ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.168 by root, Sat Dec 8 14:12:07 2007 UTC vs.
Revision 1.331 by root, Tue Mar 9 08:55:03 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
56# endif 79# endif
57# endif 80# endif
58 81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
61# define EV_USE_SELECT 1 92# define EV_USE_SELECT 1
62# else 93# else
63# define EV_USE_SELECT 0 94# define EV_USE_SELECT 0
79# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
80# endif 111# endif
81# endif 112# endif
82 113
83# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
85# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
86# else 117# else
87# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
88# endif 119# endif
89# endif 120# endif
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
107#endif 154#endif
108 155
109#include <math.h> 156#include <math.h>
110#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
111#include <fcntl.h> 159#include <fcntl.h>
112#include <stddef.h> 160#include <stddef.h>
113 161
114#include <stdio.h> 162#include <stdio.h>
115 163
116#include <assert.h> 164#include <assert.h>
117#include <errno.h> 165#include <errno.h>
118#include <sys/types.h> 166#include <sys/types.h>
119#include <time.h> 167#include <time.h>
168#include <limits.h>
120 169
121#include <signal.h> 170#include <signal.h>
122 171
123#ifdef EV_H 172#ifdef EV_H
124# include EV_H 173# include EV_H
129#ifndef _WIN32 178#ifndef _WIN32
130# include <sys/time.h> 179# include <sys/time.h>
131# include <sys/wait.h> 180# include <sys/wait.h>
132# include <unistd.h> 181# include <unistd.h>
133#else 182#else
183# include <io.h>
134# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 185# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
138# endif 188# endif
189# undef EV_AVOID_STDIO
190#endif
191
192/* this block tries to deduce configuration from header-defined symbols and defaults */
193
194/* try to deduce the maximum number of signals on this platform */
195#if defined (EV_NSIG)
196/* use what's provided */
197#elif defined (NSIG)
198# define EV_NSIG (NSIG)
199#elif defined(_NSIG)
200# define EV_NSIG (_NSIG)
201#elif defined (SIGMAX)
202# define EV_NSIG (SIGMAX+1)
203#elif defined (SIG_MAX)
204# define EV_NSIG (SIG_MAX+1)
205#elif defined (_SIG_MAX)
206# define EV_NSIG (_SIG_MAX+1)
207#elif defined (MAXSIG)
208# define EV_NSIG (MAXSIG+1)
209#elif defined (MAX_SIG)
210# define EV_NSIG (MAX_SIG+1)
211#elif defined (SIGARRAYSIZE)
212# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
213#elif defined (_sys_nsig)
214# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215#else
216# error "unable to find value for NSIG, please report"
217/* to make it compile regardless, just remove the above line */
218# define EV_NSIG 65
219#endif
220
221#ifndef EV_USE_CLOCK_SYSCALL
222# if __linux && __GLIBC__ >= 2
223# define EV_USE_CLOCK_SYSCALL 1
224# else
225# define EV_USE_CLOCK_SYSCALL 0
139#endif 226# endif
140 227#endif
141/**/
142 228
143#ifndef EV_USE_MONOTONIC 229#ifndef EV_USE_MONOTONIC
230# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
231# define EV_USE_MONOTONIC 1
232# else
144# define EV_USE_MONOTONIC 0 233# define EV_USE_MONOTONIC 0
234# endif
145#endif 235#endif
146 236
147#ifndef EV_USE_REALTIME 237#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 238# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
239#endif
240
241#ifndef EV_USE_NANOSLEEP
242# if _POSIX_C_SOURCE >= 199309L
243# define EV_USE_NANOSLEEP 1
244# else
245# define EV_USE_NANOSLEEP 0
246# endif
149#endif 247#endif
150 248
151#ifndef EV_USE_SELECT 249#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 250# define EV_USE_SELECT 1
153#endif 251#endif
159# define EV_USE_POLL 1 257# define EV_USE_POLL 1
160# endif 258# endif
161#endif 259#endif
162 260
163#ifndef EV_USE_EPOLL 261#ifndef EV_USE_EPOLL
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
263# define EV_USE_EPOLL 1
264# else
164# define EV_USE_EPOLL 0 265# define EV_USE_EPOLL 0
266# endif
165#endif 267#endif
166 268
167#ifndef EV_USE_KQUEUE 269#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 270# define EV_USE_KQUEUE 0
169#endif 271#endif
171#ifndef EV_USE_PORT 273#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 274# define EV_USE_PORT 0
173#endif 275#endif
174 276
175#ifndef EV_USE_INOTIFY 277#ifndef EV_USE_INOTIFY
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_INOTIFY 1
280# else
176# define EV_USE_INOTIFY 0 281# define EV_USE_INOTIFY 0
282# endif
177#endif 283#endif
178 284
179#ifndef EV_PID_HASHSIZE 285#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 286# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 287# define EV_PID_HASHSIZE 1
190# else 296# else
191# define EV_INOTIFY_HASHSIZE 16 297# define EV_INOTIFY_HASHSIZE 16
192# endif 298# endif
193#endif 299#endif
194 300
195/**/ 301#ifndef EV_USE_EVENTFD
302# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
303# define EV_USE_EVENTFD 1
304# else
305# define EV_USE_EVENTFD 0
306# endif
307#endif
308
309#ifndef EV_USE_SIGNALFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_SIGNALFD 1
312# else
313# define EV_USE_SIGNALFD 0
314# endif
315#endif
316
317#if 0 /* debugging */
318# define EV_VERIFY 3
319# define EV_USE_4HEAP 1
320# define EV_HEAP_CACHE_AT 1
321#endif
322
323#ifndef EV_VERIFY
324# define EV_VERIFY !EV_MINIMAL
325#endif
326
327#ifndef EV_USE_4HEAP
328# define EV_USE_4HEAP !EV_MINIMAL
329#endif
330
331#ifndef EV_HEAP_CACHE_AT
332# define EV_HEAP_CACHE_AT !EV_MINIMAL
333#endif
334
335/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
336/* which makes programs even slower. might work on other unices, too. */
337#if EV_USE_CLOCK_SYSCALL
338# include <syscall.h>
339# ifdef SYS_clock_gettime
340# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
341# undef EV_USE_MONOTONIC
342# define EV_USE_MONOTONIC 1
343# else
344# undef EV_USE_CLOCK_SYSCALL
345# define EV_USE_CLOCK_SYSCALL 0
346# endif
347#endif
348
349/* this block fixes any misconfiguration where we know we run into trouble otherwise */
350
351#ifdef _AIX
352/* AIX has a completely broken poll.h header */
353# undef EV_USE_POLL
354# define EV_USE_POLL 0
355#endif
196 356
197#ifndef CLOCK_MONOTONIC 357#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 358# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 359# define EV_USE_MONOTONIC 0
200#endif 360#endif
202#ifndef CLOCK_REALTIME 362#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 363# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 364# define EV_USE_REALTIME 0
205#endif 365#endif
206 366
367#if !EV_STAT_ENABLE
368# undef EV_USE_INOTIFY
369# define EV_USE_INOTIFY 0
370#endif
371
372#if !EV_USE_NANOSLEEP
373# ifndef _WIN32
374# include <sys/select.h>
375# endif
376#endif
377
378#if EV_USE_INOTIFY
379# include <sys/utsname.h>
380# include <sys/statfs.h>
381# include <sys/inotify.h>
382/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
383# ifndef IN_DONT_FOLLOW
384# undef EV_USE_INOTIFY
385# define EV_USE_INOTIFY 0
386# endif
387#endif
388
207#if EV_SELECT_IS_WINSOCKET 389#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 390# include <winsock.h>
209#endif 391#endif
210 392
211#if !EV_STAT_ENABLE 393#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 394/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
395# include <stdint.h>
396# ifndef EFD_NONBLOCK
397# define EFD_NONBLOCK O_NONBLOCK
213#endif 398# endif
214 399# ifndef EFD_CLOEXEC
215#if EV_USE_INOTIFY 400# ifdef O_CLOEXEC
216# include <sys/inotify.h> 401# define EFD_CLOEXEC O_CLOEXEC
402# else
403# define EFD_CLOEXEC 02000000
404# endif
217#endif 405# endif
406# ifdef __cplusplus
407extern "C" {
408# endif
409int (eventfd) (unsigned int initval, int flags);
410# ifdef __cplusplus
411}
412# endif
413#endif
414
415#if EV_USE_SIGNALFD
416/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
417# include <stdint.h>
418# ifndef SFD_NONBLOCK
419# define SFD_NONBLOCK O_NONBLOCK
420# endif
421# ifndef SFD_CLOEXEC
422# ifdef O_CLOEXEC
423# define SFD_CLOEXEC O_CLOEXEC
424# else
425# define SFD_CLOEXEC 02000000
426# endif
427# endif
428# ifdef __cplusplus
429extern "C" {
430# endif
431int signalfd (int fd, const sigset_t *mask, int flags);
432
433struct signalfd_siginfo
434{
435 uint32_t ssi_signo;
436 char pad[128 - sizeof (uint32_t)];
437};
438# ifdef __cplusplus
439}
440# endif
441#endif
442
218 443
219/**/ 444/**/
445
446#if EV_VERIFY >= 3
447# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
448#else
449# define EV_FREQUENT_CHECK do { } while (0)
450#endif
451
452/*
453 * This is used to avoid floating point rounding problems.
454 * It is added to ev_rt_now when scheduling periodics
455 * to ensure progress, time-wise, even when rounding
456 * errors are against us.
457 * This value is good at least till the year 4000.
458 * Better solutions welcome.
459 */
460#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 461
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 462#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 463#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 464
225#if __GNUC__ >= 3 465#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 466# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 467# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 468#else
236# define expect(expr,value) (expr) 469# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 470# define noinline
471# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
472# define inline
473# endif
240#endif 474#endif
241 475
242#define expect_false(expr) expect ((expr) != 0, 0) 476#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 477#define expect_true(expr) expect ((expr) != 0, 1)
478#define inline_size static inline
244 479
480#if EV_MINIMAL
481# define inline_speed static noinline
482#else
483# define inline_speed static inline
484#endif
485
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 486#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
487
488#if EV_MINPRI == EV_MAXPRI
489# define ABSPRI(w) (((W)w), 0)
490#else
246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 491# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
492#endif
247 493
248#define EMPTY /* required for microsofts broken pseudo-c compiler */ 494#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 495#define EMPTY2(a,b) /* used to suppress some warnings */
250 496
251typedef ev_watcher *W; 497typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 498typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 499typedef ev_watcher_time *WT;
254 500
501#define ev_active(w) ((W)(w))->active
502#define ev_at(w) ((WT)(w))->at
503
504#if EV_USE_REALTIME
505/* sig_atomic_t is used to avoid per-thread variables or locking but still */
506/* giving it a reasonably high chance of working on typical architetcures */
507static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
508#endif
509
510#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 511static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
512#endif
513
514#ifndef EV_FD_TO_WIN32_HANDLE
515# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
516#endif
517#ifndef EV_WIN32_HANDLE_TO_FD
518# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
519#endif
520#ifndef EV_WIN32_CLOSE_FD
521# define EV_WIN32_CLOSE_FD(fd) close (fd)
522#endif
256 523
257#ifdef _WIN32 524#ifdef _WIN32
258# include "ev_win32.c" 525# include "ev_win32.c"
259#endif 526#endif
260 527
261/*****************************************************************************/ 528/*****************************************************************************/
262 529
530#if EV_AVOID_STDIO
531static void noinline
532ev_printerr (const char *msg)
533{
534 write (STDERR_FILENO, msg, strlen (msg));
535}
536#endif
537
263static void (*syserr_cb)(const char *msg); 538static void (*syserr_cb)(const char *msg);
264 539
265void 540void
266ev_set_syserr_cb (void (*cb)(const char *msg)) 541ev_set_syserr_cb (void (*cb)(const char *msg))
267{ 542{
268 syserr_cb = cb; 543 syserr_cb = cb;
269} 544}
270 545
271static void noinline 546static void noinline
272syserr (const char *msg) 547ev_syserr (const char *msg)
273{ 548{
274 if (!msg) 549 if (!msg)
275 msg = "(libev) system error"; 550 msg = "(libev) system error";
276 551
277 if (syserr_cb) 552 if (syserr_cb)
278 syserr_cb (msg); 553 syserr_cb (msg);
279 else 554 else
280 { 555 {
556#if EV_AVOID_STDIO
557 const char *err = strerror (errno);
558
559 ev_printerr (msg);
560 ev_printerr (": ");
561 ev_printerr (err);
562 ev_printerr ("\n");
563#else
281 perror (msg); 564 perror (msg);
565#endif
282 abort (); 566 abort ();
283 } 567 }
284} 568}
285 569
570static void *
571ev_realloc_emul (void *ptr, long size)
572{
573 /* some systems, notably openbsd and darwin, fail to properly
574 * implement realloc (x, 0) (as required by both ansi c-98 and
575 * the single unix specification, so work around them here.
576 */
577
578 if (size)
579 return realloc (ptr, size);
580
581 free (ptr);
582 return 0;
583}
584
286static void *(*alloc)(void *ptr, long size); 585static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 586
288void 587void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 588ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 589{
291 alloc = cb; 590 alloc = cb;
292} 591}
293 592
294inline_speed void * 593inline_speed void *
295ev_realloc (void *ptr, long size) 594ev_realloc (void *ptr, long size)
296{ 595{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 596 ptr = alloc (ptr, size);
298 597
299 if (!ptr && size) 598 if (!ptr && size)
300 { 599 {
600#if EV_AVOID_STDIO
601 ev_printerr ("libev: memory allocation failed, aborting.\n");
602#else
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 603 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
604#endif
302 abort (); 605 abort ();
303 } 606 }
304 607
305 return ptr; 608 return ptr;
306} 609}
308#define ev_malloc(size) ev_realloc (0, (size)) 611#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 612#define ev_free(ptr) ev_realloc ((ptr), 0)
310 613
311/*****************************************************************************/ 614/*****************************************************************************/
312 615
616/* set in reify when reification needed */
617#define EV_ANFD_REIFY 1
618
619/* file descriptor info structure */
313typedef struct 620typedef struct
314{ 621{
315 WL head; 622 WL head;
316 unsigned char events; 623 unsigned char events; /* the events watched for */
624 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
625 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 626 unsigned char unused;
627#if EV_USE_EPOLL
628 unsigned int egen; /* generation counter to counter epoll bugs */
629#endif
318#if EV_SELECT_IS_WINSOCKET 630#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 631 SOCKET handle;
320#endif 632#endif
321} ANFD; 633} ANFD;
322 634
635/* stores the pending event set for a given watcher */
323typedef struct 636typedef struct
324{ 637{
325 W w; 638 W w;
326 int events; 639 int events; /* the pending event set for the given watcher */
327} ANPENDING; 640} ANPENDING;
328 641
329#if EV_USE_INOTIFY 642#if EV_USE_INOTIFY
643/* hash table entry per inotify-id */
330typedef struct 644typedef struct
331{ 645{
332 WL head; 646 WL head;
333} ANFS; 647} ANFS;
648#endif
649
650/* Heap Entry */
651#if EV_HEAP_CACHE_AT
652 /* a heap element */
653 typedef struct {
654 ev_tstamp at;
655 WT w;
656 } ANHE;
657
658 #define ANHE_w(he) (he).w /* access watcher, read-write */
659 #define ANHE_at(he) (he).at /* access cached at, read-only */
660 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
661#else
662 /* a heap element */
663 typedef WT ANHE;
664
665 #define ANHE_w(he) (he)
666 #define ANHE_at(he) (he)->at
667 #define ANHE_at_cache(he)
334#endif 668#endif
335 669
336#if EV_MULTIPLICITY 670#if EV_MULTIPLICITY
337 671
338 struct ev_loop 672 struct ev_loop
357 691
358 static int ev_default_loop_ptr; 692 static int ev_default_loop_ptr;
359 693
360#endif 694#endif
361 695
696#if EV_MINIMAL < 2
697# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
698# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
699# define EV_INVOKE_PENDING invoke_cb (EV_A)
700#else
701# define EV_RELEASE_CB (void)0
702# define EV_ACQUIRE_CB (void)0
703# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
704#endif
705
706#define EVUNLOOP_RECURSE 0x80
707
362/*****************************************************************************/ 708/*****************************************************************************/
363 709
710#ifndef EV_HAVE_EV_TIME
364ev_tstamp 711ev_tstamp
365ev_time (void) 712ev_time (void)
366{ 713{
367#if EV_USE_REALTIME 714#if EV_USE_REALTIME
715 if (expect_true (have_realtime))
716 {
368 struct timespec ts; 717 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 718 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 719 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 720 }
721#endif
722
372 struct timeval tv; 723 struct timeval tv;
373 gettimeofday (&tv, 0); 724 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 725 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 726}
727#endif
377 728
378ev_tstamp inline_size 729inline_size ev_tstamp
379get_clock (void) 730get_clock (void)
380{ 731{
381#if EV_USE_MONOTONIC 732#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 733 if (expect_true (have_monotonic))
383 { 734 {
396{ 747{
397 return ev_rt_now; 748 return ev_rt_now;
398} 749}
399#endif 750#endif
400 751
401int inline_size 752void
753ev_sleep (ev_tstamp delay)
754{
755 if (delay > 0.)
756 {
757#if EV_USE_NANOSLEEP
758 struct timespec ts;
759
760 ts.tv_sec = (time_t)delay;
761 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
762
763 nanosleep (&ts, 0);
764#elif defined(_WIN32)
765 Sleep ((unsigned long)(delay * 1e3));
766#else
767 struct timeval tv;
768
769 tv.tv_sec = (time_t)delay;
770 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
771
772 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
773 /* something not guaranteed by newer posix versions, but guaranteed */
774 /* by older ones */
775 select (0, 0, 0, 0, &tv);
776#endif
777 }
778}
779
780/*****************************************************************************/
781
782#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
783
784/* find a suitable new size for the given array, */
785/* hopefully by rounding to a ncie-to-malloc size */
786inline_size int
402array_nextsize (int elem, int cur, int cnt) 787array_nextsize (int elem, int cur, int cnt)
403{ 788{
404 int ncur = cur + 1; 789 int ncur = cur + 1;
405 790
406 do 791 do
407 ncur <<= 1; 792 ncur <<= 1;
408 while (cnt > ncur); 793 while (cnt > ncur);
409 794
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 795 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
411 if (elem * ncur > 4096) 796 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
412 { 797 {
413 ncur *= elem; 798 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 799 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
415 ncur = ncur - sizeof (void *) * 4; 800 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem; 801 ncur /= elem;
417 } 802 }
418 803
419 return ncur; 804 return ncur;
420} 805}
421 806
422inline_speed void * 807static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 808array_realloc (int elem, void *base, int *cur, int cnt)
424{ 809{
425 *cur = array_nextsize (elem, *cur, cnt); 810 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 811 return ev_realloc (base, elem * *cur);
427} 812}
813
814#define array_init_zero(base,count) \
815 memset ((void *)(base), 0, sizeof (*(base)) * (count))
428 816
429#define array_needsize(type,base,cur,cnt,init) \ 817#define array_needsize(type,base,cur,cnt,init) \
430 if (expect_false ((cnt) > (cur))) \ 818 if (expect_false ((cnt) > (cur))) \
431 { \ 819 { \
432 int ocur_ = (cur); \ 820 int ocur_ = (cur); \
444 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 832 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
445 } 833 }
446#endif 834#endif
447 835
448#define array_free(stem, idx) \ 836#define array_free(stem, idx) \
449 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 837 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
450 838
451/*****************************************************************************/ 839/*****************************************************************************/
840
841/* dummy callback for pending events */
842static void noinline
843pendingcb (EV_P_ ev_prepare *w, int revents)
844{
845}
452 846
453void noinline 847void noinline
454ev_feed_event (EV_P_ void *w, int revents) 848ev_feed_event (EV_P_ void *w, int revents)
455{ 849{
456 W w_ = (W)w; 850 W w_ = (W)w;
851 int pri = ABSPRI (w_);
457 852
458 if (expect_false (w_->pending)) 853 if (expect_false (w_->pending))
854 pendings [pri][w_->pending - 1].events |= revents;
855 else
459 { 856 {
857 w_->pending = ++pendingcnt [pri];
858 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
859 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 860 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 861 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 862}
469 863
470void inline_size 864inline_speed void
865feed_reverse (EV_P_ W w)
866{
867 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
868 rfeeds [rfeedcnt++] = w;
869}
870
871inline_size void
872feed_reverse_done (EV_P_ int revents)
873{
874 do
875 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
876 while (rfeedcnt);
877}
878
879inline_speed void
471queue_events (EV_P_ W *events, int eventcnt, int type) 880queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 881{
473 int i; 882 int i;
474 883
475 for (i = 0; i < eventcnt; ++i) 884 for (i = 0; i < eventcnt; ++i)
476 ev_feed_event (EV_A_ events [i], type); 885 ev_feed_event (EV_A_ events [i], type);
477} 886}
478 887
479/*****************************************************************************/ 888/*****************************************************************************/
480 889
481void inline_size 890inline_speed void
482anfds_init (ANFD *base, int count)
483{
484 while (count--)
485 {
486 base->head = 0;
487 base->events = EV_NONE;
488 base->reify = 0;
489
490 ++base;
491 }
492}
493
494void inline_speed
495fd_event (EV_P_ int fd, int revents) 891fd_event_nc (EV_P_ int fd, int revents)
496{ 892{
497 ANFD *anfd = anfds + fd; 893 ANFD *anfd = anfds + fd;
498 ev_io *w; 894 ev_io *w;
499 895
500 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 896 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
504 if (ev) 900 if (ev)
505 ev_feed_event (EV_A_ (W)w, ev); 901 ev_feed_event (EV_A_ (W)w, ev);
506 } 902 }
507} 903}
508 904
905/* do not submit kernel events for fds that have reify set */
906/* because that means they changed while we were polling for new events */
907inline_speed void
908fd_event (EV_P_ int fd, int revents)
909{
910 ANFD *anfd = anfds + fd;
911
912 if (expect_true (!anfd->reify))
913 fd_event_nc (EV_A_ fd, revents);
914}
915
509void 916void
510ev_feed_fd_event (EV_P_ int fd, int revents) 917ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 918{
512 if (fd >= 0 && fd < anfdmax) 919 if (fd >= 0 && fd < anfdmax)
513 fd_event (EV_A_ fd, revents); 920 fd_event_nc (EV_A_ fd, revents);
514} 921}
515 922
516void inline_size 923/* make sure the external fd watch events are in-sync */
924/* with the kernel/libev internal state */
925inline_size void
517fd_reify (EV_P) 926fd_reify (EV_P)
518{ 927{
519 int i; 928 int i;
520 929
521 for (i = 0; i < fdchangecnt; ++i) 930 for (i = 0; i < fdchangecnt; ++i)
522 { 931 {
523 int fd = fdchanges [i]; 932 int fd = fdchanges [i];
524 ANFD *anfd = anfds + fd; 933 ANFD *anfd = anfds + fd;
525 ev_io *w; 934 ev_io *w;
526 935
527 int events = 0; 936 unsigned char events = 0;
528 937
529 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 938 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
530 events |= w->events; 939 events |= (unsigned char)w->events;
531 940
532#if EV_SELECT_IS_WINSOCKET 941#if EV_SELECT_IS_WINSOCKET
533 if (events) 942 if (events)
534 { 943 {
535 unsigned long argp; 944 unsigned long arg;
536 anfd->handle = _get_osfhandle (fd); 945 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
537 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 946 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
538 } 947 }
539#endif 948#endif
540 949
950 {
951 unsigned char o_events = anfd->events;
952 unsigned char o_reify = anfd->reify;
953
541 anfd->reify = 0; 954 anfd->reify = 0;
542
543 backend_modify (EV_A_ fd, anfd->events, events);
544 anfd->events = events; 955 anfd->events = events;
956
957 if (o_events != events || o_reify & EV__IOFDSET)
958 backend_modify (EV_A_ fd, o_events, events);
959 }
545 } 960 }
546 961
547 fdchangecnt = 0; 962 fdchangecnt = 0;
548} 963}
549 964
550void inline_size 965/* something about the given fd changed */
966inline_size void
551fd_change (EV_P_ int fd) 967fd_change (EV_P_ int fd, int flags)
552{ 968{
553 if (expect_false (anfds [fd].reify)) 969 unsigned char reify = anfds [fd].reify;
554 return;
555
556 anfds [fd].reify = 1; 970 anfds [fd].reify |= flags;
557 971
972 if (expect_true (!reify))
973 {
558 ++fdchangecnt; 974 ++fdchangecnt;
559 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 975 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
560 fdchanges [fdchangecnt - 1] = fd; 976 fdchanges [fdchangecnt - 1] = fd;
977 }
561} 978}
562 979
563void inline_speed 980/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
981inline_speed void
564fd_kill (EV_P_ int fd) 982fd_kill (EV_P_ int fd)
565{ 983{
566 ev_io *w; 984 ev_io *w;
567 985
568 while ((w = (ev_io *)anfds [fd].head)) 986 while ((w = (ev_io *)anfds [fd].head))
570 ev_io_stop (EV_A_ w); 988 ev_io_stop (EV_A_ w);
571 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 989 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
572 } 990 }
573} 991}
574 992
575int inline_size 993/* check whether the given fd is atcually valid, for error recovery */
994inline_size int
576fd_valid (int fd) 995fd_valid (int fd)
577{ 996{
578#ifdef _WIN32 997#ifdef _WIN32
579 return _get_osfhandle (fd) != -1; 998 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
580#else 999#else
581 return fcntl (fd, F_GETFD) != -1; 1000 return fcntl (fd, F_GETFD) != -1;
582#endif 1001#endif
583} 1002}
584 1003
588{ 1007{
589 int fd; 1008 int fd;
590 1009
591 for (fd = 0; fd < anfdmax; ++fd) 1010 for (fd = 0; fd < anfdmax; ++fd)
592 if (anfds [fd].events) 1011 if (anfds [fd].events)
593 if (!fd_valid (fd) == -1 && errno == EBADF) 1012 if (!fd_valid (fd) && errno == EBADF)
594 fd_kill (EV_A_ fd); 1013 fd_kill (EV_A_ fd);
595} 1014}
596 1015
597/* called on ENOMEM in select/poll to kill some fds and retry */ 1016/* called on ENOMEM in select/poll to kill some fds and retry */
598static void noinline 1017static void noinline
602 1021
603 for (fd = anfdmax; fd--; ) 1022 for (fd = anfdmax; fd--; )
604 if (anfds [fd].events) 1023 if (anfds [fd].events)
605 { 1024 {
606 fd_kill (EV_A_ fd); 1025 fd_kill (EV_A_ fd);
607 return; 1026 break;
608 } 1027 }
609} 1028}
610 1029
611/* usually called after fork if backend needs to re-arm all fds from scratch */ 1030/* usually called after fork if backend needs to re-arm all fds from scratch */
612static void noinline 1031static void noinline
616 1035
617 for (fd = 0; fd < anfdmax; ++fd) 1036 for (fd = 0; fd < anfdmax; ++fd)
618 if (anfds [fd].events) 1037 if (anfds [fd].events)
619 { 1038 {
620 anfds [fd].events = 0; 1039 anfds [fd].events = 0;
621 fd_change (EV_A_ fd); 1040 anfds [fd].emask = 0;
1041 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
622 } 1042 }
623} 1043}
624 1044
625/*****************************************************************************/ 1045/*****************************************************************************/
626 1046
627void inline_speed 1047/*
628upheap (WT *heap, int k) 1048 * the heap functions want a real array index. array index 0 uis guaranteed to not
629{ 1049 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
630 WT w = heap [k]; 1050 * the branching factor of the d-tree.
1051 */
631 1052
632 while (k && heap [k >> 1]->at > w->at) 1053/*
633 { 1054 * at the moment we allow libev the luxury of two heaps,
634 heap [k] = heap [k >> 1]; 1055 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
635 ((W)heap [k])->active = k + 1; 1056 * which is more cache-efficient.
636 k >>= 1; 1057 * the difference is about 5% with 50000+ watchers.
637 } 1058 */
1059#if EV_USE_4HEAP
638 1060
639 heap [k] = w; 1061#define DHEAP 4
640 ((W)heap [k])->active = k + 1; 1062#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1063#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1064#define UPHEAP_DONE(p,k) ((p) == (k))
641 1065
642} 1066/* away from the root */
643 1067inline_speed void
644void inline_speed
645downheap (WT *heap, int N, int k) 1068downheap (ANHE *heap, int N, int k)
646{ 1069{
647 WT w = heap [k]; 1070 ANHE he = heap [k];
1071 ANHE *E = heap + N + HEAP0;
648 1072
649 while (k < (N >> 1)) 1073 for (;;)
650 { 1074 {
651 int j = k << 1; 1075 ev_tstamp minat;
1076 ANHE *minpos;
1077 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
652 1078
653 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1079 /* find minimum child */
1080 if (expect_true (pos + DHEAP - 1 < E))
654 ++j; 1081 {
655 1082 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
656 if (w->at <= heap [j]->at) 1083 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1084 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1085 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1086 }
1087 else if (pos < E)
1088 {
1089 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1090 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1091 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1092 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1093 }
1094 else
657 break; 1095 break;
658 1096
1097 if (ANHE_at (he) <= minat)
1098 break;
1099
1100 heap [k] = *minpos;
1101 ev_active (ANHE_w (*minpos)) = k;
1102
1103 k = minpos - heap;
1104 }
1105
1106 heap [k] = he;
1107 ev_active (ANHE_w (he)) = k;
1108}
1109
1110#else /* 4HEAP */
1111
1112#define HEAP0 1
1113#define HPARENT(k) ((k) >> 1)
1114#define UPHEAP_DONE(p,k) (!(p))
1115
1116/* away from the root */
1117inline_speed void
1118downheap (ANHE *heap, int N, int k)
1119{
1120 ANHE he = heap [k];
1121
1122 for (;;)
1123 {
1124 int c = k << 1;
1125
1126 if (c >= N + HEAP0)
1127 break;
1128
1129 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1130 ? 1 : 0;
1131
1132 if (ANHE_at (he) <= ANHE_at (heap [c]))
1133 break;
1134
659 heap [k] = heap [j]; 1135 heap [k] = heap [c];
660 ((W)heap [k])->active = k + 1; 1136 ev_active (ANHE_w (heap [k])) = k;
1137
661 k = j; 1138 k = c;
662 } 1139 }
663 1140
664 heap [k] = w; 1141 heap [k] = he;
665 ((W)heap [k])->active = k + 1; 1142 ev_active (ANHE_w (he)) = k;
666} 1143}
1144#endif
667 1145
668void inline_size 1146/* towards the root */
1147inline_speed void
1148upheap (ANHE *heap, int k)
1149{
1150 ANHE he = heap [k];
1151
1152 for (;;)
1153 {
1154 int p = HPARENT (k);
1155
1156 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1157 break;
1158
1159 heap [k] = heap [p];
1160 ev_active (ANHE_w (heap [k])) = k;
1161 k = p;
1162 }
1163
1164 heap [k] = he;
1165 ev_active (ANHE_w (he)) = k;
1166}
1167
1168/* move an element suitably so it is in a correct place */
1169inline_size void
669adjustheap (WT *heap, int N, int k) 1170adjustheap (ANHE *heap, int N, int k)
670{ 1171{
1172 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
671 upheap (heap, k); 1173 upheap (heap, k);
1174 else
672 downheap (heap, N, k); 1175 downheap (heap, N, k);
1176}
1177
1178/* rebuild the heap: this function is used only once and executed rarely */
1179inline_size void
1180reheap (ANHE *heap, int N)
1181{
1182 int i;
1183
1184 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1185 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1186 for (i = 0; i < N; ++i)
1187 upheap (heap, i + HEAP0);
673} 1188}
674 1189
675/*****************************************************************************/ 1190/*****************************************************************************/
676 1191
1192/* associate signal watchers to a signal signal */
677typedef struct 1193typedef struct
678{ 1194{
1195 EV_ATOMIC_T pending;
1196#if EV_MULTIPLICITY
1197 EV_P;
1198#endif
679 WL head; 1199 WL head;
680 sig_atomic_t volatile gotsig;
681} ANSIG; 1200} ANSIG;
682 1201
683static ANSIG *signals; 1202static ANSIG signals [EV_NSIG - 1];
684static int signalmax;
685 1203
686static int sigpipe [2]; 1204/*****************************************************************************/
687static sig_atomic_t volatile gotsig;
688static ev_io sigev;
689 1205
690void inline_size 1206/* used to prepare libev internal fd's */
691signals_init (ANSIG *base, int count) 1207/* this is not fork-safe */
692{ 1208inline_speed void
693 while (count--)
694 {
695 base->head = 0;
696 base->gotsig = 0;
697
698 ++base;
699 }
700}
701
702static void
703sighandler (int signum)
704{
705#if _WIN32
706 signal (signum, sighandler);
707#endif
708
709 signals [signum - 1].gotsig = 1;
710
711 if (!gotsig)
712 {
713 int old_errno = errno;
714 gotsig = 1;
715 write (sigpipe [1], &signum, 1);
716 errno = old_errno;
717 }
718}
719
720void noinline
721ev_feed_signal_event (EV_P_ int signum)
722{
723 WL w;
724
725#if EV_MULTIPLICITY
726 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
727#endif
728
729 --signum;
730
731 if (signum < 0 || signum >= signalmax)
732 return;
733
734 signals [signum].gotsig = 0;
735
736 for (w = signals [signum].head; w; w = w->next)
737 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
738}
739
740static void
741sigcb (EV_P_ ev_io *iow, int revents)
742{
743 int signum;
744
745 read (sigpipe [0], &revents, 1);
746 gotsig = 0;
747
748 for (signum = signalmax; signum--; )
749 if (signals [signum].gotsig)
750 ev_feed_signal_event (EV_A_ signum + 1);
751}
752
753void inline_size
754fd_intern (int fd) 1209fd_intern (int fd)
755{ 1210{
756#ifdef _WIN32 1211#ifdef _WIN32
757 int arg = 1; 1212 unsigned long arg = 1;
758 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1213 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
759#else 1214#else
760 fcntl (fd, F_SETFD, FD_CLOEXEC); 1215 fcntl (fd, F_SETFD, FD_CLOEXEC);
761 fcntl (fd, F_SETFL, O_NONBLOCK); 1216 fcntl (fd, F_SETFL, O_NONBLOCK);
762#endif 1217#endif
763} 1218}
764 1219
765static void noinline 1220static void noinline
766siginit (EV_P) 1221evpipe_init (EV_P)
767{ 1222{
1223 if (!ev_is_active (&pipe_w))
1224 {
1225#if EV_USE_EVENTFD
1226 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1227 if (evfd < 0 && errno == EINVAL)
1228 evfd = eventfd (0, 0);
1229
1230 if (evfd >= 0)
1231 {
1232 evpipe [0] = -1;
1233 fd_intern (evfd); /* doing it twice doesn't hurt */
1234 ev_io_set (&pipe_w, evfd, EV_READ);
1235 }
1236 else
1237#endif
1238 {
1239 while (pipe (evpipe))
1240 ev_syserr ("(libev) error creating signal/async pipe");
1241
768 fd_intern (sigpipe [0]); 1242 fd_intern (evpipe [0]);
769 fd_intern (sigpipe [1]); 1243 fd_intern (evpipe [1]);
1244 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1245 }
770 1246
771 ev_io_set (&sigev, sigpipe [0], EV_READ);
772 ev_io_start (EV_A_ &sigev); 1247 ev_io_start (EV_A_ &pipe_w);
773 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1248 ev_unref (EV_A); /* watcher should not keep loop alive */
1249 }
1250}
1251
1252inline_size void
1253evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1254{
1255 if (!*flag)
1256 {
1257 int old_errno = errno; /* save errno because write might clobber it */
1258
1259 *flag = 1;
1260
1261#if EV_USE_EVENTFD
1262 if (evfd >= 0)
1263 {
1264 uint64_t counter = 1;
1265 write (evfd, &counter, sizeof (uint64_t));
1266 }
1267 else
1268#endif
1269 write (evpipe [1], &old_errno, 1);
1270
1271 errno = old_errno;
1272 }
1273}
1274
1275/* called whenever the libev signal pipe */
1276/* got some events (signal, async) */
1277static void
1278pipecb (EV_P_ ev_io *iow, int revents)
1279{
1280 int i;
1281
1282#if EV_USE_EVENTFD
1283 if (evfd >= 0)
1284 {
1285 uint64_t counter;
1286 read (evfd, &counter, sizeof (uint64_t));
1287 }
1288 else
1289#endif
1290 {
1291 char dummy;
1292 read (evpipe [0], &dummy, 1);
1293 }
1294
1295 if (sig_pending)
1296 {
1297 sig_pending = 0;
1298
1299 for (i = EV_NSIG - 1; i--; )
1300 if (expect_false (signals [i].pending))
1301 ev_feed_signal_event (EV_A_ i + 1);
1302 }
1303
1304#if EV_ASYNC_ENABLE
1305 if (async_pending)
1306 {
1307 async_pending = 0;
1308
1309 for (i = asynccnt; i--; )
1310 if (asyncs [i]->sent)
1311 {
1312 asyncs [i]->sent = 0;
1313 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1314 }
1315 }
1316#endif
774} 1317}
775 1318
776/*****************************************************************************/ 1319/*****************************************************************************/
777 1320
1321static void
1322ev_sighandler (int signum)
1323{
1324#if EV_MULTIPLICITY
1325 EV_P = signals [signum - 1].loop;
1326#endif
1327
1328#ifdef _WIN32
1329 signal (signum, ev_sighandler);
1330#endif
1331
1332 signals [signum - 1].pending = 1;
1333 evpipe_write (EV_A_ &sig_pending);
1334}
1335
1336void noinline
1337ev_feed_signal_event (EV_P_ int signum)
1338{
1339 WL w;
1340
1341 if (expect_false (signum <= 0 || signum > EV_NSIG))
1342 return;
1343
1344 --signum;
1345
1346#if EV_MULTIPLICITY
1347 /* it is permissible to try to feed a signal to the wrong loop */
1348 /* or, likely more useful, feeding a signal nobody is waiting for */
1349
1350 if (expect_false (signals [signum].loop != EV_A))
1351 return;
1352#endif
1353
1354 signals [signum].pending = 0;
1355
1356 for (w = signals [signum].head; w; w = w->next)
1357 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1358}
1359
1360#if EV_USE_SIGNALFD
1361static void
1362sigfdcb (EV_P_ ev_io *iow, int revents)
1363{
1364 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1365
1366 for (;;)
1367 {
1368 ssize_t res = read (sigfd, si, sizeof (si));
1369
1370 /* not ISO-C, as res might be -1, but works with SuS */
1371 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1372 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1373
1374 if (res < (ssize_t)sizeof (si))
1375 break;
1376 }
1377}
1378#endif
1379
1380/*****************************************************************************/
1381
778static ev_child *childs [EV_PID_HASHSIZE]; 1382static WL childs [EV_PID_HASHSIZE];
779 1383
780#ifndef _WIN32 1384#ifndef _WIN32
781 1385
782static ev_signal childev; 1386static ev_signal childev;
783 1387
784void inline_speed 1388#ifndef WIFCONTINUED
1389# define WIFCONTINUED(status) 0
1390#endif
1391
1392/* handle a single child status event */
1393inline_speed void
785child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1394child_reap (EV_P_ int chain, int pid, int status)
786{ 1395{
787 ev_child *w; 1396 ev_child *w;
1397 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
788 1398
789 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1399 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1400 {
790 if (w->pid == pid || !w->pid) 1401 if ((w->pid == pid || !w->pid)
1402 && (!traced || (w->flags & 1)))
791 { 1403 {
792 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1404 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
793 w->rpid = pid; 1405 w->rpid = pid;
794 w->rstatus = status; 1406 w->rstatus = status;
795 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1407 ev_feed_event (EV_A_ (W)w, EV_CHILD);
796 } 1408 }
1409 }
797} 1410}
798 1411
799#ifndef WCONTINUED 1412#ifndef WCONTINUED
800# define WCONTINUED 0 1413# define WCONTINUED 0
801#endif 1414#endif
802 1415
1416/* called on sigchld etc., calls waitpid */
803static void 1417static void
804childcb (EV_P_ ev_signal *sw, int revents) 1418childcb (EV_P_ ev_signal *sw, int revents)
805{ 1419{
806 int pid, status; 1420 int pid, status;
807 1421
810 if (!WCONTINUED 1424 if (!WCONTINUED
811 || errno != EINVAL 1425 || errno != EINVAL
812 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1426 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
813 return; 1427 return;
814 1428
815 /* make sure we are called again until all childs have been reaped */ 1429 /* make sure we are called again until all children have been reaped */
816 /* we need to do it this way so that the callback gets called before we continue */ 1430 /* we need to do it this way so that the callback gets called before we continue */
817 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1431 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
818 1432
819 child_reap (EV_A_ sw, pid, pid, status); 1433 child_reap (EV_A_ pid, pid, status);
820 if (EV_PID_HASHSIZE > 1) 1434 if (EV_PID_HASHSIZE > 1)
821 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1435 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
822} 1436}
823 1437
824#endif 1438#endif
825 1439
826/*****************************************************************************/ 1440/*****************************************************************************/
888 /* kqueue is borked on everything but netbsd apparently */ 1502 /* kqueue is borked on everything but netbsd apparently */
889 /* it usually doesn't work correctly on anything but sockets and pipes */ 1503 /* it usually doesn't work correctly on anything but sockets and pipes */
890 flags &= ~EVBACKEND_KQUEUE; 1504 flags &= ~EVBACKEND_KQUEUE;
891#endif 1505#endif
892#ifdef __APPLE__ 1506#ifdef __APPLE__
893 // flags &= ~EVBACKEND_KQUEUE; for documentation 1507 /* only select works correctly on that "unix-certified" platform */
894 flags &= ~EVBACKEND_POLL; 1508 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1509 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
895#endif 1510#endif
896 1511
897 return flags; 1512 return flags;
898} 1513}
899 1514
900unsigned int 1515unsigned int
901ev_embeddable_backends (void) 1516ev_embeddable_backends (void)
902{ 1517{
903 return EVBACKEND_EPOLL 1518 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
904 | EVBACKEND_KQUEUE 1519
905 | EVBACKEND_PORT; 1520 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1521 /* please fix it and tell me how to detect the fix */
1522 flags &= ~EVBACKEND_EPOLL;
1523
1524 return flags;
906} 1525}
907 1526
908unsigned int 1527unsigned int
909ev_backend (EV_P) 1528ev_backend (EV_P)
910{ 1529{
911 return backend; 1530 return backend;
912} 1531}
913 1532
1533#if EV_MINIMAL < 2
914unsigned int 1534unsigned int
915ev_loop_count (EV_P) 1535ev_loop_count (EV_P)
916{ 1536{
917 return loop_count; 1537 return loop_count;
918} 1538}
919 1539
1540unsigned int
1541ev_loop_depth (EV_P)
1542{
1543 return loop_depth;
1544}
1545
1546void
1547ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1548{
1549 io_blocktime = interval;
1550}
1551
1552void
1553ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1554{
1555 timeout_blocktime = interval;
1556}
1557
1558void
1559ev_set_userdata (EV_P_ void *data)
1560{
1561 userdata = data;
1562}
1563
1564void *
1565ev_userdata (EV_P)
1566{
1567 return userdata;
1568}
1569
1570void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1571{
1572 invoke_cb = invoke_pending_cb;
1573}
1574
1575void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1576{
1577 release_cb = release;
1578 acquire_cb = acquire;
1579}
1580#endif
1581
1582/* initialise a loop structure, must be zero-initialised */
920static void noinline 1583static void noinline
921loop_init (EV_P_ unsigned int flags) 1584loop_init (EV_P_ unsigned int flags)
922{ 1585{
923 if (!backend) 1586 if (!backend)
924 { 1587 {
1588#if EV_USE_REALTIME
1589 if (!have_realtime)
1590 {
1591 struct timespec ts;
1592
1593 if (!clock_gettime (CLOCK_REALTIME, &ts))
1594 have_realtime = 1;
1595 }
1596#endif
1597
925#if EV_USE_MONOTONIC 1598#if EV_USE_MONOTONIC
1599 if (!have_monotonic)
926 { 1600 {
927 struct timespec ts; 1601 struct timespec ts;
1602
928 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1603 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
929 have_monotonic = 1; 1604 have_monotonic = 1;
930 } 1605 }
931#endif 1606#endif
932
933 ev_rt_now = ev_time ();
934 mn_now = get_clock ();
935 now_floor = mn_now;
936 rtmn_diff = ev_rt_now - mn_now;
937 1607
938 /* pid check not overridable via env */ 1608 /* pid check not overridable via env */
939#ifndef _WIN32 1609#ifndef _WIN32
940 if (flags & EVFLAG_FORKCHECK) 1610 if (flags & EVFLAG_FORKCHECK)
941 curpid = getpid (); 1611 curpid = getpid ();
944 if (!(flags & EVFLAG_NOENV) 1614 if (!(flags & EVFLAG_NOENV)
945 && !enable_secure () 1615 && !enable_secure ()
946 && getenv ("LIBEV_FLAGS")) 1616 && getenv ("LIBEV_FLAGS"))
947 flags = atoi (getenv ("LIBEV_FLAGS")); 1617 flags = atoi (getenv ("LIBEV_FLAGS"));
948 1618
1619 ev_rt_now = ev_time ();
1620 mn_now = get_clock ();
1621 now_floor = mn_now;
1622 rtmn_diff = ev_rt_now - mn_now;
1623#if EV_MINIMAL < 2
1624 invoke_cb = ev_invoke_pending;
1625#endif
1626
1627 io_blocktime = 0.;
1628 timeout_blocktime = 0.;
1629 backend = 0;
1630 backend_fd = -1;
1631 sig_pending = 0;
1632#if EV_ASYNC_ENABLE
1633 async_pending = 0;
1634#endif
1635#if EV_USE_INOTIFY
1636 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1637#endif
1638#if EV_USE_SIGNALFD
1639 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1640#endif
1641
949 if (!(flags & 0x0000ffffUL)) 1642 if (!(flags & 0x0000ffffU))
950 flags |= ev_recommended_backends (); 1643 flags |= ev_recommended_backends ();
951
952 backend = 0;
953 backend_fd = -1;
954#if EV_USE_INOTIFY
955 fs_fd = -2;
956#endif
957 1644
958#if EV_USE_PORT 1645#if EV_USE_PORT
959 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1646 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
960#endif 1647#endif
961#if EV_USE_KQUEUE 1648#if EV_USE_KQUEUE
969#endif 1656#endif
970#if EV_USE_SELECT 1657#if EV_USE_SELECT
971 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1658 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
972#endif 1659#endif
973 1660
1661 ev_prepare_init (&pending_w, pendingcb);
1662
974 ev_init (&sigev, sigcb); 1663 ev_init (&pipe_w, pipecb);
975 ev_set_priority (&sigev, EV_MAXPRI); 1664 ev_set_priority (&pipe_w, EV_MAXPRI);
976 } 1665 }
977} 1666}
978 1667
1668/* free up a loop structure */
979static void noinline 1669static void noinline
980loop_destroy (EV_P) 1670loop_destroy (EV_P)
981{ 1671{
982 int i; 1672 int i;
1673
1674 if (ev_is_active (&pipe_w))
1675 {
1676 /*ev_ref (EV_A);*/
1677 /*ev_io_stop (EV_A_ &pipe_w);*/
1678
1679#if EV_USE_EVENTFD
1680 if (evfd >= 0)
1681 close (evfd);
1682#endif
1683
1684 if (evpipe [0] >= 0)
1685 {
1686 EV_WIN32_CLOSE_FD (evpipe [0]);
1687 EV_WIN32_CLOSE_FD (evpipe [1]);
1688 }
1689 }
1690
1691#if EV_USE_SIGNALFD
1692 if (ev_is_active (&sigfd_w))
1693 close (sigfd);
1694#endif
983 1695
984#if EV_USE_INOTIFY 1696#if EV_USE_INOTIFY
985 if (fs_fd >= 0) 1697 if (fs_fd >= 0)
986 close (fs_fd); 1698 close (fs_fd);
987#endif 1699#endif
1011#if EV_IDLE_ENABLE 1723#if EV_IDLE_ENABLE
1012 array_free (idle, [i]); 1724 array_free (idle, [i]);
1013#endif 1725#endif
1014 } 1726 }
1015 1727
1728 ev_free (anfds); anfds = 0; anfdmax = 0;
1729
1016 /* have to use the microsoft-never-gets-it-right macro */ 1730 /* have to use the microsoft-never-gets-it-right macro */
1731 array_free (rfeed, EMPTY);
1017 array_free (fdchange, EMPTY); 1732 array_free (fdchange, EMPTY);
1018 array_free (timer, EMPTY); 1733 array_free (timer, EMPTY);
1019#if EV_PERIODIC_ENABLE 1734#if EV_PERIODIC_ENABLE
1020 array_free (periodic, EMPTY); 1735 array_free (periodic, EMPTY);
1021#endif 1736#endif
1737#if EV_FORK_ENABLE
1738 array_free (fork, EMPTY);
1739#endif
1022 array_free (prepare, EMPTY); 1740 array_free (prepare, EMPTY);
1023 array_free (check, EMPTY); 1741 array_free (check, EMPTY);
1742#if EV_ASYNC_ENABLE
1743 array_free (async, EMPTY);
1744#endif
1024 1745
1025 backend = 0; 1746 backend = 0;
1026} 1747}
1027 1748
1749#if EV_USE_INOTIFY
1028void inline_size infy_fork (EV_P); 1750inline_size void infy_fork (EV_P);
1751#endif
1029 1752
1030void inline_size 1753inline_size void
1031loop_fork (EV_P) 1754loop_fork (EV_P)
1032{ 1755{
1033#if EV_USE_PORT 1756#if EV_USE_PORT
1034 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1757 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1035#endif 1758#endif
1041#endif 1764#endif
1042#if EV_USE_INOTIFY 1765#if EV_USE_INOTIFY
1043 infy_fork (EV_A); 1766 infy_fork (EV_A);
1044#endif 1767#endif
1045 1768
1046 if (ev_is_active (&sigev)) 1769 if (ev_is_active (&pipe_w))
1047 { 1770 {
1048 /* default loop */ 1771 /* this "locks" the handlers against writing to the pipe */
1772 /* while we modify the fd vars */
1773 sig_pending = 1;
1774#if EV_ASYNC_ENABLE
1775 async_pending = 1;
1776#endif
1049 1777
1050 ev_ref (EV_A); 1778 ev_ref (EV_A);
1051 ev_io_stop (EV_A_ &sigev); 1779 ev_io_stop (EV_A_ &pipe_w);
1052 close (sigpipe [0]);
1053 close (sigpipe [1]);
1054 1780
1055 while (pipe (sigpipe)) 1781#if EV_USE_EVENTFD
1056 syserr ("(libev) error creating pipe"); 1782 if (evfd >= 0)
1783 close (evfd);
1784#endif
1057 1785
1786 if (evpipe [0] >= 0)
1787 {
1788 EV_WIN32_CLOSE_FD (evpipe [0]);
1789 EV_WIN32_CLOSE_FD (evpipe [1]);
1790 }
1791
1058 siginit (EV_A); 1792 evpipe_init (EV_A);
1793 /* now iterate over everything, in case we missed something */
1794 pipecb (EV_A_ &pipe_w, EV_READ);
1059 } 1795 }
1060 1796
1061 postfork = 0; 1797 postfork = 0;
1062} 1798}
1063 1799
1064#if EV_MULTIPLICITY 1800#if EV_MULTIPLICITY
1801
1065struct ev_loop * 1802struct ev_loop *
1066ev_loop_new (unsigned int flags) 1803ev_loop_new (unsigned int flags)
1067{ 1804{
1068 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1805 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1069 1806
1070 memset (loop, 0, sizeof (struct ev_loop)); 1807 memset (EV_A, 0, sizeof (struct ev_loop));
1071
1072 loop_init (EV_A_ flags); 1808 loop_init (EV_A_ flags);
1073 1809
1074 if (ev_backend (EV_A)) 1810 if (ev_backend (EV_A))
1075 return loop; 1811 return EV_A;
1076 1812
1077 return 0; 1813 return 0;
1078} 1814}
1079 1815
1080void 1816void
1085} 1821}
1086 1822
1087void 1823void
1088ev_loop_fork (EV_P) 1824ev_loop_fork (EV_P)
1089{ 1825{
1090 postfork = 1; 1826 postfork = 1; /* must be in line with ev_default_fork */
1091} 1827}
1828#endif /* multiplicity */
1092 1829
1830#if EV_VERIFY
1831static void noinline
1832verify_watcher (EV_P_ W w)
1833{
1834 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1835
1836 if (w->pending)
1837 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1838}
1839
1840static void noinline
1841verify_heap (EV_P_ ANHE *heap, int N)
1842{
1843 int i;
1844
1845 for (i = HEAP0; i < N + HEAP0; ++i)
1846 {
1847 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1848 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1849 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1850
1851 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1852 }
1853}
1854
1855static void noinline
1856array_verify (EV_P_ W *ws, int cnt)
1857{
1858 while (cnt--)
1859 {
1860 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1861 verify_watcher (EV_A_ ws [cnt]);
1862 }
1863}
1864#endif
1865
1866#if EV_MINIMAL < 2
1867void
1868ev_loop_verify (EV_P)
1869{
1870#if EV_VERIFY
1871 int i;
1872 WL w;
1873
1874 assert (activecnt >= -1);
1875
1876 assert (fdchangemax >= fdchangecnt);
1877 for (i = 0; i < fdchangecnt; ++i)
1878 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1879
1880 assert (anfdmax >= 0);
1881 for (i = 0; i < anfdmax; ++i)
1882 for (w = anfds [i].head; w; w = w->next)
1883 {
1884 verify_watcher (EV_A_ (W)w);
1885 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1886 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1887 }
1888
1889 assert (timermax >= timercnt);
1890 verify_heap (EV_A_ timers, timercnt);
1891
1892#if EV_PERIODIC_ENABLE
1893 assert (periodicmax >= periodiccnt);
1894 verify_heap (EV_A_ periodics, periodiccnt);
1895#endif
1896
1897 for (i = NUMPRI; i--; )
1898 {
1899 assert (pendingmax [i] >= pendingcnt [i]);
1900#if EV_IDLE_ENABLE
1901 assert (idleall >= 0);
1902 assert (idlemax [i] >= idlecnt [i]);
1903 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1904#endif
1905 }
1906
1907#if EV_FORK_ENABLE
1908 assert (forkmax >= forkcnt);
1909 array_verify (EV_A_ (W *)forks, forkcnt);
1910#endif
1911
1912#if EV_ASYNC_ENABLE
1913 assert (asyncmax >= asynccnt);
1914 array_verify (EV_A_ (W *)asyncs, asynccnt);
1915#endif
1916
1917 assert (preparemax >= preparecnt);
1918 array_verify (EV_A_ (W *)prepares, preparecnt);
1919
1920 assert (checkmax >= checkcnt);
1921 array_verify (EV_A_ (W *)checks, checkcnt);
1922
1923# if 0
1924 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1925 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1926# endif
1927#endif
1928}
1093#endif 1929#endif
1094 1930
1095#if EV_MULTIPLICITY 1931#if EV_MULTIPLICITY
1096struct ev_loop * 1932struct ev_loop *
1097ev_default_loop_init (unsigned int flags) 1933ev_default_loop_init (unsigned int flags)
1098#else 1934#else
1099int 1935int
1100ev_default_loop (unsigned int flags) 1936ev_default_loop (unsigned int flags)
1101#endif 1937#endif
1102{ 1938{
1103 if (sigpipe [0] == sigpipe [1])
1104 if (pipe (sigpipe))
1105 return 0;
1106
1107 if (!ev_default_loop_ptr) 1939 if (!ev_default_loop_ptr)
1108 { 1940 {
1109#if EV_MULTIPLICITY 1941#if EV_MULTIPLICITY
1110 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1942 EV_P = ev_default_loop_ptr = &default_loop_struct;
1111#else 1943#else
1112 ev_default_loop_ptr = 1; 1944 ev_default_loop_ptr = 1;
1113#endif 1945#endif
1114 1946
1115 loop_init (EV_A_ flags); 1947 loop_init (EV_A_ flags);
1116 1948
1117 if (ev_backend (EV_A)) 1949 if (ev_backend (EV_A))
1118 { 1950 {
1119 siginit (EV_A);
1120
1121#ifndef _WIN32 1951#ifndef _WIN32
1122 ev_signal_init (&childev, childcb, SIGCHLD); 1952 ev_signal_init (&childev, childcb, SIGCHLD);
1123 ev_set_priority (&childev, EV_MAXPRI); 1953 ev_set_priority (&childev, EV_MAXPRI);
1124 ev_signal_start (EV_A_ &childev); 1954 ev_signal_start (EV_A_ &childev);
1125 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1955 ev_unref (EV_A); /* child watcher should not keep loop alive */
1134 1964
1135void 1965void
1136ev_default_destroy (void) 1966ev_default_destroy (void)
1137{ 1967{
1138#if EV_MULTIPLICITY 1968#if EV_MULTIPLICITY
1139 struct ev_loop *loop = ev_default_loop_ptr; 1969 EV_P = ev_default_loop_ptr;
1140#endif 1970#endif
1971
1972 ev_default_loop_ptr = 0;
1141 1973
1142#ifndef _WIN32 1974#ifndef _WIN32
1143 ev_ref (EV_A); /* child watcher */ 1975 ev_ref (EV_A); /* child watcher */
1144 ev_signal_stop (EV_A_ &childev); 1976 ev_signal_stop (EV_A_ &childev);
1145#endif 1977#endif
1146 1978
1147 ev_ref (EV_A); /* signal watcher */
1148 ev_io_stop (EV_A_ &sigev);
1149
1150 close (sigpipe [0]); sigpipe [0] = 0;
1151 close (sigpipe [1]); sigpipe [1] = 0;
1152
1153 loop_destroy (EV_A); 1979 loop_destroy (EV_A);
1154} 1980}
1155 1981
1156void 1982void
1157ev_default_fork (void) 1983ev_default_fork (void)
1158{ 1984{
1159#if EV_MULTIPLICITY 1985#if EV_MULTIPLICITY
1160 struct ev_loop *loop = ev_default_loop_ptr; 1986 EV_P = ev_default_loop_ptr;
1161#endif 1987#endif
1162 1988
1163 if (backend) 1989 postfork = 1; /* must be in line with ev_loop_fork */
1164 postfork = 1;
1165} 1990}
1166 1991
1167/*****************************************************************************/ 1992/*****************************************************************************/
1168 1993
1169void 1994void
1170ev_invoke (EV_P_ void *w, int revents) 1995ev_invoke (EV_P_ void *w, int revents)
1171{ 1996{
1172 EV_CB_INVOKE ((W)w, revents); 1997 EV_CB_INVOKE ((W)w, revents);
1173} 1998}
1174 1999
1175void inline_speed 2000unsigned int
1176call_pending (EV_P) 2001ev_pending_count (EV_P)
2002{
2003 int pri;
2004 unsigned int count = 0;
2005
2006 for (pri = NUMPRI; pri--; )
2007 count += pendingcnt [pri];
2008
2009 return count;
2010}
2011
2012void noinline
2013ev_invoke_pending (EV_P)
1177{ 2014{
1178 int pri; 2015 int pri;
1179 2016
1180 for (pri = NUMPRI; pri--; ) 2017 for (pri = NUMPRI; pri--; )
1181 while (pendingcnt [pri]) 2018 while (pendingcnt [pri])
1182 { 2019 {
1183 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2020 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1184 2021
1185 if (expect_true (p->w))
1186 {
1187 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2022 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2023 /* ^ this is no longer true, as pending_w could be here */
1188 2024
1189 p->w->pending = 0; 2025 p->w->pending = 0;
1190 EV_CB_INVOKE (p->w, p->events); 2026 EV_CB_INVOKE (p->w, p->events);
1191 } 2027 EV_FREQUENT_CHECK;
1192 } 2028 }
1193} 2029}
1194 2030
1195void inline_size
1196timers_reify (EV_P)
1197{
1198 while (timercnt && ((WT)timers [0])->at <= mn_now)
1199 {
1200 ev_timer *w = timers [0];
1201
1202 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1203
1204 /* first reschedule or stop timer */
1205 if (w->repeat)
1206 {
1207 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1208
1209 ((WT)w)->at += w->repeat;
1210 if (((WT)w)->at < mn_now)
1211 ((WT)w)->at = mn_now;
1212
1213 downheap ((WT *)timers, timercnt, 0);
1214 }
1215 else
1216 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1217
1218 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1219 }
1220}
1221
1222#if EV_PERIODIC_ENABLE
1223void inline_size
1224periodics_reify (EV_P)
1225{
1226 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1227 {
1228 ev_periodic *w = periodics [0];
1229
1230 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1231
1232 /* first reschedule or stop timer */
1233 if (w->reschedule_cb)
1234 {
1235 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1236 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1237 downheap ((WT *)periodics, periodiccnt, 0);
1238 }
1239 else if (w->interval)
1240 {
1241 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1242 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1243 downheap ((WT *)periodics, periodiccnt, 0);
1244 }
1245 else
1246 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1247
1248 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1249 }
1250}
1251
1252static void noinline
1253periodics_reschedule (EV_P)
1254{
1255 int i;
1256
1257 /* adjust periodics after time jump */
1258 for (i = 0; i < periodiccnt; ++i)
1259 {
1260 ev_periodic *w = periodics [i];
1261
1262 if (w->reschedule_cb)
1263 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1264 else if (w->interval)
1265 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1266 }
1267
1268 /* now rebuild the heap */
1269 for (i = periodiccnt >> 1; i--; )
1270 downheap ((WT *)periodics, periodiccnt, i);
1271}
1272#endif
1273
1274#if EV_IDLE_ENABLE 2031#if EV_IDLE_ENABLE
1275void inline_size 2032/* make idle watchers pending. this handles the "call-idle */
2033/* only when higher priorities are idle" logic */
2034inline_size void
1276idle_reify (EV_P) 2035idle_reify (EV_P)
1277{ 2036{
1278 if (expect_false (idleall)) 2037 if (expect_false (idleall))
1279 { 2038 {
1280 int pri; 2039 int pri;
1292 } 2051 }
1293 } 2052 }
1294} 2053}
1295#endif 2054#endif
1296 2055
1297int inline_size 2056/* make timers pending */
1298time_update_monotonic (EV_P) 2057inline_size void
2058timers_reify (EV_P)
1299{ 2059{
2060 EV_FREQUENT_CHECK;
2061
2062 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2063 {
2064 do
2065 {
2066 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2067
2068 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2069
2070 /* first reschedule or stop timer */
2071 if (w->repeat)
2072 {
2073 ev_at (w) += w->repeat;
2074 if (ev_at (w) < mn_now)
2075 ev_at (w) = mn_now;
2076
2077 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2078
2079 ANHE_at_cache (timers [HEAP0]);
2080 downheap (timers, timercnt, HEAP0);
2081 }
2082 else
2083 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2084
2085 EV_FREQUENT_CHECK;
2086 feed_reverse (EV_A_ (W)w);
2087 }
2088 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2089
2090 feed_reverse_done (EV_A_ EV_TIMEOUT);
2091 }
2092}
2093
2094#if EV_PERIODIC_ENABLE
2095/* make periodics pending */
2096inline_size void
2097periodics_reify (EV_P)
2098{
2099 EV_FREQUENT_CHECK;
2100
2101 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2102 {
2103 int feed_count = 0;
2104
2105 do
2106 {
2107 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2108
2109 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2110
2111 /* first reschedule or stop timer */
2112 if (w->reschedule_cb)
2113 {
2114 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2115
2116 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2117
2118 ANHE_at_cache (periodics [HEAP0]);
2119 downheap (periodics, periodiccnt, HEAP0);
2120 }
2121 else if (w->interval)
2122 {
2123 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2124 /* if next trigger time is not sufficiently in the future, put it there */
2125 /* this might happen because of floating point inexactness */
2126 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2127 {
2128 ev_at (w) += w->interval;
2129
2130 /* if interval is unreasonably low we might still have a time in the past */
2131 /* so correct this. this will make the periodic very inexact, but the user */
2132 /* has effectively asked to get triggered more often than possible */
2133 if (ev_at (w) < ev_rt_now)
2134 ev_at (w) = ev_rt_now;
2135 }
2136
2137 ANHE_at_cache (periodics [HEAP0]);
2138 downheap (periodics, periodiccnt, HEAP0);
2139 }
2140 else
2141 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2142
2143 EV_FREQUENT_CHECK;
2144 feed_reverse (EV_A_ (W)w);
2145 }
2146 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2147
2148 feed_reverse_done (EV_A_ EV_PERIODIC);
2149 }
2150}
2151
2152/* simply recalculate all periodics */
2153/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2154static void noinline
2155periodics_reschedule (EV_P)
2156{
2157 int i;
2158
2159 /* adjust periodics after time jump */
2160 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2161 {
2162 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2163
2164 if (w->reschedule_cb)
2165 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2166 else if (w->interval)
2167 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2168
2169 ANHE_at_cache (periodics [i]);
2170 }
2171
2172 reheap (periodics, periodiccnt);
2173}
2174#endif
2175
2176/* adjust all timers by a given offset */
2177static void noinline
2178timers_reschedule (EV_P_ ev_tstamp adjust)
2179{
2180 int i;
2181
2182 for (i = 0; i < timercnt; ++i)
2183 {
2184 ANHE *he = timers + i + HEAP0;
2185 ANHE_w (*he)->at += adjust;
2186 ANHE_at_cache (*he);
2187 }
2188}
2189
2190/* fetch new monotonic and realtime times from the kernel */
2191/* also detect if there was a timejump, and act accordingly */
2192inline_speed void
2193time_update (EV_P_ ev_tstamp max_block)
2194{
2195#if EV_USE_MONOTONIC
2196 if (expect_true (have_monotonic))
2197 {
2198 int i;
2199 ev_tstamp odiff = rtmn_diff;
2200
1300 mn_now = get_clock (); 2201 mn_now = get_clock ();
1301 2202
2203 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2204 /* interpolate in the meantime */
1302 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2205 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1303 { 2206 {
1304 ev_rt_now = rtmn_diff + mn_now; 2207 ev_rt_now = rtmn_diff + mn_now;
1305 return 0; 2208 return;
1306 } 2209 }
1307 else 2210
1308 {
1309 now_floor = mn_now; 2211 now_floor = mn_now;
1310 ev_rt_now = ev_time (); 2212 ev_rt_now = ev_time ();
1311 return 1;
1312 }
1313}
1314 2213
1315void inline_size 2214 /* loop a few times, before making important decisions.
1316time_update (EV_P) 2215 * on the choice of "4": one iteration isn't enough,
1317{ 2216 * in case we get preempted during the calls to
1318 int i; 2217 * ev_time and get_clock. a second call is almost guaranteed
1319 2218 * to succeed in that case, though. and looping a few more times
1320#if EV_USE_MONOTONIC 2219 * doesn't hurt either as we only do this on time-jumps or
1321 if (expect_true (have_monotonic)) 2220 * in the unlikely event of having been preempted here.
1322 { 2221 */
1323 if (time_update_monotonic (EV_A)) 2222 for (i = 4; --i; )
1324 { 2223 {
1325 ev_tstamp odiff = rtmn_diff;
1326
1327 /* loop a few times, before making important decisions.
1328 * on the choice of "4": one iteration isn't enough,
1329 * in case we get preempted during the calls to
1330 * ev_time and get_clock. a second call is almost guaranteed
1331 * to succeed in that case, though. and looping a few more times
1332 * doesn't hurt either as we only do this on time-jumps or
1333 * in the unlikely event of having been preempted here.
1334 */
1335 for (i = 4; --i; )
1336 {
1337 rtmn_diff = ev_rt_now - mn_now; 2224 rtmn_diff = ev_rt_now - mn_now;
1338 2225
1339 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2226 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1340 return; /* all is well */ 2227 return; /* all is well */
1341 2228
1342 ev_rt_now = ev_time (); 2229 ev_rt_now = ev_time ();
1343 mn_now = get_clock (); 2230 mn_now = get_clock ();
1344 now_floor = mn_now; 2231 now_floor = mn_now;
1345 } 2232 }
1346 2233
2234 /* no timer adjustment, as the monotonic clock doesn't jump */
2235 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1347# if EV_PERIODIC_ENABLE 2236# if EV_PERIODIC_ENABLE
1348 periodics_reschedule (EV_A); 2237 periodics_reschedule (EV_A);
1349# endif 2238# endif
1350 /* no timer adjustment, as the monotonic clock doesn't jump */
1351 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1352 }
1353 } 2239 }
1354 else 2240 else
1355#endif 2241#endif
1356 { 2242 {
1357 ev_rt_now = ev_time (); 2243 ev_rt_now = ev_time ();
1358 2244
1359 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2245 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1360 { 2246 {
2247 /* adjust timers. this is easy, as the offset is the same for all of them */
2248 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1361#if EV_PERIODIC_ENABLE 2249#if EV_PERIODIC_ENABLE
1362 periodics_reschedule (EV_A); 2250 periodics_reschedule (EV_A);
1363#endif 2251#endif
1364
1365 /* adjust timers. this is easy, as the offset is the same for all of them */
1366 for (i = 0; i < timercnt; ++i)
1367 ((WT)timers [i])->at += ev_rt_now - mn_now;
1368 } 2252 }
1369 2253
1370 mn_now = ev_rt_now; 2254 mn_now = ev_rt_now;
1371 } 2255 }
1372} 2256}
1373 2257
1374void 2258void
1375ev_ref (EV_P)
1376{
1377 ++activecnt;
1378}
1379
1380void
1381ev_unref (EV_P)
1382{
1383 --activecnt;
1384}
1385
1386static int loop_done;
1387
1388void
1389ev_loop (EV_P_ int flags) 2259ev_loop (EV_P_ int flags)
1390{ 2260{
1391 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2261#if EV_MINIMAL < 2
1392 ? EVUNLOOP_ONE 2262 ++loop_depth;
1393 : EVUNLOOP_CANCEL; 2263#endif
1394 2264
2265 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2266
2267 loop_done = EVUNLOOP_CANCEL;
2268
1395 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2269 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1396 2270
1397 do 2271 do
1398 { 2272 {
2273#if EV_VERIFY >= 2
2274 ev_loop_verify (EV_A);
2275#endif
2276
1399#ifndef _WIN32 2277#ifndef _WIN32
1400 if (expect_false (curpid)) /* penalise the forking check even more */ 2278 if (expect_false (curpid)) /* penalise the forking check even more */
1401 if (expect_false (getpid () != curpid)) 2279 if (expect_false (getpid () != curpid))
1402 { 2280 {
1403 curpid = getpid (); 2281 curpid = getpid ();
1409 /* we might have forked, so queue fork handlers */ 2287 /* we might have forked, so queue fork handlers */
1410 if (expect_false (postfork)) 2288 if (expect_false (postfork))
1411 if (forkcnt) 2289 if (forkcnt)
1412 { 2290 {
1413 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2291 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1414 call_pending (EV_A); 2292 EV_INVOKE_PENDING;
1415 } 2293 }
1416#endif 2294#endif
1417 2295
1418 /* queue check watchers (and execute them) */ 2296 /* queue prepare watchers (and execute them) */
1419 if (expect_false (preparecnt)) 2297 if (expect_false (preparecnt))
1420 { 2298 {
1421 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2299 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1422 call_pending (EV_A); 2300 EV_INVOKE_PENDING;
1423 } 2301 }
1424 2302
1425 if (expect_false (!activecnt)) 2303 if (expect_false (loop_done))
1426 break; 2304 break;
1427 2305
1428 /* we might have forked, so reify kernel state if necessary */ 2306 /* we might have forked, so reify kernel state if necessary */
1429 if (expect_false (postfork)) 2307 if (expect_false (postfork))
1430 loop_fork (EV_A); 2308 loop_fork (EV_A);
1432 /* update fd-related kernel structures */ 2310 /* update fd-related kernel structures */
1433 fd_reify (EV_A); 2311 fd_reify (EV_A);
1434 2312
1435 /* calculate blocking time */ 2313 /* calculate blocking time */
1436 { 2314 {
1437 ev_tstamp block; 2315 ev_tstamp waittime = 0.;
2316 ev_tstamp sleeptime = 0.;
1438 2317
1439 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2318 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1440 block = 0.; /* do not block at all */
1441 else
1442 { 2319 {
2320 /* remember old timestamp for io_blocktime calculation */
2321 ev_tstamp prev_mn_now = mn_now;
2322
1443 /* update time to cancel out callback processing overhead */ 2323 /* update time to cancel out callback processing overhead */
1444#if EV_USE_MONOTONIC
1445 if (expect_true (have_monotonic))
1446 time_update_monotonic (EV_A); 2324 time_update (EV_A_ 1e100);
1447 else
1448#endif
1449 {
1450 ev_rt_now = ev_time ();
1451 mn_now = ev_rt_now;
1452 }
1453 2325
1454 block = MAX_BLOCKTIME; 2326 waittime = MAX_BLOCKTIME;
1455 2327
1456 if (timercnt) 2328 if (timercnt)
1457 { 2329 {
1458 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2330 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1459 if (block > to) block = to; 2331 if (waittime > to) waittime = to;
1460 } 2332 }
1461 2333
1462#if EV_PERIODIC_ENABLE 2334#if EV_PERIODIC_ENABLE
1463 if (periodiccnt) 2335 if (periodiccnt)
1464 { 2336 {
1465 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2337 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1466 if (block > to) block = to; 2338 if (waittime > to) waittime = to;
1467 } 2339 }
1468#endif 2340#endif
1469 2341
2342 /* don't let timeouts decrease the waittime below timeout_blocktime */
2343 if (expect_false (waittime < timeout_blocktime))
2344 waittime = timeout_blocktime;
2345
2346 /* extra check because io_blocktime is commonly 0 */
1470 if (expect_false (block < 0.)) block = 0.; 2347 if (expect_false (io_blocktime))
2348 {
2349 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2350
2351 if (sleeptime > waittime - backend_fudge)
2352 sleeptime = waittime - backend_fudge;
2353
2354 if (expect_true (sleeptime > 0.))
2355 {
2356 ev_sleep (sleeptime);
2357 waittime -= sleeptime;
2358 }
2359 }
1471 } 2360 }
1472 2361
2362#if EV_MINIMAL < 2
1473 ++loop_count; 2363 ++loop_count;
2364#endif
2365 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1474 backend_poll (EV_A_ block); 2366 backend_poll (EV_A_ waittime);
2367 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2368
2369 /* update ev_rt_now, do magic */
2370 time_update (EV_A_ waittime + sleeptime);
1475 } 2371 }
1476
1477 /* update ev_rt_now, do magic */
1478 time_update (EV_A);
1479 2372
1480 /* queue pending timers and reschedule them */ 2373 /* queue pending timers and reschedule them */
1481 timers_reify (EV_A); /* relative timers called last */ 2374 timers_reify (EV_A); /* relative timers called last */
1482#if EV_PERIODIC_ENABLE 2375#if EV_PERIODIC_ENABLE
1483 periodics_reify (EV_A); /* absolute timers called first */ 2376 periodics_reify (EV_A); /* absolute timers called first */
1490 2383
1491 /* queue check watchers, to be executed first */ 2384 /* queue check watchers, to be executed first */
1492 if (expect_false (checkcnt)) 2385 if (expect_false (checkcnt))
1493 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2386 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1494 2387
1495 call_pending (EV_A); 2388 EV_INVOKE_PENDING;
1496
1497 } 2389 }
1498 while (expect_true (activecnt && !loop_done)); 2390 while (expect_true (
2391 activecnt
2392 && !loop_done
2393 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2394 ));
1499 2395
1500 if (loop_done == EVUNLOOP_ONE) 2396 if (loop_done == EVUNLOOP_ONE)
1501 loop_done = EVUNLOOP_CANCEL; 2397 loop_done = EVUNLOOP_CANCEL;
2398
2399#if EV_MINIMAL < 2
2400 --loop_depth;
2401#endif
1502} 2402}
1503 2403
1504void 2404void
1505ev_unloop (EV_P_ int how) 2405ev_unloop (EV_P_ int how)
1506{ 2406{
1507 loop_done = how; 2407 loop_done = how;
1508} 2408}
1509 2409
2410void
2411ev_ref (EV_P)
2412{
2413 ++activecnt;
2414}
2415
2416void
2417ev_unref (EV_P)
2418{
2419 --activecnt;
2420}
2421
2422void
2423ev_now_update (EV_P)
2424{
2425 time_update (EV_A_ 1e100);
2426}
2427
2428void
2429ev_suspend (EV_P)
2430{
2431 ev_now_update (EV_A);
2432}
2433
2434void
2435ev_resume (EV_P)
2436{
2437 ev_tstamp mn_prev = mn_now;
2438
2439 ev_now_update (EV_A);
2440 timers_reschedule (EV_A_ mn_now - mn_prev);
2441#if EV_PERIODIC_ENABLE
2442 /* TODO: really do this? */
2443 periodics_reschedule (EV_A);
2444#endif
2445}
2446
1510/*****************************************************************************/ 2447/*****************************************************************************/
2448/* singly-linked list management, used when the expected list length is short */
1511 2449
1512void inline_size 2450inline_size void
1513wlist_add (WL *head, WL elem) 2451wlist_add (WL *head, WL elem)
1514{ 2452{
1515 elem->next = *head; 2453 elem->next = *head;
1516 *head = elem; 2454 *head = elem;
1517} 2455}
1518 2456
1519void inline_size 2457inline_size void
1520wlist_del (WL *head, WL elem) 2458wlist_del (WL *head, WL elem)
1521{ 2459{
1522 while (*head) 2460 while (*head)
1523 { 2461 {
1524 if (*head == elem) 2462 if (expect_true (*head == elem))
1525 { 2463 {
1526 *head = elem->next; 2464 *head = elem->next;
1527 return; 2465 break;
1528 } 2466 }
1529 2467
1530 head = &(*head)->next; 2468 head = &(*head)->next;
1531 } 2469 }
1532} 2470}
1533 2471
1534void inline_speed 2472/* internal, faster, version of ev_clear_pending */
2473inline_speed void
1535clear_pending (EV_P_ W w) 2474clear_pending (EV_P_ W w)
1536{ 2475{
1537 if (w->pending) 2476 if (w->pending)
1538 { 2477 {
1539 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2478 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1540 w->pending = 0; 2479 w->pending = 0;
1541 } 2480 }
1542} 2481}
1543 2482
1544int 2483int
1545ev_clear_pending (EV_P_ void *w) 2484ev_clear_pending (EV_P_ void *w)
1546{ 2485{
1547 W w_ = (W)w; 2486 W w_ = (W)w;
1548 int pending = w_->pending; 2487 int pending = w_->pending;
1549 2488
1550 if (!pending) 2489 if (expect_true (pending))
2490 {
2491 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2492 p->w = (W)&pending_w;
2493 w_->pending = 0;
2494 return p->events;
2495 }
2496 else
1551 return 0; 2497 return 0;
1552
1553 w_->pending = 0;
1554 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1555 p->w = 0;
1556
1557 return p->events;
1558} 2498}
1559 2499
1560void inline_size 2500inline_size void
1561pri_adjust (EV_P_ W w) 2501pri_adjust (EV_P_ W w)
1562{ 2502{
1563 int pri = w->priority; 2503 int pri = ev_priority (w);
1564 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2504 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1565 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2505 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1566 w->priority = pri; 2506 ev_set_priority (w, pri);
1567} 2507}
1568 2508
1569void inline_speed 2509inline_speed void
1570ev_start (EV_P_ W w, int active) 2510ev_start (EV_P_ W w, int active)
1571{ 2511{
1572 pri_adjust (EV_A_ w); 2512 pri_adjust (EV_A_ w);
1573 w->active = active; 2513 w->active = active;
1574 ev_ref (EV_A); 2514 ev_ref (EV_A);
1575} 2515}
1576 2516
1577void inline_size 2517inline_size void
1578ev_stop (EV_P_ W w) 2518ev_stop (EV_P_ W w)
1579{ 2519{
1580 ev_unref (EV_A); 2520 ev_unref (EV_A);
1581 w->active = 0; 2521 w->active = 0;
1582} 2522}
1583 2523
1584/*****************************************************************************/ 2524/*****************************************************************************/
1585 2525
1586void 2526void noinline
1587ev_io_start (EV_P_ ev_io *w) 2527ev_io_start (EV_P_ ev_io *w)
1588{ 2528{
1589 int fd = w->fd; 2529 int fd = w->fd;
1590 2530
1591 if (expect_false (ev_is_active (w))) 2531 if (expect_false (ev_is_active (w)))
1592 return; 2532 return;
1593 2533
1594 assert (("ev_io_start called with negative fd", fd >= 0)); 2534 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2535 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2536
2537 EV_FREQUENT_CHECK;
1595 2538
1596 ev_start (EV_A_ (W)w, 1); 2539 ev_start (EV_A_ (W)w, 1);
1597 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2540 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1598 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2541 wlist_add (&anfds[fd].head, (WL)w);
1599 2542
1600 fd_change (EV_A_ fd); 2543 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1601} 2544 w->events &= ~EV__IOFDSET;
1602 2545
1603void 2546 EV_FREQUENT_CHECK;
2547}
2548
2549void noinline
1604ev_io_stop (EV_P_ ev_io *w) 2550ev_io_stop (EV_P_ ev_io *w)
1605{ 2551{
1606 clear_pending (EV_A_ (W)w); 2552 clear_pending (EV_A_ (W)w);
1607 if (expect_false (!ev_is_active (w))) 2553 if (expect_false (!ev_is_active (w)))
1608 return; 2554 return;
1609 2555
1610 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2556 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1611 2557
2558 EV_FREQUENT_CHECK;
2559
1612 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2560 wlist_del (&anfds[w->fd].head, (WL)w);
1613 ev_stop (EV_A_ (W)w); 2561 ev_stop (EV_A_ (W)w);
1614 2562
1615 fd_change (EV_A_ w->fd); 2563 fd_change (EV_A_ w->fd, 1);
1616}
1617 2564
1618void 2565 EV_FREQUENT_CHECK;
2566}
2567
2568void noinline
1619ev_timer_start (EV_P_ ev_timer *w) 2569ev_timer_start (EV_P_ ev_timer *w)
1620{ 2570{
1621 if (expect_false (ev_is_active (w))) 2571 if (expect_false (ev_is_active (w)))
1622 return; 2572 return;
1623 2573
1624 ((WT)w)->at += mn_now; 2574 ev_at (w) += mn_now;
1625 2575
1626 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2576 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1627 2577
2578 EV_FREQUENT_CHECK;
2579
2580 ++timercnt;
1628 ev_start (EV_A_ (W)w, ++timercnt); 2581 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1629 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2582 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1630 timers [timercnt - 1] = w; 2583 ANHE_w (timers [ev_active (w)]) = (WT)w;
1631 upheap ((WT *)timers, timercnt - 1); 2584 ANHE_at_cache (timers [ev_active (w)]);
2585 upheap (timers, ev_active (w));
1632 2586
2587 EV_FREQUENT_CHECK;
2588
1633 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2589 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1634} 2590}
1635 2591
1636void 2592void noinline
1637ev_timer_stop (EV_P_ ev_timer *w) 2593ev_timer_stop (EV_P_ ev_timer *w)
1638{ 2594{
1639 clear_pending (EV_A_ (W)w); 2595 clear_pending (EV_A_ (W)w);
1640 if (expect_false (!ev_is_active (w))) 2596 if (expect_false (!ev_is_active (w)))
1641 return; 2597 return;
1642 2598
1643 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2599 EV_FREQUENT_CHECK;
1644 2600
1645 { 2601 {
1646 int active = ((W)w)->active; 2602 int active = ev_active (w);
1647 2603
2604 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2605
2606 --timercnt;
2607
1648 if (expect_true (--active < --timercnt)) 2608 if (expect_true (active < timercnt + HEAP0))
1649 { 2609 {
1650 timers [active] = timers [timercnt]; 2610 timers [active] = timers [timercnt + HEAP0];
1651 adjustheap ((WT *)timers, timercnt, active); 2611 adjustheap (timers, timercnt, active);
1652 } 2612 }
1653 } 2613 }
1654 2614
1655 ((WT)w)->at -= mn_now; 2615 ev_at (w) -= mn_now;
1656 2616
1657 ev_stop (EV_A_ (W)w); 2617 ev_stop (EV_A_ (W)w);
1658}
1659 2618
1660void 2619 EV_FREQUENT_CHECK;
2620}
2621
2622void noinline
1661ev_timer_again (EV_P_ ev_timer *w) 2623ev_timer_again (EV_P_ ev_timer *w)
1662{ 2624{
2625 EV_FREQUENT_CHECK;
2626
1663 if (ev_is_active (w)) 2627 if (ev_is_active (w))
1664 { 2628 {
1665 if (w->repeat) 2629 if (w->repeat)
1666 { 2630 {
1667 ((WT)w)->at = mn_now + w->repeat; 2631 ev_at (w) = mn_now + w->repeat;
2632 ANHE_at_cache (timers [ev_active (w)]);
1668 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2633 adjustheap (timers, timercnt, ev_active (w));
1669 } 2634 }
1670 else 2635 else
1671 ev_timer_stop (EV_A_ w); 2636 ev_timer_stop (EV_A_ w);
1672 } 2637 }
1673 else if (w->repeat) 2638 else if (w->repeat)
1674 { 2639 {
1675 w->at = w->repeat; 2640 ev_at (w) = w->repeat;
1676 ev_timer_start (EV_A_ w); 2641 ev_timer_start (EV_A_ w);
1677 } 2642 }
2643
2644 EV_FREQUENT_CHECK;
2645}
2646
2647ev_tstamp
2648ev_timer_remaining (EV_P_ ev_timer *w)
2649{
2650 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1678} 2651}
1679 2652
1680#if EV_PERIODIC_ENABLE 2653#if EV_PERIODIC_ENABLE
1681void 2654void noinline
1682ev_periodic_start (EV_P_ ev_periodic *w) 2655ev_periodic_start (EV_P_ ev_periodic *w)
1683{ 2656{
1684 if (expect_false (ev_is_active (w))) 2657 if (expect_false (ev_is_active (w)))
1685 return; 2658 return;
1686 2659
1687 if (w->reschedule_cb) 2660 if (w->reschedule_cb)
1688 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2661 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1689 else if (w->interval) 2662 else if (w->interval)
1690 { 2663 {
1691 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2664 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1692 /* this formula differs from the one in periodic_reify because we do not always round up */ 2665 /* this formula differs from the one in periodic_reify because we do not always round up */
1693 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2666 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1694 } 2667 }
2668 else
2669 ev_at (w) = w->offset;
1695 2670
2671 EV_FREQUENT_CHECK;
2672
2673 ++periodiccnt;
1696 ev_start (EV_A_ (W)w, ++periodiccnt); 2674 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1697 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2675 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1698 periodics [periodiccnt - 1] = w; 2676 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1699 upheap ((WT *)periodics, periodiccnt - 1); 2677 ANHE_at_cache (periodics [ev_active (w)]);
2678 upheap (periodics, ev_active (w));
1700 2679
2680 EV_FREQUENT_CHECK;
2681
1701 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2682 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1702} 2683}
1703 2684
1704void 2685void noinline
1705ev_periodic_stop (EV_P_ ev_periodic *w) 2686ev_periodic_stop (EV_P_ ev_periodic *w)
1706{ 2687{
1707 clear_pending (EV_A_ (W)w); 2688 clear_pending (EV_A_ (W)w);
1708 if (expect_false (!ev_is_active (w))) 2689 if (expect_false (!ev_is_active (w)))
1709 return; 2690 return;
1710 2691
1711 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2692 EV_FREQUENT_CHECK;
1712 2693
1713 { 2694 {
1714 int active = ((W)w)->active; 2695 int active = ev_active (w);
1715 2696
2697 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2698
2699 --periodiccnt;
2700
1716 if (expect_true (--active < --periodiccnt)) 2701 if (expect_true (active < periodiccnt + HEAP0))
1717 { 2702 {
1718 periodics [active] = periodics [periodiccnt]; 2703 periodics [active] = periodics [periodiccnt + HEAP0];
1719 adjustheap ((WT *)periodics, periodiccnt, active); 2704 adjustheap (periodics, periodiccnt, active);
1720 } 2705 }
1721 } 2706 }
1722 2707
1723 ev_stop (EV_A_ (W)w); 2708 ev_stop (EV_A_ (W)w);
1724}
1725 2709
1726void 2710 EV_FREQUENT_CHECK;
2711}
2712
2713void noinline
1727ev_periodic_again (EV_P_ ev_periodic *w) 2714ev_periodic_again (EV_P_ ev_periodic *w)
1728{ 2715{
1729 /* TODO: use adjustheap and recalculation */ 2716 /* TODO: use adjustheap and recalculation */
1730 ev_periodic_stop (EV_A_ w); 2717 ev_periodic_stop (EV_A_ w);
1731 ev_periodic_start (EV_A_ w); 2718 ev_periodic_start (EV_A_ w);
1734 2721
1735#ifndef SA_RESTART 2722#ifndef SA_RESTART
1736# define SA_RESTART 0 2723# define SA_RESTART 0
1737#endif 2724#endif
1738 2725
1739void 2726void noinline
1740ev_signal_start (EV_P_ ev_signal *w) 2727ev_signal_start (EV_P_ ev_signal *w)
1741{ 2728{
1742#if EV_MULTIPLICITY
1743 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1744#endif
1745 if (expect_false (ev_is_active (w))) 2729 if (expect_false (ev_is_active (w)))
1746 return; 2730 return;
1747 2731
1748 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2732 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2733
2734#if EV_MULTIPLICITY
2735 assert (("libev: a signal must not be attached to two different loops",
2736 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2737
2738 signals [w->signum - 1].loop = EV_A;
2739#endif
2740
2741 EV_FREQUENT_CHECK;
2742
2743#if EV_USE_SIGNALFD
2744 if (sigfd == -2)
2745 {
2746 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2747 if (sigfd < 0 && errno == EINVAL)
2748 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2749
2750 if (sigfd >= 0)
2751 {
2752 fd_intern (sigfd); /* doing it twice will not hurt */
2753
2754 sigemptyset (&sigfd_set);
2755
2756 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2757 ev_set_priority (&sigfd_w, EV_MAXPRI);
2758 ev_io_start (EV_A_ &sigfd_w);
2759 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2760 }
2761 }
2762
2763 if (sigfd >= 0)
2764 {
2765 /* TODO: check .head */
2766 sigaddset (&sigfd_set, w->signum);
2767 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2768
2769 signalfd (sigfd, &sigfd_set, 0);
2770 }
2771#endif
1749 2772
1750 ev_start (EV_A_ (W)w, 1); 2773 ev_start (EV_A_ (W)w, 1);
1751 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1752 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2774 wlist_add (&signals [w->signum - 1].head, (WL)w);
1753 2775
1754 if (!((WL)w)->next) 2776 if (!((WL)w)->next)
2777# if EV_USE_SIGNALFD
2778 if (sigfd < 0) /*TODO*/
2779# endif
1755 { 2780 {
1756#if _WIN32 2781# ifdef _WIN32
2782 evpipe_init (EV_A);
2783
1757 signal (w->signum, sighandler); 2784 signal (w->signum, ev_sighandler);
1758#else 2785# else
1759 struct sigaction sa; 2786 struct sigaction sa;
2787
2788 evpipe_init (EV_A);
2789
1760 sa.sa_handler = sighandler; 2790 sa.sa_handler = ev_sighandler;
1761 sigfillset (&sa.sa_mask); 2791 sigfillset (&sa.sa_mask);
1762 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2792 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1763 sigaction (w->signum, &sa, 0); 2793 sigaction (w->signum, &sa, 0);
2794
2795 sigemptyset (&sa.sa_mask);
2796 sigaddset (&sa.sa_mask, w->signum);
2797 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1764#endif 2798#endif
1765 } 2799 }
1766}
1767 2800
1768void 2801 EV_FREQUENT_CHECK;
2802}
2803
2804void noinline
1769ev_signal_stop (EV_P_ ev_signal *w) 2805ev_signal_stop (EV_P_ ev_signal *w)
1770{ 2806{
1771 clear_pending (EV_A_ (W)w); 2807 clear_pending (EV_A_ (W)w);
1772 if (expect_false (!ev_is_active (w))) 2808 if (expect_false (!ev_is_active (w)))
1773 return; 2809 return;
1774 2810
2811 EV_FREQUENT_CHECK;
2812
1775 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2813 wlist_del (&signals [w->signum - 1].head, (WL)w);
1776 ev_stop (EV_A_ (W)w); 2814 ev_stop (EV_A_ (W)w);
1777 2815
1778 if (!signals [w->signum - 1].head) 2816 if (!signals [w->signum - 1].head)
2817 {
2818#if EV_MULTIPLICITY
2819 signals [w->signum - 1].loop = 0; /* unattach from signal */
2820#endif
2821#if EV_USE_SIGNALFD
2822 if (sigfd >= 0)
2823 {
2824 sigset_t ss;
2825
2826 sigemptyset (&ss);
2827 sigaddset (&ss, w->signum);
2828 sigdelset (&sigfd_set, w->signum);
2829
2830 signalfd (sigfd, &sigfd_set, 0);
2831 sigprocmask (SIG_UNBLOCK, &ss, 0);
2832 }
2833 else
2834#endif
1779 signal (w->signum, SIG_DFL); 2835 signal (w->signum, SIG_DFL);
2836 }
2837
2838 EV_FREQUENT_CHECK;
1780} 2839}
1781 2840
1782void 2841void
1783ev_child_start (EV_P_ ev_child *w) 2842ev_child_start (EV_P_ ev_child *w)
1784{ 2843{
1785#if EV_MULTIPLICITY 2844#if EV_MULTIPLICITY
1786 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2845 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1787#endif 2846#endif
1788 if (expect_false (ev_is_active (w))) 2847 if (expect_false (ev_is_active (w)))
1789 return; 2848 return;
1790 2849
2850 EV_FREQUENT_CHECK;
2851
1791 ev_start (EV_A_ (W)w, 1); 2852 ev_start (EV_A_ (W)w, 1);
1792 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2853 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2854
2855 EV_FREQUENT_CHECK;
1793} 2856}
1794 2857
1795void 2858void
1796ev_child_stop (EV_P_ ev_child *w) 2859ev_child_stop (EV_P_ ev_child *w)
1797{ 2860{
1798 clear_pending (EV_A_ (W)w); 2861 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 2862 if (expect_false (!ev_is_active (w)))
1800 return; 2863 return;
1801 2864
2865 EV_FREQUENT_CHECK;
2866
1802 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2867 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1803 ev_stop (EV_A_ (W)w); 2868 ev_stop (EV_A_ (W)w);
2869
2870 EV_FREQUENT_CHECK;
1804} 2871}
1805 2872
1806#if EV_STAT_ENABLE 2873#if EV_STAT_ENABLE
1807 2874
1808# ifdef _WIN32 2875# ifdef _WIN32
1809# undef lstat 2876# undef lstat
1810# define lstat(a,b) _stati64 (a,b) 2877# define lstat(a,b) _stati64 (a,b)
1811# endif 2878# endif
1812 2879
1813#define DEF_STAT_INTERVAL 5.0074891 2880#define DEF_STAT_INTERVAL 5.0074891
2881#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1814#define MIN_STAT_INTERVAL 0.1074891 2882#define MIN_STAT_INTERVAL 0.1074891
1815 2883
1816static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2884static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1817 2885
1818#if EV_USE_INOTIFY 2886#if EV_USE_INOTIFY
1819# define EV_INOTIFY_BUFSIZE 8192 2887
2888/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2889# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1820 2890
1821static void noinline 2891static void noinline
1822infy_add (EV_P_ ev_stat *w) 2892infy_add (EV_P_ ev_stat *w)
1823{ 2893{
1824 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2894 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1825 2895
1826 if (w->wd < 0) 2896 if (w->wd >= 0)
2897 {
2898 struct statfs sfs;
2899
2900 /* now local changes will be tracked by inotify, but remote changes won't */
2901 /* unless the filesystem is known to be local, we therefore still poll */
2902 /* also do poll on <2.6.25, but with normal frequency */
2903
2904 if (!fs_2625)
2905 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2906 else if (!statfs (w->path, &sfs)
2907 && (sfs.f_type == 0x1373 /* devfs */
2908 || sfs.f_type == 0xEF53 /* ext2/3 */
2909 || sfs.f_type == 0x3153464a /* jfs */
2910 || sfs.f_type == 0x52654973 /* reiser3 */
2911 || sfs.f_type == 0x01021994 /* tempfs */
2912 || sfs.f_type == 0x58465342 /* xfs */))
2913 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2914 else
2915 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1827 { 2916 }
1828 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2917 else
2918 {
2919 /* can't use inotify, continue to stat */
2920 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1829 2921
1830 /* monitor some parent directory for speedup hints */ 2922 /* if path is not there, monitor some parent directory for speedup hints */
2923 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2924 /* but an efficiency issue only */
1831 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2925 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1832 { 2926 {
1833 char path [4096]; 2927 char path [4096];
1834 strcpy (path, w->path); 2928 strcpy (path, w->path);
1835 2929
1838 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2932 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1839 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2933 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1840 2934
1841 char *pend = strrchr (path, '/'); 2935 char *pend = strrchr (path, '/');
1842 2936
1843 if (!pend) 2937 if (!pend || pend == path)
1844 break; /* whoops, no '/', complain to your admin */ 2938 break;
1845 2939
1846 *pend = 0; 2940 *pend = 0;
1847 w->wd = inotify_add_watch (fs_fd, path, mask); 2941 w->wd = inotify_add_watch (fs_fd, path, mask);
1848 } 2942 }
1849 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2943 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1850 } 2944 }
1851 } 2945 }
1852 else
1853 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1854 2946
1855 if (w->wd >= 0) 2947 if (w->wd >= 0)
1856 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2948 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2949
2950 /* now re-arm timer, if required */
2951 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2952 ev_timer_again (EV_A_ &w->timer);
2953 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1857} 2954}
1858 2955
1859static void noinline 2956static void noinline
1860infy_del (EV_P_ ev_stat *w) 2957infy_del (EV_P_ ev_stat *w)
1861{ 2958{
1875 2972
1876static void noinline 2973static void noinline
1877infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2974infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1878{ 2975{
1879 if (slot < 0) 2976 if (slot < 0)
1880 /* overflow, need to check for all hahs slots */ 2977 /* overflow, need to check for all hash slots */
1881 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2978 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1882 infy_wd (EV_A_ slot, wd, ev); 2979 infy_wd (EV_A_ slot, wd, ev);
1883 else 2980 else
1884 { 2981 {
1885 WL w_; 2982 WL w_;
1891 2988
1892 if (w->wd == wd || wd == -1) 2989 if (w->wd == wd || wd == -1)
1893 { 2990 {
1894 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2991 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1895 { 2992 {
2993 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1896 w->wd = -1; 2994 w->wd = -1;
1897 infy_add (EV_A_ w); /* re-add, no matter what */ 2995 infy_add (EV_A_ w); /* re-add, no matter what */
1898 } 2996 }
1899 2997
1900 stat_timer_cb (EV_A_ &w->timer, 0); 2998 stat_timer_cb (EV_A_ &w->timer, 0);
1905 3003
1906static void 3004static void
1907infy_cb (EV_P_ ev_io *w, int revents) 3005infy_cb (EV_P_ ev_io *w, int revents)
1908{ 3006{
1909 char buf [EV_INOTIFY_BUFSIZE]; 3007 char buf [EV_INOTIFY_BUFSIZE];
1910 struct inotify_event *ev = (struct inotify_event *)buf;
1911 int ofs; 3008 int ofs;
1912 int len = read (fs_fd, buf, sizeof (buf)); 3009 int len = read (fs_fd, buf, sizeof (buf));
1913 3010
1914 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3011 for (ofs = 0; ofs < len; )
3012 {
3013 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1915 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3014 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3015 ofs += sizeof (struct inotify_event) + ev->len;
3016 }
1916} 3017}
1917 3018
1918void inline_size 3019inline_size unsigned int
3020ev_linux_version (void)
3021{
3022 struct utsname buf;
3023 unsigned int v;
3024 int i;
3025 char *p = buf.release;
3026
3027 if (uname (&buf))
3028 return 0;
3029
3030 for (i = 3+1; --i; )
3031 {
3032 unsigned int c = 0;
3033
3034 for (;;)
3035 {
3036 if (*p >= '0' && *p <= '9')
3037 c = c * 10 + *p++ - '0';
3038 else
3039 {
3040 p += *p == '.';
3041 break;
3042 }
3043 }
3044
3045 v = (v << 8) | c;
3046 }
3047
3048 return v;
3049}
3050
3051inline_size void
3052ev_check_2625 (EV_P)
3053{
3054 /* kernels < 2.6.25 are borked
3055 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3056 */
3057 if (ev_linux_version () < 0x020619)
3058 return;
3059
3060 fs_2625 = 1;
3061}
3062
3063inline_size int
3064infy_newfd (void)
3065{
3066#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3067 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3068 if (fd >= 0)
3069 return fd;
3070#endif
3071 return inotify_init ();
3072}
3073
3074inline_size void
1919infy_init (EV_P) 3075infy_init (EV_P)
1920{ 3076{
1921 if (fs_fd != -2) 3077 if (fs_fd != -2)
1922 return; 3078 return;
1923 3079
3080 fs_fd = -1;
3081
3082 ev_check_2625 (EV_A);
3083
1924 fs_fd = inotify_init (); 3084 fs_fd = infy_newfd ();
1925 3085
1926 if (fs_fd >= 0) 3086 if (fs_fd >= 0)
1927 { 3087 {
3088 fd_intern (fs_fd);
1928 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3089 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1929 ev_set_priority (&fs_w, EV_MAXPRI); 3090 ev_set_priority (&fs_w, EV_MAXPRI);
1930 ev_io_start (EV_A_ &fs_w); 3091 ev_io_start (EV_A_ &fs_w);
3092 ev_unref (EV_A);
1931 } 3093 }
1932} 3094}
1933 3095
1934void inline_size 3096inline_size void
1935infy_fork (EV_P) 3097infy_fork (EV_P)
1936{ 3098{
1937 int slot; 3099 int slot;
1938 3100
1939 if (fs_fd < 0) 3101 if (fs_fd < 0)
1940 return; 3102 return;
1941 3103
3104 ev_ref (EV_A);
3105 ev_io_stop (EV_A_ &fs_w);
1942 close (fs_fd); 3106 close (fs_fd);
1943 fs_fd = inotify_init (); 3107 fs_fd = infy_newfd ();
3108
3109 if (fs_fd >= 0)
3110 {
3111 fd_intern (fs_fd);
3112 ev_io_set (&fs_w, fs_fd, EV_READ);
3113 ev_io_start (EV_A_ &fs_w);
3114 ev_unref (EV_A);
3115 }
1944 3116
1945 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3117 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1946 { 3118 {
1947 WL w_ = fs_hash [slot].head; 3119 WL w_ = fs_hash [slot].head;
1948 fs_hash [slot].head = 0; 3120 fs_hash [slot].head = 0;
1955 w->wd = -1; 3127 w->wd = -1;
1956 3128
1957 if (fs_fd >= 0) 3129 if (fs_fd >= 0)
1958 infy_add (EV_A_ w); /* re-add, no matter what */ 3130 infy_add (EV_A_ w); /* re-add, no matter what */
1959 else 3131 else
3132 {
3133 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3134 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1960 ev_timer_start (EV_A_ &w->timer); 3135 ev_timer_again (EV_A_ &w->timer);
3136 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3137 }
1961 } 3138 }
1962
1963 } 3139 }
1964} 3140}
1965 3141
3142#endif
3143
3144#ifdef _WIN32
3145# define EV_LSTAT(p,b) _stati64 (p, b)
3146#else
3147# define EV_LSTAT(p,b) lstat (p, b)
1966#endif 3148#endif
1967 3149
1968void 3150void
1969ev_stat_stat (EV_P_ ev_stat *w) 3151ev_stat_stat (EV_P_ ev_stat *w)
1970{ 3152{
1977static void noinline 3159static void noinline
1978stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3160stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1979{ 3161{
1980 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3162 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1981 3163
1982 /* we copy this here each the time so that */ 3164 ev_statdata prev = w->attr;
1983 /* prev has the old value when the callback gets invoked */
1984 w->prev = w->attr;
1985 ev_stat_stat (EV_A_ w); 3165 ev_stat_stat (EV_A_ w);
1986 3166
1987 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3167 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1988 if ( 3168 if (
1989 w->prev.st_dev != w->attr.st_dev 3169 prev.st_dev != w->attr.st_dev
1990 || w->prev.st_ino != w->attr.st_ino 3170 || prev.st_ino != w->attr.st_ino
1991 || w->prev.st_mode != w->attr.st_mode 3171 || prev.st_mode != w->attr.st_mode
1992 || w->prev.st_nlink != w->attr.st_nlink 3172 || prev.st_nlink != w->attr.st_nlink
1993 || w->prev.st_uid != w->attr.st_uid 3173 || prev.st_uid != w->attr.st_uid
1994 || w->prev.st_gid != w->attr.st_gid 3174 || prev.st_gid != w->attr.st_gid
1995 || w->prev.st_rdev != w->attr.st_rdev 3175 || prev.st_rdev != w->attr.st_rdev
1996 || w->prev.st_size != w->attr.st_size 3176 || prev.st_size != w->attr.st_size
1997 || w->prev.st_atime != w->attr.st_atime 3177 || prev.st_atime != w->attr.st_atime
1998 || w->prev.st_mtime != w->attr.st_mtime 3178 || prev.st_mtime != w->attr.st_mtime
1999 || w->prev.st_ctime != w->attr.st_ctime 3179 || prev.st_ctime != w->attr.st_ctime
2000 ) { 3180 ) {
3181 /* we only update w->prev on actual differences */
3182 /* in case we test more often than invoke the callback, */
3183 /* to ensure that prev is always different to attr */
3184 w->prev = prev;
3185
2001 #if EV_USE_INOTIFY 3186 #if EV_USE_INOTIFY
3187 if (fs_fd >= 0)
3188 {
2002 infy_del (EV_A_ w); 3189 infy_del (EV_A_ w);
2003 infy_add (EV_A_ w); 3190 infy_add (EV_A_ w);
2004 ev_stat_stat (EV_A_ w); /* avoid race... */ 3191 ev_stat_stat (EV_A_ w); /* avoid race... */
3192 }
2005 #endif 3193 #endif
2006 3194
2007 ev_feed_event (EV_A_ w, EV_STAT); 3195 ev_feed_event (EV_A_ w, EV_STAT);
2008 } 3196 }
2009} 3197}
2012ev_stat_start (EV_P_ ev_stat *w) 3200ev_stat_start (EV_P_ ev_stat *w)
2013{ 3201{
2014 if (expect_false (ev_is_active (w))) 3202 if (expect_false (ev_is_active (w)))
2015 return; 3203 return;
2016 3204
2017 /* since we use memcmp, we need to clear any padding data etc. */
2018 memset (&w->prev, 0, sizeof (ev_statdata));
2019 memset (&w->attr, 0, sizeof (ev_statdata));
2020
2021 ev_stat_stat (EV_A_ w); 3205 ev_stat_stat (EV_A_ w);
2022 3206
3207 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2023 if (w->interval < MIN_STAT_INTERVAL) 3208 w->interval = MIN_STAT_INTERVAL;
2024 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2025 3209
2026 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3210 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2027 ev_set_priority (&w->timer, ev_priority (w)); 3211 ev_set_priority (&w->timer, ev_priority (w));
2028 3212
2029#if EV_USE_INOTIFY 3213#if EV_USE_INOTIFY
2030 infy_init (EV_A); 3214 infy_init (EV_A);
2031 3215
2032 if (fs_fd >= 0) 3216 if (fs_fd >= 0)
2033 infy_add (EV_A_ w); 3217 infy_add (EV_A_ w);
2034 else 3218 else
2035#endif 3219#endif
3220 {
2036 ev_timer_start (EV_A_ &w->timer); 3221 ev_timer_again (EV_A_ &w->timer);
3222 ev_unref (EV_A);
3223 }
2037 3224
2038 ev_start (EV_A_ (W)w, 1); 3225 ev_start (EV_A_ (W)w, 1);
3226
3227 EV_FREQUENT_CHECK;
2039} 3228}
2040 3229
2041void 3230void
2042ev_stat_stop (EV_P_ ev_stat *w) 3231ev_stat_stop (EV_P_ ev_stat *w)
2043{ 3232{
2044 clear_pending (EV_A_ (W)w); 3233 clear_pending (EV_A_ (W)w);
2045 if (expect_false (!ev_is_active (w))) 3234 if (expect_false (!ev_is_active (w)))
2046 return; 3235 return;
2047 3236
3237 EV_FREQUENT_CHECK;
3238
2048#if EV_USE_INOTIFY 3239#if EV_USE_INOTIFY
2049 infy_del (EV_A_ w); 3240 infy_del (EV_A_ w);
2050#endif 3241#endif
3242
3243 if (ev_is_active (&w->timer))
3244 {
3245 ev_ref (EV_A);
2051 ev_timer_stop (EV_A_ &w->timer); 3246 ev_timer_stop (EV_A_ &w->timer);
3247 }
2052 3248
2053 ev_stop (EV_A_ (W)w); 3249 ev_stop (EV_A_ (W)w);
3250
3251 EV_FREQUENT_CHECK;
2054} 3252}
2055#endif 3253#endif
2056 3254
2057#if EV_IDLE_ENABLE 3255#if EV_IDLE_ENABLE
2058void 3256void
2060{ 3258{
2061 if (expect_false (ev_is_active (w))) 3259 if (expect_false (ev_is_active (w)))
2062 return; 3260 return;
2063 3261
2064 pri_adjust (EV_A_ (W)w); 3262 pri_adjust (EV_A_ (W)w);
3263
3264 EV_FREQUENT_CHECK;
2065 3265
2066 { 3266 {
2067 int active = ++idlecnt [ABSPRI (w)]; 3267 int active = ++idlecnt [ABSPRI (w)];
2068 3268
2069 ++idleall; 3269 ++idleall;
2070 ev_start (EV_A_ (W)w, active); 3270 ev_start (EV_A_ (W)w, active);
2071 3271
2072 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3272 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2073 idles [ABSPRI (w)][active - 1] = w; 3273 idles [ABSPRI (w)][active - 1] = w;
2074 } 3274 }
3275
3276 EV_FREQUENT_CHECK;
2075} 3277}
2076 3278
2077void 3279void
2078ev_idle_stop (EV_P_ ev_idle *w) 3280ev_idle_stop (EV_P_ ev_idle *w)
2079{ 3281{
2080 clear_pending (EV_A_ (W)w); 3282 clear_pending (EV_A_ (W)w);
2081 if (expect_false (!ev_is_active (w))) 3283 if (expect_false (!ev_is_active (w)))
2082 return; 3284 return;
2083 3285
3286 EV_FREQUENT_CHECK;
3287
2084 { 3288 {
2085 int active = ((W)w)->active; 3289 int active = ev_active (w);
2086 3290
2087 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3291 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2088 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3292 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2089 3293
2090 ev_stop (EV_A_ (W)w); 3294 ev_stop (EV_A_ (W)w);
2091 --idleall; 3295 --idleall;
2092 } 3296 }
3297
3298 EV_FREQUENT_CHECK;
2093} 3299}
2094#endif 3300#endif
2095 3301
2096void 3302void
2097ev_prepare_start (EV_P_ ev_prepare *w) 3303ev_prepare_start (EV_P_ ev_prepare *w)
2098{ 3304{
2099 if (expect_false (ev_is_active (w))) 3305 if (expect_false (ev_is_active (w)))
2100 return; 3306 return;
3307
3308 EV_FREQUENT_CHECK;
2101 3309
2102 ev_start (EV_A_ (W)w, ++preparecnt); 3310 ev_start (EV_A_ (W)w, ++preparecnt);
2103 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3311 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2104 prepares [preparecnt - 1] = w; 3312 prepares [preparecnt - 1] = w;
3313
3314 EV_FREQUENT_CHECK;
2105} 3315}
2106 3316
2107void 3317void
2108ev_prepare_stop (EV_P_ ev_prepare *w) 3318ev_prepare_stop (EV_P_ ev_prepare *w)
2109{ 3319{
2110 clear_pending (EV_A_ (W)w); 3320 clear_pending (EV_A_ (W)w);
2111 if (expect_false (!ev_is_active (w))) 3321 if (expect_false (!ev_is_active (w)))
2112 return; 3322 return;
2113 3323
3324 EV_FREQUENT_CHECK;
3325
2114 { 3326 {
2115 int active = ((W)w)->active; 3327 int active = ev_active (w);
3328
2116 prepares [active - 1] = prepares [--preparecnt]; 3329 prepares [active - 1] = prepares [--preparecnt];
2117 ((W)prepares [active - 1])->active = active; 3330 ev_active (prepares [active - 1]) = active;
2118 } 3331 }
2119 3332
2120 ev_stop (EV_A_ (W)w); 3333 ev_stop (EV_A_ (W)w);
3334
3335 EV_FREQUENT_CHECK;
2121} 3336}
2122 3337
2123void 3338void
2124ev_check_start (EV_P_ ev_check *w) 3339ev_check_start (EV_P_ ev_check *w)
2125{ 3340{
2126 if (expect_false (ev_is_active (w))) 3341 if (expect_false (ev_is_active (w)))
2127 return; 3342 return;
3343
3344 EV_FREQUENT_CHECK;
2128 3345
2129 ev_start (EV_A_ (W)w, ++checkcnt); 3346 ev_start (EV_A_ (W)w, ++checkcnt);
2130 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3347 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2131 checks [checkcnt - 1] = w; 3348 checks [checkcnt - 1] = w;
3349
3350 EV_FREQUENT_CHECK;
2132} 3351}
2133 3352
2134void 3353void
2135ev_check_stop (EV_P_ ev_check *w) 3354ev_check_stop (EV_P_ ev_check *w)
2136{ 3355{
2137 clear_pending (EV_A_ (W)w); 3356 clear_pending (EV_A_ (W)w);
2138 if (expect_false (!ev_is_active (w))) 3357 if (expect_false (!ev_is_active (w)))
2139 return; 3358 return;
2140 3359
3360 EV_FREQUENT_CHECK;
3361
2141 { 3362 {
2142 int active = ((W)w)->active; 3363 int active = ev_active (w);
3364
2143 checks [active - 1] = checks [--checkcnt]; 3365 checks [active - 1] = checks [--checkcnt];
2144 ((W)checks [active - 1])->active = active; 3366 ev_active (checks [active - 1]) = active;
2145 } 3367 }
2146 3368
2147 ev_stop (EV_A_ (W)w); 3369 ev_stop (EV_A_ (W)w);
3370
3371 EV_FREQUENT_CHECK;
2148} 3372}
2149 3373
2150#if EV_EMBED_ENABLE 3374#if EV_EMBED_ENABLE
2151void noinline 3375void noinline
2152ev_embed_sweep (EV_P_ ev_embed *w) 3376ev_embed_sweep (EV_P_ ev_embed *w)
2153{ 3377{
2154 ev_loop (w->loop, EVLOOP_NONBLOCK); 3378 ev_loop (w->other, EVLOOP_NONBLOCK);
2155} 3379}
2156 3380
2157static void 3381static void
2158embed_cb (EV_P_ ev_io *io, int revents) 3382embed_io_cb (EV_P_ ev_io *io, int revents)
2159{ 3383{
2160 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3384 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2161 3385
2162 if (ev_cb (w)) 3386 if (ev_cb (w))
2163 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3387 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2164 else 3388 else
2165 ev_embed_sweep (loop, w); 3389 ev_loop (w->other, EVLOOP_NONBLOCK);
2166} 3390}
3391
3392static void
3393embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3394{
3395 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3396
3397 {
3398 EV_P = w->other;
3399
3400 while (fdchangecnt)
3401 {
3402 fd_reify (EV_A);
3403 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3404 }
3405 }
3406}
3407
3408static void
3409embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3410{
3411 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3412
3413 ev_embed_stop (EV_A_ w);
3414
3415 {
3416 EV_P = w->other;
3417
3418 ev_loop_fork (EV_A);
3419 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3420 }
3421
3422 ev_embed_start (EV_A_ w);
3423}
3424
3425#if 0
3426static void
3427embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3428{
3429 ev_idle_stop (EV_A_ idle);
3430}
3431#endif
2167 3432
2168void 3433void
2169ev_embed_start (EV_P_ ev_embed *w) 3434ev_embed_start (EV_P_ ev_embed *w)
2170{ 3435{
2171 if (expect_false (ev_is_active (w))) 3436 if (expect_false (ev_is_active (w)))
2172 return; 3437 return;
2173 3438
2174 { 3439 {
2175 struct ev_loop *loop = w->loop; 3440 EV_P = w->other;
2176 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3441 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2177 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3442 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2178 } 3443 }
3444
3445 EV_FREQUENT_CHECK;
2179 3446
2180 ev_set_priority (&w->io, ev_priority (w)); 3447 ev_set_priority (&w->io, ev_priority (w));
2181 ev_io_start (EV_A_ &w->io); 3448 ev_io_start (EV_A_ &w->io);
2182 3449
3450 ev_prepare_init (&w->prepare, embed_prepare_cb);
3451 ev_set_priority (&w->prepare, EV_MINPRI);
3452 ev_prepare_start (EV_A_ &w->prepare);
3453
3454 ev_fork_init (&w->fork, embed_fork_cb);
3455 ev_fork_start (EV_A_ &w->fork);
3456
3457 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3458
2183 ev_start (EV_A_ (W)w, 1); 3459 ev_start (EV_A_ (W)w, 1);
3460
3461 EV_FREQUENT_CHECK;
2184} 3462}
2185 3463
2186void 3464void
2187ev_embed_stop (EV_P_ ev_embed *w) 3465ev_embed_stop (EV_P_ ev_embed *w)
2188{ 3466{
2189 clear_pending (EV_A_ (W)w); 3467 clear_pending (EV_A_ (W)w);
2190 if (expect_false (!ev_is_active (w))) 3468 if (expect_false (!ev_is_active (w)))
2191 return; 3469 return;
2192 3470
3471 EV_FREQUENT_CHECK;
3472
2193 ev_io_stop (EV_A_ &w->io); 3473 ev_io_stop (EV_A_ &w->io);
3474 ev_prepare_stop (EV_A_ &w->prepare);
3475 ev_fork_stop (EV_A_ &w->fork);
2194 3476
2195 ev_stop (EV_A_ (W)w); 3477 ev_stop (EV_A_ (W)w);
3478
3479 EV_FREQUENT_CHECK;
2196} 3480}
2197#endif 3481#endif
2198 3482
2199#if EV_FORK_ENABLE 3483#if EV_FORK_ENABLE
2200void 3484void
2201ev_fork_start (EV_P_ ev_fork *w) 3485ev_fork_start (EV_P_ ev_fork *w)
2202{ 3486{
2203 if (expect_false (ev_is_active (w))) 3487 if (expect_false (ev_is_active (w)))
2204 return; 3488 return;
3489
3490 EV_FREQUENT_CHECK;
2205 3491
2206 ev_start (EV_A_ (W)w, ++forkcnt); 3492 ev_start (EV_A_ (W)w, ++forkcnt);
2207 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3493 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2208 forks [forkcnt - 1] = w; 3494 forks [forkcnt - 1] = w;
3495
3496 EV_FREQUENT_CHECK;
2209} 3497}
2210 3498
2211void 3499void
2212ev_fork_stop (EV_P_ ev_fork *w) 3500ev_fork_stop (EV_P_ ev_fork *w)
2213{ 3501{
2214 clear_pending (EV_A_ (W)w); 3502 clear_pending (EV_A_ (W)w);
2215 if (expect_false (!ev_is_active (w))) 3503 if (expect_false (!ev_is_active (w)))
2216 return; 3504 return;
2217 3505
3506 EV_FREQUENT_CHECK;
3507
2218 { 3508 {
2219 int active = ((W)w)->active; 3509 int active = ev_active (w);
3510
2220 forks [active - 1] = forks [--forkcnt]; 3511 forks [active - 1] = forks [--forkcnt];
2221 ((W)forks [active - 1])->active = active; 3512 ev_active (forks [active - 1]) = active;
2222 } 3513 }
2223 3514
2224 ev_stop (EV_A_ (W)w); 3515 ev_stop (EV_A_ (W)w);
3516
3517 EV_FREQUENT_CHECK;
3518}
3519#endif
3520
3521#if EV_ASYNC_ENABLE
3522void
3523ev_async_start (EV_P_ ev_async *w)
3524{
3525 if (expect_false (ev_is_active (w)))
3526 return;
3527
3528 evpipe_init (EV_A);
3529
3530 EV_FREQUENT_CHECK;
3531
3532 ev_start (EV_A_ (W)w, ++asynccnt);
3533 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3534 asyncs [asynccnt - 1] = w;
3535
3536 EV_FREQUENT_CHECK;
3537}
3538
3539void
3540ev_async_stop (EV_P_ ev_async *w)
3541{
3542 clear_pending (EV_A_ (W)w);
3543 if (expect_false (!ev_is_active (w)))
3544 return;
3545
3546 EV_FREQUENT_CHECK;
3547
3548 {
3549 int active = ev_active (w);
3550
3551 asyncs [active - 1] = asyncs [--asynccnt];
3552 ev_active (asyncs [active - 1]) = active;
3553 }
3554
3555 ev_stop (EV_A_ (W)w);
3556
3557 EV_FREQUENT_CHECK;
3558}
3559
3560void
3561ev_async_send (EV_P_ ev_async *w)
3562{
3563 w->sent = 1;
3564 evpipe_write (EV_A_ &async_pending);
2225} 3565}
2226#endif 3566#endif
2227 3567
2228/*****************************************************************************/ 3568/*****************************************************************************/
2229 3569
2239once_cb (EV_P_ struct ev_once *once, int revents) 3579once_cb (EV_P_ struct ev_once *once, int revents)
2240{ 3580{
2241 void (*cb)(int revents, void *arg) = once->cb; 3581 void (*cb)(int revents, void *arg) = once->cb;
2242 void *arg = once->arg; 3582 void *arg = once->arg;
2243 3583
2244 ev_io_stop (EV_A_ &once->io); 3584 ev_io_stop (EV_A_ &once->io);
2245 ev_timer_stop (EV_A_ &once->to); 3585 ev_timer_stop (EV_A_ &once->to);
2246 ev_free (once); 3586 ev_free (once);
2247 3587
2248 cb (revents, arg); 3588 cb (revents, arg);
2249} 3589}
2250 3590
2251static void 3591static void
2252once_cb_io (EV_P_ ev_io *w, int revents) 3592once_cb_io (EV_P_ ev_io *w, int revents)
2253{ 3593{
2254 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3594 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3595
3596 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2255} 3597}
2256 3598
2257static void 3599static void
2258once_cb_to (EV_P_ ev_timer *w, int revents) 3600once_cb_to (EV_P_ ev_timer *w, int revents)
2259{ 3601{
2260 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3602 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3603
3604 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2261} 3605}
2262 3606
2263void 3607void
2264ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3608ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2265{ 3609{
2287 ev_timer_set (&once->to, timeout, 0.); 3631 ev_timer_set (&once->to, timeout, 0.);
2288 ev_timer_start (EV_A_ &once->to); 3632 ev_timer_start (EV_A_ &once->to);
2289 } 3633 }
2290} 3634}
2291 3635
3636/*****************************************************************************/
3637
3638#if EV_WALK_ENABLE
3639void
3640ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3641{
3642 int i, j;
3643 ev_watcher_list *wl, *wn;
3644
3645 if (types & (EV_IO | EV_EMBED))
3646 for (i = 0; i < anfdmax; ++i)
3647 for (wl = anfds [i].head; wl; )
3648 {
3649 wn = wl->next;
3650
3651#if EV_EMBED_ENABLE
3652 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3653 {
3654 if (types & EV_EMBED)
3655 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3656 }
3657 else
3658#endif
3659#if EV_USE_INOTIFY
3660 if (ev_cb ((ev_io *)wl) == infy_cb)
3661 ;
3662 else
3663#endif
3664 if ((ev_io *)wl != &pipe_w)
3665 if (types & EV_IO)
3666 cb (EV_A_ EV_IO, wl);
3667
3668 wl = wn;
3669 }
3670
3671 if (types & (EV_TIMER | EV_STAT))
3672 for (i = timercnt + HEAP0; i-- > HEAP0; )
3673#if EV_STAT_ENABLE
3674 /*TODO: timer is not always active*/
3675 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3676 {
3677 if (types & EV_STAT)
3678 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3679 }
3680 else
3681#endif
3682 if (types & EV_TIMER)
3683 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3684
3685#if EV_PERIODIC_ENABLE
3686 if (types & EV_PERIODIC)
3687 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3688 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3689#endif
3690
3691#if EV_IDLE_ENABLE
3692 if (types & EV_IDLE)
3693 for (j = NUMPRI; i--; )
3694 for (i = idlecnt [j]; i--; )
3695 cb (EV_A_ EV_IDLE, idles [j][i]);
3696#endif
3697
3698#if EV_FORK_ENABLE
3699 if (types & EV_FORK)
3700 for (i = forkcnt; i--; )
3701 if (ev_cb (forks [i]) != embed_fork_cb)
3702 cb (EV_A_ EV_FORK, forks [i]);
3703#endif
3704
3705#if EV_ASYNC_ENABLE
3706 if (types & EV_ASYNC)
3707 for (i = asynccnt; i--; )
3708 cb (EV_A_ EV_ASYNC, asyncs [i]);
3709#endif
3710
3711 if (types & EV_PREPARE)
3712 for (i = preparecnt; i--; )
3713#if EV_EMBED_ENABLE
3714 if (ev_cb (prepares [i]) != embed_prepare_cb)
3715#endif
3716 cb (EV_A_ EV_PREPARE, prepares [i]);
3717
3718 if (types & EV_CHECK)
3719 for (i = checkcnt; i--; )
3720 cb (EV_A_ EV_CHECK, checks [i]);
3721
3722 if (types & EV_SIGNAL)
3723 for (i = 0; i < EV_NSIG - 1; ++i)
3724 for (wl = signals [i].head; wl; )
3725 {
3726 wn = wl->next;
3727 cb (EV_A_ EV_SIGNAL, wl);
3728 wl = wn;
3729 }
3730
3731 if (types & EV_CHILD)
3732 for (i = EV_PID_HASHSIZE; i--; )
3733 for (wl = childs [i]; wl; )
3734 {
3735 wn = wl->next;
3736 cb (EV_A_ EV_CHILD, wl);
3737 wl = wn;
3738 }
3739/* EV_STAT 0x00001000 /* stat data changed */
3740/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3741}
3742#endif
3743
3744#if EV_MULTIPLICITY
3745 #include "ev_wrap.h"
3746#endif
3747
2292#ifdef __cplusplus 3748#ifdef __cplusplus
2293} 3749}
2294#endif 3750#endif
2295 3751

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines