 EV_FREQUENT_CHECK;
2536}
2537
2538void noinline
1619ev_timer_start (EV_P_ ev_timer *w) 2539ev_timer_start (EV_P_ ev_timer *w)
1620{ 2540{
1621 if (expect_false (ev_is_active (w))) 2541 if (expect_false (ev_is_active (w)))
1622 return; 2542 return;
1623 2543
1624 ((WT)w)->at += mn_now; 2544 ev_at (w) += mn_now;
1625 2545
1626 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2546 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1627 2547
2548 EV_FREQUENT_CHECK;
2549
2550 ++timercnt;
1628 ev_start (EV_A_ (W)w, ++timercnt); 2551 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1629 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2552 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1630 timers [timercnt - 1] = w; 2553 ANHE_w (timers [ev_active (w)]) = (WT)w;
1631 upheap ((WT *)timers, timercnt - 1); 2554 ANHE_at_cache (timers [ev_active (w)]);
2555 upheap (timers, ev_active (w));
1632 2556
2557 EV_FREQUENT_CHECK;
2558
1633 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2559 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1634} 2560}
1635 2561
1636void 2562void noinline
1637ev_timer_stop (EV_P_ ev_timer *w) 2563ev_timer_stop (EV_P_ ev_timer *w)
1638{ 2564{
1639 clear_pending (EV_A_ (W)w); 2565 clear_pending (EV_A_ (W)w);
1640 if (expect_false (!ev_is_active (w))) 2566 if (expect_false (!ev_is_active (w)))
1641 return; 2567 return;
1642 2568
1643 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2569 EV_FREQUENT_CHECK;
1644 2570
1645 { 2571 {
1646 int active = ((W)w)->active; 2572 int active = ev_active (w);
1647 2573
2574 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2575
2576 --timercnt;
2577
1648 if (expect_true (--active < --timercnt)) 2578 if (expect_true (active < timercnt + HEAP0))
1649 { 2579 {
1650 timers [active] = timers [timercnt]; 2580 timers [active] = timers [timercnt + HEAP0];
1651 adjustheap ((WT *)timers, timercnt, active); 2581 adjustheap (timers, timercnt, active);
1652 } 2582 }
1653 } 2583 }
1654 2584
1655 ((WT)w)->at -= mn_now; 2585 EV_FREQUENT_CHECK;
2586
2587 ev_at (w) -= mn_now;
1656 2588
1657 ev_stop (EV_A_ (W)w); 2589 ev_stop (EV_A_ (W)w);
1658} 2590}
1659 2591
1660void 2592void noinline
1661ev_timer_again (EV_P_ ev_timer *w) 2593ev_timer_again (EV_P_ ev_timer *w)
1662{ 2594{
2595 EV_FREQUENT_CHECK;
2596
1663 if (ev_is_active (w)) 2597 if (ev_is_active (w))
1664 { 2598 {
1665 if (w->repeat) 2599 if (w->repeat)
1666 { 2600 {
1667 ((WT)w)->at = mn_now + w->repeat; 2601 ev_at (w) = mn_now + w->repeat;
2602 ANHE_at_cache (timers [ev_active (w)]);
1668 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2603 adjustheap (timers, timercnt, ev_active (w));
1669 } 2604 }
1670 else 2605 else
1671 ev_timer_stop (EV_A_ w); 2606 ev_timer_stop (EV_A_ w);
1672 } 2607 }
1673 else if (w->repeat) 2608 else if (w->repeat)
1674 { 2609 {
1675 w->at = w->repeat; 2610 ev_at (w) = w->repeat;
1676 ev_timer_start (EV_A_ w); 2611 ev_timer_start (EV_A_ w);
1677 } 2612 }
2613
2614 EV_FREQUENT_CHECK;
2615}
2616
2617ev_tstamp
2618ev_timer_remaining (EV_P_ ev_timer *w)
2619{
2620 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1678} 2621}
1679 2622
1680#if EV_PERIODIC_ENABLE 2623#if EV_PERIODIC_ENABLE
1681void 2624void noinline
1682ev_periodic_start (EV_P_ ev_periodic *w) 2625ev_periodic_start (EV_P_ ev_periodic *w)
1683{ 2626{
1684 if (expect_false (ev_is_active (w))) 2627 if (expect_false (ev_is_active (w)))
1685 return; 2628 return;
1686 2629
1687 if (w->reschedule_cb) 2630 if (w->reschedule_cb)
1688 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2631 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1689 else if (w->interval) 2632 else if (w->interval)
1690 { 2633 {
1691 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2634 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1692 /* this formula differs from the one in periodic_reify because we do not always round up */ 2635 /* this formula differs from the one in periodic_reify because we do not always round up */
1693 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2636 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1694 } 2637 }
2638 else
2639 ev_at (w) = w->offset;
1695 2640
2641 EV_FREQUENT_CHECK;
2642
2643 ++periodiccnt;
1696 ev_start (EV_A_ (W)w, ++periodiccnt); 2644 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1697 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2645 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1698 periodics [periodiccnt - 1] = w; 2646 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1699 upheap ((WT *)periodics, periodiccnt - 1); 2647 ANHE_at_cache (periodics [ev_active (w)]);
2648 upheap (periodics, ev_active (w));
1700 2649
2650 EV_FREQUENT_CHECK;
2651
1701 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2652 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1702} 2653}
1703 2654
1704void 2655void noinline
1705ev_periodic_stop (EV_P_ ev_periodic *w) 2656ev_periodic_stop (EV_P_ ev_periodic *w)
1706{ 2657{
1707 clear_pending (EV_A_ (W)w); 2658 clear_pending (EV_A_ (W)w);
1708 if (expect_false (!ev_is_active (w))) 2659 if (expect_false (!ev_is_active (w)))
1709 return; 2660 return;
1710 2661
1711 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2662 EV_FREQUENT_CHECK;
1712 2663
1713 { 2664 {
1714 int active = ((W)w)->active; 2665 int active = ev_active (w);
1715 2666
2667 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2668
2669 --periodiccnt;
2670
1716 if (expect_true (--active < --periodiccnt)) 2671 if (expect_true (active < periodiccnt + HEAP0))
1717 { 2672 {
1718 periodics [active] = periodics [periodiccnt]; 2673 periodics [active] = periodics [periodiccnt + HEAP0];
1719 adjustheap ((WT *)periodics, periodiccnt, active); 2674 adjustheap (periodics, periodiccnt, active);
1720 } 2675 }
1721 } 2676 }
1722 2677
2678 EV_FREQUENT_CHECK;
2679
1723 ev_stop (EV_A_ (W)w); 2680 ev_stop (EV_A_ (W)w);
1724} 2681}
1725 2682
1726void 2683void noinline
1727ev_periodic_again (EV_P_ ev_periodic *w) 2684ev_periodic_again (EV_P_ ev_periodic *w)
1728{ 2685{
1729 /* TODO: use adjustheap and recalculation */ 2686 /* TODO: use adjustheap and recalculation */
1730 ev_periodic_stop (EV_A_ w); 2687 ev_periodic_stop (EV_A_ w);
1731 ev_periodic_start (EV_A_ w); 2688 ev_periodic_start (EV_A_ w);
1734 2691
1735#ifndef SA_RESTART 2692#ifndef SA_RESTART
1736# define SA_RESTART 0 2693# define SA_RESTART 0
1737#endif 2694#endif
1738 2695
1739void 2696void noinline
1740ev_signal_start (EV_P_ ev_signal *w) 2697ev_signal_start (EV_P_ ev_signal *w)
1741{ 2698{
1742#if EV_MULTIPLICITY
1743 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1744#endif
1745 if (expect_false (ev_is_active (w))) 2699 if (expect_false (ev_is_active (w)))
1746 return; 2700 return;
1747 2701
1748 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2702 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2703
2704#if EV_MULTIPLICITY
2705 assert (("libev: a signal must not be attached to two different loops",
2706 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2707
2708 signals [w->signum - 1].loop = EV_A;
2709#endif
2710
2711 EV_FREQUENT_CHECK;
2712
2713#if EV_USE_SIGNALFD
2714 if (sigfd == -2)
2715 {
2716 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2717 if (sigfd < 0 && errno == EINVAL)
2718 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2719
2720 if (sigfd >= 0)
2721 {
2722 fd_intern (sigfd); /* doing it twice will not hurt */
2723
2724 sigemptyset (&sigfd_set);
2725
2726 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2727 ev_set_priority (&sigfd_w, EV_MAXPRI);
2728 ev_io_start (EV_A_ &sigfd_w);
2729 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2730 }
2731 }
2732
2733 if (sigfd >= 0)
2734 {
2735 /* TODO: check .head */
2736 sigaddset (&sigfd_set, w->signum);
2737 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2738
2739 signalfd (sigfd, &sigfd_set, 0);
2740 }
2741#endif
1749 2742
1750 ev_start (EV_A_ (W)w, 1); 2743 ev_start (EV_A_ (W)w, 1);
1751 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1752 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2744 wlist_add (&signals [w->signum - 1].head, (WL)w);
1753 2745
1754 if (!((WL)w)->next) 2746 if (!((WL)w)->next)
2747# if EV_USE_SIGNALFD
2748 if (sigfd < 0) /*TODO*/
2749# endif
1755 { 2750 {
1756#if _WIN32 2751# if _WIN32
2752 evpipe_init (EV_A);
2753
1757 signal (w->signum, sighandler); 2754 signal (w->signum, ev_sighandler);
1758#else 2755# else
1759 struct sigaction sa; 2756 struct sigaction sa;
2757
2758 evpipe_init (EV_A);
2759
1760 sa.sa_handler = sighandler; 2760 sa.sa_handler = ev_sighandler;
1761 sigfillset (&sa.sa_mask); 2761 sigfillset (&sa.sa_mask);
1762 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2762 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1763 sigaction (w->signum, &sa, 0); 2763 sigaction (w->signum, &sa, 0);
2764
2765 sigemptyset (&sa.sa_mask);
2766 sigaddset (&sa.sa_mask, w->signum);
2767 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1764#endif 2768#endif
1765 } 2769 }
1766}
1767 2770
1768void 2771 EV_FREQUENT_CHECK;
2772}
2773
2774void noinline
1769ev_signal_stop (EV_P_ ev_signal *w) 2775ev_signal_stop (EV_P_ ev_signal *w)
1770{ 2776{
1771 clear_pending (EV_A_ (W)w); 2777 clear_pending (EV_A_ (W)w);
1772 if (expect_false (!ev_is_active (w))) 2778 if (expect_false (!ev_is_active (w)))
1773 return; 2779 return;
1774 2780
2781 EV_FREQUENT_CHECK;
2782
1775 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2783 wlist_del (&signals [w->signum - 1].head, (WL)w);
1776 ev_stop (EV_A_ (W)w); 2784 ev_stop (EV_A_ (W)w);
1777 2785
1778 if (!signals [w->signum - 1].head) 2786 if (!signals [w->signum - 1].head)
2787 {
2788#if EV_MULTIPLICITY
2789 signals [w->signum - 1].loop = 0; /* unattach from signal */
2790#endif
2791#if EV_USE_SIGNALFD
2792 if (sigfd >= 0)
2793 {
2794 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2795 sigdelset (&sigfd_set, w->signum);
2796 signalfd (sigfd, &sigfd_set, 0);
2797 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2798 /*TODO: maybe unblock signal? */
2799 }
2800 else
2801#endif
1779 signal (w->signum, SIG_DFL); 2802 signal (w->signum, SIG_DFL);
2803 }
2804
2805 EV_FREQUENT_CHECK;
1780} 2806}
1781 2807
1782void 2808void
1783ev_child_start (EV_P_ ev_child *w) 2809ev_child_start (EV_P_ ev_child *w)
1784{ 2810{
1785#if EV_MULTIPLICITY 2811#if EV_MULTIPLICITY
1786 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2812 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1787#endif 2813#endif
1788 if (expect_false (ev_is_active (w))) 2814 if (expect_false (ev_is_active (w)))
1789 return; 2815 return;
1790 2816
2817 EV_FREQUENT_CHECK;
2818
1791 ev_start (EV_A_ (W)w, 1); 2819 ev_start (EV_A_ (W)w, 1);
1792 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2820 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2821
2822 EV_FREQUENT_CHECK;
1793} 2823}
1794 2824
1795void 2825void
1796ev_child_stop (EV_P_ ev_child *w) 2826ev_child_stop (EV_P_ ev_child *w)
1797{ 2827{
1798 clear_pending (EV_A_ (W)w); 2828 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 2829 if (expect_false (!ev_is_active (w)))
1800 return; 2830 return;
1801 2831
2832 EV_FREQUENT_CHECK;
2833
1802 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2834 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1803 ev_stop (EV_A_ (W)w); 2835 ev_stop (EV_A_ (W)w);
2836
2837 EV_FREQUENT_CHECK;
1804} 2838}
1805 2839
1806#if EV_STAT_ENABLE 2840#if EV_STAT_ENABLE
1807 2841
1808# ifdef _WIN32 2842# ifdef _WIN32
1809# undef lstat 2843# undef lstat
1810# define lstat(a,b) _stati64 (a,b) 2844# define lstat(a,b) _stati64 (a,b)
1811# endif 2845# endif
1812 2846
1813#define DEF_STAT_INTERVAL 5.0074891 2847#define DEF_STAT_INTERVAL 5.0074891
2848#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1814#define MIN_STAT_INTERVAL 0.1074891 2849#define MIN_STAT_INTERVAL 0.1074891
1815 2850
1816static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2851static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1817 2852
1818#if EV_USE_INOTIFY 2853#if EV_USE_INOTIFY
1819# define EV_INOTIFY_BUFSIZE 8192 2854# define EV_INOTIFY_BUFSIZE 8192
1823{ 2858{
1824 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2859 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1825 2860
1826 if (w->wd < 0) 2861 if (w->wd < 0)
1827 { 2862 {
2863 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1828 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2864 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1829 2865
1830 /* monitor some parent directory for speedup hints */ 2866 /* monitor some parent directory for speedup hints */
2867 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2868 /* but an efficiency issue only */
1831 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2869 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1832 { 2870 {
1833 char path [4096]; 2871 char path [4096];
1834 strcpy (path, w->path); 2872 strcpy (path, w->path);
1835 2873
1838 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2876 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1839 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2877 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1840 2878
1841 char *pend = strrchr (path, '/'); 2879 char *pend = strrchr (path, '/');
1842 2880
1843 if (!pend) 2881 if (!pend || pend == path)
1844 break; /* whoops, no '/', complain to your admin */ 2882 break;
1845 2883
1846 *pend = 0; 2884 *pend = 0;
1847 w->wd = inotify_add_watch (fs_fd, path, mask); 2885 w->wd = inotify_add_watch (fs_fd, path, mask);
1848 } 2886 }
1849 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2887 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1850 } 2888 }
1851 } 2889 }
1852 else
1853 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1854 2890
1855 if (w->wd >= 0) 2891 if (w->wd >= 0)
2892 {
2893 struct statfs sfs;
2894
1856 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2895 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2896
2897 /* now local changes will be tracked by inotify, but remote changes won't */
2898 /* unless the filesystem is known to be local, we therefore still poll */
2899 /* also do poll on <2.6.25, but with normal frequency */
2900
2901 if (fs_2625 && !statfs (w->path, &sfs))
2902 if (sfs.f_type == 0x1373 /* devfs */
2903 || sfs.f_type == 0xEF53 /* ext2/3 */
2904 || sfs.f_type == 0x3153464a /* jfs */
2905 || sfs.f_type == 0x52654973 /* reiser3 */
2906 || sfs.f_type == 0x01021994 /* tempfs */
2907 || sfs.f_type == 0x58465342 /* xfs */)
2908 return;
2909
2910 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2911 ev_timer_again (EV_A_ &w->timer);
2912 }
1857} 2913}
1858 2914
1859static void noinline 2915static void noinline
1860infy_del (EV_P_ ev_stat *w) 2916infy_del (EV_P_ ev_stat *w)
1861{ 2917{
1875 2931
1876static void noinline 2932static void noinline
1877infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2933infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1878{ 2934{
1879 if (slot < 0) 2935 if (slot < 0)
1880 /* overflow, need to check for all hahs slots */ 2936 /* overflow, need to check for all hash slots */
1881 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2937 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1882 infy_wd (EV_A_ slot, wd, ev); 2938 infy_wd (EV_A_ slot, wd, ev);
1883 else 2939 else
1884 { 2940 {
1885 WL w_; 2941 WL w_;
1891 2947
1892 if (w->wd == wd || wd == -1) 2948 if (w->wd == wd || wd == -1)
1893 { 2949 {
1894 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2950 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1895 { 2951 {
2952 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1896 w->wd = -1; 2953 w->wd = -1;
1897 infy_add (EV_A_ w); /* re-add, no matter what */ 2954 infy_add (EV_A_ w); /* re-add, no matter what */
1898 } 2955 }
1899 2956
1900 stat_timer_cb (EV_A_ &w->timer, 0); 2957 stat_timer_cb (EV_A_ &w->timer, 0);
1913 2970
1914 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2971 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1915 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2972 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1916} 2973}
1917 2974
1918void inline_size 2975inline_size void
2976check_2625 (EV_P)
2977{
2978 /* kernels < 2.6.25 are borked
2979 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2980 */
2981 struct utsname buf;
2982 int major, minor, micro;
2983
2984 if (uname (&buf))
2985 return;
2986
2987 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2988 return;
2989
2990 if (major < 2
2991 || (major == 2 && minor < 6)
2992 || (major == 2 && minor == 6 && micro < 25))
2993 return;
2994
2995 fs_2625 = 1;
2996}
2997
2998inline_size int
2999infy_newfd (void)
3000{
3001#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3002 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3003 if (fd >= 0)
3004 return fd;
3005#endif
3006 return inotify_init ();
3007}
3008
3009inline_size void
1919infy_init (EV_P) 3010infy_init (EV_P)
1920{ 3011{
1921 if (fs_fd != -2) 3012 if (fs_fd != -2)
1922 return; 3013 return;
1923 3014
3015 fs_fd = -1;
3016
3017 check_2625 (EV_A);
3018
1924 fs_fd = inotify_init (); 3019 fs_fd = infy_newfd ();
1925 3020
1926 if (fs_fd >= 0) 3021 if (fs_fd >= 0)
1927 { 3022 {
3023 fd_intern (fs_fd);
1928 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3024 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1929 ev_set_priority (&fs_w, EV_MAXPRI); 3025 ev_set_priority (&fs_w, EV_MAXPRI);
1930 ev_io_start (EV_A_ &fs_w); 3026 ev_io_start (EV_A_ &fs_w);
3027 ev_unref (EV_A);
1931 } 3028 }
1932} 3029}
1933 3030
1934void inline_size 3031inline_size void
1935infy_fork (EV_P) 3032infy_fork (EV_P)
1936{ 3033{
1937 int slot; 3034 int slot;
1938 3035
1939 if (fs_fd < 0) 3036 if (fs_fd < 0)
1940 return; 3037 return;
1941 3038
3039 ev_ref (EV_A);
3040 ev_io_stop (EV_A_ &fs_w);
1942 close (fs_fd); 3041 close (fs_fd);
1943 fs_fd = inotify_init (); 3042 fs_fd = infy_newfd ();
3043
3044 if (fs_fd >= 0)
3045 {
3046 fd_intern (fs_fd);
3047 ev_io_set (&fs_w, fs_fd, EV_READ);
3048 ev_io_start (EV_A_ &fs_w);
3049 ev_unref (EV_A);
3050 }
1944 3051
1945 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3052 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1946 { 3053 {
1947 WL w_ = fs_hash [slot].head; 3054 WL w_ = fs_hash [slot].head;
1948 fs_hash [slot].head = 0; 3055 fs_hash [slot].head = 0;
1955 w->wd = -1; 3062 w->wd = -1;
1956 3063
1957 if (fs_fd >= 0) 3064 if (fs_fd >= 0)
1958 infy_add (EV_A_ w); /* re-add, no matter what */ 3065 infy_add (EV_A_ w); /* re-add, no matter what */
1959 else 3066 else
1960 ev_timer_start (EV_A_ &w->timer); 3067 ev_timer_again (EV_A_ &w->timer);
1961 } 3068 }
1962
1963 } 3069 }
1964} 3070}
1965 3071
3072#endif
3073
3074#ifdef _WIN32
3075# define EV_LSTAT(p,b) _stati64 (p, b)
3076#else
3077# define EV_LSTAT(p,b) lstat (p, b)
1966#endif 3078#endif
1967 3079
1968void 3080void
1969ev_stat_stat (EV_P_ ev_stat *w) 3081ev_stat_stat (EV_P_ ev_stat *w)
1970{ 3082{
1997 || w->prev.st_atime != w->attr.st_atime 3109 || w->prev.st_atime != w->attr.st_atime
1998 || w->prev.st_mtime != w->attr.st_mtime 3110 || w->prev.st_mtime != w->attr.st_mtime
1999 || w->prev.st_ctime != w->attr.st_ctime 3111 || w->prev.st_ctime != w->attr.st_ctime
2000 ) { 3112 ) {
2001 #if EV_USE_INOTIFY 3113 #if EV_USE_INOTIFY
3114 if (fs_fd >= 0)
3115 {
2002 infy_del (EV_A_ w); 3116 infy_del (EV_A_ w);
2003 infy_add (EV_A_ w); 3117 infy_add (EV_A_ w);
2004 ev_stat_stat (EV_A_ w); /* avoid race... */ 3118 ev_stat_stat (EV_A_ w); /* avoid race... */
3119 }
2005 #endif 3120 #endif
2006 3121
2007 ev_feed_event (EV_A_ w, EV_STAT); 3122 ev_feed_event (EV_A_ w, EV_STAT);
2008 } 3123 }
2009} 3124}
2012ev_stat_start (EV_P_ ev_stat *w) 3127ev_stat_start (EV_P_ ev_stat *w)
2013{ 3128{
2014 if (expect_false (ev_is_active (w))) 3129 if (expect_false (ev_is_active (w)))
2015 return; 3130 return;
2016 3131
2017 /* since we use memcmp, we need to clear any padding data etc. */
2018 memset (&w->prev, 0, sizeof (ev_statdata));
2019 memset (&w->attr, 0, sizeof (ev_statdata));
2020
2021 ev_stat_stat (EV_A_ w); 3132 ev_stat_stat (EV_A_ w);
2022 3133
3134 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2023 if (w->interval < MIN_STAT_INTERVAL) 3135 w->interval = MIN_STAT_INTERVAL;
2024 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2025 3136
2026 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3137 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2027 ev_set_priority (&w->timer, ev_priority (w)); 3138 ev_set_priority (&w->timer, ev_priority (w));
2028 3139
2029#if EV_USE_INOTIFY 3140#if EV_USE_INOTIFY
2030 infy_init (EV_A); 3141 infy_init (EV_A);
2031 3142
2032 if (fs_fd >= 0) 3143 if (fs_fd >= 0)
2033 infy_add (EV_A_ w); 3144 infy_add (EV_A_ w);
2034 else 3145 else
2035#endif 3146#endif
2036 ev_timer_start (EV_A_ &w->timer); 3147 ev_timer_again (EV_A_ &w->timer);
2037 3148
2038 ev_start (EV_A_ (W)w, 1); 3149 ev_start (EV_A_ (W)w, 1);
3150
3151 EV_FREQUENT_CHECK;
2039} 3152}
2040 3153
2041void 3154void
2042ev_stat_stop (EV_P_ ev_stat *w) 3155ev_stat_stop (EV_P_ ev_stat *w)
2043{ 3156{
2044 clear_pending (EV_A_ (W)w); 3157 clear_pending (EV_A_ (W)w);
2045 if (expect_false (!ev_is_active (w))) 3158 if (expect_false (!ev_is_active (w)))
2046 return; 3159 return;
2047 3160
3161 EV_FREQUENT_CHECK;
3162
2048#if EV_USE_INOTIFY 3163#if EV_USE_INOTIFY
2049 infy_del (EV_A_ w); 3164 infy_del (EV_A_ w);
2050#endif 3165#endif
2051 ev_timer_stop (EV_A_ &w->timer); 3166 ev_timer_stop (EV_A_ &w->timer);
2052 3167
2053 ev_stop (EV_A_ (W)w); 3168 ev_stop (EV_A_ (W)w);
3169
3170 EV_FREQUENT_CHECK;
2054} 3171}
2055#endif 3172#endif
2056 3173
2057#if EV_IDLE_ENABLE 3174#if EV_IDLE_ENABLE
2058void 3175void
2060{ 3177{
2061 if (expect_false (ev_is_active (w))) 3178 if (expect_false (ev_is_active (w)))
2062 return; 3179 return;
2063 3180
2064 pri_adjust (EV_A_ (W)w); 3181 pri_adjust (EV_A_ (W)w);
3182
3183 EV_FREQUENT_CHECK;
2065 3184
2066 { 3185 {
2067 int active = ++idlecnt [ABSPRI (w)]; 3186 int active = ++idlecnt [ABSPRI (w)];
2068 3187
2069 ++idleall; 3188 ++idleall;
2070 ev_start (EV_A_ (W)w, active); 3189 ev_start (EV_A_ (W)w, active);
2071 3190
2072 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3191 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2073 idles [ABSPRI (w)][active - 1] = w; 3192 idles [ABSPRI (w)][active - 1] = w;
2074 } 3193 }
3194
3195 EV_FREQUENT_CHECK;
2075} 3196}
2076 3197
2077void 3198void
2078ev_idle_stop (EV_P_ ev_idle *w) 3199ev_idle_stop (EV_P_ ev_idle *w)
2079{ 3200{
2080 clear_pending (EV_A_ (W)w); 3201 clear_pending (EV_A_ (W)w);
2081 if (expect_false (!ev_is_active (w))) 3202 if (expect_false (!ev_is_active (w)))
2082 return; 3203 return;
2083 3204
3205 EV_FREQUENT_CHECK;
3206
2084 { 3207 {
2085 int active = ((W)w)->active; 3208 int active = ev_active (w);
2086 3209
2087 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3210 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2088 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3211 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2089 3212
2090 ev_stop (EV_A_ (W)w); 3213 ev_stop (EV_A_ (W)w);
2091 --idleall; 3214 --idleall;
2092 } 3215 }
3216
3217 EV_FREQUENT_CHECK;
2093} 3218}
2094#endif 3219#endif
2095 3220
2096void 3221void
2097ev_prepare_start (EV_P_ ev_prepare *w) 3222ev_prepare_start (EV_P_ ev_prepare *w)
2098{ 3223{
2099 if (expect_false (ev_is_active (w))) 3224 if (expect_false (ev_is_active (w)))
2100 return; 3225 return;
3226
3227 EV_FREQUENT_CHECK;
2101 3228
2102 ev_start (EV_A_ (W)w, ++preparecnt); 3229 ev_start (EV_A_ (W)w, ++preparecnt);
2103 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3230 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2104 prepares [preparecnt - 1] = w; 3231 prepares [preparecnt - 1] = w;
3232
3233 EV_FREQUENT_CHECK;
2105} 3234}
2106 3235
2107void 3236void
2108ev_prepare_stop (EV_P_ ev_prepare *w) 3237ev_prepare_stop (EV_P_ ev_prepare *w)
2109{ 3238{
2110 clear_pending (EV_A_ (W)w); 3239 clear_pending (EV_A_ (W)w);
2111 if (expect_false (!ev_is_active (w))) 3240 if (expect_false (!ev_is_active (w)))
2112 return; 3241 return;
2113 3242
3243 EV_FREQUENT_CHECK;
3244
2114 { 3245 {
2115 int active = ((W)w)->active; 3246 int active = ev_active (w);
3247
2116 prepares [active - 1] = prepares [--preparecnt]; 3248 prepares [active - 1] = prepares [--preparecnt];
2117 ((W)prepares [active - 1])->active = active; 3249 ev_active (prepares [active - 1]) = active;
2118 } 3250 }
2119 3251
2120 ev_stop (EV_A_ (W)w); 3252 ev_stop (EV_A_ (W)w);
3253
3254 EV_FREQUENT_CHECK;
2121} 3255}
2122 3256
2123void 3257void
2124ev_check_start (EV_P_ ev_check *w) 3258ev_check_start (EV_P_ ev_check *w)
2125{ 3259{
2126 if (expect_false (ev_is_active (w))) 3260 if (expect_false (ev_is_active (w)))
2127 return; 3261 return;
3262
3263 EV_FREQUENT_CHECK;
2128 3264
2129 ev_start (EV_A_ (W)w, ++checkcnt); 3265 ev_start (EV_A_ (W)w, ++checkcnt);
2130 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3266 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2131 checks [checkcnt - 1] = w; 3267 checks [checkcnt - 1] = w;
3268
3269 EV_FREQUENT_CHECK;
2132} 3270}
2133 3271
2134void 3272void
2135ev_check_stop (EV_P_ ev_check *w) 3273ev_check_stop (EV_P_ ev_check *w)
2136{ 3274{
2137 clear_pending (EV_A_ (W)w); 3275 clear_pending (EV_A_ (W)w);
2138 if (expect_false (!ev_is_active (w))) 3276 if (expect_false (!ev_is_active (w)))
2139 return; 3277 return;
2140 3278
3279 EV_FREQUENT_CHECK;
3280
2141 { 3281 {
2142 int active = ((W)w)->active; 3282 int active = ev_active (w);
3283
2143 checks [active - 1] = checks [--checkcnt]; 3284 checks [active - 1] = checks [--checkcnt];
2144 ((W)checks [active - 1])->active = active; 3285 ev_active (checks [active - 1]) = active;
2145 } 3286 }
2146 3287
2147 ev_stop (EV_A_ (W)w); 3288 ev_stop (EV_A_ (W)w);
3289
3290 EV_FREQUENT_CHECK;
2148} 3291}
2149 3292
2150#if EV_EMBED_ENABLE 3293#if EV_EMBED_ENABLE
2151void noinline 3294void noinline
2152ev_embed_sweep (EV_P_ ev_embed *w) 3295ev_embed_sweep (EV_P_ ev_embed *w)
2153{ 3296{
2154 ev_loop (w->loop, EVLOOP_NONBLOCK); 3297 ev_loop (w->other, EVLOOP_NONBLOCK);
2155} 3298}
2156 3299
2157static void 3300static void
2158embed_cb (EV_P_ ev_io *io, int revents) 3301embed_io_cb (EV_P_ ev_io *io, int revents)
2159{ 3302{
2160 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3303 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2161 3304
2162 if (ev_cb (w)) 3305 if (ev_cb (w))
2163 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3306 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2164 else 3307 else
2165 ev_embed_sweep (loop, w); 3308 ev_loop (w->other, EVLOOP_NONBLOCK);
2166} 3309}
3310
3311static void
3312embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3313{
3314 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3315
3316 {
3317 EV_P = w->other;
3318
3319 while (fdchangecnt)
3320 {
3321 fd_reify (EV_A);
3322 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3323 }
3324 }
3325}
3326
3327static void
3328embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3329{
3330 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3331
3332 ev_embed_stop (EV_A_ w);
3333
3334 {
3335 EV_P = w->other;
3336
3337 ev_loop_fork (EV_A);
3338 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3339 }
3340
3341 ev_embed_start (EV_A_ w);
3342}
3343
3344#if 0
3345static void
3346embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3347{
3348 ev_idle_stop (EV_A_ idle);
3349}
3350#endif
2167 3351
2168void 3352void
2169ev_embed_start (EV_P_ ev_embed *w) 3353ev_embed_start (EV_P_ ev_embed *w)
2170{ 3354{
2171 if (expect_false (ev_is_active (w))) 3355 if (expect_false (ev_is_active (w)))
2172 return; 3356 return;
2173 3357
2174 { 3358 {
2175 struct ev_loop *loop = w->loop; 3359 EV_P = w->other;
2176 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3360 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2177 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3361 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2178 } 3362 }
3363
3364 EV_FREQUENT_CHECK;
2179 3365
2180 ev_set_priority (&w->io, ev_priority (w)); 3366 ev_set_priority (&w->io, ev_priority (w));
2181 ev_io_start (EV_A_ &w->io); 3367 ev_io_start (EV_A_ &w->io);
2182 3368
3369 ev_prepare_init (&w->prepare, embed_prepare_cb);
3370 ev_set_priority (&w->prepare, EV_MINPRI);
3371 ev_prepare_start (EV_A_ &w->prepare);
3372
3373 ev_fork_init (&w->fork, embed_fork_cb);
3374 ev_fork_start (EV_A_ &w->fork);
3375
3376 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3377
2183 ev_start (EV_A_ (W)w, 1); 3378 ev_start (EV_A_ (W)w, 1);
3379
3380 EV_FREQUENT_CHECK;
2184} 3381}
2185 3382
2186void 3383void
2187ev_embed_stop (EV_P_ ev_embed *w) 3384ev_embed_stop (EV_P_ ev_embed *w)
2188{ 3385{
2189 clear_pending (EV_A_ (W)w); 3386 clear_pending (EV_A_ (W)w);
2190 if (expect_false (!ev_is_active (w))) 3387 if (expect_false (!ev_is_active (w)))
2191 return; 3388 return;
2192 3389
3390 EV_FREQUENT_CHECK;
3391
2193 ev_io_stop (EV_A_ &w->io); 3392 ev_io_stop (EV_A_ &w->io);
3393 ev_prepare_stop (EV_A_ &w->prepare);
3394 ev_fork_stop (EV_A_ &w->fork);
2194 3395
2195 ev_stop (EV_A_ (W)w); 3396 EV_FREQUENT_CHECK;
2196} 3397}
2197#endif 3398#endif
2198 3399
2199#if EV_FORK_ENABLE 3400#if EV_FORK_ENABLE
2200void 3401void
2201ev_fork_start (EV_P_ ev_fork *w) 3402ev_fork_start (EV_P_ ev_fork *w)
2202{ 3403{
2203 if (expect_false (ev_is_active (w))) 3404 if (expect_false (ev_is_active (w)))
2204 return; 3405 return;
3406
3407 EV_FREQUENT_CHECK;
2205 3408
2206 ev_start (EV_A_ (W)w, ++forkcnt); 3409 ev_start (EV_A_ (W)w, ++forkcnt);
2207 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3410 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2208 forks [forkcnt - 1] = w; 3411 forks [forkcnt - 1] = w;
3412
3413 EV_FREQUENT_CHECK;
2209} 3414}
2210 3415
2211void 3416void
2212ev_fork_stop (EV_P_ ev_fork *w) 3417ev_fork_stop (EV_P_ ev_fork *w)
2213{ 3418{
2214 clear_pending (EV_A_ (W)w); 3419 clear_pending (EV_A_ (W)w);
2215 if (expect_false (!ev_is_active (w))) 3420 if (expect_false (!ev_is_active (w)))
2216 return; 3421 return;
2217 3422
3423 EV_FREQUENT_CHECK;
3424
2218 { 3425 {
2219 int active = ((W)w)->active; 3426 int active = ev_active (w);
3427
2220 forks [active - 1] = forks [--forkcnt]; 3428 forks [active - 1] = forks [--forkcnt];
2221 ((W)forks [active - 1])->active = active; 3429 ev_active (forks [active - 1]) = active;
2222 } 3430 }
2223 3431
2224 ev_stop (EV_A_ (W)w); 3432 ev_stop (EV_A_ (W)w);
3433
3434 EV_FREQUENT_CHECK;
3435}
3436#endif
3437
3438#if EV_ASYNC_ENABLE
3439void
3440ev_async_start (EV_P_ ev_async *w)
3441{
3442 if (expect_false (ev_is_active (w)))
3443 return;
3444
3445 evpipe_init (EV_A);
3446
3447 EV_FREQUENT_CHECK;
3448
3449 ev_start (EV_A_ (W)w, ++asynccnt);
3450 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3451 asyncs [asynccnt - 1] = w;
3452
3453 EV_FREQUENT_CHECK;
3454}
3455
3456void
3457ev_async_stop (EV_P_ ev_async *w)
3458{
3459 clear_pending (EV_A_ (W)w);
3460 if (expect_false (!ev_is_active (w)))
3461 return;
3462
3463 EV_FREQUENT_CHECK;
3464
3465 {
3466 int active = ev_active (w);
3467
3468 asyncs [active - 1] = asyncs [--asynccnt];
3469 ev_active (asyncs [active - 1]) = active;
3470 }
3471
3472 ev_stop (EV_A_ (W)w);
3473
3474 EV_FREQUENT_CHECK;
3475}
3476
3477void
3478ev_async_send (EV_P_ ev_async *w)
3479{
3480 w->sent = 1;
3481 evpipe_write (EV_A_ &async_pending);
2225} 3482}
2226#endif 3483#endif
2227 3484
2228/*****************************************************************************/ 3485/*****************************************************************************/
2229 3486
2239once_cb (EV_P_ struct ev_once *once, int revents) 3496once_cb (EV_P_ struct ev_once *once, int revents)
2240{ 3497{
2241 void (*cb)(int revents, void *arg) = once->cb; 3498 void (*cb)(int revents, void *arg) = once->cb;
2242 void *arg = once->arg; 3499 void *arg = once->arg;
2243 3500
2244 ev_io_stop (EV_A_ &once->io); 3501 ev_io_stop (EV_A_ &once->io);
2245 ev_timer_stop (EV_A_ &once->to); 3502 ev_timer_stop (EV_A_ &once->to);
2246 ev_free (once); 3503 ev_free (once);
2247 3504
2248 cb (revents, arg); 3505 cb (revents, arg);
2249} 3506}
2250 3507
2251static void 3508static void
2252once_cb_io (EV_P_ ev_io *w, int revents) 3509once_cb_io (EV_P_ ev_io *w, int revents)
2253{ 3510{
2254 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3511 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3512
3513 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2255} 3514}
2256 3515
2257static void 3516static void
2258once_cb_to (EV_P_ ev_timer *w, int revents) 3517once_cb_to (EV_P_ ev_timer *w, int revents)
2259{ 3518{
2260 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3519 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3520
3521 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2261} 3522}
2262 3523
2263void 3524void
2264ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3525ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2265{ 3526{
2287 ev_timer_set (&once->to, timeout, 0.); 3548 ev_timer_set (&once->to, timeout, 0.);
2288 ev_timer_start (EV_A_ &once->to); 3549 ev_timer_start (EV_A_ &once->to);
2289 } 3550 }
2290} 3551}
2291 3552
3553/*****************************************************************************/
3554
3555#if EV_WALK_ENABLE
3556void
3557ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3558{
3559 int i, j;
3560 ev_watcher_list *wl, *wn;
3561
3562 if (types & (EV_IO | EV_EMBED))
3563 for (i = 0; i < anfdmax; ++i)
3564 for (wl = anfds [i].head; wl; )
3565 {
3566 wn = wl->next;
3567
3568#if EV_EMBED_ENABLE
3569 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3570 {
3571 if (types & EV_EMBED)
3572 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3573 }
3574 else
3575#endif
3576#if EV_USE_INOTIFY
3577 if (ev_cb ((ev_io *)wl) == infy_cb)
3578 ;
3579 else
3580#endif
3581 if ((ev_io *)wl != &pipe_w)
3582 if (types & EV_IO)
3583 cb (EV_A_ EV_IO, wl);
3584
3585 wl = wn;
3586 }
3587
3588 if (types & (EV_TIMER | EV_STAT))
3589 for (i = timercnt + HEAP0; i-- > HEAP0; )
3590#if EV_STAT_ENABLE
3591 /*TODO: timer is not always active*/
3592 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3593 {
3594 if (types & EV_STAT)
3595 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3596 }
3597 else
3598#endif
3599 if (types & EV_TIMER)
3600 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3601
3602#if EV_PERIODIC_ENABLE
3603 if (types & EV_PERIODIC)
3604 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3605 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3606#endif
3607
3608#if EV_IDLE_ENABLE
3609 if (types & EV_IDLE)
3610 for (j = NUMPRI; i--; )
3611 for (i = idlecnt [j]; i--; )
3612 cb (EV_A_ EV_IDLE, idles [j][i]);
3613#endif
3614
3615#if EV_FORK_ENABLE
3616 if (types & EV_FORK)
3617 for (i = forkcnt; i--; )
3618 if (ev_cb (forks [i]) != embed_fork_cb)
3619 cb (EV_A_ EV_FORK, forks [i]);
3620#endif
3621
3622#if EV_ASYNC_ENABLE
3623 if (types & EV_ASYNC)
3624 for (i = asynccnt; i--; )
3625 cb (EV_A_ EV_ASYNC, asyncs [i]);
3626#endif
3627
3628 if (types & EV_PREPARE)
3629 for (i = preparecnt; i--; )
3630#if EV_EMBED_ENABLE
3631 if (ev_cb (prepares [i]) != embed_prepare_cb)
3632#endif
3633 cb (EV_A_ EV_PREPARE, prepares [i]);
3634
3635 if (types & EV_CHECK)
3636 for (i = checkcnt; i--; )
3637 cb (EV_A_ EV_CHECK, checks [i]);
3638
3639 if (types & EV_SIGNAL)
3640 for (i = 0; i < EV_NSIG - 1; ++i)
3641 for (wl = signals [i].head; wl; )
3642 {
3643 wn = wl->next;
3644 cb (EV_A_ EV_SIGNAL, wl);
3645 wl = wn;
3646 }
3647
3648 if (types & EV_CHILD)
3649 for (i = EV_PID_HASHSIZE; i--; )
3650 for (wl = childs [i]; wl; )
3651 {
3652 wn = wl->next;
3653 cb (EV_A_ EV_CHILD, wl);
3654 wl = wn;
3655 }
3656/* EV_STAT 0x00001000 /* stat data changed */
3657/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3658}
3659#endif
3660
3661#if EV_MULTIPLICITY
3662 #include "ev_wrap.h"
3663#endif
3664
2292#ifdef __cplusplus 3665#ifdef __cplusplus
2293} 3666}
2294#endif 3667#endif
2295 3668

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines